xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 2038fb68)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.68 2008/08/23 17:13:31 pavalos Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/fcntl.h>
41 #include <sys/md5.h>
42 #include <sys/devicestat.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/bus.h>
47 #include <sys/thread.h>
48 #include <sys/lock.h>
49 #include <sys/spinlock.h>
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 
53 #include <machine/clock.h>
54 #include <machine/stdarg.h>
55 
56 #include "cam.h"
57 #include "cam_ccb.h"
58 #include "cam_periph.h"
59 #include "cam_sim.h"
60 #include "cam_xpt.h"
61 #include "cam_xpt_sim.h"
62 #include "cam_xpt_periph.h"
63 #include "cam_debug.h"
64 
65 #include "scsi/scsi_all.h"
66 #include "scsi/scsi_message.h"
67 #include "scsi/scsi_pass.h"
68 #include <sys/kthread.h>
69 #include "opt_cam.h"
70 
71 /* Datastructures internal to the xpt layer */
72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
73 
74 /* Object for defering XPT actions to a taskqueue */
75 struct xpt_task {
76 	struct task	task;
77 	void		*data1;
78 	uintptr_t	data2;
79 };
80 
81 /*
82  * Definition of an async handler callback block.  These are used to add
83  * SIMs and peripherals to the async callback lists.
84  */
85 struct async_node {
86 	SLIST_ENTRY(async_node)	links;
87 	u_int32_t	event_enable;	/* Async Event enables */
88 	void		(*callback)(void *arg, u_int32_t code,
89 				    struct cam_path *path, void *args);
90 	void		*callback_arg;
91 };
92 
93 SLIST_HEAD(async_list, async_node);
94 SLIST_HEAD(periph_list, cam_periph);
95 
96 /*
97  * This is the maximum number of high powered commands (e.g. start unit)
98  * that can be outstanding at a particular time.
99  */
100 #ifndef CAM_MAX_HIGHPOWER
101 #define CAM_MAX_HIGHPOWER  4
102 #endif
103 
104 /*
105  * Structure for queueing a device in a run queue.
106  * There is one run queue for allocating new ccbs,
107  * and another for sending ccbs to the controller.
108  */
109 struct cam_ed_qinfo {
110 	cam_pinfo pinfo;
111 	struct	  cam_ed *device;
112 };
113 
114 /*
115  * The CAM EDT (Existing Device Table) contains the device information for
116  * all devices for all busses in the system.  The table contains a
117  * cam_ed structure for each device on the bus.
118  */
119 struct cam_ed {
120 	TAILQ_ENTRY(cam_ed) links;
121 	struct	cam_ed_qinfo alloc_ccb_entry;
122 	struct	cam_ed_qinfo send_ccb_entry;
123 	struct	cam_et	 *target;
124 	struct	cam_sim  *sim;
125 	lun_id_t	 lun_id;
126 	struct	camq drvq;		/*
127 					 * Queue of type drivers wanting to do
128 					 * work on this device.
129 					 */
130 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
131 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
132 	struct	periph_list periphs;	/* All attached devices */
133 	u_int	generation;		/* Generation number */
134 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
135 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
136 					/* Storage for the inquiry data */
137 	cam_proto	 protocol;
138 	u_int		 protocol_version;
139 	cam_xport	 transport;
140 	u_int		 transport_version;
141 	struct		 scsi_inquiry_data inq_data;
142 	u_int8_t	 inq_flags;	/*
143 					 * Current settings for inquiry flags.
144 					 * This allows us to override settings
145 					 * like disconnection and tagged
146 					 * queuing for a device.
147 					 */
148 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
149 	u_int8_t	 serial_num_len;
150 	u_int8_t	*serial_num;
151 	u_int32_t	 qfrozen_cnt;
152 	u_int32_t	 flags;
153 #define CAM_DEV_UNCONFIGURED	 	0x01
154 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
155 #define CAM_DEV_REL_ON_COMPLETE		0x04
156 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
157 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
158 #define CAM_DEV_TAG_AFTER_COUNT		0x20
159 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
160 #define	CAM_DEV_IN_DV			0x80
161 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
162 	u_int32_t	 tag_delay_count;
163 #define	CAM_TAG_DELAY_COUNT		5
164 	u_int32_t	 tag_saved_openings;
165 	u_int32_t	 refcount;
166 	struct callout	 callout;
167 };
168 
169 /*
170  * Each target is represented by an ET (Existing Target).  These
171  * entries are created when a target is successfully probed with an
172  * identify, and removed when a device fails to respond after a number
173  * of retries, or a bus rescan finds the device missing.
174  */
175 struct cam_et {
176 	TAILQ_HEAD(, cam_ed) ed_entries;
177 	TAILQ_ENTRY(cam_et) links;
178 	struct	cam_eb	*bus;
179 	target_id_t	target_id;
180 	u_int32_t	refcount;
181 	u_int		generation;
182 	struct		timeval last_reset;	/* uptime of last reset */
183 };
184 
185 /*
186  * Each bus is represented by an EB (Existing Bus).  These entries
187  * are created by calls to xpt_bus_register and deleted by calls to
188  * xpt_bus_deregister.
189  */
190 struct cam_eb {
191 	TAILQ_HEAD(, cam_et) et_entries;
192 	TAILQ_ENTRY(cam_eb)  links;
193 	path_id_t	     path_id;
194 	struct cam_sim	     *sim;
195 	struct timeval	     last_reset;	/* uptime of last reset */
196 	u_int32_t	     flags;
197 #define	CAM_EB_RUNQ_SCHEDULED	0x01
198 	u_int32_t	     refcount;
199 	u_int		     generation;
200 };
201 
202 struct cam_path {
203 	struct cam_periph *periph;
204 	struct cam_eb	  *bus;
205 	struct cam_et	  *target;
206 	struct cam_ed	  *device;
207 };
208 
209 struct xpt_quirk_entry {
210 	struct scsi_inquiry_pattern inq_pat;
211 	u_int8_t quirks;
212 #define	CAM_QUIRK_NOLUNS	0x01
213 #define	CAM_QUIRK_NOSERIAL	0x02
214 #define	CAM_QUIRK_HILUNS	0x04
215 #define	CAM_QUIRK_NOHILUNS	0x08
216 	u_int mintags;
217 	u_int maxtags;
218 };
219 
220 static int cam_srch_hi = 0;
221 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
222 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
223 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
224     sysctl_cam_search_luns, "I",
225     "allow search above LUN 7 for SCSI3 and greater devices");
226 
227 #define	CAM_SCSI2_MAXLUN	8
228 /*
229  * If we're not quirked to search <= the first 8 luns
230  * and we are either quirked to search above lun 8,
231  * or we're > SCSI-2 and we've enabled hilun searching,
232  * or we're > SCSI-2 and the last lun was a success,
233  * we can look for luns above lun 8.
234  */
235 #define	CAN_SRCH_HI_SPARSE(dv)				\
236   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
237   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
238   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
239 
240 #define	CAN_SRCH_HI_DENSE(dv)				\
241   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
242   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
243   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
244 
245 typedef enum {
246 	XPT_FLAG_OPEN		= 0x01
247 } xpt_flags;
248 
249 struct xpt_softc {
250 	xpt_flags		flags;
251 	u_int32_t		xpt_generation;
252 
253 	/* number of high powered commands that can go through right now */
254 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
255 	int			num_highpower;
256 
257 	/* queue for handling async rescan requests. */
258 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
259 
260 	/* Registered busses */
261 	TAILQ_HEAD(,cam_eb)	xpt_busses;
262 	u_int			bus_generation;
263 
264 	struct intr_config_hook	*xpt_config_hook;
265 
266 	struct lock		xpt_topo_lock;
267 	struct lock		xpt_lock;
268 };
269 
270 static const char quantum[] = "QUANTUM";
271 static const char sony[] = "SONY";
272 static const char west_digital[] = "WDIGTL";
273 static const char samsung[] = "SAMSUNG";
274 static const char seagate[] = "SEAGATE";
275 static const char microp[] = "MICROP";
276 
277 static struct xpt_quirk_entry xpt_quirk_table[] =
278 {
279 	{
280 		/* Reports QUEUE FULL for temporary resource shortages */
281 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
282 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
283 	},
284 	{
285 		/* Reports QUEUE FULL for temporary resource shortages */
286 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
287 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
288 	},
289 	{
290 		/* Reports QUEUE FULL for temporary resource shortages */
291 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
292 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
293 	},
294 	{
295 		/* Broken tagged queuing drive */
296 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
297 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
298 	},
299 	{
300 		/* Broken tagged queuing drive */
301 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
302 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
303 	},
304 	{
305 		/* Broken tagged queuing drive */
306 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
307 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
308 	},
309 	{
310 		/*
311 		 * Unfortunately, the Quantum Atlas III has the same
312 		 * problem as the Atlas II drives above.
313 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
314 		 *
315 		 * For future reference, the drive with the problem was:
316 		 * QUANTUM QM39100TD-SW N1B0
317 		 *
318 		 * It's possible that Quantum will fix the problem in later
319 		 * firmware revisions.  If that happens, the quirk entry
320 		 * will need to be made specific to the firmware revisions
321 		 * with the problem.
322 		 *
323 		 */
324 		/* Reports QUEUE FULL for temporary resource shortages */
325 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
326 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
327 	},
328 	{
329 		/*
330 		 * 18 Gig Atlas III, same problem as the 9G version.
331 		 * Reported by: Andre Albsmeier
332 		 *		<andre.albsmeier@mchp.siemens.de>
333 		 *
334 		 * For future reference, the drive with the problem was:
335 		 * QUANTUM QM318000TD-S N491
336 		 */
337 		/* Reports QUEUE FULL for temporary resource shortages */
338 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
339 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
340 	},
341 	{
342 		/*
343 		 * Broken tagged queuing drive
344 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
345 		 *         and: Martin Renters <martin@tdc.on.ca>
346 		 */
347 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
348 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
349 	},
350 		/*
351 		 * The Seagate Medalist Pro drives have very poor write
352 		 * performance with anything more than 2 tags.
353 		 *
354 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
355 		 * Drive:  <SEAGATE ST36530N 1444>
356 		 *
357 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
358 		 * Drive:  <SEAGATE ST34520W 1281>
359 		 *
360 		 * No one has actually reported that the 9G version
361 		 * (ST39140*) of the Medalist Pro has the same problem, but
362 		 * we're assuming that it does because the 4G and 6.5G
363 		 * versions of the drive are broken.
364 		 */
365 	{
366 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
367 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
368 	},
369 	{
370 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
371 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
372 	},
373 	{
374 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
375 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
376 	},
377 	{
378 		/*
379 		 * Slow when tagged queueing is enabled.  Write performance
380 		 * steadily drops off with more and more concurrent
381 		 * transactions.  Best sequential write performance with
382 		 * tagged queueing turned off and write caching turned on.
383 		 *
384 		 * PR:  kern/10398
385 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
386 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
387 		 *
388 		 * The drive with the problem had the "S65A" firmware
389 		 * revision, and has also been reported (by Stephen J.
390 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
391 		 * firmware revision.
392 		 *
393 		 * Although no one has reported problems with the 2 gig
394 		 * version of the DCAS drive, the assumption is that it
395 		 * has the same problems as the 4 gig version.  Therefore
396 		 * this quirk entries disables tagged queueing for all
397 		 * DCAS drives.
398 		 */
399 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
400 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
401 	},
402 	{
403 		/* Broken tagged queuing drive */
404 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
405 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
406 	},
407 	{
408 		/* Broken tagged queuing drive */
409 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
410 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
411 	},
412 	{
413 		/* This does not support other than LUN 0 */
414 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
415 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
416 	},
417 	{
418 		/*
419 		 * Broken tagged queuing drive.
420 		 * Submitted by:
421 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
422 		 * in PR kern/9535
423 		 */
424 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
425 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
426 	},
427         {
428 		/*
429 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
430 		 * 8MB/sec.)
431 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
432 		 * Best performance with these drives is achieved with
433 		 * tagged queueing turned off, and write caching turned on.
434 		 */
435 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
436 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
437         },
438         {
439 		/*
440 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
441 		 * 8MB/sec.)
442 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
443 		 * Best performance with these drives is achieved with
444 		 * tagged queueing turned off, and write caching turned on.
445 		 */
446 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
447 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
448         },
449 	{
450 		/*
451 		 * Doesn't handle queue full condition correctly,
452 		 * so we need to limit maxtags to what the device
453 		 * can handle instead of determining this automatically.
454 		 */
455 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
456 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
457 	},
458 	{
459 		/* Really only one LUN */
460 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
461 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
462 	},
463 	{
464 		/* I can't believe we need a quirk for DPT volumes. */
465 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
466 		CAM_QUIRK_NOLUNS,
467 		/*mintags*/0, /*maxtags*/255
468 	},
469 	{
470 		/*
471 		 * Many Sony CDROM drives don't like multi-LUN probing.
472 		 */
473 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
474 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
475 	},
476 	{
477 		/*
478 		 * This drive doesn't like multiple LUN probing.
479 		 * Submitted by:  Parag Patel <parag@cgt.com>
480 		 */
481 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
482 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
483 	},
484 	{
485 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
486 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
487 	},
488 	{
489 		/*
490 		 * The 8200 doesn't like multi-lun probing, and probably
491 		 * don't like serial number requests either.
492 		 */
493 		{
494 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
495 			"EXB-8200*", "*"
496 		},
497 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
498 	},
499 	{
500 		/*
501 		 * Let's try the same as above, but for a drive that says
502 		 * it's an IPL-6860 but is actually an EXB 8200.
503 		 */
504 		{
505 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
506 			"IPL-6860*", "*"
507 		},
508 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
509 	},
510 	{
511 		/*
512 		 * These Hitachi drives don't like multi-lun probing.
513 		 * The PR submitter has a DK319H, but says that the Linux
514 		 * kernel has a similar work-around for the DK312 and DK314,
515 		 * so all DK31* drives are quirked here.
516 		 * PR:            misc/18793
517 		 * Submitted by:  Paul Haddad <paul@pth.com>
518 		 */
519 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
520 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
521 	},
522 	{
523 		/*
524 		 * The Hitachi CJ series with J8A8 firmware apparantly has
525 		 * problems with tagged commands.
526 		 * PR: 23536
527 		 * Reported by: amagai@nue.org
528 		 */
529 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
530 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
531 	},
532 	{
533 		/*
534 		 * These are the large storage arrays.
535 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
536 		 */
537 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
538 		CAM_QUIRK_HILUNS, 2, 1024
539 	},
540 	{
541 		/*
542 		 * This old revision of the TDC3600 is also SCSI-1, and
543 		 * hangs upon serial number probing.
544 		 */
545 		{
546 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
547 			" TDC 3600", "U07:"
548 		},
549 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
550 	},
551 	{
552 		/*
553 		 * Would repond to all LUNs if asked for.
554 		 */
555 		{
556 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
557 			"CP150", "*"
558 		},
559 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
560 	},
561 	{
562 		/*
563 		 * Would repond to all LUNs if asked for.
564 		 */
565 		{
566 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
567 			"96X2*", "*"
568 		},
569 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
570 	},
571 	{
572 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
573 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
574 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
575 	},
576 	{
577 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
578 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
579 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
580 	},
581 	{
582 		/* TeraSolutions special settings for TRC-22 RAID */
583 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
584 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
585 	},
586 	{
587 		/* Veritas Storage Appliance */
588 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
589 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
590 	},
591 	{
592 		/*
593 		 * Would respond to all LUNs.  Device type and removable
594 		 * flag are jumper-selectable.
595 		 */
596 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
597 		  "Tahiti 1", "*"
598 		},
599 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
600 	},
601 	{
602 		/* EasyRAID E5A aka. areca ARC-6010 */
603 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
604 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
605 	},
606 	{
607 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
608 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
609 	},
610 	{
611 		/* Default tagged queuing parameters for all devices */
612 		{
613 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
614 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
615 		},
616 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
617 	},
618 };
619 
620 static const int xpt_quirk_table_size =
621 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
622 
623 typedef enum {
624 	DM_RET_COPY		= 0x01,
625 	DM_RET_FLAG_MASK	= 0x0f,
626 	DM_RET_NONE		= 0x00,
627 	DM_RET_STOP		= 0x10,
628 	DM_RET_DESCEND		= 0x20,
629 	DM_RET_ERROR		= 0x30,
630 	DM_RET_ACTION_MASK	= 0xf0
631 } dev_match_ret;
632 
633 typedef enum {
634 	XPT_DEPTH_BUS,
635 	XPT_DEPTH_TARGET,
636 	XPT_DEPTH_DEVICE,
637 	XPT_DEPTH_PERIPH
638 } xpt_traverse_depth;
639 
640 struct xpt_traverse_config {
641 	xpt_traverse_depth	depth;
642 	void			*tr_func;
643 	void			*tr_arg;
644 };
645 
646 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
647 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
648 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
649 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
650 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
651 
652 /* Transport layer configuration information */
653 static struct xpt_softc xsoftc;
654 
655 /* Queues for our software interrupt handler */
656 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
657 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
658 static cam_simq_t cam_simq;
659 static struct spinlock cam_simq_spin;
660 
661 struct cam_periph *xpt_periph;
662 
663 static periph_init_t xpt_periph_init;
664 
665 static periph_init_t probe_periph_init;
666 
667 static struct periph_driver xpt_driver =
668 {
669 	xpt_periph_init, "xpt",
670 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
671 };
672 
673 static struct periph_driver probe_driver =
674 {
675 	probe_periph_init, "probe",
676 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
677 };
678 
679 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
680 PERIPHDRIVER_DECLARE(probe, probe_driver);
681 
682 #define XPT_CDEV_MAJOR 104
683 
684 static d_open_t xptopen;
685 static d_close_t xptclose;
686 static d_ioctl_t xptioctl;
687 
688 static struct dev_ops xpt_ops = {
689 	{ "xpt", XPT_CDEV_MAJOR, 0 },
690 	.d_open = xptopen,
691 	.d_close = xptclose,
692 	.d_ioctl = xptioctl
693 };
694 
695 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
696 static void dead_sim_poll(struct cam_sim *sim);
697 
698 /* Dummy SIM that is used when the real one has gone. */
699 static struct cam_sim cam_dead_sim;
700 static struct lock    cam_dead_lock;
701 
702 /* Storage for debugging datastructures */
703 #ifdef	CAMDEBUG
704 struct cam_path *cam_dpath;
705 u_int32_t cam_dflags;
706 u_int32_t cam_debug_delay;
707 #endif
708 
709 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
710 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
711 #endif
712 
713 /*
714  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
715  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
716  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
717  */
718 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
719     || defined(CAM_DEBUG_LUN)
720 #ifdef CAMDEBUG
721 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
722     || !defined(CAM_DEBUG_LUN)
723 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
724         and CAM_DEBUG_LUN"
725 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
726 #else /* !CAMDEBUG */
727 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
728 #endif /* CAMDEBUG */
729 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
730 
731 /* Our boot-time initialization hook */
732 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
733 
734 static moduledata_t cam_moduledata = {
735 	"cam",
736 	cam_module_event_handler,
737 	NULL
738 };
739 
740 static int	xpt_init(void *);
741 
742 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
743 MODULE_VERSION(cam, 1);
744 
745 
746 static cam_status	xpt_compile_path(struct cam_path *new_path,
747 					 struct cam_periph *perph,
748 					 path_id_t path_id,
749 					 target_id_t target_id,
750 					 lun_id_t lun_id);
751 
752 static void		xpt_release_path(struct cam_path *path);
753 
754 static void		xpt_async_bcast(struct async_list *async_head,
755 					u_int32_t async_code,
756 					struct cam_path *path,
757 					void *async_arg);
758 static void		xpt_dev_async(u_int32_t async_code,
759 				      struct cam_eb *bus,
760 				      struct cam_et *target,
761 				      struct cam_ed *device,
762 				      void *async_arg);
763 static path_id_t xptnextfreepathid(void);
764 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
765 static union ccb *xpt_get_ccb(struct cam_ed *device);
766 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
767 				  u_int32_t new_priority);
768 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
769 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
770 static timeout_t xpt_release_devq_timeout;
771 static void	 xpt_release_bus(struct cam_eb *bus);
772 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
773 					 int run_queue);
774 static struct cam_et*
775 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
776 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
777 static struct cam_ed*
778 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
779 				  lun_id_t lun_id);
780 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
781 				    struct cam_ed *device);
782 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
783 static struct cam_eb*
784 		 xpt_find_bus(path_id_t path_id);
785 static struct cam_et*
786 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
787 static struct cam_ed*
788 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
789 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
790 static void	 xpt_scan_lun(struct cam_periph *periph,
791 			      struct cam_path *path, cam_flags flags,
792 			      union ccb *ccb);
793 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
794 static xpt_busfunc_t	xptconfigbuscountfunc;
795 static xpt_busfunc_t	xptconfigfunc;
796 static void	 xpt_config(void *arg);
797 static xpt_devicefunc_t xptpassannouncefunc;
798 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
799 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
800 static void	 xptpoll(struct cam_sim *sim);
801 static inthand2_t swi_cambio;
802 static void	 camisr(void *);
803 static void	 camisr_runqueue(struct cam_sim *);
804 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
805 				    u_int num_patterns, struct cam_eb *bus);
806 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
807 				       u_int num_patterns,
808 				       struct cam_ed *device);
809 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
810 				       u_int num_patterns,
811 				       struct cam_periph *periph);
812 static xpt_busfunc_t	xptedtbusfunc;
813 static xpt_targetfunc_t	xptedttargetfunc;
814 static xpt_devicefunc_t	xptedtdevicefunc;
815 static xpt_periphfunc_t	xptedtperiphfunc;
816 static xpt_pdrvfunc_t	xptplistpdrvfunc;
817 static xpt_periphfunc_t	xptplistperiphfunc;
818 static int		xptedtmatch(struct ccb_dev_match *cdm);
819 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
820 static int		xptbustraverse(struct cam_eb *start_bus,
821 				       xpt_busfunc_t *tr_func, void *arg);
822 static int		xpttargettraverse(struct cam_eb *bus,
823 					  struct cam_et *start_target,
824 					  xpt_targetfunc_t *tr_func, void *arg);
825 static int		xptdevicetraverse(struct cam_et *target,
826 					  struct cam_ed *start_device,
827 					  xpt_devicefunc_t *tr_func, void *arg);
828 static int		xptperiphtraverse(struct cam_ed *device,
829 					  struct cam_periph *start_periph,
830 					  xpt_periphfunc_t *tr_func, void *arg);
831 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
832 					xpt_pdrvfunc_t *tr_func, void *arg);
833 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
834 					    struct cam_periph *start_periph,
835 					    xpt_periphfunc_t *tr_func,
836 					    void *arg);
837 static xpt_busfunc_t	xptdefbusfunc;
838 static xpt_targetfunc_t	xptdeftargetfunc;
839 static xpt_devicefunc_t	xptdefdevicefunc;
840 static xpt_periphfunc_t	xptdefperiphfunc;
841 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
842 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
843 					    void *arg);
844 static xpt_devicefunc_t	xptsetasyncfunc;
845 static xpt_busfunc_t	xptsetasyncbusfunc;
846 static cam_status	xptregister(struct cam_periph *periph,
847 				    void *arg);
848 static cam_status	proberegister(struct cam_periph *periph,
849 				      void *arg);
850 static void	 probeschedule(struct cam_periph *probe_periph);
851 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
852 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
853 static int       proberequestbackoff(struct cam_periph *periph,
854 				     struct cam_ed *device);
855 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
856 static void	 probecleanup(struct cam_periph *periph);
857 static void	 xpt_find_quirk(struct cam_ed *device);
858 static void	 xpt_devise_transport(struct cam_path *path);
859 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
860 					   struct cam_ed *device,
861 					   int async_update);
862 static void	 xpt_toggle_tags(struct cam_path *path);
863 static void	 xpt_start_tags(struct cam_path *path);
864 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
865 					    struct cam_ed *dev);
866 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
867 					   struct cam_ed *dev);
868 static __inline int periph_is_queued(struct cam_periph *periph);
869 static __inline int device_is_alloc_queued(struct cam_ed *device);
870 static __inline int device_is_send_queued(struct cam_ed *device);
871 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
872 
873 static __inline int
874 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
875 {
876 	int retval;
877 
878 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
879 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
880 			cam_ccbq_resize(&dev->ccbq,
881 					dev->ccbq.dev_openings
882 					+ dev->ccbq.dev_active);
883 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
884 		}
885 		/*
886 		 * The priority of a device waiting for CCB resources
887 		 * is that of the the highest priority peripheral driver
888 		 * enqueued.
889 		 */
890 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
891 					  &dev->alloc_ccb_entry.pinfo,
892 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
893 	} else {
894 		retval = 0;
895 	}
896 
897 	return (retval);
898 }
899 
900 static __inline int
901 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
902 {
903 	int	retval;
904 
905 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
906 		/*
907 		 * The priority of a device waiting for controller
908 		 * resources is that of the the highest priority CCB
909 		 * enqueued.
910 		 */
911 		retval =
912 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
913 				     &dev->send_ccb_entry.pinfo,
914 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
915 	} else {
916 		retval = 0;
917 	}
918 	return (retval);
919 }
920 
921 static __inline int
922 periph_is_queued(struct cam_periph *periph)
923 {
924 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
925 }
926 
927 static __inline int
928 device_is_alloc_queued(struct cam_ed *device)
929 {
930 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
931 }
932 
933 static __inline int
934 device_is_send_queued(struct cam_ed *device)
935 {
936 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
937 }
938 
939 static __inline int
940 dev_allocq_is_runnable(struct cam_devq *devq)
941 {
942 	/*
943 	 * Have work to do.
944 	 * Have space to do more work.
945 	 * Allowed to do work.
946 	 */
947 	return ((devq->alloc_queue.qfrozen_cnt == 0)
948 	     && (devq->alloc_queue.entries > 0)
949 	     && (devq->alloc_openings > 0));
950 }
951 
952 static void
953 xpt_periph_init(void)
954 {
955 	dev_ops_add(&xpt_ops, 0, 0);
956 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
957 }
958 
959 static void
960 probe_periph_init(void)
961 {
962 }
963 
964 
965 static void
966 xptdone(struct cam_periph *periph, union ccb *done_ccb)
967 {
968 	/* Caller will release the CCB */
969 	wakeup(&done_ccb->ccb_h.cbfcnp);
970 }
971 
972 static int
973 xptopen(struct dev_open_args *ap)
974 {
975 	cdev_t dev = ap->a_head.a_dev;
976 
977 	/*
978 	 * Only allow read-write access.
979 	 */
980 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
981 		return(EPERM);
982 
983 	/*
984 	 * We don't allow nonblocking access.
985 	 */
986 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
987 		kprintf("%s: can't do nonblocking access\n", devtoname(dev));
988 		return(ENODEV);
989 	}
990 
991 	/* Mark ourselves open */
992 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
993 	xsoftc.flags |= XPT_FLAG_OPEN;
994 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
995 
996 	return(0);
997 }
998 
999 static int
1000 xptclose(struct dev_close_args *ap)
1001 {
1002 
1003 	/* Mark ourselves closed */
1004 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1005 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1006 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1007 
1008 	return(0);
1009 }
1010 
1011 /*
1012  * Don't automatically grab the xpt softc lock here even though this is going
1013  * through the xpt device.  The xpt device is really just a back door for
1014  * accessing other devices and SIMs, so the right thing to do is to grab
1015  * the appropriate SIM lock once the bus/SIM is located.
1016  */
1017 static int
1018 xptioctl(struct dev_ioctl_args *ap)
1019 {
1020 	int error;
1021 
1022 	error = 0;
1023 
1024 	switch(ap->a_cmd) {
1025 	/*
1026 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1027 	 * to accept CCB types that don't quite make sense to send through a
1028 	 * passthrough driver.
