xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 1d1731fa)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.6 2003/08/07 21:16:44 dillon Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/bus.h>
44 
45 #ifdef PC98
46 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
47 #endif
48 
49 #include <machine/clock.h>
50 #include <machine/ipl.h>
51 
52 #include "cam.h"
53 #include "cam_ccb.h"
54 #include "cam_periph.h"
55 #include "cam_sim.h"
56 #include "cam_xpt.h"
57 #include "cam_xpt_sim.h"
58 #include "cam_xpt_periph.h"
59 #include "cam_debug.h"
60 
61 #include "scsi/scsi_all.h"
62 #include "scsi/scsi_message.h"
63 #include "scsi/scsi_pass.h"
64 #include "opt_cam.h"
65 
66 /* Datastructures internal to the xpt layer */
67 
68 /*
69  * Definition of an async handler callback block.  These are used to add
70  * SIMs and peripherals to the async callback lists.
71  */
72 struct async_node {
73 	SLIST_ENTRY(async_node)	links;
74 	u_int32_t	event_enable;	/* Async Event enables */
75 	void		(*callback)(void *arg, u_int32_t code,
76 				    struct cam_path *path, void *args);
77 	void		*callback_arg;
78 };
79 
80 SLIST_HEAD(async_list, async_node);
81 SLIST_HEAD(periph_list, cam_periph);
82 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
83 
84 /*
85  * This is the maximum number of high powered commands (e.g. start unit)
86  * that can be outstanding at a particular time.
87  */
88 #ifndef CAM_MAX_HIGHPOWER
89 #define CAM_MAX_HIGHPOWER  4
90 #endif
91 
92 /* number of high powered commands that can go through right now */
93 static int num_highpower = CAM_MAX_HIGHPOWER;
94 
95 /*
96  * Structure for queueing a device in a run queue.
97  * There is one run queue for allocating new ccbs,
98  * and another for sending ccbs to the controller.
99  */
100 struct cam_ed_qinfo {
101 	cam_pinfo pinfo;
102 	struct	  cam_ed *device;
103 };
104 
105 /*
106  * The CAM EDT (Existing Device Table) contains the device information for
107  * all devices for all busses in the system.  The table contains a
108  * cam_ed structure for each device on the bus.
109  */
110 struct cam_ed {
111 	TAILQ_ENTRY(cam_ed) links;
112 	struct	cam_ed_qinfo alloc_ccb_entry;
113 	struct	cam_ed_qinfo send_ccb_entry;
114 	struct	cam_et	 *target;
115 	lun_id_t	 lun_id;
116 	struct	camq drvq;		/*
117 					 * Queue of type drivers wanting to do
118 					 * work on this device.
119 					 */
120 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
121 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
122 	struct	periph_list periphs;	/* All attached devices */
123 	u_int	generation;		/* Generation number */
124 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
125 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
126 					/* Storage for the inquiry data */
127 	struct	scsi_inquiry_data inq_data;
128 	u_int8_t	 inq_flags;	/*
129 					 * Current settings for inquiry flags.
130 					 * This allows us to override settings
131 					 * like disconnection and tagged
132 					 * queuing for a device.
133 					 */
134 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
135 	u_int8_t	 serial_num_len;
136 	u_int8_t	 *serial_num;
137 	u_int32_t	 qfrozen_cnt;
138 	u_int32_t	 flags;
139 #define CAM_DEV_UNCONFIGURED	 	0x01
140 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
141 #define CAM_DEV_REL_ON_COMPLETE		0x04
142 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
143 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
144 #define CAM_DEV_TAG_AFTER_COUNT		0x20
145 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
146 	u_int32_t	 tag_delay_count;
147 #define	CAM_TAG_DELAY_COUNT		5
148 	u_int32_t	 refcount;
149 	struct		 callout_handle c_handle;
150 };
151 
152 /*
153  * Each target is represented by an ET (Existing Target).  These
154  * entries are created when a target is successfully probed with an
155  * identify, and removed when a device fails to respond after a number
156  * of retries, or a bus rescan finds the device missing.
157  */
158 struct cam_et {
159 	TAILQ_HEAD(, cam_ed) ed_entries;
160 	TAILQ_ENTRY(cam_et) links;
161 	struct	cam_eb	*bus;
162 	target_id_t	target_id;
163 	u_int32_t	refcount;
164 	u_int		generation;
165 	struct		timeval last_reset;
166 };
167 
168 /*
169  * Each bus is represented by an EB (Existing Bus).  These entries
170  * are created by calls to xpt_bus_register and deleted by calls to
171  * xpt_bus_deregister.
172  */
173 struct cam_eb {
174 	TAILQ_HEAD(, cam_et) et_entries;
175 	TAILQ_ENTRY(cam_eb)  links;
176 	path_id_t	     path_id;
177 	struct cam_sim	     *sim;
178 	struct timeval	     last_reset;
179 	u_int32_t	     flags;
180 #define	CAM_EB_RUNQ_SCHEDULED	0x01
181 	u_int32_t	     refcount;
182 	u_int		     generation;
183 };
184 
185 struct cam_path {
186 	struct cam_periph *periph;
187 	struct cam_eb	  *bus;
188 	struct cam_et	  *target;
189 	struct cam_ed	  *device;
190 };
191 
192 struct xpt_quirk_entry {
193 	struct scsi_inquiry_pattern inq_pat;
194 	u_int8_t quirks;
195 #define	CAM_QUIRK_NOLUNS	0x01
196 #define	CAM_QUIRK_NOSERIAL	0x02
197 #define	CAM_QUIRK_HILUNS	0x04
198 	u_int mintags;
199 	u_int maxtags;
200 };
201 #define	CAM_SCSI2_MAXLUN	8
202 
203 typedef enum {
204 	XPT_FLAG_OPEN		= 0x01
205 } xpt_flags;
206 
207 struct xpt_softc {
208 	xpt_flags	flags;
209 	u_int32_t	generation;
210 };
211 
212 static const char quantum[] = "QUANTUM";
213 static const char sony[] = "SONY";
214 static const char west_digital[] = "WDIGTL";
215 static const char samsung[] = "SAMSUNG";
216 static const char seagate[] = "SEAGATE";
217 static const char microp[] = "MICROP";
218 
219 static struct xpt_quirk_entry xpt_quirk_table[] =
220 {
221 	{
222 		/* Reports QUEUE FULL for temporary resource shortages */
223 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
224 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
225 	},
226 	{
227 		/* Reports QUEUE FULL for temporary resource shortages */
228 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
229 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
230 	},
231 	{
232 		/* Reports QUEUE FULL for temporary resource shortages */
233 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
234 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
235 	},
236 	{
237 		/* Broken tagged queuing drive */
238 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
239 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
240 	},
241 	{
242 		/* Broken tagged queuing drive */
243 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
244 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
245 	},
246 	{
247 		/* Broken tagged queuing drive */
248 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
249 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
250 	},
251 	{
252 		/*
253 		 * Unfortunately, the Quantum Atlas III has the same
254 		 * problem as the Atlas II drives above.
255 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
256 		 *
257 		 * For future reference, the drive with the problem was:
258 		 * QUANTUM QM39100TD-SW N1B0
259 		 *
260 		 * It's possible that Quantum will fix the problem in later
261 		 * firmware revisions.  If that happens, the quirk entry
262 		 * will need to be made specific to the firmware revisions
263 		 * with the problem.
264 		 *
265 		 */
266 		/* Reports QUEUE FULL for temporary resource shortages */
267 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
268 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
269 	},
270 	{
271 		/*
272 		 * 18 Gig Atlas III, same problem as the 9G version.
273 		 * Reported by: Andre Albsmeier
274 		 *		<andre.albsmeier@mchp.siemens.de>
275 		 *
276 		 * For future reference, the drive with the problem was:
277 		 * QUANTUM QM318000TD-S N491
278 		 */
279 		/* Reports QUEUE FULL for temporary resource shortages */
280 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
281 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
282 	},
283 	{
284 		/*
285 		 * Broken tagged queuing drive
286 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
287 		 *         and: Martin Renters <martin@tdc.on.ca>
288 		 */
289 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
290 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
291 	},
292 		/*
293 		 * The Seagate Medalist Pro drives have very poor write
294 		 * performance with anything more than 2 tags.
295 		 *
296 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
297 		 * Drive:  <SEAGATE ST36530N 1444>
298 		 *
299 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
300 		 * Drive:  <SEAGATE ST34520W 1281>
301 		 *
302 		 * No one has actually reported that the 9G version
303 		 * (ST39140*) of the Medalist Pro has the same problem, but
304 		 * we're assuming that it does because the 4G and 6.5G
305 		 * versions of the drive are broken.
306 		 */
307 	{
308 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
309 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
310 	},
311 	{
312 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
313 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
314 	},
315 	{
316 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
317 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
318 	},
319 	{
320 		/*
321 		 * Slow when tagged queueing is enabled.  Write performance
322 		 * steadily drops off with more and more concurrent
323 		 * transactions.  Best sequential write performance with
324 		 * tagged queueing turned off and write caching turned on.
325 		 *
326 		 * PR:  kern/10398
327 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
328 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
329 		 *
330 		 * The drive with the problem had the "S65A" firmware
331 		 * revision, and has also been reported (by Stephen J.
332 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
333 		 * firmware revision.
334 		 *
335 		 * Although no one has reported problems with the 2 gig
336 		 * version of the DCAS drive, the assumption is that it
337 		 * has the same problems as the 4 gig version.  Therefore
338 		 * this quirk entries disables tagged queueing for all
339 		 * DCAS drives.
340 		 */
341 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
342 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
343 	},
344 	{
345 		/* Broken tagged queuing drive */
346 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
347 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
348 	},
349 	{
350 		/* Broken tagged queuing drive */
351 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
352 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
353 	},
354 	{
355 		/*
356 		 * Broken tagged queuing drive.
357 		 * Submitted by:
358 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
359 		 * in PR kern/9535
360 		 */
361 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
362 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
363 	},
364         {
365 		/*
366 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
367 		 * 8MB/sec.)
368 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
369 		 * Best performance with these drives is achieved with
370 		 * tagged queueing turned off, and write caching turned on.
371 		 */
372 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
373 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
374         },
375         {
376 		/*
377 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
378 		 * 8MB/sec.)
379 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
380 		 * Best performance with these drives is achieved with
381 		 * tagged queueing turned off, and write caching turned on.
382 		 */
383 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
384 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
385         },
386 	{
387 		/*
388 		 * Doesn't handle queue full condition correctly,
389 		 * so we need to limit maxtags to what the device
390 		 * can handle instead of determining this automatically.
391 		 */
392 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
393 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
394 	},
395 	{
396 		/* Really only one LUN */
397 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
398 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
399 	},
400 	{
401 		/* I can't believe we need a quirk for DPT volumes. */
402 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
403 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
404 		/*mintags*/0, /*maxtags*/255
405 	},
406 	{
407 		/*
408 		 * Many Sony CDROM drives don't like multi-LUN probing.
409 		 */
410 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
411 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
412 	},
413 	{
414 		/*
415 		 * This drive doesn't like multiple LUN probing.
416 		 * Submitted by:  Parag Patel <parag@cgt.com>
417 		 */
418 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
419 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
420 	},
421 	{
422 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
423 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
424 	},
425 	{
426 		/*
427 		 * The 8200 doesn't like multi-lun probing, and probably
428 		 * don't like serial number requests either.
429 		 */
430 		{
431 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
432 			"EXB-8200*", "*"
433 		},
434 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
435 	},
436 	{
437 		/*
438 		 * Let's try the same as above, but for a drive that says
439 		 * it's an IPL-6860 but is actually an EXB 8200.
440 		 */
441 		{
442 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
443 			"IPL-6860*", "*"
444 		},
445 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
446 	},
447 	{
448 		/*
449 		 * These Hitachi drives don't like multi-lun probing.
450 		 * The PR submitter has a DK319H, but says that the Linux
451 		 * kernel has a similar work-around for the DK312 and DK314,
452 		 * so all DK31* drives are quirked here.
453 		 * PR:            misc/18793
454 		 * Submitted by:  Paul Haddad <paul@pth.com>
455 		 */
456 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
457 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
458 	},
459 	{
460 		/*
461 		 * This old revision of the TDC3600 is also SCSI-1, and
462 		 * hangs upon serial number probing.
463 		 */
464 		{
465 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
466 			" TDC 3600", "U07:"
467 		},
468 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
469 	},
470 	{
471 		/*
472 		 * Would repond to all LUNs if asked for.
473 		 */
474 		{
475 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
476 			"CP150", "*"
477 		},
478 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
479 	},
480 	{
481 		/*
482 		 * Would repond to all LUNs if asked for.
483 		 */
484 		{
485 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
486 			"96X2*", "*"
487 		},
488 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
489 	},
490 	{
491 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
492 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
493 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
494 	},
495 	{
496 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
497 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
498 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
499 	},
500 	{
501 		/* TeraSolutions special settings for TRC-22 RAID */
502 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
503 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
504 	},
505 	{
506 		/* Veritas Storage Appliance */
507 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
508 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
509 	},
510 	{
511 		/*
512 		 * Would respond to all LUNs.  Device type and removable
513 		 * flag are jumper-selectable.
514 		 */
515 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
516 		  "Tahiti 1", "*"
517 		},
518 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
519 	},
520 	{
521 		/* Default tagged queuing parameters for all devices */
522 		{
523 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
524 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
525 		},
526 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
527 	},
528 };
529 
530 static const int xpt_quirk_table_size =
531 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
532 
533 typedef enum {
534 	DM_RET_COPY		= 0x01,
535 	DM_RET_FLAG_MASK	= 0x0f,
536 	DM_RET_NONE		= 0x00,
537 	DM_RET_STOP		= 0x10,
538 	DM_RET_DESCEND		= 0x20,
539 	DM_RET_ERROR		= 0x30,
540 	DM_RET_ACTION_MASK	= 0xf0
541 } dev_match_ret;
542 
543 typedef enum {
544 	XPT_DEPTH_BUS,
545 	XPT_DEPTH_TARGET,
546 	XPT_DEPTH_DEVICE,
547 	XPT_DEPTH_PERIPH
548 } xpt_traverse_depth;
549 
550 struct xpt_traverse_config {
551 	xpt_traverse_depth	depth;
552 	void			*tr_func;
553 	void			*tr_arg;
554 };
555 
556 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
557 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
558 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
559 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
560 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
561 
562 /* Transport layer configuration information */
563 static struct xpt_softc xsoftc;
564 
565 /* Queues for our software interrupt handler */
566 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
567 static cam_isrq_t cam_bioq;
568 static cam_isrq_t cam_netq;
569 
570 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
571 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
572 static u_int xpt_max_ccbs;	/*
573 				 * Maximum size of ccb pool.  Modified as
574 				 * devices are added/removed or have their
575 				 * opening counts changed.
576 				 */
577 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
578 
579 struct cam_periph *xpt_periph;
580 
581 static periph_init_t xpt_periph_init;
582 
583 static periph_init_t probe_periph_init;
584 
585 static struct periph_driver xpt_driver =
586 {
587 	xpt_periph_init, "xpt",
588 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
589 };
590 
591 static struct periph_driver probe_driver =
592 {
593 	probe_periph_init, "probe",
594 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
595 };
596 
597 DATA_SET(periphdriver_set, xpt_driver);
598 DATA_SET(periphdriver_set, probe_driver);
599 
600 #define XPT_CDEV_MAJOR 104
601 
602 static d_open_t xptopen;
603 static d_close_t xptclose;
604 static d_ioctl_t xptioctl;
605 
606 static struct cdevsw xpt_cdevsw = {
607 	/* name */	"xpt",
608 	/* maj */	XPT_CDEV_MAJOR,
609 	/* flags */	0,
610 	/* port */	NULL,
611 	/* autoq */	0,
612 
613 	/* open */	xptopen,
614 	/* close */	xptclose,
615 	/* read */	noread,
616 	/* write */	nowrite,
617 	/* ioctl */	xptioctl,
618 	/* poll */	nopoll,
619 	/* mmap */	nommap,
620 	/* strategy */	nostrategy,
621 	/* dump */	nodump,
622 	/* psize */	nopsize
623 };
624 
625 static struct intr_config_hook *xpt_config_hook;
626 
627 /* Registered busses */
628 static TAILQ_HEAD(,cam_eb) xpt_busses;
629 static u_int bus_generation;
630 
631 /* Storage for debugging datastructures */
632 #ifdef	CAMDEBUG
633 struct cam_path *cam_dpath;
634 u_int32_t cam_dflags;
635 u_int32_t cam_debug_delay;
636 #endif
637 
638 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
639 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
640 #endif
641 
642 /*
643  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
644  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
645  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
646  */
647 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
648     || defined(CAM_DEBUG_LUN)
649 #ifdef CAMDEBUG
650 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
651     || !defined(CAM_DEBUG_LUN)
652 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
653         and CAM_DEBUG_LUN"
654 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
655 #else /* !CAMDEBUG */
656 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
657 #endif /* CAMDEBUG */
658 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
659 
660 /* Our boot-time initialization hook */
661 static void	xpt_init(void *);
662 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
663 
664 static cam_status	xpt_compile_path(struct cam_path *new_path,
665 					 struct cam_periph *perph,
666 					 path_id_t path_id,
667 					 target_id_t target_id,
668 					 lun_id_t lun_id);
669 
670 static void		xpt_release_path(struct cam_path *path);
671 
672 static void		xpt_async_bcast(struct async_list *async_head,
673 					u_int32_t async_code,
674 					struct cam_path *path,
675 					void *async_arg);
676 static void		xpt_dev_async(u_int32_t async_code,
677 				      struct cam_eb *bus,
678 				      struct cam_et *target,
679 				      struct cam_ed *device,
680 				      void *async_arg);
681 static path_id_t xptnextfreepathid(void);
682 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
683 static union ccb *xpt_get_ccb(struct cam_ed *device);
684 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
685 				  u_int32_t new_priority);
686 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
687 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
688 static timeout_t xpt_release_devq_timeout;
689 static timeout_t xpt_release_simq_timeout;
690 static void	 xpt_release_bus(struct cam_eb *bus);
691 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
692 					 int run_queue);
693 static struct cam_et*
694 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
695 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
696 static struct cam_ed*
697 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
698 				  lun_id_t lun_id);
699 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
700 				    struct cam_ed *device);
701 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
702 static struct cam_eb*
703 		 xpt_find_bus(path_id_t path_id);
704 static struct cam_et*
705 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
706 static struct cam_ed*
707 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
708 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
709 static void	 xpt_scan_lun(struct cam_periph *periph,
710 			      struct cam_path *path, cam_flags flags,
711 			      union ccb *ccb);
712 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
713 static xpt_busfunc_t	xptconfigbuscountfunc;
714 static xpt_busfunc_t	xptconfigfunc;
715 static void	 xpt_config(void *arg);
716 static xpt_devicefunc_t xptpassannouncefunc;
717 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
718 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
719 static void	 xptpoll(struct cam_sim *sim);
720 static inthand2_t swi_camnet;
721 static inthand2_t swi_cambio;
722 static void	 camisr(cam_isrq_t *queue);
723 #if 0
724 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
725 static void	 xptasync(struct cam_periph *periph,
726 			  u_int32_t code, cam_path *path);
727 #endif
728 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
729 				    int num_patterns, struct cam_eb *bus);
730 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
731 				       int num_patterns, struct cam_ed *device);
732 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
733 				       int num_patterns,
734 				       struct cam_periph *periph);
735 static xpt_busfunc_t	xptedtbusfunc;
736 static xpt_targetfunc_t	xptedttargetfunc;
737 static xpt_devicefunc_t	xptedtdevicefunc;
738 static xpt_periphfunc_t	xptedtperiphfunc;
739 static xpt_pdrvfunc_t	xptplistpdrvfunc;
740 static xpt_periphfunc_t	xptplistperiphfunc;
741 static int		xptedtmatch(struct ccb_dev_match *cdm);
742 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
743 static int		xptbustraverse(struct cam_eb *start_bus,
744 				       xpt_busfunc_t *tr_func, void *arg);
745 static int		xpttargettraverse(struct cam_eb *bus,
746 					  struct cam_et *start_target,
747 					  xpt_targetfunc_t *tr_func, void *arg);
748 static int		xptdevicetraverse(struct cam_et *target,
749 					  struct cam_ed *start_device,
750 					  xpt_devicefunc_t *tr_func, void *arg);
751 static int		xptperiphtraverse(struct cam_ed *device,
752 					  struct cam_periph *start_periph,
753 					  xpt_periphfunc_t *tr_func, void *arg);
754 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
755 					xpt_pdrvfunc_t *tr_func, void *arg);
756 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
757 					    struct cam_periph *start_periph,
758 					    xpt_periphfunc_t *tr_func,
759 					    void *arg);
760 static xpt_busfunc_t	xptdefbusfunc;
761 static xpt_targetfunc_t	xptdeftargetfunc;
762 static xpt_devicefunc_t	xptdefdevicefunc;
763 static xpt_periphfunc_t	xptdefperiphfunc;
764 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
765 #ifdef notusedyet
766 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
767 					    void *arg);
768 #endif
769 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
770 					    void *arg);
771 #ifdef notusedyet
772 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
773 					    void *arg);
774 #endif
775 static xpt_devicefunc_t	xptsetasyncfunc;
776 static xpt_busfunc_t	xptsetasyncbusfunc;
777 static cam_status	xptregister(struct cam_periph *periph,
778 				    void *arg);
779 static cam_status	proberegister(struct cam_periph *periph,
780 				      void *arg);
781 static void	 probeschedule(struct cam_periph *probe_periph);
782 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
783 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
784 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
785 static void	 probecleanup(struct cam_periph *periph);
786 static void	 xpt_find_quirk(struct cam_ed *device);
787 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
788 					   struct cam_ed *device,
789 					   int async_update);
790 static void	 xpt_toggle_tags(struct cam_path *path);
791 static void	 xpt_start_tags(struct cam_path *path);
792 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
793 					    struct cam_ed *dev);
794 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
795 					   struct cam_ed *dev);
796 static __inline int periph_is_queued(struct cam_periph *periph);
797 static __inline int device_is_alloc_queued(struct cam_ed *device);
798 static __inline int device_is_send_queued(struct cam_ed *device);
799 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
800 
801 static __inline int
802 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
803 {
804 	int retval;
805 
806 	if (dev->ccbq.devq_openings > 0) {
807 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
808 			cam_ccbq_resize(&dev->ccbq,
809 					dev->ccbq.dev_openings
810 					+ dev->ccbq.dev_active);
811 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
812 		}
813 		/*
814 		 * The priority of a device waiting for CCB resources
815 		 * is that of the the highest priority peripheral driver
816 		 * enqueued.
817 		 */
818 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
819 					  &dev->alloc_ccb_entry.pinfo,
820 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
821 	} else {
822 		retval = 0;
823 	}
824 
825 	return (retval);
826 }
827 
828 static __inline int
829 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
830 {
831 	int	retval;
832 
833 	if (dev->ccbq.dev_openings > 0) {
834 		/*
835 		 * The priority of a device waiting for controller
836 		 * resources is that of the the highest priority CCB
837 		 * enqueued.
838 		 */
839 		retval =
840 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
841 				     &dev->send_ccb_entry.pinfo,
842 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
843 	} else {
844 		retval = 0;
845 	}
846 	return (retval);
847 }
848 
849 static __inline int
850 periph_is_queued(struct cam_periph *periph)
851 {
852 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
853 }
854 
855 static __inline int
856 device_is_alloc_queued(struct cam_ed *device)
857 {
858 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
859 }
860 
861 static __inline int
862 device_is_send_queued(struct cam_ed *device)
863 {
864 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
865 }
866 
867 static __inline int
868 dev_allocq_is_runnable(struct cam_devq *devq)
869 {
870 	/*
871 	 * Have work to do.
872 	 * Have space to do more work.
873 	 * Allowed to do work.
