xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 1de703da)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.2 2003/06/17 04:28:18 dillon Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/bus.h>
44 
45 #ifdef PC98
46 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
47 #endif
48 
49 #include <machine/clock.h>
50 #include <machine/ipl.h>
51 
52 #include <cam/cam.h>
53 #include <cam/cam_ccb.h>
54 #include <cam/cam_periph.h>
55 #include <cam/cam_sim.h>
56 #include <cam/cam_xpt.h>
57 #include <cam/cam_xpt_sim.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_debug.h>
60 
61 #include <cam/scsi/scsi_all.h>
62 #include <cam/scsi/scsi_message.h>
63 #include <cam/scsi/scsi_pass.h>
64 #include "opt_cam.h"
65 
66 /* Datastructures internal to the xpt layer */
67 
68 /*
69  * Definition of an async handler callback block.  These are used to add
70  * SIMs and peripherals to the async callback lists.
71  */
72 struct async_node {
73 	SLIST_ENTRY(async_node)	links;
74 	u_int32_t	event_enable;	/* Async Event enables */
75 	void		(*callback)(void *arg, u_int32_t code,
76 				    struct cam_path *path, void *args);
77 	void		*callback_arg;
78 };
79 
80 SLIST_HEAD(async_list, async_node);
81 SLIST_HEAD(periph_list, cam_periph);
82 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
83 
84 /*
85  * This is the maximum number of high powered commands (e.g. start unit)
86  * that can be outstanding at a particular time.
87  */
88 #ifndef CAM_MAX_HIGHPOWER
89 #define CAM_MAX_HIGHPOWER  4
90 #endif
91 
92 /* number of high powered commands that can go through right now */
93 static int num_highpower = CAM_MAX_HIGHPOWER;
94 
95 /*
96  * Structure for queueing a device in a run queue.
97  * There is one run queue for allocating new ccbs,
98  * and another for sending ccbs to the controller.
99  */
100 struct cam_ed_qinfo {
101 	cam_pinfo pinfo;
102 	struct	  cam_ed *device;
103 };
104 
105 /*
106  * The CAM EDT (Existing Device Table) contains the device information for
107  * all devices for all busses in the system.  The table contains a
108  * cam_ed structure for each device on the bus.
109  */
110 struct cam_ed {
111 	TAILQ_ENTRY(cam_ed) links;
112 	struct	cam_ed_qinfo alloc_ccb_entry;
113 	struct	cam_ed_qinfo send_ccb_entry;
114 	struct	cam_et	 *target;
115 	lun_id_t	 lun_id;
116 	struct	camq drvq;		/*
117 					 * Queue of type drivers wanting to do
118 					 * work on this device.
119 					 */
120 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
121 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
122 	struct	periph_list periphs;	/* All attached devices */
123 	u_int	generation;		/* Generation number */
124 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
125 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
126 					/* Storage for the inquiry data */
127 	struct	scsi_inquiry_data inq_data;
128 	u_int8_t	 inq_flags;	/*
129 					 * Current settings for inquiry flags.
130 					 * This allows us to override settings
131 					 * like disconnection and tagged
132 					 * queuing for a device.
133 					 */
134 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
135 	u_int8_t	 serial_num_len;
136 	u_int8_t	 *serial_num;
137 	u_int32_t	 qfrozen_cnt;
138 	u_int32_t	 flags;
139 #define CAM_DEV_UNCONFIGURED	 	0x01
140 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
141 #define CAM_DEV_REL_ON_COMPLETE		0x04
142 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
143 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
144 #define CAM_DEV_TAG_AFTER_COUNT		0x20
145 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
146 	u_int32_t	 tag_delay_count;
147 #define	CAM_TAG_DELAY_COUNT		5
148 	u_int32_t	 refcount;
149 	struct		 callout_handle c_handle;
150 };
151 
152 /*
153  * Each target is represented by an ET (Existing Target).  These
154  * entries are created when a target is successfully probed with an
155  * identify, and removed when a device fails to respond after a number
156  * of retries, or a bus rescan finds the device missing.
157  */
158 struct cam_et {
159 	TAILQ_HEAD(, cam_ed) ed_entries;
160 	TAILQ_ENTRY(cam_et) links;
161 	struct	cam_eb	*bus;
162 	target_id_t	target_id;
163 	u_int32_t	refcount;
164 	u_int		generation;
165 	struct		timeval last_reset;
166 };
167 
168 /*
169  * Each bus is represented by an EB (Existing Bus).  These entries
170  * are created by calls to xpt_bus_register and deleted by calls to
171  * xpt_bus_deregister.
172  */
173 struct cam_eb {
174 	TAILQ_HEAD(, cam_et) et_entries;
175 	TAILQ_ENTRY(cam_eb)  links;
176 	path_id_t	     path_id;
177 	struct cam_sim	     *sim;
178 	struct timeval	     last_reset;
179 	u_int32_t	     flags;
180 #define	CAM_EB_RUNQ_SCHEDULED	0x01
181 	u_int32_t	     refcount;
182 	u_int		     generation;
183 };
184 
185 struct cam_path {
186 	struct cam_periph *periph;
187 	struct cam_eb	  *bus;
188 	struct cam_et	  *target;
189 	struct cam_ed	  *device;
190 };
191 
192 struct xpt_quirk_entry {
193 	struct scsi_inquiry_pattern inq_pat;
194 	u_int8_t quirks;
195 #define	CAM_QUIRK_NOLUNS	0x01
196 #define	CAM_QUIRK_NOSERIAL	0x02
197 #define	CAM_QUIRK_HILUNS	0x04
198 	u_int mintags;
199 	u_int maxtags;
200 };
201 #define	CAM_SCSI2_MAXLUN	8
202 
203 typedef enum {
204 	XPT_FLAG_OPEN		= 0x01
205 } xpt_flags;
206 
207 struct xpt_softc {
208 	xpt_flags	flags;
209 	u_int32_t	generation;
210 };
211 
212 static const char quantum[] = "QUANTUM";
213 static const char sony[] = "SONY";
214 static const char west_digital[] = "WDIGTL";
215 static const char samsung[] = "SAMSUNG";
216 static const char seagate[] = "SEAGATE";
217 static const char microp[] = "MICROP";
218 
219 static struct xpt_quirk_entry xpt_quirk_table[] =
220 {
221 	{
222 		/* Reports QUEUE FULL for temporary resource shortages */
223 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
224 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
225 	},
226 	{
227 		/* Reports QUEUE FULL for temporary resource shortages */
228 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
229 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
230 	},
231 	{
232 		/* Reports QUEUE FULL for temporary resource shortages */
233 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
234 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
235 	},
236 	{
237 		/* Broken tagged queuing drive */
238 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
239 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
240 	},
241 	{
242 		/* Broken tagged queuing drive */
243 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
244 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
245 	},
246 	{
247 		/* Broken tagged queuing drive */
248 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
249 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
250 	},
251 	{
252 		/*
253 		 * Unfortunately, the Quantum Atlas III has the same
254 		 * problem as the Atlas II drives above.
255 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
256 		 *
257 		 * For future reference, the drive with the problem was:
258 		 * QUANTUM QM39100TD-SW N1B0
259 		 *
260 		 * It's possible that Quantum will fix the problem in later
261 		 * firmware revisions.  If that happens, the quirk entry
262 		 * will need to be made specific to the firmware revisions
263 		 * with the problem.
264 		 *
265 		 */
266 		/* Reports QUEUE FULL for temporary resource shortages */
267 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
268 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
269 	},
270 	{
271 		/*
272 		 * 18 Gig Atlas III, same problem as the 9G version.
273 		 * Reported by: Andre Albsmeier
274 		 *		<andre.albsmeier@mchp.siemens.de>
275 		 *
276 		 * For future reference, the drive with the problem was:
277 		 * QUANTUM QM318000TD-S N491
278 		 */
279 		/* Reports QUEUE FULL for temporary resource shortages */
280 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
281 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
282 	},
283 	{
284 		/*
285 		 * Broken tagged queuing drive
286 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
287 		 *         and: Martin Renters <martin@tdc.on.ca>
288 		 */
289 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
290 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
291 	},
292 		/*
293 		 * The Seagate Medalist Pro drives have very poor write
294 		 * performance with anything more than 2 tags.
295 		 *
296 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
297 		 * Drive:  <SEAGATE ST36530N 1444>
298 		 *
299 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
300 		 * Drive:  <SEAGATE ST34520W 1281>
301 		 *
302 		 * No one has actually reported that the 9G version
303 		 * (ST39140*) of the Medalist Pro has the same problem, but
304 		 * we're assuming that it does because the 4G and 6.5G
305 		 * versions of the drive are broken.
306 		 */
307 	{
308 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
309 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
310 	},
311 	{
312 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
313 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
314 	},
315 	{
316 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
317 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
318 	},
319 	{
320 		/*
321 		 * Slow when tagged queueing is enabled.  Write performance
322 		 * steadily drops off with more and more concurrent
323 		 * transactions.  Best sequential write performance with
324 		 * tagged queueing turned off and write caching turned on.
325 		 *
326 		 * PR:  kern/10398
327 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
328 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
329 		 *
330 		 * The drive with the problem had the "S65A" firmware
331 		 * revision, and has also been reported (by Stephen J.
332 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
333 		 * firmware revision.
334 		 *
335 		 * Although no one has reported problems with the 2 gig
336 		 * version of the DCAS drive, the assumption is that it
337 		 * has the same problems as the 4 gig version.  Therefore
338 		 * this quirk entries disables tagged queueing for all
339 		 * DCAS drives.
340 		 */
341 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
342 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
343 	},
344 	{
345 		/* Broken tagged queuing drive */
346 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
347 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
348 	},
349 	{
350 		/* Broken tagged queuing drive */
351 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
352 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
353 	},
354 	{
355 		/*
356 		 * Broken tagged queuing drive.
357 		 * Submitted by:
358 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
359 		 * in PR kern/9535
360 		 */
361 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
362 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
363 	},
364         {
365 		/*
366 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
367 		 * 8MB/sec.)
368 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
369 		 * Best performance with these drives is achieved with
370 		 * tagged queueing turned off, and write caching turned on.
371 		 */
372 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
373 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
374         },
375         {
376 		/*
377 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
378 		 * 8MB/sec.)
379 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
380 		 * Best performance with these drives is achieved with
381 		 * tagged queueing turned off, and write caching turned on.
382 		 */
383 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
384 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
385         },
386 	{
387 		/*
388 		 * Doesn't handle queue full condition correctly,
389 		 * so we need to limit maxtags to what the device
390 		 * can handle instead of determining this automatically.
391 		 */
392 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
393 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
394 	},
395 	{
396 		/* Really only one LUN */
397 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
398 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
399 	},
400 	{
401 		/* I can't believe we need a quirk for DPT volumes. */
402 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
403 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
404 		/*mintags*/0, /*maxtags*/255
405 	},
406 	{
407 		/*
408 		 * Many Sony CDROM drives don't like multi-LUN probing.
409 		 */
410 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
411 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
412 	},
413 	{
414 		/*
415 		 * This drive doesn't like multiple LUN probing.
416 		 * Submitted by:  Parag Patel <parag@cgt.com>
417 		 */
418 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
419 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
420 	},
421 	{
422 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
423 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
424 	},
425 	{
426 		/*
427 		 * The 8200 doesn't like multi-lun probing, and probably
428 		 * don't like serial number requests either.
429 		 */
430 		{
431 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
432 			"EXB-8200*", "*"
433 		},
434 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
435 	},
436 	{
437 		/*
438 		 * Let's try the same as above, but for a drive that says
439 		 * it's an IPL-6860 but is actually an EXB 8200.
440 		 */
441 		{
442 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
443 			"IPL-6860*", "*"
444 		},
445 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
446 	},
447 	{
448 		/*
449 		 * These Hitachi drives don't like multi-lun probing.
450 		 * The PR submitter has a DK319H, but says that the Linux
451 		 * kernel has a similar work-around for the DK312 and DK314,
452 		 * so all DK31* drives are quirked here.
453 		 * PR:            misc/18793
454 		 * Submitted by:  Paul Haddad <paul@pth.com>
455 		 */
456 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
457 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
458 	},
459 	{
460 		/*
461 		 * This old revision of the TDC3600 is also SCSI-1, and
462 		 * hangs upon serial number probing.
463 		 */
464 		{
465 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
466 			" TDC 3600", "U07:"
467 		},
468 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
469 	},
470 	{
471 		/*
472 		 * Would repond to all LUNs if asked for.
473 		 */
474 		{
475 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
476 			"CP150", "*"
477 		},
478 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
479 	},
480 	{
481 		/*
482 		 * Would repond to all LUNs if asked for.
483 		 */
484 		{
485 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
486 			"96X2*", "*"
487 		},
488 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
489 	},
490 	{
491 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
492 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
493 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
494 	},
495 	{
496 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
497 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
498 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
499 	},
500 	{
501 		/* TeraSolutions special settings for TRC-22 RAID */
502 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
503 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
504 	},
505 	{
506 		/* Veritas Storage Appliance */
507 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
508 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
509 	},
510 	{
511 		/*
512 		 * Would respond to all LUNs.  Device type and removable
513 		 * flag are jumper-selectable.
514 		 */
515 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
516 		  "Tahiti 1", "*"
517 		},
518 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
519 	},
520 	{
521 		/* Default tagged queuing parameters for all devices */
522 		{
523 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
524 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
525 		},
526 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
527 	},
528 };
529 
530 static const int xpt_quirk_table_size =
531 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
532 
533 typedef enum {
534 	DM_RET_COPY		= 0x01,
535 	DM_RET_FLAG_MASK	= 0x0f,
536 	DM_RET_NONE		= 0x00,
537 	DM_RET_STOP		= 0x10,
538 	DM_RET_DESCEND		= 0x20,
539 	DM_RET_ERROR		= 0x30,
540 	DM_RET_ACTION_MASK	= 0xf0
541 } dev_match_ret;
542 
543 typedef enum {
544 	XPT_DEPTH_BUS,
545 	XPT_DEPTH_TARGET,
546 	XPT_DEPTH_DEVICE,
547 	XPT_DEPTH_PERIPH
548 } xpt_traverse_depth;
549 
550 struct xpt_traverse_config {
551 	xpt_traverse_depth	depth;
552 	void			*tr_func;
553 	void			*tr_arg;
554 };
555 
556 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
557 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
558 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
559 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
560 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
561 
562 /* Transport layer configuration information */
563 static struct xpt_softc xsoftc;
564 
565 /* Queues for our software interrupt handler */
566 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
567 static cam_isrq_t cam_bioq;
568 static cam_isrq_t cam_netq;
569 
570 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
571 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
572 static u_int xpt_max_ccbs;	/*
573 				 * Maximum size of ccb pool.  Modified as
574 				 * devices are added/removed or have their
575 				 * opening counts changed.
576 				 */
577 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
578 
579 struct cam_periph *xpt_periph;
580 
581 static periph_init_t xpt_periph_init;
582 
583 static periph_init_t probe_periph_init;
584 
585 static struct periph_driver xpt_driver =
586 {
587 	xpt_periph_init, "xpt",
588 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
589 };
590 
591 static struct periph_driver probe_driver =
592 {
593 	probe_periph_init, "probe",
594 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
595 };
596 
597 DATA_SET(periphdriver_set, xpt_driver);
598 DATA_SET(periphdriver_set, probe_driver);
599 
600 #define XPT_CDEV_MAJOR 104
601 
602 static d_open_t xptopen;
603 static d_close_t xptclose;
604 static d_ioctl_t xptioctl;
605 
606 static struct cdevsw xpt_cdevsw = {
607 	/* open */	xptopen,
608 	/* close */	xptclose,
609 	/* read */	noread,
610 	/* write */	nowrite,
611 	/* ioctl */	xptioctl,
612 	/* poll */	nopoll,
613 	/* mmap */	nommap,
614 	/* strategy */	nostrategy,
615 	/* name */	"xpt",
616 	/* maj */	XPT_CDEV_MAJOR,
617 	/* dump */	nodump,
618 	/* psize */	nopsize,
619 	/* flags */	0,
620 	/* bmaj */	-1
621 };
622 
623 static struct intr_config_hook *xpt_config_hook;
624 
625 /* Registered busses */
626 static TAILQ_HEAD(,cam_eb) xpt_busses;
627 static u_int bus_generation;
628 
629 /* Storage for debugging datastructures */
630 #ifdef	CAMDEBUG
631 struct cam_path *cam_dpath;
632 u_int32_t cam_dflags;
633 u_int32_t cam_debug_delay;
634 #endif
635 
636 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
637 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
638 #endif
639 
640 /*
641  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
642  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
643  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
644  */
645 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
646     || defined(CAM_DEBUG_LUN)
647 #ifdef CAMDEBUG
648 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
649     || !defined(CAM_DEBUG_LUN)
650 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
651         and CAM_DEBUG_LUN"
652 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
653 #else /* !CAMDEBUG */
654 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
655 #endif /* CAMDEBUG */
656 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
657 
658 /* Our boot-time initialization hook */
659 static void	xpt_init(void *);
660 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
661 
662 static cam_status	xpt_compile_path(struct cam_path *new_path,
663 					 struct cam_periph *perph,
664 					 path_id_t path_id,
665 					 target_id_t target_id,
666 					 lun_id_t lun_id);
667 
668 static void		xpt_release_path(struct cam_path *path);
669 
670 static void		xpt_async_bcast(struct async_list *async_head,
671 					u_int32_t async_code,
672 					struct cam_path *path,
673 					void *async_arg);
674 static void		xpt_dev_async(u_int32_t async_code,
675 				      struct cam_eb *bus,
676 				      struct cam_et *target,
677 				      struct cam_ed *device,
678 				      void *async_arg);
679 static path_id_t xptnextfreepathid(void);
680 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
681 static union ccb *xpt_get_ccb(struct cam_ed *device);
682 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
683 				  u_int32_t new_priority);
684 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
685 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
686 static timeout_t xpt_release_devq_timeout;
687 static timeout_t xpt_release_simq_timeout;
688 static void	 xpt_release_bus(struct cam_eb *bus);
689 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
690 					 int run_queue);
691 static struct cam_et*
692 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
693 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
694 static struct cam_ed*
695 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
696 				  lun_id_t lun_id);
697 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
698 				    struct cam_ed *device);
699 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
700 static struct cam_eb*
701 		 xpt_find_bus(path_id_t path_id);
702 static struct cam_et*
703 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
704 static struct cam_ed*
705 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
706 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
707 static void	 xpt_scan_lun(struct cam_periph *periph,
708 			      struct cam_path *path, cam_flags flags,
709 			      union ccb *ccb);
710 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
711 static xpt_busfunc_t	xptconfigbuscountfunc;
712 static xpt_busfunc_t	xptconfigfunc;
713 static void	 xpt_config(void *arg);
714 static xpt_devicefunc_t xptpassannouncefunc;
715 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
716 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
717 static void	 xptpoll(struct cam_sim *sim);
718 static swihand_t swi_camnet;
719 static swihand_t swi_cambio;
720 static void	 camisr(cam_isrq_t *queue);
721 #if 0
722 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
723 static void	 xptasync(struct cam_periph *periph,
724 			  u_int32_t code, cam_path *path);
725 #endif
726 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
727 				    int num_patterns, struct cam_eb *bus);
728 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
729 				       int num_patterns, struct cam_ed *device);
730 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
731 				       int num_patterns,
732 				       struct cam_periph *periph);
733 static xpt_busfunc_t	xptedtbusfunc;
734 static xpt_targetfunc_t	xptedttargetfunc;
735 static xpt_devicefunc_t	xptedtdevicefunc;
736 static xpt_periphfunc_t	xptedtperiphfunc;
737 static xpt_pdrvfunc_t	xptplistpdrvfunc;
738 static xpt_periphfunc_t	xptplistperiphfunc;
739 static int		xptedtmatch(struct ccb_dev_match *cdm);
740 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
741 static int		xptbustraverse(struct cam_eb *start_bus,
742 				       xpt_busfunc_t *tr_func, void *arg);
743 static int		xpttargettraverse(struct cam_eb *bus,
744 					  struct cam_et *start_target,
745 					  xpt_targetfunc_t *tr_func, void *arg);
746 static int		xptdevicetraverse(struct cam_et *target,
747 					  struct cam_ed *start_device,
748 					  xpt_devicefunc_t *tr_func, void *arg);
749 static int		xptperiphtraverse(struct cam_ed *device,
750 					  struct cam_periph *start_periph,
751 					  xpt_periphfunc_t *tr_func, void *arg);
752 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
753 					xpt_pdrvfunc_t *tr_func, void *arg);
754 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
755 					    struct cam_periph *start_periph,
756 					    xpt_periphfunc_t *tr_func,
757 					    void *arg);
758 static xpt_busfunc_t	xptdefbusfunc;
759 static xpt_targetfunc_t	xptdeftargetfunc;
760 static xpt_devicefunc_t	xptdefdevicefunc;
761 static xpt_periphfunc_t	xptdefperiphfunc;
762 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
763 #ifdef notusedyet
764 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
765 					    void *arg);
766 #endif
767 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
768 					    void *arg);
769 #ifdef notusedyet
770 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
771 					    void *arg);
772 #endif
773 static xpt_devicefunc_t	xptsetasyncfunc;
774 static xpt_busfunc_t	xptsetasyncbusfunc;
775 static cam_status	xptregister(struct cam_periph *periph,
776 				    void *arg);
777 static cam_status	proberegister(struct cam_periph *periph,
778 				      void *arg);
779 static void	 probeschedule(struct cam_periph *probe_periph);
780 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
781 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
782 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
783 static void	 probecleanup(struct cam_periph *periph);
784 static void	 xpt_find_quirk(struct cam_ed *device);
785 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
786 					   struct cam_ed *device,
787 					   int async_update);
788 static void	 xpt_toggle_tags(struct cam_path *path);
789 static void	 xpt_start_tags(struct cam_path *path);
790 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
791 					    struct cam_ed *dev);
792 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
793 					   struct cam_ed *dev);
794 static __inline int periph_is_queued(struct cam_periph *periph);
795 static __inline int device_is_alloc_queued(struct cam_ed *device);
796 static __inline int device_is_send_queued(struct cam_ed *device);
797 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
798 
799 static __inline int
800 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
801 {
802 	int retval;
803 
804 	if (dev->ccbq.devq_openings > 0) {
805 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
806 			cam_ccbq_resize(&dev->ccbq,
807 					dev->ccbq.dev_openings
808 					+ dev->ccbq.dev_active);
809 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
810 		}
811 		/*
812 		 * The priority of a device waiting for CCB resources
813 		 * is that of the the highest priority peripheral driver
814 		 * enqueued.
815 		 */
816 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
817 					  &dev->alloc_ccb_entry.pinfo,
818 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
819 	} else {
820 		retval = 0;
821 	}
822 
823 	return (retval);
824 }
825 
826 static __inline int
827 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
828 {
829 	int	retval;
830 
831 	if (dev->ccbq.dev_openings > 0) {
832 		/*
833 		 * The priority of a device waiting for controller
834 		 * resources is that of the the highest priority CCB
835 		 * enqueued.
836 		 */
837 		retval =
838 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
839 				     &dev->send_ccb_entry.pinfo,
840 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
841 	} else {
842 		retval = 0;
843 	}
844 	return (retval);
845 }
846 
847 static __inline int
848 periph_is_queued(struct cam_periph *periph)
849 {
850 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
851 }
852 
853 static __inline int
854 device_is_alloc_queued(struct cam_ed *device)
855 {
856 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
857 }
858 
859 static __inline int
860 device_is_send_queued(struct cam_ed *device)
861 {
862 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
863 }
864 
865 static __inline int
866 dev_allocq_is_runnable(struct cam_devq *devq)
867 {
868 	/*
869 	 * Have work to do.
870 	 * Have space to do more work.
871 	 * Allowed to do work.