1029 	 */
1030 	case CAMIOCOMMAND: {
1031 		union ccb *ccb;
1032 		union ccb *inccb;
1033 		struct cam_eb *bus;
1034 
1035 		inccb = (union ccb *)ap->a_data;
1036 
1037 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1038 		if (bus == NULL) {
1039 			error = EINVAL;
1040 			break;
1041 		}
1042 
1043 		switch(inccb->ccb_h.func_code) {
1044 		case XPT_SCAN_BUS:
1045 		case XPT_RESET_BUS:
1046 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1047 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1048 				error = EINVAL;
1049 				break;
1050 			}
1051 			/* FALLTHROUGH */
1052 		case XPT_PATH_INQ:
1053 		case XPT_ENG_INQ:
1054 		case XPT_SCAN_LUN:
1055 
1056 			ccb = xpt_alloc_ccb();
1057 
1058 			CAM_SIM_LOCK(bus->sim);
1059 
1060 			/*
1061 			 * Create a path using the bus, target, and lun the
1062 			 * user passed in.
1063 			 */
1064 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1065 					    inccb->ccb_h.path_id,
1066 					    inccb->ccb_h.target_id,
1067 					    inccb->ccb_h.target_lun) !=
1068 					    CAM_REQ_CMP){
1069 				error = EINVAL;
1070 				CAM_SIM_UNLOCK(bus->sim);
1071 				xpt_free_ccb(ccb);
1072 				break;
1073 			}
1074 			/* Ensure all of our fields are correct */
1075 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1076 				      inccb->ccb_h.pinfo.priority);
1077 			xpt_merge_ccb(ccb, inccb);
1078 			ccb->ccb_h.cbfcnp = xptdone;
1079 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1080 			bcopy(ccb, inccb, sizeof(union ccb));
1081 			xpt_free_path(ccb->ccb_h.path);
1082 			xpt_free_ccb(ccb);
1083 			CAM_SIM_UNLOCK(bus->sim);
1084 			break;
1085 
1086 		case XPT_DEBUG: {
1087 			union ccb ccb;
1088 
1089 			/*
1090 			 * This is an immediate CCB, so it's okay to
1091 			 * allocate it on the stack.
1092 			 */
1093 
1094 			CAM_SIM_LOCK(bus->sim);
1095 
1096 			/*
1097 			 * Create a path using the bus, target, and lun the
1098 			 * user passed in.
1099 			 */
1100 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1101 					    inccb->ccb_h.path_id,
1102 					    inccb->ccb_h.target_id,
1103 					    inccb->ccb_h.target_lun) !=
1104 					    CAM_REQ_CMP){
1105 				error = EINVAL;
1106 				CAM_SIM_UNLOCK(bus->sim);
1107 				break;
1108 			}
1109 			/* Ensure all of our fields are correct */
1110 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1111 				      inccb->ccb_h.pinfo.priority);
1112 			xpt_merge_ccb(&ccb, inccb);
1113 			ccb.ccb_h.cbfcnp = xptdone;
1114 			xpt_action(&ccb);
1115 			CAM_SIM_UNLOCK(bus->sim);
1116 			bcopy(&ccb, inccb, sizeof(union ccb));
1117 			xpt_free_path(ccb.ccb_h.path);
1118 			break;
1119 
1120 		}
1121 		case XPT_DEV_MATCH: {
1122 			struct cam_periph_map_info mapinfo;
1123 			struct cam_path *old_path;
1124 
1125 			/*
1126 			 * We can't deal with physical addresses for this
1127 			 * type of transaction.
1128 			 */
1129 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1130 				error = EINVAL;
1131 				break;
1132 			}
1133 
1134 			/*
1135 			 * Save this in case the caller had it set to
1136 			 * something in particular.
1137 			 */
1138 			old_path = inccb->ccb_h.path;
1139 
1140 			/*
1141 			 * We really don't need a path for the matching
1142 			 * code.  The path is needed because of the
1143 			 * debugging statements in xpt_action().  They
1144 			 * assume that the CCB has a valid path.
1145 			 */
1146 			inccb->ccb_h.path = xpt_periph->path;
1147 
1148 			bzero(&mapinfo, sizeof(mapinfo));
1149 
1150 			/*
1151 			 * Map the pattern and match buffers into kernel
1152 			 * virtual address space.
1153 			 */
1154 			error = cam_periph_mapmem(inccb, &mapinfo);
1155 
1156 			if (error) {
1157 				inccb->ccb_h.path = old_path;
1158 				break;
1159 			}
1160 
1161 			/*
1162 			 * This is an immediate CCB, we can send it on directly.
1163 			 */
1164 			xpt_action(inccb);
1165 
1166 			/*
1167 			 * Map the buffers back into user space.
1168 			 */
1169 			cam_periph_unmapmem(inccb, &mapinfo);
1170 
1171 			inccb->ccb_h.path = old_path;
1172 
1173 			error = 0;
1174 			break;
1175 		}
1176 		default:
1177 			error = ENOTSUP;
1178 			break;
1179 		}
1180 		xpt_release_bus(bus);
1181 		break;
1182 	}
1183 	/*
1184 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1185 	 * with the periphal driver name and unit name filled in.  The other
1186 	 * fields don't really matter as input.  The passthrough driver name
1187 	 * ("pass"), and unit number are passed back in the ccb.  The current
1188 	 * device generation number, and the index into the device peripheral
1189 	 * driver list, and the status are also passed back.  Note that
1190 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1191 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1192 	 * (or rather should be) impossible for the device peripheral driver
1193 	 * list to change since we look at the whole thing in one pass, and
1194 	 * we do it with lock protection.
1195 	 *
1196 	 */
1197 	case CAMGETPASSTHRU: {
1198 		union ccb *ccb;
1199 		struct cam_periph *periph;
1200 		struct periph_driver **p_drv;
1201 		char   *name;
1202 		u_int unit;
1203 		u_int cur_generation;
1204 		int base_periph_found;
1205 		int splbreaknum;
1206 
1207 		ccb = (union ccb *)ap->a_data;
1208 		unit = ccb->cgdl.unit_number;
1209 		name = ccb->cgdl.periph_name;
1210 		/*
1211 		 * Every 100 devices, we want to drop our lock protection to
1212 		 * give the software interrupt handler a chance to run.
1213 		 * Most systems won't run into this check, but this should
1214 		 * avoid starvation in the software interrupt handler in
1215 		 * large systems.
1216 		 */
1217 		splbreaknum = 100;
1218 
1219 		ccb = (union ccb *)ap->a_data;
1220 
1221 		base_periph_found = 0;
1222 
1223 		/*
1224 		 * Sanity check -- make sure we don't get a null peripheral
1225 		 * driver name.
1226 		 */
1227 		if (*ccb->cgdl.periph_name == '\0') {
1228 			error = EINVAL;
1229 			break;
1230 		}
1231 
1232 		/* Keep the list from changing while we traverse it */
1233 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1234 ptstartover:
1235 		cur_generation = xsoftc.xpt_generation;
1236 
1237 		/* first find our driver in the list of drivers */
1238 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1239 			if (strcmp((*p_drv)->driver_name, name) == 0)
1240 				break;
1241 		}
1242 
1243 		if (*p_drv == NULL) {
1244 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1245 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1246 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1247 			*ccb->cgdl.periph_name = '\0';
1248 			ccb->cgdl.unit_number = 0;
1249 			error = ENOENT;
1250 			break;
1251 		}
1252 
1253 		/*
1254 		 * Run through every peripheral instance of this driver
1255 		 * and check to see whether it matches the unit passed
1256 		 * in by the user.  If it does, get out of the loops and
1257 		 * find the passthrough driver associated with that
1258 		 * peripheral driver.
1259 		 */
1260 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1261 
1262 			if (periph->unit_number == unit) {
1263 				break;
1264 			} else if (--splbreaknum == 0) {
1265 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1266 				lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1267 				splbreaknum = 100;
1268 				if (cur_generation != xsoftc.xpt_generation)
1269 				       goto ptstartover;
1270 			}
1271 		}
1272 		/*
1273 		 * If we found the peripheral driver that the user passed
1274 		 * in, go through all of the peripheral drivers for that
1275 		 * particular device and look for a passthrough driver.
1276 		 */
1277 		if (periph != NULL) {
1278 			struct cam_ed *device;
1279 			int i;
1280 
1281 			base_periph_found = 1;
1282 			device = periph->path->device;
1283 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1284 			     periph != NULL;
1285 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1286 				/*
1287 				 * Check to see whether we have a
1288 				 * passthrough device or not.
1289 				 */
1290 				if (strcmp(periph->periph_name, "pass") == 0) {
1291 					/*
1292 					 * Fill in the getdevlist fields.
1293 					 */
1294 					strcpy(ccb->cgdl.periph_name,
1295 					       periph->periph_name);
1296 					ccb->cgdl.unit_number =
1297 						periph->unit_number;
1298 					if (SLIST_NEXT(periph, periph_links))
1299 						ccb->cgdl.status =
1300 							CAM_GDEVLIST_MORE_DEVS;
1301 					else
1302 						ccb->cgdl.status =
1303 						       CAM_GDEVLIST_LAST_DEVICE;
1304 					ccb->cgdl.generation =
1305 						device->generation;
1306 					ccb->cgdl.index = i;
1307 					/*
1308 					 * Fill in some CCB header fields
1309 					 * that the user may want.
1310 					 */
1311 					ccb->ccb_h.path_id =
1312 						periph->path->bus->path_id;
1313 					ccb->ccb_h.target_id =
1314 						periph->path->target->target_id;
1315 					ccb->ccb_h.target_lun =
1316 						periph->path->device->lun_id;
1317 					ccb->ccb_h.status = CAM_REQ_CMP;
1318 					break;
1319 				}
1320 			}
1321 		}
1322 
1323 		/*
1324 		 * If the periph is null here, one of two things has
1325 		 * happened.  The first possibility is that we couldn't
1326 		 * find the unit number of the particular peripheral driver
1327 		 * that the user is asking about.  e.g. the user asks for
1328 		 * the passthrough driver for "da11".  We find the list of
1329 		 * "da" peripherals all right, but there is no unit 11.
1330 		 * The other possibility is that we went through the list
1331 		 * of peripheral drivers attached to the device structure,
1332 		 * but didn't find one with the name "pass".  Either way,
1333 		 * we return ENOENT, since we couldn't find something.
1334 		 */
1335 		if (periph == NULL) {
1336 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1337 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1338 			*ccb->cgdl.periph_name = '\0';
1339 			ccb->cgdl.unit_number = 0;
1340 			error = ENOENT;
1341 			/*
1342 			 * It is unfortunate that this is even necessary,
1343 			 * but there are many, many clueless users out there.
1344 			 * If this is true, the user is looking for the
1345 			 * passthrough driver, but doesn't have one in his
1346 			 * kernel.
1347 			 */
1348 			if (base_periph_found == 1) {
1349 				kprintf("xptioctl: pass driver is not in the "
1350 				       "kernel\n");
1351 				kprintf("xptioctl: put \"device pass\" in "
1352 				       "your kernel config file\n");
1353 			}
1354 		}
1355 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1356 		break;
1357 		}
1358 	default:
1359 		error = ENOTTY;
1360 		break;
1361 	}
1362 
1363 	return(error);
1364 }
1365 
1366 static int
1367 cam_module_event_handler(module_t mod, int what, void *arg)
1368 {
1369 	int error;
1370 
1371 	switch (what) {
1372 	case MOD_LOAD:
1373 		if ((error = xpt_init(NULL)) != 0)
1374 			return (error);
1375 		break;
1376 	case MOD_UNLOAD:
1377 		return EBUSY;
1378 	default:
1379 		return EOPNOTSUPP;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 /* thread to handle bus rescans */
1386 static void
1387 xpt_scanner_thread(void *dummy)
1388 {
1389 	cam_isrq_t	queue;
1390 	union ccb	*ccb;
1391 	struct cam_sim	*sim;
1392 
1393 	for (;;) {
1394 		/*
1395 		 * Wait for a rescan request to come in.  When it does, splice
1396 		 * it onto a queue from local storage so that the xpt lock
1397 		 * doesn't need to be held while the requests are being
1398 		 * processed.
1399 		 */
1400 		crit_enter();
1401 		tsleep_interlock(&xsoftc.ccb_scanq);
1402 		xpt_unlock_buses();
1403 		tsleep(&xsoftc.ccb_scanq, 0, "ccb_scanq", 0);
1404 		xpt_lock_buses();
1405 		crit_exit();
1406 		TAILQ_INIT(&queue);
1407 		TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
1408 		xpt_unlock_buses();
1409 
1410 		while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
1411 			TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
1412 
1413 			sim = ccb->ccb_h.path->bus->sim;
1414 			CAM_SIM_LOCK(sim);
1415 
1416 			ccb->ccb_h.func_code = XPT_SCAN_BUS;
1417 			ccb->ccb_h.cbfcnp = xptdone;
1418 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5);
1419 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1420 			xpt_free_path(ccb->ccb_h.path);
1421 			xpt_free_ccb(ccb);
1422 			CAM_SIM_UNLOCK(sim);
1423 		}
1424 	}
1425 }
1426 
1427 void
1428 xpt_rescan(union ccb *ccb)
1429 {
1430 	struct ccb_hdr *hdr;
1431 
1432 	/*
1433 	 * Don't make duplicate entries for the same paths.
1434 	 */
1435 	xpt_lock_buses();
1436 	TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
1437 		if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
1438 			xpt_unlock_buses();
1439 			xpt_print(ccb->ccb_h.path, "rescan already queued\n");
1440 			xpt_free_path(ccb->ccb_h.path);
1441 			xpt_free_ccb(ccb);
1442 			return;
1443 		}
1444 	}
1445 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1446 	wakeup(&xsoftc.ccb_scanq);
1447 	xpt_unlock_buses();
1448 }
1449 
1450 
1451 /* Functions accessed by the peripheral drivers */
1452 static int
1453 xpt_init(void *dummy)
1454 {
1455 	struct cam_sim *xpt_sim;
1456 	struct cam_path *path;
1457 	struct cam_devq *devq;
1458 	cam_status status;
1459 
1460 	TAILQ_INIT(&xsoftc.xpt_busses);
1461 	TAILQ_INIT(&cam_simq);
1462 	TAILQ_INIT(&xsoftc.ccb_scanq);
1463 	STAILQ_INIT(&xsoftc.highpowerq);
1464 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1465 
1466 	spin_init(&cam_simq_spin);
1467 	lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1468 	lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1469 
1470 	SLIST_INIT(&cam_dead_sim.ccb_freeq);
1471 	TAILQ_INIT(&cam_dead_sim.sim_doneq);
1472 	spin_init(&cam_dead_sim.sim_spin);
1473 	cam_dead_sim.sim_action = dead_sim_action;
1474 	cam_dead_sim.sim_poll = dead_sim_poll;
1475 	cam_dead_sim.sim_name = "dead_sim";
1476 	cam_dead_sim.lock = &cam_dead_lock;
1477 	lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1478 	cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1479 
1480 	/*
1481 	 * The xpt layer is, itself, the equivelent of a SIM.
1482 	 * Allow 16 ccbs in the ccb pool for it.  This should
1483 	 * give decent parallelism when we probe busses and
1484 	 * perform other XPT functions.
1485 	 */
1486 	devq = cam_simq_alloc(16);
1487 	xpt_sim = cam_sim_alloc(xptaction,
1488 				xptpoll,
1489 				"xpt",
1490 				/*softc*/NULL,
1491 				/*unit*/0,
1492 				/*lock*/&xsoftc.xpt_lock,
1493 				/*max_dev_transactions*/0,
1494 				/*max_tagged_dev_transactions*/0,
1495 				devq);
1496 	cam_simq_release(devq);
1497 	if (xpt_sim == NULL)
1498 		return (ENOMEM);
1499 
1500 	xpt_sim->max_ccbs = 16;
1501 
1502 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1503 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1504 		kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1505 		       " failing attach\n", status);
1506 		return (EINVAL);
1507 	}
1508 
1509 	/*
1510 	 * Looking at the XPT from the SIM layer, the XPT is
1511 	 * the equivelent of a peripheral driver.  Allocate
1512 	 * a peripheral driver entry for us.
1513 	 */
1514 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1515 				      CAM_TARGET_WILDCARD,
1516 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1517 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1518 		       " failing attach\n", status);
1519 		return (EINVAL);
1520 	}
1521 
1522 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1523 			 path, NULL, 0, xpt_sim);
1524 	xpt_free_path(path);
1525 
1526 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1527 
1528 	/*
1529 	 * Register a callback for when interrupts are enabled.
1530 	 */
1531 	xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1532 				  M_CAMXPT, M_INTWAIT | M_ZERO);
1533 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1534 	xsoftc.xpt_config_hook->ich_desc = "xpt";
1535 	xsoftc.xpt_config_hook->ich_order = 1000;
1536 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1537 		kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1538 		kprintf("xpt_init: config_intrhook_establish failed "
1539 		       "- failing attach\n");
1540 	}
1541 
1542 	/* fire up rescan thread */
1543 	if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1544 		kprintf("xpt_init: failed to create rescan thread\n");
1545 	}
1546 	/* Install our software interrupt handlers */
1547 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL);
1548 
1549 	return (0);
1550 }
1551 
1552 static cam_status
1553 xptregister(struct cam_periph *periph, void *arg)
1554 {
1555 	struct cam_sim *xpt_sim;
1556 
1557 	if (periph == NULL) {
1558 		kprintf("xptregister: periph was NULL!!\n");
1559 		return(CAM_REQ_CMP_ERR);
1560 	}
1561 
1562 	xpt_sim = (struct cam_sim *)arg;
1563 	xpt_sim->softc = periph;
1564 	xpt_periph = periph;
1565 	periph->softc = NULL;
1566 
1567 	return(CAM_REQ_CMP);
1568 }
1569 
1570 int32_t
1571 xpt_add_periph(struct cam_periph *periph)
1572 {
1573 	struct cam_ed *device;
1574 	int32_t	 status;
1575 	struct periph_list *periph_head;
1576 
1577 	sim_lock_assert_owned(periph->sim->lock);
1578 
1579 	device = periph->path->device;
1580 
1581 	periph_head = &device->periphs;
1582 
1583 	status = CAM_REQ_CMP;
1584 
1585 	if (device != NULL) {
1586 		/*
1587 		 * Make room for this peripheral
1588 		 * so it will fit in the queue
1589 		 * when it's scheduled to run
1590 		 */
1591 		status = camq_resize(&device->drvq,
1592 				     device->drvq.array_size + 1);
1593 
1594 		device->generation++;
1595 
1596 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1597 	}
1598 
1599 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1600 	xsoftc.xpt_generation++;
1601 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1602 
1603 	return (status);
1604 }
1605 
1606 void
1607 xpt_remove_periph(struct cam_periph *periph)
1608 {
1609 	struct cam_ed *device;
1610 
1611 	sim_lock_assert_owned(periph->sim->lock);
1612 
1613 	device = periph->path->device;
1614 
1615 	if (device != NULL) {
1616 		struct periph_list *periph_head;
1617 
1618 		periph_head = &device->periphs;
1619 
1620 		/* Release the slot for this peripheral */
1621 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1622 
1623 		device->generation++;
1624 
1625 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1626 	}
1627 
1628 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1629 	xsoftc.xpt_generation++;
1630 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1631 }
1632 
1633 void
1634 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1635 {
1636 	struct	ccb_pathinq cpi;
1637 	struct	ccb_trans_settings cts;
1638 	struct	cam_path *path;
1639 	u_int	speed;
1640 	u_int	freq;
1641 	u_int	mb;
1642 
1643 	sim_lock_assert_owned(periph->sim->lock);
1644 
1645 	path = periph->path;
1646 	/*
1647 	 * To ensure that this is printed in one piece,
1648 	 * mask out CAM interrupts.
1649 	 */
1650 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1651 	       periph->periph_name, periph->unit_number,
1652 	       path->bus->sim->sim_name,
1653 	       path->bus->sim->unit_number,
1654 	       path->bus->sim->bus_id,
1655 	       path->target->target_id,
1656 	       path->device->lun_id);
1657 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1658 	scsi_print_inquiry(&path->device->inq_data);
1659 	if (bootverbose && path->device->serial_num_len > 0) {
1660 		/* Don't wrap the screen  - print only the first 60 chars */
1661 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1662 		       periph->unit_number, path->device->serial_num);
1663 	}
1664 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1665 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1666 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1667 	xpt_action((union ccb*)&cts);
1668 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1669 		return;
1670 	}
1671 
1672 	/* Ask the SIM for its base transfer speed */
1673 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1674 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1675 	xpt_action((union ccb *)&cpi);
1676 
1677 	speed = cpi.base_transfer_speed;
1678 	freq = 0;
1679 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1680 		struct	ccb_trans_settings_spi *spi;
1681 
1682 		spi = &cts.xport_specific.spi;
1683 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1684 		  && spi->sync_offset != 0) {
1685 			freq = scsi_calc_syncsrate(spi->sync_period);
1686 			speed = freq;
1687 		}
1688 
1689 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1690 			speed *= (0x01 << spi->bus_width);
1691 	}
1692 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1693 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1694 		if (fc->valid & CTS_FC_VALID_SPEED) {
1695 			speed = fc->bitrate;
1696 		}
1697 	}
1698 
1699 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1700 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1701 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1702 			speed = sas->bitrate;
1703 		}
1704 	}
1705 
1706 	mb = speed / 1000;
1707 	if (mb > 0)
1708 		kprintf("%s%d: %d.%03dMB/s transfers",
1709 		       periph->periph_name, periph->unit_number,
1710 		       mb, speed % 1000);
1711 	else
1712 		kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1713 		       periph->unit_number, speed);
1714 	/* Report additional information about SPI connections */
1715 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1716 		struct	ccb_trans_settings_spi *spi;
1717 
1718 		spi = &cts.xport_specific.spi;
1719 		if (freq != 0) {
1720 			kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1721 			       freq % 1000,
1722 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1723 			     ? " DT" : "",
1724 			       spi->sync_offset);
1725 		}
1726 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1727 		 && spi->bus_width > 0) {
1728 			if (freq != 0) {
1729 				kprintf(", ");
1730 			} else {
1731 				kprintf(" (");
1732 			}
1733 			kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1734 		} else if (freq != 0) {
1735 			kprintf(")");
1736 		}
1737 	}
1738 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1739 		struct	ccb_trans_settings_fc *fc;
1740 
1741 		fc = &cts.xport_specific.fc;
1742 		if (fc->valid & CTS_FC_VALID_WWNN)
1743 			kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1744 		if (fc->valid & CTS_FC_VALID_WWPN)
1745 			kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1746 		if (fc->valid & CTS_FC_VALID_PORT)
1747 			kprintf(" PortID 0x%x", fc->port);
1748 	}
1749 
1750 	if (path->device->inq_flags & SID_CmdQue
1751 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1752 		kprintf("\n%s%d: Command Queueing Enabled",
1753 		       periph->periph_name, periph->unit_number);
1754 	}
1755 	kprintf("\n");
1756 
1757 	/*
1758 	 * We only want to print the caller's announce string if they've
1759 	 * passed one in..
1760 	 */
1761 	if (announce_string != NULL)
1762 		kprintf("%s%d: %s\n", periph->periph_name,
1763 		       periph->unit_number, announce_string);
1764 }
1765 
1766 static dev_match_ret
1767 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1768 	    struct cam_eb *bus)
1769 {
1770 	dev_match_ret retval;
1771 	int i;
1772 
1773 	retval = DM_RET_NONE;
1774 
1775 	/*
1776 	 * If we aren't given something to match against, that's an error.
1777 	 */
1778 	if (bus == NULL)
1779 		return(DM_RET_ERROR);
1780 
1781 	/*
1782 	 * If there are no match entries, then this bus matches no
1783 	 * matter what.
1784 	 */
1785 	if ((patterns == NULL) || (num_patterns == 0))
1786 		return(DM_RET_DESCEND | DM_RET_COPY);
1787 
1788 	for (i = 0; i < num_patterns; i++) {
1789 		struct bus_match_pattern *cur_pattern;
1790 
1791 		/*
1792 		 * If the pattern in question isn't for a bus node, we
1793 		 * aren't interested.  However, we do indicate to the
1794 		 * calling routine that we should continue descending the
1795 		 * tree, since the user wants to match against lower-level
1796 		 * EDT elements.
1797 		 */
1798 		if (patterns[i].type != DEV_MATCH_BUS) {
1799 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1800 				retval |= DM_RET_DESCEND;
1801 			continue;
1802 		}
1803 
1804 		cur_pattern = &patterns[i].pattern.bus_pattern;
1805 
1806 		/*
1807 		 * If they want to match any bus node, we give them any
1808 		 * device node.
1809 		 */
1810 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1811 			/* set the copy flag */
1812 			retval |= DM_RET_COPY;
1813 
1814 			/*
1815 			 * If we've already decided on an action, go ahead
1816 			 * and return.
1817 			 */
1818 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1819 				return(retval);
1820 		}
1821 
1822 		/*
1823 		 * Not sure why someone would do this...
1824 		 */
1825 		if (cur_pattern->flags == BUS_MATCH_NONE)
1826 			continue;
1827 
1828 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1829 		 && (cur_pattern->path_id != bus->path_id))
1830 			continue;
1831 
1832 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1833 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1834 			continue;
1835 
1836 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1837 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1838 			continue;
1839 
1840 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1841 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1842 			     DEV_IDLEN) != 0))
1843 			continue;
1844 
1845 		/*
1846 		 * If we get to this point, the user definitely wants
1847 		 * information on this bus.  So tell the caller to copy the
1848 		 * data out.
1849 		 */
1850 		retval |= DM_RET_COPY;
1851 
1852 		/*
1853 		 * If the return action has been set to descend, then we
1854 		 * know that we've already seen a non-bus matching
1855 		 * expression, therefore we need to further descend the tree.
1856 		 * This won't change by continuing around the loop, so we
1857 		 * go ahead and return.  If we haven't seen a non-bus
1858 		 * matching expression, we keep going around the loop until
1859 		 * we exhaust the matching expressions.  We'll set the stop
1860 		 * flag once we fall out of the loop.
1861 		 */
1862 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1863 			return(retval);
1864 	}
1865 
1866 	/*
1867 	 * If the return action hasn't been set to descend yet, that means
1868 	 * we haven't seen anything other than bus matching patterns.  So
1869 	 * tell the caller to stop descending the tree -- the user doesn't
1870 	 * want to match against lower level tree elements.
1871 	 */
1872 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1873 		retval |= DM_RET_STOP;
1874 
1875 	return(retval);
1876 }
1877 
1878 static dev_match_ret
1879 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1880 	       struct cam_ed *device)
1881 {
1882 	dev_match_ret retval;
1883 	int i;
1884 
1885 	retval = DM_RET_NONE;
1886 
1887 	/*
1888 	 * If we aren't given something to match against, that's an error.
1889 	 */
1890 	if (device == NULL)
1891 		return(DM_RET_ERROR);
1892 
1893 	/*
1894 	 * If there are no match entries, then this device matches no
1895 	 * matter what.
1896 	 */
1897 	if ((patterns == NULL) || (num_patterns == 0))
1898 		return(DM_RET_DESCEND | DM_RET_COPY);
1899 
1900 	for (i = 0; i < num_patterns; i++) {
1901 		struct device_match_pattern *cur_pattern;
1902 
1903 		/*
1904 		 * If the pattern in question isn't for a device node, we
1905 		 * aren't interested.
1906 		 */
1907 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1908 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1909 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1910 				retval |= DM_RET_DESCEND;
1911 			continue;
1912 		}
1913 
1914 		cur_pattern = &patterns[i].pattern.device_pattern;
1915 
1916 		/*
1917 		 * If they want to match any device node, we give them any
1918 		 * device node.
