xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 984263bc)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/fcntl.h>
39 #include <sys/md5.h>
40 #include <sys/devicestat.h>
41 #include <sys/interrupt.h>
42 #include <sys/bus.h>
43 
44 #ifdef PC98
45 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
46 #endif
47 
48 #include <machine/clock.h>
49 #include <machine/ipl.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_sim.h>
55 #include <cam/cam_xpt.h>
56 #include <cam/cam_xpt_sim.h>
57 #include <cam/cam_xpt_periph.h>
58 #include <cam/cam_debug.h>
59 
60 #include <cam/scsi/scsi_all.h>
61 #include <cam/scsi/scsi_message.h>
62 #include <cam/scsi/scsi_pass.h>
63 #include "opt_cam.h"
64 
65 /* Datastructures internal to the xpt layer */
66 
67 /*
68  * Definition of an async handler callback block.  These are used to add
69  * SIMs and peripherals to the async callback lists.
70  */
71 struct async_node {
72 	SLIST_ENTRY(async_node)	links;
73 	u_int32_t	event_enable;	/* Async Event enables */
74 	void		(*callback)(void *arg, u_int32_t code,
75 				    struct cam_path *path, void *args);
76 	void		*callback_arg;
77 };
78 
79 SLIST_HEAD(async_list, async_node);
80 SLIST_HEAD(periph_list, cam_periph);
81 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
82 
83 /*
84  * This is the maximum number of high powered commands (e.g. start unit)
85  * that can be outstanding at a particular time.
86  */
87 #ifndef CAM_MAX_HIGHPOWER
88 #define CAM_MAX_HIGHPOWER  4
89 #endif
90 
91 /* number of high powered commands that can go through right now */
92 static int num_highpower = CAM_MAX_HIGHPOWER;
93 
94 /*
95  * Structure for queueing a device in a run queue.
96  * There is one run queue for allocating new ccbs,
97  * and another for sending ccbs to the controller.
98  */
99 struct cam_ed_qinfo {
100 	cam_pinfo pinfo;
101 	struct	  cam_ed *device;
102 };
103 
104 /*
105  * The CAM EDT (Existing Device Table) contains the device information for
106  * all devices for all busses in the system.  The table contains a
107  * cam_ed structure for each device on the bus.
108  */
109 struct cam_ed {
110 	TAILQ_ENTRY(cam_ed) links;
111 	struct	cam_ed_qinfo alloc_ccb_entry;
112 	struct	cam_ed_qinfo send_ccb_entry;
113 	struct	cam_et	 *target;
114 	lun_id_t	 lun_id;
115 	struct	camq drvq;		/*
116 					 * Queue of type drivers wanting to do
117 					 * work on this device.
118 					 */
119 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
120 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
121 	struct	periph_list periphs;	/* All attached devices */
122 	u_int	generation;		/* Generation number */
123 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
124 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
125 					/* Storage for the inquiry data */
126 	struct	scsi_inquiry_data inq_data;
127 	u_int8_t	 inq_flags;	/*
128 					 * Current settings for inquiry flags.
129 					 * This allows us to override settings
130 					 * like disconnection and tagged
131 					 * queuing for a device.
132 					 */
133 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
134 	u_int8_t	 serial_num_len;
135 	u_int8_t	 *serial_num;
136 	u_int32_t	 qfrozen_cnt;
137 	u_int32_t	 flags;
138 #define CAM_DEV_UNCONFIGURED	 	0x01
139 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
140 #define CAM_DEV_REL_ON_COMPLETE		0x04
141 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
142 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
143 #define CAM_DEV_TAG_AFTER_COUNT		0x20
144 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
145 	u_int32_t	 tag_delay_count;
146 #define	CAM_TAG_DELAY_COUNT		5
147 	u_int32_t	 refcount;
148 	struct		 callout_handle c_handle;
149 };
150 
151 /*
152  * Each target is represented by an ET (Existing Target).  These
153  * entries are created when a target is successfully probed with an
154  * identify, and removed when a device fails to respond after a number
155  * of retries, or a bus rescan finds the device missing.
156  */
157 struct cam_et {
158 	TAILQ_HEAD(, cam_ed) ed_entries;
159 	TAILQ_ENTRY(cam_et) links;
160 	struct	cam_eb	*bus;
161 	target_id_t	target_id;
162 	u_int32_t	refcount;
163 	u_int		generation;
164 	struct		timeval last_reset;
165 };
166 
167 /*
168  * Each bus is represented by an EB (Existing Bus).  These entries
169  * are created by calls to xpt_bus_register and deleted by calls to
170  * xpt_bus_deregister.
171  */
172 struct cam_eb {
173 	TAILQ_HEAD(, cam_et) et_entries;
174 	TAILQ_ENTRY(cam_eb)  links;
175 	path_id_t	     path_id;
176 	struct cam_sim	     *sim;
177 	struct timeval	     last_reset;
178 	u_int32_t	     flags;
179 #define	CAM_EB_RUNQ_SCHEDULED	0x01
180 	u_int32_t	     refcount;
181 	u_int		     generation;
182 };
183 
184 struct cam_path {
185 	struct cam_periph *periph;
186 	struct cam_eb	  *bus;
187 	struct cam_et	  *target;
188 	struct cam_ed	  *device;
189 };
190 
191 struct xpt_quirk_entry {
192 	struct scsi_inquiry_pattern inq_pat;
193 	u_int8_t quirks;
194 #define	CAM_QUIRK_NOLUNS	0x01
195 #define	CAM_QUIRK_NOSERIAL	0x02
196 #define	CAM_QUIRK_HILUNS	0x04
197 	u_int mintags;
198 	u_int maxtags;
199 };
200 #define	CAM_SCSI2_MAXLUN	8
201 
202 typedef enum {
203 	XPT_FLAG_OPEN		= 0x01
204 } xpt_flags;
205 
206 struct xpt_softc {
207 	xpt_flags	flags;
208 	u_int32_t	generation;
209 };
210 
211 static const char quantum[] = "QUANTUM";
212 static const char sony[] = "SONY";
213 static const char west_digital[] = "WDIGTL";
214 static const char samsung[] = "SAMSUNG";
215 static const char seagate[] = "SEAGATE";
216 static const char microp[] = "MICROP";
217 
218 static struct xpt_quirk_entry xpt_quirk_table[] =
219 {
220 	{
221 		/* Reports QUEUE FULL for temporary resource shortages */
222 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
223 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
224 	},
225 	{
226 		/* Reports QUEUE FULL for temporary resource shortages */
227 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
228 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
229 	},
230 	{
231 		/* Reports QUEUE FULL for temporary resource shortages */
232 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
233 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
234 	},
235 	{
236 		/* Broken tagged queuing drive */
237 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
238 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
239 	},
240 	{
241 		/* Broken tagged queuing drive */
242 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
243 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
244 	},
245 	{
246 		/* Broken tagged queuing drive */
247 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
248 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
249 	},
250 	{
251 		/*
252 		 * Unfortunately, the Quantum Atlas III has the same
253 		 * problem as the Atlas II drives above.
254 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
255 		 *
256 		 * For future reference, the drive with the problem was:
257 		 * QUANTUM QM39100TD-SW N1B0
258 		 *
259 		 * It's possible that Quantum will fix the problem in later
260 		 * firmware revisions.  If that happens, the quirk entry
261 		 * will need to be made specific to the firmware revisions
262 		 * with the problem.
263 		 *
264 		 */
265 		/* Reports QUEUE FULL for temporary resource shortages */
266 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
267 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
268 	},
269 	{
270 		/*
271 		 * 18 Gig Atlas III, same problem as the 9G version.
272 		 * Reported by: Andre Albsmeier
273 		 *		<andre.albsmeier@mchp.siemens.de>
274 		 *
275 		 * For future reference, the drive with the problem was:
276 		 * QUANTUM QM318000TD-S N491
277 		 */
278 		/* Reports QUEUE FULL for temporary resource shortages */
279 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
280 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
281 	},
282 	{
283 		/*
284 		 * Broken tagged queuing drive
285 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
286 		 *         and: Martin Renters <martin@tdc.on.ca>
287 		 */
288 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
289 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
290 	},
291 		/*
292 		 * The Seagate Medalist Pro drives have very poor write
293 		 * performance with anything more than 2 tags.
294 		 *
295 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
296 		 * Drive:  <SEAGATE ST36530N 1444>
297 		 *
298 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
299 		 * Drive:  <SEAGATE ST34520W 1281>
300 		 *
301 		 * No one has actually reported that the 9G version
302 		 * (ST39140*) of the Medalist Pro has the same problem, but
303 		 * we're assuming that it does because the 4G and 6.5G
304 		 * versions of the drive are broken.
305 		 */
306 	{
307 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
308 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
309 	},
310 	{
311 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
312 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
313 	},
314 	{
315 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
316 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
317 	},
318 	{
319 		/*
320 		 * Slow when tagged queueing is enabled.  Write performance
321 		 * steadily drops off with more and more concurrent
322 		 * transactions.  Best sequential write performance with
323 		 * tagged queueing turned off and write caching turned on.
324 		 *
325 		 * PR:  kern/10398
326 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
327 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
328 		 *
329 		 * The drive with the problem had the "S65A" firmware
330 		 * revision, and has also been reported (by Stephen J.
331 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
332 		 * firmware revision.
333 		 *
334 		 * Although no one has reported problems with the 2 gig
335 		 * version of the DCAS drive, the assumption is that it
336 		 * has the same problems as the 4 gig version.  Therefore
337 		 * this quirk entries disables tagged queueing for all
338 		 * DCAS drives.
339 		 */
340 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
341 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
342 	},
343 	{
344 		/* Broken tagged queuing drive */
345 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
346 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
347 	},
348 	{
349 		/* Broken tagged queuing drive */
350 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
351 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
352 	},
353 	{
354 		/*
355 		 * Broken tagged queuing drive.
356 		 * Submitted by:
357 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
358 		 * in PR kern/9535
359 		 */
360 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
361 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
362 	},
363         {
364 		/*
365 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
366 		 * 8MB/sec.)
367 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
368 		 * Best performance with these drives is achieved with
369 		 * tagged queueing turned off, and write caching turned on.
370 		 */
371 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
372 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
373         },
374         {
375 		/*
376 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
377 		 * 8MB/sec.)
378 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
379 		 * Best performance with these drives is achieved with
380 		 * tagged queueing turned off, and write caching turned on.
381 		 */
382 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
383 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
384         },
385 	{
386 		/*
387 		 * Doesn't handle queue full condition correctly,
388 		 * so we need to limit maxtags to what the device
389 		 * can handle instead of determining this automatically.
390 		 */
391 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
392 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
393 	},
394 	{
395 		/* Really only one LUN */
396 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
397 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
398 	},
399 	{
400 		/* I can't believe we need a quirk for DPT volumes. */
401 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
402 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
403 		/*mintags*/0, /*maxtags*/255
404 	},
405 	{
406 		/*
407 		 * Many Sony CDROM drives don't like multi-LUN probing.
408 		 */
409 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
410 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
411 	},
412 	{
413 		/*
414 		 * This drive doesn't like multiple LUN probing.
415 		 * Submitted by:  Parag Patel <parag@cgt.com>
416 		 */
417 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
418 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
419 	},
420 	{
421 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
422 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
423 	},
424 	{
425 		/*
426 		 * The 8200 doesn't like multi-lun probing, and probably
427 		 * don't like serial number requests either.
428 		 */
429 		{
430 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
431 			"EXB-8200*", "*"
432 		},
433 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
434 	},
435 	{
436 		/*
437 		 * Let's try the same as above, but for a drive that says
438 		 * it's an IPL-6860 but is actually an EXB 8200.
439 		 */
440 		{
441 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
442 			"IPL-6860*", "*"
443 		},
444 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
445 	},
446 	{
447 		/*
448 		 * These Hitachi drives don't like multi-lun probing.
449 		 * The PR submitter has a DK319H, but says that the Linux
450 		 * kernel has a similar work-around for the DK312 and DK314,
451 		 * so all DK31* drives are quirked here.
452 		 * PR:            misc/18793
453 		 * Submitted by:  Paul Haddad <paul@pth.com>
454 		 */
455 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
456 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
457 	},
458 	{
459 		/*
460 		 * This old revision of the TDC3600 is also SCSI-1, and
461 		 * hangs upon serial number probing.
462 		 */
463 		{
464 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
465 			" TDC 3600", "U07:"
466 		},
467 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
468 	},
469 	{
470 		/*
471 		 * Would repond to all LUNs if asked for.
472 		 */
473 		{
474 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
475 			"CP150", "*"
476 		},
477 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
478 	},
479 	{
480 		/*
481 		 * Would repond to all LUNs if asked for.
482 		 */
483 		{
484 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
485 			"96X2*", "*"
486 		},
487 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
488 	},
489 	{
490 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
491 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
492 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
493 	},
494 	{
495 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
496 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
497 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
498 	},
499 	{
500 		/* TeraSolutions special settings for TRC-22 RAID */
501 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
502 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
503 	},
504 	{
505 		/* Veritas Storage Appliance */
506 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
507 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
508 	},
509 	{
510 		/*
511 		 * Would respond to all LUNs.  Device type and removable
512 		 * flag are jumper-selectable.
513 		 */
514 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
515 		  "Tahiti 1", "*"
516 		},
517 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
518 	},
519 	{
520 		/* Default tagged queuing parameters for all devices */
521 		{
522 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
523 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
524 		},
525 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
526 	},
527 };
528 
529 static const int xpt_quirk_table_size =
530 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
531 
532 typedef enum {
533 	DM_RET_COPY		= 0x01,
534 	DM_RET_FLAG_MASK	= 0x0f,
535 	DM_RET_NONE		= 0x00,
536 	DM_RET_STOP		= 0x10,
537 	DM_RET_DESCEND		= 0x20,
538 	DM_RET_ERROR		= 0x30,
539 	DM_RET_ACTION_MASK	= 0xf0
540 } dev_match_ret;
541 
542 typedef enum {
543 	XPT_DEPTH_BUS,
544 	XPT_DEPTH_TARGET,
545 	XPT_DEPTH_DEVICE,
546 	XPT_DEPTH_PERIPH
547 } xpt_traverse_depth;
548 
549 struct xpt_traverse_config {
550 	xpt_traverse_depth	depth;
551 	void			*tr_func;
552 	void			*tr_arg;
553 };
554 
555 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
556 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
557 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
558 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
559 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
560 
561 /* Transport layer configuration information */
562 static struct xpt_softc xsoftc;
563 
564 /* Queues for our software interrupt handler */
565 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
566 static cam_isrq_t cam_bioq;
567 static cam_isrq_t cam_netq;
568 
569 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
570 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
571 static u_int xpt_max_ccbs;	/*
572 				 * Maximum size of ccb pool.  Modified as
573 				 * devices are added/removed or have their
574 				 * opening counts changed.
575 				 */
576 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
577 
578 struct cam_periph *xpt_periph;
579 
580 static periph_init_t xpt_periph_init;
581 
582 static periph_init_t probe_periph_init;
583 
584 static struct periph_driver xpt_driver =
585 {
586 	xpt_periph_init, "xpt",
587 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
588 };
589 
590 static struct periph_driver probe_driver =
591 {
592 	probe_periph_init, "probe",
593 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
594 };
595 
596 DATA_SET(periphdriver_set, xpt_driver);
597 DATA_SET(periphdriver_set, probe_driver);
598 
599 #define XPT_CDEV_MAJOR 104
600 
601 static d_open_t xptopen;
602 static d_close_t xptclose;
603 static d_ioctl_t xptioctl;
604 
605 static struct cdevsw xpt_cdevsw = {
606 	/* open */	xptopen,
607 	/* close */	xptclose,
608 	/* read */	noread,
609 	/* write */	nowrite,
610 	/* ioctl */	xptioctl,
611 	/* poll */	nopoll,
612 	/* mmap */	nommap,
613 	/* strategy */	nostrategy,
614 	/* name */	"xpt",
615 	/* maj */	XPT_CDEV_MAJOR,
616 	/* dump */	nodump,
617 	/* psize */	nopsize,
618 	/* flags */	0,
619 	/* bmaj */	-1
620 };
621 
622 static struct intr_config_hook *xpt_config_hook;
623 
624 /* Registered busses */
625 static TAILQ_HEAD(,cam_eb) xpt_busses;
626 static u_int bus_generation;
627 
628 /* Storage for debugging datastructures */
629 #ifdef	CAMDEBUG
630 struct cam_path *cam_dpath;
631 u_int32_t cam_dflags;
632 u_int32_t cam_debug_delay;
633 #endif
634 
635 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
636 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
637 #endif
638 
639 /*
640  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
641  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
642  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
643  */
644 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
645     || defined(CAM_DEBUG_LUN)
646 #ifdef CAMDEBUG
647 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
648     || !defined(CAM_DEBUG_LUN)
649 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
650         and CAM_DEBUG_LUN"
651 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
652 #else /* !CAMDEBUG */
653 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
654 #endif /* CAMDEBUG */
655 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
656 
657 /* Our boot-time initialization hook */
658 static void	xpt_init(void *);
659 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
660 
661 static cam_status	xpt_compile_path(struct cam_path *new_path,
662 					 struct cam_periph *perph,
663 					 path_id_t path_id,
664 					 target_id_t target_id,
665 					 lun_id_t lun_id);
666 
667 static void		xpt_release_path(struct cam_path *path);
668 
669 static void		xpt_async_bcast(struct async_list *async_head,
670 					u_int32_t async_code,
671 					struct cam_path *path,
672 					void *async_arg);
673 static void		xpt_dev_async(u_int32_t async_code,
674 				      struct cam_eb *bus,
675 				      struct cam_et *target,
676 				      struct cam_ed *device,
677 				      void *async_arg);
678 static path_id_t xptnextfreepathid(void);
679 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
680 static union ccb *xpt_get_ccb(struct cam_ed *device);
681 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
682 				  u_int32_t new_priority);
683 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
684 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
685 static timeout_t xpt_release_devq_timeout;
686 static timeout_t xpt_release_simq_timeout;
687 static void	 xpt_release_bus(struct cam_eb *bus);
688 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
689 					 int run_queue);
690 static struct cam_et*
691 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
692 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
693 static struct cam_ed*
694 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
695 				  lun_id_t lun_id);
696 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
697 				    struct cam_ed *device);
698 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
699 static struct cam_eb*
700 		 xpt_find_bus(path_id_t path_id);
701 static struct cam_et*
702 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
703 static struct cam_ed*
704 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
705 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
706 static void	 xpt_scan_lun(struct cam_periph *periph,
707 			      struct cam_path *path, cam_flags flags,
708 			      union ccb *ccb);
709 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
710 static xpt_busfunc_t	xptconfigbuscountfunc;
711 static xpt_busfunc_t	xptconfigfunc;
712 static void	 xpt_config(void *arg);
713 static xpt_devicefunc_t xptpassannouncefunc;
714 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
715 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
716 static void	 xptpoll(struct cam_sim *sim);
717 static swihand_t swi_camnet;
718 static swihand_t swi_cambio;
719 static void	 camisr(cam_isrq_t *queue);
720 #if 0
721 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
722 static void	 xptasync(struct cam_periph *periph,
723 			  u_int32_t code, cam_path *path);
724 #endif
725 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
726 				    int num_patterns, struct cam_eb *bus);
727 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
728 				       int num_patterns, struct cam_ed *device);
729 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
730 				       int num_patterns,
731 				       struct cam_periph *periph);
732 static xpt_busfunc_t	xptedtbusfunc;
733 static xpt_targetfunc_t	xptedttargetfunc;
734 static xpt_devicefunc_t	xptedtdevicefunc;
735 static xpt_periphfunc_t	xptedtperiphfunc;
736 static xpt_pdrvfunc_t	xptplistpdrvfunc;
737 static xpt_periphfunc_t	xptplistperiphfunc;
738 static int		xptedtmatch(struct ccb_dev_match *cdm);
739 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
740 static int		xptbustraverse(struct cam_eb *start_bus,
741 				       xpt_busfunc_t *tr_func, void *arg);
742 static int		xpttargettraverse(struct cam_eb *bus,
743 					  struct cam_et *start_target,
744 					  xpt_targetfunc_t *tr_func, void *arg);
745 static int		xptdevicetraverse(struct cam_et *target,
746 					  struct cam_ed *start_device,
747 					  xpt_devicefunc_t *tr_func, void *arg);
748 static int		xptperiphtraverse(struct cam_ed *device,
749 					  struct cam_periph *start_periph,
750 					  xpt_periphfunc_t *tr_func, void *arg);
751 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
752 					xpt_pdrvfunc_t *tr_func, void *arg);
753 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
754 					    struct cam_periph *start_periph,
755 					    xpt_periphfunc_t *tr_func,
756 					    void *arg);
757 static xpt_busfunc_t	xptdefbusfunc;
758 static xpt_targetfunc_t	xptdeftargetfunc;
759 static xpt_devicefunc_t	xptdefdevicefunc;
760 static xpt_periphfunc_t	xptdefperiphfunc;
761 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
762 #ifdef notusedyet
763 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
764 					    void *arg);
765 #endif
766 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
767 					    void *arg);
768 #ifdef notusedyet
769 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
770 					    void *arg);
771 #endif
772 static xpt_devicefunc_t	xptsetasyncfunc;
773 static xpt_busfunc_t	xptsetasyncbusfunc;
774 static cam_status	xptregister(struct cam_periph *periph,
775 				    void *arg);
776 static cam_status	proberegister(struct cam_periph *periph,
777 				      void *arg);
778 static void	 probeschedule(struct cam_periph *probe_periph);
779 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
780 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
781 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
782 static void	 probecleanup(struct cam_periph *periph);
783 static void	 xpt_find_quirk(struct cam_ed *device);
784 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
785 					   struct cam_ed *device,
786 					   int async_update);
787 static void	 xpt_toggle_tags(struct cam_path *path);
788 static void	 xpt_start_tags(struct cam_path *path);
789 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
790 					    struct cam_ed *dev);
791 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
792 					   struct cam_ed *dev);
793 static __inline int periph_is_queued(struct cam_periph *periph);
794 static __inline int device_is_alloc_queued(struct cam_ed *device);
795 static __inline int device_is_send_queued(struct cam_ed *device);
796 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
797 
798 static __inline int
799 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
800 {
801 	int retval;
802 
803 	if (dev->ccbq.devq_openings > 0) {
804 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
805 			cam_ccbq_resize(&dev->ccbq,
806 					dev->ccbq.dev_openings
807 					+ dev->ccbq.dev_active);
808 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
809 		}
810 		/*
811 		 * The priority of a device waiting for CCB resources
812 		 * is that of the the highest priority peripheral driver
813 		 * enqueued.