872 	 */
873 	return ((devq->alloc_queue.qfrozen_cnt == 0)
874 	     && (devq->alloc_queue.entries > 0)
875 	     && (devq->alloc_openings > 0));
876 }
877 
878 static void
879 xpt_periph_init()
880 {
881 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
882 }
883 
884 static void
885 probe_periph_init()
886 {
887 }
888 
889 
890 static void
891 xptdone(struct cam_periph *periph, union ccb *done_ccb)
892 {
893 	/* Caller will release the CCB */
894 	wakeup(&done_ccb->ccb_h.cbfcnp);
895 }
896 
897 static int
898 xptopen(dev_t dev, int flags, int fmt, struct proc *p)
899 {
900 	int unit;
901 
902 	unit = minor(dev) & 0xff;
903 
904 	/*
905 	 * Only allow read-write access.
906 	 */
907 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
908 		return(EPERM);
909 
910 	/*
911 	 * We don't allow nonblocking access.
912 	 */
913 	if ((flags & O_NONBLOCK) != 0) {
914 		printf("xpt%d: can't do nonblocking access\n", unit);
915 		return(ENODEV);
916 	}
917 
918 	/*
919 	 * We only have one transport layer right now.  If someone accesses
920 	 * us via something other than minor number 1, point out their
921 	 * mistake.
922 	 */
923 	if (unit != 0) {
924 		printf("xptopen: got invalid xpt unit %d\n", unit);
925 		return(ENXIO);
926 	}
927 
928 	/* Mark ourselves open */
929 	xsoftc.flags |= XPT_FLAG_OPEN;
930 
931 	return(0);
932 }
933 
934 static int
935 xptclose(dev_t dev, int flag, int fmt, struct proc *p)
936 {
937 	int unit;
938 
939 	unit = minor(dev) & 0xff;
940 
941 	/*
942 	 * We only have one transport layer right now.  If someone accesses
943 	 * us via something other than minor number 1, point out their
944 	 * mistake.
945 	 */
946 	if (unit != 0) {
947 		printf("xptclose: got invalid xpt unit %d\n", unit);
948 		return(ENXIO);
949 	}
950 
951 	/* Mark ourselves closed */
952 	xsoftc.flags &= ~XPT_FLAG_OPEN;
953 
954 	return(0);
955 }
956 
957 static int
958 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
959 {
960 	int unit, error;
961 
962 	error = 0;
963 	unit = minor(dev) & 0xff;
964 
965 	/*
966 	 * We only have one transport layer right now.  If someone accesses
967 	 * us via something other than minor number 1, point out their
968 	 * mistake.
969 	 */
970 	if (unit != 0) {
971 		printf("xptioctl: got invalid xpt unit %d\n", unit);
972 		return(ENXIO);
973 	}
974 
975 	switch(cmd) {
976 	/*
977 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
978 	 * to accept CCB types that don't quite make sense to send through a
979 	 * passthrough driver.
980 	 */
981 	case CAMIOCOMMAND: {
982 		union ccb *ccb;
983 		union ccb *inccb;
984 
985 		inccb = (union ccb *)addr;
986 
987 		switch(inccb->ccb_h.func_code) {
988 		case XPT_SCAN_BUS:
989 		case XPT_RESET_BUS:
990 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
991 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
992 				error = EINVAL;
993 				break;
994 			}
995 			/* FALLTHROUGH */
996 		case XPT_PATH_INQ:
997 		case XPT_ENG_INQ:
998 		case XPT_SCAN_LUN:
999 
1000 			ccb = xpt_alloc_ccb();
1001 
1002 			/*
1003 			 * Create a path using the bus, target, and lun the
1004 			 * user passed in.
1005 			 */
1006 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1007 					    inccb->ccb_h.path_id,
1008 					    inccb->ccb_h.target_id,
1009 					    inccb->ccb_h.target_lun) !=
1010 					    CAM_REQ_CMP){
1011 				error = EINVAL;
1012 				xpt_free_ccb(ccb);
1013 				break;
1014 			}
1015 			/* Ensure all of our fields are correct */
1016 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1017 				      inccb->ccb_h.pinfo.priority);
1018 			xpt_merge_ccb(ccb, inccb);
1019 			ccb->ccb_h.cbfcnp = xptdone;
1020 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1021 			bcopy(ccb, inccb, sizeof(union ccb));
1022 			xpt_free_path(ccb->ccb_h.path);
1023 			xpt_free_ccb(ccb);
1024 			break;
1025 
1026 		case XPT_DEBUG: {
1027 			union ccb ccb;
1028 
1029 			/*
1030 			 * This is an immediate CCB, so it's okay to
1031 			 * allocate it on the stack.
1032 			 */
1033 
1034 			/*
1035 			 * Create a path using the bus, target, and lun the
1036 			 * user passed in.
1037 			 */
1038 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1039 					    inccb->ccb_h.path_id,
1040 					    inccb->ccb_h.target_id,
1041 					    inccb->ccb_h.target_lun) !=
1042 					    CAM_REQ_CMP){
1043 				error = EINVAL;
1044 				break;
1045 			}
1046 			/* Ensure all of our fields are correct */
1047 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1048 				      inccb->ccb_h.pinfo.priority);
1049 			xpt_merge_ccb(&ccb, inccb);
1050 			ccb.ccb_h.cbfcnp = xptdone;
1051 			xpt_action(&ccb);
1052 			bcopy(&ccb, inccb, sizeof(union ccb));
1053 			xpt_free_path(ccb.ccb_h.path);
1054 			break;
1055 
1056 		}
1057 		case XPT_DEV_MATCH: {
1058 			struct cam_periph_map_info mapinfo;
1059 			struct cam_path *old_path;
1060 
1061 			/*
1062 			 * We can't deal with physical addresses for this
1063 			 * type of transaction.
1064 			 */
1065 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1066 				error = EINVAL;
1067 				break;
1068 			}
1069 
1070 			/*
1071 			 * Save this in case the caller had it set to
1072 			 * something in particular.
1073 			 */
1074 			old_path = inccb->ccb_h.path;
1075 
1076 			/*
1077 			 * We really don't need a path for the matching
1078 			 * code.  The path is needed because of the
1079 			 * debugging statements in xpt_action().  They
1080 			 * assume that the CCB has a valid path.
1081 			 */
1082 			inccb->ccb_h.path = xpt_periph->path;
1083 
1084 			bzero(&mapinfo, sizeof(mapinfo));
1085 
1086 			/*
1087 			 * Map the pattern and match buffers into kernel
1088 			 * virtual address space.
1089 			 */
1090 			error = cam_periph_mapmem(inccb, &mapinfo);
1091 
1092 			if (error) {
1093 				inccb->ccb_h.path = old_path;
1094 				break;
1095 			}
1096 
1097 			/*
1098 			 * This is an immediate CCB, we can send it on directly.
1099 			 */
1100 			xpt_action(inccb);
1101 
1102 			/*
1103 			 * Map the buffers back into user space.
1104 			 */
1105 			cam_periph_unmapmem(inccb, &mapinfo);
1106 
1107 			inccb->ccb_h.path = old_path;
1108 
1109 			error = 0;
1110 			break;
1111 		}
1112 		default:
1113 			error = ENOTSUP;
1114 			break;
1115 		}
1116 		break;
1117 	}
1118 	/*
1119 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1120 	 * with the periphal driver name and unit name filled in.  The other
1121 	 * fields don't really matter as input.  The passthrough driver name
1122 	 * ("pass"), and unit number are passed back in the ccb.  The current
1123 	 * device generation number, and the index into the device peripheral
1124 	 * driver list, and the status are also passed back.  Note that
1125 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1126 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1127 	 * (or rather should be) impossible for the device peripheral driver
1128 	 * list to change since we look at the whole thing in one pass, and
1129 	 * we do it with splcam protection.
1130 	 *
1131 	 */
1132 	case CAMGETPASSTHRU: {
1133 		union ccb *ccb;
1134 		struct cam_periph *periph;
1135 		struct periph_driver **p_drv;
1136 		char   *name;
1137 		int unit;
1138 		int cur_generation;
1139 		int base_periph_found;
1140 		int splbreaknum;
1141 		int s;
1142 
1143 		ccb = (union ccb *)addr;
1144 		unit = ccb->cgdl.unit_number;
1145 		name = ccb->cgdl.periph_name;
1146 		/*
1147 		 * Every 100 devices, we want to drop our spl protection to
1148 		 * give the software interrupt handler a chance to run.
1149 		 * Most systems won't run into this check, but this should
1150 		 * avoid starvation in the software interrupt handler in
1151 		 * large systems.
1152 		 */
1153 		splbreaknum = 100;
1154 
1155 		ccb = (union ccb *)addr;
1156 
1157 		base_periph_found = 0;
1158 
1159 		/*
1160 		 * Sanity check -- make sure we don't get a null peripheral
1161 		 * driver name.
1162 		 */
1163 		if (*ccb->cgdl.periph_name == '\0') {
1164 			error = EINVAL;
1165 			break;
1166 		}
1167 
1168 		/* Keep the list from changing while we traverse it */
1169 		s = splcam();
1170 ptstartover:
1171 		cur_generation = xsoftc.generation;
1172 
1173 		/* first find our driver in the list of drivers */
1174 		for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
1175 		     *p_drv != NULL; p_drv++)
1176 			if (strcmp((*p_drv)->driver_name, name) == 0)
1177 				break;
1178 
1179 		if (*p_drv == NULL) {
1180 			splx(s);
1181 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1182 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1183 			*ccb->cgdl.periph_name = '\0';
1184 			ccb->cgdl.unit_number = 0;
1185 			error = ENOENT;
1186 			break;
1187 		}
1188 
1189 		/*
1190 		 * Run through every peripheral instance of this driver
1191 		 * and check to see whether it matches the unit passed
1192 		 * in by the user.  If it does, get out of the loops and
1193 		 * find the passthrough driver associated with that
1194 		 * peripheral driver.
1195 		 */
1196 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1197 		     periph = TAILQ_NEXT(periph, unit_links)) {
1198 
1199 			if (periph->unit_number == unit) {
1200 				break;
1201 			} else if (--splbreaknum == 0) {
1202 				splx(s);
1203 				s = splcam();
1204 				splbreaknum = 100;
1205 				if (cur_generation != xsoftc.generation)
1206 				       goto ptstartover;
1207 			}
1208 		}
1209 		/*
1210 		 * If we found the peripheral driver that the user passed
1211 		 * in, go through all of the peripheral drivers for that
1212 		 * particular device and look for a passthrough driver.
1213 		 */
1214 		if (periph != NULL) {
1215 			struct cam_ed *device;
1216 			int i;
1217 
1218 			base_periph_found = 1;
1219 			device = periph->path->device;
1220 			for (i = 0, periph = device->periphs.slh_first;
1221 			     periph != NULL;
1222 			     periph = periph->periph_links.sle_next, i++) {
1223 				/*
1224 				 * Check to see whether we have a
1225 				 * passthrough device or not.
1226 				 */
1227 				if (strcmp(periph->periph_name, "pass") == 0) {
1228 					/*
1229 					 * Fill in the getdevlist fields.
1230 					 */
1231 					strcpy(ccb->cgdl.periph_name,
1232 					       periph->periph_name);
1233 					ccb->cgdl.unit_number =
1234 						periph->unit_number;
1235 					if (periph->periph_links.sle_next)
1236 						ccb->cgdl.status =
1237 							CAM_GDEVLIST_MORE_DEVS;
1238 					else
1239 						ccb->cgdl.status =
1240 						       CAM_GDEVLIST_LAST_DEVICE;
1241 					ccb->cgdl.generation =
1242 						device->generation;
1243 					ccb->cgdl.index = i;
1244 					/*
1245 					 * Fill in some CCB header fields
1246 					 * that the user may want.
1247 					 */
1248 					ccb->ccb_h.path_id =
1249 						periph->path->bus->path_id;
1250 					ccb->ccb_h.target_id =
1251 						periph->path->target->target_id;
1252 					ccb->ccb_h.target_lun =
1253 						periph->path->device->lun_id;
1254 					ccb->ccb_h.status = CAM_REQ_CMP;
1255 					break;
1256 				}
1257 			}
1258 		}
1259 
1260 		/*
1261 		 * If the periph is null here, one of two things has
1262 		 * happened.  The first possibility is that we couldn't
1263 		 * find the unit number of the particular peripheral driver
1264 		 * that the user is asking about.  e.g. the user asks for
1265 		 * the passthrough driver for "da11".  We find the list of
1266 		 * "da" peripherals all right, but there is no unit 11.
1267 		 * The other possibility is that we went through the list
1268 		 * of peripheral drivers attached to the device structure,
1269 		 * but didn't find one with the name "pass".  Either way,
1270 		 * we return ENOENT, since we couldn't find something.
1271 		 */
1272 		if (periph == NULL) {
1273 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1274 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1275 			*ccb->cgdl.periph_name = '\0';
1276 			ccb->cgdl.unit_number = 0;
1277 			error = ENOENT;
1278 			/*
1279 			 * It is unfortunate that this is even necessary,
1280 			 * but there are many, many clueless users out there.
1281 			 * If this is true, the user is looking for the
1282 			 * passthrough driver, but doesn't have one in his
1283 			 * kernel.
1284 			 */
1285 			if (base_periph_found == 1) {
1286 				printf("xptioctl: pass driver is not in the "
1287 				       "kernel\n");
1288 				printf("xptioctl: put \"device pass0\" in "
1289 				       "your kernel config file\n");
1290 			}
1291 		}
1292 		splx(s);
1293 		break;
1294 		}
1295 	default:
1296 		error = ENOTTY;
1297 		break;
1298 	}
1299 
1300 	return(error);
1301 }
1302 
1303 /* Functions accessed by the peripheral drivers */
1304 static void
1305 xpt_init(dummy)
1306 	void *dummy;
1307 {
1308 	struct cam_sim *xpt_sim;
1309 	struct cam_path *path;
1310 	struct cam_devq *devq;
1311 	cam_status status;
1312 
1313 	TAILQ_INIT(&xpt_busses);
1314 	TAILQ_INIT(&cam_bioq);
1315 	TAILQ_INIT(&cam_netq);
1316 	SLIST_INIT(&ccb_freeq);
1317 	STAILQ_INIT(&highpowerq);
1318 
1319 	/*
1320 	 * The xpt layer is, itself, the equivelent of a SIM.
1321 	 * Allow 16 ccbs in the ccb pool for it.  This should
1322 	 * give decent parallelism when we probe busses and
1323 	 * perform other XPT functions.
1324 	 */
1325 	devq = cam_simq_alloc(16);
1326 	xpt_sim = cam_sim_alloc(xptaction,
1327 				xptpoll,
1328 				"xpt",
1329 				/*softc*/NULL,
1330 				/*unit*/0,
1331 				/*max_dev_transactions*/0,
1332 				/*max_tagged_dev_transactions*/0,
1333 				devq);
1334 	xpt_max_ccbs = 16;
1335 
1336 	xpt_bus_register(xpt_sim, /*bus #*/0);
1337 
1338 	/*
1339 	 * Looking at the XPT from the SIM layer, the XPT is
1340 	 * the equivelent of a peripheral driver.  Allocate
1341 	 * a peripheral driver entry for us.
1342 	 */
1343 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1344 				      CAM_TARGET_WILDCARD,
1345 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1346 		printf("xpt_init: xpt_create_path failed with status %#x,"
1347 		       " failing attach\n", status);
1348 		return;
1349 	}
1350 
1351 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1352 			 path, NULL, 0, NULL);
1353 	xpt_free_path(path);
1354 
1355 	xpt_sim->softc = xpt_periph;
1356 
1357 	/*
1358 	 * Register a callback for when interrupts are enabled.
1359 	 */
1360 	xpt_config_hook =
1361 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1362 					      M_TEMP, M_NOWAIT | M_ZERO);
1363 	if (xpt_config_hook == NULL) {
1364 		printf("xpt_init: Cannot malloc config hook "
1365 		       "- failing attach\n");
1366 		return;
1367 	}
1368 
1369 	xpt_config_hook->ich_func = xpt_config;
1370 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1371 		free (xpt_config_hook, M_TEMP);
1372 		printf("xpt_init: config_intrhook_establish failed "
1373 		       "- failing attach\n");
1374 	}
1375 
1376 	/* Install our software interrupt handlers */
1377 	register_swi(SWI_CAMNET, swi_camnet);
1378 	register_swi(SWI_CAMBIO, swi_cambio);
1379 }
1380 
1381 static cam_status
1382 xptregister(struct cam_periph *periph, void *arg)
1383 {
1384 	if (periph == NULL) {
1385 		printf("xptregister: periph was NULL!!\n");
1386 		return(CAM_REQ_CMP_ERR);
1387 	}
1388 
1389 	periph->softc = NULL;
1390 
1391 	xpt_periph = periph;
1392 
1393 	return(CAM_REQ_CMP);
1394 }
1395 
1396 int32_t
1397 xpt_add_periph(struct cam_periph *periph)
1398 {
1399 	struct cam_ed *device;
1400 	int32_t	 status;
1401 	struct periph_list *periph_head;
1402 
1403 	device = periph->path->device;
1404 
1405 	periph_head = &device->periphs;
1406 
1407 	status = CAM_REQ_CMP;
1408 
1409 	if (device != NULL) {
1410 		int s;
1411 
1412 		/*
1413 		 * Make room for this peripheral
1414 		 * so it will fit in the queue
1415 		 * when it's scheduled to run
1416 		 */
1417 		s = splsoftcam();
1418 		status = camq_resize(&device->drvq,
1419 				     device->drvq.array_size + 1);
1420 
1421 		device->generation++;
1422 
1423 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1424 
1425 		splx(s);
1426 	}
1427 
1428 	xsoftc.generation++;
1429 
1430 	return (status);
1431 }
1432 
1433 void
1434 xpt_remove_periph(struct cam_periph *periph)
1435 {
1436 	struct cam_ed *device;
1437 
1438 	device = periph->path->device;
1439 
1440 	if (device != NULL) {
1441 		int s;
1442 		struct periph_list *periph_head;
1443 
1444 		periph_head = &device->periphs;
1445 
1446 		/* Release the slot for this peripheral */
1447 		s = splsoftcam();
1448 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1449 
1450 		device->generation++;
1451 
1452 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1453 
1454 		splx(s);
1455 	}
1456 
1457 	xsoftc.generation++;
1458 
1459 }
1460 
1461 void
1462 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1463 {
1464 	int s;
1465 	u_int mb;
1466 	struct cam_path *path;
1467 	struct ccb_trans_settings cts;
1468 
1469 	path = periph->path;
1470 	/*
1471 	 * To ensure that this is printed in one piece,
1472 	 * mask out CAM interrupts.
1473 	 */
1474 	s = splsoftcam();
1475 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1476 	       periph->periph_name, periph->unit_number,
1477 	       path->bus->sim->sim_name,
1478 	       path->bus->sim->unit_number,
1479 	       path->bus->sim->bus_id,
1480 	       path->target->target_id,
1481 	       path->device->lun_id);
1482 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1483 	scsi_print_inquiry(&path->device->inq_data);
1484 	if ((bootverbose)
1485 	 && (path->device->serial_num_len > 0)) {
1486 		/* Don't wrap the screen  - print only the first 60 chars */
1487 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1488 		       periph->unit_number, path->device->serial_num);
1489 	}
1490 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1491 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1492 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1493 	xpt_action((union ccb*)&cts);
1494 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1495 		u_int speed;
1496 		u_int freq;
1497 
1498 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1499 		  && cts.sync_offset != 0) {
1500 			freq = scsi_calc_syncsrate(cts.sync_period);
1501 			speed = freq;
1502 		} else {
1503 			struct ccb_pathinq cpi;
1504 
1505 			/* Ask the SIM for its base transfer speed */
1506 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1507 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1508 			xpt_action((union ccb *)&cpi);
1509 
1510 			speed = cpi.base_transfer_speed;
1511 			freq = 0;
1512 		}
1513 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1514 			speed *= (0x01 << cts.bus_width);
1515 		mb = speed / 1000;
1516 		if (mb > 0)
1517 			printf("%s%d: %d.%03dMB/s transfers",
1518 			       periph->periph_name, periph->unit_number,
1519 			       mb, speed % 1000);
1520 		else
1521 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1522 			       periph->unit_number, speed);
1523 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1524 		 && cts.sync_offset != 0) {
1525 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1526 			       freq % 1000, cts.sync_offset);
1527 		}
1528 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1529 		 && cts.bus_width > 0) {
1530 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1531 			 && cts.sync_offset != 0) {
1532 				printf(", ");
1533 			} else {
1534 				printf(" (");
1535 			}
1536 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1537 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1538 			&& cts.sync_offset != 0) {
1539 			printf(")");
1540 		}
1541 
1542 		if (path->device->inq_flags & SID_CmdQue
1543 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1544 			printf(", Tagged Queueing Enabled");
1545 		}
1546 
1547 		printf("\n");
1548 	} else if (path->device->inq_flags & SID_CmdQue
1549    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1550 		printf("%s%d: Tagged Queueing Enabled\n",
1551 		       periph->periph_name, periph->unit_number);
1552 	}
1553 
1554 	/*
1555 	 * We only want to print the caller's announce string if they've
1556 	 * passed one in..
1557 	 */
1558 	if (announce_string != NULL)
1559 		printf("%s%d: %s\n", periph->periph_name,
1560 		       periph->unit_number, announce_string);
1561 	splx(s);
1562 }
1563 
1564 
1565 static dev_match_ret
1566 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1567 	    struct cam_eb *bus)
1568 {
1569 	dev_match_ret retval;
1570 	int i;
1571 
1572 	retval = DM_RET_NONE;
1573 
1574 	/*
1575 	 * If we aren't given something to match against, that's an error.
1576 	 */
1577 	if (bus == NULL)
1578 		return(DM_RET_ERROR);
1579 
1580 	/*
1581 	 * If there are no match entries, then this bus matches no
1582 	 * matter what.
1583 	 */
1584 	if ((patterns == NULL) || (num_patterns == 0))
1585 		return(DM_RET_DESCEND | DM_RET_COPY);
1586 
1587 	for (i = 0; i < num_patterns; i++) {
1588 		struct bus_match_pattern *cur_pattern;
1589 
1590 		/*
1591 		 * If the pattern in question isn't for a bus node, we
1592 		 * aren't interested.  However, we do indicate to the
1593 		 * calling routine that we should continue descending the
1594 		 * tree, since the user wants to match against lower-level
1595 		 * EDT elements.
1596 		 */
1597 		if (patterns[i].type != DEV_MATCH_BUS) {
1598 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1599 				retval |= DM_RET_DESCEND;
1600 			continue;
1601 		}
1602 
1603 		cur_pattern = &patterns[i].pattern.bus_pattern;
1604 
1605 		/*
1606 		 * If they want to match any bus node, we give them any
1607 		 * device node.
1608 		 */
1609 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1610 			/* set the copy flag */
1611 			retval |= DM_RET_COPY;
1612 
1613 			/*
1614 			 * If we've already decided on an action, go ahead
1615 			 * and return.
1616 			 */
1617 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1618 				return(retval);
1619 		}
1620 
1621 		/*
1622 		 * Not sure why someone would do this...
1623 		 */
1624 		if (cur_pattern->flags == BUS_MATCH_NONE)
1625 			continue;
1626 
1627 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1628 		 && (cur_pattern->path_id != bus->path_id))
1629 			continue;
1630 
1631 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1632 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1633 			continue;
1634 
1635 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1636 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1637 			continue;
1638 
1639 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1640 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1641 			     DEV_IDLEN) != 0))
1642 			continue;
1643 
1644 		/*
1645 		 * If we get to this point, the user definitely wants
1646 		 * information on this bus.  So tell the caller to copy the
1647 		 * data out.
1648 		 */
1649 		retval |= DM_RET_COPY;
1650 
1651 		/*
1652 		 * If the return action has been set to descend, then we
1653 		 * know that we've already seen a non-bus matching
1654 		 * expression, therefore we need to further descend the tree.
1655 		 * This won't change by continuing around the loop, so we
1656 		 * go ahead and return.  If we haven't seen a non-bus
1657 		 * matching expression, we keep going around the loop until
1658 		 * we exhaust the matching expressions.  We'll set the stop
1659 		 * flag once we fall out of the loop.