1919 		 */
1920 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1921 			/* set the copy flag */
1922 			retval |= DM_RET_COPY;
1923 
1924 
1925 			/*
1926 			 * If we've already decided on an action, go ahead
1927 			 * and return.
1928 			 */
1929 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1930 				return(retval);
1931 		}
1932 
1933 		/*
1934 		 * Not sure why someone would do this...
1935 		 */
1936 		if (cur_pattern->flags == DEV_MATCH_NONE)
1937 			continue;
1938 
1939 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1940 		 && (cur_pattern->path_id != device->target->bus->path_id))
1941 			continue;
1942 
1943 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1944 		 && (cur_pattern->target_id != device->target->target_id))
1945 			continue;
1946 
1947 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1948 		 && (cur_pattern->target_lun != device->lun_id))
1949 			continue;
1950 
1951 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1952 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1953 				    (caddr_t)&cur_pattern->inq_pat,
1954 				    1, sizeof(cur_pattern->inq_pat),
1955 				    scsi_static_inquiry_match) == NULL))
1956 			continue;
1957 
1958 		/*
1959 		 * If we get to this point, the user definitely wants
1960 		 * information on this device.  So tell the caller to copy
1961 		 * the data out.
1962 		 */
1963 		retval |= DM_RET_COPY;
1964 
1965 		/*
1966 		 * If the return action has been set to descend, then we
1967 		 * know that we've already seen a peripheral matching
1968 		 * expression, therefore we need to further descend the tree.
1969 		 * This won't change by continuing around the loop, so we
1970 		 * go ahead and return.  If we haven't seen a peripheral
1971 		 * matching expression, we keep going around the loop until
1972 		 * we exhaust the matching expressions.  We'll set the stop
1973 		 * flag once we fall out of the loop.
1974 		 */
1975 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1976 			return(retval);
1977 	}
1978 
1979 	/*
1980 	 * If the return action hasn't been set to descend yet, that means
1981 	 * we haven't seen any peripheral matching patterns.  So tell the
1982 	 * caller to stop descending the tree -- the user doesn't want to
1983 	 * match against lower level tree elements.
1984 	 */
1985 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1986 		retval |= DM_RET_STOP;
1987 
1988 	return(retval);
1989 }
1990 
1991 /*
1992  * Match a single peripheral against any number of match patterns.
1993  */
1994 static dev_match_ret
1995 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1996 	       struct cam_periph *periph)
1997 {
1998 	dev_match_ret retval;
1999 	int i;
2000 
2001 	/*
2002 	 * If we aren't given something to match against, that's an error.
2003 	 */
2004 	if (periph == NULL)
2005 		return(DM_RET_ERROR);
2006 
2007 	/*
2008 	 * If there are no match entries, then this peripheral matches no
2009 	 * matter what.
2010 	 */
2011 	if ((patterns == NULL) || (num_patterns == 0))
2012 		return(DM_RET_STOP | DM_RET_COPY);
2013 
2014 	/*
2015 	 * There aren't any nodes below a peripheral node, so there's no
2016 	 * reason to descend the tree any further.
2017 	 */
2018 	retval = DM_RET_STOP;
2019 
2020 	for (i = 0; i < num_patterns; i++) {
2021 		struct periph_match_pattern *cur_pattern;
2022 
2023 		/*
2024 		 * If the pattern in question isn't for a peripheral, we
2025 		 * aren't interested.
2026 		 */
2027 		if (patterns[i].type != DEV_MATCH_PERIPH)
2028 			continue;
2029 
2030 		cur_pattern = &patterns[i].pattern.periph_pattern;
2031 
2032 		/*
2033 		 * If they want to match on anything, then we will do so.
2034 		 */
2035 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2036 			/* set the copy flag */
2037 			retval |= DM_RET_COPY;
2038 
2039 			/*
2040 			 * We've already set the return action to stop,
2041 			 * since there are no nodes below peripherals in
2042 			 * the tree.
2043 			 */
2044 			return(retval);
2045 		}
2046 
2047 		/*
2048 		 * Not sure why someone would do this...
2049 		 */
2050 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2051 			continue;
2052 
2053 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2054 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2055 			continue;
2056 
2057 		/*
2058 		 * For the target and lun id's, we have to make sure the
2059 		 * target and lun pointers aren't NULL.  The xpt peripheral
2060 		 * has a wildcard target and device.
2061 		 */
2062 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2063 		 && ((periph->path->target == NULL)
2064 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2065 			continue;
2066 
2067 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2068 		 && ((periph->path->device == NULL)
2069 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2070 			continue;
2071 
2072 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2073 		 && (cur_pattern->unit_number != periph->unit_number))
2074 			continue;
2075 
2076 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2077 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2078 			     DEV_IDLEN) != 0))
2079 			continue;
2080 
2081 		/*
2082 		 * If we get to this point, the user definitely wants
2083 		 * information on this peripheral.  So tell the caller to
2084 		 * copy the data out.
2085 		 */
2086 		retval |= DM_RET_COPY;
2087 
2088 		/*
2089 		 * The return action has already been set to stop, since
2090 		 * peripherals don't have any nodes below them in the EDT.
2091 		 */
2092 		return(retval);
2093 	}
2094 
2095 	/*
2096 	 * If we get to this point, the peripheral that was passed in
2097 	 * doesn't match any of the patterns.
2098 	 */
2099 	return(retval);
2100 }
2101 
2102 static int
2103 xptedtbusfunc(struct cam_eb *bus, void *arg)
2104 {
2105 	struct ccb_dev_match *cdm;
2106 	dev_match_ret retval;
2107 
2108 	cdm = (struct ccb_dev_match *)arg;
2109 
2110 	/*
2111 	 * If our position is for something deeper in the tree, that means
2112 	 * that we've already seen this node.  So, we keep going down.
2113 	 */
2114 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2115 	 && (cdm->pos.cookie.bus == bus)
2116 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2117 	 && (cdm->pos.cookie.target != NULL))
2118 		retval = DM_RET_DESCEND;
2119 	else
2120 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2121 
2122 	/*
2123 	 * If we got an error, bail out of the search.
2124 	 */
2125 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2126 		cdm->status = CAM_DEV_MATCH_ERROR;
2127 		return(0);
2128 	}
2129 
2130 	/*
2131 	 * If the copy flag is set, copy this bus out.
2132 	 */
2133 	if (retval & DM_RET_COPY) {
2134 		int spaceleft, j;
2135 
2136 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2137 			sizeof(struct dev_match_result));
2138 
2139 		/*
2140 		 * If we don't have enough space to put in another
2141 		 * match result, save our position and tell the
2142 		 * user there are more devices to check.
2143 		 */
2144 		if (spaceleft < sizeof(struct dev_match_result)) {
2145 			bzero(&cdm->pos, sizeof(cdm->pos));
2146 			cdm->pos.position_type =
2147 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2148 
2149 			cdm->pos.cookie.bus = bus;
2150 			cdm->pos.generations[CAM_BUS_GENERATION]=
2151 				xsoftc.bus_generation;
2152 			cdm->status = CAM_DEV_MATCH_MORE;
2153 			return(0);
2154 		}
2155 		j = cdm->num_matches;
2156 		cdm->num_matches++;
2157 		cdm->matches[j].type = DEV_MATCH_BUS;
2158 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2159 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2160 		cdm->matches[j].result.bus_result.unit_number =
2161 			bus->sim->unit_number;
2162 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2163 			bus->sim->sim_name, DEV_IDLEN);
2164 	}
2165 
2166 	/*
2167 	 * If the user is only interested in busses, there's no
2168 	 * reason to descend to the next level in the tree.
2169 	 */
2170 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2171 		return(1);
2172 
2173 	/*
2174 	 * If there is a target generation recorded, check it to
2175 	 * make sure the target list hasn't changed.
2176 	 */
2177 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2178 	 && (bus == cdm->pos.cookie.bus)
2179 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2180 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2181 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2182 	     bus->generation)) {
2183 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2184 		return(0);
2185 	}
2186 
2187 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2188 	 && (cdm->pos.cookie.bus == bus)
2189 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2190 	 && (cdm->pos.cookie.target != NULL))
2191 		return(xpttargettraverse(bus,
2192 					(struct cam_et *)cdm->pos.cookie.target,
2193 					 xptedttargetfunc, arg));
2194 	else
2195 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2196 }
2197 
2198 static int
2199 xptedttargetfunc(struct cam_et *target, void *arg)
2200 {
2201 	struct ccb_dev_match *cdm;
2202 
2203 	cdm = (struct ccb_dev_match *)arg;
2204 
2205 	/*
2206 	 * If there is a device list generation recorded, check it to
2207 	 * make sure the device list hasn't changed.
2208 	 */
2209 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2210 	 && (cdm->pos.cookie.bus == target->bus)
2211 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2212 	 && (cdm->pos.cookie.target == target)
2213 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2214 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2215 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2216 	     target->generation)) {
2217 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2218 		return(0);
2219 	}
2220 
2221 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2222 	 && (cdm->pos.cookie.bus == target->bus)
2223 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2224 	 && (cdm->pos.cookie.target == target)
2225 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2226 	 && (cdm->pos.cookie.device != NULL))
2227 		return(xptdevicetraverse(target,
2228 					(struct cam_ed *)cdm->pos.cookie.device,
2229 					 xptedtdevicefunc, arg));
2230 	else
2231 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2232 }
2233 
2234 static int
2235 xptedtdevicefunc(struct cam_ed *device, void *arg)
2236 {
2237 
2238 	struct ccb_dev_match *cdm;
2239 	dev_match_ret retval;
2240 
2241 	cdm = (struct ccb_dev_match *)arg;
2242 
2243 	/*
2244 	 * If our position is for something deeper in the tree, that means
2245 	 * that we've already seen this node.  So, we keep going down.
2246 	 */
2247 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2248 	 && (cdm->pos.cookie.device == device)
2249 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2250 	 && (cdm->pos.cookie.periph != NULL))
2251 		retval = DM_RET_DESCEND;
2252 	else
2253 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2254 					device);
2255 
2256 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2257 		cdm->status = CAM_DEV_MATCH_ERROR;
2258 		return(0);
2259 	}
2260 
2261 	/*
2262 	 * If the copy flag is set, copy this device out.
2263 	 */
2264 	if (retval & DM_RET_COPY) {
2265 		int spaceleft, j;
2266 
2267 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2268 			sizeof(struct dev_match_result));
2269 
2270 		/*
2271 		 * If we don't have enough space to put in another
2272 		 * match result, save our position and tell the
2273 		 * user there are more devices to check.
2274 		 */
2275 		if (spaceleft < sizeof(struct dev_match_result)) {
2276 			bzero(&cdm->pos, sizeof(cdm->pos));
2277 			cdm->pos.position_type =
2278 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2279 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2280 
2281 			cdm->pos.cookie.bus = device->target->bus;
2282 			cdm->pos.generations[CAM_BUS_GENERATION]=
2283 				xsoftc.bus_generation;
2284 			cdm->pos.cookie.target = device->target;
2285 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2286 				device->target->bus->generation;
2287 			cdm->pos.cookie.device = device;
2288 			cdm->pos.generations[CAM_DEV_GENERATION] =
2289 				device->target->generation;
2290 			cdm->status = CAM_DEV_MATCH_MORE;
2291 			return(0);
2292 		}
2293 		j = cdm->num_matches;
2294 		cdm->num_matches++;
2295 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2296 		cdm->matches[j].result.device_result.path_id =
2297 			device->target->bus->path_id;
2298 		cdm->matches[j].result.device_result.target_id =
2299 			device->target->target_id;
2300 		cdm->matches[j].result.device_result.target_lun =
2301 			device->lun_id;
2302 		bcopy(&device->inq_data,
2303 		      &cdm->matches[j].result.device_result.inq_data,
2304 		      sizeof(struct scsi_inquiry_data));
2305 
2306 		/* Let the user know whether this device is unconfigured */
2307 		if (device->flags & CAM_DEV_UNCONFIGURED)
2308 			cdm->matches[j].result.device_result.flags =
2309 				DEV_RESULT_UNCONFIGURED;
2310 		else
2311 			cdm->matches[j].result.device_result.flags =
2312 				DEV_RESULT_NOFLAG;
2313 	}
2314 
2315 	/*
2316 	 * If the user isn't interested in peripherals, don't descend
2317 	 * the tree any further.
2318 	 */
2319 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2320 		return(1);
2321 
2322 	/*
2323 	 * If there is a peripheral list generation recorded, make sure
2324 	 * it hasn't changed.
2325 	 */
2326 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2327 	 && (device->target->bus == cdm->pos.cookie.bus)
2328 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2329 	 && (device->target == cdm->pos.cookie.target)
2330 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2331 	 && (device == cdm->pos.cookie.device)
2332 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2333 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2334 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2335 	     device->generation)){
2336 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2337 		return(0);
2338 	}
2339 
2340 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2341 	 && (cdm->pos.cookie.bus == device->target->bus)
2342 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2343 	 && (cdm->pos.cookie.target == device->target)
2344 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2345 	 && (cdm->pos.cookie.device == device)
2346 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2347 	 && (cdm->pos.cookie.periph != NULL))
2348 		return(xptperiphtraverse(device,
2349 				(struct cam_periph *)cdm->pos.cookie.periph,
2350 				xptedtperiphfunc, arg));
2351 	else
2352 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2353 }
2354 
2355 static int
2356 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2357 {
2358 	struct ccb_dev_match *cdm;
2359 	dev_match_ret retval;
2360 
2361 	cdm = (struct ccb_dev_match *)arg;
2362 
2363 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2364 
2365 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2366 		cdm->status = CAM_DEV_MATCH_ERROR;
2367 		return(0);
2368 	}
2369 
2370 	/*
2371 	 * If the copy flag is set, copy this peripheral out.
2372 	 */
2373 	if (retval & DM_RET_COPY) {
2374 		int spaceleft, j;
2375 
2376 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2377 			sizeof(struct dev_match_result));
2378 
2379 		/*
2380 		 * If we don't have enough space to put in another
2381 		 * match result, save our position and tell the
2382 		 * user there are more devices to check.
2383 		 */
2384 		if (spaceleft < sizeof(struct dev_match_result)) {
2385 			bzero(&cdm->pos, sizeof(cdm->pos));
2386 			cdm->pos.position_type =
2387 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2388 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2389 				CAM_DEV_POS_PERIPH;
2390 
2391 			cdm->pos.cookie.bus = periph->path->bus;
2392 			cdm->pos.generations[CAM_BUS_GENERATION]=
2393 				xsoftc.bus_generation;
2394 			cdm->pos.cookie.target = periph->path->target;
2395 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2396 				periph->path->bus->generation;
2397 			cdm->pos.cookie.device = periph->path->device;
2398 			cdm->pos.generations[CAM_DEV_GENERATION] =
2399 				periph->path->target->generation;
2400 			cdm->pos.cookie.periph = periph;
2401 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2402 				periph->path->device->generation;
2403 			cdm->status = CAM_DEV_MATCH_MORE;
2404 			return(0);
2405 		}
2406 
2407 		j = cdm->num_matches;
2408 		cdm->num_matches++;
2409 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2410 		cdm->matches[j].result.periph_result.path_id =
2411 			periph->path->bus->path_id;
2412 		cdm->matches[j].result.periph_result.target_id =
2413 			periph->path->target->target_id;
2414 		cdm->matches[j].result.periph_result.target_lun =
2415 			periph->path->device->lun_id;
2416 		cdm->matches[j].result.periph_result.unit_number =
2417 			periph->unit_number;
2418 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2419 			periph->periph_name, DEV_IDLEN);
2420 	}
2421 
2422 	return(1);
2423 }
2424 
2425 static int
2426 xptedtmatch(struct ccb_dev_match *cdm)
2427 {
2428 	int ret;
2429 
2430 	cdm->num_matches = 0;
2431 
2432 	/*
2433 	 * Check the bus list generation.  If it has changed, the user
2434 	 * needs to reset everything and start over.
2435 	 */
2436 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2437 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2438 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2439 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2440 		return(0);
2441 	}
2442 
2443 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2444 	 && (cdm->pos.cookie.bus != NULL))
2445 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2446 				     xptedtbusfunc, cdm);
2447 	else
2448 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2449 
2450 	/*
2451 	 * If we get back 0, that means that we had to stop before fully
2452 	 * traversing the EDT.  It also means that one of the subroutines
2453 	 * has set the status field to the proper value.  If we get back 1,
2454 	 * we've fully traversed the EDT and copied out any matching entries.
2455 	 */
2456 	if (ret == 1)
2457 		cdm->status = CAM_DEV_MATCH_LAST;
2458 
2459 	return(ret);
2460 }
2461 
2462 static int
2463 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2464 {
2465 	struct ccb_dev_match *cdm;
2466 
2467 	cdm = (struct ccb_dev_match *)arg;
2468 
2469 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2470 	 && (cdm->pos.cookie.pdrv == pdrv)
2471 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2472 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2473 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2474 	     (*pdrv)->generation)) {
2475 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2476 		return(0);
2477 	}
2478 
2479 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2480 	 && (cdm->pos.cookie.pdrv == pdrv)
2481 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2482 	 && (cdm->pos.cookie.periph != NULL))
2483 		return(xptpdperiphtraverse(pdrv,
2484 				(struct cam_periph *)cdm->pos.cookie.periph,
2485 				xptplistperiphfunc, arg));
2486 	else
2487 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2488 }
2489 
2490 static int
2491 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2492 {
2493 	struct ccb_dev_match *cdm;
2494 	dev_match_ret retval;
2495 
2496 	cdm = (struct ccb_dev_match *)arg;
2497 
2498 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2499 
2500 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2501 		cdm->status = CAM_DEV_MATCH_ERROR;
2502 		return(0);
2503 	}
2504 
2505 	/*
2506 	 * If the copy flag is set, copy this peripheral out.
2507 	 */
2508 	if (retval & DM_RET_COPY) {
2509 		int spaceleft, j;
2510 
2511 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2512 			sizeof(struct dev_match_result));
2513 
2514 		/*
2515 		 * If we don't have enough space to put in another
2516 		 * match result, save our position and tell the
2517 		 * user there are more devices to check.
2518 		 */
2519 		if (spaceleft < sizeof(struct dev_match_result)) {
2520 			struct periph_driver **pdrv;
2521 
2522 			pdrv = NULL;
2523 			bzero(&cdm->pos, sizeof(cdm->pos));
2524 			cdm->pos.position_type =
2525 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2526 				CAM_DEV_POS_PERIPH;
2527 
2528 			/*
2529 			 * This may look a bit non-sensical, but it is
2530 			 * actually quite logical.  There are very few
2531 			 * peripheral drivers, and bloating every peripheral
2532 			 * structure with a pointer back to its parent
2533 			 * peripheral driver linker set entry would cost
2534 			 * more in the long run than doing this quick lookup.
2535 			 */
2536 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2537 				if (strcmp((*pdrv)->driver_name,
2538 				    periph->periph_name) == 0)
2539 					break;
2540 			}
2541 
2542 			if (*pdrv == NULL) {
2543 				cdm->status = CAM_DEV_MATCH_ERROR;
2544 				return(0);
2545 			}
2546 
2547 			cdm->pos.cookie.pdrv = pdrv;
2548 			/*
2549 			 * The periph generation slot does double duty, as
2550 			 * does the periph pointer slot.  They are used for
2551 			 * both edt and pdrv lookups and positioning.
2552 			 */
2553 			cdm->pos.cookie.periph = periph;
2554 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2555 				(*pdrv)->generation;
2556 			cdm->status = CAM_DEV_MATCH_MORE;
2557 			return(0);
2558 		}
2559 
2560 		j = cdm->num_matches;
2561 		cdm->num_matches++;
2562 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2563 		cdm->matches[j].result.periph_result.path_id =
2564 			periph->path->bus->path_id;
2565 
2566 		/*
2567 		 * The transport layer peripheral doesn't have a target or
2568 		 * lun.
2569 		 */
2570 		if (periph->path->target)
2571 			cdm->matches[j].result.periph_result.target_id =
2572 				periph->path->target->target_id;
2573 		else
2574 			cdm->matches[j].result.periph_result.target_id = -1;
2575 
2576 		if (periph->path->device)
2577 			cdm->matches[j].result.periph_result.target_lun =
2578 				periph->path->device->lun_id;
2579 		else
2580 			cdm->matches[j].result.periph_result.target_lun = -1;
2581 
2582 		cdm->matches[j].result.periph_result.unit_number =
2583 			periph->unit_number;
2584 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2585 			periph->periph_name, DEV_IDLEN);
2586 	}
2587 
2588 	return(1);
2589 }
2590 
2591 static int
2592 xptperiphlistmatch(struct ccb_dev_match *cdm)
2593 {
2594 	int ret;
2595 
2596 	cdm->num_matches = 0;
2597 
2598 	/*
2599 	 * At this point in the edt traversal function, we check the bus
2600 	 * list generation to make sure that no busses have been added or
2601 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2602 	 * For the peripheral driver list traversal function, however, we
2603 	 * don't have to worry about new peripheral driver types coming or
2604 	 * going; they're in a linker set, and therefore can't change
2605 	 * without a recompile.
2606 	 */
2607 
2608 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2609 	 && (cdm->pos.cookie.pdrv != NULL))
2610 		ret = xptpdrvtraverse(
2611 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2612 				xptplistpdrvfunc, cdm);
2613 	else
2614 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2615 
2616 	/*
2617 	 * If we get back 0, that means that we had to stop before fully
2618 	 * traversing the peripheral driver tree.  It also means that one of
2619 	 * the subroutines has set the status field to the proper value.  If
2620 	 * we get back 1, we've fully traversed the EDT and copied out any
2621 	 * matching entries.
2622 	 */
2623 	if (ret == 1)
2624 		cdm->status = CAM_DEV_MATCH_LAST;
2625 
2626 	return(ret);
2627 }
2628 
2629 static int
2630 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2631 {
2632 	struct cam_eb *bus, *next_bus;
2633 	int retval;
2634 
2635 	retval = 1;
2636 
2637 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2638 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2639 	     bus != NULL;
2640 	     bus = next_bus) {
2641 		next_bus = TAILQ_NEXT(bus, links);
2642 
2643 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2644 		CAM_SIM_LOCK(bus->sim);
2645 		retval = tr_func(bus, arg);
2646 		CAM_SIM_UNLOCK(bus->sim);
2647 		if (retval == 0)
2648 			return(retval);
2649 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2650 	}
2651 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2652 
2653 	return(retval);
2654 }
2655 
2656 static int
2657 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2658 		  xpt_targetfunc_t *tr_func, void *arg)
2659 {
2660 	struct cam_et *target, *next_target;
2661 	int retval;
2662 
2663 	retval = 1;
2664 	for (target = (start_target ? start_target :
2665 		       TAILQ_FIRST(&bus->et_entries));
2666 	     target != NULL; target = next_target) {
2667 
2668 		next_target = TAILQ_NEXT(target, links);
2669 
2670 		retval = tr_func(target, arg);
2671 
2672 		if (retval == 0)
2673 			return(retval);
2674 	}
2675 
2676 	return(retval);
2677 }
2678 
2679 static int
2680 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2681 		  xpt_devicefunc_t *tr_func, void *arg)
2682 {
2683 	struct cam_ed *device, *next_device;
2684 	int retval;
2685 
2686 	retval = 1;
2687 	for (device = (start_device ? start_device :
2688 		       TAILQ_FIRST(&target->ed_entries));
2689 	     device != NULL;
2690 	     device = next_device) {
2691 
2692 		next_device = TAILQ_NEXT(device, links);
2693 
2694 		retval = tr_func(device, arg);
2695 
2696 		if (retval == 0)
2697 			return(retval);
2698 	}
2699 
2700 	return(retval);
2701 }
2702 
2703 static int
2704 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2705 		  xpt_periphfunc_t *tr_func, void *arg)
2706 {
2707 	struct cam_periph *periph, *next_periph;
2708 	int retval;
2709 
2710 	retval = 1;
2711 
2712 	for (periph = (start_periph ? start_periph :
2713 		       SLIST_FIRST(&device->periphs));
2714 	     periph != NULL;
2715 	     periph = next_periph) {
2716 
2717 		next_periph = SLIST_NEXT(periph, periph_links);
2718 
2719 		retval = tr_func(periph, arg);
2720 		if (retval == 0)
2721 			return(retval);
2722 	}
2723 
2724 	return(retval);
2725 }
2726 
2727 static int
2728 xptpdrvtraverse(struct periph_driver **start_pdrv,
2729 		xpt_pdrvfunc_t *tr_func, void *arg)
2730 {
2731 	struct periph_driver **pdrv;
2732 	int retval;
2733 
2734 	retval = 1;
2735 
2736 	/*
2737 	 * We don't traverse the peripheral driver list like we do the
2738 	 * other lists, because it is a linker set, and therefore cannot be
2739 	 * changed during runtime.  If the peripheral driver list is ever
2740 	 * re-done to be something other than a linker set (i.e. it can
2741 	 * change while the system is running), the list traversal should
2742 	 * be modified to work like the other traversal functions.
2743 	 */
2744 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2745 	     *pdrv != NULL; pdrv++) {
2746 		retval = tr_func(pdrv, arg);
2747 
2748 		if (retval == 0)
2749 			return(retval);
2750 	}
2751 
2752 	return(retval);
2753 }
2754 
2755 static int
2756 xptpdperiphtraverse(struct periph_driver **pdrv,
2757 		    struct cam_periph *start_periph,
2758 		    xpt_periphfunc_t *tr_func, void *arg)
2759 {
2760 	struct cam_periph *periph, *next_periph;
2761 	int retval;
2762 
2763 	retval = 1;
2764 
2765 	for (periph = (start_periph ? start_periph :
2766 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2767 	     periph = next_periph) {
2768 
2769 		next_periph = TAILQ_NEXT(periph, unit_links);
2770 
2771 		retval = tr_func(periph, arg);
2772 		if (retval == 0)
2773 			return(retval);
2774 	}
2775 	return(retval);
2776 }
2777 
2778 static int
2779 xptdefbusfunc(struct cam_eb *bus, void *arg)
2780 {
2781 	struct xpt_traverse_config *tr_config;
2782 
2783 	tr_config = (struct xpt_traverse_config *)arg;
2784 
2785 	if (tr_config->depth == XPT_DEPTH_BUS) {
2786 		xpt_busfunc_t *tr_func;
2787 
2788 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2789 
2790 		return(tr_func(bus, tr_config->tr_arg));
2791 	} else
2792 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2793 }
2794 
2795 static int
2796 xptdeftargetfunc(struct cam_et *target, void *arg)
2797 {
2798 	struct xpt_traverse_config *tr_config;
2799 
2800 	tr_config = (struct xpt_traverse_config *)arg;
2801 
2802 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2803 		xpt_targetfunc_t *tr_func;
2804 
2805 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2806 
2807 		return(tr_func(target, tr_config->tr_arg));
2808 	} else
2809 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2810 }
2811 
2812 static int
2813 xptdefdevicefunc(struct cam_ed *device, void *arg)
2814 {
2815 	struct xpt_traverse_config *tr_config;
2816 
2817 	tr_config = (struct xpt_traverse_config *)arg;
2818 
2819 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2820 		xpt_devicefunc_t *tr_func;
2821 
2822 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2823 
2824 		return(tr_func(device, tr_config->tr_arg));
2825 	} else
2826 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2827 }
2828 
2829 static int
2830 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2831 {
2832 	struct xpt_traverse_config *tr_config;
2833 	xpt_periphfunc_t *tr_func;
2834 
2835 	tr_config = (struct xpt_traverse_config *)arg;
2836 
2837 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2838 
2839 	/*
2840 	 * Unlike the other default functions, we don't check for depth
2841 	 * here.  The peripheral driver level is the last level in the EDT,
2842 	 * so if we're here, we should execute the function in question.