874 	 */
875 	return ((devq->alloc_queue.qfrozen_cnt == 0)
876 	     && (devq->alloc_queue.entries > 0)
877 	     && (devq->alloc_openings > 0));
878 }
879 
880 static void
881 xpt_periph_init()
882 {
883 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
884 }
885 
886 static void
887 probe_periph_init()
888 {
889 }
890 
891 
892 static void
893 xptdone(struct cam_periph *periph, union ccb *done_ccb)
894 {
895 	/* Caller will release the CCB */
896 	wakeup(&done_ccb->ccb_h.cbfcnp);
897 }
898 
899 static int
900 xptopen(dev_t dev, int flags, int fmt, struct thread *td)
901 {
902 	int unit;
903 
904 	unit = minor(dev) & 0xff;
905 
906 	/*
907 	 * Only allow read-write access.
908 	 */
909 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
910 		return(EPERM);
911 
912 	/*
913 	 * We don't allow nonblocking access.
914 	 */
915 	if ((flags & O_NONBLOCK) != 0) {
916 		printf("xpt%d: can't do nonblocking access\n", unit);
917 		return(ENODEV);
918 	}
919 
920 	/*
921 	 * We only have one transport layer right now.  If someone accesses
922 	 * us via something other than minor number 1, point out their
923 	 * mistake.
924 	 */
925 	if (unit != 0) {
926 		printf("xptopen: got invalid xpt unit %d\n", unit);
927 		return(ENXIO);
928 	}
929 
930 	/* Mark ourselves open */
931 	xsoftc.flags |= XPT_FLAG_OPEN;
932 
933 	return(0);
934 }
935 
936 static int
937 xptclose(dev_t dev, int flag, int fmt, struct thread *td)
938 {
939 	int unit;
940 
941 	unit = minor(dev) & 0xff;
942 
943 	/*
944 	 * We only have one transport layer right now.  If someone accesses
945 	 * us via something other than minor number 1, point out their
946 	 * mistake.
947 	 */
948 	if (unit != 0) {
949 		printf("xptclose: got invalid xpt unit %d\n", unit);
950 		return(ENXIO);
951 	}
952 
953 	/* Mark ourselves closed */
954 	xsoftc.flags &= ~XPT_FLAG_OPEN;
955 
956 	return(0);
957 }
958 
959 static int
960 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
961 {
962 	int unit, error;
963 
964 	error = 0;
965 	unit = minor(dev) & 0xff;
966 
967 	/*
968 	 * We only have one transport layer right now.  If someone accesses
969 	 * us via something other than minor number 1, point out their
970 	 * mistake.
971 	 */
972 	if (unit != 0) {
973 		printf("xptioctl: got invalid xpt unit %d\n", unit);
974 		return(ENXIO);
975 	}
976 
977 	switch(cmd) {
978 	/*
979 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
980 	 * to accept CCB types that don't quite make sense to send through a
981 	 * passthrough driver.
982 	 */
983 	case CAMIOCOMMAND: {
984 		union ccb *ccb;
985 		union ccb *inccb;
986 
987 		inccb = (union ccb *)addr;
988 
989 		switch(inccb->ccb_h.func_code) {
990 		case XPT_SCAN_BUS:
991 		case XPT_RESET_BUS:
992 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
993 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
994 				error = EINVAL;
995 				break;
996 			}
997 			/* FALLTHROUGH */
998 		case XPT_PATH_INQ:
999 		case XPT_ENG_INQ:
1000 		case XPT_SCAN_LUN:
1001 
1002 			ccb = xpt_alloc_ccb();
1003 
1004 			/*
1005 			 * Create a path using the bus, target, and lun the
1006 			 * user passed in.
1007 			 */
1008 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1009 					    inccb->ccb_h.path_id,
1010 					    inccb->ccb_h.target_id,
1011 					    inccb->ccb_h.target_lun) !=
1012 					    CAM_REQ_CMP){
1013 				error = EINVAL;
1014 				xpt_free_ccb(ccb);
1015 				break;
1016 			}
1017 			/* Ensure all of our fields are correct */
1018 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1019 				      inccb->ccb_h.pinfo.priority);
1020 			xpt_merge_ccb(ccb, inccb);
1021 			ccb->ccb_h.cbfcnp = xptdone;
1022 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1023 			bcopy(ccb, inccb, sizeof(union ccb));
1024 			xpt_free_path(ccb->ccb_h.path);
1025 			xpt_free_ccb(ccb);
1026 			break;
1027 
1028 		case XPT_DEBUG: {
1029 			union ccb ccb;
1030 
1031 			/*
1032 			 * This is an immediate CCB, so it's okay to
1033 			 * allocate it on the stack.
1034 			 */
1035 
1036 			/*
1037 			 * Create a path using the bus, target, and lun the
1038 			 * user passed in.
1039 			 */
1040 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1041 					    inccb->ccb_h.path_id,
1042 					    inccb->ccb_h.target_id,
1043 					    inccb->ccb_h.target_lun) !=
1044 					    CAM_REQ_CMP){
1045 				error = EINVAL;
1046 				break;
1047 			}
1048 			/* Ensure all of our fields are correct */
1049 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1050 				      inccb->ccb_h.pinfo.priority);
1051 			xpt_merge_ccb(&ccb, inccb);
1052 			ccb.ccb_h.cbfcnp = xptdone;
1053 			xpt_action(&ccb);
1054 			bcopy(&ccb, inccb, sizeof(union ccb));
1055 			xpt_free_path(ccb.ccb_h.path);
1056 			break;
1057 
1058 		}
1059 		case XPT_DEV_MATCH: {
1060 			struct cam_periph_map_info mapinfo;
1061 			struct cam_path *old_path;
1062 
1063 			/*
1064 			 * We can't deal with physical addresses for this
1065 			 * type of transaction.
1066 			 */
1067 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1068 				error = EINVAL;
1069 				break;
1070 			}
1071 
1072 			/*
1073 			 * Save this in case the caller had it set to
1074 			 * something in particular.
1075 			 */
1076 			old_path = inccb->ccb_h.path;
1077 
1078 			/*
1079 			 * We really don't need a path for the matching
1080 			 * code.  The path is needed because of the
1081 			 * debugging statements in xpt_action().  They
1082 			 * assume that the CCB has a valid path.
1083 			 */
1084 			inccb->ccb_h.path = xpt_periph->path;
1085 
1086 			bzero(&mapinfo, sizeof(mapinfo));
1087 
1088 			/*
1089 			 * Map the pattern and match buffers into kernel
1090 			 * virtual address space.
1091 			 */
1092 			error = cam_periph_mapmem(inccb, &mapinfo);
1093 
1094 			if (error) {
1095 				inccb->ccb_h.path = old_path;
1096 				break;
1097 			}
1098 
1099 			/*
1100 			 * This is an immediate CCB, we can send it on directly.
1101 			 */
1102 			xpt_action(inccb);
1103 
1104 			/*
1105 			 * Map the buffers back into user space.
1106 			 */
1107 			cam_periph_unmapmem(inccb, &mapinfo);
1108 
1109 			inccb->ccb_h.path = old_path;
1110 
1111 			error = 0;
1112 			break;
1113 		}
1114 		default:
1115 			error = ENOTSUP;
1116 			break;
1117 		}
1118 		break;
1119 	}
1120 	/*
1121 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1122 	 * with the periphal driver name and unit name filled in.  The other
1123 	 * fields don't really matter as input.  The passthrough driver name
1124 	 * ("pass"), and unit number are passed back in the ccb.  The current
1125 	 * device generation number, and the index into the device peripheral
1126 	 * driver list, and the status are also passed back.  Note that
1127 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1128 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1129 	 * (or rather should be) impossible for the device peripheral driver
1130 	 * list to change since we look at the whole thing in one pass, and
1131 	 * we do it with splcam protection.
1132 	 *
1133 	 */
1134 	case CAMGETPASSTHRU: {
1135 		union ccb *ccb;
1136 		struct cam_periph *periph;
1137 		struct periph_driver **p_drv;
1138 		char   *name;
1139 		int unit;
1140 		int cur_generation;
1141 		int base_periph_found;
1142 		int splbreaknum;
1143 		int s;
1144 
1145 		ccb = (union ccb *)addr;
1146 		unit = ccb->cgdl.unit_number;
1147 		name = ccb->cgdl.periph_name;
1148 		/*
1149 		 * Every 100 devices, we want to drop our spl protection to
1150 		 * give the software interrupt handler a chance to run.
1151 		 * Most systems won't run into this check, but this should
1152 		 * avoid starvation in the software interrupt handler in
1153 		 * large systems.
1154 		 */
1155 		splbreaknum = 100;
1156 
1157 		ccb = (union ccb *)addr;
1158 
1159 		base_periph_found = 0;
1160 
1161 		/*
1162 		 * Sanity check -- make sure we don't get a null peripheral
1163 		 * driver name.
1164 		 */
1165 		if (*ccb->cgdl.periph_name == '\0') {
1166 			error = EINVAL;
1167 			break;
1168 		}
1169 
1170 		/* Keep the list from changing while we traverse it */
1171 		s = splcam();
1172 ptstartover:
1173 		cur_generation = xsoftc.generation;
1174 
1175 		/* first find our driver in the list of drivers */
1176 		for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
1177 		     *p_drv != NULL; p_drv++)
1178 			if (strcmp((*p_drv)->driver_name, name) == 0)
1179 				break;
1180 
1181 		if (*p_drv == NULL) {
1182 			splx(s);
1183 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1184 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1185 			*ccb->cgdl.periph_name = '\0';
1186 			ccb->cgdl.unit_number = 0;
1187 			error = ENOENT;
1188 			break;
1189 		}
1190 
1191 		/*
1192 		 * Run through every peripheral instance of this driver
1193 		 * and check to see whether it matches the unit passed
1194 		 * in by the user.  If it does, get out of the loops and
1195 		 * find the passthrough driver associated with that
1196 		 * peripheral driver.
1197 		 */
1198 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1199 		     periph = TAILQ_NEXT(periph, unit_links)) {
1200 
1201 			if (periph->unit_number == unit) {
1202 				break;
1203 			} else if (--splbreaknum == 0) {
1204 				splx(s);
1205 				s = splcam();
1206 				splbreaknum = 100;
1207 				if (cur_generation != xsoftc.generation)
1208 				       goto ptstartover;
1209 			}
1210 		}
1211 		/*
1212 		 * If we found the peripheral driver that the user passed
1213 		 * in, go through all of the peripheral drivers for that
1214 		 * particular device and look for a passthrough driver.
1215 		 */
1216 		if (periph != NULL) {
1217 			struct cam_ed *device;
1218 			int i;
1219 
1220 			base_periph_found = 1;
1221 			device = periph->path->device;
1222 			for (i = 0, periph = device->periphs.slh_first;
1223 			     periph != NULL;
1224 			     periph = periph->periph_links.sle_next, i++) {
1225 				/*
1226 				 * Check to see whether we have a
1227 				 * passthrough device or not.
1228 				 */
1229 				if (strcmp(periph->periph_name, "pass") == 0) {
1230 					/*
1231 					 * Fill in the getdevlist fields.
1232 					 */
1233 					strcpy(ccb->cgdl.periph_name,
1234 					       periph->periph_name);
1235 					ccb->cgdl.unit_number =
1236 						periph->unit_number;
1237 					if (periph->periph_links.sle_next)
1238 						ccb->cgdl.status =
1239 							CAM_GDEVLIST_MORE_DEVS;
1240 					else
1241 						ccb->cgdl.status =
1242 						       CAM_GDEVLIST_LAST_DEVICE;
1243 					ccb->cgdl.generation =
1244 						device->generation;
1245 					ccb->cgdl.index = i;
1246 					/*
1247 					 * Fill in some CCB header fields
1248 					 * that the user may want.
1249 					 */
1250 					ccb->ccb_h.path_id =
1251 						periph->path->bus->path_id;
1252 					ccb->ccb_h.target_id =
1253 						periph->path->target->target_id;
1254 					ccb->ccb_h.target_lun =
1255 						periph->path->device->lun_id;
1256 					ccb->ccb_h.status = CAM_REQ_CMP;
1257 					break;
1258 				}
1259 			}
1260 		}
1261 
1262 		/*
1263 		 * If the periph is null here, one of two things has
1264 		 * happened.  The first possibility is that we couldn't
1265 		 * find the unit number of the particular peripheral driver
1266 		 * that the user is asking about.  e.g. the user asks for
1267 		 * the passthrough driver for "da11".  We find the list of
1268 		 * "da" peripherals all right, but there is no unit 11.
1269 		 * The other possibility is that we went through the list
1270 		 * of peripheral drivers attached to the device structure,
1271 		 * but didn't find one with the name "pass".  Either way,
1272 		 * we return ENOENT, since we couldn't find something.
1273 		 */
1274 		if (periph == NULL) {
1275 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1276 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1277 			*ccb->cgdl.periph_name = '\0';
1278 			ccb->cgdl.unit_number = 0;
1279 			error = ENOENT;
1280 			/*
1281 			 * It is unfortunate that this is even necessary,
1282 			 * but there are many, many clueless users out there.
1283 			 * If this is true, the user is looking for the
1284 			 * passthrough driver, but doesn't have one in his
1285 			 * kernel.
1286 			 */
1287 			if (base_periph_found == 1) {
1288 				printf("xptioctl: pass driver is not in the "
1289 				       "kernel\n");
1290 				printf("xptioctl: put \"device pass0\" in "
1291 				       "your kernel config file\n");
1292 			}
1293 		}
1294 		splx(s);
1295 		break;
1296 		}
1297 	default:
1298 		error = ENOTTY;
1299 		break;
1300 	}
1301 
1302 	return(error);
1303 }
1304 
1305 /* Functions accessed by the peripheral drivers */
1306 static void
1307 xpt_init(dummy)
1308 	void *dummy;
1309 {
1310 	struct cam_sim *xpt_sim;
1311 	struct cam_path *path;
1312 	struct cam_devq *devq;
1313 	cam_status status;
1314 
1315 	TAILQ_INIT(&xpt_busses);
1316 	TAILQ_INIT(&cam_bioq);
1317 	TAILQ_INIT(&cam_netq);
1318 	SLIST_INIT(&ccb_freeq);
1319 	STAILQ_INIT(&highpowerq);
1320 
1321 	/*
1322 	 * The xpt layer is, itself, the equivelent of a SIM.
1323 	 * Allow 16 ccbs in the ccb pool for it.  This should
1324 	 * give decent parallelism when we probe busses and
1325 	 * perform other XPT functions.
1326 	 */
1327 	devq = cam_simq_alloc(16);
1328 	xpt_sim = cam_sim_alloc(xptaction,
1329 				xptpoll,
1330 				"xpt",
1331 				/*softc*/NULL,
1332 				/*unit*/0,
1333 				/*max_dev_transactions*/0,
1334 				/*max_tagged_dev_transactions*/0,
1335 				devq);
1336 	xpt_max_ccbs = 16;
1337 
1338 	xpt_bus_register(xpt_sim, /*bus #*/0);
1339 
1340 	/*
1341 	 * Looking at the XPT from the SIM layer, the XPT is
1342 	 * the equivelent of a peripheral driver.  Allocate
1343 	 * a peripheral driver entry for us.
1344 	 */
1345 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1346 				      CAM_TARGET_WILDCARD,
1347 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1348 		printf("xpt_init: xpt_create_path failed with status %#x,"
1349 		       " failing attach\n", status);
1350 		return;
1351 	}
1352 
1353 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1354 			 path, NULL, 0, NULL);
1355 	xpt_free_path(path);
1356 
1357 	xpt_sim->softc = xpt_periph;
1358 
1359 	/*
1360 	 * Register a callback for when interrupts are enabled.
1361 	 */
1362 	xpt_config_hook =
1363 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1364 					      M_TEMP, M_NOWAIT | M_ZERO);
1365 	if (xpt_config_hook == NULL) {
1366 		printf("xpt_init: Cannot malloc config hook "
1367 		       "- failing attach\n");
1368 		return;
1369 	}
1370 
1371 	xpt_config_hook->ich_func = xpt_config;
1372 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1373 		free (xpt_config_hook, M_TEMP);
1374 		printf("xpt_init: config_intrhook_establish failed "
1375 		       "- failing attach\n");
1376 	}
1377 
1378 	/* Install our software interrupt handlers */
1379 	register_swi(SWI_CAMNET, swi_camnet, NULL, "swi_camnet");
1380 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio");
1381 }
1382 
1383 static cam_status
1384 xptregister(struct cam_periph *periph, void *arg)
1385 {
1386 	if (periph == NULL) {
1387 		printf("xptregister: periph was NULL!!\n");
1388 		return(CAM_REQ_CMP_ERR);
1389 	}
1390 
1391 	periph->softc = NULL;
1392 
1393 	xpt_periph = periph;
1394 
1395 	return(CAM_REQ_CMP);
1396 }
1397 
1398 int32_t
1399 xpt_add_periph(struct cam_periph *periph)
1400 {
1401 	struct cam_ed *device;
1402 	int32_t	 status;
1403 	struct periph_list *periph_head;
1404 
1405 	device = periph->path->device;
1406 
1407 	periph_head = &device->periphs;
1408 
1409 	status = CAM_REQ_CMP;
1410 
1411 	if (device != NULL) {
1412 		int s;
1413 
1414 		/*
1415 		 * Make room for this peripheral
1416 		 * so it will fit in the queue
1417 		 * when it's scheduled to run
1418 		 */
1419 		s = splsoftcam();
1420 		status = camq_resize(&device->drvq,
1421 				     device->drvq.array_size + 1);
1422 
1423 		device->generation++;
1424 
1425 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1426 
1427 		splx(s);
1428 	}
1429 
1430 	xsoftc.generation++;
1431 
1432 	return (status);
1433 }
1434 
1435 void
1436 xpt_remove_periph(struct cam_periph *periph)
1437 {
1438 	struct cam_ed *device;
1439 
1440 	device = periph->path->device;
1441 
1442 	if (device != NULL) {
1443 		int s;
1444 		struct periph_list *periph_head;
1445 
1446 		periph_head = &device->periphs;
1447 
1448 		/* Release the slot for this peripheral */
1449 		s = splsoftcam();
1450 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1451 
1452 		device->generation++;
1453 
1454 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1455 
1456 		splx(s);
1457 	}
1458 
1459 	xsoftc.generation++;
1460 
1461 }
1462 
1463 void
1464 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1465 {
1466 	int s;
1467 	u_int mb;
1468 	struct cam_path *path;
1469 	struct ccb_trans_settings cts;
1470 
1471 	path = periph->path;
1472 	/*
1473 	 * To ensure that this is printed in one piece,
1474 	 * mask out CAM interrupts.
1475 	 */
1476 	s = splsoftcam();
1477 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1478 	       periph->periph_name, periph->unit_number,
1479 	       path->bus->sim->sim_name,
1480 	       path->bus->sim->unit_number,
1481 	       path->bus->sim->bus_id,
1482 	       path->target->target_id,
1483 	       path->device->lun_id);
1484 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1485 	scsi_print_inquiry(&path->device->inq_data);
1486 	if ((bootverbose)
1487 	 && (path->device->serial_num_len > 0)) {
1488 		/* Don't wrap the screen  - print only the first 60 chars */
1489 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1490 		       periph->unit_number, path->device->serial_num);
1491 	}
1492 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1493 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1494 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1495 	xpt_action((union ccb*)&cts);
1496 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1497 		u_int speed;
1498 		u_int freq;
1499 
1500 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1501 		  && cts.sync_offset != 0) {
1502 			freq = scsi_calc_syncsrate(cts.sync_period);
1503 			speed = freq;
1504 		} else {
1505 			struct ccb_pathinq cpi;
1506 
1507 			/* Ask the SIM for its base transfer speed */
1508 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1509 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1510 			xpt_action((union ccb *)&cpi);
1511 
1512 			speed = cpi.base_transfer_speed;
1513 			freq = 0;
1514 		}
1515 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1516 			speed *= (0x01 << cts.bus_width);
1517 		mb = speed / 1000;
1518 		if (mb > 0)
1519 			printf("%s%d: %d.%03dMB/s transfers",
1520 			       periph->periph_name, periph->unit_number,
1521 			       mb, speed % 1000);
1522 		else
1523 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1524 			       periph->unit_number, speed);
1525 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1526 		 && cts.sync_offset != 0) {
1527 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1528 			       freq % 1000, cts.sync_offset);
1529 		}
1530 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1531 		 && cts.bus_width > 0) {
1532 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1533 			 && cts.sync_offset != 0) {
1534 				printf(", ");
1535 			} else {
1536 				printf(" (");
1537 			}
1538 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1539 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1540 			&& cts.sync_offset != 0) {
1541 			printf(")");
1542 		}
1543 
1544 		if (path->device->inq_flags & SID_CmdQue
1545 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1546 			printf(", Tagged Queueing Enabled");
1547 		}
1548 
1549 		printf("\n");
1550 	} else if (path->device->inq_flags & SID_CmdQue
1551    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1552 		printf("%s%d: Tagged Queueing Enabled\n",
1553 		       periph->periph_name, periph->unit_number);
1554 	}
1555 
1556 	/*
1557 	 * We only want to print the caller's announce string if they've
1558 	 * passed one in..
1559 	 */
1560 	if (announce_string != NULL)
1561 		printf("%s%d: %s\n", periph->periph_name,
1562 		       periph->unit_number, announce_string);
1563 	splx(s);
1564 }
1565 
1566 
1567 static dev_match_ret
1568 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1569 	    struct cam_eb *bus)
1570 {
1571 	dev_match_ret retval;
1572 	int i;
1573 
1574 	retval = DM_RET_NONE;
1575 
1576 	/*
1577 	 * If we aren't given something to match against, that's an error.
1578 	 */
1579 	if (bus == NULL)
1580 		return(DM_RET_ERROR);
1581 
1582 	/*
1583 	 * If there are no match entries, then this bus matches no
1584 	 * matter what.
1585 	 */
1586 	if ((patterns == NULL) || (num_patterns == 0))
1587 		return(DM_RET_DESCEND | DM_RET_COPY);
1588 
1589 	for (i = 0; i < num_patterns; i++) {
1590 		struct bus_match_pattern *cur_pattern;
1591 
1592 		/*
1593 		 * If the pattern in question isn't for a bus node, we
1594 		 * aren't interested.  However, we do indicate to the
1595 		 * calling routine that we should continue descending the
1596 		 * tree, since the user wants to match against lower-level
1597 		 * EDT elements.
1598 		 */
1599 		if (patterns[i].type != DEV_MATCH_BUS) {
1600 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1601 				retval |= DM_RET_DESCEND;
1602 			continue;
1603 		}
1604 
1605 		cur_pattern = &patterns[i].pattern.bus_pattern;
1606 
1607 		/*
1608 		 * If they want to match any bus node, we give them any
1609 		 * device node.
1610 		 */
1611 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1612 			/* set the copy flag */
1613 			retval |= DM_RET_COPY;
1614 
1615 			/*
1616 			 * If we've already decided on an action, go ahead
1617 			 * and return.
1618 			 */
1619 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1620 				return(retval);
1621 		}
1622 
1623 		/*
1624 		 * Not sure why someone would do this...
1625 		 */
1626 		if (cur_pattern->flags == BUS_MATCH_NONE)
1627 			continue;
1628 
1629 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1630 		 && (cur_pattern->path_id != bus->path_id))
1631 			continue;
1632 
1633 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1634 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1635 			continue;
1636 
1637 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1638 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1639 			continue;
1640 
1641 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1642 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1643 			     DEV_IDLEN) != 0))
1644 			continue;
1645 
1646 		/*
1647 		 * If we get to this point, the user definitely wants
1648 		 * information on this bus.  So tell the caller to copy the
1649 		 * data out.
1650 		 */
1651 		retval |= DM_RET_COPY;
1652 
1653 		/*
1654 		 * If the return action has been set to descend, then we
1655 		 * know that we've already seen a non-bus matching
1656 		 * expression, therefore we need to further descend the tree.
1657 		 * This won't change by continuing around the loop, so we
1658 		 * go ahead and return.  If we haven't seen a non-bus
1659 		 * matching expression, we keep going around the loop until
1660 		 * we exhaust the matching expressions.  We'll set the stop
1661 		 * flag once we fall out of the loop.