1660 		 */
1661 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1662 			return(retval);
1663 	}
1664 
1665 	/*
1666 	 * If the return action hasn't been set to descend yet, that means
1667 	 * we haven't seen anything other than bus matching patterns.  So
1668 	 * tell the caller to stop descending the tree -- the user doesn't
1669 	 * want to match against lower level tree elements.
1670 	 */
1671 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1672 		retval |= DM_RET_STOP;
1673 
1674 	return(retval);
1675 }
1676 
1677 static dev_match_ret
1678 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1679 	       struct cam_ed *device)
1680 {
1681 	dev_match_ret retval;
1682 	int i;
1683 
1684 	retval = DM_RET_NONE;
1685 
1686 	/*
1687 	 * If we aren't given something to match against, that's an error.
1688 	 */
1689 	if (device == NULL)
1690 		return(DM_RET_ERROR);
1691 
1692 	/*
1693 	 * If there are no match entries, then this device matches no
1694 	 * matter what.
1695 	 */
1696 	if ((patterns == NULL) || (patterns == 0))
1697 		return(DM_RET_DESCEND | DM_RET_COPY);
1698 
1699 	for (i = 0; i < num_patterns; i++) {
1700 		struct device_match_pattern *cur_pattern;
1701 
1702 		/*
1703 		 * If the pattern in question isn't for a device node, we
1704 		 * aren't interested.
1705 		 */
1706 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1707 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1708 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1709 				retval |= DM_RET_DESCEND;
1710 			continue;
1711 		}
1712 
1713 		cur_pattern = &patterns[i].pattern.device_pattern;
1714 
1715 		/*
1716 		 * If they want to match any device node, we give them any
1717 		 * device node.
1718 		 */
1719 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1720 			/* set the copy flag */
1721 			retval |= DM_RET_COPY;
1722 
1723 
1724 			/*
1725 			 * If we've already decided on an action, go ahead
1726 			 * and return.
1727 			 */
1728 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1729 				return(retval);
1730 		}
1731 
1732 		/*
1733 		 * Not sure why someone would do this...
1734 		 */
1735 		if (cur_pattern->flags == DEV_MATCH_NONE)
1736 			continue;
1737 
1738 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1739 		 && (cur_pattern->path_id != device->target->bus->path_id))
1740 			continue;
1741 
1742 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1743 		 && (cur_pattern->target_id != device->target->target_id))
1744 			continue;
1745 
1746 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1747 		 && (cur_pattern->target_lun != device->lun_id))
1748 			continue;
1749 
1750 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1751 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1752 				    (caddr_t)&cur_pattern->inq_pat,
1753 				    1, sizeof(cur_pattern->inq_pat),
1754 				    scsi_static_inquiry_match) == NULL))
1755 			continue;
1756 
1757 		/*
1758 		 * If we get to this point, the user definitely wants
1759 		 * information on this device.  So tell the caller to copy
1760 		 * the data out.
1761 		 */
1762 		retval |= DM_RET_COPY;
1763 
1764 		/*
1765 		 * If the return action has been set to descend, then we
1766 		 * know that we've already seen a peripheral matching
1767 		 * expression, therefore we need to further descend the tree.
1768 		 * This won't change by continuing around the loop, so we
1769 		 * go ahead and return.  If we haven't seen a peripheral
1770 		 * matching expression, we keep going around the loop until
1771 		 * we exhaust the matching expressions.  We'll set the stop
1772 		 * flag once we fall out of the loop.
1773 		 */
1774 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1775 			return(retval);
1776 	}
1777 
1778 	/*
1779 	 * If the return action hasn't been set to descend yet, that means
1780 	 * we haven't seen any peripheral matching patterns.  So tell the
1781 	 * caller to stop descending the tree -- the user doesn't want to
1782 	 * match against lower level tree elements.
1783 	 */
1784 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1785 		retval |= DM_RET_STOP;
1786 
1787 	return(retval);
1788 }
1789 
1790 /*
1791  * Match a single peripheral against any number of match patterns.
1792  */
1793 static dev_match_ret
1794 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1795 	       struct cam_periph *periph)
1796 {
1797 	dev_match_ret retval;
1798 	int i;
1799 
1800 	/*
1801 	 * If we aren't given something to match against, that's an error.
1802 	 */
1803 	if (periph == NULL)
1804 		return(DM_RET_ERROR);
1805 
1806 	/*
1807 	 * If there are no match entries, then this peripheral matches no
1808 	 * matter what.
1809 	 */
1810 	if ((patterns == NULL) || (num_patterns == 0))
1811 		return(DM_RET_STOP | DM_RET_COPY);
1812 
1813 	/*
1814 	 * There aren't any nodes below a peripheral node, so there's no
1815 	 * reason to descend the tree any further.
1816 	 */
1817 	retval = DM_RET_STOP;
1818 
1819 	for (i = 0; i < num_patterns; i++) {
1820 		struct periph_match_pattern *cur_pattern;
1821 
1822 		/*
1823 		 * If the pattern in question isn't for a peripheral, we
1824 		 * aren't interested.
1825 		 */
1826 		if (patterns[i].type != DEV_MATCH_PERIPH)
1827 			continue;
1828 
1829 		cur_pattern = &patterns[i].pattern.periph_pattern;
1830 
1831 		/*
1832 		 * If they want to match on anything, then we will do so.
1833 		 */
1834 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1835 			/* set the copy flag */
1836 			retval |= DM_RET_COPY;
1837 
1838 			/*
1839 			 * We've already set the return action to stop,
1840 			 * since there are no nodes below peripherals in
1841 			 * the tree.
1842 			 */
1843 			return(retval);
1844 		}
1845 
1846 		/*
1847 		 * Not sure why someone would do this...
1848 		 */
1849 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1850 			continue;
1851 
1852 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1853 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1854 			continue;
1855 
1856 		/*
1857 		 * For the target and lun id's, we have to make sure the
1858 		 * target and lun pointers aren't NULL.  The xpt peripheral
1859 		 * has a wildcard target and device.
1860 		 */
1861 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1862 		 && ((periph->path->target == NULL)
1863 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1864 			continue;
1865 
1866 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1867 		 && ((periph->path->device == NULL)
1868 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1869 			continue;
1870 
1871 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1872 		 && (cur_pattern->unit_number != periph->unit_number))
1873 			continue;
1874 
1875 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1876 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1877 			     DEV_IDLEN) != 0))
1878 			continue;
1879 
1880 		/*
1881 		 * If we get to this point, the user definitely wants
1882 		 * information on this peripheral.  So tell the caller to
1883 		 * copy the data out.
1884 		 */
1885 		retval |= DM_RET_COPY;
1886 
1887 		/*
1888 		 * The return action has already been set to stop, since
1889 		 * peripherals don't have any nodes below them in the EDT.
1890 		 */
1891 		return(retval);
1892 	}
1893 
1894 	/*
1895 	 * If we get to this point, the peripheral that was passed in
1896 	 * doesn't match any of the patterns.
1897 	 */
1898 	return(retval);
1899 }
1900 
1901 static int
1902 xptedtbusfunc(struct cam_eb *bus, void *arg)
1903 {
1904 	struct ccb_dev_match *cdm;
1905 	dev_match_ret retval;
1906 
1907 	cdm = (struct ccb_dev_match *)arg;
1908 
1909 	/*
1910 	 * If our position is for something deeper in the tree, that means
1911 	 * that we've already seen this node.  So, we keep going down.
1912 	 */
1913 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1914 	 && (cdm->pos.cookie.bus == bus)
1915 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1916 	 && (cdm->pos.cookie.target != NULL))
1917 		retval = DM_RET_DESCEND;
1918 	else
1919 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1920 
1921 	/*
1922 	 * If we got an error, bail out of the search.
1923 	 */
1924 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1925 		cdm->status = CAM_DEV_MATCH_ERROR;
1926 		return(0);
1927 	}
1928 
1929 	/*
1930 	 * If the copy flag is set, copy this bus out.
1931 	 */
1932 	if (retval & DM_RET_COPY) {
1933 		int spaceleft, j;
1934 
1935 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1936 			sizeof(struct dev_match_result));
1937 
1938 		/*
1939 		 * If we don't have enough space to put in another
1940 		 * match result, save our position and tell the
1941 		 * user there are more devices to check.
1942 		 */
1943 		if (spaceleft < sizeof(struct dev_match_result)) {
1944 			bzero(&cdm->pos, sizeof(cdm->pos));
1945 			cdm->pos.position_type =
1946 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1947 
1948 			cdm->pos.cookie.bus = bus;
1949 			cdm->pos.generations[CAM_BUS_GENERATION]=
1950 				bus_generation;
1951 			cdm->status = CAM_DEV_MATCH_MORE;
1952 			return(0);
1953 		}
1954 		j = cdm->num_matches;
1955 		cdm->num_matches++;
1956 		cdm->matches[j].type = DEV_MATCH_BUS;
1957 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1958 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1959 		cdm->matches[j].result.bus_result.unit_number =
1960 			bus->sim->unit_number;
1961 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1962 			bus->sim->sim_name, DEV_IDLEN);
1963 	}
1964 
1965 	/*
1966 	 * If the user is only interested in busses, there's no
1967 	 * reason to descend to the next level in the tree.
1968 	 */
1969 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1970 		return(1);
1971 
1972 	/*
1973 	 * If there is a target generation recorded, check it to
1974 	 * make sure the target list hasn't changed.
1975 	 */
1976 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1977 	 && (bus == cdm->pos.cookie.bus)
1978 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1979 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1980 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1981 	     bus->generation)) {
1982 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1983 		return(0);
1984 	}
1985 
1986 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1987 	 && (cdm->pos.cookie.bus == bus)
1988 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1989 	 && (cdm->pos.cookie.target != NULL))
1990 		return(xpttargettraverse(bus,
1991 					(struct cam_et *)cdm->pos.cookie.target,
1992 					 xptedttargetfunc, arg));
1993 	else
1994 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1995 }
1996 
1997 static int
1998 xptedttargetfunc(struct cam_et *target, void *arg)
1999 {
2000 	struct ccb_dev_match *cdm;
2001 
2002 	cdm = (struct ccb_dev_match *)arg;
2003 
2004 	/*
2005 	 * If there is a device list generation recorded, check it to
2006 	 * make sure the device list hasn't changed.
2007 	 */
2008 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2009 	 && (cdm->pos.cookie.bus == target->bus)
2010 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2011 	 && (cdm->pos.cookie.target == target)
2012 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2013 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2014 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2015 	     target->generation)) {
2016 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2017 		return(0);
2018 	}
2019 
2020 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2021 	 && (cdm->pos.cookie.bus == target->bus)
2022 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2023 	 && (cdm->pos.cookie.target == target)
2024 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2025 	 && (cdm->pos.cookie.device != NULL))
2026 		return(xptdevicetraverse(target,
2027 					(struct cam_ed *)cdm->pos.cookie.device,
2028 					 xptedtdevicefunc, arg));
2029 	else
2030 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2031 }
2032 
2033 static int
2034 xptedtdevicefunc(struct cam_ed *device, void *arg)
2035 {
2036 
2037 	struct ccb_dev_match *cdm;
2038 	dev_match_ret retval;
2039 
2040 	cdm = (struct ccb_dev_match *)arg;
2041 
2042 	/*
2043 	 * If our position is for something deeper in the tree, that means
2044 	 * that we've already seen this node.  So, we keep going down.
2045 	 */
2046 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2047 	 && (cdm->pos.cookie.device == device)
2048 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2049 	 && (cdm->pos.cookie.periph != NULL))
2050 		retval = DM_RET_DESCEND;
2051 	else
2052 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2053 					device);
2054 
2055 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2056 		cdm->status = CAM_DEV_MATCH_ERROR;
2057 		return(0);
2058 	}
2059 
2060 	/*
2061 	 * If the copy flag is set, copy this device out.
2062 	 */
2063 	if (retval & DM_RET_COPY) {
2064 		int spaceleft, j;
2065 
2066 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2067 			sizeof(struct dev_match_result));
2068 
2069 		/*
2070 		 * If we don't have enough space to put in another
2071 		 * match result, save our position and tell the
2072 		 * user there are more devices to check.
2073 		 */
2074 		if (spaceleft < sizeof(struct dev_match_result)) {
2075 			bzero(&cdm->pos, sizeof(cdm->pos));
2076 			cdm->pos.position_type =
2077 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2078 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2079 
2080 			cdm->pos.cookie.bus = device->target->bus;
2081 			cdm->pos.generations[CAM_BUS_GENERATION]=
2082 				bus_generation;
2083 			cdm->pos.cookie.target = device->target;
2084 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2085 				device->target->bus->generation;
2086 			cdm->pos.cookie.device = device;
2087 			cdm->pos.generations[CAM_DEV_GENERATION] =
2088 				device->target->generation;
2089 			cdm->status = CAM_DEV_MATCH_MORE;
2090 			return(0);
2091 		}
2092 		j = cdm->num_matches;
2093 		cdm->num_matches++;
2094 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2095 		cdm->matches[j].result.device_result.path_id =
2096 			device->target->bus->path_id;
2097 		cdm->matches[j].result.device_result.target_id =
2098 			device->target->target_id;
2099 		cdm->matches[j].result.device_result.target_lun =
2100 			device->lun_id;
2101 		bcopy(&device->inq_data,
2102 		      &cdm->matches[j].result.device_result.inq_data,
2103 		      sizeof(struct scsi_inquiry_data));
2104 
2105 		/* Let the user know whether this device is unconfigured */
2106 		if (device->flags & CAM_DEV_UNCONFIGURED)
2107 			cdm->matches[j].result.device_result.flags =
2108 				DEV_RESULT_UNCONFIGURED;
2109 		else
2110 			cdm->matches[j].result.device_result.flags =
2111 				DEV_RESULT_NOFLAG;
2112 	}
2113 
2114 	/*
2115 	 * If the user isn't interested in peripherals, don't descend
2116 	 * the tree any further.
2117 	 */
2118 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2119 		return(1);
2120 
2121 	/*
2122 	 * If there is a peripheral list generation recorded, make sure
2123 	 * it hasn't changed.
2124 	 */
2125 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2126 	 && (device->target->bus == cdm->pos.cookie.bus)
2127 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2128 	 && (device->target == cdm->pos.cookie.target)
2129 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2130 	 && (device == cdm->pos.cookie.device)
2131 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2132 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2133 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2134 	     device->generation)){
2135 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2136 		return(0);
2137 	}
2138 
2139 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2140 	 && (cdm->pos.cookie.bus == device->target->bus)
2141 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2142 	 && (cdm->pos.cookie.target == device->target)
2143 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2144 	 && (cdm->pos.cookie.device == device)
2145 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2146 	 && (cdm->pos.cookie.periph != NULL))
2147 		return(xptperiphtraverse(device,
2148 				(struct cam_periph *)cdm->pos.cookie.periph,
2149 				xptedtperiphfunc, arg));
2150 	else
2151 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2152 }
2153 
2154 static int
2155 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2156 {
2157 	struct ccb_dev_match *cdm;
2158 	dev_match_ret retval;
2159 
2160 	cdm = (struct ccb_dev_match *)arg;
2161 
2162 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2163 
2164 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2165 		cdm->status = CAM_DEV_MATCH_ERROR;
2166 		return(0);
2167 	}
2168 
2169 	/*
2170 	 * If the copy flag is set, copy this peripheral out.
2171 	 */
2172 	if (retval & DM_RET_COPY) {
2173 		int spaceleft, j;
2174 
2175 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2176 			sizeof(struct dev_match_result));
2177 
2178 		/*
2179 		 * If we don't have enough space to put in another
2180 		 * match result, save our position and tell the
2181 		 * user there are more devices to check.
2182 		 */
2183 		if (spaceleft < sizeof(struct dev_match_result)) {
2184 			bzero(&cdm->pos, sizeof(cdm->pos));
2185 			cdm->pos.position_type =
2186 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2187 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2188 				CAM_DEV_POS_PERIPH;
2189 
2190 			cdm->pos.cookie.bus = periph->path->bus;
2191 			cdm->pos.generations[CAM_BUS_GENERATION]=
2192 				bus_generation;
2193 			cdm->pos.cookie.target = periph->path->target;
2194 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2195 				periph->path->bus->generation;
2196 			cdm->pos.cookie.device = periph->path->device;
2197 			cdm->pos.generations[CAM_DEV_GENERATION] =
2198 				periph->path->target->generation;
2199 			cdm->pos.cookie.periph = periph;
2200 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2201 				periph->path->device->generation;
2202 			cdm->status = CAM_DEV_MATCH_MORE;
2203 			return(0);
2204 		}
2205 
2206 		j = cdm->num_matches;
2207 		cdm->num_matches++;
2208 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2209 		cdm->matches[j].result.periph_result.path_id =
2210 			periph->path->bus->path_id;
2211 		cdm->matches[j].result.periph_result.target_id =
2212 			periph->path->target->target_id;
2213 		cdm->matches[j].result.periph_result.target_lun =
2214 			periph->path->device->lun_id;
2215 		cdm->matches[j].result.periph_result.unit_number =
2216 			periph->unit_number;
2217 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2218 			periph->periph_name, DEV_IDLEN);
2219 	}
2220 
2221 	return(1);
2222 }
2223 
2224 static int
2225 xptedtmatch(struct ccb_dev_match *cdm)
2226 {
2227 	int ret;
2228 
2229 	cdm->num_matches = 0;
2230 
2231 	/*
2232 	 * Check the bus list generation.  If it has changed, the user
2233 	 * needs to reset everything and start over.
2234 	 */
2235 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2236 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2237 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2238 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2239 		return(0);
2240 	}
2241 
2242 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2243 	 && (cdm->pos.cookie.bus != NULL))
2244 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2245 				     xptedtbusfunc, cdm);
2246 	else
2247 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2248 
2249 	/*
2250 	 * If we get back 0, that means that we had to stop before fully
2251 	 * traversing the EDT.  It also means that one of the subroutines
2252 	 * has set the status field to the proper value.  If we get back 1,
2253 	 * we've fully traversed the EDT and copied out any matching entries.
2254 	 */
2255 	if (ret == 1)
2256 		cdm->status = CAM_DEV_MATCH_LAST;
2257 
2258 	return(ret);
2259 }
2260 
2261 static int
2262 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2263 {
2264 	struct ccb_dev_match *cdm;
2265 
2266 	cdm = (struct ccb_dev_match *)arg;
2267 
2268 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2269 	 && (cdm->pos.cookie.pdrv == pdrv)
2270 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2271 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2272 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2273 	     (*pdrv)->generation)) {
2274 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2275 		return(0);
2276 	}
2277 
2278 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2279 	 && (cdm->pos.cookie.pdrv == pdrv)
2280 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2281 	 && (cdm->pos.cookie.periph != NULL))
2282 		return(xptpdperiphtraverse(pdrv,
2283 				(struct cam_periph *)cdm->pos.cookie.periph,
2284 				xptplistperiphfunc, arg));
2285 	else
2286 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2287 }
2288 
2289 static int
2290 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2291 {
2292 	struct ccb_dev_match *cdm;
2293 	dev_match_ret retval;
2294 
2295 	cdm = (struct ccb_dev_match *)arg;
2296 
2297 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2298 
2299 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2300 		cdm->status = CAM_DEV_MATCH_ERROR;
2301 		return(0);
2302 	}
2303 
2304 	/*
2305 	 * If the copy flag is set, copy this peripheral out.
2306 	 */
2307 	if (retval & DM_RET_COPY) {
2308 		int spaceleft, j;
2309 
2310 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2311 			sizeof(struct dev_match_result));
2312 
2313 		/*
2314 		 * If we don't have enough space to put in another
2315 		 * match result, save our position and tell the
2316 		 * user there are more devices to check.
2317 		 */
2318 		if (spaceleft < sizeof(struct dev_match_result)) {
2319 			struct periph_driver **pdrv;
2320 
2321 			pdrv = NULL;
2322 			bzero(&cdm->pos, sizeof(cdm->pos));
2323 			cdm->pos.position_type =
2324 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2325 				CAM_DEV_POS_PERIPH;
2326 
2327 			/*
2328 			 * This may look a bit non-sensical, but it is
2329 			 * actually quite logical.  There are very few
2330 			 * peripheral drivers, and bloating every peripheral
2331 			 * structure with a pointer back to its parent
2332 			 * peripheral driver linker set entry would cost
2333 			 * more in the long run than doing this quick lookup.
2334 			 */
2335 			for (pdrv =
2336 			     (struct periph_driver **)periphdriver_set.ls_items;
2337 			     *pdrv != NULL; pdrv++) {
2338 				if (strcmp((*pdrv)->driver_name,
2339 				    periph->periph_name) == 0)
2340 					break;
2341 			}
2342 
2343 			if (pdrv == NULL) {
2344 				cdm->status = CAM_DEV_MATCH_ERROR;
2345 				return(0);
2346 			}
2347 
2348 			cdm->pos.cookie.pdrv = pdrv;
2349 			/*
2350 			 * The periph generation slot does double duty, as
2351 			 * does the periph pointer slot.  They are used for
2352 			 * both edt and pdrv lookups and positioning.
2353 			 */
2354 			cdm->pos.cookie.periph = periph;
2355 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2356 				(*pdrv)->generation;
2357 			cdm->status = CAM_DEV_MATCH_MORE;
2358 			return(0);
2359 		}
2360 
2361 		j = cdm->num_matches;
2362 		cdm->num_matches++;
2363 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2364 		cdm->matches[j].result.periph_result.path_id =
2365 			periph->path->bus->path_id;
2366 
2367 		/*
2368 		 * The transport layer peripheral doesn't have a target or
2369 		 * lun.
2370 		 */
2371 		if (periph->path->target)
2372 			cdm->matches[j].result.periph_result.target_id =
2373 				periph->path->target->target_id;
2374 		else
2375 			cdm->matches[j].result.periph_result.target_id = -1;
2376 
2377 		if (periph->path->device)
2378 			cdm->matches[j].result.periph_result.target_lun =
2379 				periph->path->device->lun_id;
2380 		else
2381 			cdm->matches[j].result.periph_result.target_lun = -1;
2382 
2383 		cdm->matches[j].result.periph_result.unit_number =
2384 			periph->unit_number;
2385 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2386 			periph->periph_name, DEV_IDLEN);
2387 	}
2388 
2389 	return(1);
2390 }
2391 
2392 static int
2393 xptperiphlistmatch(struct ccb_dev_match *cdm)
2394 {
2395 	int ret;
2396 
2397 	cdm->num_matches = 0;
2398 
2399 	/*
2400 	 * At this point in the edt traversal function, we check the bus
2401 	 * list generation to make sure that no busses have been added or
2402 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2403 	 * For the peripheral driver list traversal function, however, we
2404 	 * don't have to worry about new peripheral driver types coming or
2405 	 * going; they're in a linker set, and therefore can't change
2406 	 * without a recompile.
2407 	 */
2408 
2409 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2410 	 && (cdm->pos.cookie.pdrv != NULL))
2411 		ret = xptpdrvtraverse(
2412 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2413 				xptplistpdrvfunc, cdm);
2414 	else
2415 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2416 
2417 	/*
2418 	 * If we get back 0, that means that we had to stop before fully
2419 	 * traversing the peripheral driver tree.  It also means that one of
2420 	 * the subroutines has set the status field to the proper value.  If
2421 	 * we get back 1, we've fully traversed the EDT and copied out any
2422 	 * matching entries.