2843 	 */
2844 	return(tr_func(periph, tr_config->tr_arg));
2845 }
2846 
2847 /*
2848  * Execute the given function for every bus in the EDT.
2849  */
2850 static int
2851 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2852 {
2853 	struct xpt_traverse_config tr_config;
2854 
2855 	tr_config.depth = XPT_DEPTH_BUS;
2856 	tr_config.tr_func = tr_func;
2857 	tr_config.tr_arg = arg;
2858 
2859 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2860 }
2861 
2862 /*
2863  * Execute the given function for every device in the EDT.
2864  */
2865 static int
2866 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2867 {
2868 	struct xpt_traverse_config tr_config;
2869 
2870 	tr_config.depth = XPT_DEPTH_DEVICE;
2871 	tr_config.tr_func = tr_func;
2872 	tr_config.tr_arg = arg;
2873 
2874 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2875 }
2876 
2877 static int
2878 xptsetasyncfunc(struct cam_ed *device, void *arg)
2879 {
2880 	struct cam_path path;
2881 	struct ccb_getdev cgd;
2882 	struct async_node *cur_entry;
2883 
2884 	cur_entry = (struct async_node *)arg;
2885 
2886 	/*
2887 	 * Don't report unconfigured devices (Wildcard devs,
2888 	 * devices only for target mode, device instances
2889 	 * that have been invalidated but are waiting for
2890 	 * their last reference count to be released).
2891 	 */
2892 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2893 		return (1);
2894 
2895 	xpt_compile_path(&path,
2896 			 NULL,
2897 			 device->target->bus->path_id,
2898 			 device->target->target_id,
2899 			 device->lun_id);
2900 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2901 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2902 	xpt_action((union ccb *)&cgd);
2903 	cur_entry->callback(cur_entry->callback_arg,
2904 			    AC_FOUND_DEVICE,
2905 			    &path, &cgd);
2906 	xpt_release_path(&path);
2907 
2908 	return(1);
2909 }
2910 
2911 static int
2912 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2913 {
2914 	struct cam_path path;
2915 	struct ccb_pathinq cpi;
2916 	struct async_node *cur_entry;
2917 
2918 	cur_entry = (struct async_node *)arg;
2919 
2920 	xpt_compile_path(&path, /*periph*/NULL,
2921 			 bus->sim->path_id,
2922 			 CAM_TARGET_WILDCARD,
2923 			 CAM_LUN_WILDCARD);
2924 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2925 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2926 	xpt_action((union ccb *)&cpi);
2927 	cur_entry->callback(cur_entry->callback_arg,
2928 			    AC_PATH_REGISTERED,
2929 			    &path, &cpi);
2930 	xpt_release_path(&path);
2931 
2932 	return(1);
2933 }
2934 
2935 static void
2936 xpt_action_sasync_cb(void *context, int pending)
2937 {
2938 	struct async_node *cur_entry;
2939 	struct xpt_task *task;
2940 	uint32_t added;
2941 
2942 	task = (struct xpt_task *)context;
2943 	cur_entry = (struct async_node *)task->data1;
2944 	added = task->data2;
2945 
2946 	if ((added & AC_FOUND_DEVICE) != 0) {
2947 		/*
2948 		 * Get this peripheral up to date with all
2949 		 * the currently existing devices.
2950 		 */
2951 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2952 	}
2953 	if ((added & AC_PATH_REGISTERED) != 0) {
2954 		/*
2955 		 * Get this peripheral up to date with all
2956 		 * the currently existing busses.
2957 		 */
2958 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2959 	}
2960 
2961 	kfree(task, M_CAMXPT);
2962 }
2963 
2964 void
2965 xpt_action(union ccb *start_ccb)
2966 {
2967 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2968 
2969 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2970 
2971 	switch (start_ccb->ccb_h.func_code) {
2972 	case XPT_SCSI_IO:
2973 	{
2974 		struct cam_ed *device;
2975 #ifdef CAMDEBUG
2976 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2977 		struct cam_path *path;
2978 
2979 		path = start_ccb->ccb_h.path;
2980 #endif
2981 
2982 		/*
2983 		 * For the sake of compatibility with SCSI-1
2984 		 * devices that may not understand the identify
2985 		 * message, we include lun information in the
2986 		 * second byte of all commands.  SCSI-1 specifies
2987 		 * that luns are a 3 bit value and reserves only 3
2988 		 * bits for lun information in the CDB.  Later
2989 		 * revisions of the SCSI spec allow for more than 8
2990 		 * luns, but have deprecated lun information in the
2991 		 * CDB.  So, if the lun won't fit, we must omit.
2992 		 *
2993 		 * Also be aware that during initial probing for devices,
2994 		 * the inquiry information is unknown but initialized to 0.
2995 		 * This means that this code will be exercised while probing
2996 		 * devices with an ANSI revision greater than 2.
2997 		 */
2998 		device = start_ccb->ccb_h.path->device;
2999 		if (device->protocol_version <= SCSI_REV_2
3000 		 && start_ccb->ccb_h.target_lun < 8
3001 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
3002 
3003 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
3004 			    start_ccb->ccb_h.target_lun << 5;
3005 		}
3006 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3007 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3008 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3009 			  	       &path->device->inq_data),
3010 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3011 					  cdb_str, sizeof(cdb_str))));
3012 		/* FALLTHROUGH */
3013 	}
3014 	case XPT_TARGET_IO:
3015 	case XPT_CONT_TARGET_IO:
3016 		start_ccb->csio.sense_resid = 0;
3017 		start_ccb->csio.resid = 0;
3018 		/* FALLTHROUGH */
3019 	case XPT_RESET_DEV:
3020 	case XPT_ENG_EXEC:
3021 	{
3022 		struct cam_path *path;
3023 		struct cam_sim *sim;
3024 		int runq;
3025 
3026 		path = start_ccb->ccb_h.path;
3027 
3028 		sim = path->bus->sim;
3029 		if (sim == &cam_dead_sim) {
3030 			/* The SIM has gone; just execute the CCB directly. */
3031 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3032 			(*(sim->sim_action))(sim, start_ccb);
3033 			break;
3034 		}
3035 
3036 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3037 		if (path->device->qfrozen_cnt == 0)
3038 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3039 		else
3040 			runq = 0;
3041 		if (runq != 0)
3042 			xpt_run_dev_sendq(path->bus);
3043 		break;
3044 	}
3045 	case XPT_SET_TRAN_SETTINGS:
3046 	{
3047 		xpt_set_transfer_settings(&start_ccb->cts,
3048 					  start_ccb->ccb_h.path->device,
3049 					  /*async_update*/FALSE);
3050 		break;
3051 	}
3052 	case XPT_CALC_GEOMETRY:
3053 	{
3054 		struct cam_sim *sim;
3055 
3056 		/* Filter out garbage */
3057 		if (start_ccb->ccg.block_size == 0
3058 		 || start_ccb->ccg.volume_size == 0) {
3059 			start_ccb->ccg.cylinders = 0;
3060 			start_ccb->ccg.heads = 0;
3061 			start_ccb->ccg.secs_per_track = 0;
3062 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3063 			break;
3064 		}
3065 		sim = start_ccb->ccb_h.path->bus->sim;
3066 		(*(sim->sim_action))(sim, start_ccb);
3067 		break;
3068 	}
3069 	case XPT_ABORT:
3070 	{
3071 		union ccb* abort_ccb;
3072 
3073 		abort_ccb = start_ccb->cab.abort_ccb;
3074 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3075 
3076 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3077 				struct cam_ccbq *ccbq;
3078 
3079 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3080 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3081 				abort_ccb->ccb_h.status =
3082 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3083 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3084 				xpt_done(abort_ccb);
3085 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3086 				break;
3087 			}
3088 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3089 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3090 				/*
3091 				 * We've caught this ccb en route to
3092 				 * the SIM.  Flag it for abort and the
3093 				 * SIM will do so just before starting
3094 				 * real work on the CCB.
3095 				 */
3096 				abort_ccb->ccb_h.status =
3097 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3098 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3099 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3100 				break;
3101 			}
3102 		}
3103 		if (XPT_FC_IS_QUEUED(abort_ccb)
3104 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3105 			/*
3106 			 * It's already completed but waiting
3107 			 * for our SWI to get to it.
3108 			 */
3109 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3110 			break;
3111 		}
3112 		/*
3113 		 * If we weren't able to take care of the abort request
3114 		 * in the XPT, pass the request down to the SIM for processing.
3115 		 */
3116 		/* FALLTHROUGH */
3117 	}
3118 	case XPT_ACCEPT_TARGET_IO:
3119 	case XPT_EN_LUN:
3120 	case XPT_IMMED_NOTIFY:
3121 	case XPT_NOTIFY_ACK:
3122 	case XPT_GET_TRAN_SETTINGS:
3123 	case XPT_RESET_BUS:
3124 	{
3125 		struct cam_sim *sim;
3126 
3127 		sim = start_ccb->ccb_h.path->bus->sim;
3128 		(*(sim->sim_action))(sim, start_ccb);
3129 		break;
3130 	}
3131 	case XPT_PATH_INQ:
3132 	{
3133 		struct cam_sim *sim;
3134 
3135 		sim = start_ccb->ccb_h.path->bus->sim;
3136 		(*(sim->sim_action))(sim, start_ccb);
3137 		break;
3138 	}
3139 	case XPT_PATH_STATS:
3140 		start_ccb->cpis.last_reset =
3141 			start_ccb->ccb_h.path->bus->last_reset;
3142 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3143 		break;
3144 	case XPT_GDEV_TYPE:
3145 	{
3146 		struct cam_ed *dev;
3147 
3148 		dev = start_ccb->ccb_h.path->device;
3149 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3150 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3151 		} else {
3152 			struct ccb_getdev *cgd;
3153 			struct cam_eb *bus;
3154 			struct cam_et *tar;
3155 
3156 			cgd = &start_ccb->cgd;
3157 			bus = cgd->ccb_h.path->bus;
3158 			tar = cgd->ccb_h.path->target;
3159 			cgd->inq_data = dev->inq_data;
3160 			cgd->ccb_h.status = CAM_REQ_CMP;
3161 			cgd->serial_num_len = dev->serial_num_len;
3162 			if ((dev->serial_num_len > 0)
3163 			 && (dev->serial_num != NULL))
3164 				bcopy(dev->serial_num, cgd->serial_num,
3165 				      dev->serial_num_len);
3166 		}
3167 		break;
3168 	}
3169 	case XPT_GDEV_STATS:
3170 	{
3171 		struct cam_ed *dev;
3172 
3173 		dev = start_ccb->ccb_h.path->device;
3174 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3175 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3176 		} else {
3177 			struct ccb_getdevstats *cgds;
3178 			struct cam_eb *bus;
3179 			struct cam_et *tar;
3180 
3181 			cgds = &start_ccb->cgds;
3182 			bus = cgds->ccb_h.path->bus;
3183 			tar = cgds->ccb_h.path->target;
3184 			cgds->dev_openings = dev->ccbq.dev_openings;
3185 			cgds->dev_active = dev->ccbq.dev_active;
3186 			cgds->devq_openings = dev->ccbq.devq_openings;
3187 			cgds->devq_queued = dev->ccbq.queue.entries;
3188 			cgds->held = dev->ccbq.held;
3189 			cgds->last_reset = tar->last_reset;
3190 			cgds->maxtags = dev->quirk->maxtags;
3191 			cgds->mintags = dev->quirk->mintags;
3192 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3193 				cgds->last_reset = bus->last_reset;
3194 			cgds->ccb_h.status = CAM_REQ_CMP;
3195 		}
3196 		break;
3197 	}
3198 	case XPT_GDEVLIST:
3199 	{
3200 		struct cam_periph	*nperiph;
3201 		struct periph_list	*periph_head;
3202 		struct ccb_getdevlist	*cgdl;
3203 		u_int			i;
3204 		struct cam_ed		*device;
3205 		int			found;
3206 
3207 
3208 		found = 0;
3209 
3210 		/*
3211 		 * Don't want anyone mucking with our data.
3212 		 */
3213 		device = start_ccb->ccb_h.path->device;
3214 		periph_head = &device->periphs;
3215 		cgdl = &start_ccb->cgdl;
3216 
3217 		/*
3218 		 * Check and see if the list has changed since the user
3219 		 * last requested a list member.  If so, tell them that the
3220 		 * list has changed, and therefore they need to start over
3221 		 * from the beginning.
3222 		 */
3223 		if ((cgdl->index != 0) &&
3224 		    (cgdl->generation != device->generation)) {
3225 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3226 			break;
3227 		}
3228 
3229 		/*
3230 		 * Traverse the list of peripherals and attempt to find
3231 		 * the requested peripheral.
3232 		 */
3233 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3234 		     (nperiph != NULL) && (i <= cgdl->index);
3235 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3236 			if (i == cgdl->index) {
3237 				strncpy(cgdl->periph_name,
3238 					nperiph->periph_name,
3239 					DEV_IDLEN);
3240 				cgdl->unit_number = nperiph->unit_number;
3241 				found = 1;
3242 			}
3243 		}
3244 		if (found == 0) {
3245 			cgdl->status = CAM_GDEVLIST_ERROR;
3246 			break;
3247 		}
3248 
3249 		if (nperiph == NULL)
3250 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3251 		else
3252 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3253 
3254 		cgdl->index++;
3255 		cgdl->generation = device->generation;
3256 
3257 		cgdl->ccb_h.status = CAM_REQ_CMP;
3258 		break;
3259 	}
3260 	case XPT_DEV_MATCH:
3261 	{
3262 		dev_pos_type position_type;
3263 		struct ccb_dev_match *cdm;
3264 		int ret;
3265 
3266 		cdm = &start_ccb->cdm;
3267 
3268 		/*
3269 		 * There are two ways of getting at information in the EDT.
3270 		 * The first way is via the primary EDT tree.  It starts
3271 		 * with a list of busses, then a list of targets on a bus,
3272 		 * then devices/luns on a target, and then peripherals on a
3273 		 * device/lun.  The "other" way is by the peripheral driver
3274 		 * lists.  The peripheral driver lists are organized by
3275 		 * peripheral driver.  (obviously)  So it makes sense to
3276 		 * use the peripheral driver list if the user is looking
3277 		 * for something like "da1", or all "da" devices.  If the
3278 		 * user is looking for something on a particular bus/target
3279 		 * or lun, it's generally better to go through the EDT tree.
3280 		 */
3281 
3282 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3283 			position_type = cdm->pos.position_type;
3284 		else {
3285 			u_int i;
3286 
3287 			position_type = CAM_DEV_POS_NONE;
3288 
3289 			for (i = 0; i < cdm->num_patterns; i++) {
3290 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3291 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3292 					position_type = CAM_DEV_POS_EDT;
3293 					break;
3294 				}
3295 			}
3296 
3297 			if (cdm->num_patterns == 0)
3298 				position_type = CAM_DEV_POS_EDT;
3299 			else if (position_type == CAM_DEV_POS_NONE)
3300 				position_type = CAM_DEV_POS_PDRV;
3301 		}
3302 
3303 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3304 		case CAM_DEV_POS_EDT:
3305 			ret = xptedtmatch(cdm);
3306 			break;
3307 		case CAM_DEV_POS_PDRV:
3308 			ret = xptperiphlistmatch(cdm);
3309 			break;
3310 		default:
3311 			cdm->status = CAM_DEV_MATCH_ERROR;
3312 			break;
3313 		}
3314 
3315 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3316 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3317 		else
3318 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3319 
3320 		break;
3321 	}
3322 	case XPT_SASYNC_CB:
3323 	{
3324 		struct ccb_setasync *csa;
3325 		struct async_node *cur_entry;
3326 		struct async_list *async_head;
3327 		u_int32_t added;
3328 
3329 		csa = &start_ccb->csa;
3330 		added = csa->event_enable;
3331 		async_head = &csa->ccb_h.path->device->asyncs;
3332 
3333 		/*
3334 		 * If there is already an entry for us, simply
3335 		 * update it.
3336 		 */
3337 		cur_entry = SLIST_FIRST(async_head);
3338 		while (cur_entry != NULL) {
3339 			if ((cur_entry->callback_arg == csa->callback_arg)
3340 			 && (cur_entry->callback == csa->callback))
3341 				break;
3342 			cur_entry = SLIST_NEXT(cur_entry, links);
3343 		}
3344 
3345 		if (cur_entry != NULL) {
3346 		 	/*
3347 			 * If the request has no flags set,
3348 			 * remove the entry.
3349 			 */
3350 			added &= ~cur_entry->event_enable;
3351 			if (csa->event_enable == 0) {
3352 				SLIST_REMOVE(async_head, cur_entry,
3353 					     async_node, links);
3354 				csa->ccb_h.path->device->refcount--;
3355 				kfree(cur_entry, M_CAMXPT);
3356 			} else {
3357 				cur_entry->event_enable = csa->event_enable;
3358 			}
3359 		} else {
3360 			cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3361 					   M_INTWAIT);
3362 			cur_entry->event_enable = csa->event_enable;
3363 			cur_entry->callback_arg = csa->callback_arg;
3364 			cur_entry->callback = csa->callback;
3365 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3366 			csa->ccb_h.path->device->refcount++;
3367 		}
3368 
3369 		/*
3370 		 * Need to decouple this operation via a taskqueue so that
3371 		 * the locking doesn't become a mess.
3372 		 */
3373 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3374 			struct xpt_task *task;
3375 
3376 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3377 				      M_INTWAIT);
3378 
3379 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3380 			task->data1 = cur_entry;
3381 			task->data2 = added;
3382 			taskqueue_enqueue(taskqueue_thread[mycpuid],
3383 					  &task->task);
3384 		}
3385 
3386 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3387 		break;
3388 	}
3389 	case XPT_REL_SIMQ:
3390 	{
3391 		struct ccb_relsim *crs;
3392 		struct cam_ed *dev;
3393 
3394 		crs = &start_ccb->crs;
3395 		dev = crs->ccb_h.path->device;
3396 		if (dev == NULL) {
3397 
3398 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3399 			break;
3400 		}
3401 
3402 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3403 
3404  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3405 				/* Don't ever go below one opening */
3406 				if (crs->openings > 0) {
3407 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3408 							    crs->openings);
3409 
3410 					if (bootverbose) {
3411 						xpt_print(crs->ccb_h.path,
3412 						    "tagged openings now %d\n",
3413 						    crs->openings);
3414 					}
3415 				}
3416 			}
3417 		}
3418 
3419 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3420 
3421 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3422 
3423 				/*
3424 				 * Just extend the old timeout and decrement
3425 				 * the freeze count so that a single timeout
3426 				 * is sufficient for releasing the queue.
3427 				 */
3428 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3429 				callout_stop(&dev->callout);
3430 			} else {
3431 
3432 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3433 			}
3434 
3435 			callout_reset(&dev->callout,
3436 				      (crs->release_timeout * hz) / 1000,
3437 				      xpt_release_devq_timeout, dev);
3438 
3439 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3440 
3441 		}
3442 
3443 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3444 
3445 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3446 				/*
3447 				 * Decrement the freeze count so that a single
3448 				 * completion is still sufficient to unfreeze
3449 				 * the queue.
3450 				 */
3451 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3452 			} else {
3453 
3454 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3455 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3456 			}
3457 		}
3458 
3459 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3460 
3461 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3462 			 || (dev->ccbq.dev_active == 0)) {
3463 
3464 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3465 			} else {
3466 
3467 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3468 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3469 			}
3470 		}
3471 
3472 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3473 
3474 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3475 					 /*run_queue*/TRUE);
3476 		}
3477 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3478 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3479 		break;
3480 	}
3481 	case XPT_SCAN_BUS:
3482 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3483 		break;
3484 	case XPT_SCAN_LUN:
3485 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3486 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3487 			     start_ccb);
3488 		break;
3489 	case XPT_DEBUG: {
3490 #ifdef CAMDEBUG
3491 #ifdef CAM_DEBUG_DELAY
3492 		cam_debug_delay = CAM_DEBUG_DELAY;
3493 #endif
3494 		cam_dflags = start_ccb->cdbg.flags;
3495 		if (cam_dpath != NULL) {
3496 			xpt_free_path(cam_dpath);
3497 			cam_dpath = NULL;
3498 		}
3499 
3500 		if (cam_dflags != CAM_DEBUG_NONE) {
3501 			if (xpt_create_path(&cam_dpath, xpt_periph,
3502 					    start_ccb->ccb_h.path_id,
3503 					    start_ccb->ccb_h.target_id,
3504 					    start_ccb->ccb_h.target_lun) !=
3505 					    CAM_REQ_CMP) {
3506 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3507 				cam_dflags = CAM_DEBUG_NONE;
3508 			} else {
3509 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3510 				xpt_print(cam_dpath, "debugging flags now %x\n",
3511 				    cam_dflags);
3512 			}
3513 		} else {
3514 			cam_dpath = NULL;
3515 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3516 		}
3517 #else /* !CAMDEBUG */
3518 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3519 #endif /* CAMDEBUG */
3520 		break;
3521 	}
3522 	case XPT_NOOP:
3523 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3524 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3525 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3526 		break;
3527 	default:
3528 	case XPT_SDEV_TYPE:
3529 	case XPT_TERM_IO:
3530 	case XPT_ENG_INQ:
3531 		/* XXX Implement */
3532 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3533 		break;
3534 	}
3535 }
3536 
3537 void
3538 xpt_polled_action(union ccb *start_ccb)
3539 {
3540 	u_int32_t timeout;
3541 	struct	  cam_sim *sim;
3542 	struct	  cam_devq *devq;
3543 	struct	  cam_ed *dev;
3544 
3545 	timeout = start_ccb->ccb_h.timeout;
3546 	sim = start_ccb->ccb_h.path->bus->sim;
3547 	devq = sim->devq;
3548 	dev = start_ccb->ccb_h.path->device;
3549 
3550 	sim_lock_assert_owned(sim->lock);
3551 
3552 	/*
3553 	 * Steal an opening so that no other queued requests
3554 	 * can get it before us while we simulate interrupts.
3555 	 */
3556 	dev->ccbq.devq_openings--;
3557 	dev->ccbq.dev_openings--;
3558 
3559 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3560 	   && (--timeout > 0)) {
3561 		DELAY(1000);
3562 		(*(sim->sim_poll))(sim);
3563 		camisr_runqueue(sim);
3564 	}
3565 
3566 	dev->ccbq.devq_openings++;
3567 	dev->ccbq.dev_openings++;
3568 
3569 	if (timeout != 0) {
3570 		xpt_action(start_ccb);
3571 		while(--timeout > 0) {
3572 			(*(sim->sim_poll))(sim);
3573 			camisr_runqueue(sim);
3574 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3575 			    != CAM_REQ_INPROG)
3576 				break;
3577 			DELAY(1000);
3578 		}
3579 		if (timeout == 0) {
3580 			/*
3581 			 * XXX Is it worth adding a sim_timeout entry
3582 			 * point so we can attempt recovery?  If
3583 			 * this is only used for dumps, I don't think
3584 			 * it is.
3585 			 */
3586 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3587 		}
3588 	} else {
3589 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3590 	}
3591 }
3592 
3593 /*
3594  * Schedule a peripheral driver to receive a ccb when it's
3595  * target device has space for more transactions.
3596  */
3597 void
3598 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3599 {
3600 	struct cam_ed *device;
3601 	union ccb *work_ccb;
3602 	int runq;
3603 
3604 	sim_lock_assert_owned(perph->sim->lock);
3605 
3606 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3607 	device = perph->path->device;
3608 	if (periph_is_queued(perph)) {
3609 		/* Simply reorder based on new priority */
3610 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3611 			  ("   change priority to %d\n", new_priority));
3612 		if (new_priority < perph->pinfo.priority) {
3613 			camq_change_priority(&device->drvq,
3614 					     perph->pinfo.index,
3615 					     new_priority);
3616 		}
3617 		runq = 0;
3618 	} else if (perph->path->bus->sim == &cam_dead_sim) {
3619 		/* The SIM is gone so just call periph_start directly. */
3620 		work_ccb = xpt_get_ccb(perph->path->device);
3621 		if (work_ccb == NULL)
3622 			return; /* XXX */
3623 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3624 		perph->pinfo.priority = new_priority;
3625 		perph->periph_start(perph, work_ccb);
3626 		return;
3627 	} else {
3628 		/* New entry on the queue */
3629 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3630 			  ("   added periph to queue\n"));
3631 		perph->pinfo.priority = new_priority;
3632 		perph->pinfo.generation = ++device->drvq.generation;
3633 		camq_insert(&device->drvq, &perph->pinfo);
3634 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3635 	}
3636 	if (runq != 0) {
3637 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3638 			  ("   calling xpt_run_devq\n"));
3639 		xpt_run_dev_allocq(perph->path->bus);
3640 	}
3641 }
3642 
3643 
3644 /*
3645  * Schedule a device to run on a given queue.
3646  * If the device was inserted as a new entry on the queue,
3647  * return 1 meaning the device queue should be run. If we
3648  * were already queued, implying someone else has already
3649  * started the queue, return 0 so the caller doesn't attempt
3650  * to run the queue.
3651  */
3652 static int
3653 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3654 		 u_int32_t new_priority)
3655 {
3656 	int retval;
3657 	u_int32_t old_priority;
3658 
3659 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3660 
3661 	old_priority = pinfo->priority;
3662 
3663 	/*
3664 	 * Are we already queued?
3665 	 */
3666 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3667 		/* Simply reorder based on new priority */
3668 		if (new_priority < old_priority) {
3669 			camq_change_priority(queue, pinfo->index,
3670 					     new_priority);
3671 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3672 					("changed priority to %d\n",
3673 					 new_priority));
3674 		}
3675 		retval = 0;
3676 	} else {
3677 		/* New entry on the queue */
3678 		if (new_priority < old_priority)
3679 			pinfo->priority = new_priority;
3680 
3681 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3682 				("Inserting onto queue\n"));
3683 		pinfo->generation = ++queue->generation;
3684 		camq_insert(queue, pinfo);
3685 		retval = 1;
3686 	}
3687 	return (retval);
3688 }
3689 
3690 static void
3691 xpt_run_dev_allocq(struct cam_eb *bus)
3692 {
3693 	struct	cam_devq *devq;
3694 
3695 	if ((devq = bus->sim->devq) == NULL) {
3696 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3697 		return;
3698 	}
3699 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3700 
3701 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3702 			("   qfrozen_cnt == 0x%x, entries == %d, "
3703 			 "openings == %d, active == %d\n",
3704 			 devq->alloc_queue.qfrozen_cnt,
3705 			 devq->alloc_queue.entries,
3706 			 devq->alloc_openings,
3707 			 devq->alloc_active));
3708 
3709 	devq->alloc_queue.qfrozen_cnt++;
3710 	while ((devq->alloc_queue.entries > 0)
3711 	    && (devq->alloc_openings > 0)
3712 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3713 		struct	cam_ed_qinfo *qinfo;
3714 		struct	cam_ed *device;
3715 		union	ccb *work_ccb;
3716 		struct	cam_periph *drv;
3717 		struct	camq *drvq;
3718 
3719 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3720 							   CAMQ_HEAD);
3721 		device = qinfo->device;
3722 
3723 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3724 				("running device %p\n", device));
3725 
3726 		drvq = &device->drvq;
3727 
3728 #ifdef CAMDEBUG
3729 		if (drvq->entries <= 0) {
3730 			panic("xpt_run_dev_allocq: "
3731 			      "Device on queue without any work to do");
3732 		}
3733 #endif
3734 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3735 			devq->alloc_openings--;
3736 			devq->alloc_active++;
3737 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3738 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3739 				      drv->pinfo.priority);
3740 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3741 					("calling periph start\n"));
3742 			drv->periph_start(drv, work_ccb);
3743 		} else {
3744 			/*
3745 			 * Malloc failure in alloc_ccb
3746 			 */
3747 			/*
3748 			 * XXX add us to a list to be run from free_ccb
3749 			 * if we don't have any ccbs active on this
3750 			 * device queue otherwise we may never get run
3751 			 * again.