1662 		 */
1663 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1664 			return(retval);
1665 	}
1666 
1667 	/*
1668 	 * If the return action hasn't been set to descend yet, that means
1669 	 * we haven't seen anything other than bus matching patterns.  So
1670 	 * tell the caller to stop descending the tree -- the user doesn't
1671 	 * want to match against lower level tree elements.
1672 	 */
1673 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1674 		retval |= DM_RET_STOP;
1675 
1676 	return(retval);
1677 }
1678 
1679 static dev_match_ret
1680 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1681 	       struct cam_ed *device)
1682 {
1683 	dev_match_ret retval;
1684 	int i;
1685 
1686 	retval = DM_RET_NONE;
1687 
1688 	/*
1689 	 * If we aren't given something to match against, that's an error.
1690 	 */
1691 	if (device == NULL)
1692 		return(DM_RET_ERROR);
1693 
1694 	/*
1695 	 * If there are no match entries, then this device matches no
1696 	 * matter what.
1697 	 */
1698 	if ((patterns == NULL) || (patterns == 0))
1699 		return(DM_RET_DESCEND | DM_RET_COPY);
1700 
1701 	for (i = 0; i < num_patterns; i++) {
1702 		struct device_match_pattern *cur_pattern;
1703 
1704 		/*
1705 		 * If the pattern in question isn't for a device node, we
1706 		 * aren't interested.
1707 		 */
1708 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1709 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1710 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1711 				retval |= DM_RET_DESCEND;
1712 			continue;
1713 		}
1714 
1715 		cur_pattern = &patterns[i].pattern.device_pattern;
1716 
1717 		/*
1718 		 * If they want to match any device node, we give them any
1719 		 * device node.
1720 		 */
1721 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1722 			/* set the copy flag */
1723 			retval |= DM_RET_COPY;
1724 
1725 
1726 			/*
1727 			 * If we've already decided on an action, go ahead
1728 			 * and return.
1729 			 */
1730 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1731 				return(retval);
1732 		}
1733 
1734 		/*
1735 		 * Not sure why someone would do this...
1736 		 */
1737 		if (cur_pattern->flags == DEV_MATCH_NONE)
1738 			continue;
1739 
1740 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1741 		 && (cur_pattern->path_id != device->target->bus->path_id))
1742 			continue;
1743 
1744 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1745 		 && (cur_pattern->target_id != device->target->target_id))
1746 			continue;
1747 
1748 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1749 		 && (cur_pattern->target_lun != device->lun_id))
1750 			continue;
1751 
1752 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1753 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1754 				    (caddr_t)&cur_pattern->inq_pat,
1755 				    1, sizeof(cur_pattern->inq_pat),
1756 				    scsi_static_inquiry_match) == NULL))
1757 			continue;
1758 
1759 		/*
1760 		 * If we get to this point, the user definitely wants
1761 		 * information on this device.  So tell the caller to copy
1762 		 * the data out.
1763 		 */
1764 		retval |= DM_RET_COPY;
1765 
1766 		/*
1767 		 * If the return action has been set to descend, then we
1768 		 * know that we've already seen a peripheral matching
1769 		 * expression, therefore we need to further descend the tree.
1770 		 * This won't change by continuing around the loop, so we
1771 		 * go ahead and return.  If we haven't seen a peripheral
1772 		 * matching expression, we keep going around the loop until
1773 		 * we exhaust the matching expressions.  We'll set the stop
1774 		 * flag once we fall out of the loop.
1775 		 */
1776 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1777 			return(retval);
1778 	}
1779 
1780 	/*
1781 	 * If the return action hasn't been set to descend yet, that means
1782 	 * we haven't seen any peripheral matching patterns.  So tell the
1783 	 * caller to stop descending the tree -- the user doesn't want to
1784 	 * match against lower level tree elements.
1785 	 */
1786 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1787 		retval |= DM_RET_STOP;
1788 
1789 	return(retval);
1790 }
1791 
1792 /*
1793  * Match a single peripheral against any number of match patterns.
1794  */
1795 static dev_match_ret
1796 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1797 	       struct cam_periph *periph)
1798 {
1799 	dev_match_ret retval;
1800 	int i;
1801 
1802 	/*
1803 	 * If we aren't given something to match against, that's an error.
1804 	 */
1805 	if (periph == NULL)
1806 		return(DM_RET_ERROR);
1807 
1808 	/*
1809 	 * If there are no match entries, then this peripheral matches no
1810 	 * matter what.
1811 	 */
1812 	if ((patterns == NULL) || (num_patterns == 0))
1813 		return(DM_RET_STOP | DM_RET_COPY);
1814 
1815 	/*
1816 	 * There aren't any nodes below a peripheral node, so there's no
1817 	 * reason to descend the tree any further.
1818 	 */
1819 	retval = DM_RET_STOP;
1820 
1821 	for (i = 0; i < num_patterns; i++) {
1822 		struct periph_match_pattern *cur_pattern;
1823 
1824 		/*
1825 		 * If the pattern in question isn't for a peripheral, we
1826 		 * aren't interested.
1827 		 */
1828 		if (patterns[i].type != DEV_MATCH_PERIPH)
1829 			continue;
1830 
1831 		cur_pattern = &patterns[i].pattern.periph_pattern;
1832 
1833 		/*
1834 		 * If they want to match on anything, then we will do so.
1835 		 */
1836 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1837 			/* set the copy flag */
1838 			retval |= DM_RET_COPY;
1839 
1840 			/*
1841 			 * We've already set the return action to stop,
1842 			 * since there are no nodes below peripherals in
1843 			 * the tree.
1844 			 */
1845 			return(retval);
1846 		}
1847 
1848 		/*
1849 		 * Not sure why someone would do this...
1850 		 */
1851 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1852 			continue;
1853 
1854 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1855 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1856 			continue;
1857 
1858 		/*
1859 		 * For the target and lun id's, we have to make sure the
1860 		 * target and lun pointers aren't NULL.  The xpt peripheral
1861 		 * has a wildcard target and device.
1862 		 */
1863 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1864 		 && ((periph->path->target == NULL)
1865 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1866 			continue;
1867 
1868 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1869 		 && ((periph->path->device == NULL)
1870 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1871 			continue;
1872 
1873 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1874 		 && (cur_pattern->unit_number != periph->unit_number))
1875 			continue;
1876 
1877 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1878 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1879 			     DEV_IDLEN) != 0))
1880 			continue;
1881 
1882 		/*
1883 		 * If we get to this point, the user definitely wants
1884 		 * information on this peripheral.  So tell the caller to
1885 		 * copy the data out.
1886 		 */
1887 		retval |= DM_RET_COPY;
1888 
1889 		/*
1890 		 * The return action has already been set to stop, since
1891 		 * peripherals don't have any nodes below them in the EDT.
1892 		 */
1893 		return(retval);
1894 	}
1895 
1896 	/*
1897 	 * If we get to this point, the peripheral that was passed in
1898 	 * doesn't match any of the patterns.
1899 	 */
1900 	return(retval);
1901 }
1902 
1903 static int
1904 xptedtbusfunc(struct cam_eb *bus, void *arg)
1905 {
1906 	struct ccb_dev_match *cdm;
1907 	dev_match_ret retval;
1908 
1909 	cdm = (struct ccb_dev_match *)arg;
1910 
1911 	/*
1912 	 * If our position is for something deeper in the tree, that means
1913 	 * that we've already seen this node.  So, we keep going down.
1914 	 */
1915 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1916 	 && (cdm->pos.cookie.bus == bus)
1917 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1918 	 && (cdm->pos.cookie.target != NULL))
1919 		retval = DM_RET_DESCEND;
1920 	else
1921 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1922 
1923 	/*
1924 	 * If we got an error, bail out of the search.
1925 	 */
1926 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1927 		cdm->status = CAM_DEV_MATCH_ERROR;
1928 		return(0);
1929 	}
1930 
1931 	/*
1932 	 * If the copy flag is set, copy this bus out.
1933 	 */
1934 	if (retval & DM_RET_COPY) {
1935 		int spaceleft, j;
1936 
1937 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1938 			sizeof(struct dev_match_result));
1939 
1940 		/*
1941 		 * If we don't have enough space to put in another
1942 		 * match result, save our position and tell the
1943 		 * user there are more devices to check.
1944 		 */
1945 		if (spaceleft < sizeof(struct dev_match_result)) {
1946 			bzero(&cdm->pos, sizeof(cdm->pos));
1947 			cdm->pos.position_type =
1948 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1949 
1950 			cdm->pos.cookie.bus = bus;
1951 			cdm->pos.generations[CAM_BUS_GENERATION]=
1952 				bus_generation;
1953 			cdm->status = CAM_DEV_MATCH_MORE;
1954 			return(0);
1955 		}
1956 		j = cdm->num_matches;
1957 		cdm->num_matches++;
1958 		cdm->matches[j].type = DEV_MATCH_BUS;
1959 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1960 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1961 		cdm->matches[j].result.bus_result.unit_number =
1962 			bus->sim->unit_number;
1963 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1964 			bus->sim->sim_name, DEV_IDLEN);
1965 	}
1966 
1967 	/*
1968 	 * If the user is only interested in busses, there's no
1969 	 * reason to descend to the next level in the tree.
1970 	 */
1971 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1972 		return(1);
1973 
1974 	/*
1975 	 * If there is a target generation recorded, check it to
1976 	 * make sure the target list hasn't changed.
1977 	 */
1978 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1979 	 && (bus == cdm->pos.cookie.bus)
1980 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1981 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1982 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1983 	     bus->generation)) {
1984 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1985 		return(0);
1986 	}
1987 
1988 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1989 	 && (cdm->pos.cookie.bus == bus)
1990 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1991 	 && (cdm->pos.cookie.target != NULL))
1992 		return(xpttargettraverse(bus,
1993 					(struct cam_et *)cdm->pos.cookie.target,
1994 					 xptedttargetfunc, arg));
1995 	else
1996 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1997 }
1998 
1999 static int
2000 xptedttargetfunc(struct cam_et *target, void *arg)
2001 {
2002 	struct ccb_dev_match *cdm;
2003 
2004 	cdm = (struct ccb_dev_match *)arg;
2005 
2006 	/*
2007 	 * If there is a device list generation recorded, check it to
2008 	 * make sure the device list hasn't changed.
2009 	 */
2010 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2011 	 && (cdm->pos.cookie.bus == target->bus)
2012 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2013 	 && (cdm->pos.cookie.target == target)
2014 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2015 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2016 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2017 	     target->generation)) {
2018 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2019 		return(0);
2020 	}
2021 
2022 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2023 	 && (cdm->pos.cookie.bus == target->bus)
2024 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2025 	 && (cdm->pos.cookie.target == target)
2026 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2027 	 && (cdm->pos.cookie.device != NULL))
2028 		return(xptdevicetraverse(target,
2029 					(struct cam_ed *)cdm->pos.cookie.device,
2030 					 xptedtdevicefunc, arg));
2031 	else
2032 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2033 }
2034 
2035 static int
2036 xptedtdevicefunc(struct cam_ed *device, void *arg)
2037 {
2038 
2039 	struct ccb_dev_match *cdm;
2040 	dev_match_ret retval;
2041 
2042 	cdm = (struct ccb_dev_match *)arg;
2043 
2044 	/*
2045 	 * If our position is for something deeper in the tree, that means
2046 	 * that we've already seen this node.  So, we keep going down.
2047 	 */
2048 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2049 	 && (cdm->pos.cookie.device == device)
2050 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2051 	 && (cdm->pos.cookie.periph != NULL))
2052 		retval = DM_RET_DESCEND;
2053 	else
2054 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2055 					device);
2056 
2057 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2058 		cdm->status = CAM_DEV_MATCH_ERROR;
2059 		return(0);
2060 	}
2061 
2062 	/*
2063 	 * If the copy flag is set, copy this device out.
2064 	 */
2065 	if (retval & DM_RET_COPY) {
2066 		int spaceleft, j;
2067 
2068 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2069 			sizeof(struct dev_match_result));
2070 
2071 		/*
2072 		 * If we don't have enough space to put in another
2073 		 * match result, save our position and tell the
2074 		 * user there are more devices to check.
2075 		 */
2076 		if (spaceleft < sizeof(struct dev_match_result)) {
2077 			bzero(&cdm->pos, sizeof(cdm->pos));
2078 			cdm->pos.position_type =
2079 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2080 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2081 
2082 			cdm->pos.cookie.bus = device->target->bus;
2083 			cdm->pos.generations[CAM_BUS_GENERATION]=
2084 				bus_generation;
2085 			cdm->pos.cookie.target = device->target;
2086 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2087 				device->target->bus->generation;
2088 			cdm->pos.cookie.device = device;
2089 			cdm->pos.generations[CAM_DEV_GENERATION] =
2090 				device->target->generation;
2091 			cdm->status = CAM_DEV_MATCH_MORE;
2092 			return(0);
2093 		}
2094 		j = cdm->num_matches;
2095 		cdm->num_matches++;
2096 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2097 		cdm->matches[j].result.device_result.path_id =
2098 			device->target->bus->path_id;
2099 		cdm->matches[j].result.device_result.target_id =
2100 			device->target->target_id;
2101 		cdm->matches[j].result.device_result.target_lun =
2102 			device->lun_id;
2103 		bcopy(&device->inq_data,
2104 		      &cdm->matches[j].result.device_result.inq_data,
2105 		      sizeof(struct scsi_inquiry_data));
2106 
2107 		/* Let the user know whether this device is unconfigured */
2108 		if (device->flags & CAM_DEV_UNCONFIGURED)
2109 			cdm->matches[j].result.device_result.flags =
2110 				DEV_RESULT_UNCONFIGURED;
2111 		else
2112 			cdm->matches[j].result.device_result.flags =
2113 				DEV_RESULT_NOFLAG;
2114 	}
2115 
2116 	/*
2117 	 * If the user isn't interested in peripherals, don't descend
2118 	 * the tree any further.
2119 	 */
2120 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2121 		return(1);
2122 
2123 	/*
2124 	 * If there is a peripheral list generation recorded, make sure
2125 	 * it hasn't changed.
2126 	 */
2127 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2128 	 && (device->target->bus == cdm->pos.cookie.bus)
2129 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2130 	 && (device->target == cdm->pos.cookie.target)
2131 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2132 	 && (device == cdm->pos.cookie.device)
2133 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2134 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2135 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2136 	     device->generation)){
2137 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2138 		return(0);
2139 	}
2140 
2141 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2142 	 && (cdm->pos.cookie.bus == device->target->bus)
2143 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2144 	 && (cdm->pos.cookie.target == device->target)
2145 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2146 	 && (cdm->pos.cookie.device == device)
2147 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2148 	 && (cdm->pos.cookie.periph != NULL))
2149 		return(xptperiphtraverse(device,
2150 				(struct cam_periph *)cdm->pos.cookie.periph,
2151 				xptedtperiphfunc, arg));
2152 	else
2153 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2154 }
2155 
2156 static int
2157 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2158 {
2159 	struct ccb_dev_match *cdm;
2160 	dev_match_ret retval;
2161 
2162 	cdm = (struct ccb_dev_match *)arg;
2163 
2164 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2165 
2166 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2167 		cdm->status = CAM_DEV_MATCH_ERROR;
2168 		return(0);
2169 	}
2170 
2171 	/*
2172 	 * If the copy flag is set, copy this peripheral out.
2173 	 */
2174 	if (retval & DM_RET_COPY) {
2175 		int spaceleft, j;
2176 
2177 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2178 			sizeof(struct dev_match_result));
2179 
2180 		/*
2181 		 * If we don't have enough space to put in another
2182 		 * match result, save our position and tell the
2183 		 * user there are more devices to check.
2184 		 */
2185 		if (spaceleft < sizeof(struct dev_match_result)) {
2186 			bzero(&cdm->pos, sizeof(cdm->pos));
2187 			cdm->pos.position_type =
2188 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2189 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2190 				CAM_DEV_POS_PERIPH;
2191 
2192 			cdm->pos.cookie.bus = periph->path->bus;
2193 			cdm->pos.generations[CAM_BUS_GENERATION]=
2194 				bus_generation;
2195 			cdm->pos.cookie.target = periph->path->target;
2196 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2197 				periph->path->bus->generation;
2198 			cdm->pos.cookie.device = periph->path->device;
2199 			cdm->pos.generations[CAM_DEV_GENERATION] =
2200 				periph->path->target->generation;
2201 			cdm->pos.cookie.periph = periph;
2202 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2203 				periph->path->device->generation;
2204 			cdm->status = CAM_DEV_MATCH_MORE;
2205 			return(0);
2206 		}
2207 
2208 		j = cdm->num_matches;
2209 		cdm->num_matches++;
2210 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2211 		cdm->matches[j].result.periph_result.path_id =
2212 			periph->path->bus->path_id;
2213 		cdm->matches[j].result.periph_result.target_id =
2214 			periph->path->target->target_id;
2215 		cdm->matches[j].result.periph_result.target_lun =
2216 			periph->path->device->lun_id;
2217 		cdm->matches[j].result.periph_result.unit_number =
2218 			periph->unit_number;
2219 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2220 			periph->periph_name, DEV_IDLEN);
2221 	}
2222 
2223 	return(1);
2224 }
2225 
2226 static int
2227 xptedtmatch(struct ccb_dev_match *cdm)
2228 {
2229 	int ret;
2230 
2231 	cdm->num_matches = 0;
2232 
2233 	/*
2234 	 * Check the bus list generation.  If it has changed, the user
2235 	 * needs to reset everything and start over.
2236 	 */
2237 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2238 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2239 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2240 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2241 		return(0);
2242 	}
2243 
2244 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2245 	 && (cdm->pos.cookie.bus != NULL))
2246 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2247 				     xptedtbusfunc, cdm);
2248 	else
2249 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2250 
2251 	/*
2252 	 * If we get back 0, that means that we had to stop before fully
2253 	 * traversing the EDT.  It also means that one of the subroutines
2254 	 * has set the status field to the proper value.  If we get back 1,
2255 	 * we've fully traversed the EDT and copied out any matching entries.
2256 	 */
2257 	if (ret == 1)
2258 		cdm->status = CAM_DEV_MATCH_LAST;
2259 
2260 	return(ret);
2261 }
2262 
2263 static int
2264 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2265 {
2266 	struct ccb_dev_match *cdm;
2267 
2268 	cdm = (struct ccb_dev_match *)arg;
2269 
2270 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2271 	 && (cdm->pos.cookie.pdrv == pdrv)
2272 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2273 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2274 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2275 	     (*pdrv)->generation)) {
2276 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2277 		return(0);
2278 	}
2279 
2280 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2281 	 && (cdm->pos.cookie.pdrv == pdrv)
2282 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2283 	 && (cdm->pos.cookie.periph != NULL))
2284 		return(xptpdperiphtraverse(pdrv,
2285 				(struct cam_periph *)cdm->pos.cookie.periph,
2286 				xptplistperiphfunc, arg));
2287 	else
2288 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2289 }
2290 
2291 static int
2292 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2293 {
2294 	struct ccb_dev_match *cdm;
2295 	dev_match_ret retval;
2296 
2297 	cdm = (struct ccb_dev_match *)arg;
2298 
2299 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2300 
2301 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2302 		cdm->status = CAM_DEV_MATCH_ERROR;
2303 		return(0);
2304 	}
2305 
2306 	/*
2307 	 * If the copy flag is set, copy this peripheral out.
2308 	 */
2309 	if (retval & DM_RET_COPY) {
2310 		int spaceleft, j;
2311 
2312 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2313 			sizeof(struct dev_match_result));
2314 
2315 		/*
2316 		 * If we don't have enough space to put in another
2317 		 * match result, save our position and tell the
2318 		 * user there are more devices to check.
2319 		 */
2320 		if (spaceleft < sizeof(struct dev_match_result)) {
2321 			struct periph_driver **pdrv;
2322 
2323 			pdrv = NULL;
2324 			bzero(&cdm->pos, sizeof(cdm->pos));
2325 			cdm->pos.position_type =
2326 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2327 				CAM_DEV_POS_PERIPH;
2328 
2329 			/*
2330 			 * This may look a bit non-sensical, but it is
2331 			 * actually quite logical.  There are very few
2332 			 * peripheral drivers, and bloating every peripheral
2333 			 * structure with a pointer back to its parent
2334 			 * peripheral driver linker set entry would cost
2335 			 * more in the long run than doing this quick lookup.
2336 			 */
2337 			for (pdrv =
2338 			     (struct periph_driver **)periphdriver_set.ls_items;
2339 			     *pdrv != NULL; pdrv++) {
2340 				if (strcmp((*pdrv)->driver_name,
2341 				    periph->periph_name) == 0)
2342 					break;
2343 			}
2344 
2345 			if (pdrv == NULL) {
2346 				cdm->status = CAM_DEV_MATCH_ERROR;
2347 				return(0);
2348 			}
2349 
2350 			cdm->pos.cookie.pdrv = pdrv;
2351 			/*
2352 			 * The periph generation slot does double duty, as
2353 			 * does the periph pointer slot.  They are used for
2354 			 * both edt and pdrv lookups and positioning.
2355 			 */
2356 			cdm->pos.cookie.periph = periph;
2357 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2358 				(*pdrv)->generation;
2359 			cdm->status = CAM_DEV_MATCH_MORE;
2360 			return(0);
2361 		}
2362 
2363 		j = cdm->num_matches;
2364 		cdm->num_matches++;
2365 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2366 		cdm->matches[j].result.periph_result.path_id =
2367 			periph->path->bus->path_id;
2368 
2369 		/*
2370 		 * The transport layer peripheral doesn't have a target or
2371 		 * lun.
2372 		 */
2373 		if (periph->path->target)
2374 			cdm->matches[j].result.periph_result.target_id =
2375 				periph->path->target->target_id;
2376 		else
2377 			cdm->matches[j].result.periph_result.target_id = -1;
2378 
2379 		if (periph->path->device)
2380 			cdm->matches[j].result.periph_result.target_lun =
2381 				periph->path->device->lun_id;
2382 		else
2383 			cdm->matches[j].result.periph_result.target_lun = -1;
2384 
2385 		cdm->matches[j].result.periph_result.unit_number =
2386 			periph->unit_number;
2387 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2388 			periph->periph_name, DEV_IDLEN);
2389 	}
2390 
2391 	return(1);
2392 }
2393 
2394 static int
2395 xptperiphlistmatch(struct ccb_dev_match *cdm)
2396 {
2397 	int ret;
2398 
2399 	cdm->num_matches = 0;
2400 
2401 	/*
2402 	 * At this point in the edt traversal function, we check the bus
2403 	 * list generation to make sure that no busses have been added or
2404 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2405 	 * For the peripheral driver list traversal function, however, we
2406 	 * don't have to worry about new peripheral driver types coming or
2407 	 * going; they're in a linker set, and therefore can't change
2408 	 * without a recompile.
2409 	 */
2410 
2411 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2412 	 && (cdm->pos.cookie.pdrv != NULL))
2413 		ret = xptpdrvtraverse(
2414 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2415 				xptplistpdrvfunc, cdm);
2416 	else
2417 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2418 
2419 	/*
2420 	 * If we get back 0, that means that we had to stop before fully
2421 	 * traversing the peripheral driver tree.  It also means that one of
2422 	 * the subroutines has set the status field to the proper value.  If
2423 	 * we get back 1, we've fully traversed the EDT and copied out any
2424 	 * matching entries.