2423 	 */
2424 	if (ret == 1)
2425 		cdm->status = CAM_DEV_MATCH_LAST;
2426 
2427 	return(ret);
2428 }
2429 
2430 static int
2431 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2432 {
2433 	struct cam_eb *bus, *next_bus;
2434 	int retval;
2435 
2436 	retval = 1;
2437 
2438 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2439 	     bus != NULL;
2440 	     bus = next_bus) {
2441 		next_bus = TAILQ_NEXT(bus, links);
2442 
2443 		retval = tr_func(bus, arg);
2444 		if (retval == 0)
2445 			return(retval);
2446 	}
2447 
2448 	return(retval);
2449 }
2450 
2451 static int
2452 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2453 		  xpt_targetfunc_t *tr_func, void *arg)
2454 {
2455 	struct cam_et *target, *next_target;
2456 	int retval;
2457 
2458 	retval = 1;
2459 	for (target = (start_target ? start_target :
2460 		       TAILQ_FIRST(&bus->et_entries));
2461 	     target != NULL; target = next_target) {
2462 
2463 		next_target = TAILQ_NEXT(target, links);
2464 
2465 		retval = tr_func(target, arg);
2466 
2467 		if (retval == 0)
2468 			return(retval);
2469 	}
2470 
2471 	return(retval);
2472 }
2473 
2474 static int
2475 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2476 		  xpt_devicefunc_t *tr_func, void *arg)
2477 {
2478 	struct cam_ed *device, *next_device;
2479 	int retval;
2480 
2481 	retval = 1;
2482 	for (device = (start_device ? start_device :
2483 		       TAILQ_FIRST(&target->ed_entries));
2484 	     device != NULL;
2485 	     device = next_device) {
2486 
2487 		next_device = TAILQ_NEXT(device, links);
2488 
2489 		retval = tr_func(device, arg);
2490 
2491 		if (retval == 0)
2492 			return(retval);
2493 	}
2494 
2495 	return(retval);
2496 }
2497 
2498 static int
2499 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2500 		  xpt_periphfunc_t *tr_func, void *arg)
2501 {
2502 	struct cam_periph *periph, *next_periph;
2503 	int retval;
2504 
2505 	retval = 1;
2506 
2507 	for (periph = (start_periph ? start_periph :
2508 		       SLIST_FIRST(&device->periphs));
2509 	     periph != NULL;
2510 	     periph = next_periph) {
2511 
2512 		next_periph = SLIST_NEXT(periph, periph_links);
2513 
2514 		retval = tr_func(periph, arg);
2515 		if (retval == 0)
2516 			return(retval);
2517 	}
2518 
2519 	return(retval);
2520 }
2521 
2522 static int
2523 xptpdrvtraverse(struct periph_driver **start_pdrv,
2524 		xpt_pdrvfunc_t *tr_func, void *arg)
2525 {
2526 	struct periph_driver **pdrv;
2527 	int retval;
2528 
2529 	retval = 1;
2530 
2531 	/*
2532 	 * We don't traverse the peripheral driver list like we do the
2533 	 * other lists, because it is a linker set, and therefore cannot be
2534 	 * changed during runtime.  If the peripheral driver list is ever
2535 	 * re-done to be something other than a linker set (i.e. it can
2536 	 * change while the system is running), the list traversal should
2537 	 * be modified to work like the other traversal functions.
2538 	 */
2539 	for (pdrv = (start_pdrv ? start_pdrv :
2540 	     (struct periph_driver **)periphdriver_set.ls_items);
2541 	     *pdrv != NULL; pdrv++) {
2542 		retval = tr_func(pdrv, arg);
2543 
2544 		if (retval == 0)
2545 			return(retval);
2546 	}
2547 
2548 	return(retval);
2549 }
2550 
2551 static int
2552 xptpdperiphtraverse(struct periph_driver **pdrv,
2553 		    struct cam_periph *start_periph,
2554 		    xpt_periphfunc_t *tr_func, void *arg)
2555 {
2556 	struct cam_periph *periph, *next_periph;
2557 	int retval;
2558 
2559 	retval = 1;
2560 
2561 	for (periph = (start_periph ? start_periph :
2562 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2563 	     periph = next_periph) {
2564 
2565 		next_periph = TAILQ_NEXT(periph, unit_links);
2566 
2567 		retval = tr_func(periph, arg);
2568 		if (retval == 0)
2569 			return(retval);
2570 	}
2571 	return(retval);
2572 }
2573 
2574 static int
2575 xptdefbusfunc(struct cam_eb *bus, void *arg)
2576 {
2577 	struct xpt_traverse_config *tr_config;
2578 
2579 	tr_config = (struct xpt_traverse_config *)arg;
2580 
2581 	if (tr_config->depth == XPT_DEPTH_BUS) {
2582 		xpt_busfunc_t *tr_func;
2583 
2584 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2585 
2586 		return(tr_func(bus, tr_config->tr_arg));
2587 	} else
2588 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2589 }
2590 
2591 static int
2592 xptdeftargetfunc(struct cam_et *target, void *arg)
2593 {
2594 	struct xpt_traverse_config *tr_config;
2595 
2596 	tr_config = (struct xpt_traverse_config *)arg;
2597 
2598 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2599 		xpt_targetfunc_t *tr_func;
2600 
2601 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2602 
2603 		return(tr_func(target, tr_config->tr_arg));
2604 	} else
2605 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2606 }
2607 
2608 static int
2609 xptdefdevicefunc(struct cam_ed *device, void *arg)
2610 {
2611 	struct xpt_traverse_config *tr_config;
2612 
2613 	tr_config = (struct xpt_traverse_config *)arg;
2614 
2615 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2616 		xpt_devicefunc_t *tr_func;
2617 
2618 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2619 
2620 		return(tr_func(device, tr_config->tr_arg));
2621 	} else
2622 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2623 }
2624 
2625 static int
2626 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2627 {
2628 	struct xpt_traverse_config *tr_config;
2629 	xpt_periphfunc_t *tr_func;
2630 
2631 	tr_config = (struct xpt_traverse_config *)arg;
2632 
2633 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2634 
2635 	/*
2636 	 * Unlike the other default functions, we don't check for depth
2637 	 * here.  The peripheral driver level is the last level in the EDT,
2638 	 * so if we're here, we should execute the function in question.
2639 	 */
2640 	return(tr_func(periph, tr_config->tr_arg));
2641 }
2642 
2643 /*
2644  * Execute the given function for every bus in the EDT.
2645  */
2646 static int
2647 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2648 {
2649 	struct xpt_traverse_config tr_config;
2650 
2651 	tr_config.depth = XPT_DEPTH_BUS;
2652 	tr_config.tr_func = tr_func;
2653 	tr_config.tr_arg = arg;
2654 
2655 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2656 }
2657 
2658 #ifdef notusedyet
2659 /*
2660  * Execute the given function for every target in the EDT.
2661  */
2662 static int
2663 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2664 {
2665 	struct xpt_traverse_config tr_config;
2666 
2667 	tr_config.depth = XPT_DEPTH_TARGET;
2668 	tr_config.tr_func = tr_func;
2669 	tr_config.tr_arg = arg;
2670 
2671 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2672 }
2673 #endif /* notusedyet */
2674 
2675 /*
2676  * Execute the given function for every device in the EDT.
2677  */
2678 static int
2679 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2680 {
2681 	struct xpt_traverse_config tr_config;
2682 
2683 	tr_config.depth = XPT_DEPTH_DEVICE;
2684 	tr_config.tr_func = tr_func;
2685 	tr_config.tr_arg = arg;
2686 
2687 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2688 }
2689 
2690 #ifdef notusedyet
2691 /*
2692  * Execute the given function for every peripheral in the EDT.
2693  */
2694 static int
2695 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2696 {
2697 	struct xpt_traverse_config tr_config;
2698 
2699 	tr_config.depth = XPT_DEPTH_PERIPH;
2700 	tr_config.tr_func = tr_func;
2701 	tr_config.tr_arg = arg;
2702 
2703 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2704 }
2705 #endif /* notusedyet */
2706 
2707 static int
2708 xptsetasyncfunc(struct cam_ed *device, void *arg)
2709 {
2710 	struct cam_path path;
2711 	struct ccb_getdev cgd;
2712 	struct async_node *cur_entry;
2713 
2714 	cur_entry = (struct async_node *)arg;
2715 
2716 	/*
2717 	 * Don't report unconfigured devices (Wildcard devs,
2718 	 * devices only for target mode, device instances
2719 	 * that have been invalidated but are waiting for
2720 	 * their last reference count to be released).
2721 	 */
2722 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2723 		return (1);
2724 
2725 	xpt_compile_path(&path,
2726 			 NULL,
2727 			 device->target->bus->path_id,
2728 			 device->target->target_id,
2729 			 device->lun_id);
2730 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2731 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2732 	xpt_action((union ccb *)&cgd);
2733 	cur_entry->callback(cur_entry->callback_arg,
2734 			    AC_FOUND_DEVICE,
2735 			    &path, &cgd);
2736 	xpt_release_path(&path);
2737 
2738 	return(1);
2739 }
2740 
2741 static int
2742 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2743 {
2744 	struct cam_path path;
2745 	struct ccb_pathinq cpi;
2746 	struct async_node *cur_entry;
2747 
2748 	cur_entry = (struct async_node *)arg;
2749 
2750 	xpt_compile_path(&path, /*periph*/NULL,
2751 			 bus->sim->path_id,
2752 			 CAM_TARGET_WILDCARD,
2753 			 CAM_LUN_WILDCARD);
2754 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2755 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2756 	xpt_action((union ccb *)&cpi);
2757 	cur_entry->callback(cur_entry->callback_arg,
2758 			    AC_PATH_REGISTERED,
2759 			    &path, &cpi);
2760 	xpt_release_path(&path);
2761 
2762 	return(1);
2763 }
2764 
2765 void
2766 xpt_action(union ccb *start_ccb)
2767 {
2768 	int iopl;
2769 
2770 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2771 
2772 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2773 
2774 	iopl = splsoftcam();
2775 	switch (start_ccb->ccb_h.func_code) {
2776 	case XPT_SCSI_IO:
2777 	{
2778 #ifdef CAMDEBUG
2779 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2780 		struct cam_path *path;
2781 
2782 		path = start_ccb->ccb_h.path;
2783 #endif
2784 
2785 		/*
2786 		 * For the sake of compatibility with SCSI-1
2787 		 * devices that may not understand the identify
2788 		 * message, we include lun information in the
2789 		 * second byte of all commands.  SCSI-1 specifies
2790 		 * that luns are a 3 bit value and reserves only 3
2791 		 * bits for lun information in the CDB.  Later
2792 		 * revisions of the SCSI spec allow for more than 8
2793 		 * luns, but have deprecated lun information in the
2794 		 * CDB.  So, if the lun won't fit, we must omit.
2795 		 *
2796 		 * Also be aware that during initial probing for devices,
2797 		 * the inquiry information is unknown but initialized to 0.
2798 		 * This means that this code will be exercised while probing
2799 		 * devices with an ANSI revision greater than 2.
2800 		 */
2801 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2802 		 && start_ccb->ccb_h.target_lun < 8
2803 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2804 
2805 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2806 			    start_ccb->ccb_h.target_lun << 5;
2807 		}
2808 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2809 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2810 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2811 			  	       &path->device->inq_data),
2812 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2813 					  cdb_str, sizeof(cdb_str))));
2814 		/* FALLTHROUGH */
2815 	}
2816 	case XPT_TARGET_IO:
2817 	case XPT_CONT_TARGET_IO:
2818 		start_ccb->csio.sense_resid = 0;
2819 		start_ccb->csio.resid = 0;
2820 		/* FALLTHROUGH */
2821 	case XPT_RESET_DEV:
2822 	case XPT_ENG_EXEC:
2823 	{
2824 		struct cam_path *path;
2825 		int s;
2826 		int runq;
2827 
2828 		path = start_ccb->ccb_h.path;
2829 		s = splsoftcam();
2830 
2831 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2832 		if (path->device->qfrozen_cnt == 0)
2833 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2834 		else
2835 			runq = 0;
2836 		splx(s);
2837 		if (runq != 0)
2838 			xpt_run_dev_sendq(path->bus);
2839 		break;
2840 	}
2841 	case XPT_SET_TRAN_SETTINGS:
2842 	{
2843 		xpt_set_transfer_settings(&start_ccb->cts,
2844 					  start_ccb->ccb_h.path->device,
2845 					  /*async_update*/FALSE);
2846 		break;
2847 	}
2848 	case XPT_CALC_GEOMETRY:
2849 	{
2850 		struct cam_sim *sim;
2851 
2852 		/* Filter out garbage */
2853 		if (start_ccb->ccg.block_size == 0
2854 		 || start_ccb->ccg.volume_size == 0) {
2855 			start_ccb->ccg.cylinders = 0;
2856 			start_ccb->ccg.heads = 0;
2857 			start_ccb->ccg.secs_per_track = 0;
2858 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2859 			break;
2860 		}
2861 #ifdef PC98
2862 		/*
2863 		 * In a PC-98 system, geometry translation depens on
2864 		 * the "real" device geometry obtained from mode page 4.
2865 		 * SCSI geometry translation is performed in the
2866 		 * initialization routine of the SCSI BIOS and the result
2867 		 * stored in host memory.  If the translation is available
2868 		 * in host memory, use it.  If not, rely on the default
2869 		 * translation the device driver performs.
2870 		 */
2871 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2872 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2873 			break;
2874 		}
2875 #endif
2876 		sim = start_ccb->ccb_h.path->bus->sim;
2877 		(*(sim->sim_action))(sim, start_ccb);
2878 		break;
2879 	}
2880 	case XPT_ABORT:
2881 	{
2882 		union ccb* abort_ccb;
2883 		int s;
2884 
2885 		abort_ccb = start_ccb->cab.abort_ccb;
2886 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2887 
2888 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2889 				struct cam_ccbq *ccbq;
2890 
2891 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2892 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2893 				abort_ccb->ccb_h.status =
2894 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2895 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2896 				s = splcam();
2897 				xpt_done(abort_ccb);
2898 				splx(s);
2899 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2900 				break;
2901 			}
2902 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2903 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2904 				/*
2905 				 * We've caught this ccb en route to
2906 				 * the SIM.  Flag it for abort and the
2907 				 * SIM will do so just before starting
2908 				 * real work on the CCB.
2909 				 */
2910 				abort_ccb->ccb_h.status =
2911 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2912 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2913 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2914 				break;
2915 			}
2916 		}
2917 		if (XPT_FC_IS_QUEUED(abort_ccb)
2918 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2919 			/*
2920 			 * It's already completed but waiting
2921 			 * for our SWI to get to it.
2922 			 */
2923 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2924 			break;
2925 		}
2926 		/*
2927 		 * If we weren't able to take care of the abort request
2928 		 * in the XPT, pass the request down to the SIM for processing.
2929 		 */
2930 		/* FALLTHROUGH */
2931 	}
2932 	case XPT_ACCEPT_TARGET_IO:
2933 	case XPT_EN_LUN:
2934 	case XPT_IMMED_NOTIFY:
2935 	case XPT_NOTIFY_ACK:
2936 	case XPT_GET_TRAN_SETTINGS:
2937 	case XPT_RESET_BUS:
2938 	{
2939 		struct cam_sim *sim;
2940 
2941 		sim = start_ccb->ccb_h.path->bus->sim;
2942 		(*(sim->sim_action))(sim, start_ccb);
2943 		break;
2944 	}
2945 	case XPT_PATH_INQ:
2946 	{
2947 		struct cam_sim *sim;
2948 
2949 		sim = start_ccb->ccb_h.path->bus->sim;
2950 		(*(sim->sim_action))(sim, start_ccb);
2951 		break;
2952 	}
2953 	case XPT_PATH_STATS:
2954 		start_ccb->cpis.last_reset =
2955 			start_ccb->ccb_h.path->bus->last_reset;
2956 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2957 		break;
2958 	case XPT_GDEV_TYPE:
2959 	{
2960 		struct cam_ed *dev;
2961 		int s;
2962 
2963 		dev = start_ccb->ccb_h.path->device;
2964 		s = splcam();
2965 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2966 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2967 		} else {
2968 			struct ccb_getdev *cgd;
2969 			struct cam_eb *bus;
2970 			struct cam_et *tar;
2971 
2972 			cgd = &start_ccb->cgd;
2973 			bus = cgd->ccb_h.path->bus;
2974 			tar = cgd->ccb_h.path->target;
2975 			cgd->inq_data = dev->inq_data;
2976 			cgd->ccb_h.status = CAM_REQ_CMP;
2977 			cgd->serial_num_len = dev->serial_num_len;
2978 			if ((dev->serial_num_len > 0)
2979 			 && (dev->serial_num != NULL))
2980 				bcopy(dev->serial_num, cgd->serial_num,
2981 				      dev->serial_num_len);
2982 		}
2983 		splx(s);
2984 		break;
2985 	}
2986 	case XPT_GDEV_STATS:
2987 	{
2988 		struct cam_ed *dev;
2989 		int s;
2990 
2991 		dev = start_ccb->ccb_h.path->device;
2992 		s = splcam();
2993 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2994 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2995 		} else {
2996 			struct ccb_getdevstats *cgds;
2997 			struct cam_eb *bus;
2998 			struct cam_et *tar;
2999 
3000 			cgds = &start_ccb->cgds;
3001 			bus = cgds->ccb_h.path->bus;
3002 			tar = cgds->ccb_h.path->target;
3003 			cgds->dev_openings = dev->ccbq.dev_openings;
3004 			cgds->dev_active = dev->ccbq.dev_active;
3005 			cgds->devq_openings = dev->ccbq.devq_openings;
3006 			cgds->devq_queued = dev->ccbq.queue.entries;
3007 			cgds->held = dev->ccbq.held;
3008 			cgds->last_reset = tar->last_reset;
3009 			cgds->maxtags = dev->quirk->maxtags;
3010 			cgds->mintags = dev->quirk->mintags;
3011 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3012 				cgds->last_reset = bus->last_reset;
3013 			cgds->ccb_h.status = CAM_REQ_CMP;
3014 		}
3015 		splx(s);
3016 		break;
3017 	}
3018 	case XPT_GDEVLIST:
3019 	{
3020 		struct cam_periph	*nperiph;
3021 		struct periph_list	*periph_head;
3022 		struct ccb_getdevlist	*cgdl;
3023 		int			i;
3024 		int			s;
3025 		struct cam_ed		*device;
3026 		int			found;
3027 
3028 
3029 		found = 0;
3030 
3031 		/*
3032 		 * Don't want anyone mucking with our data.
3033 		 */
3034 		s = splcam();
3035 		device = start_ccb->ccb_h.path->device;
3036 		periph_head = &device->periphs;
3037 		cgdl = &start_ccb->cgdl;
3038 
3039 		/*
3040 		 * Check and see if the list has changed since the user
3041 		 * last requested a list member.  If so, tell them that the
3042 		 * list has changed, and therefore they need to start over
3043 		 * from the beginning.
3044 		 */
3045 		if ((cgdl->index != 0) &&
3046 		    (cgdl->generation != device->generation)) {
3047 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3048 			splx(s);
3049 			break;
3050 		}
3051 
3052 		/*
3053 		 * Traverse the list of peripherals and attempt to find
3054 		 * the requested peripheral.
3055 		 */
3056 		for (nperiph = periph_head->slh_first, i = 0;
3057 		     (nperiph != NULL) && (i <= cgdl->index);
3058 		     nperiph = nperiph->periph_links.sle_next, i++) {
3059 			if (i == cgdl->index) {
3060 				strncpy(cgdl->periph_name,
3061 					nperiph->periph_name,
3062 					DEV_IDLEN);
3063 				cgdl->unit_number = nperiph->unit_number;
3064 				found = 1;
3065 			}
3066 		}
3067 		if (found == 0) {
3068 			cgdl->status = CAM_GDEVLIST_ERROR;
3069 			splx(s);
3070 			break;
3071 		}
3072 
3073 		if (nperiph == NULL)
3074 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3075 		else
3076 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3077 
3078 		cgdl->index++;
3079 		cgdl->generation = device->generation;
3080 
3081 		splx(s);
3082 		cgdl->ccb_h.status = CAM_REQ_CMP;
3083 		break;
3084 	}
3085 	case XPT_DEV_MATCH:
3086 	{
3087 		int s;
3088 		dev_pos_type position_type;
3089 		struct ccb_dev_match *cdm;
3090 		int ret;
3091 
3092 		cdm = &start_ccb->cdm;
3093 
3094 		/*
3095 		 * Prevent EDT changes while we traverse it.
3096 		 */
3097 		s = splcam();
3098 		/*
3099 		 * There are two ways of getting at information in the EDT.
3100 		 * The first way is via the primary EDT tree.  It starts
3101 		 * with a list of busses, then a list of targets on a bus,
3102 		 * then devices/luns on a target, and then peripherals on a
3103 		 * device/lun.  The "other" way is by the peripheral driver
3104 		 * lists.  The peripheral driver lists are organized by
3105 		 * peripheral driver.  (obviously)  So it makes sense to
3106 		 * use the peripheral driver list if the user is looking
3107 		 * for something like "da1", or all "da" devices.  If the
3108 		 * user is looking for something on a particular bus/target
3109 		 * or lun, it's generally better to go through the EDT tree.
3110 		 */
3111 
3112 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3113 			position_type = cdm->pos.position_type;
3114 		else {
3115 			int i;
3116 
3117 			position_type = CAM_DEV_POS_NONE;
3118 
3119 			for (i = 0; i < cdm->num_patterns; i++) {
3120 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3121 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3122 					position_type = CAM_DEV_POS_EDT;
3123 					break;
3124 				}
3125 			}
3126 
3127 			if (cdm->num_patterns == 0)
3128 				position_type = CAM_DEV_POS_EDT;
3129 			else if (position_type == CAM_DEV_POS_NONE)
3130 				position_type = CAM_DEV_POS_PDRV;
3131 		}
3132 
3133 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3134 		case CAM_DEV_POS_EDT:
3135 			ret = xptedtmatch(cdm);
3136 			break;
3137 		case CAM_DEV_POS_PDRV:
3138 			ret = xptperiphlistmatch(cdm);
3139 			break;
3140 		default:
3141 			cdm->status = CAM_DEV_MATCH_ERROR;
3142 			break;
3143 		}
3144 
3145 		splx(s);
3146 
3147 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3148 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3149 		else
3150 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3151 
3152 		break;
3153 	}
3154 	case XPT_SASYNC_CB:
3155 	{
3156 		struct ccb_setasync *csa;
3157 		struct async_node *cur_entry;
3158 		struct async_list *async_head;
3159 		u_int32_t added;
3160 		int s;
3161 
3162 		csa = &start_ccb->csa;
3163 		added = csa->event_enable;
3164 		async_head = &csa->ccb_h.path->device->asyncs;
3165 
3166 		/*
3167 		 * If there is already an entry for us, simply
3168 		 * update it.
3169 		 */
3170 		s = splcam();
3171 		cur_entry = SLIST_FIRST(async_head);
3172 		while (cur_entry != NULL) {
3173 			if ((cur_entry->callback_arg == csa->callback_arg)
3174 			 && (cur_entry->callback == csa->callback))
3175 				break;
3176 			cur_entry = SLIST_NEXT(cur_entry, links);
3177 		}
3178 
3179 		if (cur_entry != NULL) {
3180 		 	/*
3181 			 * If the request has no flags set,
3182 			 * remove the entry.
3183 			 */
3184 			added &= ~cur_entry->event_enable;
3185 			if (csa->event_enable == 0) {
3186 				SLIST_REMOVE(async_head, cur_entry,
3187 					     async_node, links);
3188 				csa->ccb_h.path->device->refcount--;
3189 				free(cur_entry, M_DEVBUF);
3190 			} else {
3191 				cur_entry->event_enable = csa->event_enable;
3192 			}
3193 		} else {
3194 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3195 					   M_NOWAIT);
3196 			if (cur_entry == NULL) {
3197 				splx(s);
3198 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3199 				break;
3200 			}
3201 			cur_entry->event_enable = csa->event_enable;
3202 			cur_entry->callback_arg = csa->callback_arg;
3203 			cur_entry->callback = csa->callback;
3204 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3205 			csa->ccb_h.path->device->refcount++;
3206 		}
3207 
3208 		if ((added & AC_FOUND_DEVICE) != 0) {
3209 			/*
3210 			 * Get this peripheral up to date with all
3211 			 * the currently existing devices.
3212 			 */
3213 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3214 		}
3215 		if ((added & AC_PATH_REGISTERED) != 0) {
3216 			/*
3217 			 * Get this peripheral up to date with all
3218 			 * the currently existing busses.