3752 			 */
3753 			break;
3754 		}
3755 
3756 		if (drvq->entries > 0) {
3757 			/* We have more work.  Attempt to reschedule */
3758 			xpt_schedule_dev_allocq(bus, device);
3759 		}
3760 	}
3761 	devq->alloc_queue.qfrozen_cnt--;
3762 }
3763 
3764 static void
3765 xpt_run_dev_sendq(struct cam_eb *bus)
3766 {
3767 	struct	cam_devq *devq;
3768 
3769 	if ((devq = bus->sim->devq) == NULL) {
3770 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3771 		return;
3772 	}
3773 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3774 
3775 	devq->send_queue.qfrozen_cnt++;
3776 	while ((devq->send_queue.entries > 0)
3777 	    && (devq->send_openings > 0)) {
3778 		struct	cam_ed_qinfo *qinfo;
3779 		struct	cam_ed *device;
3780 		union ccb *work_ccb;
3781 		struct	cam_sim *sim;
3782 
3783 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3784 			break;
3785 		}
3786 
3787 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3788 							   CAMQ_HEAD);
3789 		device = qinfo->device;
3790 
3791 		/*
3792 		 * If the device has been "frozen", don't attempt
3793 		 * to run it.
3794 		 */
3795 		if (device->qfrozen_cnt > 0) {
3796 			continue;
3797 		}
3798 
3799 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3800 				("running device %p\n", device));
3801 
3802 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3803 		if (work_ccb == NULL) {
3804 			kprintf("device on run queue with no ccbs???\n");
3805 			continue;
3806 		}
3807 
3808 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3809 
3810 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3811 			if (xsoftc.num_highpower <= 0) {
3812 				/*
3813 				 * We got a high power command, but we
3814 				 * don't have any available slots.  Freeze
3815 				 * the device queue until we have a slot
3816 				 * available.
3817 				 */
3818 				device->qfrozen_cnt++;
3819 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3820 						   &work_ccb->ccb_h,
3821 						   xpt_links.stqe);
3822 
3823 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3824 				continue;
3825 			} else {
3826 				/*
3827 				 * Consume a high power slot while
3828 				 * this ccb runs.
3829 				 */
3830 				xsoftc.num_highpower--;
3831 			}
3832 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3833 		}
3834 		devq->active_dev = device;
3835 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3836 
3837 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3838 
3839 		devq->send_openings--;
3840 		devq->send_active++;
3841 
3842 		if (device->ccbq.queue.entries > 0)
3843 			xpt_schedule_dev_sendq(bus, device);
3844 
3845 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3846 			/*
3847 			 * The client wants to freeze the queue
3848 			 * after this CCB is sent.
3849 			 */
3850 			device->qfrozen_cnt++;
3851 		}
3852 
3853 		/* In Target mode, the peripheral driver knows best... */
3854 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3855 			if ((device->inq_flags & SID_CmdQue) != 0
3856 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3857 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3858 			else
3859 				/*
3860 				 * Clear this in case of a retried CCB that
3861 				 * failed due to a rejected tag.
3862 				 */
3863 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3864 		}
3865 
3866 		/*
3867 		 * Device queues can be shared among multiple sim instances
3868 		 * that reside on different busses.  Use the SIM in the queue
3869 		 * CCB's path, rather than the one in the bus that was passed
3870 		 * into this function.
3871 		 */
3872 		sim = work_ccb->ccb_h.path->bus->sim;
3873 		(*(sim->sim_action))(sim, work_ccb);
3874 
3875 		devq->active_dev = NULL;
3876 	}
3877 	devq->send_queue.qfrozen_cnt--;
3878 }
3879 
3880 /*
3881  * This function merges stuff from the slave ccb into the master ccb, while
3882  * keeping important fields in the master ccb constant.
3883  */
3884 void
3885 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3886 {
3887 	/*
3888 	 * Pull fields that are valid for peripheral drivers to set
3889 	 * into the master CCB along with the CCB "payload".
3890 	 */
3891 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3892 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3893 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3894 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3895 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3896 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3897 }
3898 
3899 void
3900 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3901 {
3902 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3903 	callout_init(&ccb_h->timeout_ch);
3904 	ccb_h->pinfo.priority = priority;
3905 	ccb_h->path = path;
3906 	ccb_h->path_id = path->bus->path_id;
3907 	if (path->target)
3908 		ccb_h->target_id = path->target->target_id;
3909 	else
3910 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3911 	if (path->device) {
3912 		ccb_h->target_lun = path->device->lun_id;
3913 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3914 	} else {
3915 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3916 	}
3917 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3918 	ccb_h->flags = 0;
3919 }
3920 
3921 /* Path manipulation functions */
3922 cam_status
3923 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3924 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3925 {
3926 	struct	   cam_path *path;
3927 	cam_status status;
3928 
3929 	path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3930 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3931 	if (status != CAM_REQ_CMP) {
3932 		kfree(path, M_CAMXPT);
3933 		path = NULL;
3934 	}
3935 	*new_path_ptr = path;
3936 	return (status);
3937 }
3938 
3939 cam_status
3940 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3941 			 struct cam_periph *periph, path_id_t path_id,
3942 			 target_id_t target_id, lun_id_t lun_id)
3943 {
3944 	struct	   cam_path *path;
3945 	struct	   cam_eb *bus = NULL;
3946 	cam_status status;
3947 	int	   need_unlock = 0;
3948 
3949 	path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3950 
3951 	if (path_id != CAM_BUS_WILDCARD) {
3952 		bus = xpt_find_bus(path_id);
3953 		if (bus != NULL) {
3954 			need_unlock = 1;
3955 			CAM_SIM_LOCK(bus->sim);
3956 		}
3957 	}
3958 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3959 	if (need_unlock)
3960 		CAM_SIM_UNLOCK(bus->sim);
3961 	if (status != CAM_REQ_CMP) {
3962 		kfree(path, M_CAMXPT);
3963 		path = NULL;
3964 	}
3965 	*new_path_ptr = path;
3966 	return (status);
3967 }
3968 
3969 static cam_status
3970 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3971 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3972 {
3973 	struct	     cam_eb *bus;
3974 	struct	     cam_et *target;
3975 	struct	     cam_ed *device;
3976 	cam_status   status;
3977 
3978 	status = CAM_REQ_CMP;	/* Completed without error */
3979 	target = NULL;		/* Wildcarded */
3980 	device = NULL;		/* Wildcarded */
3981 
3982 	/*
3983 	 * We will potentially modify the EDT, so block interrupts
3984 	 * that may attempt to create cam paths.
3985 	 */
3986 	bus = xpt_find_bus(path_id);
3987 	if (bus == NULL) {
3988 		status = CAM_PATH_INVALID;
3989 	} else {
3990 		target = xpt_find_target(bus, target_id);
3991 		if (target == NULL) {
3992 			/* Create one */
3993 			struct cam_et *new_target;
3994 
3995 			new_target = xpt_alloc_target(bus, target_id);
3996 			if (new_target == NULL) {
3997 				status = CAM_RESRC_UNAVAIL;
3998 			} else {
3999 				target = new_target;
4000 			}
4001 		}
4002 		if (target != NULL) {
4003 			device = xpt_find_device(target, lun_id);
4004 			if (device == NULL) {
4005 				/* Create one */
4006 				struct cam_ed *new_device;
4007 
4008 				new_device = xpt_alloc_device(bus,
4009 							      target,
4010 							      lun_id);
4011 				if (new_device == NULL) {
4012 					status = CAM_RESRC_UNAVAIL;
4013 				} else {
4014 					device = new_device;
4015 				}
4016 			}
4017 		}
4018 	}
4019 
4020 	/*
4021 	 * Only touch the user's data if we are successful.
4022 	 */
4023 	if (status == CAM_REQ_CMP) {
4024 		new_path->periph = perph;
4025 		new_path->bus = bus;
4026 		new_path->target = target;
4027 		new_path->device = device;
4028 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4029 	} else {
4030 		if (device != NULL)
4031 			xpt_release_device(bus, target, device);
4032 		if (target != NULL)
4033 			xpt_release_target(bus, target);
4034 		if (bus != NULL)
4035 			xpt_release_bus(bus);
4036 	}
4037 	return (status);
4038 }
4039 
4040 static void
4041 xpt_release_path(struct cam_path *path)
4042 {
4043 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4044 	if (path->device != NULL) {
4045 		xpt_release_device(path->bus, path->target, path->device);
4046 		path->device = NULL;
4047 	}
4048 	if (path->target != NULL) {
4049 		xpt_release_target(path->bus, path->target);
4050 		path->target = NULL;
4051 	}
4052 	if (path->bus != NULL) {
4053 		xpt_release_bus(path->bus);
4054 		path->bus = NULL;
4055 	}
4056 }
4057 
4058 void
4059 xpt_free_path(struct cam_path *path)
4060 {
4061 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4062 	xpt_release_path(path);
4063 	kfree(path, M_CAMXPT);
4064 }
4065 
4066 
4067 /*
4068  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4069  * in path1, 2 for match with wildcards in path2.
4070  */
4071 int
4072 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4073 {
4074 	int retval = 0;
4075 
4076 	if (path1->bus != path2->bus) {
4077 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4078 			retval = 1;
4079 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4080 			retval = 2;
4081 		else
4082 			return (-1);
4083 	}
4084 	if (path1->target != path2->target) {
4085 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4086 			if (retval == 0)
4087 				retval = 1;
4088 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4089 			retval = 2;
4090 		else
4091 			return (-1);
4092 	}
4093 	if (path1->device != path2->device) {
4094 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4095 			if (retval == 0)
4096 				retval = 1;
4097 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4098 			retval = 2;
4099 		else
4100 			return (-1);
4101 	}
4102 	return (retval);
4103 }
4104 
4105 void
4106 xpt_print_path(struct cam_path *path)
4107 {
4108 
4109 	if (path == NULL)
4110 		kprintf("(nopath): ");
4111 	else {
4112 		if (path->periph != NULL)
4113 			kprintf("(%s%d:", path->periph->periph_name,
4114 			       path->periph->unit_number);
4115 		else
4116 			kprintf("(noperiph:");
4117 
4118 		if (path->bus != NULL)
4119 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4120 			       path->bus->sim->unit_number,
4121 			       path->bus->sim->bus_id);
4122 		else
4123 			kprintf("nobus:");
4124 
4125 		if (path->target != NULL)
4126 			kprintf("%d:", path->target->target_id);
4127 		else
4128 			kprintf("X:");
4129 
4130 		if (path->device != NULL)
4131 			kprintf("%d): ", path->device->lun_id);
4132 		else
4133 			kprintf("X): ");
4134 	}
4135 }
4136 
4137 void
4138 xpt_print(struct cam_path *path, const char *fmt, ...)
4139 {
4140 	__va_list ap;
4141 	xpt_print_path(path);
4142 	__va_start(ap, fmt);
4143 	kvprintf(fmt, ap);
4144 	__va_end(ap);
4145 }
4146 
4147 int
4148 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4149 {
4150 	struct sbuf sb;
4151 
4152 	sim_lock_assert_owned(path->bus->sim->lock);
4153 
4154 	sbuf_new(&sb, str, str_len, 0);
4155 
4156 	if (path == NULL)
4157 		sbuf_printf(&sb, "(nopath): ");
4158 	else {
4159 		if (path->periph != NULL)
4160 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4161 				    path->periph->unit_number);
4162 		else
4163 			sbuf_printf(&sb, "(noperiph:");
4164 
4165 		if (path->bus != NULL)
4166 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4167 				    path->bus->sim->unit_number,
4168 				    path->bus->sim->bus_id);
4169 		else
4170 			sbuf_printf(&sb, "nobus:");
4171 
4172 		if (path->target != NULL)
4173 			sbuf_printf(&sb, "%d:", path->target->target_id);
4174 		else
4175 			sbuf_printf(&sb, "X:");
4176 
4177 		if (path->device != NULL)
4178 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4179 		else
4180 			sbuf_printf(&sb, "X): ");
4181 	}
4182 	sbuf_finish(&sb);
4183 
4184 	return(sbuf_len(&sb));
4185 }
4186 
4187 path_id_t
4188 xpt_path_path_id(struct cam_path *path)
4189 {
4190 	sim_lock_assert_owned(path->bus->sim->lock);
4191 
4192 	return(path->bus->path_id);
4193 }
4194 
4195 target_id_t
4196 xpt_path_target_id(struct cam_path *path)
4197 {
4198 	sim_lock_assert_owned(path->bus->sim->lock);
4199 
4200 	if (path->target != NULL)
4201 		return (path->target->target_id);
4202 	else
4203 		return (CAM_TARGET_WILDCARD);
4204 }
4205 
4206 lun_id_t
4207 xpt_path_lun_id(struct cam_path *path)
4208 {
4209 	sim_lock_assert_owned(path->bus->sim->lock);
4210 
4211 	if (path->device != NULL)
4212 		return (path->device->lun_id);
4213 	else
4214 		return (CAM_LUN_WILDCARD);
4215 }
4216 
4217 struct cam_sim *
4218 xpt_path_sim(struct cam_path *path)
4219 {
4220 	return (path->bus->sim);
4221 }
4222 
4223 struct cam_periph*
4224 xpt_path_periph(struct cam_path *path)
4225 {
4226 	sim_lock_assert_owned(path->bus->sim->lock);
4227 
4228 	return (path->periph);
4229 }
4230 
4231 /*
4232  * Release a CAM control block for the caller.  Remit the cost of the structure
4233  * to the device referenced by the path.  If the this device had no 'credits'
4234  * and peripheral drivers have registered async callbacks for this notification
4235  * call them now.
4236  */
4237 void
4238 xpt_release_ccb(union ccb *free_ccb)
4239 {
4240 	struct	 cam_path *path;
4241 	struct	 cam_ed *device;
4242 	struct	 cam_eb *bus;
4243 	struct   cam_sim *sim;
4244 
4245 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4246 	path = free_ccb->ccb_h.path;
4247 	device = path->device;
4248 	bus = path->bus;
4249 	sim = bus->sim;
4250 
4251 	sim_lock_assert_owned(sim->lock);
4252 
4253 	cam_ccbq_release_opening(&device->ccbq);
4254 	if (sim->ccb_count > sim->max_ccbs) {
4255 		xpt_free_ccb(free_ccb);
4256 		sim->ccb_count--;
4257 	} else if (sim == &cam_dead_sim) {
4258 		xpt_free_ccb(free_ccb);
4259 	} else  {
4260 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4261 		    xpt_links.sle);
4262 	}
4263 	if (sim->devq == NULL) {
4264 		return;
4265 	}
4266 	sim->devq->alloc_openings++;
4267 	sim->devq->alloc_active--;
4268 	/* XXX Turn this into an inline function - xpt_run_device?? */
4269 	if ((device_is_alloc_queued(device) == 0)
4270 	 && (device->drvq.entries > 0)) {
4271 		xpt_schedule_dev_allocq(bus, device);
4272 	}
4273 	if (dev_allocq_is_runnable(sim->devq))
4274 		xpt_run_dev_allocq(bus);
4275 }
4276 
4277 /* Functions accessed by SIM drivers */
4278 
4279 /*
4280  * A sim structure, listing the SIM entry points and instance
4281  * identification info is passed to xpt_bus_register to hook the SIM
4282  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4283  * for this new bus and places it in the array of busses and assigns
4284  * it a path_id.  The path_id may be influenced by "hard wiring"
4285  * information specified by the user.  Once interrupt services are
4286  * availible, the bus will be probed.
4287  */
4288 int32_t
4289 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4290 {
4291 	struct cam_eb *new_bus;
4292 	struct cam_eb *old_bus;
4293 	struct ccb_pathinq cpi;
4294 
4295 	sim_lock_assert_owned(sim->lock);
4296 
4297 	sim->bus_id = bus;
4298 	new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4299 
4300 	if (strcmp(sim->sim_name, "xpt") != 0) {
4301 		sim->path_id =
4302 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4303 	}
4304 
4305 	TAILQ_INIT(&new_bus->et_entries);
4306 	new_bus->path_id = sim->path_id;
4307 	new_bus->sim = sim;
4308 	++sim->refcount;
4309 	timevalclear(&new_bus->last_reset);
4310 	new_bus->flags = 0;
4311 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4312 	new_bus->generation = 0;
4313 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4314 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4315 	while (old_bus != NULL
4316 	    && old_bus->path_id < new_bus->path_id)
4317 		old_bus = TAILQ_NEXT(old_bus, links);
4318 	if (old_bus != NULL)
4319 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4320 	else
4321 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4322 	xsoftc.bus_generation++;
4323 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4324 
4325 	/* Notify interested parties */
4326 	if (sim->path_id != CAM_XPT_PATH_ID) {
4327 		struct cam_path path;
4328 
4329 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4330 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4331 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4332 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4333 		xpt_action((union ccb *)&cpi);
4334 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4335 		xpt_release_path(&path);
4336 	}
4337 	return (CAM_SUCCESS);
4338 }
4339 
4340 /*
4341  * Deregister a bus.  We must clean out all transactions pending on the bus.
4342  * This routine is typically called prior to cam_sim_free() (e.g. see
4343  * dev/usbmisc/umass/umass.c)
4344  */
4345 int32_t
4346 xpt_bus_deregister(path_id_t pathid)
4347 {
4348 	struct cam_path bus_path;
4349 	struct cam_et *target;
4350 	struct cam_ed *device;
4351 	struct cam_ed_qinfo *qinfo;
4352 	struct cam_devq *devq;
4353 	struct cam_periph *periph;
4354 	struct cam_sim *ccbsim;
4355 	union ccb *work_ccb;
4356 	cam_status status;
4357 	int retries = 0;
4358 
4359 	status = xpt_compile_path(&bus_path, NULL, pathid,
4360 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4361 	if (status != CAM_REQ_CMP)
4362 		return (status);
4363 
4364 	/*
4365 	 * This should clear out all pending requests and timeouts, but
4366 	 * the ccb's may be queued to a software interrupt.
4367 	 *
4368 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4369 	 * and it really ought to.
4370 	 */
4371 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4372 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4373 
4374 	/*
4375 	 * Mark the SIM as having been deregistered.  This prevents
4376 	 * certain operations from re-queueing to it, stops new devices
4377 	 * from being added, etc.
4378 	 */
4379 	devq = bus_path.bus->sim->devq;
4380 	ccbsim = bus_path.bus->sim;
4381 	ccbsim->flags |= CAM_SIM_DEREGISTERED;
4382 
4383 again:
4384 	/*
4385 	 * Execute any pending operations now.
4386 	 */
4387 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4388 	    CAMQ_HEAD)) != NULL ||
4389 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4390 	    CAMQ_HEAD)) != NULL) {
4391 		do {
4392 			device = qinfo->device;
4393 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4394 			if (work_ccb != NULL) {
4395 				devq->active_dev = device;
4396 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4397 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4398 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4399 			}
4400 
4401 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4402 			    CAMQ_HEAD);
4403 			if (periph != NULL)
4404 				xpt_schedule(periph, periph->pinfo.priority);
4405 		} while (work_ccb != NULL || periph != NULL);
4406 	}
4407 
4408 	/*
4409 	 * Make sure all completed CCBs are processed.
4410 	 */
4411 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4412 		camisr_runqueue(ccbsim);
4413 	}
4414 
4415 	/*
4416 	 * Check for requeues, reissues asyncs if necessary
4417 	 */
4418 	if (CAMQ_GET_HEAD(&devq->send_queue))
4419 		kprintf("camq: devq send_queue still in use\n");
4420 	if (CAMQ_GET_HEAD(&devq->alloc_queue))
4421 		kprintf("camq: devq alloc_queue still in use\n");
4422 	if (CAMQ_GET_HEAD(&devq->send_queue) ||
4423 	    CAMQ_GET_HEAD(&devq->alloc_queue)) {
4424 		if (++retries < 5) {
4425 			xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4426 			xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4427 			goto again;
4428 		}
4429 	}
4430 
4431 	/*
4432 	 * Retarget the bus and all cached sim pointers to dead_sim.
4433 	 *
4434 	 * Various CAM subsystems may be holding on to targets, devices,
4435 	 * and/or peripherals and may attempt to use the sim pointer cached
4436 	 * in some of these structures during close.
4437 	 */
4438 	bus_path.bus->sim = &cam_dead_sim;
4439 	TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4440 		TAILQ_FOREACH(device, &target->ed_entries, links) {
4441 			device->sim = &cam_dead_sim;
4442 			SLIST_FOREACH(periph, &device->periphs, periph_links) {
4443 				periph->sim = &cam_dead_sim;
4444 			}
4445 		}
4446 	}
4447 
4448 	/*
4449 	 * Repeat the async's for the benefit of any new devices, such as
4450 	 * might be created from completed probes.  Any new device
4451 	 * ops will run on dead_sim.
4452 	 *
4453 	 * XXX There are probably races :-(
4454 	 */
4455 	CAM_SIM_LOCK(&cam_dead_sim);
4456 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4457 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4458 	CAM_SIM_UNLOCK(&cam_dead_sim);
4459 
4460 	/* Release the reference count held while registered. */
4461 	xpt_release_bus(bus_path.bus);
4462 	xpt_release_path(&bus_path);
4463 
4464 	return (CAM_REQ_CMP);
4465 }
4466 
4467 static path_id_t
4468 xptnextfreepathid(void)
4469 {
4470 	struct cam_eb *bus;
4471 	path_id_t pathid;
4472 	char *strval;
4473 
4474 	pathid = 0;
4475 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4476 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4477 retry:
4478 	/* Find an unoccupied pathid */
4479 	while (bus != NULL && bus->path_id <= pathid) {
4480 		if (bus->path_id == pathid)
4481 			pathid++;
4482 		bus = TAILQ_NEXT(bus, links);
4483 	}
4484 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4485 
4486 	/*
4487 	 * Ensure that this pathid is not reserved for
4488 	 * a bus that may be registered in the future.
4489 	 */
4490 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4491 		++pathid;
4492 		/* Start the search over */
4493 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4494 		goto retry;
4495 	}
4496 	return (pathid);
4497 }
4498 
4499 static path_id_t
4500 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4501 {
4502 	path_id_t pathid;
4503 	int i, dunit, val;
4504 	char buf[32];
4505 
4506 	pathid = CAM_XPT_PATH_ID;
4507 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4508 	i = -1;
4509 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4510 		if (strcmp(resource_query_name(i), "scbus")) {
4511 			/* Avoid a bit of foot shooting. */
4512 			continue;
4513 		}
4514 		dunit = resource_query_unit(i);
4515 		if (dunit < 0)		/* unwired?! */
4516 			continue;
4517 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4518 			if (sim_bus == val) {
4519 				pathid = dunit;
4520 				break;
4521 			}
4522 		} else if (sim_bus == 0) {
4523 			/* Unspecified matches bus 0 */
4524 			pathid = dunit;
4525 			break;
4526 		} else {
4527 			kprintf("Ambiguous scbus configuration for %s%d "
4528 			       "bus %d, cannot wire down.  The kernel "
4529 			       "config entry for scbus%d should "
4530 			       "specify a controller bus.\n"
4531 			       "Scbus will be assigned dynamically.\n",
4532 			       sim_name, sim_unit, sim_bus, dunit);
4533 			break;
4534 		}
4535 	}
4536 
4537 	if (pathid == CAM_XPT_PATH_ID)
4538 		pathid = xptnextfreepathid();
4539 	return (pathid);
4540 }
4541 
4542 void
4543 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4544 {
4545 	struct cam_eb *bus;
4546 	struct cam_et *target, *next_target;
4547 	struct cam_ed *device, *next_device;
4548 
4549 	sim_lock_assert_owned(path->bus->sim->lock);
4550 
4551 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4552 
4553 	/*
4554 	 * Most async events come from a CAM interrupt context.  In
4555 	 * a few cases, the error recovery code at the peripheral layer,
4556 	 * which may run from our SWI or a process context, may signal
4557 	 * deferred events with a call to xpt_async.
4558 	 */
4559 
4560 	bus = path->bus;
4561 
4562 	if (async_code == AC_BUS_RESET) {
4563 		/* Update our notion of when the last reset occurred */
4564 		microuptime(&bus->last_reset);
4565 	}
4566 
4567 	for (target = TAILQ_FIRST(&bus->et_entries);
4568 	     target != NULL;
4569 	     target = next_target) {
4570 
4571 		next_target = TAILQ_NEXT(target, links);
4572 
4573 		if (path->target != target
4574 		 && path->target->target_id != CAM_TARGET_WILDCARD
4575 		 && target->target_id != CAM_TARGET_WILDCARD)
4576 			continue;
4577 
4578 		if (async_code == AC_SENT_BDR) {
4579 			/* Update our notion of when the last reset occurred */
4580 			microuptime(&path->target->last_reset);
4581 		}
4582 
4583 		for (device = TAILQ_FIRST(&target->ed_entries);
4584 		     device != NULL;
4585 		     device = next_device) {
4586 
4587 			next_device = TAILQ_NEXT(device, links);
4588 
4589 			if (path->device != device
4590 			 && path->device->lun_id != CAM_LUN_WILDCARD
4591 			 && device->lun_id != CAM_LUN_WILDCARD)
4592 				continue;
4593 
4594 			xpt_dev_async(async_code, bus, target,
4595 				      device, async_arg);
4596 
4597 			xpt_async_bcast(&device->asyncs, async_code,
4598 					path, async_arg);
4599 		}
4600 	}
4601 
4602 	/*
4603 	 * If this wasn't a fully wildcarded async, tell all
4604 	 * clients that want all async events.
4605 	 */
4606 	if (bus != xpt_periph->path->bus)
4607 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4608 				path, async_arg);
4609 }
4610 
4611 static void
4612 xpt_async_bcast(struct async_list *async_head,
4613 		u_int32_t async_code,
4614 		struct cam_path *path, void *async_arg)
4615 {
4616 	struct async_node *cur_entry;
4617 
4618 	cur_entry = SLIST_FIRST(async_head);
4619 	while (cur_entry != NULL) {
4620 		struct async_node *next_entry;
4621 		/*
4622 		 * Grab the next list entry before we call the current
4623 		 * entry's callback.  This is because the callback function
4624 		 * can delete its async callback entry.
4625 		 */
4626 		next_entry = SLIST_NEXT(cur_entry, links);
4627 		if ((cur_entry->event_enable & async_code) != 0)
4628 			cur_entry->callback(cur_entry->callback_arg,
4629 					    async_code, path,
4630 					    async_arg);
4631 		cur_entry = next_entry;
4632 	}
4633 }
4634 
4635 /*
4636  * Handle any per-device event notifications that require action by the XPT.
4637  */
4638 static void
4639 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4640 	      struct cam_ed *device, void *async_arg)
4641 {
4642 	cam_status status;
4643 	struct cam_path newpath;
4644 
4645 	/*
4646 	 * We only need to handle events for real devices.
4647 	 */
4648 	if (target->target_id == CAM_TARGET_WILDCARD
4649 	 || device->lun_id == CAM_LUN_WILDCARD)
4650 		return;
4651 
4652 	/*
4653 	 * We need our own path with wildcards expanded to
4654 	 * handle certain types of events.
4655 	 */
4656 	if ((async_code == AC_SENT_BDR)
4657 	 || (async_code == AC_BUS_RESET)
4658 	 || (async_code == AC_INQ_CHANGED))
4659 		status = xpt_compile_path(&newpath, NULL,
4660 					  bus->path_id,
4661 					  target->target_id,
4662 					  device->lun_id);
4663 	else
4664 		status = CAM_REQ_CMP_ERR;
4665 
4666 	if (status == CAM_REQ_CMP) {
4667 
4668 		/*
4669 		 * Allow transfer negotiation to occur in a
4670 		 * tag free environment.