814 		 */
815 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
816 					  &dev->alloc_ccb_entry.pinfo,
817 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
818 	} else {
819 		retval = 0;
820 	}
821 
822 	return (retval);
823 }
824 
825 static __inline int
826 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
827 {
828 	int	retval;
829 
830 	if (dev->ccbq.dev_openings > 0) {
831 		/*
832 		 * The priority of a device waiting for controller
833 		 * resources is that of the the highest priority CCB
834 		 * enqueued.
835 		 */
836 		retval =
837 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
838 				     &dev->send_ccb_entry.pinfo,
839 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
840 	} else {
841 		retval = 0;
842 	}
843 	return (retval);
844 }
845 
846 static __inline int
847 periph_is_queued(struct cam_periph *periph)
848 {
849 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
850 }
851 
852 static __inline int
853 device_is_alloc_queued(struct cam_ed *device)
854 {
855 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
856 }
857 
858 static __inline int
859 device_is_send_queued(struct cam_ed *device)
860 {
861 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
862 }
863 
864 static __inline int
865 dev_allocq_is_runnable(struct cam_devq *devq)
866 {
867 	/*
868 	 * Have work to do.
869 	 * Have space to do more work.
870 	 * Allowed to do work.
871 	 */
872 	return ((devq->alloc_queue.qfrozen_cnt == 0)
873 	     && (devq->alloc_queue.entries > 0)
874 	     && (devq->alloc_openings > 0));
875 }
876 
877 static void
878 xpt_periph_init()
879 {
880 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
881 }
882 
883 static void
884 probe_periph_init()
885 {
886 }
887 
888 
889 static void
890 xptdone(struct cam_periph *periph, union ccb *done_ccb)
891 {
892 	/* Caller will release the CCB */
893 	wakeup(&done_ccb->ccb_h.cbfcnp);
894 }
895 
896 static int
897 xptopen(dev_t dev, int flags, int fmt, struct proc *p)
898 {
899 	int unit;
900 
901 	unit = minor(dev) & 0xff;
902 
903 	/*
904 	 * Only allow read-write access.
905 	 */
906 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
907 		return(EPERM);
908 
909 	/*
910 	 * We don't allow nonblocking access.
911 	 */
912 	if ((flags & O_NONBLOCK) != 0) {
913 		printf("xpt%d: can't do nonblocking access\n", unit);
914 		return(ENODEV);
915 	}
916 
917 	/*
918 	 * We only have one transport layer right now.  If someone accesses
919 	 * us via something other than minor number 1, point out their
920 	 * mistake.
921 	 */
922 	if (unit != 0) {
923 		printf("xptopen: got invalid xpt unit %d\n", unit);
924 		return(ENXIO);
925 	}
926 
927 	/* Mark ourselves open */
928 	xsoftc.flags |= XPT_FLAG_OPEN;
929 
930 	return(0);
931 }
932 
933 static int
934 xptclose(dev_t dev, int flag, int fmt, struct proc *p)
935 {
936 	int unit;
937 
938 	unit = minor(dev) & 0xff;
939 
940 	/*
941 	 * We only have one transport layer right now.  If someone accesses
942 	 * us via something other than minor number 1, point out their
943 	 * mistake.
944 	 */
945 	if (unit != 0) {
946 		printf("xptclose: got invalid xpt unit %d\n", unit);
947 		return(ENXIO);
948 	}
949 
950 	/* Mark ourselves closed */
951 	xsoftc.flags &= ~XPT_FLAG_OPEN;
952 
953 	return(0);
954 }
955 
956 static int
957 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
958 {
959 	int unit, error;
960 
961 	error = 0;
962 	unit = minor(dev) & 0xff;
963 
964 	/*
965 	 * We only have one transport layer right now.  If someone accesses
966 	 * us via something other than minor number 1, point out their
967 	 * mistake.
968 	 */
969 	if (unit != 0) {
970 		printf("xptioctl: got invalid xpt unit %d\n", unit);
971 		return(ENXIO);
972 	}
973 
974 	switch(cmd) {
975 	/*
976 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
977 	 * to accept CCB types that don't quite make sense to send through a
978 	 * passthrough driver.
979 	 */
980 	case CAMIOCOMMAND: {
981 		union ccb *ccb;
982 		union ccb *inccb;
983 
984 		inccb = (union ccb *)addr;
985 
986 		switch(inccb->ccb_h.func_code) {
987 		case XPT_SCAN_BUS:
988 		case XPT_RESET_BUS:
989 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
990 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
991 				error = EINVAL;
992 				break;
993 			}
994 			/* FALLTHROUGH */
995 		case XPT_PATH_INQ:
996 		case XPT_ENG_INQ:
997 		case XPT_SCAN_LUN:
998 
999 			ccb = xpt_alloc_ccb();
1000 
1001 			/*
1002 			 * Create a path using the bus, target, and lun the
1003 			 * user passed in.
1004 			 */
1005 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1006 					    inccb->ccb_h.path_id,
1007 					    inccb->ccb_h.target_id,
1008 					    inccb->ccb_h.target_lun) !=
1009 					    CAM_REQ_CMP){
1010 				error = EINVAL;
1011 				xpt_free_ccb(ccb);
1012 				break;
1013 			}
1014 			/* Ensure all of our fields are correct */
1015 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1016 				      inccb->ccb_h.pinfo.priority);
1017 			xpt_merge_ccb(ccb, inccb);
1018 			ccb->ccb_h.cbfcnp = xptdone;
1019 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1020 			bcopy(ccb, inccb, sizeof(union ccb));
1021 			xpt_free_path(ccb->ccb_h.path);
1022 			xpt_free_ccb(ccb);
1023 			break;
1024 
1025 		case XPT_DEBUG: {
1026 			union ccb ccb;
1027 
1028 			/*
1029 			 * This is an immediate CCB, so it's okay to
1030 			 * allocate it on the stack.
1031 			 */
1032 
1033 			/*
1034 			 * Create a path using the bus, target, and lun the
1035 			 * user passed in.
1036 			 */
1037 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1038 					    inccb->ccb_h.path_id,
1039 					    inccb->ccb_h.target_id,
1040 					    inccb->ccb_h.target_lun) !=
1041 					    CAM_REQ_CMP){
1042 				error = EINVAL;
1043 				break;
1044 			}
1045 			/* Ensure all of our fields are correct */
1046 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1047 				      inccb->ccb_h.pinfo.priority);
1048 			xpt_merge_ccb(&ccb, inccb);
1049 			ccb.ccb_h.cbfcnp = xptdone;
1050 			xpt_action(&ccb);
1051 			bcopy(&ccb, inccb, sizeof(union ccb));
1052 			xpt_free_path(ccb.ccb_h.path);
1053 			break;
1054 
1055 		}
1056 		case XPT_DEV_MATCH: {
1057 			struct cam_periph_map_info mapinfo;
1058 			struct cam_path *old_path;
1059 
1060 			/*
1061 			 * We can't deal with physical addresses for this
1062 			 * type of transaction.
1063 			 */
1064 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1065 				error = EINVAL;
1066 				break;
1067 			}
1068 
1069 			/*
1070 			 * Save this in case the caller had it set to
1071 			 * something in particular.
1072 			 */
1073 			old_path = inccb->ccb_h.path;
1074 
1075 			/*
1076 			 * We really don't need a path for the matching
1077 			 * code.  The path is needed because of the
1078 			 * debugging statements in xpt_action().  They
1079 			 * assume that the CCB has a valid path.
1080 			 */
1081 			inccb->ccb_h.path = xpt_periph->path;
1082 
1083 			bzero(&mapinfo, sizeof(mapinfo));
1084 
1085 			/*
1086 			 * Map the pattern and match buffers into kernel
1087 			 * virtual address space.
1088 			 */
1089 			error = cam_periph_mapmem(inccb, &mapinfo);
1090 
1091 			if (error) {
1092 				inccb->ccb_h.path = old_path;
1093 				break;
1094 			}
1095 
1096 			/*
1097 			 * This is an immediate CCB, we can send it on directly.
1098 			 */
1099 			xpt_action(inccb);
1100 
1101 			/*
1102 			 * Map the buffers back into user space.
1103 			 */
1104 			cam_periph_unmapmem(inccb, &mapinfo);
1105 
1106 			inccb->ccb_h.path = old_path;
1107 
1108 			error = 0;
1109 			break;
1110 		}
1111 		default:
1112 			error = ENOTSUP;
1113 			break;
1114 		}
1115 		break;
1116 	}
1117 	/*
1118 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1119 	 * with the periphal driver name and unit name filled in.  The other
1120 	 * fields don't really matter as input.  The passthrough driver name
1121 	 * ("pass"), and unit number are passed back in the ccb.  The current
1122 	 * device generation number, and the index into the device peripheral
1123 	 * driver list, and the status are also passed back.  Note that
1124 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1125 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1126 	 * (or rather should be) impossible for the device peripheral driver
1127 	 * list to change since we look at the whole thing in one pass, and
1128 	 * we do it with splcam protection.
1129 	 *
1130 	 */
1131 	case CAMGETPASSTHRU: {
1132 		union ccb *ccb;
1133 		struct cam_periph *periph;
1134 		struct periph_driver **p_drv;
1135 		char   *name;
1136 		int unit;
1137 		int cur_generation;
1138 		int base_periph_found;
1139 		int splbreaknum;
1140 		int s;
1141 
1142 		ccb = (union ccb *)addr;
1143 		unit = ccb->cgdl.unit_number;
1144 		name = ccb->cgdl.periph_name;
1145 		/*
1146 		 * Every 100 devices, we want to drop our spl protection to
1147 		 * give the software interrupt handler a chance to run.
1148 		 * Most systems won't run into this check, but this should
1149 		 * avoid starvation in the software interrupt handler in
1150 		 * large systems.
1151 		 */
1152 		splbreaknum = 100;
1153 
1154 		ccb = (union ccb *)addr;
1155 
1156 		base_periph_found = 0;
1157 
1158 		/*
1159 		 * Sanity check -- make sure we don't get a null peripheral
1160 		 * driver name.
1161 		 */
1162 		if (*ccb->cgdl.periph_name == '\0') {
1163 			error = EINVAL;
1164 			break;
1165 		}
1166 
1167 		/* Keep the list from changing while we traverse it */
1168 		s = splcam();
1169 ptstartover:
1170 		cur_generation = xsoftc.generation;
1171 
1172 		/* first find our driver in the list of drivers */
1173 		for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
1174 		     *p_drv != NULL; p_drv++)
1175 			if (strcmp((*p_drv)->driver_name, name) == 0)
1176 				break;
1177 
1178 		if (*p_drv == NULL) {
1179 			splx(s);
1180 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1181 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1182 			*ccb->cgdl.periph_name = '\0';
1183 			ccb->cgdl.unit_number = 0;
1184 			error = ENOENT;
1185 			break;
1186 		}
1187 
1188 		/*
1189 		 * Run through every peripheral instance of this driver
1190 		 * and check to see whether it matches the unit passed
1191 		 * in by the user.  If it does, get out of the loops and
1192 		 * find the passthrough driver associated with that
1193 		 * peripheral driver.
1194 		 */
1195 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1196 		     periph = TAILQ_NEXT(periph, unit_links)) {
1197 
1198 			if (periph->unit_number == unit) {
1199 				break;
1200 			} else if (--splbreaknum == 0) {
1201 				splx(s);
1202 				s = splcam();
1203 				splbreaknum = 100;
1204 				if (cur_generation != xsoftc.generation)
1205 				       goto ptstartover;
1206 			}
1207 		}
1208 		/*
1209 		 * If we found the peripheral driver that the user passed
1210 		 * in, go through all of the peripheral drivers for that
1211 		 * particular device and look for a passthrough driver.
1212 		 */
1213 		if (periph != NULL) {
1214 			struct cam_ed *device;
1215 			int i;
1216 
1217 			base_periph_found = 1;
1218 			device = periph->path->device;
1219 			for (i = 0, periph = device->periphs.slh_first;
1220 			     periph != NULL;
1221 			     periph = periph->periph_links.sle_next, i++) {
1222 				/*
1223 				 * Check to see whether we have a
1224 				 * passthrough device or not.
1225 				 */
1226 				if (strcmp(periph->periph_name, "pass") == 0) {
1227 					/*
1228 					 * Fill in the getdevlist fields.
1229 					 */
1230 					strcpy(ccb->cgdl.periph_name,
1231 					       periph->periph_name);
1232 					ccb->cgdl.unit_number =
1233 						periph->unit_number;
1234 					if (periph->periph_links.sle_next)
1235 						ccb->cgdl.status =
1236 							CAM_GDEVLIST_MORE_DEVS;
1237 					else
1238 						ccb->cgdl.status =
1239 						       CAM_GDEVLIST_LAST_DEVICE;
1240 					ccb->cgdl.generation =
1241 						device->generation;
1242 					ccb->cgdl.index = i;
1243 					/*
1244 					 * Fill in some CCB header fields
1245 					 * that the user may want.
1246 					 */
1247 					ccb->ccb_h.path_id =
1248 						periph->path->bus->path_id;
1249 					ccb->ccb_h.target_id =
1250 						periph->path->target->target_id;
1251 					ccb->ccb_h.target_lun =
1252 						periph->path->device->lun_id;
1253 					ccb->ccb_h.status = CAM_REQ_CMP;
1254 					break;
1255 				}
1256 			}
1257 		}
1258 
1259 		/*
1260 		 * If the periph is null here, one of two things has
1261 		 * happened.  The first possibility is that we couldn't
1262 		 * find the unit number of the particular peripheral driver
1263 		 * that the user is asking about.  e.g. the user asks for
1264 		 * the passthrough driver for "da11".  We find the list of
1265 		 * "da" peripherals all right, but there is no unit 11.
1266 		 * The other possibility is that we went through the list
1267 		 * of peripheral drivers attached to the device structure,
1268 		 * but didn't find one with the name "pass".  Either way,
1269 		 * we return ENOENT, since we couldn't find something.
1270 		 */
1271 		if (periph == NULL) {
1272 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1273 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1274 			*ccb->cgdl.periph_name = '\0';
1275 			ccb->cgdl.unit_number = 0;
1276 			error = ENOENT;
1277 			/*
1278 			 * It is unfortunate that this is even necessary,
1279 			 * but there are many, many clueless users out there.
1280 			 * If this is true, the user is looking for the
1281 			 * passthrough driver, but doesn't have one in his
1282 			 * kernel.
1283 			 */
1284 			if (base_periph_found == 1) {
1285 				printf("xptioctl: pass driver is not in the "
1286 				       "kernel\n");
1287 				printf("xptioctl: put \"device pass0\" in "
1288 				       "your kernel config file\n");
1289 			}
1290 		}
1291 		splx(s);
1292 		break;
1293 		}
1294 	default:
1295 		error = ENOTTY;
1296 		break;
1297 	}
1298 
1299 	return(error);
1300 }
1301 
1302 /* Functions accessed by the peripheral drivers */
1303 static void
1304 xpt_init(dummy)
1305 	void *dummy;
1306 {
1307 	struct cam_sim *xpt_sim;
1308 	struct cam_path *path;
1309 	struct cam_devq *devq;
1310 	cam_status status;
1311 
1312 	TAILQ_INIT(&xpt_busses);
1313 	TAILQ_INIT(&cam_bioq);
1314 	TAILQ_INIT(&cam_netq);
1315 	SLIST_INIT(&ccb_freeq);
1316 	STAILQ_INIT(&highpowerq);
1317 
1318 	/*
1319 	 * The xpt layer is, itself, the equivelent of a SIM.
1320 	 * Allow 16 ccbs in the ccb pool for it.  This should
1321 	 * give decent parallelism when we probe busses and
1322 	 * perform other XPT functions.
1323 	 */
1324 	devq = cam_simq_alloc(16);
1325 	xpt_sim = cam_sim_alloc(xptaction,
1326 				xptpoll,
1327 				"xpt",
1328 				/*softc*/NULL,
1329 				/*unit*/0,
1330 				/*max_dev_transactions*/0,
1331 				/*max_tagged_dev_transactions*/0,
1332 				devq);
1333 	xpt_max_ccbs = 16;
1334 
1335 	xpt_bus_register(xpt_sim, /*bus #*/0);
1336 
1337 	/*
1338 	 * Looking at the XPT from the SIM layer, the XPT is
1339 	 * the equivelent of a peripheral driver.  Allocate
1340 	 * a peripheral driver entry for us.
1341 	 */
1342 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1343 				      CAM_TARGET_WILDCARD,
1344 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1345 		printf("xpt_init: xpt_create_path failed with status %#x,"
1346 		       " failing attach\n", status);
1347 		return;
1348 	}
1349 
1350 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1351 			 path, NULL, 0, NULL);
1352 	xpt_free_path(path);
1353 
1354 	xpt_sim->softc = xpt_periph;
1355 
1356 	/*
1357 	 * Register a callback for when interrupts are enabled.
1358 	 */
1359 	xpt_config_hook =
1360 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1361 					      M_TEMP, M_NOWAIT | M_ZERO);
1362 	if (xpt_config_hook == NULL) {
1363 		printf("xpt_init: Cannot malloc config hook "
1364 		       "- failing attach\n");
1365 		return;
1366 	}
1367 
1368 	xpt_config_hook->ich_func = xpt_config;
1369 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1370 		free (xpt_config_hook, M_TEMP);
1371 		printf("xpt_init: config_intrhook_establish failed "
1372 		       "- failing attach\n");
1373 	}
1374 
1375 	/* Install our software interrupt handlers */
1376 	register_swi(SWI_CAMNET, swi_camnet);
1377 	register_swi(SWI_CAMBIO, swi_cambio);
1378 }
1379 
1380 static cam_status
1381 xptregister(struct cam_periph *periph, void *arg)
1382 {
1383 	if (periph == NULL) {
1384 		printf("xptregister: periph was NULL!!\n");
1385 		return(CAM_REQ_CMP_ERR);
1386 	}
1387 
1388 	periph->softc = NULL;
1389 
1390 	xpt_periph = periph;
1391 
1392 	return(CAM_REQ_CMP);
1393 }
1394 
1395 int32_t
1396 xpt_add_periph(struct cam_periph *periph)
1397 {
1398 	struct cam_ed *device;
1399 	int32_t	 status;
1400 	struct periph_list *periph_head;
1401 
1402 	device = periph->path->device;
1403 
1404 	periph_head = &device->periphs;
1405 
1406 	status = CAM_REQ_CMP;
1407 
1408 	if (device != NULL) {
1409 		int s;
1410 
1411 		/*
1412 		 * Make room for this peripheral
1413 		 * so it will fit in the queue
1414 		 * when it's scheduled to run
1415 		 */
1416 		s = splsoftcam();
1417 		status = camq_resize(&device->drvq,
1418 				     device->drvq.array_size + 1);
1419 
1420 		device->generation++;
1421 
1422 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1423 
1424 		splx(s);
1425 	}
1426 
1427 	xsoftc.generation++;
1428 
1429 	return (status);
1430 }
1431 
1432 void
1433 xpt_remove_periph(struct cam_periph *periph)
1434 {
1435 	struct cam_ed *device;
1436 
1437 	device = periph->path->device;
1438 
1439 	if (device != NULL) {
1440 		int s;
1441 		struct periph_list *periph_head;
1442 
1443 		periph_head = &device->periphs;
1444 
1445 		/* Release the slot for this peripheral */
1446 		s = splsoftcam();
1447 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1448 
1449 		device->generation++;
1450 
1451 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1452 
1453 		splx(s);
1454 	}
1455 
1456 	xsoftc.generation++;
1457 
1458 }
1459 
1460 void
1461 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1462 {
1463 	int s;
1464 	u_int mb;
1465 	struct cam_path *path;
1466 	struct ccb_trans_settings cts;
1467 
1468 	path = periph->path;
1469 	/*
1470 	 * To ensure that this is printed in one piece,
1471 	 * mask out CAM interrupts.