3219 			 */
3220 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3221 		}
3222 		splx(s);
3223 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3224 		break;
3225 	}
3226 	case XPT_REL_SIMQ:
3227 	{
3228 		struct ccb_relsim *crs;
3229 		struct cam_ed *dev;
3230 		int s;
3231 
3232 		crs = &start_ccb->crs;
3233 		dev = crs->ccb_h.path->device;
3234 		if (dev == NULL) {
3235 
3236 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3237 			break;
3238 		}
3239 
3240 		s = splcam();
3241 
3242 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3243 
3244  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3245 
3246 				/* Don't ever go below one opening */
3247 				if (crs->openings > 0) {
3248 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3249 							    crs->openings);
3250 
3251 					if (bootverbose) {
3252 						xpt_print_path(crs->ccb_h.path);
3253 						printf("tagged openings "
3254 						       "now %d\n",
3255 						       crs->openings);
3256 					}
3257 				}
3258 			}
3259 		}
3260 
3261 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3262 
3263 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3264 
3265 				/*
3266 				 * Just extend the old timeout and decrement
3267 				 * the freeze count so that a single timeout
3268 				 * is sufficient for releasing the queue.
3269 				 */
3270 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3271 				untimeout(xpt_release_devq_timeout,
3272 					  dev, dev->c_handle);
3273 			} else {
3274 
3275 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3276 			}
3277 
3278 			dev->c_handle =
3279 				timeout(xpt_release_devq_timeout,
3280 					dev,
3281 					(crs->release_timeout * hz) / 1000);
3282 
3283 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3284 
3285 		}
3286 
3287 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3288 
3289 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3290 				/*
3291 				 * Decrement the freeze count so that a single
3292 				 * completion is still sufficient to unfreeze
3293 				 * the queue.
3294 				 */
3295 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3296 			} else {
3297 
3298 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3299 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3300 			}
3301 		}
3302 
3303 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3304 
3305 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3306 			 || (dev->ccbq.dev_active == 0)) {
3307 
3308 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3309 			} else {
3310 
3311 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3312 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3313 			}
3314 		}
3315 		splx(s);
3316 
3317 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3318 
3319 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3320 					 /*run_queue*/TRUE);
3321 		}
3322 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3323 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3324 		break;
3325 	}
3326 	case XPT_SCAN_BUS:
3327 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3328 		break;
3329 	case XPT_SCAN_LUN:
3330 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3331 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3332 			     start_ccb);
3333 		break;
3334 	case XPT_DEBUG: {
3335 #ifdef CAMDEBUG
3336 		int s;
3337 
3338 		s = splcam();
3339 #ifdef CAM_DEBUG_DELAY
3340 		cam_debug_delay = CAM_DEBUG_DELAY;
3341 #endif
3342 		cam_dflags = start_ccb->cdbg.flags;
3343 		if (cam_dpath != NULL) {
3344 			xpt_free_path(cam_dpath);
3345 			cam_dpath = NULL;
3346 		}
3347 
3348 		if (cam_dflags != CAM_DEBUG_NONE) {
3349 			if (xpt_create_path(&cam_dpath, xpt_periph,
3350 					    start_ccb->ccb_h.path_id,
3351 					    start_ccb->ccb_h.target_id,
3352 					    start_ccb->ccb_h.target_lun) !=
3353 					    CAM_REQ_CMP) {
3354 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3355 				cam_dflags = CAM_DEBUG_NONE;
3356 			} else {
3357 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3358 				xpt_print_path(cam_dpath);
3359 				printf("debugging flags now %x\n", cam_dflags);
3360 			}
3361 		} else {
3362 			cam_dpath = NULL;
3363 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3364 		}
3365 		splx(s);
3366 #else /* !CAMDEBUG */
3367 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3368 #endif /* CAMDEBUG */
3369 		break;
3370 	}
3371 	case XPT_NOOP:
3372 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3373 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3374 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3375 		break;
3376 	default:
3377 	case XPT_SDEV_TYPE:
3378 	case XPT_TERM_IO:
3379 	case XPT_ENG_INQ:
3380 		/* XXX Implement */
3381 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3382 		break;
3383 	}
3384 	splx(iopl);
3385 }
3386 
3387 void
3388 xpt_polled_action(union ccb *start_ccb)
3389 {
3390 	int	  s;
3391 	u_int32_t timeout;
3392 	struct	  cam_sim *sim;
3393 	struct	  cam_devq *devq;
3394 	struct	  cam_ed *dev;
3395 
3396 	timeout = start_ccb->ccb_h.timeout;
3397 	sim = start_ccb->ccb_h.path->bus->sim;
3398 	devq = sim->devq;
3399 	dev = start_ccb->ccb_h.path->device;
3400 
3401 	s = splcam();
3402 
3403 	/*
3404 	 * Steal an opening so that no other queued requests
3405 	 * can get it before us while we simulate interrupts.
3406 	 */
3407 	dev->ccbq.devq_openings--;
3408 	dev->ccbq.dev_openings--;
3409 
3410 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3411 	   && (--timeout > 0)) {
3412 		DELAY(1000);
3413 		(*(sim->sim_poll))(sim);
3414 		swi_camnet();
3415 		swi_cambio();
3416 	}
3417 
3418 	dev->ccbq.devq_openings++;
3419 	dev->ccbq.dev_openings++;
3420 
3421 	if (timeout != 0) {
3422 		xpt_action(start_ccb);
3423 		while(--timeout > 0) {
3424 			(*(sim->sim_poll))(sim);
3425 			swi_camnet();
3426 			swi_cambio();
3427 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3428 			    != CAM_REQ_INPROG)
3429 				break;
3430 			DELAY(1000);
3431 		}
3432 		if (timeout == 0) {
3433 			/*
3434 			 * XXX Is it worth adding a sim_timeout entry
3435 			 * point so we can attempt recovery?  If
3436 			 * this is only used for dumps, I don't think
3437 			 * it is.
3438 			 */
3439 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3440 		}
3441 	} else {
3442 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3443 	}
3444 	splx(s);
3445 }
3446 
3447 /*
3448  * Schedule a peripheral driver to receive a ccb when it's
3449  * target device has space for more transactions.
3450  */
3451 void
3452 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3453 {
3454 	struct cam_ed *device;
3455 	int s;
3456 	int runq;
3457 
3458 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3459 	device = perph->path->device;
3460 	s = splsoftcam();
3461 	if (periph_is_queued(perph)) {
3462 		/* Simply reorder based on new priority */
3463 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3464 			  ("   change priority to %d\n", new_priority));
3465 		if (new_priority < perph->pinfo.priority) {
3466 			camq_change_priority(&device->drvq,
3467 					     perph->pinfo.index,
3468 					     new_priority);
3469 		}
3470 		runq = 0;
3471 	} else {
3472 		/* New entry on the queue */
3473 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3474 			  ("   added periph to queue\n"));
3475 		perph->pinfo.priority = new_priority;
3476 		perph->pinfo.generation = ++device->drvq.generation;
3477 		camq_insert(&device->drvq, &perph->pinfo);
3478 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3479 	}
3480 	splx(s);
3481 	if (runq != 0) {
3482 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3483 			  ("   calling xpt_run_devq\n"));
3484 		xpt_run_dev_allocq(perph->path->bus);
3485 	}
3486 }
3487 
3488 
3489 /*
3490  * Schedule a device to run on a given queue.
3491  * If the device was inserted as a new entry on the queue,
3492  * return 1 meaning the device queue should be run. If we
3493  * were already queued, implying someone else has already
3494  * started the queue, return 0 so the caller doesn't attempt
3495  * to run the queue.  Must be run at either splsoftcam
3496  * (or splcam since that encompases splsoftcam).
3497  */
3498 static int
3499 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3500 		 u_int32_t new_priority)
3501 {
3502 	int retval;
3503 	u_int32_t old_priority;
3504 
3505 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3506 
3507 	old_priority = pinfo->priority;
3508 
3509 	/*
3510 	 * Are we already queued?
3511 	 */
3512 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3513 		/* Simply reorder based on new priority */
3514 		if (new_priority < old_priority) {
3515 			camq_change_priority(queue, pinfo->index,
3516 					     new_priority);
3517 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3518 					("changed priority to %d\n",
3519 					 new_priority));
3520 		}
3521 		retval = 0;
3522 	} else {
3523 		/* New entry on the queue */
3524 		if (new_priority < old_priority)
3525 			pinfo->priority = new_priority;
3526 
3527 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3528 				("Inserting onto queue\n"));
3529 		pinfo->generation = ++queue->generation;
3530 		camq_insert(queue, pinfo);
3531 		retval = 1;
3532 	}
3533 	return (retval);
3534 }
3535 
3536 static void
3537 xpt_run_dev_allocq(struct cam_eb *bus)
3538 {
3539 	struct	cam_devq *devq;
3540 	int	s;
3541 
3542 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3543 	devq = bus->sim->devq;
3544 
3545 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3546 			("   qfrozen_cnt == 0x%x, entries == %d, "
3547 			 "openings == %d, active == %d\n",
3548 			 devq->alloc_queue.qfrozen_cnt,
3549 			 devq->alloc_queue.entries,
3550 			 devq->alloc_openings,
3551 			 devq->alloc_active));
3552 
3553 	s = splsoftcam();
3554 	devq->alloc_queue.qfrozen_cnt++;
3555 	while ((devq->alloc_queue.entries > 0)
3556 	    && (devq->alloc_openings > 0)
3557 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3558 		struct	cam_ed_qinfo *qinfo;
3559 		struct	cam_ed *device;
3560 		union	ccb *work_ccb;
3561 		struct	cam_periph *drv;
3562 		struct	camq *drvq;
3563 
3564 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3565 							   CAMQ_HEAD);
3566 		device = qinfo->device;
3567 
3568 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3569 				("running device %p\n", device));
3570 
3571 		drvq = &device->drvq;
3572 
3573 #ifdef CAMDEBUG
3574 		if (drvq->entries <= 0) {
3575 			panic("xpt_run_dev_allocq: "
3576 			      "Device on queue without any work to do");
3577 		}
3578 #endif
3579 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3580 			devq->alloc_openings--;
3581 			devq->alloc_active++;
3582 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3583 			splx(s);
3584 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3585 				      drv->pinfo.priority);
3586 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3587 					("calling periph start\n"));
3588 			drv->periph_start(drv, work_ccb);
3589 		} else {
3590 			/*
3591 			 * Malloc failure in alloc_ccb
3592 			 */
3593 			/*
3594 			 * XXX add us to a list to be run from free_ccb
3595 			 * if we don't have any ccbs active on this
3596 			 * device queue otherwise we may never get run
3597 			 * again.
3598 			 */
3599 			break;
3600 		}
3601 
3602 		/* Raise IPL for possible insertion and test at top of loop */
3603 		s = splsoftcam();
3604 
3605 		if (drvq->entries > 0) {
3606 			/* We have more work.  Attempt to reschedule */
3607 			xpt_schedule_dev_allocq(bus, device);
3608 		}
3609 	}
3610 	devq->alloc_queue.qfrozen_cnt--;
3611 	splx(s);
3612 }
3613 
3614 static void
3615 xpt_run_dev_sendq(struct cam_eb *bus)
3616 {
3617 	struct	cam_devq *devq;
3618 	int	s;
3619 
3620 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3621 
3622 	devq = bus->sim->devq;
3623 
3624 	s = splcam();
3625 	devq->send_queue.qfrozen_cnt++;
3626 	splx(s);
3627 	s = splsoftcam();
3628 	while ((devq->send_queue.entries > 0)
3629 	    && (devq->send_openings > 0)) {
3630 		struct	cam_ed_qinfo *qinfo;
3631 		struct	cam_ed *device;
3632 		union ccb *work_ccb;
3633 		struct	cam_sim *sim;
3634 		int	ospl;
3635 
3636 		ospl = splcam();
3637 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3638 			splx(ospl);
3639 			break;
3640 		}
3641 
3642 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3643 							   CAMQ_HEAD);
3644 		device = qinfo->device;
3645 
3646 		/*
3647 		 * If the device has been "frozen", don't attempt
3648 		 * to run it.
3649 		 */
3650 		if (device->qfrozen_cnt > 0) {
3651 			splx(ospl);
3652 			continue;
3653 		}
3654 
3655 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3656 				("running device %p\n", device));
3657 
3658 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3659 		if (work_ccb == NULL) {
3660 			printf("device on run queue with no ccbs???\n");
3661 			splx(ospl);
3662 			continue;
3663 		}
3664 
3665 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3666 
3667 		 	if (num_highpower <= 0) {
3668 				/*
3669 				 * We got a high power command, but we
3670 				 * don't have any available slots.  Freeze
3671 				 * the device queue until we have a slot
3672 				 * available.
3673 				 */
3674 				device->qfrozen_cnt++;
3675 				STAILQ_INSERT_TAIL(&highpowerq,
3676 						   &work_ccb->ccb_h,
3677 						   xpt_links.stqe);
3678 
3679 				splx(ospl);
3680 				continue;
3681 			} else {
3682 				/*
3683 				 * Consume a high power slot while
3684 				 * this ccb runs.
3685 				 */
3686 				num_highpower--;
3687 			}
3688 		}
3689 		devq->active_dev = device;
3690 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3691 
3692 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3693 		splx(ospl);
3694 
3695 		devq->send_openings--;
3696 		devq->send_active++;
3697 
3698 		if (device->ccbq.queue.entries > 0)
3699 			xpt_schedule_dev_sendq(bus, device);
3700 
3701 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3702 			/*
3703 			 * The client wants to freeze the queue
3704 			 * after this CCB is sent.
3705 			 */
3706 			ospl = splcam();
3707 			device->qfrozen_cnt++;
3708 			splx(ospl);
3709 		}
3710 
3711 		splx(s);
3712 
3713 		/* In Target mode, the peripheral driver knows best... */
3714 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3715 			if ((device->inq_flags & SID_CmdQue) != 0
3716 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3717 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3718 			else
3719 				/*
3720 				 * Clear this in case of a retried CCB that
3721 				 * failed due to a rejected tag.
3722 				 */
3723 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3724 		}
3725 
3726 		/*
3727 		 * Device queues can be shared among multiple sim instances
3728 		 * that reside on different busses.  Use the SIM in the queue
3729 		 * CCB's path, rather than the one in the bus that was passed
3730 		 * into this function.
3731 		 */
3732 		sim = work_ccb->ccb_h.path->bus->sim;
3733 		(*(sim->sim_action))(sim, work_ccb);
3734 
3735 		ospl = splcam();
3736 		devq->active_dev = NULL;
3737 		splx(ospl);
3738 		/* Raise IPL for possible insertion and test at top of loop */
3739 		s = splsoftcam();
3740 	}
3741 	splx(s);
3742 	s = splcam();
3743 	devq->send_queue.qfrozen_cnt--;
3744 	splx(s);
3745 }
3746 
3747 /*
3748  * This function merges stuff from the slave ccb into the master ccb, while
3749  * keeping important fields in the master ccb constant.
3750  */
3751 void
3752 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3753 {
3754 	/*
3755 	 * Pull fields that are valid for peripheral drivers to set
3756 	 * into the master CCB along with the CCB "payload".
3757 	 */
3758 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3759 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3760 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3761 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3762 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3763 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3764 }
3765 
3766 void
3767 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3768 {
3769 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3770 	ccb_h->pinfo.priority = priority;
3771 	ccb_h->path = path;
3772 	ccb_h->path_id = path->bus->path_id;
3773 	if (path->target)
3774 		ccb_h->target_id = path->target->target_id;
3775 	else
3776 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3777 	if (path->device) {
3778 		ccb_h->target_lun = path->device->lun_id;
3779 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3780 	} else {
3781 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3782 	}
3783 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3784 	ccb_h->flags = 0;
3785 }
3786 
3787 /* Path manipulation functions */
3788 cam_status
3789 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3790 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3791 {
3792 	struct	   cam_path *path;
3793 	cam_status status;
3794 
3795 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3796 
3797 	if (path == NULL) {
3798 		status = CAM_RESRC_UNAVAIL;
3799 		return(status);
3800 	}
3801 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3802 	if (status != CAM_REQ_CMP) {
3803 		free(path, M_DEVBUF);
3804 		path = NULL;
3805 	}
3806 	*new_path_ptr = path;
3807 	return (status);
3808 }
3809 
3810 static cam_status
3811 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3812 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3813 {
3814 	struct	     cam_eb *bus;
3815 	struct	     cam_et *target;
3816 	struct	     cam_ed *device;
3817 	cam_status   status;
3818 	int	     s;
3819 
3820 	status = CAM_REQ_CMP;	/* Completed without error */
3821 	target = NULL;		/* Wildcarded */
3822 	device = NULL;		/* Wildcarded */
3823 
3824 	/*
3825 	 * We will potentially modify the EDT, so block interrupts
3826 	 * that may attempt to create cam paths.
3827 	 */
3828 	s = splcam();
3829 	bus = xpt_find_bus(path_id);
3830 	if (bus == NULL) {
3831 		status = CAM_PATH_INVALID;
3832 	} else {
3833 		target = xpt_find_target(bus, target_id);
3834 		if (target == NULL) {
3835 			/* Create one */
3836 			struct cam_et *new_target;
3837 
3838 			new_target = xpt_alloc_target(bus, target_id);
3839 			if (new_target == NULL) {
3840 				status = CAM_RESRC_UNAVAIL;
3841 			} else {
3842 				target = new_target;
3843 			}
3844 		}
3845 		if (target != NULL) {
3846 			device = xpt_find_device(target, lun_id);
3847 			if (device == NULL) {
3848 				/* Create one */
3849 				struct cam_ed *new_device;
3850 
3851 				new_device = xpt_alloc_device(bus,
3852 							      target,
3853 							      lun_id);
3854 				if (new_device == NULL) {
3855 					status = CAM_RESRC_UNAVAIL;
3856 				} else {
3857 					device = new_device;
3858 				}
3859 			}
3860 		}
3861 	}
3862 	splx(s);
3863 
3864 	/*
3865 	 * Only touch the user's data if we are successful.
3866 	 */
3867 	if (status == CAM_REQ_CMP) {
3868 		new_path->periph = perph;
3869 		new_path->bus = bus;
3870 		new_path->target = target;
3871 		new_path->device = device;
3872 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3873 	} else {
3874 		if (device != NULL)
3875 			xpt_release_device(bus, target, device);
3876 		if (target != NULL)
3877 			xpt_release_target(bus, target);
3878 		if (bus != NULL)
3879 			xpt_release_bus(bus);
3880 	}
3881 	return (status);
3882 }
3883 
3884 static void
3885 xpt_release_path(struct cam_path *path)
3886 {
3887 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3888 	if (path->device != NULL) {
3889 		xpt_release_device(path->bus, path->target, path->device);
3890 		path->device = NULL;
3891 	}
3892 	if (path->target != NULL) {
3893 		xpt_release_target(path->bus, path->target);
3894 		path->target = NULL;
3895 	}
3896 	if (path->bus != NULL) {
3897 		xpt_release_bus(path->bus);
3898 		path->bus = NULL;
3899 	}
3900 }
3901 
3902 void
3903 xpt_free_path(struct cam_path *path)
3904 {
3905 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3906 	xpt_release_path(path);
3907 	free(path, M_DEVBUF);
3908 }
3909 
3910 
3911 /*
3912  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3913  * in path1, 2 for match with wildcards in path2.
3914  */
3915 int
3916 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3917 {
3918 	int retval = 0;
3919 
3920 	if (path1->bus != path2->bus) {
3921 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3922 			retval = 1;
3923 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3924 			retval = 2;
3925 		else
3926 			return (-1);
3927 	}
3928 	if (path1->target != path2->target) {
3929 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3930 			if (retval == 0)
3931 				retval = 1;
3932 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3933 			retval = 2;
3934 		else
3935 			return (-1);
3936 	}
3937 	if (path1->device != path2->device) {
3938 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3939 			if (retval == 0)
3940 				retval = 1;
3941 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3942 			retval = 2;
3943 		else
3944 			return (-1);
3945 	}
3946 	return (retval);
3947 }
3948 
3949 void
3950 xpt_print_path(struct cam_path *path)
3951 {
3952 	if (path == NULL)
3953 		printf("(nopath): ");
3954 	else {
3955 		if (path->periph != NULL)
3956 			printf("(%s%d:", path->periph->periph_name,
3957 			       path->periph->unit_number);
3958 		else
3959 			printf("(noperiph:");
3960 
3961 		if (path->bus != NULL)
3962 			printf("%s%d:%d:", path->bus->sim->sim_name,
3963 			       path->bus->sim->unit_number,
3964 			       path->bus->sim->bus_id);
3965 		else
3966 			printf("nobus:");
3967 
3968 		if (path->target != NULL)
3969 			printf("%d:", path->target->target_id);
3970 		else
3971 			printf("X:");
3972 
3973 		if (path->device != NULL)
3974 			printf("%d): ", path->device->lun_id);
3975 		else
3976 			printf("X): ");
3977 	}
3978 }
3979 
3980 path_id_t
3981 xpt_path_path_id(struct cam_path *path)
3982 {
3983 	return(path->bus->path_id);
3984 }
3985 
3986 target_id_t
3987 xpt_path_target_id(struct cam_path *path)
3988 {
3989 	if (path->target != NULL)
3990 		return (path->target->target_id);
3991 	else
3992 		return (CAM_TARGET_WILDCARD);
3993 }
3994 
3995 lun_id_t
3996 xpt_path_lun_id(struct cam_path *path)
3997 {
3998 	if (path->device != NULL)
3999 		return (path->device->lun_id);
4000 	else
4001 		return (CAM_LUN_WILDCARD);
4002 }
4003 
4004 struct cam_sim *
4005 xpt_path_sim(struct cam_path *path)
4006 {
4007 	return (path->bus->sim);
4008 }
4009 
4010 struct cam_periph*
4011 xpt_path_periph(struct cam_path *path)
4012 {
4013 	return (path->periph);
4014 }
4015 
4016 /*
4017  * Release a CAM control block for the caller.  Remit the cost of the structure
4018  * to the device referenced by the path.  If the this device had no 'credits'
4019  * and peripheral drivers have registered async callbacks for this notification
4020  * call them now.
4021  */
4022 void
4023 xpt_release_ccb(union ccb *free_ccb)
4024 {
4025 	int	 s;
4026 	struct	 cam_path *path;
4027 	struct	 cam_ed *device;
4028 	struct	 cam_eb *bus;
4029 
4030 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4031 	path = free_ccb->ccb_h.path;
4032 	device = path->device;
4033 	bus = path->bus;
4034 	s = splsoftcam();
4035 	cam_ccbq_release_opening(&device->ccbq);
4036 	if (xpt_ccb_count > xpt_max_ccbs) {
4037 		xpt_free_ccb(free_ccb);
4038 		xpt_ccb_count--;
4039 	} else {
4040 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
4041 	}
4042 	bus->sim->devq->alloc_openings++;
4043 	bus->sim->devq->alloc_active--;
4044 	/* XXX Turn this into an inline function - xpt_run_device?? */
4045 	if ((device_is_alloc_queued(device) == 0)
4046 	 && (device->drvq.entries > 0)) {
4047 		xpt_schedule_dev_allocq(bus, device);
4048 	}
4049 	splx(s);
4050 	if (dev_allocq_is_runnable(bus->sim->devq))
4051 		xpt_run_dev_allocq(bus);
4052 }
4053 
4054 /* Functions accessed by SIM drivers */
4055 
4056 /*
4057  * A sim structure, listing the SIM entry points and instance
4058  * identification info is passed to xpt_bus_register to hook the SIM
4059  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4060  * for this new bus and places it in the array of busses and assigns
4061  * it a path_id.  The path_id may be influenced by "hard wiring"
4062  * information specified by the user.  Once interrupt services are
4063  * availible, the bus will be probed.