4671 		 */
4672 		if (async_code == AC_SENT_BDR
4673 		 || async_code == AC_BUS_RESET)
4674 			xpt_toggle_tags(&newpath);
4675 
4676 		if (async_code == AC_INQ_CHANGED) {
4677 			/*
4678 			 * We've sent a start unit command, or
4679 			 * something similar to a device that
4680 			 * may have caused its inquiry data to
4681 			 * change. So we re-scan the device to
4682 			 * refresh the inquiry data for it.
4683 			 */
4684 			xpt_scan_lun(newpath.periph, &newpath,
4685 				     CAM_EXPECT_INQ_CHANGE, NULL);
4686 		}
4687 		xpt_release_path(&newpath);
4688 	} else if (async_code == AC_LOST_DEVICE) {
4689 		/*
4690 		 * When we lose a device the device may be about to detach
4691 		 * the sim, we have to clear out all pending timeouts and
4692 		 * requests before that happens.  XXX it would be nice if
4693 		 * we could abort the requests pertaining to the device.
4694 		 */
4695 		xpt_release_devq_timeout(device);
4696 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4697 			device->flags |= CAM_DEV_UNCONFIGURED;
4698 			xpt_release_device(bus, target, device);
4699 		}
4700 	} else if (async_code == AC_TRANSFER_NEG) {
4701 		struct ccb_trans_settings *settings;
4702 
4703 		settings = (struct ccb_trans_settings *)async_arg;
4704 		xpt_set_transfer_settings(settings, device,
4705 					  /*async_update*/TRUE);
4706 	}
4707 }
4708 
4709 u_int32_t
4710 xpt_freeze_devq(struct cam_path *path, u_int count)
4711 {
4712 	struct ccb_hdr *ccbh;
4713 
4714 	sim_lock_assert_owned(path->bus->sim->lock);
4715 
4716 	path->device->qfrozen_cnt += count;
4717 
4718 	/*
4719 	 * Mark the last CCB in the queue as needing
4720 	 * to be requeued if the driver hasn't
4721 	 * changed it's state yet.  This fixes a race
4722 	 * where a ccb is just about to be queued to
4723 	 * a controller driver when it's interrupt routine
4724 	 * freezes the queue.  To completly close the
4725 	 * hole, controller drives must check to see
4726 	 * if a ccb's status is still CAM_REQ_INPROG
4727 	 * just before they queue
4728 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4729 	 * an example.
4730 	 */
4731 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4732 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4733 		ccbh->status = CAM_REQUEUE_REQ;
4734 	return (path->device->qfrozen_cnt);
4735 }
4736 
4737 u_int32_t
4738 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4739 {
4740 	sim_lock_assert_owned(sim->lock);
4741 
4742 	if (sim->devq == NULL)
4743 		return(count);
4744 	sim->devq->send_queue.qfrozen_cnt += count;
4745 	if (sim->devq->active_dev != NULL) {
4746 		struct ccb_hdr *ccbh;
4747 
4748 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4749 				  ccb_hdr_tailq);
4750 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4751 			ccbh->status = CAM_REQUEUE_REQ;
4752 	}
4753 	return (sim->devq->send_queue.qfrozen_cnt);
4754 }
4755 
4756 /*
4757  * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4758  * We ref-count the sim (and the bus only NULLs it out when the bus has been
4759  * freed, which is not the case here), but the device queue is also freed XXX
4760  * and we have to check that here.
4761  *
4762  * XXX fixme: could we simply not null-out the device queue via
4763  * cam_sim_free()?
4764  */
4765 static void
4766 xpt_release_devq_timeout(void *arg)
4767 {
4768 	struct cam_ed *device;
4769 
4770 	device = (struct cam_ed *)arg;
4771 
4772 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4773 }
4774 
4775 void
4776 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4777 {
4778 	sim_lock_assert_owned(path->bus->sim->lock);
4779 
4780 	xpt_release_devq_device(path->device, count, run_queue);
4781 }
4782 
4783 static void
4784 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4785 {
4786 	int	rundevq;
4787 
4788 	rundevq = 0;
4789 
4790 	if (dev->qfrozen_cnt > 0) {
4791 
4792 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4793 		dev->qfrozen_cnt -= count;
4794 		if (dev->qfrozen_cnt == 0) {
4795 
4796 			/*
4797 			 * No longer need to wait for a successful
4798 			 * command completion.
4799 			 */
4800 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4801 
4802 			/*
4803 			 * Remove any timeouts that might be scheduled
4804 			 * to release this queue.
4805 			 */
4806 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4807 				callout_stop(&dev->callout);
4808 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4809 			}
4810 
4811 			/*
4812 			 * Now that we are unfrozen schedule the
4813 			 * device so any pending transactions are
4814 			 * run.
4815 			 */
4816 			if ((dev->ccbq.queue.entries > 0)
4817 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4818 			 && (run_queue != 0)) {
4819 				rundevq = 1;
4820 			}
4821 		}
4822 	}
4823 	if (rundevq != 0)
4824 		xpt_run_dev_sendq(dev->target->bus);
4825 }
4826 
4827 void
4828 xpt_release_simq(struct cam_sim *sim, int run_queue)
4829 {
4830 	struct	camq *sendq;
4831 
4832 	sim_lock_assert_owned(sim->lock);
4833 
4834 	if (sim->devq == NULL)
4835 		return;
4836 
4837 	sendq = &(sim->devq->send_queue);
4838 	if (sendq->qfrozen_cnt > 0) {
4839 		sendq->qfrozen_cnt--;
4840 		if (sendq->qfrozen_cnt == 0) {
4841 			struct cam_eb *bus;
4842 
4843 			/*
4844 			 * If there is a timeout scheduled to release this
4845 			 * sim queue, remove it.  The queue frozen count is
4846 			 * already at 0.
4847 			 */
4848 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4849 				callout_stop(&sim->callout);
4850 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4851 			}
4852 			bus = xpt_find_bus(sim->path_id);
4853 
4854 			if (run_queue) {
4855 				/*
4856 				 * Now that we are unfrozen run the send queue.
4857 				 */
4858 				xpt_run_dev_sendq(bus);
4859 			}
4860 			xpt_release_bus(bus);
4861 		}
4862 	}
4863 }
4864 
4865 void
4866 xpt_done(union ccb *done_ccb)
4867 {
4868 	struct cam_sim *sim;
4869 
4870 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4871 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4872 		/*
4873 		 * Queue up the request for handling by our SWI handler
4874 		 * any of the "non-immediate" type of ccbs.
4875 		 */
4876 		sim = done_ccb->ccb_h.path->bus->sim;
4877 		switch (done_ccb->ccb_h.path->periph->type) {
4878 		case CAM_PERIPH_BIO:
4879 			spin_lock_wr(&sim->sim_spin);
4880 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4881 					  sim_links.tqe);
4882 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4883 			spin_unlock_wr(&sim->sim_spin);
4884 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4885 				spin_lock_wr(&cam_simq_spin);
4886 				if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4887 					TAILQ_INSERT_TAIL(&cam_simq, sim,
4888 							  links);
4889 					sim->flags |= CAM_SIM_ON_DONEQ;
4890 				}
4891 				spin_unlock_wr(&cam_simq_spin);
4892 			}
4893 			if ((done_ccb->ccb_h.path->periph->flags &
4894 			    CAM_PERIPH_POLLED) == 0)
4895 				setsoftcambio();
4896 			break;
4897 		default:
4898 			panic("unknown periph type %d",
4899 				done_ccb->ccb_h.path->periph->type);
4900 		}
4901 	}
4902 }
4903 
4904 union ccb *
4905 xpt_alloc_ccb(void)
4906 {
4907 	union ccb *new_ccb;
4908 
4909 	new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4910 	return (new_ccb);
4911 }
4912 
4913 void
4914 xpt_free_ccb(union ccb *free_ccb)
4915 {
4916 	kfree(free_ccb, M_CAMXPT);
4917 }
4918 
4919 
4920 
4921 /* Private XPT functions */
4922 
4923 /*
4924  * Get a CAM control block for the caller. Charge the structure to the device
4925  * referenced by the path.  If the this device has no 'credits' then the
4926  * device already has the maximum number of outstanding operations under way
4927  * and we return NULL. If we don't have sufficient resources to allocate more
4928  * ccbs, we also return NULL.
4929  */
4930 static union ccb *
4931 xpt_get_ccb(struct cam_ed *device)
4932 {
4933 	union ccb *new_ccb;
4934 	struct cam_sim *sim;
4935 
4936 	sim = device->sim;
4937 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4938 		new_ccb = xpt_alloc_ccb();
4939 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4940 			callout_init(&new_ccb->ccb_h.timeout_ch);
4941 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4942 				  xpt_links.sle);
4943 		sim->ccb_count++;
4944 	}
4945 	cam_ccbq_take_opening(&device->ccbq);
4946 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4947 	return (new_ccb);
4948 }
4949 
4950 static void
4951 xpt_release_bus(struct cam_eb *bus)
4952 {
4953 
4954 	if ((--bus->refcount == 0)
4955 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4956 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4957 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4958 		xsoftc.bus_generation++;
4959 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4960 		kfree(bus, M_CAMXPT);
4961 	}
4962 }
4963 
4964 static struct cam_et *
4965 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4966 {
4967 	struct cam_et *target;
4968 	struct cam_et *cur_target;
4969 
4970 	target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4971 
4972 	TAILQ_INIT(&target->ed_entries);
4973 	target->bus = bus;
4974 	target->target_id = target_id;
4975 	target->refcount = 1;
4976 	target->generation = 0;
4977 	timevalclear(&target->last_reset);
4978 	/*
4979 	 * Hold a reference to our parent bus so it
4980 	 * will not go away before we do.
4981 	 */
4982 	bus->refcount++;
4983 
4984 	/* Insertion sort into our bus's target list */
4985 	cur_target = TAILQ_FIRST(&bus->et_entries);
4986 	while (cur_target != NULL && cur_target->target_id < target_id)
4987 		cur_target = TAILQ_NEXT(cur_target, links);
4988 
4989 	if (cur_target != NULL) {
4990 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4991 	} else {
4992 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4993 	}
4994 	bus->generation++;
4995 	return (target);
4996 }
4997 
4998 static void
4999 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5000 {
5001 	if (target->refcount == 1) {
5002 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
5003 		TAILQ_REMOVE(&bus->et_entries, target, links);
5004 		bus->generation++;
5005 		xpt_release_bus(bus);
5006 		KKASSERT(target->refcount == 1);
5007 		kfree(target, M_CAMXPT);
5008 	} else {
5009 		--target->refcount;
5010 	}
5011 }
5012 
5013 static struct cam_ed *
5014 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5015 {
5016 	struct	   cam_path path;
5017 	struct	   cam_ed *device;
5018 	struct	   cam_devq *devq;
5019 	cam_status status;
5020 
5021 	/*
5022 	 * Disallow new devices while trying to deregister a sim
5023 	 */
5024 	if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5025 		return (NULL);
5026 
5027 	/*
5028 	 * Make space for us in the device queue on our bus
5029 	 */
5030 	devq = bus->sim->devq;
5031 	if (devq == NULL)
5032 		return(NULL);
5033 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5034 
5035 	if (status != CAM_REQ_CMP) {
5036 		device = NULL;
5037 	} else {
5038 		device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5039 	}
5040 
5041 	if (device != NULL) {
5042 		struct cam_ed *cur_device;
5043 
5044 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5045 		device->alloc_ccb_entry.device = device;
5046 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5047 		device->send_ccb_entry.device = device;
5048 		device->target = target;
5049 		device->lun_id = lun_id;
5050 		device->sim = bus->sim;
5051 		/* Initialize our queues */
5052 		if (camq_init(&device->drvq, 0) != 0) {
5053 			kfree(device, M_CAMXPT);
5054 			return (NULL);
5055 		}
5056 		if (cam_ccbq_init(&device->ccbq,
5057 				  bus->sim->max_dev_openings) != 0) {
5058 			camq_fini(&device->drvq);
5059 			kfree(device, M_CAMXPT);
5060 			return (NULL);
5061 		}
5062 		SLIST_INIT(&device->asyncs);
5063 		SLIST_INIT(&device->periphs);
5064 		device->generation = 0;
5065 		device->owner = NULL;
5066 		/*
5067 		 * Take the default quirk entry until we have inquiry
5068 		 * data and can determine a better quirk to use.
5069 		 */
5070 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5071 		bzero(&device->inq_data, sizeof(device->inq_data));
5072 		device->inq_flags = 0;
5073 		device->queue_flags = 0;
5074 		device->serial_num = NULL;
5075 		device->serial_num_len = 0;
5076 		device->qfrozen_cnt = 0;
5077 		device->flags = CAM_DEV_UNCONFIGURED;
5078 		device->tag_delay_count = 0;
5079 		device->tag_saved_openings = 0;
5080 		device->refcount = 1;
5081 		callout_init(&device->callout);
5082 
5083 		/*
5084 		 * Hold a reference to our parent target so it
5085 		 * will not go away before we do.
5086 		 */
5087 		target->refcount++;
5088 
5089 		/*
5090 		 * XXX should be limited by number of CCBs this bus can
5091 		 * do.
5092 		 */
5093 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5094 		/* Insertion sort into our target's device list */
5095 		cur_device = TAILQ_FIRST(&target->ed_entries);
5096 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5097 			cur_device = TAILQ_NEXT(cur_device, links);
5098 		if (cur_device != NULL) {
5099 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5100 		} else {
5101 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5102 		}
5103 		target->generation++;
5104 		if (lun_id != CAM_LUN_WILDCARD) {
5105 			xpt_compile_path(&path,
5106 					 NULL,
5107 					 bus->path_id,
5108 					 target->target_id,
5109 					 lun_id);
5110 			xpt_devise_transport(&path);
5111 			xpt_release_path(&path);
5112 		}
5113 	}
5114 	return (device);
5115 }
5116 
5117 static void
5118 xpt_reference_device(struct cam_ed *device)
5119 {
5120 	++device->refcount;
5121 }
5122 
5123 static void
5124 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5125 		   struct cam_ed *device)
5126 {
5127 	struct cam_devq *devq;
5128 
5129 	if (device->refcount == 1) {
5130 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5131 
5132 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5133 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5134 			panic("Removing device while still queued for ccbs");
5135 
5136 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5137 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5138 			callout_stop(&device->callout);
5139 		}
5140 
5141 		TAILQ_REMOVE(&target->ed_entries, device,links);
5142 		target->generation++;
5143 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
5144 		if ((devq = bus->sim->devq) != NULL) {
5145 			/* Release our slot in the devq */
5146 			cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5147 		}
5148 		camq_fini(&device->drvq);
5149 		camq_fini(&device->ccbq.queue);
5150 		xpt_release_target(bus, target);
5151 		KKASSERT(device->refcount == 1);
5152 		kfree(device, M_CAMXPT);
5153 	} else {
5154 		--device->refcount;
5155 	}
5156 }
5157 
5158 static u_int32_t
5159 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5160 {
5161 	int	diff;
5162 	int	result;
5163 	struct	cam_ed *dev;
5164 
5165 	dev = path->device;
5166 
5167 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5168 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5169 	if (result == CAM_REQ_CMP && (diff < 0)) {
5170 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5171 	}
5172 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5173 	 || (dev->inq_flags & SID_CmdQue) != 0)
5174 		dev->tag_saved_openings = newopenings;
5175 	/* Adjust the global limit */
5176 	dev->sim->max_ccbs += diff;
5177 	return (result);
5178 }
5179 
5180 static struct cam_eb *
5181 xpt_find_bus(path_id_t path_id)
5182 {
5183 	struct cam_eb *bus;
5184 
5185 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5186 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5187 		if (bus->path_id == path_id) {
5188 			bus->refcount++;
5189 			break;
5190 		}
5191 	}
5192 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5193 	return (bus);
5194 }
5195 
5196 static struct cam_et *
5197 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5198 {
5199 	struct cam_et *target;
5200 
5201 	TAILQ_FOREACH(target, &bus->et_entries, links) {
5202 		if (target->target_id == target_id) {
5203 			target->refcount++;
5204 			break;
5205 		}
5206 	}
5207 	return (target);
5208 }
5209 
5210 static struct cam_ed *
5211 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5212 {
5213 	struct cam_ed *device;
5214 
5215 	TAILQ_FOREACH(device, &target->ed_entries, links) {
5216 		if (device->lun_id == lun_id) {
5217 			device->refcount++;
5218 			break;
5219 		}
5220 	}
5221 	return (device);
5222 }
5223 
5224 typedef struct {
5225 	union	ccb *request_ccb;
5226 	struct 	ccb_pathinq *cpi;
5227 	int	counter;
5228 } xpt_scan_bus_info;
5229 
5230 /*
5231  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5232  * As the scan progresses, xpt_scan_bus is used as the
5233  * callback on completion function.
5234  */
5235 static void
5236 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5237 {
5238 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5239 		  ("xpt_scan_bus\n"));
5240 	switch (request_ccb->ccb_h.func_code) {
5241 	case XPT_SCAN_BUS:
5242 	{
5243 		xpt_scan_bus_info *scan_info;
5244 		union	ccb *work_ccb;
5245 		struct	cam_path *path;
5246 		u_int	i;
5247 		u_int	max_target;
5248 		u_int	initiator_id;
5249 
5250 		/* Find out the characteristics of the bus */
5251 		work_ccb = xpt_alloc_ccb();
5252 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5253 			      request_ccb->ccb_h.pinfo.priority);
5254 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5255 		xpt_action(work_ccb);
5256 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5257 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5258 			xpt_free_ccb(work_ccb);
5259 			xpt_done(request_ccb);
5260 			return;
5261 		}
5262 
5263 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5264 			/*
5265 			 * Can't scan the bus on an adapter that
5266 			 * cannot perform the initiator role.
5267 			 */
5268 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5269 			xpt_free_ccb(work_ccb);
5270 			xpt_done(request_ccb);
5271 			return;
5272 		}
5273 
5274 		/* Save some state for use while we probe for devices */
5275 		scan_info = (xpt_scan_bus_info *)
5276 		    kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5277 		scan_info->request_ccb = request_ccb;
5278 		scan_info->cpi = &work_ccb->cpi;
5279 
5280 		/* Cache on our stack so we can work asynchronously */
5281 		max_target = scan_info->cpi->max_target;
5282 		initiator_id = scan_info->cpi->initiator_id;
5283 
5284 
5285 		/*
5286 		 * We can scan all targets in parallel, or do it sequentially.
5287 		 */
5288 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5289 			max_target = 0;
5290 			scan_info->counter = 0;
5291 		} else {
5292 			scan_info->counter = scan_info->cpi->max_target + 1;
5293 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5294 				scan_info->counter--;
5295 			}
5296 		}
5297 
5298 		for (i = 0; i <= max_target; i++) {
5299 			cam_status status;
5300 			if (i == initiator_id)
5301 				continue;
5302 
5303 			status = xpt_create_path(&path, xpt_periph,
5304 						 request_ccb->ccb_h.path_id,
5305 						 i, 0);
5306 			if (status != CAM_REQ_CMP) {
5307 				kprintf("xpt_scan_bus: xpt_create_path failed"
5308 				       " with status %#x, bus scan halted\n",
5309 				       status);
5310 				kfree(scan_info, M_CAMXPT);
5311 				request_ccb->ccb_h.status = status;
5312 				xpt_free_ccb(work_ccb);
5313 				xpt_done(request_ccb);
5314 				break;
5315 			}
5316 			work_ccb = xpt_alloc_ccb();
5317 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5318 				      request_ccb->ccb_h.pinfo.priority);
5319 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5320 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5321 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5322 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5323 			xpt_action(work_ccb);
5324 		}
5325 		break;
5326 	}
5327 	case XPT_SCAN_LUN:
5328 	{
5329 		cam_status status;
5330 		struct cam_path *path;
5331 		xpt_scan_bus_info *scan_info;
5332 		path_id_t path_id;
5333 		target_id_t target_id;
5334 		lun_id_t lun_id;
5335 
5336 		/* Reuse the same CCB to query if a device was really found */
5337 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5338 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5339 			      request_ccb->ccb_h.pinfo.priority);
5340 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5341 
5342 		path_id = request_ccb->ccb_h.path_id;
5343 		target_id = request_ccb->ccb_h.target_id;
5344 		lun_id = request_ccb->ccb_h.target_lun;
5345 		xpt_action(request_ccb);
5346 
5347 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5348 			struct cam_ed *device;
5349 			struct cam_et *target;
5350 			int phl;
5351 
5352 			/*
5353 			 * If we already probed lun 0 successfully, or
5354 			 * we have additional configured luns on this
5355 			 * target that might have "gone away", go onto
5356 			 * the next lun.
5357 			 */
5358 			target = request_ccb->ccb_h.path->target;
5359 			/*
5360 			 * We may touch devices that we don't
5361 			 * hold references too, so ensure they
5362 			 * don't disappear out from under us.
5363 			 * The target above is referenced by the
5364 			 * path in the request ccb.
5365 			 */
5366 			phl = 0;
5367 			device = TAILQ_FIRST(&target->ed_entries);
5368 			if (device != NULL) {
5369 				phl = CAN_SRCH_HI_SPARSE(device);
5370 				if (device->lun_id == 0)
5371 					device = TAILQ_NEXT(device, links);
5372 			}
5373 			if ((lun_id != 0) || (device != NULL)) {
5374 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5375 					lun_id++;
5376 			}
5377 		} else {
5378 			struct cam_ed *device;
5379 
5380 			device = request_ccb->ccb_h.path->device;
5381 
5382 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5383 				/* Try the next lun */
5384 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5385 				  || CAN_SRCH_HI_DENSE(device))
5386 					lun_id++;
5387 			}
5388 		}
5389 
5390 		/*
5391 		 * Free the current request path- we're done with it.
5392 		 */
5393 		xpt_free_path(request_ccb->ccb_h.path);
5394 
5395 		/*
5396 		 * Check to see if we scan any further luns.
5397 		 */
5398 		if (lun_id == request_ccb->ccb_h.target_lun
5399                  || lun_id > scan_info->cpi->max_lun) {
5400 			int done;
5401 
5402  hop_again:
5403 			done = 0;
5404 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5405 				scan_info->counter++;
5406 				if (scan_info->counter ==
5407 				    scan_info->cpi->initiator_id) {
5408 					scan_info->counter++;
5409 				}
5410 				if (scan_info->counter >=
5411 				    scan_info->cpi->max_target+1) {
5412 					done = 1;
5413 				}
5414 			} else {
5415 				scan_info->counter--;
5416 				if (scan_info->counter == 0) {
5417 					done = 1;
5418 				}
5419 			}
5420 			if (done) {
5421 				xpt_free_ccb(request_ccb);
5422 				xpt_free_ccb((union ccb *)scan_info->cpi);
5423 				request_ccb = scan_info->request_ccb;
5424 				kfree(scan_info, M_CAMXPT);
5425 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5426 				xpt_done(request_ccb);
5427 				break;
5428 			}
5429 
5430 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5431 				break;
5432 			}
5433 			status = xpt_create_path(&path, xpt_periph,
5434 			    scan_info->request_ccb->ccb_h.path_id,
5435 			    scan_info->counter, 0);
5436 			if (status != CAM_REQ_CMP) {
5437 				kprintf("xpt_scan_bus: xpt_create_path failed"
5438 				    " with status %#x, bus scan halted\n",
5439 			       	    status);
5440 				xpt_free_ccb(request_ccb);
5441 				xpt_free_ccb((union ccb *)scan_info->cpi);
5442 				request_ccb = scan_info->request_ccb;
5443 				kfree(scan_info, M_CAMXPT);
5444 				request_ccb->ccb_h.status = status;
5445 				xpt_done(request_ccb);
5446 				break;
5447 			}
5448 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5449 			    request_ccb->ccb_h.pinfo.priority);
5450 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5451 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5452 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5453 			request_ccb->crcn.flags =
5454 			    scan_info->request_ccb->crcn.flags;
5455 		} else {
5456 			status = xpt_create_path(&path, xpt_periph,
5457 						 path_id, target_id, lun_id);
5458 			if (status != CAM_REQ_CMP) {
5459 				kprintf("xpt_scan_bus: xpt_create_path failed "
5460 				       "with status %#x, halting LUN scan\n",
5461 			 	       status);
5462 				goto hop_again;
5463 			}
5464 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5465 				      request_ccb->ccb_h.pinfo.priority);
5466 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5467 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5468 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5469 			request_ccb->crcn.flags =
5470 				scan_info->request_ccb->crcn.flags;
5471 		}
5472 		xpt_action(request_ccb);
5473 		break;
5474 	}
5475 	default:
5476 		break;
5477 	}
5478 }
5479 
5480 typedef enum {
5481 	PROBE_TUR,
5482 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5483 	PROBE_FULL_INQUIRY,
5484 	PROBE_MODE_SENSE,
5485 	PROBE_SERIAL_NUM_0,
5486 	PROBE_SERIAL_NUM_1,
5487 	PROBE_TUR_FOR_NEGOTIATION,
5488 	PROBE_INQUIRY_BASIC_DV1,
5489 	PROBE_INQUIRY_BASIC_DV2,
5490 	PROBE_DV_EXIT
5491 } probe_action;
5492 
5493 typedef enum {
5494 	PROBE_INQUIRY_CKSUM	= 0x01,
5495 	PROBE_SERIAL_CKSUM	= 0x02,
5496 	PROBE_NO_ANNOUNCE	= 0x04
5497 } probe_flags;
5498 
5499 typedef struct {
5500 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5501 	probe_action	action;
5502 	union ccb	saved_ccb;
5503 	probe_flags	flags;
5504 	MD5_CTX		context;
5505 	u_int8_t	digest[16];
5506 } probe_softc;
5507 
5508 static void
5509 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5510 	     cam_flags flags, union ccb *request_ccb)
5511 {
5512 	struct ccb_pathinq cpi;
5513 	cam_status status;
5514 	struct cam_path *new_path;
5515 	struct cam_periph *old_periph;
5516 
5517 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5518 		  ("xpt_scan_lun\n"));
5519 
5520 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5521 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5522 	xpt_action((union ccb *)&cpi);
5523 
5524 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5525 		if (request_ccb != NULL) {
5526 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5527 			xpt_done(request_ccb);
5528 		}
5529 		return;
5530 	}
5531 
5532 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5533 		/*
5534 		 * Can't scan the bus on an adapter that
5535 		 * cannot perform the initiator role.