1472 	 */
1473 	s = splsoftcam();
1474 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1475 	       periph->periph_name, periph->unit_number,
1476 	       path->bus->sim->sim_name,
1477 	       path->bus->sim->unit_number,
1478 	       path->bus->sim->bus_id,
1479 	       path->target->target_id,
1480 	       path->device->lun_id);
1481 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1482 	scsi_print_inquiry(&path->device->inq_data);
1483 	if ((bootverbose)
1484 	 && (path->device->serial_num_len > 0)) {
1485 		/* Don't wrap the screen  - print only the first 60 chars */
1486 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1487 		       periph->unit_number, path->device->serial_num);
1488 	}
1489 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1490 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1491 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1492 	xpt_action((union ccb*)&cts);
1493 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1494 		u_int speed;
1495 		u_int freq;
1496 
1497 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1498 		  && cts.sync_offset != 0) {
1499 			freq = scsi_calc_syncsrate(cts.sync_period);
1500 			speed = freq;
1501 		} else {
1502 			struct ccb_pathinq cpi;
1503 
1504 			/* Ask the SIM for its base transfer speed */
1505 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1506 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1507 			xpt_action((union ccb *)&cpi);
1508 
1509 			speed = cpi.base_transfer_speed;
1510 			freq = 0;
1511 		}
1512 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1513 			speed *= (0x01 << cts.bus_width);
1514 		mb = speed / 1000;
1515 		if (mb > 0)
1516 			printf("%s%d: %d.%03dMB/s transfers",
1517 			       periph->periph_name, periph->unit_number,
1518 			       mb, speed % 1000);
1519 		else
1520 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1521 			       periph->unit_number, speed);
1522 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1523 		 && cts.sync_offset != 0) {
1524 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1525 			       freq % 1000, cts.sync_offset);
1526 		}
1527 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1528 		 && cts.bus_width > 0) {
1529 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1530 			 && cts.sync_offset != 0) {
1531 				printf(", ");
1532 			} else {
1533 				printf(" (");
1534 			}
1535 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1536 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1537 			&& cts.sync_offset != 0) {
1538 			printf(")");
1539 		}
1540 
1541 		if (path->device->inq_flags & SID_CmdQue
1542 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1543 			printf(", Tagged Queueing Enabled");
1544 		}
1545 
1546 		printf("\n");
1547 	} else if (path->device->inq_flags & SID_CmdQue
1548    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1549 		printf("%s%d: Tagged Queueing Enabled\n",
1550 		       periph->periph_name, periph->unit_number);
1551 	}
1552 
1553 	/*
1554 	 * We only want to print the caller's announce string if they've
1555 	 * passed one in..
1556 	 */
1557 	if (announce_string != NULL)
1558 		printf("%s%d: %s\n", periph->periph_name,
1559 		       periph->unit_number, announce_string);
1560 	splx(s);
1561 }
1562 
1563 
1564 static dev_match_ret
1565 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1566 	    struct cam_eb *bus)
1567 {
1568 	dev_match_ret retval;
1569 	int i;
1570 
1571 	retval = DM_RET_NONE;
1572 
1573 	/*
1574 	 * If we aren't given something to match against, that's an error.
1575 	 */
1576 	if (bus == NULL)
1577 		return(DM_RET_ERROR);
1578 
1579 	/*
1580 	 * If there are no match entries, then this bus matches no
1581 	 * matter what.
1582 	 */
1583 	if ((patterns == NULL) || (num_patterns == 0))
1584 		return(DM_RET_DESCEND | DM_RET_COPY);
1585 
1586 	for (i = 0; i < num_patterns; i++) {
1587 		struct bus_match_pattern *cur_pattern;
1588 
1589 		/*
1590 		 * If the pattern in question isn't for a bus node, we
1591 		 * aren't interested.  However, we do indicate to the
1592 		 * calling routine that we should continue descending the
1593 		 * tree, since the user wants to match against lower-level
1594 		 * EDT elements.
1595 		 */
1596 		if (patterns[i].type != DEV_MATCH_BUS) {
1597 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1598 				retval |= DM_RET_DESCEND;
1599 			continue;
1600 		}
1601 
1602 		cur_pattern = &patterns[i].pattern.bus_pattern;
1603 
1604 		/*
1605 		 * If they want to match any bus node, we give them any
1606 		 * device node.
1607 		 */
1608 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1609 			/* set the copy flag */
1610 			retval |= DM_RET_COPY;
1611 
1612 			/*
1613 			 * If we've already decided on an action, go ahead
1614 			 * and return.
1615 			 */
1616 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1617 				return(retval);
1618 		}
1619 
1620 		/*
1621 		 * Not sure why someone would do this...
1622 		 */
1623 		if (cur_pattern->flags == BUS_MATCH_NONE)
1624 			continue;
1625 
1626 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1627 		 && (cur_pattern->path_id != bus->path_id))
1628 			continue;
1629 
1630 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1631 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1632 			continue;
1633 
1634 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1635 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1636 			continue;
1637 
1638 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1639 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1640 			     DEV_IDLEN) != 0))
1641 			continue;
1642 
1643 		/*
1644 		 * If we get to this point, the user definitely wants
1645 		 * information on this bus.  So tell the caller to copy the
1646 		 * data out.
1647 		 */
1648 		retval |= DM_RET_COPY;
1649 
1650 		/*
1651 		 * If the return action has been set to descend, then we
1652 		 * know that we've already seen a non-bus matching
1653 		 * expression, therefore we need to further descend the tree.
1654 		 * This won't change by continuing around the loop, so we
1655 		 * go ahead and return.  If we haven't seen a non-bus
1656 		 * matching expression, we keep going around the loop until
1657 		 * we exhaust the matching expressions.  We'll set the stop
1658 		 * flag once we fall out of the loop.
1659 		 */
1660 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1661 			return(retval);
1662 	}
1663 
1664 	/*
1665 	 * If the return action hasn't been set to descend yet, that means
1666 	 * we haven't seen anything other than bus matching patterns.  So
1667 	 * tell the caller to stop descending the tree -- the user doesn't
1668 	 * want to match against lower level tree elements.
1669 	 */
1670 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1671 		retval |= DM_RET_STOP;
1672 
1673 	return(retval);
1674 }
1675 
1676 static dev_match_ret
1677 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1678 	       struct cam_ed *device)
1679 {
1680 	dev_match_ret retval;
1681 	int i;
1682 
1683 	retval = DM_RET_NONE;
1684 
1685 	/*
1686 	 * If we aren't given something to match against, that's an error.
1687 	 */
1688 	if (device == NULL)
1689 		return(DM_RET_ERROR);
1690 
1691 	/*
1692 	 * If there are no match entries, then this device matches no
1693 	 * matter what.
1694 	 */
1695 	if ((patterns == NULL) || (patterns == 0))
1696 		return(DM_RET_DESCEND | DM_RET_COPY);
1697 
1698 	for (i = 0; i < num_patterns; i++) {
1699 		struct device_match_pattern *cur_pattern;
1700 
1701 		/*
1702 		 * If the pattern in question isn't for a device node, we
1703 		 * aren't interested.
1704 		 */
1705 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1706 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1707 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1708 				retval |= DM_RET_DESCEND;
1709 			continue;
1710 		}
1711 
1712 		cur_pattern = &patterns[i].pattern.device_pattern;
1713 
1714 		/*
1715 		 * If they want to match any device node, we give them any
1716 		 * device node.
1717 		 */
1718 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1719 			/* set the copy flag */
1720 			retval |= DM_RET_COPY;
1721 
1722 
1723 			/*
1724 			 * If we've already decided on an action, go ahead
1725 			 * and return.
1726 			 */
1727 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1728 				return(retval);
1729 		}
1730 
1731 		/*
1732 		 * Not sure why someone would do this...
1733 		 */
1734 		if (cur_pattern->flags == DEV_MATCH_NONE)
1735 			continue;
1736 
1737 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1738 		 && (cur_pattern->path_id != device->target->bus->path_id))
1739 			continue;
1740 
1741 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1742 		 && (cur_pattern->target_id != device->target->target_id))
1743 			continue;
1744 
1745 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1746 		 && (cur_pattern->target_lun != device->lun_id))
1747 			continue;
1748 
1749 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1750 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1751 				    (caddr_t)&cur_pattern->inq_pat,
1752 				    1, sizeof(cur_pattern->inq_pat),
1753 				    scsi_static_inquiry_match) == NULL))
1754 			continue;
1755 
1756 		/*
1757 		 * If we get to this point, the user definitely wants
1758 		 * information on this device.  So tell the caller to copy
1759 		 * the data out.
1760 		 */
1761 		retval |= DM_RET_COPY;
1762 
1763 		/*
1764 		 * If the return action has been set to descend, then we
1765 		 * know that we've already seen a peripheral matching
1766 		 * expression, therefore we need to further descend the tree.
1767 		 * This won't change by continuing around the loop, so we
1768 		 * go ahead and return.  If we haven't seen a peripheral
1769 		 * matching expression, we keep going around the loop until
1770 		 * we exhaust the matching expressions.  We'll set the stop
1771 		 * flag once we fall out of the loop.
1772 		 */
1773 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1774 			return(retval);
1775 	}
1776 
1777 	/*
1778 	 * If the return action hasn't been set to descend yet, that means
1779 	 * we haven't seen any peripheral matching patterns.  So tell the
1780 	 * caller to stop descending the tree -- the user doesn't want to
1781 	 * match against lower level tree elements.
1782 	 */
1783 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1784 		retval |= DM_RET_STOP;
1785 
1786 	return(retval);
1787 }
1788 
1789 /*
1790  * Match a single peripheral against any number of match patterns.
1791  */
1792 static dev_match_ret
1793 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1794 	       struct cam_periph *periph)
1795 {
1796 	dev_match_ret retval;
1797 	int i;
1798 
1799 	/*
1800 	 * If we aren't given something to match against, that's an error.
1801 	 */
1802 	if (periph == NULL)
1803 		return(DM_RET_ERROR);
1804 
1805 	/*
1806 	 * If there are no match entries, then this peripheral matches no
1807 	 * matter what.
1808 	 */
1809 	if ((patterns == NULL) || (num_patterns == 0))
1810 		return(DM_RET_STOP | DM_RET_COPY);
1811 
1812 	/*
1813 	 * There aren't any nodes below a peripheral node, so there's no
1814 	 * reason to descend the tree any further.
1815 	 */
1816 	retval = DM_RET_STOP;
1817 
1818 	for (i = 0; i < num_patterns; i++) {
1819 		struct periph_match_pattern *cur_pattern;
1820 
1821 		/*
1822 		 * If the pattern in question isn't for a peripheral, we
1823 		 * aren't interested.
1824 		 */
1825 		if (patterns[i].type != DEV_MATCH_PERIPH)
1826 			continue;
1827 
1828 		cur_pattern = &patterns[i].pattern.periph_pattern;
1829 
1830 		/*
1831 		 * If they want to match on anything, then we will do so.
1832 		 */
1833 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1834 			/* set the copy flag */
1835 			retval |= DM_RET_COPY;
1836 
1837 			/*
1838 			 * We've already set the return action to stop,
1839 			 * since there are no nodes below peripherals in
1840 			 * the tree.
1841 			 */
1842 			return(retval);
1843 		}
1844 
1845 		/*
1846 		 * Not sure why someone would do this...
1847 		 */
1848 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1849 			continue;
1850 
1851 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1852 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1853 			continue;
1854 
1855 		/*
1856 		 * For the target and lun id's, we have to make sure the
1857 		 * target and lun pointers aren't NULL.  The xpt peripheral
1858 		 * has a wildcard target and device.
1859 		 */
1860 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1861 		 && ((periph->path->target == NULL)
1862 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1863 			continue;
1864 
1865 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1866 		 && ((periph->path->device == NULL)
1867 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1868 			continue;
1869 
1870 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1871 		 && (cur_pattern->unit_number != periph->unit_number))
1872 			continue;
1873 
1874 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1875 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1876 			     DEV_IDLEN) != 0))
1877 			continue;
1878 
1879 		/*
1880 		 * If we get to this point, the user definitely wants
1881 		 * information on this peripheral.  So tell the caller to
1882 		 * copy the data out.
1883 		 */
1884 		retval |= DM_RET_COPY;
1885 
1886 		/*
1887 		 * The return action has already been set to stop, since
1888 		 * peripherals don't have any nodes below them in the EDT.
1889 		 */
1890 		return(retval);
1891 	}
1892 
1893 	/*
1894 	 * If we get to this point, the peripheral that was passed in
1895 	 * doesn't match any of the patterns.
1896 	 */
1897 	return(retval);
1898 }
1899 
1900 static int
1901 xptedtbusfunc(struct cam_eb *bus, void *arg)
1902 {
1903 	struct ccb_dev_match *cdm;
1904 	dev_match_ret retval;
1905 
1906 	cdm = (struct ccb_dev_match *)arg;
1907 
1908 	/*
1909 	 * If our position is for something deeper in the tree, that means
1910 	 * that we've already seen this node.  So, we keep going down.
1911 	 */
1912 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1913 	 && (cdm->pos.cookie.bus == bus)
1914 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1915 	 && (cdm->pos.cookie.target != NULL))
1916 		retval = DM_RET_DESCEND;
1917 	else
1918 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1919 
1920 	/*
1921 	 * If we got an error, bail out of the search.
1922 	 */
1923 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1924 		cdm->status = CAM_DEV_MATCH_ERROR;
1925 		return(0);
1926 	}
1927 
1928 	/*
1929 	 * If the copy flag is set, copy this bus out.
1930 	 */
1931 	if (retval & DM_RET_COPY) {
1932 		int spaceleft, j;
1933 
1934 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1935 			sizeof(struct dev_match_result));
1936 
1937 		/*
1938 		 * If we don't have enough space to put in another
1939 		 * match result, save our position and tell the
1940 		 * user there are more devices to check.
1941 		 */
1942 		if (spaceleft < sizeof(struct dev_match_result)) {
1943 			bzero(&cdm->pos, sizeof(cdm->pos));
1944 			cdm->pos.position_type =
1945 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1946 
1947 			cdm->pos.cookie.bus = bus;
1948 			cdm->pos.generations[CAM_BUS_GENERATION]=
1949 				bus_generation;
1950 			cdm->status = CAM_DEV_MATCH_MORE;
1951 			return(0);
1952 		}
1953 		j = cdm->num_matches;
1954 		cdm->num_matches++;
1955 		cdm->matches[j].type = DEV_MATCH_BUS;
1956 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1957 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1958 		cdm->matches[j].result.bus_result.unit_number =
1959 			bus->sim->unit_number;
1960 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1961 			bus->sim->sim_name, DEV_IDLEN);
1962 	}
1963 
1964 	/*
1965 	 * If the user is only interested in busses, there's no
1966 	 * reason to descend to the next level in the tree.
1967 	 */
1968 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1969 		return(1);
1970 
1971 	/*
1972 	 * If there is a target generation recorded, check it to
1973 	 * make sure the target list hasn't changed.
1974 	 */
1975 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1976 	 && (bus == cdm->pos.cookie.bus)
1977 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1978 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1979 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1980 	     bus->generation)) {
1981 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1982 		return(0);
1983 	}
1984 
1985 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1986 	 && (cdm->pos.cookie.bus == bus)
1987 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1988 	 && (cdm->pos.cookie.target != NULL))
1989 		return(xpttargettraverse(bus,
1990 					(struct cam_et *)cdm->pos.cookie.target,
1991 					 xptedttargetfunc, arg));
1992 	else
1993 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1994 }
1995 
1996 static int
1997 xptedttargetfunc(struct cam_et *target, void *arg)
1998 {
1999 	struct ccb_dev_match *cdm;
2000 
2001 	cdm = (struct ccb_dev_match *)arg;
2002 
2003 	/*
2004 	 * If there is a device list generation recorded, check it to
2005 	 * make sure the device list hasn't changed.
2006 	 */
2007 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2008 	 && (cdm->pos.cookie.bus == target->bus)
2009 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2010 	 && (cdm->pos.cookie.target == target)
2011 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2012 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2013 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2014 	     target->generation)) {
2015 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2016 		return(0);
2017 	}
2018 
2019 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2020 	 && (cdm->pos.cookie.bus == target->bus)
2021 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2022 	 && (cdm->pos.cookie.target == target)
2023 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2024 	 && (cdm->pos.cookie.device != NULL))
2025 		return(xptdevicetraverse(target,
2026 					(struct cam_ed *)cdm->pos.cookie.device,
2027 					 xptedtdevicefunc, arg));
2028 	else
2029 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2030 }
2031 
2032 static int
2033 xptedtdevicefunc(struct cam_ed *device, void *arg)
2034 {
2035 
2036 	struct ccb_dev_match *cdm;
2037 	dev_match_ret retval;
2038 
2039 	cdm = (struct ccb_dev_match *)arg;
2040 
2041 	/*
2042 	 * If our position is for something deeper in the tree, that means
2043 	 * that we've already seen this node.  So, we keep going down.
2044 	 */
2045 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2046 	 && (cdm->pos.cookie.device == device)
2047 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2048 	 && (cdm->pos.cookie.periph != NULL))
2049 		retval = DM_RET_DESCEND;
2050 	else
2051 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2052 					device);
2053 
2054 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2055 		cdm->status = CAM_DEV_MATCH_ERROR;
2056 		return(0);
2057 	}
2058 
2059 	/*
2060 	 * If the copy flag is set, copy this device out.
2061 	 */
2062 	if (retval & DM_RET_COPY) {
2063 		int spaceleft, j;
2064 
2065 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2066 			sizeof(struct dev_match_result));
2067 
2068 		/*
2069 		 * If we don't have enough space to put in another
2070 		 * match result, save our position and tell the
2071 		 * user there are more devices to check.
2072 		 */
2073 		if (spaceleft < sizeof(struct dev_match_result)) {
2074 			bzero(&cdm->pos, sizeof(cdm->pos));
2075 			cdm->pos.position_type =
2076 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2077 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2078 
2079 			cdm->pos.cookie.bus = device->target->bus;
2080 			cdm->pos.generations[CAM_BUS_GENERATION]=
2081 				bus_generation;
2082 			cdm->pos.cookie.target = device->target;
2083 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2084 				device->target->bus->generation;
2085 			cdm->pos.cookie.device = device;
2086 			cdm->pos.generations[CAM_DEV_GENERATION] =
2087 				device->target->generation;
2088 			cdm->status = CAM_DEV_MATCH_MORE;
2089 			return(0);
2090 		}
2091 		j = cdm->num_matches;
2092 		cdm->num_matches++;
2093 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2094 		cdm->matches[j].result.device_result.path_id =
2095 			device->target->bus->path_id;
2096 		cdm->matches[j].result.device_result.target_id =
2097 			device->target->target_id;
2098 		cdm->matches[j].result.device_result.target_lun =
2099 			device->lun_id;
2100 		bcopy(&device->inq_data,
2101 		      &cdm->matches[j].result.device_result.inq_data,
2102 		      sizeof(struct scsi_inquiry_data));
2103 
2104 		/* Let the user know whether this device is unconfigured */
2105 		if (device->flags & CAM_DEV_UNCONFIGURED)
2106 			cdm->matches[j].result.device_result.flags =
2107 				DEV_RESULT_UNCONFIGURED;
2108 		else
2109 			cdm->matches[j].result.device_result.flags =
2110 				DEV_RESULT_NOFLAG;
2111 	}
2112 
2113 	/*
2114 	 * If the user isn't interested in peripherals, don't descend
2115 	 * the tree any further.
2116 	 */
2117 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2118 		return(1);
2119 
2120 	/*
2121 	 * If there is a peripheral list generation recorded, make sure
2122 	 * it hasn't changed.
2123 	 */
2124 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2125 	 && (device->target->bus == cdm->pos.cookie.bus)
2126 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2127 	 && (device->target == cdm->pos.cookie.target)
2128 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2129 	 && (device == cdm->pos.cookie.device)
2130 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2131 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2132 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2133 	     device->generation)){
2134 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2135 		return(0);
2136 	}
2137 
2138 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2139 	 && (cdm->pos.cookie.bus == device->target->bus)
2140 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2141 	 && (cdm->pos.cookie.target == device->target)
2142 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2143 	 && (cdm->pos.cookie.device == device)
2144 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2145 	 && (cdm->pos.cookie.periph != NULL))
2146 		return(xptperiphtraverse(device,
2147 				(struct cam_periph *)cdm->pos.cookie.periph,
2148 				xptedtperiphfunc, arg));
2149 	else
2150 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2151 }
2152 
2153 static int
2154 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2155 {
2156 	struct ccb_dev_match *cdm;
2157 	dev_match_ret retval;
2158 
2159 	cdm = (struct ccb_dev_match *)arg;
2160 
2161 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2162 
2163 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2164 		cdm->status = CAM_DEV_MATCH_ERROR;
2165 		return(0);
2166 	}
2167 
2168 	/*
2169 	 * If the copy flag is set, copy this peripheral out.