2425 	 */
2426 	if (ret == 1)
2427 		cdm->status = CAM_DEV_MATCH_LAST;
2428 
2429 	return(ret);
2430 }
2431 
2432 static int
2433 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2434 {
2435 	struct cam_eb *bus, *next_bus;
2436 	int retval;
2437 
2438 	retval = 1;
2439 
2440 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2441 	     bus != NULL;
2442 	     bus = next_bus) {
2443 		next_bus = TAILQ_NEXT(bus, links);
2444 
2445 		retval = tr_func(bus, arg);
2446 		if (retval == 0)
2447 			return(retval);
2448 	}
2449 
2450 	return(retval);
2451 }
2452 
2453 static int
2454 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2455 		  xpt_targetfunc_t *tr_func, void *arg)
2456 {
2457 	struct cam_et *target, *next_target;
2458 	int retval;
2459 
2460 	retval = 1;
2461 	for (target = (start_target ? start_target :
2462 		       TAILQ_FIRST(&bus->et_entries));
2463 	     target != NULL; target = next_target) {
2464 
2465 		next_target = TAILQ_NEXT(target, links);
2466 
2467 		retval = tr_func(target, arg);
2468 
2469 		if (retval == 0)
2470 			return(retval);
2471 	}
2472 
2473 	return(retval);
2474 }
2475 
2476 static int
2477 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2478 		  xpt_devicefunc_t *tr_func, void *arg)
2479 {
2480 	struct cam_ed *device, *next_device;
2481 	int retval;
2482 
2483 	retval = 1;
2484 	for (device = (start_device ? start_device :
2485 		       TAILQ_FIRST(&target->ed_entries));
2486 	     device != NULL;
2487 	     device = next_device) {
2488 
2489 		next_device = TAILQ_NEXT(device, links);
2490 
2491 		retval = tr_func(device, arg);
2492 
2493 		if (retval == 0)
2494 			return(retval);
2495 	}
2496 
2497 	return(retval);
2498 }
2499 
2500 static int
2501 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2502 		  xpt_periphfunc_t *tr_func, void *arg)
2503 {
2504 	struct cam_periph *periph, *next_periph;
2505 	int retval;
2506 
2507 	retval = 1;
2508 
2509 	for (periph = (start_periph ? start_periph :
2510 		       SLIST_FIRST(&device->periphs));
2511 	     periph != NULL;
2512 	     periph = next_periph) {
2513 
2514 		next_periph = SLIST_NEXT(periph, periph_links);
2515 
2516 		retval = tr_func(periph, arg);
2517 		if (retval == 0)
2518 			return(retval);
2519 	}
2520 
2521 	return(retval);
2522 }
2523 
2524 static int
2525 xptpdrvtraverse(struct periph_driver **start_pdrv,
2526 		xpt_pdrvfunc_t *tr_func, void *arg)
2527 {
2528 	struct periph_driver **pdrv;
2529 	int retval;
2530 
2531 	retval = 1;
2532 
2533 	/*
2534 	 * We don't traverse the peripheral driver list like we do the
2535 	 * other lists, because it is a linker set, and therefore cannot be
2536 	 * changed during runtime.  If the peripheral driver list is ever
2537 	 * re-done to be something other than a linker set (i.e. it can
2538 	 * change while the system is running), the list traversal should
2539 	 * be modified to work like the other traversal functions.
2540 	 */
2541 	for (pdrv = (start_pdrv ? start_pdrv :
2542 	     (struct periph_driver **)periphdriver_set.ls_items);
2543 	     *pdrv != NULL; pdrv++) {
2544 		retval = tr_func(pdrv, arg);
2545 
2546 		if (retval == 0)
2547 			return(retval);
2548 	}
2549 
2550 	return(retval);
2551 }
2552 
2553 static int
2554 xptpdperiphtraverse(struct periph_driver **pdrv,
2555 		    struct cam_periph *start_periph,
2556 		    xpt_periphfunc_t *tr_func, void *arg)
2557 {
2558 	struct cam_periph *periph, *next_periph;
2559 	int retval;
2560 
2561 	retval = 1;
2562 
2563 	for (periph = (start_periph ? start_periph :
2564 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2565 	     periph = next_periph) {
2566 
2567 		next_periph = TAILQ_NEXT(periph, unit_links);
2568 
2569 		retval = tr_func(periph, arg);
2570 		if (retval == 0)
2571 			return(retval);
2572 	}
2573 	return(retval);
2574 }
2575 
2576 static int
2577 xptdefbusfunc(struct cam_eb *bus, void *arg)
2578 {
2579 	struct xpt_traverse_config *tr_config;
2580 
2581 	tr_config = (struct xpt_traverse_config *)arg;
2582 
2583 	if (tr_config->depth == XPT_DEPTH_BUS) {
2584 		xpt_busfunc_t *tr_func;
2585 
2586 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2587 
2588 		return(tr_func(bus, tr_config->tr_arg));
2589 	} else
2590 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2591 }
2592 
2593 static int
2594 xptdeftargetfunc(struct cam_et *target, void *arg)
2595 {
2596 	struct xpt_traverse_config *tr_config;
2597 
2598 	tr_config = (struct xpt_traverse_config *)arg;
2599 
2600 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2601 		xpt_targetfunc_t *tr_func;
2602 
2603 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2604 
2605 		return(tr_func(target, tr_config->tr_arg));
2606 	} else
2607 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2608 }
2609 
2610 static int
2611 xptdefdevicefunc(struct cam_ed *device, void *arg)
2612 {
2613 	struct xpt_traverse_config *tr_config;
2614 
2615 	tr_config = (struct xpt_traverse_config *)arg;
2616 
2617 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2618 		xpt_devicefunc_t *tr_func;
2619 
2620 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2621 
2622 		return(tr_func(device, tr_config->tr_arg));
2623 	} else
2624 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2625 }
2626 
2627 static int
2628 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2629 {
2630 	struct xpt_traverse_config *tr_config;
2631 	xpt_periphfunc_t *tr_func;
2632 
2633 	tr_config = (struct xpt_traverse_config *)arg;
2634 
2635 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2636 
2637 	/*
2638 	 * Unlike the other default functions, we don't check for depth
2639 	 * here.  The peripheral driver level is the last level in the EDT,
2640 	 * so if we're here, we should execute the function in question.
2641 	 */
2642 	return(tr_func(periph, tr_config->tr_arg));
2643 }
2644 
2645 /*
2646  * Execute the given function for every bus in the EDT.
2647  */
2648 static int
2649 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2650 {
2651 	struct xpt_traverse_config tr_config;
2652 
2653 	tr_config.depth = XPT_DEPTH_BUS;
2654 	tr_config.tr_func = tr_func;
2655 	tr_config.tr_arg = arg;
2656 
2657 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2658 }
2659 
2660 #ifdef notusedyet
2661 /*
2662  * Execute the given function for every target in the EDT.
2663  */
2664 static int
2665 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2666 {
2667 	struct xpt_traverse_config tr_config;
2668 
2669 	tr_config.depth = XPT_DEPTH_TARGET;
2670 	tr_config.tr_func = tr_func;
2671 	tr_config.tr_arg = arg;
2672 
2673 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2674 }
2675 #endif /* notusedyet */
2676 
2677 /*
2678  * Execute the given function for every device in the EDT.
2679  */
2680 static int
2681 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2682 {
2683 	struct xpt_traverse_config tr_config;
2684 
2685 	tr_config.depth = XPT_DEPTH_DEVICE;
2686 	tr_config.tr_func = tr_func;
2687 	tr_config.tr_arg = arg;
2688 
2689 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2690 }
2691 
2692 #ifdef notusedyet
2693 /*
2694  * Execute the given function for every peripheral in the EDT.
2695  */
2696 static int
2697 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2698 {
2699 	struct xpt_traverse_config tr_config;
2700 
2701 	tr_config.depth = XPT_DEPTH_PERIPH;
2702 	tr_config.tr_func = tr_func;
2703 	tr_config.tr_arg = arg;
2704 
2705 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2706 }
2707 #endif /* notusedyet */
2708 
2709 static int
2710 xptsetasyncfunc(struct cam_ed *device, void *arg)
2711 {
2712 	struct cam_path path;
2713 	struct ccb_getdev cgd;
2714 	struct async_node *cur_entry;
2715 
2716 	cur_entry = (struct async_node *)arg;
2717 
2718 	/*
2719 	 * Don't report unconfigured devices (Wildcard devs,
2720 	 * devices only for target mode, device instances
2721 	 * that have been invalidated but are waiting for
2722 	 * their last reference count to be released).
2723 	 */
2724 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2725 		return (1);
2726 
2727 	xpt_compile_path(&path,
2728 			 NULL,
2729 			 device->target->bus->path_id,
2730 			 device->target->target_id,
2731 			 device->lun_id);
2732 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2733 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2734 	xpt_action((union ccb *)&cgd);
2735 	cur_entry->callback(cur_entry->callback_arg,
2736 			    AC_FOUND_DEVICE,
2737 			    &path, &cgd);
2738 	xpt_release_path(&path);
2739 
2740 	return(1);
2741 }
2742 
2743 static int
2744 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2745 {
2746 	struct cam_path path;
2747 	struct ccb_pathinq cpi;
2748 	struct async_node *cur_entry;
2749 
2750 	cur_entry = (struct async_node *)arg;
2751 
2752 	xpt_compile_path(&path, /*periph*/NULL,
2753 			 bus->sim->path_id,
2754 			 CAM_TARGET_WILDCARD,
2755 			 CAM_LUN_WILDCARD);
2756 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2757 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2758 	xpt_action((union ccb *)&cpi);
2759 	cur_entry->callback(cur_entry->callback_arg,
2760 			    AC_PATH_REGISTERED,
2761 			    &path, &cpi);
2762 	xpt_release_path(&path);
2763 
2764 	return(1);
2765 }
2766 
2767 void
2768 xpt_action(union ccb *start_ccb)
2769 {
2770 	int iopl;
2771 
2772 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2773 
2774 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2775 
2776 	iopl = splsoftcam();
2777 	switch (start_ccb->ccb_h.func_code) {
2778 	case XPT_SCSI_IO:
2779 	{
2780 #ifdef CAMDEBUG
2781 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2782 		struct cam_path *path;
2783 
2784 		path = start_ccb->ccb_h.path;
2785 #endif
2786 
2787 		/*
2788 		 * For the sake of compatibility with SCSI-1
2789 		 * devices that may not understand the identify
2790 		 * message, we include lun information in the
2791 		 * second byte of all commands.  SCSI-1 specifies
2792 		 * that luns are a 3 bit value and reserves only 3
2793 		 * bits for lun information in the CDB.  Later
2794 		 * revisions of the SCSI spec allow for more than 8
2795 		 * luns, but have deprecated lun information in the
2796 		 * CDB.  So, if the lun won't fit, we must omit.
2797 		 *
2798 		 * Also be aware that during initial probing for devices,
2799 		 * the inquiry information is unknown but initialized to 0.
2800 		 * This means that this code will be exercised while probing
2801 		 * devices with an ANSI revision greater than 2.
2802 		 */
2803 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2804 		 && start_ccb->ccb_h.target_lun < 8
2805 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2806 
2807 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2808 			    start_ccb->ccb_h.target_lun << 5;
2809 		}
2810 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2811 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2812 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2813 			  	       &path->device->inq_data),
2814 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2815 					  cdb_str, sizeof(cdb_str))));
2816 		/* FALLTHROUGH */
2817 	}
2818 	case XPT_TARGET_IO:
2819 	case XPT_CONT_TARGET_IO:
2820 		start_ccb->csio.sense_resid = 0;
2821 		start_ccb->csio.resid = 0;
2822 		/* FALLTHROUGH */
2823 	case XPT_RESET_DEV:
2824 	case XPT_ENG_EXEC:
2825 	{
2826 		struct cam_path *path;
2827 		int s;
2828 		int runq;
2829 
2830 		path = start_ccb->ccb_h.path;
2831 		s = splsoftcam();
2832 
2833 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2834 		if (path->device->qfrozen_cnt == 0)
2835 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2836 		else
2837 			runq = 0;
2838 		splx(s);
2839 		if (runq != 0)
2840 			xpt_run_dev_sendq(path->bus);
2841 		break;
2842 	}
2843 	case XPT_SET_TRAN_SETTINGS:
2844 	{
2845 		xpt_set_transfer_settings(&start_ccb->cts,
2846 					  start_ccb->ccb_h.path->device,
2847 					  /*async_update*/FALSE);
2848 		break;
2849 	}
2850 	case XPT_CALC_GEOMETRY:
2851 	{
2852 		struct cam_sim *sim;
2853 
2854 		/* Filter out garbage */
2855 		if (start_ccb->ccg.block_size == 0
2856 		 || start_ccb->ccg.volume_size == 0) {
2857 			start_ccb->ccg.cylinders = 0;
2858 			start_ccb->ccg.heads = 0;
2859 			start_ccb->ccg.secs_per_track = 0;
2860 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2861 			break;
2862 		}
2863 #ifdef PC98
2864 		/*
2865 		 * In a PC-98 system, geometry translation depens on
2866 		 * the "real" device geometry obtained from mode page 4.
2867 		 * SCSI geometry translation is performed in the
2868 		 * initialization routine of the SCSI BIOS and the result
2869 		 * stored in host memory.  If the translation is available
2870 		 * in host memory, use it.  If not, rely on the default
2871 		 * translation the device driver performs.
2872 		 */
2873 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2874 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2875 			break;
2876 		}
2877 #endif
2878 		sim = start_ccb->ccb_h.path->bus->sim;
2879 		(*(sim->sim_action))(sim, start_ccb);
2880 		break;
2881 	}
2882 	case XPT_ABORT:
2883 	{
2884 		union ccb* abort_ccb;
2885 		int s;
2886 
2887 		abort_ccb = start_ccb->cab.abort_ccb;
2888 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2889 
2890 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2891 				struct cam_ccbq *ccbq;
2892 
2893 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2894 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2895 				abort_ccb->ccb_h.status =
2896 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2897 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2898 				s = splcam();
2899 				xpt_done(abort_ccb);
2900 				splx(s);
2901 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2902 				break;
2903 			}
2904 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2905 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2906 				/*
2907 				 * We've caught this ccb en route to
2908 				 * the SIM.  Flag it for abort and the
2909 				 * SIM will do so just before starting
2910 				 * real work on the CCB.
2911 				 */
2912 				abort_ccb->ccb_h.status =
2913 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2914 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2915 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2916 				break;
2917 			}
2918 		}
2919 		if (XPT_FC_IS_QUEUED(abort_ccb)
2920 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2921 			/*
2922 			 * It's already completed but waiting
2923 			 * for our SWI to get to it.
2924 			 */
2925 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2926 			break;
2927 		}
2928 		/*
2929 		 * If we weren't able to take care of the abort request
2930 		 * in the XPT, pass the request down to the SIM for processing.
2931 		 */
2932 		/* FALLTHROUGH */
2933 	}
2934 	case XPT_ACCEPT_TARGET_IO:
2935 	case XPT_EN_LUN:
2936 	case XPT_IMMED_NOTIFY:
2937 	case XPT_NOTIFY_ACK:
2938 	case XPT_GET_TRAN_SETTINGS:
2939 	case XPT_RESET_BUS:
2940 	{
2941 		struct cam_sim *sim;
2942 
2943 		sim = start_ccb->ccb_h.path->bus->sim;
2944 		(*(sim->sim_action))(sim, start_ccb);
2945 		break;
2946 	}
2947 	case XPT_PATH_INQ:
2948 	{
2949 		struct cam_sim *sim;
2950 
2951 		sim = start_ccb->ccb_h.path->bus->sim;
2952 		(*(sim->sim_action))(sim, start_ccb);
2953 		break;
2954 	}
2955 	case XPT_PATH_STATS:
2956 		start_ccb->cpis.last_reset =
2957 			start_ccb->ccb_h.path->bus->last_reset;
2958 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2959 		break;
2960 	case XPT_GDEV_TYPE:
2961 	{
2962 		struct cam_ed *dev;
2963 		int s;
2964 
2965 		dev = start_ccb->ccb_h.path->device;
2966 		s = splcam();
2967 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2968 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2969 		} else {
2970 			struct ccb_getdev *cgd;
2971 			struct cam_eb *bus;
2972 			struct cam_et *tar;
2973 
2974 			cgd = &start_ccb->cgd;
2975 			bus = cgd->ccb_h.path->bus;
2976 			tar = cgd->ccb_h.path->target;
2977 			cgd->inq_data = dev->inq_data;
2978 			cgd->ccb_h.status = CAM_REQ_CMP;
2979 			cgd->serial_num_len = dev->serial_num_len;
2980 			if ((dev->serial_num_len > 0)
2981 			 && (dev->serial_num != NULL))
2982 				bcopy(dev->serial_num, cgd->serial_num,
2983 				      dev->serial_num_len);
2984 		}
2985 		splx(s);
2986 		break;
2987 	}
2988 	case XPT_GDEV_STATS:
2989 	{
2990 		struct cam_ed *dev;
2991 		int s;
2992 
2993 		dev = start_ccb->ccb_h.path->device;
2994 		s = splcam();
2995 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2996 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2997 		} else {
2998 			struct ccb_getdevstats *cgds;
2999 			struct cam_eb *bus;
3000 			struct cam_et *tar;
3001 
3002 			cgds = &start_ccb->cgds;
3003 			bus = cgds->ccb_h.path->bus;
3004 			tar = cgds->ccb_h.path->target;
3005 			cgds->dev_openings = dev->ccbq.dev_openings;
3006 			cgds->dev_active = dev->ccbq.dev_active;
3007 			cgds->devq_openings = dev->ccbq.devq_openings;
3008 			cgds->devq_queued = dev->ccbq.queue.entries;
3009 			cgds->held = dev->ccbq.held;
3010 			cgds->last_reset = tar->last_reset;
3011 			cgds->maxtags = dev->quirk->maxtags;
3012 			cgds->mintags = dev->quirk->mintags;
3013 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3014 				cgds->last_reset = bus->last_reset;
3015 			cgds->ccb_h.status = CAM_REQ_CMP;
3016 		}
3017 		splx(s);
3018 		break;
3019 	}
3020 	case XPT_GDEVLIST:
3021 	{
3022 		struct cam_periph	*nperiph;
3023 		struct periph_list	*periph_head;
3024 		struct ccb_getdevlist	*cgdl;
3025 		int			i;
3026 		int			s;
3027 		struct cam_ed		*device;
3028 		int			found;
3029 
3030 
3031 		found = 0;
3032 
3033 		/*
3034 		 * Don't want anyone mucking with our data.
3035 		 */
3036 		s = splcam();
3037 		device = start_ccb->ccb_h.path->device;
3038 		periph_head = &device->periphs;
3039 		cgdl = &start_ccb->cgdl;
3040 
3041 		/*
3042 		 * Check and see if the list has changed since the user
3043 		 * last requested a list member.  If so, tell them that the
3044 		 * list has changed, and therefore they need to start over
3045 		 * from the beginning.
3046 		 */
3047 		if ((cgdl->index != 0) &&
3048 		    (cgdl->generation != device->generation)) {
3049 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3050 			splx(s);
3051 			break;
3052 		}
3053 
3054 		/*
3055 		 * Traverse the list of peripherals and attempt to find
3056 		 * the requested peripheral.
3057 		 */
3058 		for (nperiph = periph_head->slh_first, i = 0;
3059 		     (nperiph != NULL) && (i <= cgdl->index);
3060 		     nperiph = nperiph->periph_links.sle_next, i++) {
3061 			if (i == cgdl->index) {
3062 				strncpy(cgdl->periph_name,
3063 					nperiph->periph_name,
3064 					DEV_IDLEN);
3065 				cgdl->unit_number = nperiph->unit_number;
3066 				found = 1;
3067 			}
3068 		}
3069 		if (found == 0) {
3070 			cgdl->status = CAM_GDEVLIST_ERROR;
3071 			splx(s);
3072 			break;
3073 		}
3074 
3075 		if (nperiph == NULL)
3076 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3077 		else
3078 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3079 
3080 		cgdl->index++;
3081 		cgdl->generation = device->generation;
3082 
3083 		splx(s);
3084 		cgdl->ccb_h.status = CAM_REQ_CMP;
3085 		break;
3086 	}
3087 	case XPT_DEV_MATCH:
3088 	{
3089 		int s;
3090 		dev_pos_type position_type;
3091 		struct ccb_dev_match *cdm;
3092 		int ret;
3093 
3094 		cdm = &start_ccb->cdm;
3095 
3096 		/*
3097 		 * Prevent EDT changes while we traverse it.
3098 		 */
3099 		s = splcam();
3100 		/*
3101 		 * There are two ways of getting at information in the EDT.
3102 		 * The first way is via the primary EDT tree.  It starts
3103 		 * with a list of busses, then a list of targets on a bus,
3104 		 * then devices/luns on a target, and then peripherals on a
3105 		 * device/lun.  The "other" way is by the peripheral driver
3106 		 * lists.  The peripheral driver lists are organized by
3107 		 * peripheral driver.  (obviously)  So it makes sense to
3108 		 * use the peripheral driver list if the user is looking
3109 		 * for something like "da1", or all "da" devices.  If the
3110 		 * user is looking for something on a particular bus/target
3111 		 * or lun, it's generally better to go through the EDT tree.
3112 		 */
3113 
3114 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3115 			position_type = cdm->pos.position_type;
3116 		else {
3117 			int i;
3118 
3119 			position_type = CAM_DEV_POS_NONE;
3120 
3121 			for (i = 0; i < cdm->num_patterns; i++) {
3122 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3123 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3124 					position_type = CAM_DEV_POS_EDT;
3125 					break;
3126 				}
3127 			}
3128 
3129 			if (cdm->num_patterns == 0)
3130 				position_type = CAM_DEV_POS_EDT;
3131 			else if (position_type == CAM_DEV_POS_NONE)
3132 				position_type = CAM_DEV_POS_PDRV;
3133 		}
3134 
3135 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3136 		case CAM_DEV_POS_EDT:
3137 			ret = xptedtmatch(cdm);
3138 			break;
3139 		case CAM_DEV_POS_PDRV:
3140 			ret = xptperiphlistmatch(cdm);
3141 			break;
3142 		default:
3143 			cdm->status = CAM_DEV_MATCH_ERROR;
3144 			break;
3145 		}
3146 
3147 		splx(s);
3148 
3149 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3150 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3151 		else
3152 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3153 
3154 		break;
3155 	}
3156 	case XPT_SASYNC_CB:
3157 	{
3158 		struct ccb_setasync *csa;
3159 		struct async_node *cur_entry;
3160 		struct async_list *async_head;
3161 		u_int32_t added;
3162 		int s;
3163 
3164 		csa = &start_ccb->csa;
3165 		added = csa->event_enable;
3166 		async_head = &csa->ccb_h.path->device->asyncs;
3167 
3168 		/*
3169 		 * If there is already an entry for us, simply
3170 		 * update it.
3171 		 */
3172 		s = splcam();
3173 		cur_entry = SLIST_FIRST(async_head);
3174 		while (cur_entry != NULL) {
3175 			if ((cur_entry->callback_arg == csa->callback_arg)
3176 			 && (cur_entry->callback == csa->callback))
3177 				break;
3178 			cur_entry = SLIST_NEXT(cur_entry, links);
3179 		}
3180 
3181 		if (cur_entry != NULL) {
3182 		 	/*
3183 			 * If the request has no flags set,
3184 			 * remove the entry.
3185 			 */
3186 			added &= ~cur_entry->event_enable;
3187 			if (csa->event_enable == 0) {
3188 				SLIST_REMOVE(async_head, cur_entry,
3189 					     async_node, links);
3190 				csa->ccb_h.path->device->refcount--;
3191 				free(cur_entry, M_DEVBUF);
3192 			} else {
3193 				cur_entry->event_enable = csa->event_enable;
3194 			}
3195 		} else {
3196 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3197 					   M_NOWAIT);
3198 			if (cur_entry == NULL) {
3199 				splx(s);
3200 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3201 				break;
3202 			}
3203 			cur_entry->event_enable = csa->event_enable;
3204 			cur_entry->callback_arg = csa->callback_arg;
3205 			cur_entry->callback = csa->callback;
3206 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3207 			csa->ccb_h.path->device->refcount++;
3208 		}
3209 
3210 		if ((added & AC_FOUND_DEVICE) != 0) {
3211 			/*
3212 			 * Get this peripheral up to date with all
3213 			 * the currently existing devices.
3214 			 */
3215 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3216 		}
3217 		if ((added & AC_PATH_REGISTERED) != 0) {
3218 			/*
3219 			 * Get this peripheral up to date with all
3220 			 * the currently existing busses.