5536 		 */
5537 		if (request_ccb != NULL) {
5538 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5539 			xpt_done(request_ccb);
5540 		}
5541 		return;
5542 	}
5543 
5544 	if (request_ccb == NULL) {
5545 		request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5546 		new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5547 		status = xpt_compile_path(new_path, xpt_periph,
5548 					  path->bus->path_id,
5549 					  path->target->target_id,
5550 					  path->device->lun_id);
5551 
5552 		if (status != CAM_REQ_CMP) {
5553 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5554 			    "can't continue\n");
5555 			kfree(request_ccb, M_CAMXPT);
5556 			kfree(new_path, M_CAMXPT);
5557 			return;
5558 		}
5559 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5560 		request_ccb->ccb_h.cbfcnp = xptscandone;
5561 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5562 		request_ccb->crcn.flags = flags;
5563 	}
5564 
5565 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5566 		probe_softc *softc;
5567 
5568 		softc = (probe_softc *)old_periph->softc;
5569 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5570 				  periph_links.tqe);
5571 	} else {
5572 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5573 					  probestart, "probe",
5574 					  CAM_PERIPH_BIO,
5575 					  request_ccb->ccb_h.path, NULL, 0,
5576 					  request_ccb);
5577 
5578 		if (status != CAM_REQ_CMP) {
5579 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5580 			    "returned an error, can't continue probe\n");
5581 			request_ccb->ccb_h.status = status;
5582 			xpt_done(request_ccb);
5583 		}
5584 	}
5585 }
5586 
5587 static void
5588 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5589 {
5590 	xpt_release_path(done_ccb->ccb_h.path);
5591 	kfree(done_ccb->ccb_h.path, M_CAMXPT);
5592 	kfree(done_ccb, M_CAMXPT);
5593 }
5594 
5595 static cam_status
5596 proberegister(struct cam_periph *periph, void *arg)
5597 {
5598 	union ccb *request_ccb;	/* CCB representing the probe request */
5599 	cam_status status;
5600 	probe_softc *softc;
5601 
5602 	request_ccb = (union ccb *)arg;
5603 	if (periph == NULL) {
5604 		kprintf("proberegister: periph was NULL!!\n");
5605 		return(CAM_REQ_CMP_ERR);
5606 	}
5607 
5608 	if (request_ccb == NULL) {
5609 		kprintf("proberegister: no probe CCB, "
5610 		       "can't register device\n");
5611 		return(CAM_REQ_CMP_ERR);
5612 	}
5613 
5614 	softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5615 	TAILQ_INIT(&softc->request_ccbs);
5616 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5617 			  periph_links.tqe);
5618 	softc->flags = 0;
5619 	periph->softc = softc;
5620 	status = cam_periph_acquire(periph);
5621 	if (status != CAM_REQ_CMP) {
5622 		return (status);
5623 	}
5624 
5625 
5626 	/*
5627 	 * Ensure we've waited at least a bus settle
5628 	 * delay before attempting to probe the device.
5629 	 * For HBAs that don't do bus resets, this won't make a difference.
5630 	 */
5631 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5632 				      scsi_delay);
5633 	probeschedule(periph);
5634 	return(CAM_REQ_CMP);
5635 }
5636 
5637 static void
5638 probeschedule(struct cam_periph *periph)
5639 {
5640 	struct ccb_pathinq cpi;
5641 	union ccb *ccb;
5642 	probe_softc *softc;
5643 
5644 	softc = (probe_softc *)periph->softc;
5645 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5646 
5647 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5648 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5649 	xpt_action((union ccb *)&cpi);
5650 
5651 	/*
5652 	 * If a device has gone away and another device, or the same one,
5653 	 * is back in the same place, it should have a unit attention
5654 	 * condition pending.  It will not report the unit attention in
5655 	 * response to an inquiry, which may leave invalid transfer
5656 	 * negotiations in effect.  The TUR will reveal the unit attention
5657 	 * condition.  Only send the TUR for lun 0, since some devices
5658 	 * will get confused by commands other than inquiry to non-existent
5659 	 * luns.  If you think a device has gone away start your scan from
5660 	 * lun 0.  This will insure that any bogus transfer settings are
5661 	 * invalidated.
5662 	 *
5663 	 * If we haven't seen the device before and the controller supports
5664 	 * some kind of transfer negotiation, negotiate with the first
5665 	 * sent command if no bus reset was performed at startup.  This
5666 	 * ensures that the device is not confused by transfer negotiation
5667 	 * settings left over by loader or BIOS action.
5668 	 */
5669 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5670 	 && (ccb->ccb_h.target_lun == 0)) {
5671 		softc->action = PROBE_TUR;
5672 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5673 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5674 		proberequestdefaultnegotiation(periph);
5675 		softc->action = PROBE_INQUIRY;
5676 	} else {
5677 		softc->action = PROBE_INQUIRY;
5678 	}
5679 
5680 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5681 		softc->flags |= PROBE_NO_ANNOUNCE;
5682 	else
5683 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5684 
5685 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5686 }
5687 
5688 static void
5689 probestart(struct cam_periph *periph, union ccb *start_ccb)
5690 {
5691 	/* Probe the device that our peripheral driver points to */
5692 	struct ccb_scsiio *csio;
5693 	probe_softc *softc;
5694 
5695 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5696 
5697 	softc = (probe_softc *)periph->softc;
5698 	csio = &start_ccb->csio;
5699 
5700 	switch (softc->action) {
5701 	case PROBE_TUR:
5702 	case PROBE_TUR_FOR_NEGOTIATION:
5703 	case PROBE_DV_EXIT:
5704 	{
5705 		scsi_test_unit_ready(csio,
5706 				     /*retries*/4,
5707 				     probedone,
5708 				     MSG_SIMPLE_Q_TAG,
5709 				     SSD_FULL_SIZE,
5710 				     /*timeout*/60000);
5711 		break;
5712 	}
5713 	case PROBE_INQUIRY:
5714 	case PROBE_FULL_INQUIRY:
5715 	case PROBE_INQUIRY_BASIC_DV1:
5716 	case PROBE_INQUIRY_BASIC_DV2:
5717 	{
5718 		u_int inquiry_len;
5719 		struct scsi_inquiry_data *inq_buf;
5720 
5721 		inq_buf = &periph->path->device->inq_data;
5722 
5723 		/*
5724 		 * If the device is currently configured, we calculate an
5725 		 * MD5 checksum of the inquiry data, and if the serial number
5726 		 * length is greater than 0, add the serial number data
5727 		 * into the checksum as well.  Once the inquiry and the
5728 		 * serial number check finish, we attempt to figure out
5729 		 * whether we still have the same device.
5730 		 */
5731 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5732 
5733 			MD5Init(&softc->context);
5734 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5735 				  sizeof(struct scsi_inquiry_data));
5736 			softc->flags |= PROBE_INQUIRY_CKSUM;
5737 			if (periph->path->device->serial_num_len > 0) {
5738 				MD5Update(&softc->context,
5739 					  periph->path->device->serial_num,
5740 					  periph->path->device->serial_num_len);
5741 				softc->flags |= PROBE_SERIAL_CKSUM;
5742 			}
5743 			MD5Final(softc->digest, &softc->context);
5744 		}
5745 
5746 		if (softc->action == PROBE_INQUIRY)
5747 			inquiry_len = SHORT_INQUIRY_LENGTH;
5748 		else
5749 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5750 
5751 		/*
5752 		 * Some parallel SCSI devices fail to send an
5753 		 * ignore wide residue message when dealing with
5754 		 * odd length inquiry requests.  Round up to be
5755 		 * safe.
5756 		 */
5757 		inquiry_len = roundup2(inquiry_len, 2);
5758 
5759 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5760 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5761 			inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5762 		}
5763 		scsi_inquiry(csio,
5764 			     /*retries*/4,
5765 			     probedone,
5766 			     MSG_SIMPLE_Q_TAG,
5767 			     (u_int8_t *)inq_buf,
5768 			     inquiry_len,
5769 			     /*evpd*/FALSE,
5770 			     /*page_code*/0,
5771 			     SSD_MIN_SIZE,
5772 			     /*timeout*/60 * 1000);
5773 		break;
5774 	}
5775 	case PROBE_MODE_SENSE:
5776 	{
5777 		void  *mode_buf;
5778 		int    mode_buf_len;
5779 
5780 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5781 			     + sizeof(struct scsi_mode_blk_desc)
5782 			     + sizeof(struct scsi_control_page);
5783 		mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5784 		scsi_mode_sense(csio,
5785 				/*retries*/4,
5786 				probedone,
5787 				MSG_SIMPLE_Q_TAG,
5788 				/*dbd*/FALSE,
5789 				SMS_PAGE_CTRL_CURRENT,
5790 				SMS_CONTROL_MODE_PAGE,
5791 				mode_buf,
5792 				mode_buf_len,
5793 				SSD_FULL_SIZE,
5794 				/*timeout*/60000);
5795 		break;
5796 	}
5797 	case PROBE_SERIAL_NUM_0:
5798 	{
5799 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5800 		struct cam_ed *device;
5801 
5802 		device = periph->path->device;
5803 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5804 			vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5805 			    M_INTWAIT | M_ZERO);
5806 		}
5807 
5808 		if (vpd_list != NULL) {
5809 			scsi_inquiry(csio,
5810 				     /*retries*/4,
5811 				     probedone,
5812 				     MSG_SIMPLE_Q_TAG,
5813 				     (u_int8_t *)vpd_list,
5814 				     sizeof(*vpd_list),
5815 				     /*evpd*/TRUE,
5816 				     SVPD_SUPPORTED_PAGE_LIST,
5817 				     SSD_MIN_SIZE,
5818 				     /*timeout*/60 * 1000);
5819 			break;
5820 		}
5821 		/*
5822 		 * We'll have to do without, let our probedone
5823 		 * routine finish up for us.
5824 		 */
5825 		start_ccb->csio.data_ptr = NULL;
5826 		probedone(periph, start_ccb);
5827 		return;
5828 	}
5829 	case PROBE_SERIAL_NUM_1:
5830 	{
5831 		struct scsi_vpd_unit_serial_number *serial_buf;
5832 		struct cam_ed* device;
5833 
5834 		serial_buf = NULL;
5835 		device = periph->path->device;
5836 		device->serial_num = NULL;
5837 		device->serial_num_len = 0;
5838 
5839 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5840 			kmalloc(sizeof(*serial_buf), M_CAMXPT,
5841 				M_INTWAIT | M_ZERO);
5842 		scsi_inquiry(csio,
5843 			     /*retries*/4,
5844 			     probedone,
5845 			     MSG_SIMPLE_Q_TAG,
5846 			     (u_int8_t *)serial_buf,
5847 			     sizeof(*serial_buf),
5848 			     /*evpd*/TRUE,
5849 			     SVPD_UNIT_SERIAL_NUMBER,
5850 			     SSD_MIN_SIZE,
5851 			     /*timeout*/60 * 1000);
5852 		break;
5853 	}
5854 	}
5855 	xpt_action(start_ccb);
5856 }
5857 
5858 static void
5859 proberequestdefaultnegotiation(struct cam_periph *periph)
5860 {
5861 	struct ccb_trans_settings cts;
5862 
5863 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5864 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5865 	cts.type = CTS_TYPE_USER_SETTINGS;
5866 	xpt_action((union ccb *)&cts);
5867 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5868 		return;
5869 	}
5870 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5871 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5872 	xpt_action((union ccb *)&cts);
5873 }
5874 
5875 /*
5876  * Backoff Negotiation Code- only pertinent for SPI devices.
5877  */
5878 static int
5879 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5880 {
5881 	struct ccb_trans_settings cts;
5882 	struct ccb_trans_settings_spi *spi;
5883 
5884 	memset(&cts, 0, sizeof (cts));
5885 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5886 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5887 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5888 	xpt_action((union ccb *)&cts);
5889 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5890 		if (bootverbose) {
5891 			xpt_print(periph->path,
5892 			    "failed to get current device settings\n");
5893 		}
5894 		return (0);
5895 	}
5896 	if (cts.transport != XPORT_SPI) {
5897 		if (bootverbose) {
5898 			xpt_print(periph->path, "not SPI transport\n");
5899 		}
5900 		return (0);
5901 	}
5902 	spi = &cts.xport_specific.spi;
5903 
5904 	/*
5905 	 * We cannot renegotiate sync rate if we don't have one.
5906 	 */
5907 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5908 		if (bootverbose) {
5909 			xpt_print(periph->path, "no sync rate known\n");
5910 		}
5911 		return (0);
5912 	}
5913 
5914 	/*
5915 	 * We'll assert that we don't have to touch PPR options- the
5916 	 * SIM will see what we do with period and offset and adjust
5917 	 * the PPR options as appropriate.
5918 	 */
5919 
5920 	/*
5921 	 * A sync rate with unknown or zero offset is nonsensical.
5922 	 * A sync period of zero means Async.
5923 	 */
5924 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5925 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
5926 		if (bootverbose) {
5927 			xpt_print(periph->path, "no sync rate available\n");
5928 		}
5929 		return (0);
5930 	}
5931 
5932 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5933 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5934 		    ("hit async: giving up on DV\n"));
5935 		return (0);
5936 	}
5937 
5938 
5939 	/*
5940 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5941 	 * We don't try to remember 'last' settings to see if the SIM actually
5942 	 * gets into the speed we want to set. We check on the SIM telling
5943 	 * us that a requested speed is bad, but otherwise don't try and
5944 	 * check the speed due to the asynchronous and handshake nature
5945 	 * of speed setting.
5946 	 */
5947 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5948 	for (;;) {
5949 		spi->sync_period++;
5950 		if (spi->sync_period >= 0xf) {
5951 			spi->sync_period = 0;
5952 			spi->sync_offset = 0;
5953 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5954 			    ("setting to async for DV\n"));
5955 			/*
5956 			 * Once we hit async, we don't want to try
5957 			 * any more settings.
5958 			 */
5959 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5960 		} else if (bootverbose) {
5961 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5962 			    ("DV: period 0x%x\n", spi->sync_period));
5963 			kprintf("setting period to 0x%x\n", spi->sync_period);
5964 		}
5965 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5966 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
5967 		xpt_action((union ccb *)&cts);
5968 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5969 			break;
5970 		}
5971 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5972 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
5973 		if (spi->sync_period == 0) {
5974 			return (0);
5975 		}
5976 	}
5977 	return (1);
5978 }
5979 
5980 static void
5981 probedone(struct cam_periph *periph, union ccb *done_ccb)
5982 {
5983 	probe_softc *softc;
5984 	struct cam_path *path;
5985 	u_int32_t  priority;
5986 
5987 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5988 
5989 	softc = (probe_softc *)periph->softc;
5990 	path = done_ccb->ccb_h.path;
5991 	priority = done_ccb->ccb_h.pinfo.priority;
5992 
5993 	switch (softc->action) {
5994 	case PROBE_TUR:
5995 	{
5996 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5997 
5998 			if (cam_periph_error(done_ccb, 0,
5999 					     SF_NO_PRINT, NULL) == ERESTART)
6000 				return;
6001 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6002 				/* Don't wedge the queue */
6003 				xpt_release_devq(done_ccb->ccb_h.path,
6004 						 /*count*/1,
6005 						 /*run_queue*/TRUE);
6006 		}
6007 		softc->action = PROBE_INQUIRY;
6008 		xpt_release_ccb(done_ccb);
6009 		xpt_schedule(periph, priority);
6010 		return;
6011 	}
6012 	case PROBE_INQUIRY:
6013 	case PROBE_FULL_INQUIRY:
6014 	{
6015 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6016 			struct scsi_inquiry_data *inq_buf;
6017 			u_int8_t periph_qual;
6018 
6019 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6020 			inq_buf = &path->device->inq_data;
6021 
6022 			periph_qual = SID_QUAL(inq_buf);
6023 
6024 			switch(periph_qual) {
6025 			case SID_QUAL_LU_CONNECTED:
6026 			{
6027 				u_int8_t len;
6028 
6029 				/*
6030 				 * We conservatively request only
6031 				 * SHORT_INQUIRY_LEN bytes of inquiry
6032 				 * information during our first try
6033 				 * at sending an INQUIRY. If the device
6034 				 * has more information to give,
6035 				 * perform a second request specifying
6036 				 * the amount of information the device
6037 				 * is willing to give.
6038 				 */
6039 				len = inq_buf->additional_length
6040 				    + offsetof(struct scsi_inquiry_data,
6041 						additional_length) + 1;
6042 				if (softc->action == PROBE_INQUIRY
6043 				    && len > SHORT_INQUIRY_LENGTH) {
6044 					softc->action = PROBE_FULL_INQUIRY;
6045 					xpt_release_ccb(done_ccb);
6046 					xpt_schedule(periph, priority);
6047 					return;
6048 				}
6049 
6050 				xpt_find_quirk(path->device);
6051 
6052 				xpt_devise_transport(path);
6053 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6054 					softc->action = PROBE_MODE_SENSE;
6055 				else
6056 					softc->action = PROBE_SERIAL_NUM_0;
6057 
6058 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6059 				xpt_reference_device(path->device);
6060 
6061 				xpt_release_ccb(done_ccb);
6062 				xpt_schedule(periph, priority);
6063 				return;
6064 			}
6065 			default:
6066 				break;
6067 			}
6068 		} else if (cam_periph_error(done_ccb, 0,
6069 					    done_ccb->ccb_h.target_lun > 0
6070 					    ? SF_RETRY_UA|SF_QUIET_IR
6071 					    : SF_RETRY_UA,
6072 					    &softc->saved_ccb) == ERESTART) {
6073 			return;
6074 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6075 			/* Don't wedge the queue */
6076 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6077 					 /*run_queue*/TRUE);
6078 		}
6079 		/*
6080 		 * If we get to this point, we got an error status back
6081 		 * from the inquiry and the error status doesn't require
6082 		 * automatically retrying the command.  Therefore, the
6083 		 * inquiry failed.  If we had inquiry information before
6084 		 * for this device, but this latest inquiry command failed,
6085 		 * the device has probably gone away.  If this device isn't
6086 		 * already marked unconfigured, notify the peripheral
6087 		 * drivers that this device is no more.
6088 		 */
6089 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6090 			/* Send the async notification. */
6091 			xpt_async(AC_LOST_DEVICE, path, NULL);
6092 		}
6093 
6094 		xpt_release_ccb(done_ccb);
6095 		break;
6096 	}
6097 	case PROBE_MODE_SENSE:
6098 	{
6099 		struct ccb_scsiio *csio;
6100 		struct scsi_mode_header_6 *mode_hdr;
6101 
6102 		csio = &done_ccb->csio;
6103 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6104 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6105 			struct scsi_control_page *page;
6106 			u_int8_t *offset;
6107 
6108 			offset = ((u_int8_t *)&mode_hdr[1])
6109 			    + mode_hdr->blk_desc_len;
6110 			page = (struct scsi_control_page *)offset;
6111 			path->device->queue_flags = page->queue_flags;
6112 		} else if (cam_periph_error(done_ccb, 0,
6113 					    SF_RETRY_UA|SF_NO_PRINT,
6114 					    &softc->saved_ccb) == ERESTART) {
6115 			return;
6116 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6117 			/* Don't wedge the queue */
6118 			xpt_release_devq(done_ccb->ccb_h.path,
6119 					 /*count*/1, /*run_queue*/TRUE);
6120 		}
6121 		xpt_release_ccb(done_ccb);
6122 		kfree(mode_hdr, M_CAMXPT);
6123 		softc->action = PROBE_SERIAL_NUM_0;
6124 		xpt_schedule(periph, priority);
6125 		return;
6126 	}
6127 	case PROBE_SERIAL_NUM_0:
6128 	{
6129 		struct ccb_scsiio *csio;
6130 		struct scsi_vpd_supported_page_list *page_list;
6131 		int length, serialnum_supported, i;
6132 
6133 		serialnum_supported = 0;
6134 		csio = &done_ccb->csio;
6135 		page_list =
6136 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6137 
6138 		if (page_list == NULL) {
6139 			/*
6140 			 * Don't process the command as it was never sent
6141 			 */
6142 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6143 		    && (page_list->length > 0)) {
6144 			length = min(page_list->length,
6145 			    SVPD_SUPPORTED_PAGES_SIZE);
6146 			for (i = 0; i < length; i++) {
6147 				if (page_list->list[i] ==
6148 				    SVPD_UNIT_SERIAL_NUMBER) {
6149 					serialnum_supported = 1;
6150 					break;
6151 				}
6152 			}
6153 		} else if (cam_periph_error(done_ccb, 0,
6154 					    SF_RETRY_UA|SF_NO_PRINT,
6155 					    &softc->saved_ccb) == ERESTART) {
6156 			return;
6157 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6158 			/* Don't wedge the queue */
6159 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6160 					 /*run_queue*/TRUE);
6161 		}
6162 
6163 		if (page_list != NULL)
6164 			kfree(page_list, M_DEVBUF);
6165 
6166 		if (serialnum_supported) {
6167 			xpt_release_ccb(done_ccb);
6168 			softc->action = PROBE_SERIAL_NUM_1;
6169 			xpt_schedule(periph, priority);
6170 			return;
6171 		}
6172 		xpt_release_ccb(done_ccb);
6173 		softc->action = PROBE_TUR_FOR_NEGOTIATION;
6174 		xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority);
6175 		return;
6176 	}
6177 
6178 	case PROBE_SERIAL_NUM_1:
6179 	{
6180 		struct ccb_scsiio *csio;
6181 		struct scsi_vpd_unit_serial_number *serial_buf;
6182 		u_int32_t  priority;
6183 		int changed;
6184 		int have_serialnum;
6185 
6186 		changed = 1;
6187 		have_serialnum = 0;
6188 		csio = &done_ccb->csio;
6189 		priority = done_ccb->ccb_h.pinfo.priority;
6190 		serial_buf =
6191 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6192 
6193 		/* Clean up from previous instance of this device */
6194 		if (path->device->serial_num != NULL) {
6195 			kfree(path->device->serial_num, M_CAMXPT);
6196 			path->device->serial_num = NULL;
6197 			path->device->serial_num_len = 0;
6198 		}
6199 
6200 		if (serial_buf == NULL) {
6201 			/*
6202 			 * Don't process the command as it was never sent
6203 			 */
6204 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6205 			&& (serial_buf->length > 0)) {
6206 
6207 			have_serialnum = 1;
6208 			path->device->serial_num =
6209 				kmalloc((serial_buf->length + 1),
6210 				       M_CAMXPT, M_INTWAIT);
6211 			bcopy(serial_buf->serial_num,
6212 			      path->device->serial_num,
6213 			      serial_buf->length);
6214 			path->device->serial_num_len = serial_buf->length;
6215 			path->device->serial_num[serial_buf->length] = '\0';
6216 		} else if (cam_periph_error(done_ccb, 0,
6217 					    SF_RETRY_UA|SF_NO_PRINT,
6218 					    &softc->saved_ccb) == ERESTART) {
6219 			return;
6220 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6221 			/* Don't wedge the queue */
6222 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6223 					 /*run_queue*/TRUE);
6224 		}
6225 
6226 		/*
6227 		 * Let's see if we have seen this device before.
6228 		 */
6229 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6230 			MD5_CTX context;
6231 			u_int8_t digest[16];
6232 
6233 			MD5Init(&context);
6234 
6235 			MD5Update(&context,
6236 				  (unsigned char *)&path->device->inq_data,
6237 				  sizeof(struct scsi_inquiry_data));
6238 
6239 			if (have_serialnum)
6240 				MD5Update(&context, serial_buf->serial_num,
6241 					  serial_buf->length);
6242 
6243 			MD5Final(digest, &context);
6244 			if (bcmp(softc->digest, digest, 16) == 0)
6245 				changed = 0;
6246 
6247 			/*
6248 			 * XXX Do we need to do a TUR in order to ensure
6249 			 *     that the device really hasn't changed???
6250 			 */
6251 			if ((changed != 0)
6252 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6253 				xpt_async(AC_LOST_DEVICE, path, NULL);
6254 		}
6255 		if (serial_buf != NULL)
6256 			kfree(serial_buf, M_CAMXPT);
6257 
6258 		if (changed != 0) {
6259 			/*
6260 			 * Now that we have all the necessary
6261 			 * information to safely perform transfer
6262 			 * negotiations... Controllers don't perform
6263 			 * any negotiation or tagged queuing until
6264 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6265 			 * received.  So, on a new device, just retrieve
6266 			 * the user settings, and set them as the current
6267 			 * settings to set the device up.
6268 			 */
6269 			proberequestdefaultnegotiation(periph);
6270 			xpt_release_ccb(done_ccb);
6271 
6272 			/*
6273 			 * Perform a TUR to allow the controller to
6274 			 * perform any necessary transfer negotiation.
6275 			 */
6276 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
6277 			xpt_schedule(periph, priority);
6278 			return;
6279 		}
6280 		xpt_release_ccb(done_ccb);
6281 		break;
6282 	}
6283 	case PROBE_TUR_FOR_NEGOTIATION:
6284 	case PROBE_DV_EXIT:
6285 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6286 			/* Don't wedge the queue */
6287 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6288 					 /*run_queue*/TRUE);
6289 		}
6290 
6291 		xpt_reference_device(path->device);
6292 		/*
6293 		 * Do Domain Validation for lun 0 on devices that claim
6294 		 * to support Synchronous Transfer modes.
6295 		 */
6296 		if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6297 		 && done_ccb->ccb_h.target_lun == 0
6298 		 && (path->device->inq_data.flags & SID_Sync) != 0
6299                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6300 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6301 			    ("Begin Domain Validation\n"));
6302 			path->device->flags |= CAM_DEV_IN_DV;
6303 			xpt_release_ccb(done_ccb);
6304 			softc->action = PROBE_INQUIRY_BASIC_DV1;
6305 			xpt_schedule(periph, priority);
6306 			return;
6307 		}
6308 		if (softc->action == PROBE_DV_EXIT) {
6309 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6310 			    ("Leave Domain Validation\n"));
6311 		}
6312 		path->device->flags &=
6313 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6314 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6315 			/* Inform the XPT that a new device has been found */
6316 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6317 			xpt_action(done_ccb);
6318 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6319 				  done_ccb);
6320 		}
6321 		xpt_release_ccb(done_ccb);
6322 		break;
6323 	case PROBE_INQUIRY_BASIC_DV1:
6324 	case PROBE_INQUIRY_BASIC_DV2:
6325 	{
6326 		struct scsi_inquiry_data *nbuf;
6327 		struct ccb_scsiio *csio;
6328 
6329 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6330 			/* Don't wedge the queue */
6331 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6332 					 /*run_queue*/TRUE);
6333 		}
6334 		csio = &done_ccb->csio;
6335 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6336 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6337 			xpt_print(path,
6338 			    "inquiry data fails comparison at DV%d step\n",
6339 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6340 			if (proberequestbackoff(periph, path->device)) {
6341 				path->device->flags &= ~CAM_DEV_IN_DV;
6342 				softc->action = PROBE_TUR_FOR_NEGOTIATION;
6343 			} else {
6344 				/* give up */
6345 				softc->action = PROBE_DV_EXIT;
6346 			}
6347 			kfree(nbuf, M_CAMXPT);
6348 			xpt_release_ccb(done_ccb);
6349 			xpt_schedule(periph, priority);
6350 			return;
6351 		}
6352 		kfree(nbuf, M_CAMXPT);
6353 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6354 			softc->action = PROBE_INQUIRY_BASIC_DV2;
6355 			xpt_release_ccb(done_ccb);
6356 			xpt_schedule(periph, priority);
6357 			return;
6358 		}
6359 		if (softc->action == PROBE_DV_EXIT) {
6360 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6361 			    ("Leave Domain Validation Successfully\n"));
6362 		}
6363 		path->device->flags &=
6364 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6365 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6366 			/* Inform the XPT that a new device has been found */
6367 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6368 			xpt_action(done_ccb);
6369 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6370 				  done_ccb);
6371 		}
6372 		xpt_release_ccb(done_ccb);
6373 		break;
6374 	}
6375 	}
6376 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6377 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6378 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6379 	xpt_done(done_ccb);
6380 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6381 		cam_periph_invalidate(periph);
6382 		cam_periph_release(periph);
6383 	} else {
6384 		probeschedule(periph);
6385 	}
6386 }
6387 
6388 static void
6389 probecleanup(struct cam_periph *periph)
6390 {
6391 	kfree(periph->softc, M_CAMXPT);
6392 }
6393 
6394 static void
6395 xpt_find_quirk(struct cam_ed *device)
6396 {
6397 	caddr_t	match;
6398 
6399 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6400 			       (caddr_t)xpt_quirk_table,
6401 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6402 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6403 
6404 	if (match == NULL)
6405 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6406 
6407 	device->quirk = (struct xpt_quirk_entry *)match;
6408 }
6409 
6410 static int
6411 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6412 {
6413 	int error, bool;
6414 
6415 	bool = cam_srch_hi;
6416 	error = sysctl_handle_int(oidp, &bool, 0, req);
6417 	if (error != 0 || req->newptr == NULL)
6418 		return (error);
6419 	if (bool == 0 || bool == 1) {
6420 		cam_srch_hi = bool;
6421 		return (0);
6422 	} else {
6423 		return (EINVAL);
6424 	}
6425 }
6426 
6427 static void
6428 xpt_devise_transport(struct cam_path *path)
6429 {
6430 	struct ccb_pathinq cpi;
6431 	struct ccb_trans_settings cts;
6432 	struct scsi_inquiry_data *inq_buf;
6433 
6434 	/* Get transport information from the SIM */
6435 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6436 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6437 	xpt_action((union ccb *)&cpi);
6438 
6439 	inq_buf = NULL;
6440 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6441 		inq_buf = &path->device->inq_data;
6442 	path->device->protocol = PROTO_SCSI;
6443 	path->device->protocol_version =
6444 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6445 	path->device->transport = cpi.transport;
6446 	path->device->transport_version = cpi.transport_version;
6447 
6448 	/*
6449 	 * Any device not using SPI3 features should
6450 	 * be considered SPI2 or lower.