2170 	 */
2171 	if (retval & DM_RET_COPY) {
2172 		int spaceleft, j;
2173 
2174 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2175 			sizeof(struct dev_match_result));
2176 
2177 		/*
2178 		 * If we don't have enough space to put in another
2179 		 * match result, save our position and tell the
2180 		 * user there are more devices to check.
2181 		 */
2182 		if (spaceleft < sizeof(struct dev_match_result)) {
2183 			bzero(&cdm->pos, sizeof(cdm->pos));
2184 			cdm->pos.position_type =
2185 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2186 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2187 				CAM_DEV_POS_PERIPH;
2188 
2189 			cdm->pos.cookie.bus = periph->path->bus;
2190 			cdm->pos.generations[CAM_BUS_GENERATION]=
2191 				bus_generation;
2192 			cdm->pos.cookie.target = periph->path->target;
2193 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2194 				periph->path->bus->generation;
2195 			cdm->pos.cookie.device = periph->path->device;
2196 			cdm->pos.generations[CAM_DEV_GENERATION] =
2197 				periph->path->target->generation;
2198 			cdm->pos.cookie.periph = periph;
2199 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2200 				periph->path->device->generation;
2201 			cdm->status = CAM_DEV_MATCH_MORE;
2202 			return(0);
2203 		}
2204 
2205 		j = cdm->num_matches;
2206 		cdm->num_matches++;
2207 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2208 		cdm->matches[j].result.periph_result.path_id =
2209 			periph->path->bus->path_id;
2210 		cdm->matches[j].result.periph_result.target_id =
2211 			periph->path->target->target_id;
2212 		cdm->matches[j].result.periph_result.target_lun =
2213 			periph->path->device->lun_id;
2214 		cdm->matches[j].result.periph_result.unit_number =
2215 			periph->unit_number;
2216 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2217 			periph->periph_name, DEV_IDLEN);
2218 	}
2219 
2220 	return(1);
2221 }
2222 
2223 static int
2224 xptedtmatch(struct ccb_dev_match *cdm)
2225 {
2226 	int ret;
2227 
2228 	cdm->num_matches = 0;
2229 
2230 	/*
2231 	 * Check the bus list generation.  If it has changed, the user
2232 	 * needs to reset everything and start over.
2233 	 */
2234 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2235 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2236 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2237 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2238 		return(0);
2239 	}
2240 
2241 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2242 	 && (cdm->pos.cookie.bus != NULL))
2243 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2244 				     xptedtbusfunc, cdm);
2245 	else
2246 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2247 
2248 	/*
2249 	 * If we get back 0, that means that we had to stop before fully
2250 	 * traversing the EDT.  It also means that one of the subroutines
2251 	 * has set the status field to the proper value.  If we get back 1,
2252 	 * we've fully traversed the EDT and copied out any matching entries.
2253 	 */
2254 	if (ret == 1)
2255 		cdm->status = CAM_DEV_MATCH_LAST;
2256 
2257 	return(ret);
2258 }
2259 
2260 static int
2261 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2262 {
2263 	struct ccb_dev_match *cdm;
2264 
2265 	cdm = (struct ccb_dev_match *)arg;
2266 
2267 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2268 	 && (cdm->pos.cookie.pdrv == pdrv)
2269 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2270 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2271 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2272 	     (*pdrv)->generation)) {
2273 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2274 		return(0);
2275 	}
2276 
2277 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2278 	 && (cdm->pos.cookie.pdrv == pdrv)
2279 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2280 	 && (cdm->pos.cookie.periph != NULL))
2281 		return(xptpdperiphtraverse(pdrv,
2282 				(struct cam_periph *)cdm->pos.cookie.periph,
2283 				xptplistperiphfunc, arg));
2284 	else
2285 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2286 }
2287 
2288 static int
2289 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2290 {
2291 	struct ccb_dev_match *cdm;
2292 	dev_match_ret retval;
2293 
2294 	cdm = (struct ccb_dev_match *)arg;
2295 
2296 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2297 
2298 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2299 		cdm->status = CAM_DEV_MATCH_ERROR;
2300 		return(0);
2301 	}
2302 
2303 	/*
2304 	 * If the copy flag is set, copy this peripheral out.
2305 	 */
2306 	if (retval & DM_RET_COPY) {
2307 		int spaceleft, j;
2308 
2309 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2310 			sizeof(struct dev_match_result));
2311 
2312 		/*
2313 		 * If we don't have enough space to put in another
2314 		 * match result, save our position and tell the
2315 		 * user there are more devices to check.
2316 		 */
2317 		if (spaceleft < sizeof(struct dev_match_result)) {
2318 			struct periph_driver **pdrv;
2319 
2320 			pdrv = NULL;
2321 			bzero(&cdm->pos, sizeof(cdm->pos));
2322 			cdm->pos.position_type =
2323 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2324 				CAM_DEV_POS_PERIPH;
2325 
2326 			/*
2327 			 * This may look a bit non-sensical, but it is
2328 			 * actually quite logical.  There are very few
2329 			 * peripheral drivers, and bloating every peripheral
2330 			 * structure with a pointer back to its parent
2331 			 * peripheral driver linker set entry would cost
2332 			 * more in the long run than doing this quick lookup.
2333 			 */
2334 			for (pdrv =
2335 			     (struct periph_driver **)periphdriver_set.ls_items;
2336 			     *pdrv != NULL; pdrv++) {
2337 				if (strcmp((*pdrv)->driver_name,
2338 				    periph->periph_name) == 0)
2339 					break;
2340 			}
2341 
2342 			if (pdrv == NULL) {
2343 				cdm->status = CAM_DEV_MATCH_ERROR;
2344 				return(0);
2345 			}
2346 
2347 			cdm->pos.cookie.pdrv = pdrv;
2348 			/*
2349 			 * The periph generation slot does double duty, as
2350 			 * does the periph pointer slot.  They are used for
2351 			 * both edt and pdrv lookups and positioning.
2352 			 */
2353 			cdm->pos.cookie.periph = periph;
2354 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2355 				(*pdrv)->generation;
2356 			cdm->status = CAM_DEV_MATCH_MORE;
2357 			return(0);
2358 		}
2359 
2360 		j = cdm->num_matches;
2361 		cdm->num_matches++;
2362 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2363 		cdm->matches[j].result.periph_result.path_id =
2364 			periph->path->bus->path_id;
2365 
2366 		/*
2367 		 * The transport layer peripheral doesn't have a target or
2368 		 * lun.
2369 		 */
2370 		if (periph->path->target)
2371 			cdm->matches[j].result.periph_result.target_id =
2372 				periph->path->target->target_id;
2373 		else
2374 			cdm->matches[j].result.periph_result.target_id = -1;
2375 
2376 		if (periph->path->device)
2377 			cdm->matches[j].result.periph_result.target_lun =
2378 				periph->path->device->lun_id;
2379 		else
2380 			cdm->matches[j].result.periph_result.target_lun = -1;
2381 
2382 		cdm->matches[j].result.periph_result.unit_number =
2383 			periph->unit_number;
2384 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2385 			periph->periph_name, DEV_IDLEN);
2386 	}
2387 
2388 	return(1);
2389 }
2390 
2391 static int
2392 xptperiphlistmatch(struct ccb_dev_match *cdm)
2393 {
2394 	int ret;
2395 
2396 	cdm->num_matches = 0;
2397 
2398 	/*
2399 	 * At this point in the edt traversal function, we check the bus
2400 	 * list generation to make sure that no busses have been added or
2401 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2402 	 * For the peripheral driver list traversal function, however, we
2403 	 * don't have to worry about new peripheral driver types coming or
2404 	 * going; they're in a linker set, and therefore can't change
2405 	 * without a recompile.
2406 	 */
2407 
2408 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2409 	 && (cdm->pos.cookie.pdrv != NULL))
2410 		ret = xptpdrvtraverse(
2411 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2412 				xptplistpdrvfunc, cdm);
2413 	else
2414 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2415 
2416 	/*
2417 	 * If we get back 0, that means that we had to stop before fully
2418 	 * traversing the peripheral driver tree.  It also means that one of
2419 	 * the subroutines has set the status field to the proper value.  If
2420 	 * we get back 1, we've fully traversed the EDT and copied out any
2421 	 * matching entries.
2422 	 */
2423 	if (ret == 1)
2424 		cdm->status = CAM_DEV_MATCH_LAST;
2425 
2426 	return(ret);
2427 }
2428 
2429 static int
2430 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2431 {
2432 	struct cam_eb *bus, *next_bus;
2433 	int retval;
2434 
2435 	retval = 1;
2436 
2437 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2438 	     bus != NULL;
2439 	     bus = next_bus) {
2440 		next_bus = TAILQ_NEXT(bus, links);
2441 
2442 		retval = tr_func(bus, arg);
2443 		if (retval == 0)
2444 			return(retval);
2445 	}
2446 
2447 	return(retval);
2448 }
2449 
2450 static int
2451 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2452 		  xpt_targetfunc_t *tr_func, void *arg)
2453 {
2454 	struct cam_et *target, *next_target;
2455 	int retval;
2456 
2457 	retval = 1;
2458 	for (target = (start_target ? start_target :
2459 		       TAILQ_FIRST(&bus->et_entries));
2460 	     target != NULL; target = next_target) {
2461 
2462 		next_target = TAILQ_NEXT(target, links);
2463 
2464 		retval = tr_func(target, arg);
2465 
2466 		if (retval == 0)
2467 			return(retval);
2468 	}
2469 
2470 	return(retval);
2471 }
2472 
2473 static int
2474 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2475 		  xpt_devicefunc_t *tr_func, void *arg)
2476 {
2477 	struct cam_ed *device, *next_device;
2478 	int retval;
2479 
2480 	retval = 1;
2481 	for (device = (start_device ? start_device :
2482 		       TAILQ_FIRST(&target->ed_entries));
2483 	     device != NULL;
2484 	     device = next_device) {
2485 
2486 		next_device = TAILQ_NEXT(device, links);
2487 
2488 		retval = tr_func(device, arg);
2489 
2490 		if (retval == 0)
2491 			return(retval);
2492 	}
2493 
2494 	return(retval);
2495 }
2496 
2497 static int
2498 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2499 		  xpt_periphfunc_t *tr_func, void *arg)
2500 {
2501 	struct cam_periph *periph, *next_periph;
2502 	int retval;
2503 
2504 	retval = 1;
2505 
2506 	for (periph = (start_periph ? start_periph :
2507 		       SLIST_FIRST(&device->periphs));
2508 	     periph != NULL;
2509 	     periph = next_periph) {
2510 
2511 		next_periph = SLIST_NEXT(periph, periph_links);
2512 
2513 		retval = tr_func(periph, arg);
2514 		if (retval == 0)
2515 			return(retval);
2516 	}
2517 
2518 	return(retval);
2519 }
2520 
2521 static int
2522 xptpdrvtraverse(struct periph_driver **start_pdrv,
2523 		xpt_pdrvfunc_t *tr_func, void *arg)
2524 {
2525 	struct periph_driver **pdrv;
2526 	int retval;
2527 
2528 	retval = 1;
2529 
2530 	/*
2531 	 * We don't traverse the peripheral driver list like we do the
2532 	 * other lists, because it is a linker set, and therefore cannot be
2533 	 * changed during runtime.  If the peripheral driver list is ever
2534 	 * re-done to be something other than a linker set (i.e. it can
2535 	 * change while the system is running), the list traversal should
2536 	 * be modified to work like the other traversal functions.
2537 	 */
2538 	for (pdrv = (start_pdrv ? start_pdrv :
2539 	     (struct periph_driver **)periphdriver_set.ls_items);
2540 	     *pdrv != NULL; pdrv++) {
2541 		retval = tr_func(pdrv, arg);
2542 
2543 		if (retval == 0)
2544 			return(retval);
2545 	}
2546 
2547 	return(retval);
2548 }
2549 
2550 static int
2551 xptpdperiphtraverse(struct periph_driver **pdrv,
2552 		    struct cam_periph *start_periph,
2553 		    xpt_periphfunc_t *tr_func, void *arg)
2554 {
2555 	struct cam_periph *periph, *next_periph;
2556 	int retval;
2557 
2558 	retval = 1;
2559 
2560 	for (periph = (start_periph ? start_periph :
2561 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2562 	     periph = next_periph) {
2563 
2564 		next_periph = TAILQ_NEXT(periph, unit_links);
2565 
2566 		retval = tr_func(periph, arg);
2567 		if (retval == 0)
2568 			return(retval);
2569 	}
2570 	return(retval);
2571 }
2572 
2573 static int
2574 xptdefbusfunc(struct cam_eb *bus, void *arg)
2575 {
2576 	struct xpt_traverse_config *tr_config;
2577 
2578 	tr_config = (struct xpt_traverse_config *)arg;
2579 
2580 	if (tr_config->depth == XPT_DEPTH_BUS) {
2581 		xpt_busfunc_t *tr_func;
2582 
2583 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2584 
2585 		return(tr_func(bus, tr_config->tr_arg));
2586 	} else
2587 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2588 }
2589 
2590 static int
2591 xptdeftargetfunc(struct cam_et *target, void *arg)
2592 {
2593 	struct xpt_traverse_config *tr_config;
2594 
2595 	tr_config = (struct xpt_traverse_config *)arg;
2596 
2597 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2598 		xpt_targetfunc_t *tr_func;
2599 
2600 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2601 
2602 		return(tr_func(target, tr_config->tr_arg));
2603 	} else
2604 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2605 }
2606 
2607 static int
2608 xptdefdevicefunc(struct cam_ed *device, void *arg)
2609 {
2610 	struct xpt_traverse_config *tr_config;
2611 
2612 	tr_config = (struct xpt_traverse_config *)arg;
2613 
2614 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2615 		xpt_devicefunc_t *tr_func;
2616 
2617 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2618 
2619 		return(tr_func(device, tr_config->tr_arg));
2620 	} else
2621 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2622 }
2623 
2624 static int
2625 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2626 {
2627 	struct xpt_traverse_config *tr_config;
2628 	xpt_periphfunc_t *tr_func;
2629 
2630 	tr_config = (struct xpt_traverse_config *)arg;
2631 
2632 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2633 
2634 	/*
2635 	 * Unlike the other default functions, we don't check for depth
2636 	 * here.  The peripheral driver level is the last level in the EDT,
2637 	 * so if we're here, we should execute the function in question.
2638 	 */
2639 	return(tr_func(periph, tr_config->tr_arg));
2640 }
2641 
2642 /*
2643  * Execute the given function for every bus in the EDT.
2644  */
2645 static int
2646 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2647 {
2648 	struct xpt_traverse_config tr_config;
2649 
2650 	tr_config.depth = XPT_DEPTH_BUS;
2651 	tr_config.tr_func = tr_func;
2652 	tr_config.tr_arg = arg;
2653 
2654 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2655 }
2656 
2657 #ifdef notusedyet
2658 /*
2659  * Execute the given function for every target in the EDT.
2660  */
2661 static int
2662 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2663 {
2664 	struct xpt_traverse_config tr_config;
2665 
2666 	tr_config.depth = XPT_DEPTH_TARGET;
2667 	tr_config.tr_func = tr_func;
2668 	tr_config.tr_arg = arg;
2669 
2670 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2671 }
2672 #endif /* notusedyet */
2673 
2674 /*
2675  * Execute the given function for every device in the EDT.
2676  */
2677 static int
2678 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2679 {
2680 	struct xpt_traverse_config tr_config;
2681 
2682 	tr_config.depth = XPT_DEPTH_DEVICE;
2683 	tr_config.tr_func = tr_func;
2684 	tr_config.tr_arg = arg;
2685 
2686 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2687 }
2688 
2689 #ifdef notusedyet
2690 /*
2691  * Execute the given function for every peripheral in the EDT.
2692  */
2693 static int
2694 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2695 {
2696 	struct xpt_traverse_config tr_config;
2697 
2698 	tr_config.depth = XPT_DEPTH_PERIPH;
2699 	tr_config.tr_func = tr_func;
2700 	tr_config.tr_arg = arg;
2701 
2702 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2703 }
2704 #endif /* notusedyet */
2705 
2706 static int
2707 xptsetasyncfunc(struct cam_ed *device, void *arg)
2708 {
2709 	struct cam_path path;
2710 	struct ccb_getdev cgd;
2711 	struct async_node *cur_entry;
2712 
2713 	cur_entry = (struct async_node *)arg;
2714 
2715 	/*
2716 	 * Don't report unconfigured devices (Wildcard devs,
2717 	 * devices only for target mode, device instances
2718 	 * that have been invalidated but are waiting for
2719 	 * their last reference count to be released).
2720 	 */
2721 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2722 		return (1);
2723 
2724 	xpt_compile_path(&path,
2725 			 NULL,
2726 			 device->target->bus->path_id,
2727 			 device->target->target_id,
2728 			 device->lun_id);
2729 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2730 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2731 	xpt_action((union ccb *)&cgd);
2732 	cur_entry->callback(cur_entry->callback_arg,
2733 			    AC_FOUND_DEVICE,
2734 			    &path, &cgd);
2735 	xpt_release_path(&path);
2736 
2737 	return(1);
2738 }
2739 
2740 static int
2741 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2742 {
2743 	struct cam_path path;
2744 	struct ccb_pathinq cpi;
2745 	struct async_node *cur_entry;
2746 
2747 	cur_entry = (struct async_node *)arg;
2748 
2749 	xpt_compile_path(&path, /*periph*/NULL,
2750 			 bus->sim->path_id,
2751 			 CAM_TARGET_WILDCARD,
2752 			 CAM_LUN_WILDCARD);
2753 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2754 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2755 	xpt_action((union ccb *)&cpi);
2756 	cur_entry->callback(cur_entry->callback_arg,
2757 			    AC_PATH_REGISTERED,
2758 			    &path, &cpi);
2759 	xpt_release_path(&path);
2760 
2761 	return(1);
2762 }
2763 
2764 void
2765 xpt_action(union ccb *start_ccb)
2766 {
2767 	int iopl;
2768 
2769 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2770 
2771 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2772 
2773 	iopl = splsoftcam();
2774 	switch (start_ccb->ccb_h.func_code) {
2775 	case XPT_SCSI_IO:
2776 	{
2777 #ifdef CAMDEBUG
2778 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2779 		struct cam_path *path;
2780 
2781 		path = start_ccb->ccb_h.path;
2782 #endif
2783 
2784 		/*
2785 		 * For the sake of compatibility with SCSI-1
2786 		 * devices that may not understand the identify
2787 		 * message, we include lun information in the
2788 		 * second byte of all commands.  SCSI-1 specifies
2789 		 * that luns are a 3 bit value and reserves only 3
2790 		 * bits for lun information in the CDB.  Later
2791 		 * revisions of the SCSI spec allow for more than 8
2792 		 * luns, but have deprecated lun information in the
2793 		 * CDB.  So, if the lun won't fit, we must omit.
2794 		 *
2795 		 * Also be aware that during initial probing for devices,
2796 		 * the inquiry information is unknown but initialized to 0.
2797 		 * This means that this code will be exercised while probing
2798 		 * devices with an ANSI revision greater than 2.
2799 		 */
2800 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2801 		 && start_ccb->ccb_h.target_lun < 8
2802 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2803 
2804 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2805 			    start_ccb->ccb_h.target_lun << 5;
2806 		}
2807 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2808 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2809 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2810 			  	       &path->device->inq_data),
2811 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2812 					  cdb_str, sizeof(cdb_str))));
2813 		/* FALLTHROUGH */
2814 	}
2815 	case XPT_TARGET_IO:
2816 	case XPT_CONT_TARGET_IO:
2817 		start_ccb->csio.sense_resid = 0;
2818 		start_ccb->csio.resid = 0;
2819 		/* FALLTHROUGH */
2820 	case XPT_RESET_DEV:
2821 	case XPT_ENG_EXEC:
2822 	{
2823 		struct cam_path *path;
2824 		int s;
2825 		int runq;
2826 
2827 		path = start_ccb->ccb_h.path;
2828 		s = splsoftcam();
2829 
2830 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2831 		if (path->device->qfrozen_cnt == 0)
2832 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2833 		else
2834 			runq = 0;
2835 		splx(s);
2836 		if (runq != 0)
2837 			xpt_run_dev_sendq(path->bus);
2838 		break;
2839 	}
2840 	case XPT_SET_TRAN_SETTINGS:
2841 	{
2842 		xpt_set_transfer_settings(&start_ccb->cts,
2843 					  start_ccb->ccb_h.path->device,
2844 					  /*async_update*/FALSE);
2845 		break;
2846 	}
2847 	case XPT_CALC_GEOMETRY:
2848 	{
2849 		struct cam_sim *sim;
2850 
2851 		/* Filter out garbage */
2852 		if (start_ccb->ccg.block_size == 0
2853 		 || start_ccb->ccg.volume_size == 0) {
2854 			start_ccb->ccg.cylinders = 0;
2855 			start_ccb->ccg.heads = 0;
2856 			start_ccb->ccg.secs_per_track = 0;
2857 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2858 			break;
2859 		}
2860 #ifdef PC98
2861 		/*
2862 		 * In a PC-98 system, geometry translation depens on
2863 		 * the "real" device geometry obtained from mode page 4.