4064  */
4065 int32_t
4066 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4067 {
4068 	struct cam_eb *new_bus;
4069 	struct cam_eb *old_bus;
4070 	struct ccb_pathinq cpi;
4071 	int s;
4072 
4073 	sim->bus_id = bus;
4074 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4075 					  M_DEVBUF, M_NOWAIT);
4076 	if (new_bus == NULL) {
4077 		/* Couldn't satisfy request */
4078 		return (CAM_RESRC_UNAVAIL);
4079 	}
4080 
4081 	if (strcmp(sim->sim_name, "xpt") != 0) {
4082 
4083 		sim->path_id =
4084 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4085 	}
4086 
4087 	TAILQ_INIT(&new_bus->et_entries);
4088 	new_bus->path_id = sim->path_id;
4089 	new_bus->sim = sim;
4090 	timevalclear(&new_bus->last_reset);
4091 	new_bus->flags = 0;
4092 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4093 	new_bus->generation = 0;
4094 	s = splcam();
4095 	old_bus = TAILQ_FIRST(&xpt_busses);
4096 	while (old_bus != NULL
4097 	    && old_bus->path_id < new_bus->path_id)
4098 		old_bus = TAILQ_NEXT(old_bus, links);
4099 	if (old_bus != NULL)
4100 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4101 	else
4102 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4103 	bus_generation++;
4104 	splx(s);
4105 
4106 	/* Notify interested parties */
4107 	if (sim->path_id != CAM_XPT_PATH_ID) {
4108 		struct cam_path path;
4109 
4110 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4111 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4112 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4113 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4114 		xpt_action((union ccb *)&cpi);
4115 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4116 		xpt_release_path(&path);
4117 	}
4118 	return (CAM_SUCCESS);
4119 }
4120 
4121 int32_t
4122 xpt_bus_deregister(path_id_t pathid)
4123 {
4124 	struct cam_path bus_path;
4125 	cam_status status;
4126 
4127 	status = xpt_compile_path(&bus_path, NULL, pathid,
4128 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4129 	if (status != CAM_REQ_CMP)
4130 		return (status);
4131 
4132 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4133 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4134 
4135 	/* Release the reference count held while registered. */
4136 	xpt_release_bus(bus_path.bus);
4137 	xpt_release_path(&bus_path);
4138 
4139 	return (CAM_REQ_CMP);
4140 }
4141 
4142 static path_id_t
4143 xptnextfreepathid(void)
4144 {
4145 	struct cam_eb *bus;
4146 	path_id_t pathid;
4147 	char *strval;
4148 
4149 	pathid = 0;
4150 	bus = TAILQ_FIRST(&xpt_busses);
4151 retry:
4152 	/* Find an unoccupied pathid */
4153 	while (bus != NULL
4154 	    && bus->path_id <= pathid) {
4155 		if (bus->path_id == pathid)
4156 			pathid++;
4157 		bus = TAILQ_NEXT(bus, links);
4158 	}
4159 
4160 	/*
4161 	 * Ensure that this pathid is not reserved for
4162 	 * a bus that may be registered in the future.
4163 	 */
4164 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4165 		++pathid;
4166 		/* Start the search over */
4167 		goto retry;
4168 	}
4169 	return (pathid);
4170 }
4171 
4172 static path_id_t
4173 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4174 {
4175 	path_id_t pathid;
4176 	int i, dunit, val;
4177 	char buf[32], *strval;
4178 
4179 	pathid = CAM_XPT_PATH_ID;
4180 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4181 	i = -1;
4182 	while ((i = resource_locate(i, "scbus")) != -1) {
4183 		dunit = resource_query_unit(i);
4184 		if (dunit < 0)		/* unwired?! */
4185 			continue;
4186 		if (resource_string_value("scbus", dunit, "at", &strval) != 0)
4187 			continue;
4188 		if (strcmp(buf, strval) != 0)
4189 			continue;
4190 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4191 			if (sim_bus == val) {
4192 				pathid = dunit;
4193 				break;
4194 			}
4195 		} else if (sim_bus == 0) {
4196 			/* Unspecified matches bus 0 */
4197 			pathid = dunit;
4198 			break;
4199 		} else {
4200 			printf("Ambiguous scbus configuration for %s%d "
4201 			       "bus %d, cannot wire down.  The kernel "
4202 			       "config entry for scbus%d should "
4203 			       "specify a controller bus.\n"
4204 			       "Scbus will be assigned dynamically.\n",
4205 			       sim_name, sim_unit, sim_bus, dunit);
4206 			break;
4207 		}
4208 	}
4209 
4210 	if (pathid == CAM_XPT_PATH_ID)
4211 		pathid = xptnextfreepathid();
4212 	return (pathid);
4213 }
4214 
4215 void
4216 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4217 {
4218 	struct cam_eb *bus;
4219 	struct cam_et *target, *next_target;
4220 	struct cam_ed *device, *next_device;
4221 	int s;
4222 
4223 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4224 
4225 	/*
4226 	 * Most async events come from a CAM interrupt context.  In
4227 	 * a few cases, the error recovery code at the peripheral layer,
4228 	 * which may run from our SWI or a process context, may signal
4229 	 * deferred events with a call to xpt_async. Ensure async
4230 	 * notifications are serialized by blocking cam interrupts.
4231 	 */
4232 	s = splcam();
4233 
4234 	bus = path->bus;
4235 
4236 	if (async_code == AC_BUS_RESET) {
4237 		int s;
4238 
4239 		s = splclock();
4240 		/* Update our notion of when the last reset occurred */
4241 		microtime(&bus->last_reset);
4242 		splx(s);
4243 	}
4244 
4245 	for (target = TAILQ_FIRST(&bus->et_entries);
4246 	     target != NULL;
4247 	     target = next_target) {
4248 
4249 		next_target = TAILQ_NEXT(target, links);
4250 
4251 		if (path->target != target
4252 		 && path->target->target_id != CAM_TARGET_WILDCARD
4253 		 && target->target_id != CAM_TARGET_WILDCARD)
4254 			continue;
4255 
4256 		if (async_code == AC_SENT_BDR) {
4257 			int s;
4258 
4259 			/* Update our notion of when the last reset occurred */
4260 			s = splclock();
4261 			microtime(&path->target->last_reset);
4262 			splx(s);
4263 		}
4264 
4265 		for (device = TAILQ_FIRST(&target->ed_entries);
4266 		     device != NULL;
4267 		     device = next_device) {
4268 
4269 			next_device = TAILQ_NEXT(device, links);
4270 
4271 			if (path->device != device
4272 			 && path->device->lun_id != CAM_LUN_WILDCARD
4273 			 && device->lun_id != CAM_LUN_WILDCARD)
4274 				continue;
4275 
4276 			xpt_dev_async(async_code, bus, target,
4277 				      device, async_arg);
4278 
4279 			xpt_async_bcast(&device->asyncs, async_code,
4280 					path, async_arg);
4281 		}
4282 	}
4283 
4284 	/*
4285 	 * If this wasn't a fully wildcarded async, tell all
4286 	 * clients that want all async events.
4287 	 */
4288 	if (bus != xpt_periph->path->bus)
4289 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4290 				path, async_arg);
4291 	splx(s);
4292 }
4293 
4294 static void
4295 xpt_async_bcast(struct async_list *async_head,
4296 		u_int32_t async_code,
4297 		struct cam_path *path, void *async_arg)
4298 {
4299 	struct async_node *cur_entry;
4300 
4301 	cur_entry = SLIST_FIRST(async_head);
4302 	while (cur_entry != NULL) {
4303 		struct async_node *next_entry;
4304 		/*
4305 		 * Grab the next list entry before we call the current
4306 		 * entry's callback.  This is because the callback function
4307 		 * can delete its async callback entry.
4308 		 */
4309 		next_entry = SLIST_NEXT(cur_entry, links);
4310 		if ((cur_entry->event_enable & async_code) != 0)
4311 			cur_entry->callback(cur_entry->callback_arg,
4312 					    async_code, path,
4313 					    async_arg);
4314 		cur_entry = next_entry;
4315 	}
4316 }
4317 
4318 /*
4319  * Handle any per-device event notifications that require action by the XPT.
4320  */
4321 static void
4322 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4323 	      struct cam_ed *device, void *async_arg)
4324 {
4325 	cam_status status;
4326 	struct cam_path newpath;
4327 
4328 	/*
4329 	 * We only need to handle events for real devices.
4330 	 */
4331 	if (target->target_id == CAM_TARGET_WILDCARD
4332 	 || device->lun_id == CAM_LUN_WILDCARD)
4333 		return;
4334 
4335 	/*
4336 	 * We need our own path with wildcards expanded to
4337 	 * handle certain types of events.
4338 	 */
4339 	if ((async_code == AC_SENT_BDR)
4340 	 || (async_code == AC_BUS_RESET)
4341 	 || (async_code == AC_INQ_CHANGED))
4342 		status = xpt_compile_path(&newpath, NULL,
4343 					  bus->path_id,
4344 					  target->target_id,
4345 					  device->lun_id);
4346 	else
4347 		status = CAM_REQ_CMP_ERR;
4348 
4349 	if (status == CAM_REQ_CMP) {
4350 
4351 		/*
4352 		 * Allow transfer negotiation to occur in a
4353 		 * tag free environment.
4354 		 */
4355 		if (async_code == AC_SENT_BDR
4356 		 || async_code == AC_BUS_RESET)
4357 			xpt_toggle_tags(&newpath);
4358 
4359 		if (async_code == AC_INQ_CHANGED) {
4360 			/*
4361 			 * We've sent a start unit command, or
4362 			 * something similar to a device that
4363 			 * may have caused its inquiry data to
4364 			 * change. So we re-scan the device to
4365 			 * refresh the inquiry data for it.
4366 			 */
4367 			xpt_scan_lun(newpath.periph, &newpath,
4368 				     CAM_EXPECT_INQ_CHANGE, NULL);
4369 		}
4370 		xpt_release_path(&newpath);
4371 	} else if (async_code == AC_LOST_DEVICE) {
4372 		device->flags |= CAM_DEV_UNCONFIGURED;
4373 	} else if (async_code == AC_TRANSFER_NEG) {
4374 		struct ccb_trans_settings *settings;
4375 
4376 		settings = (struct ccb_trans_settings *)async_arg;
4377 		xpt_set_transfer_settings(settings, device,
4378 					  /*async_update*/TRUE);
4379 	}
4380 }
4381 
4382 u_int32_t
4383 xpt_freeze_devq(struct cam_path *path, u_int count)
4384 {
4385 	int s;
4386 	struct ccb_hdr *ccbh;
4387 
4388 	s = splcam();
4389 	path->device->qfrozen_cnt += count;
4390 
4391 	/*
4392 	 * Mark the last CCB in the queue as needing
4393 	 * to be requeued if the driver hasn't
4394 	 * changed it's state yet.  This fixes a race
4395 	 * where a ccb is just about to be queued to
4396 	 * a controller driver when it's interrupt routine
4397 	 * freezes the queue.  To completly close the
4398 	 * hole, controller drives must check to see
4399 	 * if a ccb's status is still CAM_REQ_INPROG
4400 	 * under spl protection just before they queue
4401 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4402 	 * an example.
4403 	 */
4404 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4405 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4406 		ccbh->status = CAM_REQUEUE_REQ;
4407 	splx(s);
4408 	return (path->device->qfrozen_cnt);
4409 }
4410 
4411 u_int32_t
4412 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4413 {
4414 	sim->devq->send_queue.qfrozen_cnt += count;
4415 	if (sim->devq->active_dev != NULL) {
4416 		struct ccb_hdr *ccbh;
4417 
4418 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4419 				  ccb_hdr_tailq);
4420 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4421 			ccbh->status = CAM_REQUEUE_REQ;
4422 	}
4423 	return (sim->devq->send_queue.qfrozen_cnt);
4424 }
4425 
4426 static void
4427 xpt_release_devq_timeout(void *arg)
4428 {
4429 	struct cam_ed *device;
4430 
4431 	device = (struct cam_ed *)arg;
4432 
4433 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4434 }
4435 
4436 void
4437 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4438 {
4439 	xpt_release_devq_device(path->device, count, run_queue);
4440 }
4441 
4442 static void
4443 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4444 {
4445 	int	rundevq;
4446 	int	s0, s1;
4447 
4448 	rundevq = 0;
4449 	s0 = splsoftcam();
4450 	s1 = splcam();
4451 	if (dev->qfrozen_cnt > 0) {
4452 
4453 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4454 		dev->qfrozen_cnt -= count;
4455 		if (dev->qfrozen_cnt == 0) {
4456 
4457 			/*
4458 			 * No longer need to wait for a successful
4459 			 * command completion.
4460 			 */
4461 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4462 
4463 			/*
4464 			 * Remove any timeouts that might be scheduled
4465 			 * to release this queue.
4466 			 */
4467 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4468 				untimeout(xpt_release_devq_timeout, dev,
4469 					  dev->c_handle);
4470 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4471 			}
4472 
4473 			/*
4474 			 * Now that we are unfrozen schedule the
4475 			 * device so any pending transactions are
4476 			 * run.
4477 			 */
4478 			if ((dev->ccbq.queue.entries > 0)
4479 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4480 			 && (run_queue != 0)) {
4481 				rundevq = 1;
4482 			}
4483 		}
4484 	}
4485 	splx(s1);
4486 	if (rundevq != 0)
4487 		xpt_run_dev_sendq(dev->target->bus);
4488 	splx(s0);
4489 }
4490 
4491 void
4492 xpt_release_simq(struct cam_sim *sim, int run_queue)
4493 {
4494 	int	s;
4495 	struct	camq *sendq;
4496 
4497 	sendq = &(sim->devq->send_queue);
4498 	s = splcam();
4499 	if (sendq->qfrozen_cnt > 0) {
4500 
4501 		sendq->qfrozen_cnt--;
4502 		if (sendq->qfrozen_cnt == 0) {
4503 			struct cam_eb *bus;
4504 
4505 			/*
4506 			 * If there is a timeout scheduled to release this
4507 			 * sim queue, remove it.  The queue frozen count is
4508 			 * already at 0.
4509 			 */
4510 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4511 				untimeout(xpt_release_simq_timeout, sim,
4512 					  sim->c_handle);
4513 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4514 			}
4515 			bus = xpt_find_bus(sim->path_id);
4516 			splx(s);
4517 
4518 			if (run_queue) {
4519 				/*
4520 				 * Now that we are unfrozen run the send queue.
4521 				 */
4522 				xpt_run_dev_sendq(bus);
4523 			}
4524 			xpt_release_bus(bus);
4525 		} else
4526 			splx(s);
4527 	} else
4528 		splx(s);
4529 }
4530 
4531 static void
4532 xpt_release_simq_timeout(void *arg)
4533 {
4534 	struct cam_sim *sim;
4535 
4536 	sim = (struct cam_sim *)arg;
4537 	xpt_release_simq(sim, /* run_queue */ TRUE);
4538 }
4539 
4540 void
4541 xpt_done(union ccb *done_ccb)
4542 {
4543 	int s;
4544 
4545 	s = splcam();
4546 
4547 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4548 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4549 		/*
4550 		 * Queue up the request for handling by our SWI handler
4551 		 * any of the "non-immediate" type of ccbs.
4552 		 */
4553 		switch (done_ccb->ccb_h.path->periph->type) {
4554 		case CAM_PERIPH_BIO:
4555 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4556 					  sim_links.tqe);
4557 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4558 			setsoftcambio();
4559 			break;
4560 		case CAM_PERIPH_NET:
4561 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4562 					  sim_links.tqe);
4563 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4564 			setsoftcamnet();
4565 			break;
4566 		}
4567 	}
4568 	splx(s);
4569 }
4570 
4571 union ccb *
4572 xpt_alloc_ccb()
4573 {
4574 	union ccb *new_ccb;
4575 
4576 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4577 	return (new_ccb);
4578 }
4579 
4580 void
4581 xpt_free_ccb(union ccb *free_ccb)
4582 {
4583 	free(free_ccb, M_DEVBUF);
4584 }
4585 
4586 
4587 
4588 /* Private XPT functions */
4589 
4590 /*
4591  * Get a CAM control block for the caller. Charge the structure to the device
4592  * referenced by the path.  If the this device has no 'credits' then the
4593  * device already has the maximum number of outstanding operations under way
4594  * and we return NULL. If we don't have sufficient resources to allocate more
4595  * ccbs, we also return NULL.
4596  */
4597 static union ccb *
4598 xpt_get_ccb(struct cam_ed *device)
4599 {
4600 	union ccb *new_ccb;
4601 	int s;
4602 
4603 	s = splsoftcam();
4604 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4605 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4606                 if (new_ccb == NULL) {
4607 			splx(s);
4608 			return (NULL);
4609 		}
4610 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4611 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4612 				  xpt_links.sle);
4613 		xpt_ccb_count++;
4614 	}
4615 	cam_ccbq_take_opening(&device->ccbq);
4616 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4617 	splx(s);
4618 	return (new_ccb);
4619 }
4620 
4621 static void
4622 xpt_release_bus(struct cam_eb *bus)
4623 {
4624 	int s;
4625 
4626 	s = splcam();
4627 	if ((--bus->refcount == 0)
4628 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4629 		TAILQ_REMOVE(&xpt_busses, bus, links);
4630 		bus_generation++;
4631 		splx(s);
4632 		free(bus, M_DEVBUF);
4633 	} else
4634 		splx(s);
4635 }
4636 
4637 static struct cam_et *
4638 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4639 {
4640 	struct cam_et *target;
4641 
4642 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4643 	if (target != NULL) {
4644 		struct cam_et *cur_target;
4645 
4646 		TAILQ_INIT(&target->ed_entries);
4647 		target->bus = bus;
4648 		target->target_id = target_id;
4649 		target->refcount = 1;
4650 		target->generation = 0;
4651 		timevalclear(&target->last_reset);
4652 		/*
4653 		 * Hold a reference to our parent bus so it
4654 		 * will not go away before we do.
4655 		 */
4656 		bus->refcount++;
4657 
4658 		/* Insertion sort into our bus's target list */
4659 		cur_target = TAILQ_FIRST(&bus->et_entries);
4660 		while (cur_target != NULL && cur_target->target_id < target_id)
4661 			cur_target = TAILQ_NEXT(cur_target, links);
4662 
4663 		if (cur_target != NULL) {
4664 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4665 		} else {
4666 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4667 		}
4668 		bus->generation++;
4669 	}
4670 	return (target);
4671 }
4672 
4673 static void
4674 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4675 {
4676 	int s;
4677 
4678 	s = splcam();
4679 	if ((--target->refcount == 0)
4680 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4681 		TAILQ_REMOVE(&bus->et_entries, target, links);
4682 		bus->generation++;
4683 		splx(s);
4684 		free(target, M_DEVBUF);
4685 		xpt_release_bus(bus);
4686 	} else
4687 		splx(s);
4688 }
4689 
4690 static struct cam_ed *
4691 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4692 {
4693 	struct	   cam_ed *device;
4694 	struct	   cam_devq *devq;
4695 	cam_status status;
4696 
4697 	/* Make space for us in the device queue on our bus */
4698 	devq = bus->sim->devq;
4699 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4700 
4701 	if (status != CAM_REQ_CMP) {
4702 		device = NULL;
4703 	} else {
4704 		device = (struct cam_ed *)malloc(sizeof(*device),
4705 						 M_DEVBUF, M_NOWAIT);
4706 	}
4707 
4708 	if (device != NULL) {
4709 		struct cam_ed *cur_device;
4710 
4711 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4712 		device->alloc_ccb_entry.device = device;
4713 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4714 		device->send_ccb_entry.device = device;
4715 		device->target = target;
4716 		device->lun_id = lun_id;
4717 		/* Initialize our queues */
4718 		if (camq_init(&device->drvq, 0) != 0) {
4719 			free(device, M_DEVBUF);
4720 			return (NULL);
4721 		}
4722 		if (cam_ccbq_init(&device->ccbq,
4723 				  bus->sim->max_dev_openings) != 0) {
4724 			camq_fini(&device->drvq);
4725 			free(device, M_DEVBUF);
4726 			return (NULL);
4727 		}
4728 		SLIST_INIT(&device->asyncs);
4729 		SLIST_INIT(&device->periphs);
4730 		device->generation = 0;
4731 		device->owner = NULL;
4732 		/*
4733 		 * Take the default quirk entry until we have inquiry
4734 		 * data and can determine a better quirk to use.
4735 		 */
4736 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4737 		bzero(&device->inq_data, sizeof(device->inq_data));
4738 		device->inq_flags = 0;
4739 		device->queue_flags = 0;
4740 		device->serial_num = NULL;
4741 		device->serial_num_len = 0;
4742 		device->qfrozen_cnt = 0;
4743 		device->flags = CAM_DEV_UNCONFIGURED;
4744 		device->tag_delay_count = 0;
4745 		device->refcount = 1;
4746 		callout_handle_init(&device->c_handle);
4747 
4748 		/*
4749 		 * Hold a reference to our parent target so it
4750 		 * will not go away before we do.
4751 		 */
4752 		target->refcount++;
4753 
4754 		/*
4755 		 * XXX should be limited by number of CCBs this bus can
4756 		 * do.
4757 		 */
4758 		xpt_max_ccbs += device->ccbq.devq_openings;
4759 		/* Insertion sort into our target's device list */
4760 		cur_device = TAILQ_FIRST(&target->ed_entries);
4761 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4762 			cur_device = TAILQ_NEXT(cur_device, links);
4763 		if (cur_device != NULL) {
4764 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4765 		} else {
4766 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4767 		}
4768 		target->generation++;
4769 	}
4770 	return (device);
4771 }
4772 
4773 static void
4774 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4775 		   struct cam_ed *device)
4776 {
4777 	int s;
4778 
4779 	s = splcam();
4780 	if ((--device->refcount == 0)
4781 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
4782 		struct cam_devq *devq;
4783 
4784 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4785 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4786 			panic("Removing device while still queued for ccbs");
4787 
4788 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4789 				untimeout(xpt_release_devq_timeout, device,
4790 					  device->c_handle);
4791 
4792 		TAILQ_REMOVE(&target->ed_entries, device,links);
4793 		target->generation++;
4794 		xpt_max_ccbs -= device->ccbq.devq_openings;
4795 		/* Release our slot in the devq */
4796 		devq = bus->sim->devq;
4797 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4798 		splx(s);
4799 		free(device, M_DEVBUF);
4800 		xpt_release_target(bus, target);
4801 	} else
4802 		splx(s);
4803 }
4804 
4805 static u_int32_t
4806 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4807 {
4808 	int	s;
4809 	int	diff;
4810 	int	result;
4811 	struct	cam_ed *dev;
4812 
4813 	dev = path->device;
4814 	s = splsoftcam();
4815 
4816 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4817 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4818 	if (result == CAM_REQ_CMP && (diff < 0)) {
4819 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4820 	}
4821 	/* Adjust the global limit */
4822 	xpt_max_ccbs += diff;
4823 	splx(s);
4824 	return (result);
4825 }
4826 
4827 static struct cam_eb *
4828 xpt_find_bus(path_id_t path_id)
4829 {
4830 	struct cam_eb *bus;
4831 
4832 	for (bus = TAILQ_FIRST(&xpt_busses);
4833 	     bus != NULL;
4834 	     bus = TAILQ_NEXT(bus, links)) {
4835 		if (bus->path_id == path_id) {
4836 			bus->refcount++;
4837 			break;
4838 		}
4839 	}
4840 	return (bus);
4841 }
4842 
4843 static struct cam_et *
4844 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4845 {
4846 	struct cam_et *target;
4847 
4848 	for (target = TAILQ_FIRST(&bus->et_entries);
4849 	     target != NULL;
4850 	     target = TAILQ_NEXT(target, links)) {
4851 		if (target->target_id == target_id) {
4852 			target->refcount++;
4853 			break;
4854 		}
4855 	}
4856 	return (target);
4857 }
4858 
4859 static struct cam_ed *
4860 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4861 {
4862 	struct cam_ed *device;
4863 
4864 	for (device = TAILQ_FIRST(&target->ed_entries);
4865 	     device != NULL;
4866 	     device = TAILQ_NEXT(device, links)) {
4867 		if (device->lun_id == lun_id) {
4868 			device->refcount++;
4869 			break;
4870 		}
4871 	}
4872 	return (device);
4873 }
4874 
4875 typedef struct {
4876 	union	ccb *request_ccb;
4877 	struct 	ccb_pathinq *cpi;
4878 	int	pending_count;
4879 } xpt_scan_bus_info;
4880 
4881 /*
4882  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4883  * As the scan progresses, xpt_scan_bus is used as the
4884  * callback on completion function.