6451 	 */
6452 	if (inq_buf != NULL) {
6453 		if (path->device->transport == XPORT_SPI
6454 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6455 		 && path->device->transport_version > 2)
6456 			path->device->transport_version = 2;
6457 	} else {
6458 		struct cam_ed* otherdev;
6459 
6460 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6461 		     otherdev != NULL;
6462 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6463 			if (otherdev != path->device)
6464 				break;
6465 		}
6466 
6467 		if (otherdev != NULL) {
6468 			/*
6469 			 * Initially assume the same versioning as
6470 			 * prior luns for this target.
6471 			 */
6472 			path->device->protocol_version =
6473 			    otherdev->protocol_version;
6474 			path->device->transport_version =
6475 			    otherdev->transport_version;
6476 		} else {
6477 			/* Until we know better, opt for safty */
6478 			path->device->protocol_version = 2;
6479 			if (path->device->transport == XPORT_SPI)
6480 				path->device->transport_version = 2;
6481 			else
6482 				path->device->transport_version = 0;
6483 		}
6484 	}
6485 
6486 	/*
6487 	 * XXX
6488 	 * For a device compliant with SPC-2 we should be able
6489 	 * to determine the transport version supported by
6490 	 * scrutinizing the version descriptors in the
6491 	 * inquiry buffer.
6492 	 */
6493 
6494 	/* Tell the controller what we think */
6495 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6496 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6497 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6498 	cts.transport = path->device->transport;
6499 	cts.transport_version = path->device->transport_version;
6500 	cts.protocol = path->device->protocol;
6501 	cts.protocol_version = path->device->protocol_version;
6502 	cts.proto_specific.valid = 0;
6503 	cts.xport_specific.valid = 0;
6504 	xpt_action((union ccb *)&cts);
6505 }
6506 
6507 static void
6508 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6509 			  int async_update)
6510 {
6511 	struct	ccb_pathinq cpi;
6512 	struct	ccb_trans_settings cur_cts;
6513 	struct	ccb_trans_settings_scsi *scsi;
6514 	struct	ccb_trans_settings_scsi *cur_scsi;
6515 	struct	cam_sim *sim;
6516 	struct	scsi_inquiry_data *inq_data;
6517 
6518 	if (device == NULL) {
6519 		cts->ccb_h.status = CAM_PATH_INVALID;
6520 		xpt_done((union ccb *)cts);
6521 		return;
6522 	}
6523 
6524 	if (cts->protocol == PROTO_UNKNOWN
6525 	 || cts->protocol == PROTO_UNSPECIFIED) {
6526 		cts->protocol = device->protocol;
6527 		cts->protocol_version = device->protocol_version;
6528 	}
6529 
6530 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6531 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6532 		cts->protocol_version = device->protocol_version;
6533 
6534 	if (cts->protocol != device->protocol) {
6535 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6536 		       cts->protocol, device->protocol);
6537 		cts->protocol = device->protocol;
6538 	}
6539 
6540 	if (cts->protocol_version > device->protocol_version) {
6541 		if (bootverbose) {
6542 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6543 			    "Version from %d to %d?\n", cts->protocol_version,
6544 			    device->protocol_version);
6545 		}
6546 		cts->protocol_version = device->protocol_version;
6547 	}
6548 
6549 	if (cts->transport == XPORT_UNKNOWN
6550 	 || cts->transport == XPORT_UNSPECIFIED) {
6551 		cts->transport = device->transport;
6552 		cts->transport_version = device->transport_version;
6553 	}
6554 
6555 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6556 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6557 		cts->transport_version = device->transport_version;
6558 
6559 	if (cts->transport != device->transport) {
6560 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6561 		    cts->transport, device->transport);
6562 		cts->transport = device->transport;
6563 	}
6564 
6565 	if (cts->transport_version > device->transport_version) {
6566 		if (bootverbose) {
6567 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6568 			    "Version from %d to %d?\n", cts->transport_version,
6569 			    device->transport_version);
6570 		}
6571 		cts->transport_version = device->transport_version;
6572 	}
6573 
6574 	sim = cts->ccb_h.path->bus->sim;
6575 
6576 	/*
6577 	 * Nothing more of interest to do unless
6578 	 * this is a device connected via the
6579 	 * SCSI protocol.
6580 	 */
6581 	if (cts->protocol != PROTO_SCSI) {
6582 		if (async_update == FALSE)
6583 			(*(sim->sim_action))(sim, (union ccb *)cts);
6584 		return;
6585 	}
6586 
6587 	inq_data = &device->inq_data;
6588 	scsi = &cts->proto_specific.scsi;
6589 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6590 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6591 	xpt_action((union ccb *)&cpi);
6592 
6593 	/* SCSI specific sanity checking */
6594 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6595 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6596 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6597 	 || (device->quirk->mintags == 0)) {
6598 		/*
6599 		 * Can't tag on hardware that doesn't support tags,
6600 		 * doesn't have it enabled, or has broken tag support.
6601 		 */
6602 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6603 	}
6604 
6605 	if (async_update == FALSE) {
6606 		/*
6607 		 * Perform sanity checking against what the
6608 		 * controller and device can do.
6609 		 */
6610 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6611 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6612 		cur_cts.type = cts->type;
6613 		xpt_action((union ccb *)&cur_cts);
6614 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6615 			return;
6616 		}
6617 		cur_scsi = &cur_cts.proto_specific.scsi;
6618 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6619 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6620 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6621 		}
6622 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6623 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6624 	}
6625 
6626 	/* SPI specific sanity checking */
6627 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6628 		u_int spi3caps;
6629 		struct ccb_trans_settings_spi *spi;
6630 		struct ccb_trans_settings_spi *cur_spi;
6631 
6632 		spi = &cts->xport_specific.spi;
6633 
6634 		cur_spi = &cur_cts.xport_specific.spi;
6635 
6636 		/* Fill in any gaps in what the user gave us */
6637 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6638 			spi->sync_period = cur_spi->sync_period;
6639 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6640 			spi->sync_period = 0;
6641 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6642 			spi->sync_offset = cur_spi->sync_offset;
6643 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6644 			spi->sync_offset = 0;
6645 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6646 			spi->ppr_options = cur_spi->ppr_options;
6647 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6648 			spi->ppr_options = 0;
6649 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6650 			spi->bus_width = cur_spi->bus_width;
6651 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6652 			spi->bus_width = 0;
6653 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6654 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6655 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6656 		}
6657 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6658 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6659 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6660 		  && (inq_data->flags & SID_Sync) == 0
6661 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6662 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6663 		 || (spi->sync_offset == 0)
6664 		 || (spi->sync_period == 0)) {
6665 			/* Force async */
6666 			spi->sync_period = 0;
6667 			spi->sync_offset = 0;
6668 		}
6669 
6670 		switch (spi->bus_width) {
6671 		case MSG_EXT_WDTR_BUS_32_BIT:
6672 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6673 			  || (inq_data->flags & SID_WBus32) != 0
6674 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6675 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6676 				break;
6677 			/* Fall Through to 16-bit */
6678 		case MSG_EXT_WDTR_BUS_16_BIT:
6679 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6680 			  || (inq_data->flags & SID_WBus16) != 0
6681 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6682 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6683 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6684 				break;
6685 			}
6686 			/* Fall Through to 8-bit */
6687 		default: /* New bus width?? */
6688 		case MSG_EXT_WDTR_BUS_8_BIT:
6689 			/* All targets can do this */
6690 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6691 			break;
6692 		}
6693 
6694 		spi3caps = cpi.xport_specific.spi.ppr_options;
6695 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6696 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6697 			spi3caps &= inq_data->spi3data;
6698 
6699 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6700 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6701 
6702 		if ((spi3caps & SID_SPI_IUS) == 0)
6703 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6704 
6705 		if ((spi3caps & SID_SPI_QAS) == 0)
6706 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6707 
6708 		/* No SPI Transfer settings are allowed unless we are wide */
6709 		if (spi->bus_width == 0)
6710 			spi->ppr_options = 0;
6711 
6712 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6713 			/*
6714 			 * Can't tag queue without disconnection.
6715 			 */
6716 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6717 			scsi->valid |= CTS_SCSI_VALID_TQ;
6718 		}
6719 
6720 		/*
6721 		 * If we are currently performing tagged transactions to
6722 		 * this device and want to change its negotiation parameters,
6723 		 * go non-tagged for a bit to give the controller a chance to
6724 		 * negotiate unhampered by tag messages.
6725 		 */
6726 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6727 		 && (device->inq_flags & SID_CmdQue) != 0
6728 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6729 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6730 				   CTS_SPI_VALID_SYNC_OFFSET|
6731 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6732 			xpt_toggle_tags(cts->ccb_h.path);
6733 	}
6734 
6735 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6736 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6737 		int device_tagenb;
6738 
6739 		/*
6740 		 * If we are transitioning from tags to no-tags or
6741 		 * vice-versa, we need to carefully freeze and restart
6742 		 * the queue so that we don't overlap tagged and non-tagged
6743 		 * commands.  We also temporarily stop tags if there is
6744 		 * a change in transfer negotiation settings to allow
6745 		 * "tag-less" negotiation.
6746 		 */
6747 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6748 		 || (device->inq_flags & SID_CmdQue) != 0)
6749 			device_tagenb = TRUE;
6750 		else
6751 			device_tagenb = FALSE;
6752 
6753 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6754 		  && device_tagenb == FALSE)
6755 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6756 		  && device_tagenb == TRUE)) {
6757 
6758 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6759 				/*
6760 				 * Delay change to use tags until after a
6761 				 * few commands have gone to this device so
6762 				 * the controller has time to perform transfer
6763 				 * negotiations without tagged messages getting
6764 				 * in the way.
6765 				 */
6766 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6767 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6768 			} else {
6769 				struct ccb_relsim crs;
6770 
6771 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6772 				device->inq_flags &= ~SID_CmdQue;
6773 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6774 						    sim->max_dev_openings);
6775 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6776 				device->tag_delay_count = 0;
6777 
6778 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6779 					      /*priority*/1);
6780 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6781 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6782 				crs.openings
6783 				    = crs.release_timeout
6784 				    = crs.qfrozen_cnt
6785 				    = 0;
6786 				xpt_action((union ccb *)&crs);
6787 			}
6788 		}
6789 	}
6790 	if (async_update == FALSE)
6791 		(*(sim->sim_action))(sim, (union ccb *)cts);
6792 }
6793 
6794 static void
6795 xpt_toggle_tags(struct cam_path *path)
6796 {
6797 	struct cam_ed *dev;
6798 
6799 	/*
6800 	 * Give controllers a chance to renegotiate
6801 	 * before starting tag operations.  We
6802 	 * "toggle" tagged queuing off then on
6803 	 * which causes the tag enable command delay
6804 	 * counter to come into effect.
6805 	 */
6806 	dev = path->device;
6807 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6808 	 || ((dev->inq_flags & SID_CmdQue) != 0
6809  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6810 		struct ccb_trans_settings cts;
6811 
6812 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6813 		cts.protocol = PROTO_SCSI;
6814 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6815 		cts.transport = XPORT_UNSPECIFIED;
6816 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6817 		cts.proto_specific.scsi.flags = 0;
6818 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6819 		xpt_set_transfer_settings(&cts, path->device,
6820 					  /*async_update*/TRUE);
6821 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6822 		xpt_set_transfer_settings(&cts, path->device,
6823 					  /*async_update*/TRUE);
6824 	}
6825 }
6826 
6827 static void
6828 xpt_start_tags(struct cam_path *path)
6829 {
6830 	struct ccb_relsim crs;
6831 	struct cam_ed *device;
6832 	struct cam_sim *sim;
6833 	int    newopenings;
6834 
6835 	device = path->device;
6836 	sim = path->bus->sim;
6837 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6838 	xpt_freeze_devq(path, /*count*/1);
6839 	device->inq_flags |= SID_CmdQue;
6840 	if (device->tag_saved_openings != 0)
6841 		newopenings = device->tag_saved_openings;
6842 	else
6843 		newopenings = min(device->quirk->maxtags,
6844 				  sim->max_tagged_dev_openings);
6845 	xpt_dev_ccbq_resize(path, newopenings);
6846 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6847 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6848 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6849 	crs.openings
6850 	    = crs.release_timeout
6851 	    = crs.qfrozen_cnt
6852 	    = 0;
6853 	xpt_action((union ccb *)&crs);
6854 }
6855 
6856 static int busses_to_config;
6857 static int busses_to_reset;
6858 
6859 static int
6860 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6861 {
6862 
6863 	sim_lock_assert_owned(bus->sim->lock);
6864 
6865 	if (bus->path_id != CAM_XPT_PATH_ID) {
6866 		struct cam_path path;
6867 		struct ccb_pathinq cpi;
6868 		int can_negotiate;
6869 
6870 		busses_to_config++;
6871 		xpt_compile_path(&path, NULL, bus->path_id,
6872 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6873 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6874 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6875 		xpt_action((union ccb *)&cpi);
6876 		can_negotiate = cpi.hba_inquiry;
6877 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6878 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6879 		 && can_negotiate)
6880 			busses_to_reset++;
6881 		xpt_release_path(&path);
6882 	}
6883 
6884 	return(1);
6885 }
6886 
6887 static int
6888 xptconfigfunc(struct cam_eb *bus, void *arg)
6889 {
6890 	struct	cam_path *path;
6891 	union	ccb *work_ccb;
6892 
6893 	sim_lock_assert_owned(bus->sim->lock);
6894 
6895 	if (bus->path_id != CAM_XPT_PATH_ID) {
6896 		cam_status status;
6897 		int can_negotiate;
6898 
6899 		work_ccb = xpt_alloc_ccb();
6900 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6901 					      CAM_TARGET_WILDCARD,
6902 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6903 			kprintf("xptconfigfunc: xpt_create_path failed with "
6904 			       "status %#x for bus %d\n", status, bus->path_id);
6905 			kprintf("xptconfigfunc: halting bus configuration\n");
6906 			xpt_free_ccb(work_ccb);
6907 			busses_to_config--;
6908 			xpt_finishconfig(xpt_periph, NULL);
6909 			return(0);
6910 		}
6911 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6912 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6913 		xpt_action(work_ccb);
6914 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6915 			kprintf("xptconfigfunc: CPI failed on bus %d "
6916 			       "with status %d\n", bus->path_id,
6917 			       work_ccb->ccb_h.status);
6918 			xpt_finishconfig(xpt_periph, work_ccb);
6919 			return(1);
6920 		}
6921 
6922 		can_negotiate = work_ccb->cpi.hba_inquiry;
6923 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6924 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6925 		 && (can_negotiate != 0)) {
6926 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6927 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6928 			work_ccb->ccb_h.cbfcnp = NULL;
6929 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6930 				  ("Resetting Bus\n"));
6931 			xpt_action(work_ccb);
6932 			xpt_finishconfig(xpt_periph, work_ccb);
6933 		} else {
6934 			/* Act as though we performed a successful BUS RESET */
6935 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6936 			xpt_finishconfig(xpt_periph, work_ccb);
6937 		}
6938 	}
6939 
6940 	return(1);
6941 }
6942 
6943 static void
6944 xpt_config(void *arg)
6945 {
6946 	/*
6947 	 * Now that interrupts are enabled, go find our devices
6948 	 */
6949 
6950 #ifdef CAMDEBUG
6951 	/* Setup debugging flags and path */
6952 #ifdef CAM_DEBUG_FLAGS
6953 	cam_dflags = CAM_DEBUG_FLAGS;
6954 #else /* !CAM_DEBUG_FLAGS */
6955 	cam_dflags = CAM_DEBUG_NONE;
6956 #endif /* CAM_DEBUG_FLAGS */
6957 #ifdef CAM_DEBUG_BUS
6958 	if (cam_dflags != CAM_DEBUG_NONE) {
6959 		/*
6960 		 * Locking is specifically omitted here.  No SIMs have
6961 		 * registered yet, so xpt_create_path will only be searching
6962 		 * empty lists of targets and devices.
6963 		 */
6964 		if (xpt_create_path(&cam_dpath, xpt_periph,
6965 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6966 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6967 			kprintf("xpt_config: xpt_create_path() failed for debug"
6968 			       " target %d:%d:%d, debugging disabled\n",
6969 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6970 			cam_dflags = CAM_DEBUG_NONE;
6971 		}
6972 	} else
6973 		cam_dpath = NULL;
6974 #else /* !CAM_DEBUG_BUS */
6975 	cam_dpath = NULL;
6976 #endif /* CAM_DEBUG_BUS */
6977 #endif /* CAMDEBUG */
6978 
6979 	/*
6980 	 * Scan all installed busses.
6981 	 */
6982 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6983 
6984 	if (busses_to_config == 0) {
6985 		/* Call manually because we don't have any busses */
6986 		xpt_finishconfig(xpt_periph, NULL);
6987 	} else  {
6988 		if (busses_to_reset > 0 && scsi_delay >= 2000) {
6989 			kprintf("Waiting %d seconds for SCSI "
6990 			       "devices to settle\n", scsi_delay/1000);
6991 		}
6992 		xpt_for_all_busses(xptconfigfunc, NULL);
6993 	}
6994 }
6995 
6996 /*
6997  * If the given device only has one peripheral attached to it, and if that
6998  * peripheral is the passthrough driver, announce it.  This insures that the
6999  * user sees some sort of announcement for every peripheral in their system.
7000  */
7001 static int
7002 xptpassannouncefunc(struct cam_ed *device, void *arg)
7003 {
7004 	struct cam_periph *periph;
7005 	int i;
7006 
7007 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7008 	     periph = SLIST_NEXT(periph, periph_links), i++);
7009 
7010 	periph = SLIST_FIRST(&device->periphs);
7011 	if ((i == 1)
7012 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7013 		xpt_announce_periph(periph, NULL);
7014 
7015 	return(1);
7016 }
7017 
7018 static void
7019 xpt_finishconfig_task(void *context, int pending)
7020 {
7021 	struct	periph_driver **p_drv;
7022 	int	i;
7023 
7024 	if (busses_to_config == 0) {
7025 		/* Register all the peripheral drivers */
7026 		/* XXX This will have to change when we have loadable modules */
7027 		p_drv = periph_drivers;
7028 		for (i = 0; p_drv[i] != NULL; i++) {
7029 			(*p_drv[i]->init)();
7030 		}
7031 
7032 		/*
7033 		 * Check for devices with no "standard" peripheral driver
7034 		 * attached.  For any devices like that, announce the
7035 		 * passthrough driver so the user will see something.
7036 		 */
7037 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7038 
7039 		/* Release our hook so that the boot can continue. */
7040 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7041 		kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7042 		xsoftc.xpt_config_hook = NULL;
7043 	}
7044 
7045 	kfree(context, M_CAMXPT);
7046 }
7047 
7048 static void
7049 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7050 {
7051 	struct	xpt_task *task;
7052 
7053 	if (done_ccb != NULL) {
7054 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
7055 			  ("xpt_finishconfig\n"));
7056 		switch(done_ccb->ccb_h.func_code) {
7057 		case XPT_RESET_BUS:
7058 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7059 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7060 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7061 				done_ccb->crcn.flags = 0;
7062 				xpt_action(done_ccb);
7063 				return;
7064 			}
7065 			/* FALLTHROUGH */
7066 		case XPT_SCAN_BUS:
7067 		default:
7068 			xpt_free_path(done_ccb->ccb_h.path);
7069 			busses_to_config--;
7070 			break;
7071 		}
7072 	}
7073 
7074 	if (busses_to_config == 0) {
7075 		task = kmalloc(sizeof(struct xpt_task), M_CAMXPT, M_INTWAIT);
7076 		TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7077 		taskqueue_enqueue(taskqueue_thread[mycpuid], &task->task);
7078 	}
7079 
7080 	if (done_ccb != NULL)
7081 		xpt_free_ccb(done_ccb);
7082 }
7083 
7084 cam_status
7085 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7086 		   struct cam_path *path)
7087 {
7088 	struct ccb_setasync csa;
7089 	cam_status status;
7090 	int xptpath = 0;
7091 
7092 	if (path == NULL) {
7093 		lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7094 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7095 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7096 		if (status != CAM_REQ_CMP) {
7097 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7098 			return (status);
7099 		}
7100 		xptpath = 1;
7101 	}
7102 
7103 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7104 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7105 	csa.event_enable = event;
7106 	csa.callback = cbfunc;
7107 	csa.callback_arg = cbarg;
7108 	xpt_action((union ccb *)&csa);
7109 	status = csa.ccb_h.status;
7110 	if (xptpath) {
7111 		xpt_free_path(path);
7112 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7113 	}
7114 	return (status);
7115 }
7116 
7117 static void
7118 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7119 {
7120 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7121 
7122 	switch (work_ccb->ccb_h.func_code) {
7123 	/* Common cases first */
7124 	case XPT_PATH_INQ:		/* Path routing inquiry */
7125 	{
7126 		struct ccb_pathinq *cpi;
7127 
7128 		cpi = &work_ccb->cpi;
7129 		cpi->version_num = 1; /* XXX??? */
7130 		cpi->hba_inquiry = 0;
7131 		cpi->target_sprt = 0;
7132 		cpi->hba_misc = 0;
7133 		cpi->hba_eng_cnt = 0;
7134 		cpi->max_target = 0;
7135 		cpi->max_lun = 0;
7136 		cpi->initiator_id = 0;
7137 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7138 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7139 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7140 		cpi->unit_number = sim->unit_number;
7141 		cpi->bus_id = sim->bus_id;
7142 		cpi->base_transfer_speed = 0;
7143 		cpi->protocol = PROTO_UNSPECIFIED;
7144 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7145 		cpi->transport = XPORT_UNSPECIFIED;
7146 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7147 		cpi->ccb_h.status = CAM_REQ_CMP;
7148 		xpt_done(work_ccb);
7149 		break;
7150 	}
7151 	default:
7152 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7153 		xpt_done(work_ccb);
7154 		break;
7155 	}
7156 }
7157 
7158 /*
7159  * The xpt as a "controller" has no interrupt sources, so polling
7160  * is a no-op.
7161  */
7162 static void
7163 xptpoll(struct cam_sim *sim)
7164 {
7165 }
7166 
7167 void
7168 xpt_lock_buses(void)
7169 {
7170 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7171 }
7172 
7173 void
7174 xpt_unlock_buses(void)
7175 {
7176 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7177 }
7178 
7179 
7180 /*
7181  * Should only be called by the machine interrupt dispatch routines,
7182  * so put these prototypes here instead of in the header.
7183  */
7184 
7185 static void
7186 swi_cambio(void *arg, void *frame)
7187 {
7188 	camisr(NULL);
7189 }
7190 
7191 static void
7192 camisr(void *dummy)
7193 {
7194 	cam_simq_t queue;
7195 	struct cam_sim *sim;
7196 
7197 	spin_lock_wr(&cam_simq_spin);
7198 	TAILQ_INIT(&queue);
7199 	TAILQ_CONCAT(&queue, &cam_simq, links);
7200 	spin_unlock_wr(&cam_simq_spin);
7201 
7202 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7203 		TAILQ_REMOVE(&queue, sim, links);
7204 		CAM_SIM_LOCK(sim);
7205 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7206 		camisr_runqueue(sim);
7207 		CAM_SIM_UNLOCK(sim);
7208 	}
7209 }
7210 
7211 static void
7212 camisr_runqueue(struct cam_sim *sim)
7213 {
7214 	struct	ccb_hdr *ccb_h;
7215 	int	runq;
7216 
7217 	spin_lock_wr(&sim->sim_spin);
7218 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7219 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7220 		spin_unlock_wr(&sim->sim_spin);
7221 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7222 
7223 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7224 			  ("camisr\n"));
7225 
7226 		runq = FALSE;
7227 
7228 		if (ccb_h->flags & CAM_HIGH_POWER) {
7229 			struct highpowerlist	*hphead;
7230 			struct cam_ed		*device;
7231 			union ccb		*send_ccb;
7232 
7233 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7234 			hphead = &xsoftc.highpowerq;
7235 
7236 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7237 
7238 			/*
7239 			 * Increment the count since this command is done.
7240 			 */
7241 			xsoftc.num_highpower++;
7242 
7243 			/*
7244 			 * Any high powered commands queued up?
7245 			 */
7246 			if (send_ccb != NULL) {
7247 				device = send_ccb->ccb_h.path->device;
7248 
7249 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7250 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7251 
7252 				xpt_release_devq(send_ccb->ccb_h.path,
7253 						 /*count*/1, /*runqueue*/TRUE);
7254 			} else
7255 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7256 		}
7257 
7258 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7259 			struct cam_ed *dev;
7260 
7261 			dev = ccb_h->path->device;
7262 
7263 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7264 
7265 			/*
7266 			 * devq may be NULL if this is cam_dead_sim
7267 			 */
7268 			if (ccb_h->path->bus->sim->devq) {
7269 				ccb_h->path->bus->sim->devq->send_active--;
7270 				ccb_h->path->bus->sim->devq->send_openings++;
7271 			}
7272 
7273 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7274 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7275 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7276 			  && (dev->ccbq.dev_active == 0))) {
7277 
7278 				xpt_release_devq(ccb_h->path, /*count*/1,
7279 						 /*run_queue*/TRUE);
7280 			}
7281 
7282 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7283 			 && (--dev->tag_delay_count == 0))
7284 				xpt_start_tags(ccb_h->path);
7285 
7286 			if ((dev->ccbq.queue.entries > 0)
7287 			 && (dev->qfrozen_cnt == 0)
7288 			 && (device_is_send_queued(dev) == 0)) {
7289 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7290 							      dev);
7291 			}
7292 		}
7293 
7294 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7295 			xpt_release_simq(ccb_h->path->bus->sim,
7296 					 /*run_queue*/TRUE);
7297 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7298 			runq = FALSE;
7299 		}
7300 
7301 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7302 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7303 			xpt_release_devq(ccb_h->path, /*count*/1,
7304 					 /*run_queue*/TRUE);
7305 			ccb_h->status &= ~CAM_DEV_QFRZN;
7306 		} else if (runq) {
7307 			xpt_run_dev_sendq(ccb_h->path->bus);
7308 		}
7309 
7310 		/* Call the peripheral driver's callback */
7311 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7312 		spin_lock_wr(&sim->sim_spin);
7313 	}
7314 	spin_unlock_wr(&sim->sim_spin);
7315 }
7316 
7317 /*
7318  * The dead_sim isn't completely hooked into CAM, we have to make sure
7319  * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7320  * doesn't block.
7321  */
7322 static void
7323 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7324 {
7325 
7326 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7327 	xpt_done(ccb);
7328 	camisr_runqueue(sim);
7329 }
7330 
7331 static void
7332 dead_sim_poll(struct cam_sim *sim)
7333 {
7334 }
7335