3221 			 */
3222 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3223 		}
3224 		splx(s);
3225 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3226 		break;
3227 	}
3228 	case XPT_REL_SIMQ:
3229 	{
3230 		struct ccb_relsim *crs;
3231 		struct cam_ed *dev;
3232 		int s;
3233 
3234 		crs = &start_ccb->crs;
3235 		dev = crs->ccb_h.path->device;
3236 		if (dev == NULL) {
3237 
3238 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3239 			break;
3240 		}
3241 
3242 		s = splcam();
3243 
3244 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3245 
3246  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3247 
3248 				/* Don't ever go below one opening */
3249 				if (crs->openings > 0) {
3250 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3251 							    crs->openings);
3252 
3253 					if (bootverbose) {
3254 						xpt_print_path(crs->ccb_h.path);
3255 						printf("tagged openings "
3256 						       "now %d\n",
3257 						       crs->openings);
3258 					}
3259 				}
3260 			}
3261 		}
3262 
3263 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3264 
3265 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3266 
3267 				/*
3268 				 * Just extend the old timeout and decrement
3269 				 * the freeze count so that a single timeout
3270 				 * is sufficient for releasing the queue.
3271 				 */
3272 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3273 				untimeout(xpt_release_devq_timeout,
3274 					  dev, dev->c_handle);
3275 			} else {
3276 
3277 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3278 			}
3279 
3280 			dev->c_handle =
3281 				timeout(xpt_release_devq_timeout,
3282 					dev,
3283 					(crs->release_timeout * hz) / 1000);
3284 
3285 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3286 
3287 		}
3288 
3289 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3290 
3291 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3292 				/*
3293 				 * Decrement the freeze count so that a single
3294 				 * completion is still sufficient to unfreeze
3295 				 * the queue.
3296 				 */
3297 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3298 			} else {
3299 
3300 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3301 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3302 			}
3303 		}
3304 
3305 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3306 
3307 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3308 			 || (dev->ccbq.dev_active == 0)) {
3309 
3310 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3311 			} else {
3312 
3313 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3314 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3315 			}
3316 		}
3317 		splx(s);
3318 
3319 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3320 
3321 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3322 					 /*run_queue*/TRUE);
3323 		}
3324 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3325 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3326 		break;
3327 	}
3328 	case XPT_SCAN_BUS:
3329 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3330 		break;
3331 	case XPT_SCAN_LUN:
3332 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3333 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3334 			     start_ccb);
3335 		break;
3336 	case XPT_DEBUG: {
3337 #ifdef CAMDEBUG
3338 		int s;
3339 
3340 		s = splcam();
3341 #ifdef CAM_DEBUG_DELAY
3342 		cam_debug_delay = CAM_DEBUG_DELAY;
3343 #endif
3344 		cam_dflags = start_ccb->cdbg.flags;
3345 		if (cam_dpath != NULL) {
3346 			xpt_free_path(cam_dpath);
3347 			cam_dpath = NULL;
3348 		}
3349 
3350 		if (cam_dflags != CAM_DEBUG_NONE) {
3351 			if (xpt_create_path(&cam_dpath, xpt_periph,
3352 					    start_ccb->ccb_h.path_id,
3353 					    start_ccb->ccb_h.target_id,
3354 					    start_ccb->ccb_h.target_lun) !=
3355 					    CAM_REQ_CMP) {
3356 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3357 				cam_dflags = CAM_DEBUG_NONE;
3358 			} else {
3359 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3360 				xpt_print_path(cam_dpath);
3361 				printf("debugging flags now %x\n", cam_dflags);
3362 			}
3363 		} else {
3364 			cam_dpath = NULL;
3365 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3366 		}
3367 		splx(s);
3368 #else /* !CAMDEBUG */
3369 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3370 #endif /* CAMDEBUG */
3371 		break;
3372 	}
3373 	case XPT_NOOP:
3374 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3375 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3376 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3377 		break;
3378 	default:
3379 	case XPT_SDEV_TYPE:
3380 	case XPT_TERM_IO:
3381 	case XPT_ENG_INQ:
3382 		/* XXX Implement */
3383 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3384 		break;
3385 	}
3386 	splx(iopl);
3387 }
3388 
3389 void
3390 xpt_polled_action(union ccb *start_ccb)
3391 {
3392 	int	  s;
3393 	u_int32_t timeout;
3394 	struct	  cam_sim *sim;
3395 	struct	  cam_devq *devq;
3396 	struct	  cam_ed *dev;
3397 
3398 	timeout = start_ccb->ccb_h.timeout;
3399 	sim = start_ccb->ccb_h.path->bus->sim;
3400 	devq = sim->devq;
3401 	dev = start_ccb->ccb_h.path->device;
3402 
3403 	s = splcam();
3404 
3405 	/*
3406 	 * Steal an opening so that no other queued requests
3407 	 * can get it before us while we simulate interrupts.
3408 	 */
3409 	dev->ccbq.devq_openings--;
3410 	dev->ccbq.dev_openings--;
3411 
3412 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3413 	   && (--timeout > 0)) {
3414 		DELAY(1000);
3415 		(*(sim->sim_poll))(sim);
3416 		swi_camnet(NULL);
3417 		swi_cambio(NULL);
3418 	}
3419 
3420 	dev->ccbq.devq_openings++;
3421 	dev->ccbq.dev_openings++;
3422 
3423 	if (timeout != 0) {
3424 		xpt_action(start_ccb);
3425 		while(--timeout > 0) {
3426 			(*(sim->sim_poll))(sim);
3427 			swi_camnet(NULL);
3428 			swi_cambio(NULL);
3429 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3430 			    != CAM_REQ_INPROG)
3431 				break;
3432 			DELAY(1000);
3433 		}
3434 		if (timeout == 0) {
3435 			/*
3436 			 * XXX Is it worth adding a sim_timeout entry
3437 			 * point so we can attempt recovery?  If
3438 			 * this is only used for dumps, I don't think
3439 			 * it is.
3440 			 */
3441 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3442 		}
3443 	} else {
3444 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3445 	}
3446 	splx(s);
3447 }
3448 
3449 /*
3450  * Schedule a peripheral driver to receive a ccb when it's
3451  * target device has space for more transactions.
3452  */
3453 void
3454 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3455 {
3456 	struct cam_ed *device;
3457 	int s;
3458 	int runq;
3459 
3460 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3461 	device = perph->path->device;
3462 	s = splsoftcam();
3463 	if (periph_is_queued(perph)) {
3464 		/* Simply reorder based on new priority */
3465 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3466 			  ("   change priority to %d\n", new_priority));
3467 		if (new_priority < perph->pinfo.priority) {
3468 			camq_change_priority(&device->drvq,
3469 					     perph->pinfo.index,
3470 					     new_priority);
3471 		}
3472 		runq = 0;
3473 	} else {
3474 		/* New entry on the queue */
3475 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3476 			  ("   added periph to queue\n"));
3477 		perph->pinfo.priority = new_priority;
3478 		perph->pinfo.generation = ++device->drvq.generation;
3479 		camq_insert(&device->drvq, &perph->pinfo);
3480 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3481 	}
3482 	splx(s);
3483 	if (runq != 0) {
3484 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3485 			  ("   calling xpt_run_devq\n"));
3486 		xpt_run_dev_allocq(perph->path->bus);
3487 	}
3488 }
3489 
3490 
3491 /*
3492  * Schedule a device to run on a given queue.
3493  * If the device was inserted as a new entry on the queue,
3494  * return 1 meaning the device queue should be run. If we
3495  * were already queued, implying someone else has already
3496  * started the queue, return 0 so the caller doesn't attempt
3497  * to run the queue.  Must be run at either splsoftcam
3498  * (or splcam since that encompases splsoftcam).
3499  */
3500 static int
3501 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3502 		 u_int32_t new_priority)
3503 {
3504 	int retval;
3505 	u_int32_t old_priority;
3506 
3507 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3508 
3509 	old_priority = pinfo->priority;
3510 
3511 	/*
3512 	 * Are we already queued?
3513 	 */
3514 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3515 		/* Simply reorder based on new priority */
3516 		if (new_priority < old_priority) {
3517 			camq_change_priority(queue, pinfo->index,
3518 					     new_priority);
3519 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3520 					("changed priority to %d\n",
3521 					 new_priority));
3522 		}
3523 		retval = 0;
3524 	} else {
3525 		/* New entry on the queue */
3526 		if (new_priority < old_priority)
3527 			pinfo->priority = new_priority;
3528 
3529 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3530 				("Inserting onto queue\n"));
3531 		pinfo->generation = ++queue->generation;
3532 		camq_insert(queue, pinfo);
3533 		retval = 1;
3534 	}
3535 	return (retval);
3536 }
3537 
3538 static void
3539 xpt_run_dev_allocq(struct cam_eb *bus)
3540 {
3541 	struct	cam_devq *devq;
3542 	int	s;
3543 
3544 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3545 	devq = bus->sim->devq;
3546 
3547 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3548 			("   qfrozen_cnt == 0x%x, entries == %d, "
3549 			 "openings == %d, active == %d\n",
3550 			 devq->alloc_queue.qfrozen_cnt,
3551 			 devq->alloc_queue.entries,
3552 			 devq->alloc_openings,
3553 			 devq->alloc_active));
3554 
3555 	s = splsoftcam();
3556 	devq->alloc_queue.qfrozen_cnt++;
3557 	while ((devq->alloc_queue.entries > 0)
3558 	    && (devq->alloc_openings > 0)
3559 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3560 		struct	cam_ed_qinfo *qinfo;
3561 		struct	cam_ed *device;
3562 		union	ccb *work_ccb;
3563 		struct	cam_periph *drv;
3564 		struct	camq *drvq;
3565 
3566 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3567 							   CAMQ_HEAD);
3568 		device = qinfo->device;
3569 
3570 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3571 				("running device %p\n", device));
3572 
3573 		drvq = &device->drvq;
3574 
3575 #ifdef CAMDEBUG
3576 		if (drvq->entries <= 0) {
3577 			panic("xpt_run_dev_allocq: "
3578 			      "Device on queue without any work to do");
3579 		}
3580 #endif
3581 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3582 			devq->alloc_openings--;
3583 			devq->alloc_active++;
3584 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3585 			splx(s);
3586 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3587 				      drv->pinfo.priority);
3588 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3589 					("calling periph start\n"));
3590 			drv->periph_start(drv, work_ccb);
3591 		} else {
3592 			/*
3593 			 * Malloc failure in alloc_ccb
3594 			 */
3595 			/*
3596 			 * XXX add us to a list to be run from free_ccb
3597 			 * if we don't have any ccbs active on this
3598 			 * device queue otherwise we may never get run
3599 			 * again.
3600 			 */
3601 			break;
3602 		}
3603 
3604 		/* Raise IPL for possible insertion and test at top of loop */
3605 		s = splsoftcam();
3606 
3607 		if (drvq->entries > 0) {
3608 			/* We have more work.  Attempt to reschedule */
3609 			xpt_schedule_dev_allocq(bus, device);
3610 		}
3611 	}
3612 	devq->alloc_queue.qfrozen_cnt--;
3613 	splx(s);
3614 }
3615 
3616 static void
3617 xpt_run_dev_sendq(struct cam_eb *bus)
3618 {
3619 	struct	cam_devq *devq;
3620 	int	s;
3621 
3622 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3623 
3624 	devq = bus->sim->devq;
3625 
3626 	s = splcam();
3627 	devq->send_queue.qfrozen_cnt++;
3628 	splx(s);
3629 	s = splsoftcam();
3630 	while ((devq->send_queue.entries > 0)
3631 	    && (devq->send_openings > 0)) {
3632 		struct	cam_ed_qinfo *qinfo;
3633 		struct	cam_ed *device;
3634 		union ccb *work_ccb;
3635 		struct	cam_sim *sim;
3636 		int	ospl;
3637 
3638 		ospl = splcam();
3639 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3640 			splx(ospl);
3641 			break;
3642 		}
3643 
3644 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3645 							   CAMQ_HEAD);
3646 		device = qinfo->device;
3647 
3648 		/*
3649 		 * If the device has been "frozen", don't attempt
3650 		 * to run it.
3651 		 */
3652 		if (device->qfrozen_cnt > 0) {
3653 			splx(ospl);
3654 			continue;
3655 		}
3656 
3657 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3658 				("running device %p\n", device));
3659 
3660 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3661 		if (work_ccb == NULL) {
3662 			printf("device on run queue with no ccbs???\n");
3663 			splx(ospl);
3664 			continue;
3665 		}
3666 
3667 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3668 
3669 		 	if (num_highpower <= 0) {
3670 				/*
3671 				 * We got a high power command, but we
3672 				 * don't have any available slots.  Freeze
3673 				 * the device queue until we have a slot
3674 				 * available.
3675 				 */
3676 				device->qfrozen_cnt++;
3677 				STAILQ_INSERT_TAIL(&highpowerq,
3678 						   &work_ccb->ccb_h,
3679 						   xpt_links.stqe);
3680 
3681 				splx(ospl);
3682 				continue;
3683 			} else {
3684 				/*
3685 				 * Consume a high power slot while
3686 				 * this ccb runs.
3687 				 */
3688 				num_highpower--;
3689 			}
3690 		}
3691 		devq->active_dev = device;
3692 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3693 
3694 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3695 		splx(ospl);
3696 
3697 		devq->send_openings--;
3698 		devq->send_active++;
3699 
3700 		if (device->ccbq.queue.entries > 0)
3701 			xpt_schedule_dev_sendq(bus, device);
3702 
3703 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3704 			/*
3705 			 * The client wants to freeze the queue
3706 			 * after this CCB is sent.
3707 			 */
3708 			ospl = splcam();
3709 			device->qfrozen_cnt++;
3710 			splx(ospl);
3711 		}
3712 
3713 		splx(s);
3714 
3715 		/* In Target mode, the peripheral driver knows best... */
3716 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3717 			if ((device->inq_flags & SID_CmdQue) != 0
3718 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3719 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3720 			else
3721 				/*
3722 				 * Clear this in case of a retried CCB that
3723 				 * failed due to a rejected tag.
3724 				 */
3725 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3726 		}
3727 
3728 		/*
3729 		 * Device queues can be shared among multiple sim instances
3730 		 * that reside on different busses.  Use the SIM in the queue
3731 		 * CCB's path, rather than the one in the bus that was passed
3732 		 * into this function.
3733 		 */
3734 		sim = work_ccb->ccb_h.path->bus->sim;
3735 		(*(sim->sim_action))(sim, work_ccb);
3736 
3737 		ospl = splcam();
3738 		devq->active_dev = NULL;
3739 		splx(ospl);
3740 		/* Raise IPL for possible insertion and test at top of loop */
3741 		s = splsoftcam();
3742 	}
3743 	splx(s);
3744 	s = splcam();
3745 	devq->send_queue.qfrozen_cnt--;
3746 	splx(s);
3747 }
3748 
3749 /*
3750  * This function merges stuff from the slave ccb into the master ccb, while
3751  * keeping important fields in the master ccb constant.
3752  */
3753 void
3754 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3755 {
3756 	/*
3757 	 * Pull fields that are valid for peripheral drivers to set
3758 	 * into the master CCB along with the CCB "payload".
3759 	 */
3760 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3761 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3762 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3763 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3764 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3765 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3766 }
3767 
3768 void
3769 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3770 {
3771 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3772 	ccb_h->pinfo.priority = priority;
3773 	ccb_h->path = path;
3774 	ccb_h->path_id = path->bus->path_id;
3775 	if (path->target)
3776 		ccb_h->target_id = path->target->target_id;
3777 	else
3778 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3779 	if (path->device) {
3780 		ccb_h->target_lun = path->device->lun_id;
3781 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3782 	} else {
3783 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3784 	}
3785 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3786 	ccb_h->flags = 0;
3787 }
3788 
3789 /* Path manipulation functions */
3790 cam_status
3791 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3792 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3793 {
3794 	struct	   cam_path *path;
3795 	cam_status status;
3796 
3797 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3798 
3799 	if (path == NULL) {
3800 		status = CAM_RESRC_UNAVAIL;
3801 		return(status);
3802 	}
3803 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3804 	if (status != CAM_REQ_CMP) {
3805 		free(path, M_DEVBUF);
3806 		path = NULL;
3807 	}
3808 	*new_path_ptr = path;
3809 	return (status);
3810 }
3811 
3812 static cam_status
3813 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3814 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3815 {
3816 	struct	     cam_eb *bus;
3817 	struct	     cam_et *target;
3818 	struct	     cam_ed *device;
3819 	cam_status   status;
3820 	int	     s;
3821 
3822 	status = CAM_REQ_CMP;	/* Completed without error */
3823 	target = NULL;		/* Wildcarded */
3824 	device = NULL;		/* Wildcarded */
3825 
3826 	/*
3827 	 * We will potentially modify the EDT, so block interrupts
3828 	 * that may attempt to create cam paths.
3829 	 */
3830 	s = splcam();
3831 	bus = xpt_find_bus(path_id);
3832 	if (bus == NULL) {
3833 		status = CAM_PATH_INVALID;
3834 	} else {
3835 		target = xpt_find_target(bus, target_id);
3836 		if (target == NULL) {
3837 			/* Create one */
3838 			struct cam_et *new_target;
3839 
3840 			new_target = xpt_alloc_target(bus, target_id);
3841 			if (new_target == NULL) {
3842 				status = CAM_RESRC_UNAVAIL;
3843 			} else {
3844 				target = new_target;
3845 			}
3846 		}
3847 		if (target != NULL) {
3848 			device = xpt_find_device(target, lun_id);
3849 			if (device == NULL) {
3850 				/* Create one */
3851 				struct cam_ed *new_device;
3852 
3853 				new_device = xpt_alloc_device(bus,
3854 							      target,
3855 							      lun_id);
3856 				if (new_device == NULL) {
3857 					status = CAM_RESRC_UNAVAIL;
3858 				} else {
3859 					device = new_device;
3860 				}
3861 			}
3862 		}
3863 	}
3864 	splx(s);
3865 
3866 	/*
3867 	 * Only touch the user's data if we are successful.
3868 	 */
3869 	if (status == CAM_REQ_CMP) {
3870 		new_path->periph = perph;
3871 		new_path->bus = bus;
3872 		new_path->target = target;
3873 		new_path->device = device;
3874 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3875 	} else {
3876 		if (device != NULL)
3877 			xpt_release_device(bus, target, device);
3878 		if (target != NULL)
3879 			xpt_release_target(bus, target);
3880 		if (bus != NULL)
3881 			xpt_release_bus(bus);
3882 	}
3883 	return (status);
3884 }
3885 
3886 static void
3887 xpt_release_path(struct cam_path *path)
3888 {
3889 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3890 	if (path->device != NULL) {
3891 		xpt_release_device(path->bus, path->target, path->device);
3892 		path->device = NULL;
3893 	}
3894 	if (path->target != NULL) {
3895 		xpt_release_target(path->bus, path->target);
3896 		path->target = NULL;
3897 	}
3898 	if (path->bus != NULL) {
3899 		xpt_release_bus(path->bus);
3900 		path->bus = NULL;
3901 	}
3902 }
3903 
3904 void
3905 xpt_free_path(struct cam_path *path)
3906 {
3907 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3908 	xpt_release_path(path);
3909 	free(path, M_DEVBUF);
3910 }
3911 
3912 
3913 /*
3914  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3915  * in path1, 2 for match with wildcards in path2.
3916  */
3917 int
3918 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3919 {
3920 	int retval = 0;
3921 
3922 	if (path1->bus != path2->bus) {
3923 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3924 			retval = 1;
3925 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3926 			retval = 2;
3927 		else
3928 			return (-1);
3929 	}
3930 	if (path1->target != path2->target) {
3931 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3932 			if (retval == 0)
3933 				retval = 1;
3934 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3935 			retval = 2;
3936 		else
3937 			return (-1);
3938 	}
3939 	if (path1->device != path2->device) {
3940 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3941 			if (retval == 0)
3942 				retval = 1;
3943 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3944 			retval = 2;
3945 		else
3946 			return (-1);
3947 	}
3948 	return (retval);
3949 }
3950 
3951 void
3952 xpt_print_path(struct cam_path *path)
3953 {
3954 	if (path == NULL)
3955 		printf("(nopath): ");
3956 	else {
3957 		if (path->periph != NULL)
3958 			printf("(%s%d:", path->periph->periph_name,
3959 			       path->periph->unit_number);
3960 		else
3961 			printf("(noperiph:");
3962 
3963 		if (path->bus != NULL)
3964 			printf("%s%d:%d:", path->bus->sim->sim_name,
3965 			       path->bus->sim->unit_number,
3966 			       path->bus->sim->bus_id);
3967 		else
3968 			printf("nobus:");
3969 
3970 		if (path->target != NULL)
3971 			printf("%d:", path->target->target_id);
3972 		else
3973 			printf("X:");
3974 
3975 		if (path->device != NULL)
3976 			printf("%d): ", path->device->lun_id);
3977 		else
3978 			printf("X): ");
3979 	}
3980 }
3981 
3982 path_id_t
3983 xpt_path_path_id(struct cam_path *path)
3984 {
3985 	return(path->bus->path_id);
3986 }
3987 
3988 target_id_t
3989 xpt_path_target_id(struct cam_path *path)
3990 {
3991 	if (path->target != NULL)
3992 		return (path->target->target_id);
3993 	else
3994 		return (CAM_TARGET_WILDCARD);
3995 }
3996 
3997 lun_id_t
3998 xpt_path_lun_id(struct cam_path *path)
3999 {
4000 	if (path->device != NULL)
4001 		return (path->device->lun_id);
4002 	else
4003 		return (CAM_LUN_WILDCARD);
4004 }
4005 
4006 struct cam_sim *
4007 xpt_path_sim(struct cam_path *path)
4008 {
4009 	return (path->bus->sim);
4010 }
4011 
4012 struct cam_periph*
4013 xpt_path_periph(struct cam_path *path)
4014 {
4015 	return (path->periph);
4016 }
4017 
4018 /*
4019  * Release a CAM control block for the caller.  Remit the cost of the structure
4020  * to the device referenced by the path.  If the this device had no 'credits'
4021  * and peripheral drivers have registered async callbacks for this notification
4022  * call them now.
4023  */
4024 void
4025 xpt_release_ccb(union ccb *free_ccb)
4026 {
4027 	int	 s;
4028 	struct	 cam_path *path;
4029 	struct	 cam_ed *device;
4030 	struct	 cam_eb *bus;
4031 
4032 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4033 	path = free_ccb->ccb_h.path;
4034 	device = path->device;
4035 	bus = path->bus;
4036 	s = splsoftcam();
4037 	cam_ccbq_release_opening(&device->ccbq);
4038 	if (xpt_ccb_count > xpt_max_ccbs) {
4039 		xpt_free_ccb(free_ccb);
4040 		xpt_ccb_count--;
4041 	} else {
4042 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
4043 	}
4044 	bus->sim->devq->alloc_openings++;
4045 	bus->sim->devq->alloc_active--;
4046 	/* XXX Turn this into an inline function - xpt_run_device?? */
4047 	if ((device_is_alloc_queued(device) == 0)
4048 	 && (device->drvq.entries > 0)) {
4049 		xpt_schedule_dev_allocq(bus, device);
4050 	}
4051 	splx(s);
4052 	if (dev_allocq_is_runnable(bus->sim->devq))
4053 		xpt_run_dev_allocq(bus);
4054 }
4055 
4056 /* Functions accessed by SIM drivers */
4057 
4058 /*
4059  * A sim structure, listing the SIM entry points and instance
4060  * identification info is passed to xpt_bus_register to hook the SIM
4061  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4062  * for this new bus and places it in the array of busses and assigns
4063  * it a path_id.  The path_id may be influenced by "hard wiring"
4064  * information specified by the user.  Once interrupt services are
4065  * availible, the bus will be probed.