4885  */
4886 static void
4887 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4888 {
4889 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4890 		  ("xpt_scan_bus\n"));
4891 	switch (request_ccb->ccb_h.func_code) {
4892 	case XPT_SCAN_BUS:
4893 	{
4894 		xpt_scan_bus_info *scan_info;
4895 		union	ccb *work_ccb;
4896 		struct	cam_path *path;
4897 		u_int	i;
4898 		u_int	max_target;
4899 		u_int	initiator_id;
4900 
4901 		/* Find out the characteristics of the bus */
4902 		work_ccb = xpt_alloc_ccb();
4903 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4904 			      request_ccb->ccb_h.pinfo.priority);
4905 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4906 		xpt_action(work_ccb);
4907 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4908 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4909 			xpt_free_ccb(work_ccb);
4910 			xpt_done(request_ccb);
4911 			return;
4912 		}
4913 
4914 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4915 			/*
4916 			 * Can't scan the bus on an adapter that
4917 			 * cannot perform the initiator role.
4918 			 */
4919 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4920 			xpt_free_ccb(work_ccb);
4921 			xpt_done(request_ccb);
4922 			return;
4923 		}
4924 
4925 		/* Save some state for use while we probe for devices */
4926 		scan_info = (xpt_scan_bus_info *)
4927 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
4928 		scan_info->request_ccb = request_ccb;
4929 		scan_info->cpi = &work_ccb->cpi;
4930 
4931 		/* Cache on our stack so we can work asynchronously */
4932 		max_target = scan_info->cpi->max_target;
4933 		initiator_id = scan_info->cpi->initiator_id;
4934 
4935 		/*
4936 		 * Don't count the initiator if the
4937 		 * initiator is addressable.
4938 		 */
4939 		scan_info->pending_count = max_target + 1;
4940 		if (initiator_id <= max_target)
4941 			scan_info->pending_count--;
4942 
4943 		for (i = 0; i <= max_target; i++) {
4944 			cam_status status;
4945 		 	if (i == initiator_id)
4946 				continue;
4947 
4948 			status = xpt_create_path(&path, xpt_periph,
4949 						 request_ccb->ccb_h.path_id,
4950 						 i, 0);
4951 			if (status != CAM_REQ_CMP) {
4952 				printf("xpt_scan_bus: xpt_create_path failed"
4953 				       " with status %#x, bus scan halted\n",
4954 				       status);
4955 				break;
4956 			}
4957 			work_ccb = xpt_alloc_ccb();
4958 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4959 				      request_ccb->ccb_h.pinfo.priority);
4960 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4961 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4962 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4963 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4964 #if 0
4965 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4966 				request_ccb->ccb_h.path_id, i, 0);
4967 #endif
4968 			xpt_action(work_ccb);
4969 		}
4970 		break;
4971 	}
4972 	case XPT_SCAN_LUN:
4973 	{
4974 		xpt_scan_bus_info *scan_info;
4975 		path_id_t path_id;
4976 		target_id_t target_id;
4977 		lun_id_t lun_id;
4978 
4979 		/* Reuse the same CCB to query if a device was really found */
4980 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4981 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4982 			      request_ccb->ccb_h.pinfo.priority);
4983 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4984 
4985 		path_id = request_ccb->ccb_h.path_id;
4986 		target_id = request_ccb->ccb_h.target_id;
4987 		lun_id = request_ccb->ccb_h.target_lun;
4988 		xpt_action(request_ccb);
4989 
4990 #if 0
4991 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
4992 			path_id, target_id, lun_id);
4993 #endif
4994 
4995 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
4996 			struct cam_ed *device;
4997 			struct cam_et *target;
4998 			int s, phl;
4999 
5000 			/*
5001 			 * If we already probed lun 0 successfully, or
5002 			 * we have additional configured luns on this
5003 			 * target that might have "gone away", go onto
5004 			 * the next lun.
5005 			 */
5006 			target = request_ccb->ccb_h.path->target;
5007 			/*
5008 			 * We may touch devices that we don't
5009 			 * hold references too, so ensure they
5010 			 * don't disappear out from under us.
5011 			 * The target above is referenced by the
5012 			 * path in the request ccb.
5013 			 */
5014 			phl = 0;
5015 			s = splcam();
5016 			device = TAILQ_FIRST(&target->ed_entries);
5017 			if (device != NULL) {
5018 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
5019 				if (device->lun_id == 0)
5020 					device = TAILQ_NEXT(device, links);
5021 			}
5022 			splx(s);
5023 			if ((lun_id != 0) || (device != NULL)) {
5024 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5025 					lun_id++;
5026 			}
5027 		} else {
5028 			struct cam_ed *device;
5029 
5030 			device = request_ccb->ccb_h.path->device;
5031 
5032 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5033 				/* Try the next lun */
5034 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
5035 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
5036 					lun_id++;
5037 			}
5038 		}
5039 
5040 		xpt_free_path(request_ccb->ccb_h.path);
5041 
5042 		/* Check Bounds */
5043 		if ((lun_id == request_ccb->ccb_h.target_lun)
5044 		 || lun_id > scan_info->cpi->max_lun) {
5045 			/* We're done */
5046 
5047 			xpt_free_ccb(request_ccb);
5048 			scan_info->pending_count--;
5049 			if (scan_info->pending_count == 0) {
5050 				xpt_free_ccb((union ccb *)scan_info->cpi);
5051 				request_ccb = scan_info->request_ccb;
5052 				free(scan_info, M_TEMP);
5053 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5054 				xpt_done(request_ccb);
5055 			}
5056 		} else {
5057 			/* Try the next device */
5058 			struct cam_path *path;
5059 			cam_status status;
5060 
5061 			path = request_ccb->ccb_h.path;
5062 			status = xpt_create_path(&path, xpt_periph,
5063 						 path_id, target_id, lun_id);
5064 			if (status != CAM_REQ_CMP) {
5065 				printf("xpt_scan_bus: xpt_create_path failed "
5066 				       "with status %#x, halting LUN scan\n",
5067 			 	       status);
5068 				xpt_free_ccb(request_ccb);
5069 				scan_info->pending_count--;
5070 				if (scan_info->pending_count == 0) {
5071 					xpt_free_ccb(
5072 						(union ccb *)scan_info->cpi);
5073 					request_ccb = scan_info->request_ccb;
5074 					free(scan_info, M_TEMP);
5075 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5076 					xpt_done(request_ccb);
5077 					break;
5078 				}
5079 			}
5080 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5081 				      request_ccb->ccb_h.pinfo.priority);
5082 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5083 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5084 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5085 			request_ccb->crcn.flags =
5086 				scan_info->request_ccb->crcn.flags;
5087 #if 0
5088 			xpt_print_path(path);
5089 			printf("xpt_scan bus probing\n");
5090 #endif
5091 			xpt_action(request_ccb);
5092 		}
5093 		break;
5094 	}
5095 	default:
5096 		break;
5097 	}
5098 }
5099 
5100 typedef enum {
5101 	PROBE_TUR,
5102 	PROBE_INQUIRY,
5103 	PROBE_FULL_INQUIRY,
5104 	PROBE_MODE_SENSE,
5105 	PROBE_SERIAL_NUM,
5106 	PROBE_TUR_FOR_NEGOTIATION
5107 } probe_action;
5108 
5109 typedef enum {
5110 	PROBE_INQUIRY_CKSUM	= 0x01,
5111 	PROBE_SERIAL_CKSUM	= 0x02,
5112 	PROBE_NO_ANNOUNCE	= 0x04
5113 } probe_flags;
5114 
5115 typedef struct {
5116 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5117 	probe_action	action;
5118 	union ccb	saved_ccb;
5119 	probe_flags	flags;
5120 	MD5_CTX		context;
5121 	u_int8_t	digest[16];
5122 } probe_softc;
5123 
5124 static void
5125 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5126 	     cam_flags flags, union ccb *request_ccb)
5127 {
5128 	struct ccb_pathinq cpi;
5129 	cam_status status;
5130 	struct cam_path *new_path;
5131 	struct cam_periph *old_periph;
5132 	int s;
5133 
5134 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5135 		  ("xpt_scan_lun\n"));
5136 
5137 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5138 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5139 	xpt_action((union ccb *)&cpi);
5140 
5141 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5142 		if (request_ccb != NULL) {
5143 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5144 			xpt_done(request_ccb);
5145 		}
5146 		return;
5147 	}
5148 
5149 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5150 		/*
5151 		 * Can't scan the bus on an adapter that
5152 		 * cannot perform the initiator role.
5153 		 */
5154 		if (request_ccb != NULL) {
5155 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5156 			xpt_done(request_ccb);
5157 		}
5158 		return;
5159 	}
5160 
5161 	if (request_ccb == NULL) {
5162 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5163 		if (request_ccb == NULL) {
5164 			xpt_print_path(path);
5165 			printf("xpt_scan_lun: can't allocate CCB, can't "
5166 			       "continue\n");
5167 			return;
5168 		}
5169 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5170 		if (new_path == NULL) {
5171 			xpt_print_path(path);
5172 			printf("xpt_scan_lun: can't allocate path, can't "
5173 			       "continue\n");
5174 			free(request_ccb, M_TEMP);
5175 			return;
5176 		}
5177 		status = xpt_compile_path(new_path, xpt_periph,
5178 					  path->bus->path_id,
5179 					  path->target->target_id,
5180 					  path->device->lun_id);
5181 
5182 		if (status != CAM_REQ_CMP) {
5183 			xpt_print_path(path);
5184 			printf("xpt_scan_lun: can't compile path, can't "
5185 			       "continue\n");
5186 			free(request_ccb, M_TEMP);
5187 			free(new_path, M_TEMP);
5188 			return;
5189 		}
5190 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5191 		request_ccb->ccb_h.cbfcnp = xptscandone;
5192 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5193 		request_ccb->crcn.flags = flags;
5194 	}
5195 
5196 	s = splsoftcam();
5197 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5198 		probe_softc *softc;
5199 
5200 		softc = (probe_softc *)old_periph->softc;
5201 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5202 				  periph_links.tqe);
5203 	} else {
5204 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5205 					  probestart, "probe",
5206 					  CAM_PERIPH_BIO,
5207 					  request_ccb->ccb_h.path, NULL, 0,
5208 					  request_ccb);
5209 
5210 		if (status != CAM_REQ_CMP) {
5211 			xpt_print_path(path);
5212 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5213 			       "error, can't continue probe\n");
5214 			request_ccb->ccb_h.status = status;
5215 			xpt_done(request_ccb);
5216 		}
5217 	}
5218 	splx(s);
5219 }
5220 
5221 static void
5222 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5223 {
5224 	xpt_release_path(done_ccb->ccb_h.path);
5225 	free(done_ccb->ccb_h.path, M_TEMP);
5226 	free(done_ccb, M_TEMP);
5227 }
5228 
5229 static cam_status
5230 proberegister(struct cam_periph *periph, void *arg)
5231 {
5232 	union ccb *request_ccb;	/* CCB representing the probe request */
5233 	probe_softc *softc;
5234 
5235 	request_ccb = (union ccb *)arg;
5236 	if (periph == NULL) {
5237 		printf("proberegister: periph was NULL!!\n");
5238 		return(CAM_REQ_CMP_ERR);
5239 	}
5240 
5241 	if (request_ccb == NULL) {
5242 		printf("proberegister: no probe CCB, "
5243 		       "can't register device\n");
5244 		return(CAM_REQ_CMP_ERR);
5245 	}
5246 
5247 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5248 
5249 	if (softc == NULL) {
5250 		printf("proberegister: Unable to probe new device. "
5251 		       "Unable to allocate softc\n");
5252 		return(CAM_REQ_CMP_ERR);
5253 	}
5254 	TAILQ_INIT(&softc->request_ccbs);
5255 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5256 			  periph_links.tqe);
5257 	softc->flags = 0;
5258 	periph->softc = softc;
5259 	cam_periph_acquire(periph);
5260 	/*
5261 	 * Ensure we've waited at least a bus settle
5262 	 * delay before attempting to probe the device.
5263 	 * For HBAs that don't do bus resets, this won't make a difference.
5264 	 */
5265 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5266 				      SCSI_DELAY);
5267 	probeschedule(periph);
5268 	return(CAM_REQ_CMP);
5269 }
5270 
5271 static void
5272 probeschedule(struct cam_periph *periph)
5273 {
5274 	struct ccb_pathinq cpi;
5275 	union ccb *ccb;
5276 	probe_softc *softc;
5277 
5278 	softc = (probe_softc *)periph->softc;
5279 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5280 
5281 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5282 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5283 	xpt_action((union ccb *)&cpi);
5284 
5285 	/*
5286 	 * If a device has gone away and another device, or the same one,
5287 	 * is back in the same place, it should have a unit attention
5288 	 * condition pending.  It will not report the unit attention in
5289 	 * response to an inquiry, which may leave invalid transfer
5290 	 * negotiations in effect.  The TUR will reveal the unit attention
5291 	 * condition.  Only send the TUR for lun 0, since some devices
5292 	 * will get confused by commands other than inquiry to non-existent
5293 	 * luns.  If you think a device has gone away start your scan from
5294 	 * lun 0.  This will insure that any bogus transfer settings are
5295 	 * invalidated.
5296 	 *
5297 	 * If we haven't seen the device before and the controller supports
5298 	 * some kind of transfer negotiation, negotiate with the first
5299 	 * sent command if no bus reset was performed at startup.  This
5300 	 * ensures that the device is not confused by transfer negotiation
5301 	 * settings left over by loader or BIOS action.
5302 	 */
5303 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5304 	 && (ccb->ccb_h.target_lun == 0)) {
5305 		softc->action = PROBE_TUR;
5306 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5307 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5308 		proberequestdefaultnegotiation(periph);
5309 		softc->action = PROBE_INQUIRY;
5310 	} else {
5311 		softc->action = PROBE_INQUIRY;
5312 	}
5313 
5314 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5315 		softc->flags |= PROBE_NO_ANNOUNCE;
5316 	else
5317 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5318 
5319 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5320 }
5321 
5322 static void
5323 probestart(struct cam_periph *periph, union ccb *start_ccb)
5324 {
5325 	/* Probe the device that our peripheral driver points to */
5326 	struct ccb_scsiio *csio;
5327 	probe_softc *softc;
5328 
5329 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5330 
5331 	softc = (probe_softc *)periph->softc;
5332 	csio = &start_ccb->csio;
5333 
5334 	switch (softc->action) {
5335 	case PROBE_TUR:
5336 	case PROBE_TUR_FOR_NEGOTIATION:
5337 	{
5338 		scsi_test_unit_ready(csio,
5339 				     /*retries*/4,
5340 				     probedone,
5341 				     MSG_SIMPLE_Q_TAG,
5342 				     SSD_FULL_SIZE,
5343 				     /*timeout*/60000);
5344 		break;
5345 	}
5346 	case PROBE_INQUIRY:
5347 	case PROBE_FULL_INQUIRY:
5348 	{
5349 		u_int inquiry_len;
5350 		struct scsi_inquiry_data *inq_buf;
5351 
5352 		inq_buf = &periph->path->device->inq_data;
5353 		/*
5354 		 * If the device is currently configured, we calculate an
5355 		 * MD5 checksum of the inquiry data, and if the serial number
5356 		 * length is greater than 0, add the serial number data
5357 		 * into the checksum as well.  Once the inquiry and the
5358 		 * serial number check finish, we attempt to figure out
5359 		 * whether we still have the same device.
5360 		 */
5361 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5362 
5363 			MD5Init(&softc->context);
5364 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5365 				  sizeof(struct scsi_inquiry_data));
5366 			softc->flags |= PROBE_INQUIRY_CKSUM;
5367 			if (periph->path->device->serial_num_len > 0) {
5368 				MD5Update(&softc->context,
5369 					  periph->path->device->serial_num,
5370 					  periph->path->device->serial_num_len);
5371 				softc->flags |= PROBE_SERIAL_CKSUM;
5372 			}
5373 			MD5Final(softc->digest, &softc->context);
5374 		}
5375 
5376 		if (softc->action == PROBE_INQUIRY)
5377 			inquiry_len = SHORT_INQUIRY_LENGTH;
5378 		else
5379 			inquiry_len = inq_buf->additional_length + 5;
5380 
5381 		scsi_inquiry(csio,
5382 			     /*retries*/4,
5383 			     probedone,
5384 			     MSG_SIMPLE_Q_TAG,
5385 			     (u_int8_t *)inq_buf,
5386 			     inquiry_len,
5387 			     /*evpd*/FALSE,
5388 			     /*page_code*/0,
5389 			     SSD_MIN_SIZE,
5390 			     /*timeout*/60 * 1000);
5391 		break;
5392 	}
5393 	case PROBE_MODE_SENSE:
5394 	{
5395 		void  *mode_buf;
5396 		int    mode_buf_len;
5397 
5398 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5399 			     + sizeof(struct scsi_mode_blk_desc)
5400 			     + sizeof(struct scsi_control_page);
5401 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5402 		if (mode_buf != NULL) {
5403 	                scsi_mode_sense(csio,
5404 					/*retries*/4,
5405 					probedone,
5406 					MSG_SIMPLE_Q_TAG,
5407 					/*dbd*/FALSE,
5408 					SMS_PAGE_CTRL_CURRENT,
5409 					SMS_CONTROL_MODE_PAGE,
5410 					mode_buf,
5411 					mode_buf_len,
5412 					SSD_FULL_SIZE,
5413 					/*timeout*/60000);
5414 			break;
5415 		}
5416 		xpt_print_path(periph->path);
5417 		printf("Unable to mode sense control page - malloc failure\n");
5418 		softc->action = PROBE_SERIAL_NUM;
5419 		/* FALLTHROUGH */
5420 	}
5421 	case PROBE_SERIAL_NUM:
5422 	{
5423 		struct scsi_vpd_unit_serial_number *serial_buf;
5424 		struct cam_ed* device;
5425 
5426 		serial_buf = NULL;
5427 		device = periph->path->device;
5428 		device->serial_num = NULL;
5429 		device->serial_num_len = 0;
5430 
5431 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5432 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5433 				malloc(sizeof(*serial_buf), M_TEMP,
5434 					M_NOWAIT | M_ZERO);
5435 
5436 		if (serial_buf != NULL) {
5437 			scsi_inquiry(csio,
5438 				     /*retries*/4,
5439 				     probedone,
5440 				     MSG_SIMPLE_Q_TAG,
5441 				     (u_int8_t *)serial_buf,
5442 				     sizeof(*serial_buf),
5443 				     /*evpd*/TRUE,
5444 				     SVPD_UNIT_SERIAL_NUMBER,
5445 				     SSD_MIN_SIZE,
5446 				     /*timeout*/60 * 1000);
5447 			break;
5448 		}
5449 		/*
5450 		 * We'll have to do without, let our probedone
5451 		 * routine finish up for us.
5452 		 */
5453 		start_ccb->csio.data_ptr = NULL;
5454 		probedone(periph, start_ccb);
5455 		return;
5456 	}
5457 	}
5458 	xpt_action(start_ccb);
5459 }
5460 
5461 static void
5462 proberequestdefaultnegotiation(struct cam_periph *periph)
5463 {
5464 	struct ccb_trans_settings cts;
5465 
5466 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5467 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5468 	cts.flags = CCB_TRANS_USER_SETTINGS;
5469 	xpt_action((union ccb *)&cts);
5470 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5471 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5472 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5473 	xpt_action((union ccb *)&cts);
5474 }
5475 
5476 static void
5477 probedone(struct cam_periph *periph, union ccb *done_ccb)
5478 {
5479 	probe_softc *softc;
5480 	struct cam_path *path;
5481 	u_int32_t  priority;
5482 
5483 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5484 
5485 	softc = (probe_softc *)periph->softc;
5486 	path = done_ccb->ccb_h.path;
5487 	priority = done_ccb->ccb_h.pinfo.priority;
5488 
5489 	switch (softc->action) {
5490 	case PROBE_TUR:
5491 	{
5492 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5493 
5494 			if (cam_periph_error(done_ccb, 0,
5495 					     SF_NO_PRINT, NULL) == ERESTART)
5496 				return;
5497 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5498 				/* Don't wedge the queue */
5499 				xpt_release_devq(done_ccb->ccb_h.path,
5500 						 /*count*/1,
5501 						 /*run_queue*/TRUE);
5502 		}
5503 		softc->action = PROBE_INQUIRY;
5504 		xpt_release_ccb(done_ccb);
5505 		xpt_schedule(periph, priority);
5506 		return;
5507 	}
5508 	case PROBE_INQUIRY:
5509 	case PROBE_FULL_INQUIRY:
5510 	{
5511 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5512 			struct scsi_inquiry_data *inq_buf;
5513 			u_int8_t periph_qual;
5514 
5515 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5516 			inq_buf = &path->device->inq_data;
5517 
5518 			periph_qual = SID_QUAL(inq_buf);
5519 
5520 			switch(periph_qual) {
5521 			case SID_QUAL_LU_CONNECTED:
5522 			{
5523 				u_int8_t alen;
5524 
5525 				/*
5526 				 * We conservatively request only
5527 				 * SHORT_INQUIRY_LEN bytes of inquiry
5528 				 * information during our first try
5529 				 * at sending an INQUIRY. If the device
5530 				 * has more information to give,
5531 				 * perform a second request specifying
5532 				 * the amount of information the device
5533 				 * is willing to give.
5534 				 */
5535 				alen = inq_buf->additional_length;
5536 				if (softc->action == PROBE_INQUIRY
5537 				 && alen > (SHORT_INQUIRY_LENGTH - 5)) {
5538 					softc->action = PROBE_FULL_INQUIRY;
5539 					xpt_release_ccb(done_ccb);
5540 					xpt_schedule(periph, priority);
5541 					return;
5542 				}
5543 
5544 				xpt_find_quirk(path->device);
5545 
5546 				if ((inq_buf->flags & SID_CmdQue) != 0)
5547 					softc->action = PROBE_MODE_SENSE;
5548 				else
5549 					softc->action = PROBE_SERIAL_NUM;
5550 
5551 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5552 
5553 				xpt_release_ccb(done_ccb);
5554 				xpt_schedule(periph, priority);
5555 				return;
5556 			}
5557 			default:
5558 				break;
5559 			}
5560 		} else if (cam_periph_error(done_ccb, 0,
5561 					    done_ccb->ccb_h.target_lun > 0
5562 					    ? SF_RETRY_UA|SF_QUIET_IR
5563 					    : SF_RETRY_UA,
5564 					    &softc->saved_ccb) == ERESTART) {
5565 			return;
5566 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5567 			/* Don't wedge the queue */
5568 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5569 					 /*run_queue*/TRUE);
5570 		}
5571 		/*
5572 		 * If we get to this point, we got an error status back
5573 		 * from the inquiry and the error status doesn't require
5574 		 * automatically retrying the command.  Therefore, the
5575 		 * inquiry failed.  If we had inquiry information before
5576 		 * for this device, but this latest inquiry command failed,
5577 		 * the device has probably gone away.  If this device isn't
5578 		 * already marked unconfigured, notify the peripheral
5579 		 * drivers that this device is no more.