2864 		 * SCSI geometry translation is performed in the
2865 		 * initialization routine of the SCSI BIOS and the result
2866 		 * stored in host memory.  If the translation is available
2867 		 * in host memory, use it.  If not, rely on the default
2868 		 * translation the device driver performs.
2869 		 */
2870 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2871 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2872 			break;
2873 		}
2874 #endif
2875 		sim = start_ccb->ccb_h.path->bus->sim;
2876 		(*(sim->sim_action))(sim, start_ccb);
2877 		break;
2878 	}
2879 	case XPT_ABORT:
2880 	{
2881 		union ccb* abort_ccb;
2882 		int s;
2883 
2884 		abort_ccb = start_ccb->cab.abort_ccb;
2885 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2886 
2887 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2888 				struct cam_ccbq *ccbq;
2889 
2890 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2891 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2892 				abort_ccb->ccb_h.status =
2893 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2894 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2895 				s = splcam();
2896 				xpt_done(abort_ccb);
2897 				splx(s);
2898 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2899 				break;
2900 			}
2901 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2902 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2903 				/*
2904 				 * We've caught this ccb en route to
2905 				 * the SIM.  Flag it for abort and the
2906 				 * SIM will do so just before starting
2907 				 * real work on the CCB.
2908 				 */
2909 				abort_ccb->ccb_h.status =
2910 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2911 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2912 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2913 				break;
2914 			}
2915 		}
2916 		if (XPT_FC_IS_QUEUED(abort_ccb)
2917 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2918 			/*
2919 			 * It's already completed but waiting
2920 			 * for our SWI to get to it.
2921 			 */
2922 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2923 			break;
2924 		}
2925 		/*
2926 		 * If we weren't able to take care of the abort request
2927 		 * in the XPT, pass the request down to the SIM for processing.
2928 		 */
2929 		/* FALLTHROUGH */
2930 	}
2931 	case XPT_ACCEPT_TARGET_IO:
2932 	case XPT_EN_LUN:
2933 	case XPT_IMMED_NOTIFY:
2934 	case XPT_NOTIFY_ACK:
2935 	case XPT_GET_TRAN_SETTINGS:
2936 	case XPT_RESET_BUS:
2937 	{
2938 		struct cam_sim *sim;
2939 
2940 		sim = start_ccb->ccb_h.path->bus->sim;
2941 		(*(sim->sim_action))(sim, start_ccb);
2942 		break;
2943 	}
2944 	case XPT_PATH_INQ:
2945 	{
2946 		struct cam_sim *sim;
2947 
2948 		sim = start_ccb->ccb_h.path->bus->sim;
2949 		(*(sim->sim_action))(sim, start_ccb);
2950 		break;
2951 	}
2952 	case XPT_PATH_STATS:
2953 		start_ccb->cpis.last_reset =
2954 			start_ccb->ccb_h.path->bus->last_reset;
2955 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2956 		break;
2957 	case XPT_GDEV_TYPE:
2958 	{
2959 		struct cam_ed *dev;
2960 		int s;
2961 
2962 		dev = start_ccb->ccb_h.path->device;
2963 		s = splcam();
2964 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2965 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2966 		} else {
2967 			struct ccb_getdev *cgd;
2968 			struct cam_eb *bus;
2969 			struct cam_et *tar;
2970 
2971 			cgd = &start_ccb->cgd;
2972 			bus = cgd->ccb_h.path->bus;
2973 			tar = cgd->ccb_h.path->target;
2974 			cgd->inq_data = dev->inq_data;
2975 			cgd->ccb_h.status = CAM_REQ_CMP;
2976 			cgd->serial_num_len = dev->serial_num_len;
2977 			if ((dev->serial_num_len > 0)
2978 			 && (dev->serial_num != NULL))
2979 				bcopy(dev->serial_num, cgd->serial_num,
2980 				      dev->serial_num_len);
2981 		}
2982 		splx(s);
2983 		break;
2984 	}
2985 	case XPT_GDEV_STATS:
2986 	{
2987 		struct cam_ed *dev;
2988 		int s;
2989 
2990 		dev = start_ccb->ccb_h.path->device;
2991 		s = splcam();
2992 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2993 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2994 		} else {
2995 			struct ccb_getdevstats *cgds;
2996 			struct cam_eb *bus;
2997 			struct cam_et *tar;
2998 
2999 			cgds = &start_ccb->cgds;
3000 			bus = cgds->ccb_h.path->bus;
3001 			tar = cgds->ccb_h.path->target;
3002 			cgds->dev_openings = dev->ccbq.dev_openings;
3003 			cgds->dev_active = dev->ccbq.dev_active;
3004 			cgds->devq_openings = dev->ccbq.devq_openings;
3005 			cgds->devq_queued = dev->ccbq.queue.entries;
3006 			cgds->held = dev->ccbq.held;
3007 			cgds->last_reset = tar->last_reset;
3008 			cgds->maxtags = dev->quirk->maxtags;
3009 			cgds->mintags = dev->quirk->mintags;
3010 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3011 				cgds->last_reset = bus->last_reset;
3012 			cgds->ccb_h.status = CAM_REQ_CMP;
3013 		}
3014 		splx(s);
3015 		break;
3016 	}
3017 	case XPT_GDEVLIST:
3018 	{
3019 		struct cam_periph	*nperiph;
3020 		struct periph_list	*periph_head;
3021 		struct ccb_getdevlist	*cgdl;
3022 		int			i;
3023 		int			s;
3024 		struct cam_ed		*device;
3025 		int			found;
3026 
3027 
3028 		found = 0;
3029 
3030 		/*
3031 		 * Don't want anyone mucking with our data.
3032 		 */
3033 		s = splcam();
3034 		device = start_ccb->ccb_h.path->device;
3035 		periph_head = &device->periphs;
3036 		cgdl = &start_ccb->cgdl;
3037 
3038 		/*
3039 		 * Check and see if the list has changed since the user
3040 		 * last requested a list member.  If so, tell them that the
3041 		 * list has changed, and therefore they need to start over
3042 		 * from the beginning.
3043 		 */
3044 		if ((cgdl->index != 0) &&
3045 		    (cgdl->generation != device->generation)) {
3046 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3047 			splx(s);
3048 			break;
3049 		}
3050 
3051 		/*
3052 		 * Traverse the list of peripherals and attempt to find
3053 		 * the requested peripheral.
3054 		 */
3055 		for (nperiph = periph_head->slh_first, i = 0;
3056 		     (nperiph != NULL) && (i <= cgdl->index);
3057 		     nperiph = nperiph->periph_links.sle_next, i++) {
3058 			if (i == cgdl->index) {
3059 				strncpy(cgdl->periph_name,
3060 					nperiph->periph_name,
3061 					DEV_IDLEN);
3062 				cgdl->unit_number = nperiph->unit_number;
3063 				found = 1;
3064 			}
3065 		}
3066 		if (found == 0) {
3067 			cgdl->status = CAM_GDEVLIST_ERROR;
3068 			splx(s);
3069 			break;
3070 		}
3071 
3072 		if (nperiph == NULL)
3073 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3074 		else
3075 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3076 
3077 		cgdl->index++;
3078 		cgdl->generation = device->generation;
3079 
3080 		splx(s);
3081 		cgdl->ccb_h.status = CAM_REQ_CMP;
3082 		break;
3083 	}
3084 	case XPT_DEV_MATCH:
3085 	{
3086 		int s;
3087 		dev_pos_type position_type;
3088 		struct ccb_dev_match *cdm;
3089 		int ret;
3090 
3091 		cdm = &start_ccb->cdm;
3092 
3093 		/*
3094 		 * Prevent EDT changes while we traverse it.
3095 		 */
3096 		s = splcam();
3097 		/*
3098 		 * There are two ways of getting at information in the EDT.
3099 		 * The first way is via the primary EDT tree.  It starts
3100 		 * with a list of busses, then a list of targets on a bus,
3101 		 * then devices/luns on a target, and then peripherals on a
3102 		 * device/lun.  The "other" way is by the peripheral driver
3103 		 * lists.  The peripheral driver lists are organized by
3104 		 * peripheral driver.  (obviously)  So it makes sense to
3105 		 * use the peripheral driver list if the user is looking
3106 		 * for something like "da1", or all "da" devices.  If the
3107 		 * user is looking for something on a particular bus/target
3108 		 * or lun, it's generally better to go through the EDT tree.
3109 		 */
3110 
3111 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3112 			position_type = cdm->pos.position_type;
3113 		else {
3114 			int i;
3115 
3116 			position_type = CAM_DEV_POS_NONE;
3117 
3118 			for (i = 0; i < cdm->num_patterns; i++) {
3119 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3120 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3121 					position_type = CAM_DEV_POS_EDT;
3122 					break;
3123 				}
3124 			}
3125 
3126 			if (cdm->num_patterns == 0)
3127 				position_type = CAM_DEV_POS_EDT;
3128 			else if (position_type == CAM_DEV_POS_NONE)
3129 				position_type = CAM_DEV_POS_PDRV;
3130 		}
3131 
3132 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3133 		case CAM_DEV_POS_EDT:
3134 			ret = xptedtmatch(cdm);
3135 			break;
3136 		case CAM_DEV_POS_PDRV:
3137 			ret = xptperiphlistmatch(cdm);
3138 			break;
3139 		default:
3140 			cdm->status = CAM_DEV_MATCH_ERROR;
3141 			break;
3142 		}
3143 
3144 		splx(s);
3145 
3146 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3147 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3148 		else
3149 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3150 
3151 		break;
3152 	}
3153 	case XPT_SASYNC_CB:
3154 	{
3155 		struct ccb_setasync *csa;
3156 		struct async_node *cur_entry;
3157 		struct async_list *async_head;
3158 		u_int32_t added;
3159 		int s;
3160 
3161 		csa = &start_ccb->csa;
3162 		added = csa->event_enable;
3163 		async_head = &csa->ccb_h.path->device->asyncs;
3164 
3165 		/*
3166 		 * If there is already an entry for us, simply
3167 		 * update it.
3168 		 */
3169 		s = splcam();
3170 		cur_entry = SLIST_FIRST(async_head);
3171 		while (cur_entry != NULL) {
3172 			if ((cur_entry->callback_arg == csa->callback_arg)
3173 			 && (cur_entry->callback == csa->callback))
3174 				break;
3175 			cur_entry = SLIST_NEXT(cur_entry, links);
3176 		}
3177 
3178 		if (cur_entry != NULL) {
3179 		 	/*
3180 			 * If the request has no flags set,
3181 			 * remove the entry.
3182 			 */
3183 			added &= ~cur_entry->event_enable;
3184 			if (csa->event_enable == 0) {
3185 				SLIST_REMOVE(async_head, cur_entry,
3186 					     async_node, links);
3187 				csa->ccb_h.path->device->refcount--;
3188 				free(cur_entry, M_DEVBUF);
3189 			} else {
3190 				cur_entry->event_enable = csa->event_enable;
3191 			}
3192 		} else {
3193 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3194 					   M_NOWAIT);
3195 			if (cur_entry == NULL) {
3196 				splx(s);
3197 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3198 				break;
3199 			}
3200 			cur_entry->event_enable = csa->event_enable;
3201 			cur_entry->callback_arg = csa->callback_arg;
3202 			cur_entry->callback = csa->callback;
3203 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3204 			csa->ccb_h.path->device->refcount++;
3205 		}
3206 
3207 		if ((added & AC_FOUND_DEVICE) != 0) {
3208 			/*
3209 			 * Get this peripheral up to date with all
3210 			 * the currently existing devices.
3211 			 */
3212 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3213 		}
3214 		if ((added & AC_PATH_REGISTERED) != 0) {
3215 			/*
3216 			 * Get this peripheral up to date with all
3217 			 * the currently existing busses.
3218 			 */
3219 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3220 		}
3221 		splx(s);
3222 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3223 		break;
3224 	}
3225 	case XPT_REL_SIMQ:
3226 	{
3227 		struct ccb_relsim *crs;
3228 		struct cam_ed *dev;
3229 		int s;
3230 
3231 		crs = &start_ccb->crs;
3232 		dev = crs->ccb_h.path->device;
3233 		if (dev == NULL) {
3234 
3235 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3236 			break;
3237 		}
3238 
3239 		s = splcam();
3240 
3241 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3242 
3243  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3244 
3245 				/* Don't ever go below one opening */
3246 				if (crs->openings > 0) {
3247 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3248 							    crs->openings);
3249 
3250 					if (bootverbose) {
3251 						xpt_print_path(crs->ccb_h.path);
3252 						printf("tagged openings "
3253 						       "now %d\n",
3254 						       crs->openings);
3255 					}
3256 				}
3257 			}
3258 		}
3259 
3260 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3261 
3262 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3263 
3264 				/*
3265 				 * Just extend the old timeout and decrement
3266 				 * the freeze count so that a single timeout
3267 				 * is sufficient for releasing the queue.
3268 				 */
3269 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3270 				untimeout(xpt_release_devq_timeout,
3271 					  dev, dev->c_handle);
3272 			} else {
3273 
3274 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3275 			}
3276 
3277 			dev->c_handle =
3278 				timeout(xpt_release_devq_timeout,
3279 					dev,
3280 					(crs->release_timeout * hz) / 1000);
3281 
3282 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3283 
3284 		}
3285 
3286 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3287 
3288 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3289 				/*
3290 				 * Decrement the freeze count so that a single
3291 				 * completion is still sufficient to unfreeze
3292 				 * the queue.
3293 				 */
3294 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3295 			} else {
3296 
3297 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3298 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3299 			}
3300 		}
3301 
3302 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3303 
3304 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3305 			 || (dev->ccbq.dev_active == 0)) {
3306 
3307 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3308 			} else {
3309 
3310 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3311 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3312 			}
3313 		}
3314 		splx(s);
3315 
3316 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3317 
3318 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3319 					 /*run_queue*/TRUE);
3320 		}
3321 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3322 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3323 		break;
3324 	}
3325 	case XPT_SCAN_BUS:
3326 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3327 		break;
3328 	case XPT_SCAN_LUN:
3329 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3330 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3331 			     start_ccb);
3332 		break;
3333 	case XPT_DEBUG: {
3334 #ifdef CAMDEBUG
3335 		int s;
3336 
3337 		s = splcam();
3338 #ifdef CAM_DEBUG_DELAY
3339 		cam_debug_delay = CAM_DEBUG_DELAY;
3340 #endif
3341 		cam_dflags = start_ccb->cdbg.flags;
3342 		if (cam_dpath != NULL) {
3343 			xpt_free_path(cam_dpath);
3344 			cam_dpath = NULL;
3345 		}
3346 
3347 		if (cam_dflags != CAM_DEBUG_NONE) {
3348 			if (xpt_create_path(&cam_dpath, xpt_periph,
3349 					    start_ccb->ccb_h.path_id,
3350 					    start_ccb->ccb_h.target_id,
3351 					    start_ccb->ccb_h.target_lun) !=
3352 					    CAM_REQ_CMP) {
3353 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3354 				cam_dflags = CAM_DEBUG_NONE;
3355 			} else {
3356 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3357 				xpt_print_path(cam_dpath);
3358 				printf("debugging flags now %x\n", cam_dflags);
3359 			}
3360 		} else {
3361 			cam_dpath = NULL;
3362 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3363 		}
3364 		splx(s);
3365 #else /* !CAMDEBUG */
3366 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3367 #endif /* CAMDEBUG */
3368 		break;
3369 	}
3370 	case XPT_NOOP:
3371 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3372 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3373 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3374 		break;
3375 	default:
3376 	case XPT_SDEV_TYPE:
3377 	case XPT_TERM_IO:
3378 	case XPT_ENG_INQ:
3379 		/* XXX Implement */
3380 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3381 		break;
3382 	}
3383 	splx(iopl);
3384 }
3385 
3386 void
3387 xpt_polled_action(union ccb *start_ccb)
3388 {
3389 	int	  s;
3390 	u_int32_t timeout;
3391 	struct	  cam_sim *sim;
3392 	struct	  cam_devq *devq;
3393 	struct	  cam_ed *dev;
3394 
3395 	timeout = start_ccb->ccb_h.timeout;
3396 	sim = start_ccb->ccb_h.path->bus->sim;
3397 	devq = sim->devq;
3398 	dev = start_ccb->ccb_h.path->device;
3399 
3400 	s = splcam();
3401 
3402 	/*
3403 	 * Steal an opening so that no other queued requests
3404 	 * can get it before us while we simulate interrupts.
3405 	 */
3406 	dev->ccbq.devq_openings--;
3407 	dev->ccbq.dev_openings--;
3408 
3409 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3410 	   && (--timeout > 0)) {
3411 		DELAY(1000);
3412 		(*(sim->sim_poll))(sim);
3413 		swi_camnet();
3414 		swi_cambio();
3415 	}
3416 
3417 	dev->ccbq.devq_openings++;
3418 	dev->ccbq.dev_openings++;
3419 
3420 	if (timeout != 0) {
3421 		xpt_action(start_ccb);
3422 		while(--timeout > 0) {
3423 			(*(sim->sim_poll))(sim);
3424 			swi_camnet();
3425 			swi_cambio();
3426 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3427 			    != CAM_REQ_INPROG)
3428 				break;
3429 			DELAY(1000);
3430 		}
3431 		if (timeout == 0) {
3432 			/*
3433 			 * XXX Is it worth adding a sim_timeout entry
3434 			 * point so we can attempt recovery?  If
3435 			 * this is only used for dumps, I don't think
3436 			 * it is.
3437 			 */
3438 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3439 		}
3440 	} else {
3441 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3442 	}
3443 	splx(s);
3444 }
3445 
3446 /*
3447  * Schedule a peripheral driver to receive a ccb when it's
3448  * target device has space for more transactions.
3449  */
3450 void
3451 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3452 {
3453 	struct cam_ed *device;
3454 	int s;
3455 	int runq;
3456 
3457 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3458 	device = perph->path->device;
3459 	s = splsoftcam();
3460 	if (periph_is_queued(perph)) {
3461 		/* Simply reorder based on new priority */
3462 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3463 			  ("   change priority to %d\n", new_priority));
3464 		if (new_priority < perph->pinfo.priority) {
3465 			camq_change_priority(&device->drvq,
3466 					     perph->pinfo.index,
3467 					     new_priority);
3468 		}
3469 		runq = 0;
3470 	} else {
3471 		/* New entry on the queue */
3472 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3473 			  ("   added periph to queue\n"));
3474 		perph->pinfo.priority = new_priority;
3475 		perph->pinfo.generation = ++device->drvq.generation;
3476 		camq_insert(&device->drvq, &perph->pinfo);
3477 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3478 	}
3479 	splx(s);
3480 	if (runq != 0) {
3481 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3482 			  ("   calling xpt_run_devq\n"));
3483 		xpt_run_dev_allocq(perph->path->bus);
3484 	}
3485 }
3486 
3487 
3488 /*
3489  * Schedule a device to run on a given queue.
3490  * If the device was inserted as a new entry on the queue,
3491  * return 1 meaning the device queue should be run. If we
3492  * were already queued, implying someone else has already
3493  * started the queue, return 0 so the caller doesn't attempt
3494  * to run the queue.  Must be run at either splsoftcam
3495  * (or splcam since that encompases splsoftcam).
3496  */
3497 static int
3498 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3499 		 u_int32_t new_priority)
3500 {
3501 	int retval;
3502 	u_int32_t old_priority;
3503 
3504 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3505 
3506 	old_priority = pinfo->priority;
3507 
3508 	/*
3509 	 * Are we already queued?