4066  */
4067 int32_t
4068 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4069 {
4070 	struct cam_eb *new_bus;
4071 	struct cam_eb *old_bus;
4072 	struct ccb_pathinq cpi;
4073 	int s;
4074 
4075 	sim->bus_id = bus;
4076 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4077 					  M_DEVBUF, M_NOWAIT);
4078 	if (new_bus == NULL) {
4079 		/* Couldn't satisfy request */
4080 		return (CAM_RESRC_UNAVAIL);
4081 	}
4082 
4083 	if (strcmp(sim->sim_name, "xpt") != 0) {
4084 
4085 		sim->path_id =
4086 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4087 	}
4088 
4089 	TAILQ_INIT(&new_bus->et_entries);
4090 	new_bus->path_id = sim->path_id;
4091 	new_bus->sim = sim;
4092 	timevalclear(&new_bus->last_reset);
4093 	new_bus->flags = 0;
4094 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4095 	new_bus->generation = 0;
4096 	s = splcam();
4097 	old_bus = TAILQ_FIRST(&xpt_busses);
4098 	while (old_bus != NULL
4099 	    && old_bus->path_id < new_bus->path_id)
4100 		old_bus = TAILQ_NEXT(old_bus, links);
4101 	if (old_bus != NULL)
4102 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4103 	else
4104 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4105 	bus_generation++;
4106 	splx(s);
4107 
4108 	/* Notify interested parties */
4109 	if (sim->path_id != CAM_XPT_PATH_ID) {
4110 		struct cam_path path;
4111 
4112 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4113 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4114 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4115 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4116 		xpt_action((union ccb *)&cpi);
4117 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4118 		xpt_release_path(&path);
4119 	}
4120 	return (CAM_SUCCESS);
4121 }
4122 
4123 int32_t
4124 xpt_bus_deregister(path_id_t pathid)
4125 {
4126 	struct cam_path bus_path;
4127 	cam_status status;
4128 
4129 	status = xpt_compile_path(&bus_path, NULL, pathid,
4130 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4131 	if (status != CAM_REQ_CMP)
4132 		return (status);
4133 
4134 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4135 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4136 
4137 	/* Release the reference count held while registered. */
4138 	xpt_release_bus(bus_path.bus);
4139 	xpt_release_path(&bus_path);
4140 
4141 	return (CAM_REQ_CMP);
4142 }
4143 
4144 static path_id_t
4145 xptnextfreepathid(void)
4146 {
4147 	struct cam_eb *bus;
4148 	path_id_t pathid;
4149 	char *strval;
4150 
4151 	pathid = 0;
4152 	bus = TAILQ_FIRST(&xpt_busses);
4153 retry:
4154 	/* Find an unoccupied pathid */
4155 	while (bus != NULL
4156 	    && bus->path_id <= pathid) {
4157 		if (bus->path_id == pathid)
4158 			pathid++;
4159 		bus = TAILQ_NEXT(bus, links);
4160 	}
4161 
4162 	/*
4163 	 * Ensure that this pathid is not reserved for
4164 	 * a bus that may be registered in the future.
4165 	 */
4166 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4167 		++pathid;
4168 		/* Start the search over */
4169 		goto retry;
4170 	}
4171 	return (pathid);
4172 }
4173 
4174 static path_id_t
4175 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4176 {
4177 	path_id_t pathid;
4178 	int i, dunit, val;
4179 	char buf[32], *strval;
4180 
4181 	pathid = CAM_XPT_PATH_ID;
4182 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4183 	i = -1;
4184 	while ((i = resource_locate(i, "scbus")) != -1) {
4185 		dunit = resource_query_unit(i);
4186 		if (dunit < 0)		/* unwired?! */
4187 			continue;
4188 		if (resource_string_value("scbus", dunit, "at", &strval) != 0)
4189 			continue;
4190 		if (strcmp(buf, strval) != 0)
4191 			continue;
4192 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4193 			if (sim_bus == val) {
4194 				pathid = dunit;
4195 				break;
4196 			}
4197 		} else if (sim_bus == 0) {
4198 			/* Unspecified matches bus 0 */
4199 			pathid = dunit;
4200 			break;
4201 		} else {
4202 			printf("Ambiguous scbus configuration for %s%d "
4203 			       "bus %d, cannot wire down.  The kernel "
4204 			       "config entry for scbus%d should "
4205 			       "specify a controller bus.\n"
4206 			       "Scbus will be assigned dynamically.\n",
4207 			       sim_name, sim_unit, sim_bus, dunit);
4208 			break;
4209 		}
4210 	}
4211 
4212 	if (pathid == CAM_XPT_PATH_ID)
4213 		pathid = xptnextfreepathid();
4214 	return (pathid);
4215 }
4216 
4217 void
4218 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4219 {
4220 	struct cam_eb *bus;
4221 	struct cam_et *target, *next_target;
4222 	struct cam_ed *device, *next_device;
4223 	int s;
4224 
4225 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4226 
4227 	/*
4228 	 * Most async events come from a CAM interrupt context.  In
4229 	 * a few cases, the error recovery code at the peripheral layer,
4230 	 * which may run from our SWI or a process context, may signal
4231 	 * deferred events with a call to xpt_async. Ensure async
4232 	 * notifications are serialized by blocking cam interrupts.
4233 	 */
4234 	s = splcam();
4235 
4236 	bus = path->bus;
4237 
4238 	if (async_code == AC_BUS_RESET) {
4239 		int s;
4240 
4241 		s = splclock();
4242 		/* Update our notion of when the last reset occurred */
4243 		microtime(&bus->last_reset);
4244 		splx(s);
4245 	}
4246 
4247 	for (target = TAILQ_FIRST(&bus->et_entries);
4248 	     target != NULL;
4249 	     target = next_target) {
4250 
4251 		next_target = TAILQ_NEXT(target, links);
4252 
4253 		if (path->target != target
4254 		 && path->target->target_id != CAM_TARGET_WILDCARD
4255 		 && target->target_id != CAM_TARGET_WILDCARD)
4256 			continue;
4257 
4258 		if (async_code == AC_SENT_BDR) {
4259 			int s;
4260 
4261 			/* Update our notion of when the last reset occurred */
4262 			s = splclock();
4263 			microtime(&path->target->last_reset);
4264 			splx(s);
4265 		}
4266 
4267 		for (device = TAILQ_FIRST(&target->ed_entries);
4268 		     device != NULL;
4269 		     device = next_device) {
4270 
4271 			next_device = TAILQ_NEXT(device, links);
4272 
4273 			if (path->device != device
4274 			 && path->device->lun_id != CAM_LUN_WILDCARD
4275 			 && device->lun_id != CAM_LUN_WILDCARD)
4276 				continue;
4277 
4278 			xpt_dev_async(async_code, bus, target,
4279 				      device, async_arg);
4280 
4281 			xpt_async_bcast(&device->asyncs, async_code,
4282 					path, async_arg);
4283 		}
4284 	}
4285 
4286 	/*
4287 	 * If this wasn't a fully wildcarded async, tell all
4288 	 * clients that want all async events.
4289 	 */
4290 	if (bus != xpt_periph->path->bus)
4291 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4292 				path, async_arg);
4293 	splx(s);
4294 }
4295 
4296 static void
4297 xpt_async_bcast(struct async_list *async_head,
4298 		u_int32_t async_code,
4299 		struct cam_path *path, void *async_arg)
4300 {
4301 	struct async_node *cur_entry;
4302 
4303 	cur_entry = SLIST_FIRST(async_head);
4304 	while (cur_entry != NULL) {
4305 		struct async_node *next_entry;
4306 		/*
4307 		 * Grab the next list entry before we call the current
4308 		 * entry's callback.  This is because the callback function
4309 		 * can delete its async callback entry.
4310 		 */
4311 		next_entry = SLIST_NEXT(cur_entry, links);
4312 		if ((cur_entry->event_enable & async_code) != 0)
4313 			cur_entry->callback(cur_entry->callback_arg,
4314 					    async_code, path,
4315 					    async_arg);
4316 		cur_entry = next_entry;
4317 	}
4318 }
4319 
4320 /*
4321  * Handle any per-device event notifications that require action by the XPT.
4322  */
4323 static void
4324 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4325 	      struct cam_ed *device, void *async_arg)
4326 {
4327 	cam_status status;
4328 	struct cam_path newpath;
4329 
4330 	/*
4331 	 * We only need to handle events for real devices.
4332 	 */
4333 	if (target->target_id == CAM_TARGET_WILDCARD
4334 	 || device->lun_id == CAM_LUN_WILDCARD)
4335 		return;
4336 
4337 	/*
4338 	 * We need our own path with wildcards expanded to
4339 	 * handle certain types of events.
4340 	 */
4341 	if ((async_code == AC_SENT_BDR)
4342 	 || (async_code == AC_BUS_RESET)
4343 	 || (async_code == AC_INQ_CHANGED))
4344 		status = xpt_compile_path(&newpath, NULL,
4345 					  bus->path_id,
4346 					  target->target_id,
4347 					  device->lun_id);
4348 	else
4349 		status = CAM_REQ_CMP_ERR;
4350 
4351 	if (status == CAM_REQ_CMP) {
4352 
4353 		/*
4354 		 * Allow transfer negotiation to occur in a
4355 		 * tag free environment.
4356 		 */
4357 		if (async_code == AC_SENT_BDR
4358 		 || async_code == AC_BUS_RESET)
4359 			xpt_toggle_tags(&newpath);
4360 
4361 		if (async_code == AC_INQ_CHANGED) {
4362 			/*
4363 			 * We've sent a start unit command, or
4364 			 * something similar to a device that
4365 			 * may have caused its inquiry data to
4366 			 * change. So we re-scan the device to
4367 			 * refresh the inquiry data for it.
4368 			 */
4369 			xpt_scan_lun(newpath.periph, &newpath,
4370 				     CAM_EXPECT_INQ_CHANGE, NULL);
4371 		}
4372 		xpt_release_path(&newpath);
4373 	} else if (async_code == AC_LOST_DEVICE) {
4374 		device->flags |= CAM_DEV_UNCONFIGURED;
4375 	} else if (async_code == AC_TRANSFER_NEG) {
4376 		struct ccb_trans_settings *settings;
4377 
4378 		settings = (struct ccb_trans_settings *)async_arg;
4379 		xpt_set_transfer_settings(settings, device,
4380 					  /*async_update*/TRUE);
4381 	}
4382 }
4383 
4384 u_int32_t
4385 xpt_freeze_devq(struct cam_path *path, u_int count)
4386 {
4387 	int s;
4388 	struct ccb_hdr *ccbh;
4389 
4390 	s = splcam();
4391 	path->device->qfrozen_cnt += count;
4392 
4393 	/*
4394 	 * Mark the last CCB in the queue as needing
4395 	 * to be requeued if the driver hasn't
4396 	 * changed it's state yet.  This fixes a race
4397 	 * where a ccb is just about to be queued to
4398 	 * a controller driver when it's interrupt routine
4399 	 * freezes the queue.  To completly close the
4400 	 * hole, controller drives must check to see
4401 	 * if a ccb's status is still CAM_REQ_INPROG
4402 	 * under spl protection just before they queue
4403 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4404 	 * an example.
4405 	 */
4406 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4407 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4408 		ccbh->status = CAM_REQUEUE_REQ;
4409 	splx(s);
4410 	return (path->device->qfrozen_cnt);
4411 }
4412 
4413 u_int32_t
4414 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4415 {
4416 	sim->devq->send_queue.qfrozen_cnt += count;
4417 	if (sim->devq->active_dev != NULL) {
4418 		struct ccb_hdr *ccbh;
4419 
4420 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4421 				  ccb_hdr_tailq);
4422 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4423 			ccbh->status = CAM_REQUEUE_REQ;
4424 	}
4425 	return (sim->devq->send_queue.qfrozen_cnt);
4426 }
4427 
4428 static void
4429 xpt_release_devq_timeout(void *arg)
4430 {
4431 	struct cam_ed *device;
4432 
4433 	device = (struct cam_ed *)arg;
4434 
4435 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4436 }
4437 
4438 void
4439 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4440 {
4441 	xpt_release_devq_device(path->device, count, run_queue);
4442 }
4443 
4444 static void
4445 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4446 {
4447 	int	rundevq;
4448 	int	s0, s1;
4449 
4450 	rundevq = 0;
4451 	s0 = splsoftcam();
4452 	s1 = splcam();
4453 	if (dev->qfrozen_cnt > 0) {
4454 
4455 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4456 		dev->qfrozen_cnt -= count;
4457 		if (dev->qfrozen_cnt == 0) {
4458 
4459 			/*
4460 			 * No longer need to wait for a successful
4461 			 * command completion.
4462 			 */
4463 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4464 
4465 			/*
4466 			 * Remove any timeouts that might be scheduled
4467 			 * to release this queue.
4468 			 */
4469 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4470 				untimeout(xpt_release_devq_timeout, dev,
4471 					  dev->c_handle);
4472 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4473 			}
4474 
4475 			/*
4476 			 * Now that we are unfrozen schedule the
4477 			 * device so any pending transactions are
4478 			 * run.
4479 			 */
4480 			if ((dev->ccbq.queue.entries > 0)
4481 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4482 			 && (run_queue != 0)) {
4483 				rundevq = 1;
4484 			}
4485 		}
4486 	}
4487 	splx(s1);
4488 	if (rundevq != 0)
4489 		xpt_run_dev_sendq(dev->target->bus);
4490 	splx(s0);
4491 }
4492 
4493 void
4494 xpt_release_simq(struct cam_sim *sim, int run_queue)
4495 {
4496 	int	s;
4497 	struct	camq *sendq;
4498 
4499 	sendq = &(sim->devq->send_queue);
4500 	s = splcam();
4501 	if (sendq->qfrozen_cnt > 0) {
4502 
4503 		sendq->qfrozen_cnt--;
4504 		if (sendq->qfrozen_cnt == 0) {
4505 			struct cam_eb *bus;
4506 
4507 			/*
4508 			 * If there is a timeout scheduled to release this
4509 			 * sim queue, remove it.  The queue frozen count is
4510 			 * already at 0.
4511 			 */
4512 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4513 				untimeout(xpt_release_simq_timeout, sim,
4514 					  sim->c_handle);
4515 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4516 			}
4517 			bus = xpt_find_bus(sim->path_id);
4518 			splx(s);
4519 
4520 			if (run_queue) {
4521 				/*
4522 				 * Now that we are unfrozen run the send queue.
4523 				 */
4524 				xpt_run_dev_sendq(bus);
4525 			}
4526 			xpt_release_bus(bus);
4527 		} else
4528 			splx(s);
4529 	} else
4530 		splx(s);
4531 }
4532 
4533 static void
4534 xpt_release_simq_timeout(void *arg)
4535 {
4536 	struct cam_sim *sim;
4537 
4538 	sim = (struct cam_sim *)arg;
4539 	xpt_release_simq(sim, /* run_queue */ TRUE);
4540 }
4541 
4542 void
4543 xpt_done(union ccb *done_ccb)
4544 {
4545 	int s;
4546 
4547 	s = splcam();
4548 
4549 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4550 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4551 		/*
4552 		 * Queue up the request for handling by our SWI handler
4553 		 * any of the "non-immediate" type of ccbs.
4554 		 */
4555 		switch (done_ccb->ccb_h.path->periph->type) {
4556 		case CAM_PERIPH_BIO:
4557 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4558 					  sim_links.tqe);
4559 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4560 			setsoftcambio();
4561 			break;
4562 		case CAM_PERIPH_NET:
4563 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4564 					  sim_links.tqe);
4565 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4566 			setsoftcamnet();
4567 			break;
4568 		}
4569 	}
4570 	splx(s);
4571 }
4572 
4573 union ccb *
4574 xpt_alloc_ccb()
4575 {
4576 	union ccb *new_ccb;
4577 
4578 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4579 	return (new_ccb);
4580 }
4581 
4582 void
4583 xpt_free_ccb(union ccb *free_ccb)
4584 {
4585 	free(free_ccb, M_DEVBUF);
4586 }
4587 
4588 
4589 
4590 /* Private XPT functions */
4591 
4592 /*
4593  * Get a CAM control block for the caller. Charge the structure to the device
4594  * referenced by the path.  If the this device has no 'credits' then the
4595  * device already has the maximum number of outstanding operations under way
4596  * and we return NULL. If we don't have sufficient resources to allocate more
4597  * ccbs, we also return NULL.
4598  */
4599 static union ccb *
4600 xpt_get_ccb(struct cam_ed *device)
4601 {
4602 	union ccb *new_ccb;
4603 	int s;
4604 
4605 	s = splsoftcam();
4606 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4607 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4608                 if (new_ccb == NULL) {
4609 			splx(s);
4610 			return (NULL);
4611 		}
4612 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4613 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4614 				  xpt_links.sle);
4615 		xpt_ccb_count++;
4616 	}
4617 	cam_ccbq_take_opening(&device->ccbq);
4618 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4619 	splx(s);
4620 	return (new_ccb);
4621 }
4622 
4623 static void
4624 xpt_release_bus(struct cam_eb *bus)
4625 {
4626 	int s;
4627 
4628 	s = splcam();
4629 	if ((--bus->refcount == 0)
4630 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4631 		TAILQ_REMOVE(&xpt_busses, bus, links);
4632 		bus_generation++;
4633 		splx(s);
4634 		free(bus, M_DEVBUF);
4635 	} else
4636 		splx(s);
4637 }
4638 
4639 static struct cam_et *
4640 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4641 {
4642 	struct cam_et *target;
4643 
4644 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4645 	if (target != NULL) {
4646 		struct cam_et *cur_target;
4647 
4648 		TAILQ_INIT(&target->ed_entries);
4649 		target->bus = bus;
4650 		target->target_id = target_id;
4651 		target->refcount = 1;
4652 		target->generation = 0;
4653 		timevalclear(&target->last_reset);
4654 		/*
4655 		 * Hold a reference to our parent bus so it
4656 		 * will not go away before we do.
4657 		 */
4658 		bus->refcount++;
4659 
4660 		/* Insertion sort into our bus's target list */
4661 		cur_target = TAILQ_FIRST(&bus->et_entries);
4662 		while (cur_target != NULL && cur_target->target_id < target_id)
4663 			cur_target = TAILQ_NEXT(cur_target, links);
4664 
4665 		if (cur_target != NULL) {
4666 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4667 		} else {
4668 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4669 		}
4670 		bus->generation++;
4671 	}
4672 	return (target);
4673 }
4674 
4675 static void
4676 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4677 {
4678 	int s;
4679 
4680 	s = splcam();
4681 	if ((--target->refcount == 0)
4682 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4683 		TAILQ_REMOVE(&bus->et_entries, target, links);
4684 		bus->generation++;
4685 		splx(s);
4686 		free(target, M_DEVBUF);
4687 		xpt_release_bus(bus);
4688 	} else
4689 		splx(s);
4690 }
4691 
4692 static struct cam_ed *
4693 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4694 {
4695 	struct	   cam_ed *device;
4696 	struct	   cam_devq *devq;
4697 	cam_status status;
4698 
4699 	/* Make space for us in the device queue on our bus */
4700 	devq = bus->sim->devq;
4701 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4702 
4703 	if (status != CAM_REQ_CMP) {
4704 		device = NULL;
4705 	} else {
4706 		device = (struct cam_ed *)malloc(sizeof(*device),
4707 						 M_DEVBUF, M_NOWAIT);
4708 	}
4709 
4710 	if (device != NULL) {
4711 		struct cam_ed *cur_device;
4712 
4713 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4714 		device->alloc_ccb_entry.device = device;
4715 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4716 		device->send_ccb_entry.device = device;
4717 		device->target = target;
4718 		device->lun_id = lun_id;
4719 		/* Initialize our queues */
4720 		if (camq_init(&device->drvq, 0) != 0) {
4721 			free(device, M_DEVBUF);
4722 			return (NULL);
4723 		}
4724 		if (cam_ccbq_init(&device->ccbq,
4725 				  bus->sim->max_dev_openings) != 0) {
4726 			camq_fini(&device->drvq);
4727 			free(device, M_DEVBUF);
4728 			return (NULL);
4729 		}
4730 		SLIST_INIT(&device->asyncs);
4731 		SLIST_INIT(&device->periphs);
4732 		device->generation = 0;
4733 		device->owner = NULL;
4734 		/*
4735 		 * Take the default quirk entry until we have inquiry
4736 		 * data and can determine a better quirk to use.
4737 		 */
4738 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4739 		bzero(&device->inq_data, sizeof(device->inq_data));
4740 		device->inq_flags = 0;
4741 		device->queue_flags = 0;
4742 		device->serial_num = NULL;
4743 		device->serial_num_len = 0;
4744 		device->qfrozen_cnt = 0;
4745 		device->flags = CAM_DEV_UNCONFIGURED;
4746 		device->tag_delay_count = 0;
4747 		device->refcount = 1;
4748 		callout_handle_init(&device->c_handle);
4749 
4750 		/*
4751 		 * Hold a reference to our parent target so it
4752 		 * will not go away before we do.
4753 		 */
4754 		target->refcount++;
4755 
4756 		/*
4757 		 * XXX should be limited by number of CCBs this bus can
4758 		 * do.
4759 		 */
4760 		xpt_max_ccbs += device->ccbq.devq_openings;
4761 		/* Insertion sort into our target's device list */
4762 		cur_device = TAILQ_FIRST(&target->ed_entries);
4763 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4764 			cur_device = TAILQ_NEXT(cur_device, links);
4765 		if (cur_device != NULL) {
4766 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4767 		} else {
4768 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4769 		}
4770 		target->generation++;
4771 	}
4772 	return (device);
4773 }
4774 
4775 static void
4776 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4777 		   struct cam_ed *device)
4778 {
4779 	int s;
4780 
4781 	s = splcam();
4782 	if ((--device->refcount == 0)
4783 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
4784 		struct cam_devq *devq;
4785 
4786 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4787 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4788 			panic("Removing device while still queued for ccbs");
4789 
4790 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4791 				untimeout(xpt_release_devq_timeout, device,
4792 					  device->c_handle);
4793 
4794 		TAILQ_REMOVE(&target->ed_entries, device,links);
4795 		target->generation++;
4796 		xpt_max_ccbs -= device->ccbq.devq_openings;
4797 		/* Release our slot in the devq */
4798 		devq = bus->sim->devq;
4799 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4800 		splx(s);
4801 		free(device, M_DEVBUF);
4802 		xpt_release_target(bus, target);
4803 	} else
4804 		splx(s);
4805 }
4806 
4807 static u_int32_t
4808 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4809 {
4810 	int	s;
4811 	int	diff;
4812 	int	result;
4813 	struct	cam_ed *dev;
4814 
4815 	dev = path->device;
4816 	s = splsoftcam();
4817 
4818 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4819 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4820 	if (result == CAM_REQ_CMP && (diff < 0)) {
4821 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4822 	}
4823 	/* Adjust the global limit */
4824 	xpt_max_ccbs += diff;
4825 	splx(s);
4826 	return (result);
4827 }
4828 
4829 static struct cam_eb *
4830 xpt_find_bus(path_id_t path_id)
4831 {
4832 	struct cam_eb *bus;
4833 
4834 	for (bus = TAILQ_FIRST(&xpt_busses);
4835 	     bus != NULL;
4836 	     bus = TAILQ_NEXT(bus, links)) {
4837 		if (bus->path_id == path_id) {
4838 			bus->refcount++;
4839 			break;
4840 		}
4841 	}
4842 	return (bus);
4843 }
4844 
4845 static struct cam_et *
4846 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4847 {
4848 	struct cam_et *target;
4849 
4850 	for (target = TAILQ_FIRST(&bus->et_entries);
4851 	     target != NULL;
4852 	     target = TAILQ_NEXT(target, links)) {
4853 		if (target->target_id == target_id) {
4854 			target->refcount++;
4855 			break;
4856 		}
4857 	}
4858 	return (target);
4859 }
4860 
4861 static struct cam_ed *
4862 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4863 {
4864 	struct cam_ed *device;
4865 
4866 	for (device = TAILQ_FIRST(&target->ed_entries);
4867 	     device != NULL;
4868 	     device = TAILQ_NEXT(device, links)) {
4869 		if (device->lun_id == lun_id) {
4870 			device->refcount++;
4871 			break;
4872 		}
4873 	}
4874 	return (device);
4875 }
4876 
4877 typedef struct {
4878 	union	ccb *request_ccb;
4879 	struct 	ccb_pathinq *cpi;
4880 	int	pending_count;
4881 } xpt_scan_bus_info;
4882 
4883 /*
4884  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4885  * As the scan progresses, xpt_scan_bus is used as the
4886  * callback on completion function.