5580 		 */
5581 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5582 			/* Send the async notification. */
5583 			xpt_async(AC_LOST_DEVICE, path, NULL);
5584 
5585 		xpt_release_ccb(done_ccb);
5586 		break;
5587 	}
5588 	case PROBE_MODE_SENSE:
5589 	{
5590 		struct ccb_scsiio *csio;
5591 		struct scsi_mode_header_6 *mode_hdr;
5592 
5593 		csio = &done_ccb->csio;
5594 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5595 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5596 			struct scsi_control_page *page;
5597 			u_int8_t *offset;
5598 
5599 			offset = ((u_int8_t *)&mode_hdr[1])
5600 			    + mode_hdr->blk_desc_len;
5601 			page = (struct scsi_control_page *)offset;
5602 			path->device->queue_flags = page->queue_flags;
5603 		} else if (cam_periph_error(done_ccb, 0,
5604 					    SF_RETRY_UA|SF_NO_PRINT,
5605 					    &softc->saved_ccb) == ERESTART) {
5606 			return;
5607 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5608 			/* Don't wedge the queue */
5609 			xpt_release_devq(done_ccb->ccb_h.path,
5610 					 /*count*/1, /*run_queue*/TRUE);
5611 		}
5612 		xpt_release_ccb(done_ccb);
5613 		free(mode_hdr, M_TEMP);
5614 		softc->action = PROBE_SERIAL_NUM;
5615 		xpt_schedule(periph, priority);
5616 		return;
5617 	}
5618 	case PROBE_SERIAL_NUM:
5619 	{
5620 		struct ccb_scsiio *csio;
5621 		struct scsi_vpd_unit_serial_number *serial_buf;
5622 		u_int32_t  priority;
5623 		int changed;
5624 		int have_serialnum;
5625 
5626 		changed = 1;
5627 		have_serialnum = 0;
5628 		csio = &done_ccb->csio;
5629 		priority = done_ccb->ccb_h.pinfo.priority;
5630 		serial_buf =
5631 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5632 
5633 		/* Clean up from previous instance of this device */
5634 		if (path->device->serial_num != NULL) {
5635 			free(path->device->serial_num, M_DEVBUF);
5636 			path->device->serial_num = NULL;
5637 			path->device->serial_num_len = 0;
5638 		}
5639 
5640 		if (serial_buf == NULL) {
5641 			/*
5642 			 * Don't process the command as it was never sent
5643 			 */
5644 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5645 			&& (serial_buf->length > 0)) {
5646 
5647 			have_serialnum = 1;
5648 			path->device->serial_num =
5649 				(u_int8_t *)malloc((serial_buf->length + 1),
5650 						   M_DEVBUF, M_NOWAIT);
5651 			if (path->device->serial_num != NULL) {
5652 				bcopy(serial_buf->serial_num,
5653 				      path->device->serial_num,
5654 				      serial_buf->length);
5655 				path->device->serial_num_len =
5656 				    serial_buf->length;
5657 				path->device->serial_num[serial_buf->length]
5658 				    = '\0';
5659 			}
5660 		} else if (cam_periph_error(done_ccb, 0,
5661 					    SF_RETRY_UA|SF_NO_PRINT,
5662 					    &softc->saved_ccb) == ERESTART) {
5663 			return;
5664 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5665 			/* Don't wedge the queue */
5666 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5667 					 /*run_queue*/TRUE);
5668 		}
5669 
5670 		/*
5671 		 * Let's see if we have seen this device before.
5672 		 */
5673 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5674 			MD5_CTX context;
5675 			u_int8_t digest[16];
5676 
5677 			MD5Init(&context);
5678 
5679 			MD5Update(&context,
5680 				  (unsigned char *)&path->device->inq_data,
5681 				  sizeof(struct scsi_inquiry_data));
5682 
5683 			if (have_serialnum)
5684 				MD5Update(&context, serial_buf->serial_num,
5685 					  serial_buf->length);
5686 
5687 			MD5Final(digest, &context);
5688 			if (bcmp(softc->digest, digest, 16) == 0)
5689 				changed = 0;
5690 
5691 			/*
5692 			 * XXX Do we need to do a TUR in order to ensure
5693 			 *     that the device really hasn't changed???
5694 			 */
5695 			if ((changed != 0)
5696 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5697 				xpt_async(AC_LOST_DEVICE, path, NULL);
5698 		}
5699 		if (serial_buf != NULL)
5700 			free(serial_buf, M_TEMP);
5701 
5702 		if (changed != 0) {
5703 			/*
5704 			 * Now that we have all the necessary
5705 			 * information to safely perform transfer
5706 			 * negotiations... Controllers don't perform
5707 			 * any negotiation or tagged queuing until
5708 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5709 			 * received.  So, on a new device, just retreive
5710 			 * the user settings, and set them as the current
5711 			 * settings to set the device up.
5712 			 */
5713 			proberequestdefaultnegotiation(periph);
5714 			xpt_release_ccb(done_ccb);
5715 
5716 			/*
5717 			 * Perform a TUR to allow the controller to
5718 			 * perform any necessary transfer negotiation.
5719 			 */
5720 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5721 			xpt_schedule(periph, priority);
5722 			return;
5723 		}
5724 		xpt_release_ccb(done_ccb);
5725 		break;
5726 	}
5727 	case PROBE_TUR_FOR_NEGOTIATION:
5728 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5729 			/* Don't wedge the queue */
5730 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5731 					 /*run_queue*/TRUE);
5732 		}
5733 
5734 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5735 
5736 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5737 			/* Inform the XPT that a new device has been found */
5738 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5739 			xpt_action(done_ccb);
5740 
5741 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5742 		}
5743 		xpt_release_ccb(done_ccb);
5744 		break;
5745 	}
5746 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5747 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5748 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5749 	xpt_done(done_ccb);
5750 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5751 		cam_periph_invalidate(periph);
5752 		cam_periph_release(periph);
5753 	} else {
5754 		probeschedule(periph);
5755 	}
5756 }
5757 
5758 static void
5759 probecleanup(struct cam_periph *periph)
5760 {
5761 	free(periph->softc, M_TEMP);
5762 }
5763 
5764 static void
5765 xpt_find_quirk(struct cam_ed *device)
5766 {
5767 	caddr_t	match;
5768 
5769 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5770 			       (caddr_t)xpt_quirk_table,
5771 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5772 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5773 
5774 	if (match == NULL)
5775 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5776 
5777 	device->quirk = (struct xpt_quirk_entry *)match;
5778 }
5779 
5780 static void
5781 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5782 			  int async_update)
5783 {
5784 	struct	cam_sim *sim;
5785 	int	qfrozen;
5786 
5787 	sim = cts->ccb_h.path->bus->sim;
5788 	if (async_update == FALSE) {
5789 		struct	scsi_inquiry_data *inq_data;
5790 		struct	ccb_pathinq cpi;
5791 		struct	ccb_trans_settings cur_cts;
5792 
5793 		if (device == NULL) {
5794 			cts->ccb_h.status = CAM_PATH_INVALID;
5795 			xpt_done((union ccb *)cts);
5796 			return;
5797 		}
5798 
5799 		/*
5800 		 * Perform sanity checking against what the
5801 		 * controller and device can do.
5802 		 */
5803 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5804 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5805 		xpt_action((union ccb *)&cpi);
5806 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5807 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5808 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5809 		xpt_action((union ccb *)&cur_cts);
5810 		inq_data = &device->inq_data;
5811 
5812 		/* Fill in any gaps in what the user gave us */
5813 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5814 			cts->sync_period = cur_cts.sync_period;
5815 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5816 			cts->sync_offset = cur_cts.sync_offset;
5817 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5818 			cts->bus_width = cur_cts.bus_width;
5819 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5820 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5821 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5822 		}
5823 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5824 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5825 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5826 		}
5827 
5828 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5829 		  && (inq_data->flags & SID_Sync) == 0)
5830 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
5831 		 || (cts->sync_offset == 0)
5832 		 || (cts->sync_period == 0)) {
5833 			/* Force async */
5834 			cts->sync_period = 0;
5835 			cts->sync_offset = 0;
5836 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) {
5837 
5838 			if ((inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
5839 			 && cts->sync_period <= 0x9) {
5840 				/*
5841 				 * Don't allow DT transmission rates if the
5842 				 * device does not support it.
5843 				 */
5844 				cts->sync_period = 0xa;
5845 			}
5846 			if ((inq_data->spi3data & SID_SPI_IUS) == 0
5847 			 && cts->sync_period <= 0x8) {
5848 				/*
5849 				 * Don't allow PACE transmission rates
5850 				 * if the device does support packetized
5851 				 * transfers.
5852 				 */
5853 				cts->sync_period = 0x9;
5854 			}
5855 		}
5856 
5857 		switch (cts->bus_width) {
5858 		case MSG_EXT_WDTR_BUS_32_BIT:
5859 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5860 			  || (inq_data->flags & SID_WBus32) != 0)
5861 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5862 				break;
5863 			/* Fall Through to 16-bit */
5864 		case MSG_EXT_WDTR_BUS_16_BIT:
5865 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5866 			  || (inq_data->flags & SID_WBus16) != 0)
5867 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5868 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5869 				break;
5870 			}
5871 			/* Fall Through to 8-bit */
5872 		default: /* New bus width?? */
5873 		case MSG_EXT_WDTR_BUS_8_BIT:
5874 			/* All targets can do this */
5875 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5876 			break;
5877 		}
5878 
5879 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5880 			/*
5881 			 * Can't tag queue without disconnection.
5882 			 */
5883 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5884 			cts->valid |= CCB_TRANS_TQ_VALID;
5885 		}
5886 
5887 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5888 		 || (inq_data->flags & SID_CmdQue) == 0
5889 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5890 		 || (device->quirk->mintags == 0)) {
5891 			/*
5892 			 * Can't tag on hardware that doesn't support,
5893 			 * doesn't have it enabled, or has broken tag support.
5894 			 */
5895 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5896 		}
5897 	}
5898 
5899 	qfrozen = FALSE;
5900 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
5901 		int device_tagenb;
5902 
5903 		/*
5904 		 * If we are transitioning from tags to no-tags or
5905 		 * vice-versa, we need to carefully freeze and restart
5906 		 * the queue so that we don't overlap tagged and non-tagged
5907 		 * commands.  We also temporarily stop tags if there is
5908 		 * a change in transfer negotiation settings to allow
5909 		 * "tag-less" negotiation.
5910 		 */
5911 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5912 		 || (device->inq_flags & SID_CmdQue) != 0)
5913 			device_tagenb = TRUE;
5914 		else
5915 			device_tagenb = FALSE;
5916 
5917 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5918 		  && device_tagenb == FALSE)
5919 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5920 		  && device_tagenb == TRUE)) {
5921 
5922 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5923 				/*
5924 				 * Delay change to use tags until after a
5925 				 * few commands have gone to this device so
5926 				 * the controller has time to perform transfer
5927 				 * negotiations without tagged messages getting
5928 				 * in the way.
5929 				 */
5930 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5931 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5932 			} else {
5933 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5934 				qfrozen = TRUE;
5935 		  		device->inq_flags &= ~SID_CmdQue;
5936 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5937 						    sim->max_dev_openings);
5938 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5939 				device->tag_delay_count = 0;
5940 			}
5941 		}
5942 	}
5943 
5944 	if (async_update == FALSE) {
5945 		/*
5946 		 * If we are currently performing tagged transactions to
5947 		 * this device and want to change its negotiation parameters,
5948 		 * go non-tagged for a bit to give the controller a chance to
5949 		 * negotiate unhampered by tag messages.
5950 		 */
5951 		if ((device->inq_flags & SID_CmdQue) != 0
5952 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5953 				   CCB_TRANS_SYNC_OFFSET_VALID|
5954 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5955 			xpt_toggle_tags(cts->ccb_h.path);
5956 
5957 		(*(sim->sim_action))(sim, (union ccb *)cts);
5958 	}
5959 
5960 	if (qfrozen) {
5961 		struct ccb_relsim crs;
5962 
5963 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5964 			      /*priority*/1);
5965 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5966 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5967 		crs.openings
5968 		    = crs.release_timeout
5969 		    = crs.qfrozen_cnt
5970 		    = 0;
5971 		xpt_action((union ccb *)&crs);
5972 	}
5973 }
5974 
5975 static void
5976 xpt_toggle_tags(struct cam_path *path)
5977 {
5978 	struct cam_ed *dev;
5979 
5980 	/*
5981 	 * Give controllers a chance to renegotiate
5982 	 * before starting tag operations.  We
5983 	 * "toggle" tagged queuing off then on
5984 	 * which causes the tag enable command delay
5985 	 * counter to come into effect.
5986 	 */
5987 	dev = path->device;
5988 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5989 	 || ((dev->inq_flags & SID_CmdQue) != 0
5990  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5991 		struct ccb_trans_settings cts;
5992 
5993 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5994 		cts.flags = 0;
5995 		cts.valid = CCB_TRANS_TQ_VALID;
5996 		xpt_set_transfer_settings(&cts, path->device,
5997 					  /*async_update*/TRUE);
5998 		cts.flags = CCB_TRANS_TAG_ENB;
5999 		xpt_set_transfer_settings(&cts, path->device,
6000 					  /*async_update*/TRUE);
6001 	}
6002 }
6003 
6004 static void
6005 xpt_start_tags(struct cam_path *path)
6006 {
6007 	struct ccb_relsim crs;
6008 	struct cam_ed *device;
6009 	struct cam_sim *sim;
6010 	int    newopenings;
6011 
6012 	device = path->device;
6013 	sim = path->bus->sim;
6014 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6015 	xpt_freeze_devq(path, /*count*/1);
6016 	device->inq_flags |= SID_CmdQue;
6017 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
6018 	xpt_dev_ccbq_resize(path, newopenings);
6019 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6020 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6021 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6022 	crs.openings
6023 	    = crs.release_timeout
6024 	    = crs.qfrozen_cnt
6025 	    = 0;
6026 	xpt_action((union ccb *)&crs);
6027 }
6028 
6029 static int busses_to_config;
6030 static int busses_to_reset;
6031 
6032 static int
6033 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6034 {
6035 	if (bus->path_id != CAM_XPT_PATH_ID) {
6036 		struct cam_path path;
6037 		struct ccb_pathinq cpi;
6038 		int can_negotiate;
6039 
6040 		busses_to_config++;
6041 		xpt_compile_path(&path, NULL, bus->path_id,
6042 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6043 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6044 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6045 		xpt_action((union ccb *)&cpi);
6046 		can_negotiate = cpi.hba_inquiry;
6047 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6048 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6049 		 && can_negotiate)
6050 			busses_to_reset++;
6051 		xpt_release_path(&path);
6052 	}
6053 
6054 	return(1);
6055 }
6056 
6057 static int
6058 xptconfigfunc(struct cam_eb *bus, void *arg)
6059 {
6060 	struct	cam_path *path;
6061 	union	ccb *work_ccb;
6062 
6063 	if (bus->path_id != CAM_XPT_PATH_ID) {
6064 		cam_status status;
6065 		int can_negotiate;
6066 
6067 		work_ccb = xpt_alloc_ccb();
6068 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6069 					      CAM_TARGET_WILDCARD,
6070 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6071 			printf("xptconfigfunc: xpt_create_path failed with "
6072 			       "status %#x for bus %d\n", status, bus->path_id);
6073 			printf("xptconfigfunc: halting bus configuration\n");
6074 			xpt_free_ccb(work_ccb);
6075 			busses_to_config--;
6076 			xpt_finishconfig(xpt_periph, NULL);
6077 			return(0);
6078 		}
6079 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6080 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6081 		xpt_action(work_ccb);
6082 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6083 			printf("xptconfigfunc: CPI failed on bus %d "
6084 			       "with status %d\n", bus->path_id,
6085 			       work_ccb->ccb_h.status);
6086 			xpt_finishconfig(xpt_periph, work_ccb);
6087 			return(1);
6088 		}
6089 
6090 		can_negotiate = work_ccb->cpi.hba_inquiry;
6091 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6092 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6093 		 && (can_negotiate != 0)) {
6094 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6095 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6096 			work_ccb->ccb_h.cbfcnp = NULL;
6097 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6098 				  ("Resetting Bus\n"));
6099 			xpt_action(work_ccb);
6100 			xpt_finishconfig(xpt_periph, work_ccb);
6101 		} else {
6102 			/* Act as though we performed a successful BUS RESET */
6103 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6104 			xpt_finishconfig(xpt_periph, work_ccb);
6105 		}
6106 	}
6107 
6108 	return(1);
6109 }
6110 
6111 static void
6112 xpt_config(void *arg)
6113 {
6114 	/* Now that interrupts are enabled, go find our devices */
6115 
6116 #ifdef CAMDEBUG
6117 	/* Setup debugging flags and path */
6118 #ifdef CAM_DEBUG_FLAGS
6119 	cam_dflags = CAM_DEBUG_FLAGS;
6120 #else /* !CAM_DEBUG_FLAGS */
6121 	cam_dflags = CAM_DEBUG_NONE;
6122 #endif /* CAM_DEBUG_FLAGS */
6123 #ifdef CAM_DEBUG_BUS
6124 	if (cam_dflags != CAM_DEBUG_NONE) {
6125 		if (xpt_create_path(&cam_dpath, xpt_periph,
6126 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6127 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6128 			printf("xpt_config: xpt_create_path() failed for debug"
6129 			       " target %d:%d:%d, debugging disabled\n",
6130 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6131 			cam_dflags = CAM_DEBUG_NONE;
6132 		}
6133 	} else
6134 		cam_dpath = NULL;
6135 #else /* !CAM_DEBUG_BUS */
6136 	cam_dpath = NULL;
6137 #endif /* CAM_DEBUG_BUS */
6138 #endif /* CAMDEBUG */
6139 
6140 	/*
6141 	 * Scan all installed busses.
6142 	 */
6143 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6144 
6145 	if (busses_to_config == 0) {
6146 		/* Call manually because we don't have any busses */
6147 		xpt_finishconfig(xpt_periph, NULL);
6148 	} else  {
6149 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6150 			printf("Waiting %d seconds for SCSI "
6151 			       "devices to settle\n", SCSI_DELAY/1000);
6152 		}
6153 		xpt_for_all_busses(xptconfigfunc, NULL);
6154 	}
6155 }
6156 
6157 /*
6158  * If the given device only has one peripheral attached to it, and if that
6159  * peripheral is the passthrough driver, announce it.  This insures that the
6160  * user sees some sort of announcement for every peripheral in their system.
6161  */
6162 static int
6163 xptpassannouncefunc(struct cam_ed *device, void *arg)
6164 {
6165 	struct cam_periph *periph;
6166 	int i;
6167 
6168 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6169 	     periph = SLIST_NEXT(periph, periph_links), i++);
6170 
6171 	periph = SLIST_FIRST(&device->periphs);
6172 	if ((i == 1)
6173 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6174 		xpt_announce_periph(periph, NULL);
6175 
6176 	return(1);
6177 }
6178 
6179 static void
6180 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6181 {
6182 	struct	periph_driver **p_drv;
6183 	int	i;
6184 
6185 	if (done_ccb != NULL) {
6186 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6187 			  ("xpt_finishconfig\n"));
6188 		switch(done_ccb->ccb_h.func_code) {
6189 		case XPT_RESET_BUS:
6190 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6191 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6192 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6193 				xpt_action(done_ccb);
6194 				return;
6195 			}
6196 			/* FALLTHROUGH */
6197 		case XPT_SCAN_BUS:
6198 		default:
6199 			xpt_free_path(done_ccb->ccb_h.path);
6200 			busses_to_config--;
6201 			break;
6202 		}
6203 	}
6204 
6205 	if (busses_to_config == 0) {
6206 		/* Register all the peripheral drivers */
6207 		/* XXX This will have to change when we have loadable modules */
6208 		p_drv = (struct periph_driver **)periphdriver_set.ls_items;
6209 		for (i = 0; p_drv[i] != NULL; i++) {
6210 			(*p_drv[i]->init)();
6211 		}
6212 
6213 		/*
6214 		 * Check for devices with no "standard" peripheral driver
6215 		 * attached.  For any devices like that, announce the
6216 		 * passthrough driver so the user will see something.
6217 		 */
6218 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6219 
6220 		/* Release our hook so that the boot can continue. */
6221 		config_intrhook_disestablish(xpt_config_hook);
6222 		free(xpt_config_hook, M_TEMP);
6223 		xpt_config_hook = NULL;
6224 	}
6225 	if (done_ccb != NULL)
6226 		xpt_free_ccb(done_ccb);
6227 }
6228 
6229 static void
6230 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6231 {
6232 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6233 
6234 	switch (work_ccb->ccb_h.func_code) {
6235 	/* Common cases first */
6236 	case XPT_PATH_INQ:		/* Path routing inquiry */
6237 	{
6238 		struct ccb_pathinq *cpi;
6239 
6240 		cpi = &work_ccb->cpi;
6241 		cpi->version_num = 1; /* XXX??? */
6242 		cpi->hba_inquiry = 0;
6243 		cpi->target_sprt = 0;
6244 		cpi->hba_misc = 0;
6245 		cpi->hba_eng_cnt = 0;
6246 		cpi->max_target = 0;
6247 		cpi->max_lun = 0;
6248 		cpi->initiator_id = 0;
6249 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6250 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6251 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6252 		cpi->unit_number = sim->unit_number;
6253 		cpi->bus_id = sim->bus_id;
6254 		cpi->base_transfer_speed = 0;
6255 		cpi->ccb_h.status = CAM_REQ_CMP;
6256 		xpt_done(work_ccb);
6257 		break;
6258 	}
6259 	default:
6260 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6261 		xpt_done(work_ccb);
6262 		break;
6263 	}
6264 }
6265 
6266 /*
6267  * The xpt as a "controller" has no interrupt sources, so polling
6268  * is a no-op.
6269  */
6270 static void
6271 xptpoll(struct cam_sim *sim)
6272 {
6273 }
6274 
6275 /*
6276  * Should only be called by the machine interrupt dispatch routines,
6277  * so put these prototypes here instead of in the header.
6278  */
6279 
6280 static void
6281 swi_camnet(void)
6282 {
6283 	camisr(&cam_netq);
6284 }
6285 
6286 static void
6287 swi_cambio(void)
6288 {
6289 	camisr(&cam_bioq);
6290 }
6291 
6292 static void
6293 camisr(cam_isrq_t *queue)
6294 {
6295 	int	s;
6296 	struct	ccb_hdr *ccb_h;
6297 
6298 	s = splcam();
6299 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6300 		int	runq;
6301 
6302 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6303 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6304 		splx(s);
6305 
6306 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6307 			  ("camisr\n"));
6308 
6309 		runq = FALSE;
6310 
6311 		if (ccb_h->flags & CAM_HIGH_POWER) {
6312 			struct highpowerlist	*hphead;
6313 			struct cam_ed		*device;
6314 			union ccb		*send_ccb;
6315 
6316 			hphead = &highpowerq;
6317 
6318 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6319 
6320 			/*
6321 			 * Increment the count since this command is done.
6322 			 */
6323 			num_highpower++;
6324 
6325 			/*
6326 			 * Any high powered commands queued up?
6327 			 */
6328 			if (send_ccb != NULL) {
6329 				device = send_ccb->ccb_h.path->device;
6330 
6331 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6332 
6333 				xpt_release_devq(send_ccb->ccb_h.path,
6334 						 /*count*/1, /*runqueue*/TRUE);
6335 			}
6336 		}
6337 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6338 			struct cam_ed *dev;
6339 
6340 			dev = ccb_h->path->device;
6341 
6342 			s = splcam();
6343 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6344 
6345 			ccb_h->path->bus->sim->devq->send_active--;
6346 			ccb_h->path->bus->sim->devq->send_openings++;
6347 			splx(s);
6348 
6349 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6350 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6351 			  && (dev->ccbq.dev_active == 0))) {
6352 
6353 				xpt_release_devq(ccb_h->path, /*count*/1,
6354 						 /*run_queue*/TRUE);
6355 			}
6356 
6357 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6358 			 && (--dev->tag_delay_count == 0))
6359 				xpt_start_tags(ccb_h->path);
6360 
6361 			if ((dev->ccbq.queue.entries > 0)
6362 			 && (dev->qfrozen_cnt == 0)
6363 			 && (device_is_send_queued(dev) == 0)) {
6364 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6365 							      dev);
6366 			}
6367 		}
6368 
6369 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6370 			xpt_release_simq(ccb_h->path->bus->sim,
6371 					 /*run_queue*/TRUE);
6372 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6373 			runq = FALSE;
6374 		}
6375 
6376 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6377 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6378 			xpt_release_devq(ccb_h->path, /*count*/1,
6379 					 /*run_queue*/TRUE);
6380 			ccb_h->status &= ~CAM_DEV_QFRZN;
6381 		} else if (runq) {
6382 			xpt_run_dev_sendq(ccb_h->path->bus);
6383 		}
6384 
6385 		/* Call the peripheral driver's callback */
6386 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6387 
6388 		/* Raise IPL for while test */
6389 		s = splcam();
6390 	}
6391 	splx(s);
6392 }
6393