3510 	 */
3511 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3512 		/* Simply reorder based on new priority */
3513 		if (new_priority < old_priority) {
3514 			camq_change_priority(queue, pinfo->index,
3515 					     new_priority);
3516 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3517 					("changed priority to %d\n",
3518 					 new_priority));
3519 		}
3520 		retval = 0;
3521 	} else {
3522 		/* New entry on the queue */
3523 		if (new_priority < old_priority)
3524 			pinfo->priority = new_priority;
3525 
3526 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3527 				("Inserting onto queue\n"));
3528 		pinfo->generation = ++queue->generation;
3529 		camq_insert(queue, pinfo);
3530 		retval = 1;
3531 	}
3532 	return (retval);
3533 }
3534 
3535 static void
3536 xpt_run_dev_allocq(struct cam_eb *bus)
3537 {
3538 	struct	cam_devq *devq;
3539 	int	s;
3540 
3541 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3542 	devq = bus->sim->devq;
3543 
3544 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3545 			("   qfrozen_cnt == 0x%x, entries == %d, "
3546 			 "openings == %d, active == %d\n",
3547 			 devq->alloc_queue.qfrozen_cnt,
3548 			 devq->alloc_queue.entries,
3549 			 devq->alloc_openings,
3550 			 devq->alloc_active));
3551 
3552 	s = splsoftcam();
3553 	devq->alloc_queue.qfrozen_cnt++;
3554 	while ((devq->alloc_queue.entries > 0)
3555 	    && (devq->alloc_openings > 0)
3556 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3557 		struct	cam_ed_qinfo *qinfo;
3558 		struct	cam_ed *device;
3559 		union	ccb *work_ccb;
3560 		struct	cam_periph *drv;
3561 		struct	camq *drvq;
3562 
3563 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3564 							   CAMQ_HEAD);
3565 		device = qinfo->device;
3566 
3567 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3568 				("running device %p\n", device));
3569 
3570 		drvq = &device->drvq;
3571 
3572 #ifdef CAMDEBUG
3573 		if (drvq->entries <= 0) {
3574 			panic("xpt_run_dev_allocq: "
3575 			      "Device on queue without any work to do");
3576 		}
3577 #endif
3578 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3579 			devq->alloc_openings--;
3580 			devq->alloc_active++;
3581 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3582 			splx(s);
3583 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3584 				      drv->pinfo.priority);
3585 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3586 					("calling periph start\n"));
3587 			drv->periph_start(drv, work_ccb);
3588 		} else {
3589 			/*
3590 			 * Malloc failure in alloc_ccb
3591 			 */
3592 			/*
3593 			 * XXX add us to a list to be run from free_ccb
3594 			 * if we don't have any ccbs active on this
3595 			 * device queue otherwise we may never get run
3596 			 * again.
3597 			 */
3598 			break;
3599 		}
3600 
3601 		/* Raise IPL for possible insertion and test at top of loop */
3602 		s = splsoftcam();
3603 
3604 		if (drvq->entries > 0) {
3605 			/* We have more work.  Attempt to reschedule */
3606 			xpt_schedule_dev_allocq(bus, device);
3607 		}
3608 	}
3609 	devq->alloc_queue.qfrozen_cnt--;
3610 	splx(s);
3611 }
3612 
3613 static void
3614 xpt_run_dev_sendq(struct cam_eb *bus)
3615 {
3616 	struct	cam_devq *devq;
3617 	int	s;
3618 
3619 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3620 
3621 	devq = bus->sim->devq;
3622 
3623 	s = splcam();
3624 	devq->send_queue.qfrozen_cnt++;
3625 	splx(s);
3626 	s = splsoftcam();
3627 	while ((devq->send_queue.entries > 0)
3628 	    && (devq->send_openings > 0)) {
3629 		struct	cam_ed_qinfo *qinfo;
3630 		struct	cam_ed *device;
3631 		union ccb *work_ccb;
3632 		struct	cam_sim *sim;
3633 		int	ospl;
3634 
3635 		ospl = splcam();
3636 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3637 			splx(ospl);
3638 			break;
3639 		}
3640 
3641 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3642 							   CAMQ_HEAD);
3643 		device = qinfo->device;
3644 
3645 		/*
3646 		 * If the device has been "frozen", don't attempt
3647 		 * to run it.
3648 		 */
3649 		if (device->qfrozen_cnt > 0) {
3650 			splx(ospl);
3651 			continue;
3652 		}
3653 
3654 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3655 				("running device %p\n", device));
3656 
3657 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3658 		if (work_ccb == NULL) {
3659 			printf("device on run queue with no ccbs???\n");
3660 			splx(ospl);
3661 			continue;
3662 		}
3663 
3664 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3665 
3666 		 	if (num_highpower <= 0) {
3667 				/*
3668 				 * We got a high power command, but we
3669 				 * don't have any available slots.  Freeze
3670 				 * the device queue until we have a slot
3671 				 * available.
3672 				 */
3673 				device->qfrozen_cnt++;
3674 				STAILQ_INSERT_TAIL(&highpowerq,
3675 						   &work_ccb->ccb_h,
3676 						   xpt_links.stqe);
3677 
3678 				splx(ospl);
3679 				continue;
3680 			} else {
3681 				/*
3682 				 * Consume a high power slot while
3683 				 * this ccb runs.
3684 				 */
3685 				num_highpower--;
3686 			}
3687 		}
3688 		devq->active_dev = device;
3689 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3690 
3691 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3692 		splx(ospl);
3693 
3694 		devq->send_openings--;
3695 		devq->send_active++;
3696 
3697 		if (device->ccbq.queue.entries > 0)
3698 			xpt_schedule_dev_sendq(bus, device);
3699 
3700 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3701 			/*
3702 			 * The client wants to freeze the queue
3703 			 * after this CCB is sent.
3704 			 */
3705 			ospl = splcam();
3706 			device->qfrozen_cnt++;
3707 			splx(ospl);
3708 		}
3709 
3710 		splx(s);
3711 
3712 		/* In Target mode, the peripheral driver knows best... */
3713 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3714 			if ((device->inq_flags & SID_CmdQue) != 0
3715 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3716 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3717 			else
3718 				/*
3719 				 * Clear this in case of a retried CCB that
3720 				 * failed due to a rejected tag.
3721 				 */
3722 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3723 		}
3724 
3725 		/*
3726 		 * Device queues can be shared among multiple sim instances
3727 		 * that reside on different busses.  Use the SIM in the queue
3728 		 * CCB's path, rather than the one in the bus that was passed
3729 		 * into this function.
3730 		 */
3731 		sim = work_ccb->ccb_h.path->bus->sim;
3732 		(*(sim->sim_action))(sim, work_ccb);
3733 
3734 		ospl = splcam();
3735 		devq->active_dev = NULL;
3736 		splx(ospl);
3737 		/* Raise IPL for possible insertion and test at top of loop */
3738 		s = splsoftcam();
3739 	}
3740 	splx(s);
3741 	s = splcam();
3742 	devq->send_queue.qfrozen_cnt--;
3743 	splx(s);
3744 }
3745 
3746 /*
3747  * This function merges stuff from the slave ccb into the master ccb, while
3748  * keeping important fields in the master ccb constant.
3749  */
3750 void
3751 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3752 {
3753 	/*
3754 	 * Pull fields that are valid for peripheral drivers to set
3755 	 * into the master CCB along with the CCB "payload".
3756 	 */
3757 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3758 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3759 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3760 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3761 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3762 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3763 }
3764 
3765 void
3766 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3767 {
3768 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3769 	ccb_h->pinfo.priority = priority;
3770 	ccb_h->path = path;
3771 	ccb_h->path_id = path->bus->path_id;
3772 	if (path->target)
3773 		ccb_h->target_id = path->target->target_id;
3774 	else
3775 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3776 	if (path->device) {
3777 		ccb_h->target_lun = path->device->lun_id;
3778 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3779 	} else {
3780 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3781 	}
3782 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3783 	ccb_h->flags = 0;
3784 }
3785 
3786 /* Path manipulation functions */
3787 cam_status
3788 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3789 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3790 {
3791 	struct	   cam_path *path;
3792 	cam_status status;
3793 
3794 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3795 
3796 	if (path == NULL) {
3797 		status = CAM_RESRC_UNAVAIL;
3798 		return(status);
3799 	}
3800 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3801 	if (status != CAM_REQ_CMP) {
3802 		free(path, M_DEVBUF);
3803 		path = NULL;
3804 	}
3805 	*new_path_ptr = path;
3806 	return (status);
3807 }
3808 
3809 static cam_status
3810 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3811 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3812 {
3813 	struct	     cam_eb *bus;
3814 	struct	     cam_et *target;
3815 	struct	     cam_ed *device;
3816 	cam_status   status;
3817 	int	     s;
3818 
3819 	status = CAM_REQ_CMP;	/* Completed without error */
3820 	target = NULL;		/* Wildcarded */
3821 	device = NULL;		/* Wildcarded */
3822 
3823 	/*
3824 	 * We will potentially modify the EDT, so block interrupts
3825 	 * that may attempt to create cam paths.
3826 	 */
3827 	s = splcam();
3828 	bus = xpt_find_bus(path_id);
3829 	if (bus == NULL) {
3830 		status = CAM_PATH_INVALID;
3831 	} else {
3832 		target = xpt_find_target(bus, target_id);
3833 		if (target == NULL) {
3834 			/* Create one */
3835 			struct cam_et *new_target;
3836 
3837 			new_target = xpt_alloc_target(bus, target_id);
3838 			if (new_target == NULL) {
3839 				status = CAM_RESRC_UNAVAIL;
3840 			} else {
3841 				target = new_target;
3842 			}
3843 		}
3844 		if (target != NULL) {
3845 			device = xpt_find_device(target, lun_id);
3846 			if (device == NULL) {
3847 				/* Create one */
3848 				struct cam_ed *new_device;
3849 
3850 				new_device = xpt_alloc_device(bus,
3851 							      target,
3852 							      lun_id);
3853 				if (new_device == NULL) {
3854 					status = CAM_RESRC_UNAVAIL;
3855 				} else {
3856 					device = new_device;
3857 				}
3858 			}
3859 		}
3860 	}
3861 	splx(s);
3862 
3863 	/*
3864 	 * Only touch the user's data if we are successful.
3865 	 */
3866 	if (status == CAM_REQ_CMP) {
3867 		new_path->periph = perph;
3868 		new_path->bus = bus;
3869 		new_path->target = target;
3870 		new_path->device = device;
3871 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3872 	} else {
3873 		if (device != NULL)
3874 			xpt_release_device(bus, target, device);
3875 		if (target != NULL)
3876 			xpt_release_target(bus, target);
3877 		if (bus != NULL)
3878 			xpt_release_bus(bus);
3879 	}
3880 	return (status);
3881 }
3882 
3883 static void
3884 xpt_release_path(struct cam_path *path)
3885 {
3886 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3887 	if (path->device != NULL) {
3888 		xpt_release_device(path->bus, path->target, path->device);
3889 		path->device = NULL;
3890 	}
3891 	if (path->target != NULL) {
3892 		xpt_release_target(path->bus, path->target);
3893 		path->target = NULL;
3894 	}
3895 	if (path->bus != NULL) {
3896 		xpt_release_bus(path->bus);
3897 		path->bus = NULL;
3898 	}
3899 }
3900 
3901 void
3902 xpt_free_path(struct cam_path *path)
3903 {
3904 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3905 	xpt_release_path(path);
3906 	free(path, M_DEVBUF);
3907 }
3908 
3909 
3910 /*
3911  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3912  * in path1, 2 for match with wildcards in path2.
3913  */
3914 int
3915 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3916 {
3917 	int retval = 0;
3918 
3919 	if (path1->bus != path2->bus) {
3920 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3921 			retval = 1;
3922 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3923 			retval = 2;
3924 		else
3925 			return (-1);
3926 	}
3927 	if (path1->target != path2->target) {
3928 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3929 			if (retval == 0)
3930 				retval = 1;
3931 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3932 			retval = 2;
3933 		else
3934 			return (-1);
3935 	}
3936 	if (path1->device != path2->device) {
3937 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3938 			if (retval == 0)
3939 				retval = 1;
3940 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3941 			retval = 2;
3942 		else
3943 			return (-1);
3944 	}
3945 	return (retval);
3946 }
3947 
3948 void
3949 xpt_print_path(struct cam_path *path)
3950 {
3951 	if (path == NULL)
3952 		printf("(nopath): ");
3953 	else {
3954 		if (path->periph != NULL)
3955 			printf("(%s%d:", path->periph->periph_name,
3956 			       path->periph->unit_number);
3957 		else
3958 			printf("(noperiph:");
3959 
3960 		if (path->bus != NULL)
3961 			printf("%s%d:%d:", path->bus->sim->sim_name,
3962 			       path->bus->sim->unit_number,
3963 			       path->bus->sim->bus_id);
3964 		else
3965 			printf("nobus:");
3966 
3967 		if (path->target != NULL)
3968 			printf("%d:", path->target->target_id);
3969 		else
3970 			printf("X:");
3971 
3972 		if (path->device != NULL)
3973 			printf("%d): ", path->device->lun_id);
3974 		else
3975 			printf("X): ");
3976 	}
3977 }
3978 
3979 path_id_t
3980 xpt_path_path_id(struct cam_path *path)
3981 {
3982 	return(path->bus->path_id);
3983 }
3984 
3985 target_id_t
3986 xpt_path_target_id(struct cam_path *path)
3987 {
3988 	if (path->target != NULL)
3989 		return (path->target->target_id);
3990 	else
3991 		return (CAM_TARGET_WILDCARD);
3992 }
3993 
3994 lun_id_t
3995 xpt_path_lun_id(struct cam_path *path)
3996 {
3997 	if (path->device != NULL)
3998 		return (path->device->lun_id);
3999 	else
4000 		return (CAM_LUN_WILDCARD);
4001 }
4002 
4003 struct cam_sim *
4004 xpt_path_sim(struct cam_path *path)
4005 {
4006 	return (path->bus->sim);
4007 }
4008 
4009 struct cam_periph*
4010 xpt_path_periph(struct cam_path *path)
4011 {
4012 	return (path->periph);
4013 }
4014 
4015 /*
4016  * Release a CAM control block for the caller.  Remit the cost of the structure
4017  * to the device referenced by the path.  If the this device had no 'credits'
4018  * and peripheral drivers have registered async callbacks for this notification
4019  * call them now.
4020  */
4021 void
4022 xpt_release_ccb(union ccb *free_ccb)
4023 {
4024 	int	 s;
4025 	struct	 cam_path *path;
4026 	struct	 cam_ed *device;
4027 	struct	 cam_eb *bus;
4028 
4029 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4030 	path = free_ccb->ccb_h.path;
4031 	device = path->device;
4032 	bus = path->bus;
4033 	s = splsoftcam();
4034 	cam_ccbq_release_opening(&device->ccbq);
4035 	if (xpt_ccb_count > xpt_max_ccbs) {
4036 		xpt_free_ccb(free_ccb);
4037 		xpt_ccb_count--;
4038 	} else {
4039 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
4040 	}
4041 	bus->sim->devq->alloc_openings++;
4042 	bus->sim->devq->alloc_active--;
4043 	/* XXX Turn this into an inline function - xpt_run_device?? */
4044 	if ((device_is_alloc_queued(device) == 0)
4045 	 && (device->drvq.entries > 0)) {
4046 		xpt_schedule_dev_allocq(bus, device);
4047 	}
4048 	splx(s);
4049 	if (dev_allocq_is_runnable(bus->sim->devq))
4050 		xpt_run_dev_allocq(bus);
4051 }
4052 
4053 /* Functions accessed by SIM drivers */
4054 
4055 /*
4056  * A sim structure, listing the SIM entry points and instance
4057  * identification info is passed to xpt_bus_register to hook the SIM
4058  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4059  * for this new bus and places it in the array of busses and assigns
4060  * it a path_id.  The path_id may be influenced by "hard wiring"
4061  * information specified by the user.  Once interrupt services are
4062  * availible, the bus will be probed.
4063  */
4064 int32_t
4065 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4066 {
4067 	struct cam_eb *new_bus;
4068 	struct cam_eb *old_bus;
4069 	struct ccb_pathinq cpi;
4070 	int s;
4071 
4072 	sim->bus_id = bus;
4073 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4074 					  M_DEVBUF, M_NOWAIT);
4075 	if (new_bus == NULL) {
4076 		/* Couldn't satisfy request */
4077 		return (CAM_RESRC_UNAVAIL);
4078 	}
4079 
4080 	if (strcmp(sim->sim_name, "xpt") != 0) {
4081 
4082 		sim->path_id =
4083 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4084 	}
4085 
4086 	TAILQ_INIT(&new_bus->et_entries);
4087 	new_bus->path_id = sim->path_id;
4088 	new_bus->sim = sim;
4089 	timevalclear(&new_bus->last_reset);
4090 	new_bus->flags = 0;
4091 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4092 	new_bus->generation = 0;
4093 	s = splcam();
4094 	old_bus = TAILQ_FIRST(&xpt_busses);
4095 	while (old_bus != NULL
4096 	    && old_bus->path_id < new_bus->path_id)
4097 		old_bus = TAILQ_NEXT(old_bus, links);
4098 	if (old_bus != NULL)
4099 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4100 	else
4101 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4102 	bus_generation++;
4103 	splx(s);
4104 
4105 	/* Notify interested parties */
4106 	if (sim->path_id != CAM_XPT_PATH_ID) {
4107 		struct cam_path path;
4108 
4109 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4110 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4111 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4112 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4113 		xpt_action((union ccb *)&cpi);
4114 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4115 		xpt_release_path(&path);
4116 	}
4117 	return (CAM_SUCCESS);
4118 }
4119 
4120 int32_t
4121 xpt_bus_deregister(path_id_t pathid)
4122 {
4123 	struct cam_path bus_path;
4124 	cam_status status;
4125 
4126 	status = xpt_compile_path(&bus_path, NULL, pathid,
4127 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4128 	if (status != CAM_REQ_CMP)
4129 		return (status);
4130 
4131 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4132 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4133 
4134 	/* Release the reference count held while registered. */
4135 	xpt_release_bus(bus_path.bus);
4136 	xpt_release_path(&bus_path);
4137 
4138 	return (CAM_REQ_CMP);
4139 }
4140 
4141 static path_id_t
4142 xptnextfreepathid(void)
4143 {
4144 	struct cam_eb *bus;
4145 	path_id_t pathid;
4146 	char *strval;
4147 
4148 	pathid = 0;
4149 	bus = TAILQ_FIRST(&xpt_busses);
4150 retry:
4151 	/* Find an unoccupied pathid */
4152 	while (bus != NULL
4153 	    && bus->path_id <= pathid) {
4154 		if (bus->path_id == pathid)
4155 			pathid++;
4156 		bus = TAILQ_NEXT(bus, links);
4157 	}
4158 
4159 	/*
4160 	 * Ensure that this pathid is not reserved for
4161 	 * a bus that may be registered in the future.
4162 	 */
4163 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4164 		++pathid;
4165 		/* Start the search over */
4166 		goto retry;
4167 	}
4168 	return (pathid);
4169 }
4170 
4171 static path_id_t
4172 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4173 {
4174 	path_id_t pathid;
4175 	int i, dunit, val;
4176 	char buf[32], *strval;
4177 
4178 	pathid = CAM_XPT_PATH_ID;
4179 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4180 	i = -1;
4181 	while ((i = resource_locate(i, "scbus")) != -1) {
4182 		dunit = resource_query_unit(i);
4183 		if (dunit < 0)		/* unwired?! */
4184 			continue;
4185 		if (resource_string_value("scbus", dunit, "at", &strval) != 0)
4186 			continue;
4187 		if (strcmp(buf, strval) != 0)
4188 			continue;
4189 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4190 			if (sim_bus == val) {
4191 				pathid = dunit;
4192 				break;
4193 			}
4194 		} else if (sim_bus == 0) {
4195 			/* Unspecified matches bus 0 */
4196 			pathid = dunit;
4197 			break;
4198 		} else {
4199 			printf("Ambiguous scbus configuration for %s%d "
4200 			       "bus %d, cannot wire down.  The kernel "
4201 			       "config entry for scbus%d should "
4202 			       "specify a controller bus.\n"
4203 			       "Scbus will be assigned dynamically.\n",
4204 			       sim_name, sim_unit, sim_bus, dunit);
4205 			break;
4206 		}
4207 	}
4208 
4209 	if (pathid == CAM_XPT_PATH_ID)
4210 		pathid = xptnextfreepathid();
4211 	return (pathid);
4212 }
4213 
4214 void
4215 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4216 {
4217 	struct cam_eb *bus;
4218 	struct cam_et *target, *next_target;
4219 	struct cam_ed *device, *next_device;
4220 	int s;
4221 
4222 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4223 
4224 	/*
4225 	 * Most async events come from a CAM interrupt context.  In
4226 	 * a few cases, the error recovery code at the peripheral layer,
4227 	 * which may run from our SWI or a process context, may signal
4228 	 * deferred events with a call to xpt_async. Ensure async
4229 	 * notifications are serialized by blocking cam interrupts.
4230 	 */
4231 	s = splcam();
4232 
4233 	bus = path->bus;
4234 
4235 	if (async_code == AC_BUS_RESET) {
4236 		int s;
4237 
4238 		s = splclock();
4239 		/* Update our notion of when the last reset occurred */
4240 		microtime(&bus->last_reset);
4241 		splx(s);
4242 	}
4243 
4244 	for (target = TAILQ_FIRST(&bus->et_entries);
4245 	     target != NULL;
4246 	     target = next_target) {
4247 
4248 		next_target = TAILQ_NEXT(target, links);
4249 
4250 		if (path->target != target
4251 		 && path->target->target_id != CAM_TARGET_WILDCARD
4252 		 && target->target_id != CAM_TARGET_WILDCARD)
4253 			continue;
4254 
4255 		if (async_code == AC_SENT_BDR) {
4256 			int s;
4257 
4258 			/* Update our notion of when the last reset occurred */
4259 			s = splclock();
4260 			microtime(&path->target->last_reset);
4261 			splx(s);
4262 		}
4263 
4264 		for (device = TAILQ_FIRST(&target->ed_entries);
4265 		     device != NULL;
4266 		     device = next_device) {
4267 
4268 			next_device = TAILQ_NEXT(device, links);
4269 
4270 			if (path->device != device
4271 			 && path->device->lun_id != CAM_LUN_WILDCARD
4272 			 && device->lun_id != CAM_LUN_WILDCARD)
4273 				continue;
4274 
4275 			xpt_dev_async(async_code, bus, target,
4276 				      device, async_arg);
4277 
4278 			xpt_async_bcast(&device->asyncs, async_code,
4279 					path, async_arg);
4280 		}
4281 	}
4282 
4283 	/*
4284 	 * If this wasn't a fully wildcarded async, tell all
4285 	 * clients that want all async events.