4887  */
4888 static void
4889 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4890 {
4891 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4892 		  ("xpt_scan_bus\n"));
4893 	switch (request_ccb->ccb_h.func_code) {
4894 	case XPT_SCAN_BUS:
4895 	{
4896 		xpt_scan_bus_info *scan_info;
4897 		union	ccb *work_ccb;
4898 		struct	cam_path *path;
4899 		u_int	i;
4900 		u_int	max_target;
4901 		u_int	initiator_id;
4902 
4903 		/* Find out the characteristics of the bus */
4904 		work_ccb = xpt_alloc_ccb();
4905 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4906 			      request_ccb->ccb_h.pinfo.priority);
4907 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4908 		xpt_action(work_ccb);
4909 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4910 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4911 			xpt_free_ccb(work_ccb);
4912 			xpt_done(request_ccb);
4913 			return;
4914 		}
4915 
4916 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4917 			/*
4918 			 * Can't scan the bus on an adapter that
4919 			 * cannot perform the initiator role.
4920 			 */
4921 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4922 			xpt_free_ccb(work_ccb);
4923 			xpt_done(request_ccb);
4924 			return;
4925 		}
4926 
4927 		/* Save some state for use while we probe for devices */
4928 		scan_info = (xpt_scan_bus_info *)
4929 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
4930 		scan_info->request_ccb = request_ccb;
4931 		scan_info->cpi = &work_ccb->cpi;
4932 
4933 		/* Cache on our stack so we can work asynchronously */
4934 		max_target = scan_info->cpi->max_target;
4935 		initiator_id = scan_info->cpi->initiator_id;
4936 
4937 		/*
4938 		 * Don't count the initiator if the
4939 		 * initiator is addressable.
4940 		 */
4941 		scan_info->pending_count = max_target + 1;
4942 		if (initiator_id <= max_target)
4943 			scan_info->pending_count--;
4944 
4945 		for (i = 0; i <= max_target; i++) {
4946 			cam_status status;
4947 		 	if (i == initiator_id)
4948 				continue;
4949 
4950 			status = xpt_create_path(&path, xpt_periph,
4951 						 request_ccb->ccb_h.path_id,
4952 						 i, 0);
4953 			if (status != CAM_REQ_CMP) {
4954 				printf("xpt_scan_bus: xpt_create_path failed"
4955 				       " with status %#x, bus scan halted\n",
4956 				       status);
4957 				break;
4958 			}
4959 			work_ccb = xpt_alloc_ccb();
4960 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4961 				      request_ccb->ccb_h.pinfo.priority);
4962 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4963 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4964 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4965 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4966 #if 0
4967 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4968 				request_ccb->ccb_h.path_id, i, 0);
4969 #endif
4970 			xpt_action(work_ccb);
4971 		}
4972 		break;
4973 	}
4974 	case XPT_SCAN_LUN:
4975 	{
4976 		xpt_scan_bus_info *scan_info;
4977 		path_id_t path_id;
4978 		target_id_t target_id;
4979 		lun_id_t lun_id;
4980 
4981 		/* Reuse the same CCB to query if a device was really found */
4982 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4983 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4984 			      request_ccb->ccb_h.pinfo.priority);
4985 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4986 
4987 		path_id = request_ccb->ccb_h.path_id;
4988 		target_id = request_ccb->ccb_h.target_id;
4989 		lun_id = request_ccb->ccb_h.target_lun;
4990 		xpt_action(request_ccb);
4991 
4992 #if 0
4993 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
4994 			path_id, target_id, lun_id);
4995 #endif
4996 
4997 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
4998 			struct cam_ed *device;
4999 			struct cam_et *target;
5000 			int s, phl;
5001 
5002 			/*
5003 			 * If we already probed lun 0 successfully, or
5004 			 * we have additional configured luns on this
5005 			 * target that might have "gone away", go onto
5006 			 * the next lun.
5007 			 */
5008 			target = request_ccb->ccb_h.path->target;
5009 			/*
5010 			 * We may touch devices that we don't
5011 			 * hold references too, so ensure they
5012 			 * don't disappear out from under us.
5013 			 * The target above is referenced by the
5014 			 * path in the request ccb.
5015 			 */
5016 			phl = 0;
5017 			s = splcam();
5018 			device = TAILQ_FIRST(&target->ed_entries);
5019 			if (device != NULL) {
5020 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
5021 				if (device->lun_id == 0)
5022 					device = TAILQ_NEXT(device, links);
5023 			}
5024 			splx(s);
5025 			if ((lun_id != 0) || (device != NULL)) {
5026 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5027 					lun_id++;
5028 			}
5029 		} else {
5030 			struct cam_ed *device;
5031 
5032 			device = request_ccb->ccb_h.path->device;
5033 
5034 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5035 				/* Try the next lun */
5036 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
5037 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
5038 					lun_id++;
5039 			}
5040 		}
5041 
5042 		xpt_free_path(request_ccb->ccb_h.path);
5043 
5044 		/* Check Bounds */
5045 		if ((lun_id == request_ccb->ccb_h.target_lun)
5046 		 || lun_id > scan_info->cpi->max_lun) {
5047 			/* We're done */
5048 
5049 			xpt_free_ccb(request_ccb);
5050 			scan_info->pending_count--;
5051 			if (scan_info->pending_count == 0) {
5052 				xpt_free_ccb((union ccb *)scan_info->cpi);
5053 				request_ccb = scan_info->request_ccb;
5054 				free(scan_info, M_TEMP);
5055 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5056 				xpt_done(request_ccb);
5057 			}
5058 		} else {
5059 			/* Try the next device */
5060 			struct cam_path *path;
5061 			cam_status status;
5062 
5063 			path = request_ccb->ccb_h.path;
5064 			status = xpt_create_path(&path, xpt_periph,
5065 						 path_id, target_id, lun_id);
5066 			if (status != CAM_REQ_CMP) {
5067 				printf("xpt_scan_bus: xpt_create_path failed "
5068 				       "with status %#x, halting LUN scan\n",
5069 			 	       status);
5070 				xpt_free_ccb(request_ccb);
5071 				scan_info->pending_count--;
5072 				if (scan_info->pending_count == 0) {
5073 					xpt_free_ccb(
5074 						(union ccb *)scan_info->cpi);
5075 					request_ccb = scan_info->request_ccb;
5076 					free(scan_info, M_TEMP);
5077 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5078 					xpt_done(request_ccb);
5079 					break;
5080 				}
5081 			}
5082 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5083 				      request_ccb->ccb_h.pinfo.priority);
5084 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5085 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5086 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5087 			request_ccb->crcn.flags =
5088 				scan_info->request_ccb->crcn.flags;
5089 #if 0
5090 			xpt_print_path(path);
5091 			printf("xpt_scan bus probing\n");
5092 #endif
5093 			xpt_action(request_ccb);
5094 		}
5095 		break;
5096 	}
5097 	default:
5098 		break;
5099 	}
5100 }
5101 
5102 typedef enum {
5103 	PROBE_TUR,
5104 	PROBE_INQUIRY,
5105 	PROBE_FULL_INQUIRY,
5106 	PROBE_MODE_SENSE,
5107 	PROBE_SERIAL_NUM,
5108 	PROBE_TUR_FOR_NEGOTIATION
5109 } probe_action;
5110 
5111 typedef enum {
5112 	PROBE_INQUIRY_CKSUM	= 0x01,
5113 	PROBE_SERIAL_CKSUM	= 0x02,
5114 	PROBE_NO_ANNOUNCE	= 0x04
5115 } probe_flags;
5116 
5117 typedef struct {
5118 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5119 	probe_action	action;
5120 	union ccb	saved_ccb;
5121 	probe_flags	flags;
5122 	MD5_CTX		context;
5123 	u_int8_t	digest[16];
5124 } probe_softc;
5125 
5126 static void
5127 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5128 	     cam_flags flags, union ccb *request_ccb)
5129 {
5130 	struct ccb_pathinq cpi;
5131 	cam_status status;
5132 	struct cam_path *new_path;
5133 	struct cam_periph *old_periph;
5134 	int s;
5135 
5136 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5137 		  ("xpt_scan_lun\n"));
5138 
5139 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5140 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5141 	xpt_action((union ccb *)&cpi);
5142 
5143 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5144 		if (request_ccb != NULL) {
5145 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5146 			xpt_done(request_ccb);
5147 		}
5148 		return;
5149 	}
5150 
5151 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5152 		/*
5153 		 * Can't scan the bus on an adapter that
5154 		 * cannot perform the initiator role.
5155 		 */
5156 		if (request_ccb != NULL) {
5157 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5158 			xpt_done(request_ccb);
5159 		}
5160 		return;
5161 	}
5162 
5163 	if (request_ccb == NULL) {
5164 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5165 		if (request_ccb == NULL) {
5166 			xpt_print_path(path);
5167 			printf("xpt_scan_lun: can't allocate CCB, can't "
5168 			       "continue\n");
5169 			return;
5170 		}
5171 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5172 		if (new_path == NULL) {
5173 			xpt_print_path(path);
5174 			printf("xpt_scan_lun: can't allocate path, can't "
5175 			       "continue\n");
5176 			free(request_ccb, M_TEMP);
5177 			return;
5178 		}
5179 		status = xpt_compile_path(new_path, xpt_periph,
5180 					  path->bus->path_id,
5181 					  path->target->target_id,
5182 					  path->device->lun_id);
5183 
5184 		if (status != CAM_REQ_CMP) {
5185 			xpt_print_path(path);
5186 			printf("xpt_scan_lun: can't compile path, can't "
5187 			       "continue\n");
5188 			free(request_ccb, M_TEMP);
5189 			free(new_path, M_TEMP);
5190 			return;
5191 		}
5192 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5193 		request_ccb->ccb_h.cbfcnp = xptscandone;
5194 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5195 		request_ccb->crcn.flags = flags;
5196 	}
5197 
5198 	s = splsoftcam();
5199 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5200 		probe_softc *softc;
5201 
5202 		softc = (probe_softc *)old_periph->softc;
5203 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5204 				  periph_links.tqe);
5205 	} else {
5206 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5207 					  probestart, "probe",
5208 					  CAM_PERIPH_BIO,
5209 					  request_ccb->ccb_h.path, NULL, 0,
5210 					  request_ccb);
5211 
5212 		if (status != CAM_REQ_CMP) {
5213 			xpt_print_path(path);
5214 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5215 			       "error, can't continue probe\n");
5216 			request_ccb->ccb_h.status = status;
5217 			xpt_done(request_ccb);
5218 		}
5219 	}
5220 	splx(s);
5221 }
5222 
5223 static void
5224 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5225 {
5226 	xpt_release_path(done_ccb->ccb_h.path);
5227 	free(done_ccb->ccb_h.path, M_TEMP);
5228 	free(done_ccb, M_TEMP);
5229 }
5230 
5231 static cam_status
5232 proberegister(struct cam_periph *periph, void *arg)
5233 {
5234 	union ccb *request_ccb;	/* CCB representing the probe request */
5235 	probe_softc *softc;
5236 
5237 	request_ccb = (union ccb *)arg;
5238 	if (periph == NULL) {
5239 		printf("proberegister: periph was NULL!!\n");
5240 		return(CAM_REQ_CMP_ERR);
5241 	}
5242 
5243 	if (request_ccb == NULL) {
5244 		printf("proberegister: no probe CCB, "
5245 		       "can't register device\n");
5246 		return(CAM_REQ_CMP_ERR);
5247 	}
5248 
5249 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5250 
5251 	if (softc == NULL) {
5252 		printf("proberegister: Unable to probe new device. "
5253 		       "Unable to allocate softc\n");
5254 		return(CAM_REQ_CMP_ERR);
5255 	}
5256 	TAILQ_INIT(&softc->request_ccbs);
5257 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5258 			  periph_links.tqe);
5259 	softc->flags = 0;
5260 	periph->softc = softc;
5261 	cam_periph_acquire(periph);
5262 	/*
5263 	 * Ensure we've waited at least a bus settle
5264 	 * delay before attempting to probe the device.
5265 	 * For HBAs that don't do bus resets, this won't make a difference.
5266 	 */
5267 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5268 				      SCSI_DELAY);
5269 	probeschedule(periph);
5270 	return(CAM_REQ_CMP);
5271 }
5272 
5273 static void
5274 probeschedule(struct cam_periph *periph)
5275 {
5276 	struct ccb_pathinq cpi;
5277 	union ccb *ccb;
5278 	probe_softc *softc;
5279 
5280 	softc = (probe_softc *)periph->softc;
5281 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5282 
5283 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5284 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5285 	xpt_action((union ccb *)&cpi);
5286 
5287 	/*
5288 	 * If a device has gone away and another device, or the same one,
5289 	 * is back in the same place, it should have a unit attention
5290 	 * condition pending.  It will not report the unit attention in
5291 	 * response to an inquiry, which may leave invalid transfer
5292 	 * negotiations in effect.  The TUR will reveal the unit attention
5293 	 * condition.  Only send the TUR for lun 0, since some devices
5294 	 * will get confused by commands other than inquiry to non-existent
5295 	 * luns.  If you think a device has gone away start your scan from
5296 	 * lun 0.  This will insure that any bogus transfer settings are
5297 	 * invalidated.
5298 	 *
5299 	 * If we haven't seen the device before and the controller supports
5300 	 * some kind of transfer negotiation, negotiate with the first
5301 	 * sent command if no bus reset was performed at startup.  This
5302 	 * ensures that the device is not confused by transfer negotiation
5303 	 * settings left over by loader or BIOS action.
5304 	 */
5305 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5306 	 && (ccb->ccb_h.target_lun == 0)) {
5307 		softc->action = PROBE_TUR;
5308 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5309 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5310 		proberequestdefaultnegotiation(periph);
5311 		softc->action = PROBE_INQUIRY;
5312 	} else {
5313 		softc->action = PROBE_INQUIRY;
5314 	}
5315 
5316 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5317 		softc->flags |= PROBE_NO_ANNOUNCE;
5318 	else
5319 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5320 
5321 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5322 }
5323 
5324 static void
5325 probestart(struct cam_periph *periph, union ccb *start_ccb)
5326 {
5327 	/* Probe the device that our peripheral driver points to */
5328 	struct ccb_scsiio *csio;
5329 	probe_softc *softc;
5330 
5331 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5332 
5333 	softc = (probe_softc *)periph->softc;
5334 	csio = &start_ccb->csio;
5335 
5336 	switch (softc->action) {
5337 	case PROBE_TUR:
5338 	case PROBE_TUR_FOR_NEGOTIATION:
5339 	{
5340 		scsi_test_unit_ready(csio,
5341 				     /*retries*/4,
5342 				     probedone,
5343 				     MSG_SIMPLE_Q_TAG,
5344 				     SSD_FULL_SIZE,
5345 				     /*timeout*/60000);
5346 		break;
5347 	}
5348 	case PROBE_INQUIRY:
5349 	case PROBE_FULL_INQUIRY:
5350 	{
5351 		u_int inquiry_len;
5352 		struct scsi_inquiry_data *inq_buf;
5353 
5354 		inq_buf = &periph->path->device->inq_data;
5355 		/*
5356 		 * If the device is currently configured, we calculate an
5357 		 * MD5 checksum of the inquiry data, and if the serial number
5358 		 * length is greater than 0, add the serial number data
5359 		 * into the checksum as well.  Once the inquiry and the
5360 		 * serial number check finish, we attempt to figure out
5361 		 * whether we still have the same device.
5362 		 */
5363 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5364 
5365 			MD5Init(&softc->context);
5366 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5367 				  sizeof(struct scsi_inquiry_data));
5368 			softc->flags |= PROBE_INQUIRY_CKSUM;
5369 			if (periph->path->device->serial_num_len > 0) {
5370 				MD5Update(&softc->context,
5371 					  periph->path->device->serial_num,
5372 					  periph->path->device->serial_num_len);
5373 				softc->flags |= PROBE_SERIAL_CKSUM;
5374 			}
5375 			MD5Final(softc->digest, &softc->context);
5376 		}
5377 
5378 		if (softc->action == PROBE_INQUIRY)
5379 			inquiry_len = SHORT_INQUIRY_LENGTH;
5380 		else
5381 			inquiry_len = inq_buf->additional_length + 5;
5382 
5383 		scsi_inquiry(csio,
5384 			     /*retries*/4,
5385 			     probedone,
5386 			     MSG_SIMPLE_Q_TAG,
5387 			     (u_int8_t *)inq_buf,
5388 			     inquiry_len,
5389 			     /*evpd*/FALSE,
5390 			     /*page_code*/0,
5391 			     SSD_MIN_SIZE,
5392 			     /*timeout*/60 * 1000);
5393 		break;
5394 	}
5395 	case PROBE_MODE_SENSE:
5396 	{
5397 		void  *mode_buf;
5398 		int    mode_buf_len;
5399 
5400 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5401 			     + sizeof(struct scsi_mode_blk_desc)
5402 			     + sizeof(struct scsi_control_page);
5403 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5404 		if (mode_buf != NULL) {
5405 	                scsi_mode_sense(csio,
5406 					/*retries*/4,
5407 					probedone,
5408 					MSG_SIMPLE_Q_TAG,
5409 					/*dbd*/FALSE,
5410 					SMS_PAGE_CTRL_CURRENT,
5411 					SMS_CONTROL_MODE_PAGE,
5412 					mode_buf,
5413 					mode_buf_len,
5414 					SSD_FULL_SIZE,
5415 					/*timeout*/60000);
5416 			break;
5417 		}
5418 		xpt_print_path(periph->path);
5419 		printf("Unable to mode sense control page - malloc failure\n");
5420 		softc->action = PROBE_SERIAL_NUM;
5421 		/* FALLTHROUGH */
5422 	}
5423 	case PROBE_SERIAL_NUM:
5424 	{
5425 		struct scsi_vpd_unit_serial_number *serial_buf;
5426 		struct cam_ed* device;
5427 
5428 		serial_buf = NULL;
5429 		device = periph->path->device;
5430 		device->serial_num = NULL;
5431 		device->serial_num_len = 0;
5432 
5433 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5434 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5435 				malloc(sizeof(*serial_buf), M_TEMP,
5436 					M_NOWAIT | M_ZERO);
5437 
5438 		if (serial_buf != NULL) {
5439 			scsi_inquiry(csio,
5440 				     /*retries*/4,
5441 				     probedone,
5442 				     MSG_SIMPLE_Q_TAG,
5443 				     (u_int8_t *)serial_buf,
5444 				     sizeof(*serial_buf),
5445 				     /*evpd*/TRUE,
5446 				     SVPD_UNIT_SERIAL_NUMBER,
5447 				     SSD_MIN_SIZE,
5448 				     /*timeout*/60 * 1000);
5449 			break;
5450 		}
5451 		/*
5452 		 * We'll have to do without, let our probedone
5453 		 * routine finish up for us.
5454 		 */
5455 		start_ccb->csio.data_ptr = NULL;
5456 		probedone(periph, start_ccb);
5457 		return;
5458 	}
5459 	}
5460 	xpt_action(start_ccb);
5461 }
5462 
5463 static void
5464 proberequestdefaultnegotiation(struct cam_periph *periph)
5465 {
5466 	struct ccb_trans_settings cts;
5467 
5468 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5469 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5470 	cts.flags = CCB_TRANS_USER_SETTINGS;
5471 	xpt_action((union ccb *)&cts);
5472 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5473 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5474 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5475 	xpt_action((union ccb *)&cts);
5476 }
5477 
5478 static void
5479 probedone(struct cam_periph *periph, union ccb *done_ccb)
5480 {
5481 	probe_softc *softc;
5482 	struct cam_path *path;
5483 	u_int32_t  priority;
5484 
5485 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5486 
5487 	softc = (probe_softc *)periph->softc;
5488 	path = done_ccb->ccb_h.path;
5489 	priority = done_ccb->ccb_h.pinfo.priority;
5490 
5491 	switch (softc->action) {
5492 	case PROBE_TUR:
5493 	{
5494 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5495 
5496 			if (cam_periph_error(done_ccb, 0,
5497 					     SF_NO_PRINT, NULL) == ERESTART)
5498 				return;
5499 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5500 				/* Don't wedge the queue */
5501 				xpt_release_devq(done_ccb->ccb_h.path,
5502 						 /*count*/1,
5503 						 /*run_queue*/TRUE);
5504 		}
5505 		softc->action = PROBE_INQUIRY;
5506 		xpt_release_ccb(done_ccb);
5507 		xpt_schedule(periph, priority);
5508 		return;
5509 	}
5510 	case PROBE_INQUIRY:
5511 	case PROBE_FULL_INQUIRY:
5512 	{
5513 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5514 			struct scsi_inquiry_data *inq_buf;
5515 			u_int8_t periph_qual;
5516 
5517 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5518 			inq_buf = &path->device->inq_data;
5519 
5520 			periph_qual = SID_QUAL(inq_buf);
5521 
5522 			switch(periph_qual) {
5523 			case SID_QUAL_LU_CONNECTED:
5524 			{
5525 				u_int8_t alen;
5526 
5527 				/*
5528 				 * We conservatively request only
5529 				 * SHORT_INQUIRY_LEN bytes of inquiry
5530 				 * information during our first try
5531 				 * at sending an INQUIRY. If the device
5532 				 * has more information to give,
5533 				 * perform a second request specifying
5534 				 * the amount of information the device
5535 				 * is willing to give.
5536 				 */
5537 				alen = inq_buf->additional_length;
5538 				if (softc->action == PROBE_INQUIRY
5539 				 && alen > (SHORT_INQUIRY_LENGTH - 5)) {
5540 					softc->action = PROBE_FULL_INQUIRY;
5541 					xpt_release_ccb(done_ccb);
5542 					xpt_schedule(periph, priority);
5543 					return;
5544 				}
5545 
5546 				xpt_find_quirk(path->device);
5547 
5548 				if ((inq_buf->flags & SID_CmdQue) != 0)
5549 					softc->action = PROBE_MODE_SENSE;
5550 				else
5551 					softc->action = PROBE_SERIAL_NUM;
5552 
5553 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5554 
5555 				xpt_release_ccb(done_ccb);
5556 				xpt_schedule(periph, priority);
5557 				return;
5558 			}
5559 			default:
5560 				break;
5561 			}
5562 		} else if (cam_periph_error(done_ccb, 0,
5563 					    done_ccb->ccb_h.target_lun > 0
5564 					    ? SF_RETRY_UA|SF_QUIET_IR
5565 					    : SF_RETRY_UA,
5566 					    &softc->saved_ccb) == ERESTART) {
5567 			return;
5568 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5569 			/* Don't wedge the queue */
5570 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5571 					 /*run_queue*/TRUE);
5572 		}
5573 		/*
5574 		 * If we get to this point, we got an error status back
5575 		 * from the inquiry and the error status doesn't require
5576 		 * automatically retrying the command.  Therefore, the
5577 		 * inquiry failed.  If we had inquiry information before
5578 		 * for this device, but this latest inquiry command failed,
5579 		 * the device has probably gone away.  If this device isn't
5580 		 * already marked unconfigured, notify the peripheral
5581 		 * drivers that this device is no more.