4286 	 */
4287 	if (bus != xpt_periph->path->bus)
4288 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4289 				path, async_arg);
4290 	splx(s);
4291 }
4292 
4293 static void
4294 xpt_async_bcast(struct async_list *async_head,
4295 		u_int32_t async_code,
4296 		struct cam_path *path, void *async_arg)
4297 {
4298 	struct async_node *cur_entry;
4299 
4300 	cur_entry = SLIST_FIRST(async_head);
4301 	while (cur_entry != NULL) {
4302 		struct async_node *next_entry;
4303 		/*
4304 		 * Grab the next list entry before we call the current
4305 		 * entry's callback.  This is because the callback function
4306 		 * can delete its async callback entry.
4307 		 */
4308 		next_entry = SLIST_NEXT(cur_entry, links);
4309 		if ((cur_entry->event_enable & async_code) != 0)
4310 			cur_entry->callback(cur_entry->callback_arg,
4311 					    async_code, path,
4312 					    async_arg);
4313 		cur_entry = next_entry;
4314 	}
4315 }
4316 
4317 /*
4318  * Handle any per-device event notifications that require action by the XPT.
4319  */
4320 static void
4321 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4322 	      struct cam_ed *device, void *async_arg)
4323 {
4324 	cam_status status;
4325 	struct cam_path newpath;
4326 
4327 	/*
4328 	 * We only need to handle events for real devices.
4329 	 */
4330 	if (target->target_id == CAM_TARGET_WILDCARD
4331 	 || device->lun_id == CAM_LUN_WILDCARD)
4332 		return;
4333 
4334 	/*
4335 	 * We need our own path with wildcards expanded to
4336 	 * handle certain types of events.
4337 	 */
4338 	if ((async_code == AC_SENT_BDR)
4339 	 || (async_code == AC_BUS_RESET)
4340 	 || (async_code == AC_INQ_CHANGED))
4341 		status = xpt_compile_path(&newpath, NULL,
4342 					  bus->path_id,
4343 					  target->target_id,
4344 					  device->lun_id);
4345 	else
4346 		status = CAM_REQ_CMP_ERR;
4347 
4348 	if (status == CAM_REQ_CMP) {
4349 
4350 		/*
4351 		 * Allow transfer negotiation to occur in a
4352 		 * tag free environment.
4353 		 */
4354 		if (async_code == AC_SENT_BDR
4355 		 || async_code == AC_BUS_RESET)
4356 			xpt_toggle_tags(&newpath);
4357 
4358 		if (async_code == AC_INQ_CHANGED) {
4359 			/*
4360 			 * We've sent a start unit command, or
4361 			 * something similar to a device that
4362 			 * may have caused its inquiry data to
4363 			 * change. So we re-scan the device to
4364 			 * refresh the inquiry data for it.
4365 			 */
4366 			xpt_scan_lun(newpath.periph, &newpath,
4367 				     CAM_EXPECT_INQ_CHANGE, NULL);
4368 		}
4369 		xpt_release_path(&newpath);
4370 	} else if (async_code == AC_LOST_DEVICE) {
4371 		device->flags |= CAM_DEV_UNCONFIGURED;
4372 	} else if (async_code == AC_TRANSFER_NEG) {
4373 		struct ccb_trans_settings *settings;
4374 
4375 		settings = (struct ccb_trans_settings *)async_arg;
4376 		xpt_set_transfer_settings(settings, device,
4377 					  /*async_update*/TRUE);
4378 	}
4379 }
4380 
4381 u_int32_t
4382 xpt_freeze_devq(struct cam_path *path, u_int count)
4383 {
4384 	int s;
4385 	struct ccb_hdr *ccbh;
4386 
4387 	s = splcam();
4388 	path->device->qfrozen_cnt += count;
4389 
4390 	/*
4391 	 * Mark the last CCB in the queue as needing
4392 	 * to be requeued if the driver hasn't
4393 	 * changed it's state yet.  This fixes a race
4394 	 * where a ccb is just about to be queued to
4395 	 * a controller driver when it's interrupt routine
4396 	 * freezes the queue.  To completly close the
4397 	 * hole, controller drives must check to see
4398 	 * if a ccb's status is still CAM_REQ_INPROG
4399 	 * under spl protection just before they queue
4400 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4401 	 * an example.
4402 	 */
4403 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4404 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4405 		ccbh->status = CAM_REQUEUE_REQ;
4406 	splx(s);
4407 	return (path->device->qfrozen_cnt);
4408 }
4409 
4410 u_int32_t
4411 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4412 {
4413 	sim->devq->send_queue.qfrozen_cnt += count;
4414 	if (sim->devq->active_dev != NULL) {
4415 		struct ccb_hdr *ccbh;
4416 
4417 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4418 				  ccb_hdr_tailq);
4419 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4420 			ccbh->status = CAM_REQUEUE_REQ;
4421 	}
4422 	return (sim->devq->send_queue.qfrozen_cnt);
4423 }
4424 
4425 static void
4426 xpt_release_devq_timeout(void *arg)
4427 {
4428 	struct cam_ed *device;
4429 
4430 	device = (struct cam_ed *)arg;
4431 
4432 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4433 }
4434 
4435 void
4436 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4437 {
4438 	xpt_release_devq_device(path->device, count, run_queue);
4439 }
4440 
4441 static void
4442 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4443 {
4444 	int	rundevq;
4445 	int	s0, s1;
4446 
4447 	rundevq = 0;
4448 	s0 = splsoftcam();
4449 	s1 = splcam();
4450 	if (dev->qfrozen_cnt > 0) {
4451 
4452 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4453 		dev->qfrozen_cnt -= count;
4454 		if (dev->qfrozen_cnt == 0) {
4455 
4456 			/*
4457 			 * No longer need to wait for a successful
4458 			 * command completion.
4459 			 */
4460 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4461 
4462 			/*
4463 			 * Remove any timeouts that might be scheduled
4464 			 * to release this queue.
4465 			 */
4466 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4467 				untimeout(xpt_release_devq_timeout, dev,
4468 					  dev->c_handle);
4469 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4470 			}
4471 
4472 			/*
4473 			 * Now that we are unfrozen schedule the
4474 			 * device so any pending transactions are
4475 			 * run.
4476 			 */
4477 			if ((dev->ccbq.queue.entries > 0)
4478 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4479 			 && (run_queue != 0)) {
4480 				rundevq = 1;
4481 			}
4482 		}
4483 	}
4484 	splx(s1);
4485 	if (rundevq != 0)
4486 		xpt_run_dev_sendq(dev->target->bus);
4487 	splx(s0);
4488 }
4489 
4490 void
4491 xpt_release_simq(struct cam_sim *sim, int run_queue)
4492 {
4493 	int	s;
4494 	struct	camq *sendq;
4495 
4496 	sendq = &(sim->devq->send_queue);
4497 	s = splcam();
4498 	if (sendq->qfrozen_cnt > 0) {
4499 
4500 		sendq->qfrozen_cnt--;
4501 		if (sendq->qfrozen_cnt == 0) {
4502 			struct cam_eb *bus;
4503 
4504 			/*
4505 			 * If there is a timeout scheduled to release this
4506 			 * sim queue, remove it.  The queue frozen count is
4507 			 * already at 0.
4508 			 */
4509 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4510 				untimeout(xpt_release_simq_timeout, sim,
4511 					  sim->c_handle);
4512 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4513 			}
4514 			bus = xpt_find_bus(sim->path_id);
4515 			splx(s);
4516 
4517 			if (run_queue) {
4518 				/*
4519 				 * Now that we are unfrozen run the send queue.
4520 				 */
4521 				xpt_run_dev_sendq(bus);
4522 			}
4523 			xpt_release_bus(bus);
4524 		} else
4525 			splx(s);
4526 	} else
4527 		splx(s);
4528 }
4529 
4530 static void
4531 xpt_release_simq_timeout(void *arg)
4532 {
4533 	struct cam_sim *sim;
4534 
4535 	sim = (struct cam_sim *)arg;
4536 	xpt_release_simq(sim, /* run_queue */ TRUE);
4537 }
4538 
4539 void
4540 xpt_done(union ccb *done_ccb)
4541 {
4542 	int s;
4543 
4544 	s = splcam();
4545 
4546 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4547 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4548 		/*
4549 		 * Queue up the request for handling by our SWI handler
4550 		 * any of the "non-immediate" type of ccbs.
4551 		 */
4552 		switch (done_ccb->ccb_h.path->periph->type) {
4553 		case CAM_PERIPH_BIO:
4554 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4555 					  sim_links.tqe);
4556 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4557 			setsoftcambio();
4558 			break;
4559 		case CAM_PERIPH_NET:
4560 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4561 					  sim_links.tqe);
4562 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4563 			setsoftcamnet();
4564 			break;
4565 		}
4566 	}
4567 	splx(s);
4568 }
4569 
4570 union ccb *
4571 xpt_alloc_ccb()
4572 {
4573 	union ccb *new_ccb;
4574 
4575 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4576 	return (new_ccb);
4577 }
4578 
4579 void
4580 xpt_free_ccb(union ccb *free_ccb)
4581 {
4582 	free(free_ccb, M_DEVBUF);
4583 }
4584 
4585 
4586 
4587 /* Private XPT functions */
4588 
4589 /*
4590  * Get a CAM control block for the caller. Charge the structure to the device
4591  * referenced by the path.  If the this device has no 'credits' then the
4592  * device already has the maximum number of outstanding operations under way
4593  * and we return NULL. If we don't have sufficient resources to allocate more
4594  * ccbs, we also return NULL.
4595  */
4596 static union ccb *
4597 xpt_get_ccb(struct cam_ed *device)
4598 {
4599 	union ccb *new_ccb;
4600 	int s;
4601 
4602 	s = splsoftcam();
4603 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4604 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4605                 if (new_ccb == NULL) {
4606 			splx(s);
4607 			return (NULL);
4608 		}
4609 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4610 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4611 				  xpt_links.sle);
4612 		xpt_ccb_count++;
4613 	}
4614 	cam_ccbq_take_opening(&device->ccbq);
4615 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4616 	splx(s);
4617 	return (new_ccb);
4618 }
4619 
4620 static void
4621 xpt_release_bus(struct cam_eb *bus)
4622 {
4623 	int s;
4624 
4625 	s = splcam();
4626 	if ((--bus->refcount == 0)
4627 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4628 		TAILQ_REMOVE(&xpt_busses, bus, links);
4629 		bus_generation++;
4630 		splx(s);
4631 		free(bus, M_DEVBUF);
4632 	} else
4633 		splx(s);
4634 }
4635 
4636 static struct cam_et *
4637 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4638 {
4639 	struct cam_et *target;
4640 
4641 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4642 	if (target != NULL) {
4643 		struct cam_et *cur_target;
4644 
4645 		TAILQ_INIT(&target->ed_entries);
4646 		target->bus = bus;
4647 		target->target_id = target_id;
4648 		target->refcount = 1;
4649 		target->generation = 0;
4650 		timevalclear(&target->last_reset);
4651 		/*
4652 		 * Hold a reference to our parent bus so it
4653 		 * will not go away before we do.
4654 		 */
4655 		bus->refcount++;
4656 
4657 		/* Insertion sort into our bus's target list */
4658 		cur_target = TAILQ_FIRST(&bus->et_entries);
4659 		while (cur_target != NULL && cur_target->target_id < target_id)
4660 			cur_target = TAILQ_NEXT(cur_target, links);
4661 
4662 		if (cur_target != NULL) {
4663 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4664 		} else {
4665 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4666 		}
4667 		bus->generation++;
4668 	}
4669 	return (target);
4670 }
4671 
4672 static void
4673 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4674 {
4675 	int s;
4676 
4677 	s = splcam();
4678 	if ((--target->refcount == 0)
4679 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4680 		TAILQ_REMOVE(&bus->et_entries, target, links);
4681 		bus->generation++;
4682 		splx(s);
4683 		free(target, M_DEVBUF);
4684 		xpt_release_bus(bus);
4685 	} else
4686 		splx(s);
4687 }
4688 
4689 static struct cam_ed *
4690 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4691 {
4692 	struct	   cam_ed *device;
4693 	struct	   cam_devq *devq;
4694 	cam_status status;
4695 
4696 	/* Make space for us in the device queue on our bus */
4697 	devq = bus->sim->devq;
4698 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4699 
4700 	if (status != CAM_REQ_CMP) {
4701 		device = NULL;
4702 	} else {
4703 		device = (struct cam_ed *)malloc(sizeof(*device),
4704 						 M_DEVBUF, M_NOWAIT);
4705 	}
4706 
4707 	if (device != NULL) {
4708 		struct cam_ed *cur_device;
4709 
4710 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4711 		device->alloc_ccb_entry.device = device;
4712 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4713 		device->send_ccb_entry.device = device;
4714 		device->target = target;
4715 		device->lun_id = lun_id;
4716 		/* Initialize our queues */
4717 		if (camq_init(&device->drvq, 0) != 0) {
4718 			free(device, M_DEVBUF);
4719 			return (NULL);
4720 		}
4721 		if (cam_ccbq_init(&device->ccbq,
4722 				  bus->sim->max_dev_openings) != 0) {
4723 			camq_fini(&device->drvq);
4724 			free(device, M_DEVBUF);
4725 			return (NULL);
4726 		}
4727 		SLIST_INIT(&device->asyncs);
4728 		SLIST_INIT(&device->periphs);
4729 		device->generation = 0;
4730 		device->owner = NULL;
4731 		/*
4732 		 * Take the default quirk entry until we have inquiry
4733 		 * data and can determine a better quirk to use.
4734 		 */
4735 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4736 		bzero(&device->inq_data, sizeof(device->inq_data));
4737 		device->inq_flags = 0;
4738 		device->queue_flags = 0;
4739 		device->serial_num = NULL;
4740 		device->serial_num_len = 0;
4741 		device->qfrozen_cnt = 0;
4742 		device->flags = CAM_DEV_UNCONFIGURED;
4743 		device->tag_delay_count = 0;
4744 		device->refcount = 1;
4745 		callout_handle_init(&device->c_handle);
4746 
4747 		/*
4748 		 * Hold a reference to our parent target so it
4749 		 * will not go away before we do.
4750 		 */
4751 		target->refcount++;
4752 
4753 		/*
4754 		 * XXX should be limited by number of CCBs this bus can
4755 		 * do.
4756 		 */
4757 		xpt_max_ccbs += device->ccbq.devq_openings;
4758 		/* Insertion sort into our target's device list */
4759 		cur_device = TAILQ_FIRST(&target->ed_entries);
4760 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4761 			cur_device = TAILQ_NEXT(cur_device, links);
4762 		if (cur_device != NULL) {
4763 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4764 		} else {
4765 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4766 		}
4767 		target->generation++;
4768 	}
4769 	return (device);
4770 }
4771 
4772 static void
4773 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4774 		   struct cam_ed *device)
4775 {
4776 	int s;
4777 
4778 	s = splcam();
4779 	if ((--device->refcount == 0)
4780 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
4781 		struct cam_devq *devq;
4782 
4783 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4784 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4785 			panic("Removing device while still queued for ccbs");
4786 
4787 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4788 				untimeout(xpt_release_devq_timeout, device,
4789 					  device->c_handle);
4790 
4791 		TAILQ_REMOVE(&target->ed_entries, device,links);
4792 		target->generation++;
4793 		xpt_max_ccbs -= device->ccbq.devq_openings;
4794 		/* Release our slot in the devq */
4795 		devq = bus->sim->devq;
4796 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4797 		splx(s);
4798 		free(device, M_DEVBUF);
4799 		xpt_release_target(bus, target);
4800 	} else
4801 		splx(s);
4802 }
4803 
4804 static u_int32_t
4805 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4806 {
4807 	int	s;
4808 	int	diff;
4809 	int	result;
4810 	struct	cam_ed *dev;
4811 
4812 	dev = path->device;
4813 	s = splsoftcam();
4814 
4815 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4816 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4817 	if (result == CAM_REQ_CMP && (diff < 0)) {
4818 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4819 	}
4820 	/* Adjust the global limit */
4821 	xpt_max_ccbs += diff;
4822 	splx(s);
4823 	return (result);
4824 }
4825 
4826 static struct cam_eb *
4827 xpt_find_bus(path_id_t path_id)
4828 {
4829 	struct cam_eb *bus;
4830 
4831 	for (bus = TAILQ_FIRST(&xpt_busses);
4832 	     bus != NULL;
4833 	     bus = TAILQ_NEXT(bus, links)) {
4834 		if (bus->path_id == path_id) {
4835 			bus->refcount++;
4836 			break;
4837 		}
4838 	}
4839 	return (bus);
4840 }
4841 
4842 static struct cam_et *
4843 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4844 {
4845 	struct cam_et *target;
4846 
4847 	for (target = TAILQ_FIRST(&bus->et_entries);
4848 	     target != NULL;
4849 	     target = TAILQ_NEXT(target, links)) {
4850 		if (target->target_id == target_id) {
4851 			target->refcount++;
4852 			break;
4853 		}
4854 	}
4855 	return (target);
4856 }
4857 
4858 static struct cam_ed *
4859 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4860 {
4861 	struct cam_ed *device;
4862 
4863 	for (device = TAILQ_FIRST(&target->ed_entries);
4864 	     device != NULL;
4865 	     device = TAILQ_NEXT(device, links)) {
4866 		if (device->lun_id == lun_id) {
4867 			device->refcount++;
4868 			break;
4869 		}
4870 	}
4871 	return (device);
4872 }
4873 
4874 typedef struct {
4875 	union	ccb *request_ccb;
4876 	struct 	ccb_pathinq *cpi;
4877 	int	pending_count;
4878 } xpt_scan_bus_info;
4879 
4880 /*
4881  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4882  * As the scan progresses, xpt_scan_bus is used as the
4883  * callback on completion function.
4884  */
4885 static void
4886 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4887 {
4888 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4889 		  ("xpt_scan_bus\n"));
4890 	switch (request_ccb->ccb_h.func_code) {
4891 	case XPT_SCAN_BUS:
4892 	{
4893 		xpt_scan_bus_info *scan_info;
4894 		union	ccb *work_ccb;
4895 		struct	cam_path *path;
4896 		u_int	i;
4897 		u_int	max_target;
4898 		u_int	initiator_id;
4899 
4900 		/* Find out the characteristics of the bus */
4901 		work_ccb = xpt_alloc_ccb();
4902 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4903 			      request_ccb->ccb_h.pinfo.priority);
4904 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4905 		xpt_action(work_ccb);
4906 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4907 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4908 			xpt_free_ccb(work_ccb);
4909 			xpt_done(request_ccb);
4910 			return;
4911 		}
4912 
4913 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4914 			/*
4915 			 * Can't scan the bus on an adapter that
4916 			 * cannot perform the initiator role.
4917 			 */
4918 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4919 			xpt_free_ccb(work_ccb);
4920 			xpt_done(request_ccb);
4921 			return;
4922 		}
4923 
4924 		/* Save some state for use while we probe for devices */
4925 		scan_info = (xpt_scan_bus_info *)
4926 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
4927 		scan_info->request_ccb = request_ccb;
4928 		scan_info->cpi = &work_ccb->cpi;
4929 
4930 		/* Cache on our stack so we can work asynchronously */
4931 		max_target = scan_info->cpi->max_target;
4932 		initiator_id = scan_info->cpi->initiator_id;
4933 
4934 		/*
4935 		 * Don't count the initiator if the
4936 		 * initiator is addressable.
4937 		 */
4938 		scan_info->pending_count = max_target + 1;
4939 		if (initiator_id <= max_target)
4940 			scan_info->pending_count--;
4941 
4942 		for (i = 0; i <= max_target; i++) {
4943 			cam_status status;
4944 		 	if (i == initiator_id)
4945 				continue;
4946 
4947 			status = xpt_create_path(&path, xpt_periph,
4948 						 request_ccb->ccb_h.path_id,
4949 						 i, 0);
4950 			if (status != CAM_REQ_CMP) {
4951 				printf("xpt_scan_bus: xpt_create_path failed"
4952 				       " with status %#x, bus scan halted\n",
4953 				       status);
4954 				break;
4955 			}
4956 			work_ccb = xpt_alloc_ccb();
4957 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4958 				      request_ccb->ccb_h.pinfo.priority);
4959 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4960 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4961 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4962 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4963 #if 0
4964 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4965 				request_ccb->ccb_h.path_id, i, 0);
4966 #endif
4967 			xpt_action(work_ccb);
4968 		}
4969 		break;
4970 	}
4971 	case XPT_SCAN_LUN:
4972 	{
4973 		xpt_scan_bus_info *scan_info;
4974 		path_id_t path_id;
4975 		target_id_t target_id;
4976 		lun_id_t lun_id;
4977 
4978 		/* Reuse the same CCB to query if a device was really found */
4979 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4980 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4981 			      request_ccb->ccb_h.pinfo.priority);
4982 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4983 
4984 		path_id = request_ccb->ccb_h.path_id;
4985 		target_id = request_ccb->ccb_h.target_id;
4986 		lun_id = request_ccb->ccb_h.target_lun;
4987 		xpt_action(request_ccb);
4988 
4989 #if 0
4990 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
4991 			path_id, target_id, lun_id);
4992 #endif
4993 
4994 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
4995 			struct cam_ed *device;
4996 			struct cam_et *target;
4997 			int s, phl;
4998 
4999 			/*
5000 			 * If we already probed lun 0 successfully, or
5001 			 * we have additional configured luns on this
5002 			 * target that might have "gone away", go onto
5003 			 * the next lun.