5582 		 */
5583 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5584 			/* Send the async notification. */
5585 			xpt_async(AC_LOST_DEVICE, path, NULL);
5586 
5587 		xpt_release_ccb(done_ccb);
5588 		break;
5589 	}
5590 	case PROBE_MODE_SENSE:
5591 	{
5592 		struct ccb_scsiio *csio;
5593 		struct scsi_mode_header_6 *mode_hdr;
5594 
5595 		csio = &done_ccb->csio;
5596 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5597 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5598 			struct scsi_control_page *page;
5599 			u_int8_t *offset;
5600 
5601 			offset = ((u_int8_t *)&mode_hdr[1])
5602 			    + mode_hdr->blk_desc_len;
5603 			page = (struct scsi_control_page *)offset;
5604 			path->device->queue_flags = page->queue_flags;
5605 		} else if (cam_periph_error(done_ccb, 0,
5606 					    SF_RETRY_UA|SF_NO_PRINT,
5607 					    &softc->saved_ccb) == ERESTART) {
5608 			return;
5609 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5610 			/* Don't wedge the queue */
5611 			xpt_release_devq(done_ccb->ccb_h.path,
5612 					 /*count*/1, /*run_queue*/TRUE);
5613 		}
5614 		xpt_release_ccb(done_ccb);
5615 		free(mode_hdr, M_TEMP);
5616 		softc->action = PROBE_SERIAL_NUM;
5617 		xpt_schedule(periph, priority);
5618 		return;
5619 	}
5620 	case PROBE_SERIAL_NUM:
5621 	{
5622 		struct ccb_scsiio *csio;
5623 		struct scsi_vpd_unit_serial_number *serial_buf;
5624 		u_int32_t  priority;
5625 		int changed;
5626 		int have_serialnum;
5627 
5628 		changed = 1;
5629 		have_serialnum = 0;
5630 		csio = &done_ccb->csio;
5631 		priority = done_ccb->ccb_h.pinfo.priority;
5632 		serial_buf =
5633 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5634 
5635 		/* Clean up from previous instance of this device */
5636 		if (path->device->serial_num != NULL) {
5637 			free(path->device->serial_num, M_DEVBUF);
5638 			path->device->serial_num = NULL;
5639 			path->device->serial_num_len = 0;
5640 		}
5641 
5642 		if (serial_buf == NULL) {
5643 			/*
5644 			 * Don't process the command as it was never sent
5645 			 */
5646 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5647 			&& (serial_buf->length > 0)) {
5648 
5649 			have_serialnum = 1;
5650 			path->device->serial_num =
5651 				(u_int8_t *)malloc((serial_buf->length + 1),
5652 						   M_DEVBUF, M_NOWAIT);
5653 			if (path->device->serial_num != NULL) {
5654 				bcopy(serial_buf->serial_num,
5655 				      path->device->serial_num,
5656 				      serial_buf->length);
5657 				path->device->serial_num_len =
5658 				    serial_buf->length;
5659 				path->device->serial_num[serial_buf->length]
5660 				    = '\0';
5661 			}
5662 		} else if (cam_periph_error(done_ccb, 0,
5663 					    SF_RETRY_UA|SF_NO_PRINT,
5664 					    &softc->saved_ccb) == ERESTART) {
5665 			return;
5666 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5667 			/* Don't wedge the queue */
5668 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5669 					 /*run_queue*/TRUE);
5670 		}
5671 
5672 		/*
5673 		 * Let's see if we have seen this device before.
5674 		 */
5675 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5676 			MD5_CTX context;
5677 			u_int8_t digest[16];
5678 
5679 			MD5Init(&context);
5680 
5681 			MD5Update(&context,
5682 				  (unsigned char *)&path->device->inq_data,
5683 				  sizeof(struct scsi_inquiry_data));
5684 
5685 			if (have_serialnum)
5686 				MD5Update(&context, serial_buf->serial_num,
5687 					  serial_buf->length);
5688 
5689 			MD5Final(digest, &context);
5690 			if (bcmp(softc->digest, digest, 16) == 0)
5691 				changed = 0;
5692 
5693 			/*
5694 			 * XXX Do we need to do a TUR in order to ensure
5695 			 *     that the device really hasn't changed???
5696 			 */
5697 			if ((changed != 0)
5698 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5699 				xpt_async(AC_LOST_DEVICE, path, NULL);
5700 		}
5701 		if (serial_buf != NULL)
5702 			free(serial_buf, M_TEMP);
5703 
5704 		if (changed != 0) {
5705 			/*
5706 			 * Now that we have all the necessary
5707 			 * information to safely perform transfer
5708 			 * negotiations... Controllers don't perform
5709 			 * any negotiation or tagged queuing until
5710 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5711 			 * received.  So, on a new device, just retreive
5712 			 * the user settings, and set them as the current
5713 			 * settings to set the device up.
5714 			 */
5715 			proberequestdefaultnegotiation(periph);
5716 			xpt_release_ccb(done_ccb);
5717 
5718 			/*
5719 			 * Perform a TUR to allow the controller to
5720 			 * perform any necessary transfer negotiation.
5721 			 */
5722 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5723 			xpt_schedule(periph, priority);
5724 			return;
5725 		}
5726 		xpt_release_ccb(done_ccb);
5727 		break;
5728 	}
5729 	case PROBE_TUR_FOR_NEGOTIATION:
5730 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5731 			/* Don't wedge the queue */
5732 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5733 					 /*run_queue*/TRUE);
5734 		}
5735 
5736 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5737 
5738 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5739 			/* Inform the XPT that a new device has been found */
5740 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5741 			xpt_action(done_ccb);
5742 
5743 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5744 		}
5745 		xpt_release_ccb(done_ccb);
5746 		break;
5747 	}
5748 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5749 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5750 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5751 	xpt_done(done_ccb);
5752 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5753 		cam_periph_invalidate(periph);
5754 		cam_periph_release(periph);
5755 	} else {
5756 		probeschedule(periph);
5757 	}
5758 }
5759 
5760 static void
5761 probecleanup(struct cam_periph *periph)
5762 {
5763 	free(periph->softc, M_TEMP);
5764 }
5765 
5766 static void
5767 xpt_find_quirk(struct cam_ed *device)
5768 {
5769 	caddr_t	match;
5770 
5771 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5772 			       (caddr_t)xpt_quirk_table,
5773 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5774 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5775 
5776 	if (match == NULL)
5777 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5778 
5779 	device->quirk = (struct xpt_quirk_entry *)match;
5780 }
5781 
5782 static void
5783 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5784 			  int async_update)
5785 {
5786 	struct	cam_sim *sim;
5787 	int	qfrozen;
5788 
5789 	sim = cts->ccb_h.path->bus->sim;
5790 	if (async_update == FALSE) {
5791 		struct	scsi_inquiry_data *inq_data;
5792 		struct	ccb_pathinq cpi;
5793 		struct	ccb_trans_settings cur_cts;
5794 
5795 		if (device == NULL) {
5796 			cts->ccb_h.status = CAM_PATH_INVALID;
5797 			xpt_done((union ccb *)cts);
5798 			return;
5799 		}
5800 
5801 		/*
5802 		 * Perform sanity checking against what the
5803 		 * controller and device can do.
5804 		 */
5805 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5806 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5807 		xpt_action((union ccb *)&cpi);
5808 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5809 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5810 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5811 		xpt_action((union ccb *)&cur_cts);
5812 		inq_data = &device->inq_data;
5813 
5814 		/* Fill in any gaps in what the user gave us */
5815 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5816 			cts->sync_period = cur_cts.sync_period;
5817 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5818 			cts->sync_offset = cur_cts.sync_offset;
5819 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5820 			cts->bus_width = cur_cts.bus_width;
5821 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5822 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5823 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5824 		}
5825 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5826 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5827 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5828 		}
5829 
5830 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5831 		  && (inq_data->flags & SID_Sync) == 0)
5832 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
5833 		 || (cts->sync_offset == 0)
5834 		 || (cts->sync_period == 0)) {
5835 			/* Force async */
5836 			cts->sync_period = 0;
5837 			cts->sync_offset = 0;
5838 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) {
5839 
5840 			if ((inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
5841 			 && cts->sync_period <= 0x9) {
5842 				/*
5843 				 * Don't allow DT transmission rates if the
5844 				 * device does not support it.
5845 				 */
5846 				cts->sync_period = 0xa;
5847 			}
5848 			if ((inq_data->spi3data & SID_SPI_IUS) == 0
5849 			 && cts->sync_period <= 0x8) {
5850 				/*
5851 				 * Don't allow PACE transmission rates
5852 				 * if the device does support packetized
5853 				 * transfers.
5854 				 */
5855 				cts->sync_period = 0x9;
5856 			}
5857 		}
5858 
5859 		switch (cts->bus_width) {
5860 		case MSG_EXT_WDTR_BUS_32_BIT:
5861 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5862 			  || (inq_data->flags & SID_WBus32) != 0)
5863 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5864 				break;
5865 			/* Fall Through to 16-bit */
5866 		case MSG_EXT_WDTR_BUS_16_BIT:
5867 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5868 			  || (inq_data->flags & SID_WBus16) != 0)
5869 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5870 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5871 				break;
5872 			}
5873 			/* Fall Through to 8-bit */
5874 		default: /* New bus width?? */
5875 		case MSG_EXT_WDTR_BUS_8_BIT:
5876 			/* All targets can do this */
5877 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5878 			break;
5879 		}
5880 
5881 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5882 			/*
5883 			 * Can't tag queue without disconnection.
5884 			 */
5885 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5886 			cts->valid |= CCB_TRANS_TQ_VALID;
5887 		}
5888 
5889 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5890 		 || (inq_data->flags & SID_CmdQue) == 0
5891 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5892 		 || (device->quirk->mintags == 0)) {
5893 			/*
5894 			 * Can't tag on hardware that doesn't support,
5895 			 * doesn't have it enabled, or has broken tag support.
5896 			 */
5897 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5898 		}
5899 	}
5900 
5901 	qfrozen = FALSE;
5902 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
5903 		int device_tagenb;
5904 
5905 		/*
5906 		 * If we are transitioning from tags to no-tags or
5907 		 * vice-versa, we need to carefully freeze and restart
5908 		 * the queue so that we don't overlap tagged and non-tagged
5909 		 * commands.  We also temporarily stop tags if there is
5910 		 * a change in transfer negotiation settings to allow
5911 		 * "tag-less" negotiation.
5912 		 */
5913 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5914 		 || (device->inq_flags & SID_CmdQue) != 0)
5915 			device_tagenb = TRUE;
5916 		else
5917 			device_tagenb = FALSE;
5918 
5919 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5920 		  && device_tagenb == FALSE)
5921 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5922 		  && device_tagenb == TRUE)) {
5923 
5924 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5925 				/*
5926 				 * Delay change to use tags until after a
5927 				 * few commands have gone to this device so
5928 				 * the controller has time to perform transfer
5929 				 * negotiations without tagged messages getting
5930 				 * in the way.
5931 				 */
5932 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5933 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5934 			} else {
5935 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5936 				qfrozen = TRUE;
5937 		  		device->inq_flags &= ~SID_CmdQue;
5938 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5939 						    sim->max_dev_openings);
5940 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5941 				device->tag_delay_count = 0;
5942 			}
5943 		}
5944 	}
5945 
5946 	if (async_update == FALSE) {
5947 		/*
5948 		 * If we are currently performing tagged transactions to
5949 		 * this device and want to change its negotiation parameters,
5950 		 * go non-tagged for a bit to give the controller a chance to
5951 		 * negotiate unhampered by tag messages.
5952 		 */
5953 		if ((device->inq_flags & SID_CmdQue) != 0
5954 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5955 				   CCB_TRANS_SYNC_OFFSET_VALID|
5956 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5957 			xpt_toggle_tags(cts->ccb_h.path);
5958 
5959 		(*(sim->sim_action))(sim, (union ccb *)cts);
5960 	}
5961 
5962 	if (qfrozen) {
5963 		struct ccb_relsim crs;
5964 
5965 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5966 			      /*priority*/1);
5967 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5968 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5969 		crs.openings
5970 		    = crs.release_timeout
5971 		    = crs.qfrozen_cnt
5972 		    = 0;
5973 		xpt_action((union ccb *)&crs);
5974 	}
5975 }
5976 
5977 static void
5978 xpt_toggle_tags(struct cam_path *path)
5979 {
5980 	struct cam_ed *dev;
5981 
5982 	/*
5983 	 * Give controllers a chance to renegotiate
5984 	 * before starting tag operations.  We
5985 	 * "toggle" tagged queuing off then on
5986 	 * which causes the tag enable command delay
5987 	 * counter to come into effect.
5988 	 */
5989 	dev = path->device;
5990 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5991 	 || ((dev->inq_flags & SID_CmdQue) != 0
5992  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5993 		struct ccb_trans_settings cts;
5994 
5995 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5996 		cts.flags = 0;
5997 		cts.valid = CCB_TRANS_TQ_VALID;
5998 		xpt_set_transfer_settings(&cts, path->device,
5999 					  /*async_update*/TRUE);
6000 		cts.flags = CCB_TRANS_TAG_ENB;
6001 		xpt_set_transfer_settings(&cts, path->device,
6002 					  /*async_update*/TRUE);
6003 	}
6004 }
6005 
6006 static void
6007 xpt_start_tags(struct cam_path *path)
6008 {
6009 	struct ccb_relsim crs;
6010 	struct cam_ed *device;
6011 	struct cam_sim *sim;
6012 	int    newopenings;
6013 
6014 	device = path->device;
6015 	sim = path->bus->sim;
6016 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6017 	xpt_freeze_devq(path, /*count*/1);
6018 	device->inq_flags |= SID_CmdQue;
6019 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
6020 	xpt_dev_ccbq_resize(path, newopenings);
6021 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6022 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6023 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6024 	crs.openings
6025 	    = crs.release_timeout
6026 	    = crs.qfrozen_cnt
6027 	    = 0;
6028 	xpt_action((union ccb *)&crs);
6029 }
6030 
6031 static int busses_to_config;
6032 static int busses_to_reset;
6033 
6034 static int
6035 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6036 {
6037 	if (bus->path_id != CAM_XPT_PATH_ID) {
6038 		struct cam_path path;
6039 		struct ccb_pathinq cpi;
6040 		int can_negotiate;
6041 
6042 		busses_to_config++;
6043 		xpt_compile_path(&path, NULL, bus->path_id,
6044 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6045 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6046 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6047 		xpt_action((union ccb *)&cpi);
6048 		can_negotiate = cpi.hba_inquiry;
6049 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6050 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6051 		 && can_negotiate)
6052 			busses_to_reset++;
6053 		xpt_release_path(&path);
6054 	}
6055 
6056 	return(1);
6057 }
6058 
6059 static int
6060 xptconfigfunc(struct cam_eb *bus, void *arg)
6061 {
6062 	struct	cam_path *path;
6063 	union	ccb *work_ccb;
6064 
6065 	if (bus->path_id != CAM_XPT_PATH_ID) {
6066 		cam_status status;
6067 		int can_negotiate;
6068 
6069 		work_ccb = xpt_alloc_ccb();
6070 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6071 					      CAM_TARGET_WILDCARD,
6072 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6073 			printf("xptconfigfunc: xpt_create_path failed with "
6074 			       "status %#x for bus %d\n", status, bus->path_id);
6075 			printf("xptconfigfunc: halting bus configuration\n");
6076 			xpt_free_ccb(work_ccb);
6077 			busses_to_config--;
6078 			xpt_finishconfig(xpt_periph, NULL);
6079 			return(0);
6080 		}
6081 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6082 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6083 		xpt_action(work_ccb);
6084 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6085 			printf("xptconfigfunc: CPI failed on bus %d "
6086 			       "with status %d\n", bus->path_id,
6087 			       work_ccb->ccb_h.status);
6088 			xpt_finishconfig(xpt_periph, work_ccb);
6089 			return(1);
6090 		}
6091 
6092 		can_negotiate = work_ccb->cpi.hba_inquiry;
6093 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6094 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6095 		 && (can_negotiate != 0)) {
6096 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6097 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6098 			work_ccb->ccb_h.cbfcnp = NULL;
6099 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6100 				  ("Resetting Bus\n"));
6101 			xpt_action(work_ccb);
6102 			xpt_finishconfig(xpt_periph, work_ccb);
6103 		} else {
6104 			/* Act as though we performed a successful BUS RESET */
6105 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6106 			xpt_finishconfig(xpt_periph, work_ccb);
6107 		}
6108 	}
6109 
6110 	return(1);
6111 }
6112 
6113 static void
6114 xpt_config(void *arg)
6115 {
6116 	/* Now that interrupts are enabled, go find our devices */
6117 
6118 #ifdef CAMDEBUG
6119 	/* Setup debugging flags and path */
6120 #ifdef CAM_DEBUG_FLAGS
6121 	cam_dflags = CAM_DEBUG_FLAGS;
6122 #else /* !CAM_DEBUG_FLAGS */
6123 	cam_dflags = CAM_DEBUG_NONE;
6124 #endif /* CAM_DEBUG_FLAGS */
6125 #ifdef CAM_DEBUG_BUS
6126 	if (cam_dflags != CAM_DEBUG_NONE) {
6127 		if (xpt_create_path(&cam_dpath, xpt_periph,
6128 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6129 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6130 			printf("xpt_config: xpt_create_path() failed for debug"
6131 			       " target %d:%d:%d, debugging disabled\n",
6132 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6133 			cam_dflags = CAM_DEBUG_NONE;
6134 		}
6135 	} else
6136 		cam_dpath = NULL;
6137 #else /* !CAM_DEBUG_BUS */
6138 	cam_dpath = NULL;
6139 #endif /* CAM_DEBUG_BUS */
6140 #endif /* CAMDEBUG */
6141 
6142 	/*
6143 	 * Scan all installed busses.
6144 	 */
6145 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6146 
6147 	if (busses_to_config == 0) {
6148 		/* Call manually because we don't have any busses */
6149 		xpt_finishconfig(xpt_periph, NULL);
6150 	} else  {
6151 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6152 			printf("Waiting %d seconds for SCSI "
6153 			       "devices to settle\n", SCSI_DELAY/1000);
6154 		}
6155 		xpt_for_all_busses(xptconfigfunc, NULL);
6156 	}
6157 }
6158 
6159 /*
6160  * If the given device only has one peripheral attached to it, and if that
6161  * peripheral is the passthrough driver, announce it.  This insures that the
6162  * user sees some sort of announcement for every peripheral in their system.
6163  */
6164 static int
6165 xptpassannouncefunc(struct cam_ed *device, void *arg)
6166 {
6167 	struct cam_periph *periph;
6168 	int i;
6169 
6170 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6171 	     periph = SLIST_NEXT(periph, periph_links), i++);
6172 
6173 	periph = SLIST_FIRST(&device->periphs);
6174 	if ((i == 1)
6175 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6176 		xpt_announce_periph(periph, NULL);
6177 
6178 	return(1);
6179 }
6180 
6181 static void
6182 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6183 {
6184 	struct	periph_driver **p_drv;
6185 	int	i;
6186 
6187 	if (done_ccb != NULL) {
6188 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6189 			  ("xpt_finishconfig\n"));
6190 		switch(done_ccb->ccb_h.func_code) {
6191 		case XPT_RESET_BUS:
6192 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6193 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6194 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6195 				xpt_action(done_ccb);
6196 				return;
6197 			}
6198 			/* FALLTHROUGH */
6199 		case XPT_SCAN_BUS:
6200 		default:
6201 			xpt_free_path(done_ccb->ccb_h.path);
6202 			busses_to_config--;
6203 			break;
6204 		}
6205 	}
6206 
6207 	if (busses_to_config == 0) {
6208 		/* Register all the peripheral drivers */
6209 		/* XXX This will have to change when we have loadable modules */
6210 		p_drv = (struct periph_driver **)periphdriver_set.ls_items;
6211 		for (i = 0; p_drv[i] != NULL; i++) {
6212 			(*p_drv[i]->init)();
6213 		}
6214 
6215 		/*
6216 		 * Check for devices with no "standard" peripheral driver
6217 		 * attached.  For any devices like that, announce the
6218 		 * passthrough driver so the user will see something.
6219 		 */
6220 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6221 
6222 		/* Release our hook so that the boot can continue. */
6223 		config_intrhook_disestablish(xpt_config_hook);
6224 		free(xpt_config_hook, M_TEMP);
6225 		xpt_config_hook = NULL;
6226 	}
6227 	if (done_ccb != NULL)
6228 		xpt_free_ccb(done_ccb);
6229 }
6230 
6231 static void
6232 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6233 {
6234 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6235 
6236 	switch (work_ccb->ccb_h.func_code) {
6237 	/* Common cases first */
6238 	case XPT_PATH_INQ:		/* Path routing inquiry */
6239 	{
6240 		struct ccb_pathinq *cpi;
6241 
6242 		cpi = &work_ccb->cpi;
6243 		cpi->version_num = 1; /* XXX??? */
6244 		cpi->hba_inquiry = 0;
6245 		cpi->target_sprt = 0;
6246 		cpi->hba_misc = 0;
6247 		cpi->hba_eng_cnt = 0;
6248 		cpi->max_target = 0;
6249 		cpi->max_lun = 0;
6250 		cpi->initiator_id = 0;
6251 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6252 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6253 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6254 		cpi->unit_number = sim->unit_number;
6255 		cpi->bus_id = sim->bus_id;
6256 		cpi->base_transfer_speed = 0;
6257 		cpi->ccb_h.status = CAM_REQ_CMP;
6258 		xpt_done(work_ccb);
6259 		break;
6260 	}
6261 	default:
6262 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6263 		xpt_done(work_ccb);
6264 		break;
6265 	}
6266 }
6267 
6268 /*
6269  * The xpt as a "controller" has no interrupt sources, so polling
6270  * is a no-op.
6271  */
6272 static void
6273 xptpoll(struct cam_sim *sim)
6274 {
6275 }
6276 
6277 /*
6278  * Should only be called by the machine interrupt dispatch routines,
6279  * so put these prototypes here instead of in the header.
6280  */
6281 
6282 static void
6283 swi_camnet(void *arg)
6284 {
6285 	camisr(&cam_netq);
6286 }
6287 
6288 static void
6289 swi_cambio(void *arg)
6290 {
6291 	camisr(&cam_bioq);
6292 }
6293 
6294 static void
6295 camisr(cam_isrq_t *queue)
6296 {
6297 	int	s;
6298 	struct	ccb_hdr *ccb_h;
6299 
6300 	s = splcam();
6301 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6302 		int	runq;
6303 
6304 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6305 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6306 		splx(s);
6307 
6308 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6309 			  ("camisr\n"));
6310 
6311 		runq = FALSE;
6312 
6313 		if (ccb_h->flags & CAM_HIGH_POWER) {
6314 			struct highpowerlist	*hphead;
6315 			struct cam_ed		*device;
6316 			union ccb		*send_ccb;
6317 
6318 			hphead = &highpowerq;
6319 
6320 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6321 
6322 			/*
6323 			 * Increment the count since this command is done.
6324 			 */
6325 			num_highpower++;
6326 
6327 			/*
6328 			 * Any high powered commands queued up?
6329 			 */
6330 			if (send_ccb != NULL) {
6331 				device = send_ccb->ccb_h.path->device;
6332 
6333 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6334 
6335 				xpt_release_devq(send_ccb->ccb_h.path,
6336 						 /*count*/1, /*runqueue*/TRUE);
6337 			}
6338 		}
6339 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6340 			struct cam_ed *dev;
6341 
6342 			dev = ccb_h->path->device;
6343 
6344 			s = splcam();
6345 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6346 
6347 			ccb_h->path->bus->sim->devq->send_active--;
6348 			ccb_h->path->bus->sim->devq->send_openings++;
6349 			splx(s);
6350 
6351 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6352 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6353 			  && (dev->ccbq.dev_active == 0))) {
6354 
6355 				xpt_release_devq(ccb_h->path, /*count*/1,
6356 						 /*run_queue*/TRUE);
6357 			}
6358 
6359 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6360 			 && (--dev->tag_delay_count == 0))
6361 				xpt_start_tags(ccb_h->path);
6362 
6363 			if ((dev->ccbq.queue.entries > 0)
6364 			 && (dev->qfrozen_cnt == 0)
6365 			 && (device_is_send_queued(dev) == 0)) {
6366 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6367 							      dev);
6368 			}
6369 		}
6370 
6371 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6372 			xpt_release_simq(ccb_h->path->bus->sim,
6373 					 /*run_queue*/TRUE);
6374 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6375 			runq = FALSE;
6376 		}
6377 
6378 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6379 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6380 			xpt_release_devq(ccb_h->path, /*count*/1,
6381 					 /*run_queue*/TRUE);
6382 			ccb_h->status &= ~CAM_DEV_QFRZN;
6383 		} else if (runq) {
6384 			xpt_run_dev_sendq(ccb_h->path->bus);
6385 		}
6386 
6387 		/* Call the peripheral driver's callback */
6388 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6389 
6390 		/* Raise IPL for while test */
6391 		s = splcam();
6392 	}
6393 	splx(s);
6394 }
6395