5004 			 */
5005 			target = request_ccb->ccb_h.path->target;
5006 			/*
5007 			 * We may touch devices that we don't
5008 			 * hold references too, so ensure they
5009 			 * don't disappear out from under us.
5010 			 * The target above is referenced by the
5011 			 * path in the request ccb.
5012 			 */
5013 			phl = 0;
5014 			s = splcam();
5015 			device = TAILQ_FIRST(&target->ed_entries);
5016 			if (device != NULL) {
5017 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
5018 				if (device->lun_id == 0)
5019 					device = TAILQ_NEXT(device, links);
5020 			}
5021 			splx(s);
5022 			if ((lun_id != 0) || (device != NULL)) {
5023 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5024 					lun_id++;
5025 			}
5026 		} else {
5027 			struct cam_ed *device;
5028 
5029 			device = request_ccb->ccb_h.path->device;
5030 
5031 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5032 				/* Try the next lun */
5033 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
5034 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
5035 					lun_id++;
5036 			}
5037 		}
5038 
5039 		xpt_free_path(request_ccb->ccb_h.path);
5040 
5041 		/* Check Bounds */
5042 		if ((lun_id == request_ccb->ccb_h.target_lun)
5043 		 || lun_id > scan_info->cpi->max_lun) {
5044 			/* We're done */
5045 
5046 			xpt_free_ccb(request_ccb);
5047 			scan_info->pending_count--;
5048 			if (scan_info->pending_count == 0) {
5049 				xpt_free_ccb((union ccb *)scan_info->cpi);
5050 				request_ccb = scan_info->request_ccb;
5051 				free(scan_info, M_TEMP);
5052 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5053 				xpt_done(request_ccb);
5054 			}
5055 		} else {
5056 			/* Try the next device */
5057 			struct cam_path *path;
5058 			cam_status status;
5059 
5060 			path = request_ccb->ccb_h.path;
5061 			status = xpt_create_path(&path, xpt_periph,
5062 						 path_id, target_id, lun_id);
5063 			if (status != CAM_REQ_CMP) {
5064 				printf("xpt_scan_bus: xpt_create_path failed "
5065 				       "with status %#x, halting LUN scan\n",
5066 			 	       status);
5067 				xpt_free_ccb(request_ccb);
5068 				scan_info->pending_count--;
5069 				if (scan_info->pending_count == 0) {
5070 					xpt_free_ccb(
5071 						(union ccb *)scan_info->cpi);
5072 					request_ccb = scan_info->request_ccb;
5073 					free(scan_info, M_TEMP);
5074 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5075 					xpt_done(request_ccb);
5076 					break;
5077 				}
5078 			}
5079 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5080 				      request_ccb->ccb_h.pinfo.priority);
5081 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5082 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5083 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5084 			request_ccb->crcn.flags =
5085 				scan_info->request_ccb->crcn.flags;
5086 #if 0
5087 			xpt_print_path(path);
5088 			printf("xpt_scan bus probing\n");
5089 #endif
5090 			xpt_action(request_ccb);
5091 		}
5092 		break;
5093 	}
5094 	default:
5095 		break;
5096 	}
5097 }
5098 
5099 typedef enum {
5100 	PROBE_TUR,
5101 	PROBE_INQUIRY,
5102 	PROBE_FULL_INQUIRY,
5103 	PROBE_MODE_SENSE,
5104 	PROBE_SERIAL_NUM,
5105 	PROBE_TUR_FOR_NEGOTIATION
5106 } probe_action;
5107 
5108 typedef enum {
5109 	PROBE_INQUIRY_CKSUM	= 0x01,
5110 	PROBE_SERIAL_CKSUM	= 0x02,
5111 	PROBE_NO_ANNOUNCE	= 0x04
5112 } probe_flags;
5113 
5114 typedef struct {
5115 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5116 	probe_action	action;
5117 	union ccb	saved_ccb;
5118 	probe_flags	flags;
5119 	MD5_CTX		context;
5120 	u_int8_t	digest[16];
5121 } probe_softc;
5122 
5123 static void
5124 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5125 	     cam_flags flags, union ccb *request_ccb)
5126 {
5127 	struct ccb_pathinq cpi;
5128 	cam_status status;
5129 	struct cam_path *new_path;
5130 	struct cam_periph *old_periph;
5131 	int s;
5132 
5133 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5134 		  ("xpt_scan_lun\n"));
5135 
5136 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5137 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5138 	xpt_action((union ccb *)&cpi);
5139 
5140 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5141 		if (request_ccb != NULL) {
5142 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5143 			xpt_done(request_ccb);
5144 		}
5145 		return;
5146 	}
5147 
5148 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5149 		/*
5150 		 * Can't scan the bus on an adapter that
5151 		 * cannot perform the initiator role.
5152 		 */
5153 		if (request_ccb != NULL) {
5154 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5155 			xpt_done(request_ccb);
5156 		}
5157 		return;
5158 	}
5159 
5160 	if (request_ccb == NULL) {
5161 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5162 		if (request_ccb == NULL) {
5163 			xpt_print_path(path);
5164 			printf("xpt_scan_lun: can't allocate CCB, can't "
5165 			       "continue\n");
5166 			return;
5167 		}
5168 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5169 		if (new_path == NULL) {
5170 			xpt_print_path(path);
5171 			printf("xpt_scan_lun: can't allocate path, can't "
5172 			       "continue\n");
5173 			free(request_ccb, M_TEMP);
5174 			return;
5175 		}
5176 		status = xpt_compile_path(new_path, xpt_periph,
5177 					  path->bus->path_id,
5178 					  path->target->target_id,
5179 					  path->device->lun_id);
5180 
5181 		if (status != CAM_REQ_CMP) {
5182 			xpt_print_path(path);
5183 			printf("xpt_scan_lun: can't compile path, can't "
5184 			       "continue\n");
5185 			free(request_ccb, M_TEMP);
5186 			free(new_path, M_TEMP);
5187 			return;
5188 		}
5189 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5190 		request_ccb->ccb_h.cbfcnp = xptscandone;
5191 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5192 		request_ccb->crcn.flags = flags;
5193 	}
5194 
5195 	s = splsoftcam();
5196 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5197 		probe_softc *softc;
5198 
5199 		softc = (probe_softc *)old_periph->softc;
5200 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5201 				  periph_links.tqe);
5202 	} else {
5203 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5204 					  probestart, "probe",
5205 					  CAM_PERIPH_BIO,
5206 					  request_ccb->ccb_h.path, NULL, 0,
5207 					  request_ccb);
5208 
5209 		if (status != CAM_REQ_CMP) {
5210 			xpt_print_path(path);
5211 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5212 			       "error, can't continue probe\n");
5213 			request_ccb->ccb_h.status = status;
5214 			xpt_done(request_ccb);
5215 		}
5216 	}
5217 	splx(s);
5218 }
5219 
5220 static void
5221 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5222 {
5223 	xpt_release_path(done_ccb->ccb_h.path);
5224 	free(done_ccb->ccb_h.path, M_TEMP);
5225 	free(done_ccb, M_TEMP);
5226 }
5227 
5228 static cam_status
5229 proberegister(struct cam_periph *periph, void *arg)
5230 {
5231 	union ccb *request_ccb;	/* CCB representing the probe request */
5232 	probe_softc *softc;
5233 
5234 	request_ccb = (union ccb *)arg;
5235 	if (periph == NULL) {
5236 		printf("proberegister: periph was NULL!!\n");
5237 		return(CAM_REQ_CMP_ERR);
5238 	}
5239 
5240 	if (request_ccb == NULL) {
5241 		printf("proberegister: no probe CCB, "
5242 		       "can't register device\n");
5243 		return(CAM_REQ_CMP_ERR);
5244 	}
5245 
5246 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5247 
5248 	if (softc == NULL) {
5249 		printf("proberegister: Unable to probe new device. "
5250 		       "Unable to allocate softc\n");
5251 		return(CAM_REQ_CMP_ERR);
5252 	}
5253 	TAILQ_INIT(&softc->request_ccbs);
5254 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5255 			  periph_links.tqe);
5256 	softc->flags = 0;
5257 	periph->softc = softc;
5258 	cam_periph_acquire(periph);
5259 	/*
5260 	 * Ensure we've waited at least a bus settle
5261 	 * delay before attempting to probe the device.
5262 	 * For HBAs that don't do bus resets, this won't make a difference.
5263 	 */
5264 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5265 				      SCSI_DELAY);
5266 	probeschedule(periph);
5267 	return(CAM_REQ_CMP);
5268 }
5269 
5270 static void
5271 probeschedule(struct cam_periph *periph)
5272 {
5273 	struct ccb_pathinq cpi;
5274 	union ccb *ccb;
5275 	probe_softc *softc;
5276 
5277 	softc = (probe_softc *)periph->softc;
5278 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5279 
5280 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5281 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5282 	xpt_action((union ccb *)&cpi);
5283 
5284 	/*
5285 	 * If a device has gone away and another device, or the same one,
5286 	 * is back in the same place, it should have a unit attention
5287 	 * condition pending.  It will not report the unit attention in
5288 	 * response to an inquiry, which may leave invalid transfer
5289 	 * negotiations in effect.  The TUR will reveal the unit attention
5290 	 * condition.  Only send the TUR for lun 0, since some devices
5291 	 * will get confused by commands other than inquiry to non-existent
5292 	 * luns.  If you think a device has gone away start your scan from
5293 	 * lun 0.  This will insure that any bogus transfer settings are
5294 	 * invalidated.
5295 	 *
5296 	 * If we haven't seen the device before and the controller supports
5297 	 * some kind of transfer negotiation, negotiate with the first
5298 	 * sent command if no bus reset was performed at startup.  This
5299 	 * ensures that the device is not confused by transfer negotiation
5300 	 * settings left over by loader or BIOS action.
5301 	 */
5302 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5303 	 && (ccb->ccb_h.target_lun == 0)) {
5304 		softc->action = PROBE_TUR;
5305 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5306 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5307 		proberequestdefaultnegotiation(periph);
5308 		softc->action = PROBE_INQUIRY;
5309 	} else {
5310 		softc->action = PROBE_INQUIRY;
5311 	}
5312 
5313 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5314 		softc->flags |= PROBE_NO_ANNOUNCE;
5315 	else
5316 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5317 
5318 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5319 }
5320 
5321 static void
5322 probestart(struct cam_periph *periph, union ccb *start_ccb)
5323 {
5324 	/* Probe the device that our peripheral driver points to */
5325 	struct ccb_scsiio *csio;
5326 	probe_softc *softc;
5327 
5328 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5329 
5330 	softc = (probe_softc *)periph->softc;
5331 	csio = &start_ccb->csio;
5332 
5333 	switch (softc->action) {
5334 	case PROBE_TUR:
5335 	case PROBE_TUR_FOR_NEGOTIATION:
5336 	{
5337 		scsi_test_unit_ready(csio,
5338 				     /*retries*/4,
5339 				     probedone,
5340 				     MSG_SIMPLE_Q_TAG,
5341 				     SSD_FULL_SIZE,
5342 				     /*timeout*/60000);
5343 		break;
5344 	}
5345 	case PROBE_INQUIRY:
5346 	case PROBE_FULL_INQUIRY:
5347 	{
5348 		u_int inquiry_len;
5349 		struct scsi_inquiry_data *inq_buf;
5350 
5351 		inq_buf = &periph->path->device->inq_data;
5352 		/*
5353 		 * If the device is currently configured, we calculate an
5354 		 * MD5 checksum of the inquiry data, and if the serial number
5355 		 * length is greater than 0, add the serial number data
5356 		 * into the checksum as well.  Once the inquiry and the
5357 		 * serial number check finish, we attempt to figure out
5358 		 * whether we still have the same device.
5359 		 */
5360 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5361 
5362 			MD5Init(&softc->context);
5363 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5364 				  sizeof(struct scsi_inquiry_data));
5365 			softc->flags |= PROBE_INQUIRY_CKSUM;
5366 			if (periph->path->device->serial_num_len > 0) {
5367 				MD5Update(&softc->context,
5368 					  periph->path->device->serial_num,
5369 					  periph->path->device->serial_num_len);
5370 				softc->flags |= PROBE_SERIAL_CKSUM;
5371 			}
5372 			MD5Final(softc->digest, &softc->context);
5373 		}
5374 
5375 		if (softc->action == PROBE_INQUIRY)
5376 			inquiry_len = SHORT_INQUIRY_LENGTH;
5377 		else
5378 			inquiry_len = inq_buf->additional_length + 5;
5379 
5380 		scsi_inquiry(csio,
5381 			     /*retries*/4,
5382 			     probedone,
5383 			     MSG_SIMPLE_Q_TAG,
5384 			     (u_int8_t *)inq_buf,
5385 			     inquiry_len,
5386 			     /*evpd*/FALSE,
5387 			     /*page_code*/0,
5388 			     SSD_MIN_SIZE,
5389 			     /*timeout*/60 * 1000);
5390 		break;
5391 	}
5392 	case PROBE_MODE_SENSE:
5393 	{
5394 		void  *mode_buf;
5395 		int    mode_buf_len;
5396 
5397 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5398 			     + sizeof(struct scsi_mode_blk_desc)
5399 			     + sizeof(struct scsi_control_page);
5400 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5401 		if (mode_buf != NULL) {
5402 	                scsi_mode_sense(csio,
5403 					/*retries*/4,
5404 					probedone,
5405 					MSG_SIMPLE_Q_TAG,
5406 					/*dbd*/FALSE,
5407 					SMS_PAGE_CTRL_CURRENT,
5408 					SMS_CONTROL_MODE_PAGE,
5409 					mode_buf,
5410 					mode_buf_len,
5411 					SSD_FULL_SIZE,
5412 					/*timeout*/60000);
5413 			break;
5414 		}
5415 		xpt_print_path(periph->path);
5416 		printf("Unable to mode sense control page - malloc failure\n");
5417 		softc->action = PROBE_SERIAL_NUM;
5418 		/* FALLTHROUGH */
5419 	}
5420 	case PROBE_SERIAL_NUM:
5421 	{
5422 		struct scsi_vpd_unit_serial_number *serial_buf;
5423 		struct cam_ed* device;
5424 
5425 		serial_buf = NULL;
5426 		device = periph->path->device;
5427 		device->serial_num = NULL;
5428 		device->serial_num_len = 0;
5429 
5430 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5431 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5432 				malloc(sizeof(*serial_buf), M_TEMP,
5433 					M_NOWAIT | M_ZERO);
5434 
5435 		if (serial_buf != NULL) {
5436 			scsi_inquiry(csio,
5437 				     /*retries*/4,
5438 				     probedone,
5439 				     MSG_SIMPLE_Q_TAG,
5440 				     (u_int8_t *)serial_buf,
5441 				     sizeof(*serial_buf),
5442 				     /*evpd*/TRUE,
5443 				     SVPD_UNIT_SERIAL_NUMBER,
5444 				     SSD_MIN_SIZE,
5445 				     /*timeout*/60 * 1000);
5446 			break;
5447 		}
5448 		/*
5449 		 * We'll have to do without, let our probedone
5450 		 * routine finish up for us.
5451 		 */
5452 		start_ccb->csio.data_ptr = NULL;
5453 		probedone(periph, start_ccb);
5454 		return;
5455 	}
5456 	}
5457 	xpt_action(start_ccb);
5458 }
5459 
5460 static void
5461 proberequestdefaultnegotiation(struct cam_periph *periph)
5462 {
5463 	struct ccb_trans_settings cts;
5464 
5465 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5466 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5467 	cts.flags = CCB_TRANS_USER_SETTINGS;
5468 	xpt_action((union ccb *)&cts);
5469 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5470 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5471 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5472 	xpt_action((union ccb *)&cts);
5473 }
5474 
5475 static void
5476 probedone(struct cam_periph *periph, union ccb *done_ccb)
5477 {
5478 	probe_softc *softc;
5479 	struct cam_path *path;
5480 	u_int32_t  priority;
5481 
5482 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5483 
5484 	softc = (probe_softc *)periph->softc;
5485 	path = done_ccb->ccb_h.path;
5486 	priority = done_ccb->ccb_h.pinfo.priority;
5487 
5488 	switch (softc->action) {
5489 	case PROBE_TUR:
5490 	{
5491 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5492 
5493 			if (cam_periph_error(done_ccb, 0,
5494 					     SF_NO_PRINT, NULL) == ERESTART)
5495 				return;
5496 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5497 				/* Don't wedge the queue */
5498 				xpt_release_devq(done_ccb->ccb_h.path,
5499 						 /*count*/1,
5500 						 /*run_queue*/TRUE);
5501 		}
5502 		softc->action = PROBE_INQUIRY;
5503 		xpt_release_ccb(done_ccb);
5504 		xpt_schedule(periph, priority);
5505 		return;
5506 	}
5507 	case PROBE_INQUIRY:
5508 	case PROBE_FULL_INQUIRY:
5509 	{
5510 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5511 			struct scsi_inquiry_data *inq_buf;
5512 			u_int8_t periph_qual;
5513 
5514 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5515 			inq_buf = &path->device->inq_data;
5516 
5517 			periph_qual = SID_QUAL(inq_buf);
5518 
5519 			switch(periph_qual) {
5520 			case SID_QUAL_LU_CONNECTED:
5521 			{
5522 				u_int8_t alen;
5523 
5524 				/*
5525 				 * We conservatively request only
5526 				 * SHORT_INQUIRY_LEN bytes of inquiry
5527 				 * information during our first try
5528 				 * at sending an INQUIRY. If the device
5529 				 * has more information to give,
5530 				 * perform a second request specifying
5531 				 * the amount of information the device
5532 				 * is willing to give.
5533 				 */
5534 				alen = inq_buf->additional_length;
5535 				if (softc->action == PROBE_INQUIRY
5536 				 && alen > (SHORT_INQUIRY_LENGTH - 5)) {
5537 					softc->action = PROBE_FULL_INQUIRY;
5538 					xpt_release_ccb(done_ccb);
5539 					xpt_schedule(periph, priority);
5540 					return;
5541 				}
5542 
5543 				xpt_find_quirk(path->device);
5544 
5545 				if ((inq_buf->flags & SID_CmdQue) != 0)
5546 					softc->action = PROBE_MODE_SENSE;
5547 				else
5548 					softc->action = PROBE_SERIAL_NUM;
5549 
5550 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5551 
5552 				xpt_release_ccb(done_ccb);
5553 				xpt_schedule(periph, priority);
5554 				return;
5555 			}
5556 			default:
5557 				break;
5558 			}
5559 		} else if (cam_periph_error(done_ccb, 0,
5560 					    done_ccb->ccb_h.target_lun > 0
5561 					    ? SF_RETRY_UA|SF_QUIET_IR
5562 					    : SF_RETRY_UA,
5563 					    &softc->saved_ccb) == ERESTART) {
5564 			return;
5565 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5566 			/* Don't wedge the queue */
5567 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5568 					 /*run_queue*/TRUE);
5569 		}
5570 		/*
5571 		 * If we get to this point, we got an error status back
5572 		 * from the inquiry and the error status doesn't require
5573 		 * automatically retrying the command.  Therefore, the
5574 		 * inquiry failed.  If we had inquiry information before
5575 		 * for this device, but this latest inquiry command failed,
5576 		 * the device has probably gone away.  If this device isn't
5577 		 * already marked unconfigured, notify the peripheral
5578 		 * drivers that this device is no more.
5579 		 */
5580 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5581 			/* Send the async notification. */
5582 			xpt_async(AC_LOST_DEVICE, path, NULL);
5583 
5584 		xpt_release_ccb(done_ccb);
5585 		break;
5586 	}
5587 	case PROBE_MODE_SENSE:
5588 	{
5589 		struct ccb_scsiio *csio;
5590 		struct scsi_mode_header_6 *mode_hdr;
5591 
5592 		csio = &done_ccb->csio;
5593 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5594 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5595 			struct scsi_control_page *page;
5596 			u_int8_t *offset;
5597 
5598 			offset = ((u_int8_t *)&mode_hdr[1])
5599 			    + mode_hdr->blk_desc_len;
5600 			page = (struct scsi_control_page *)offset;
5601 			path->device->queue_flags = page->queue_flags;
5602 		} else if (cam_periph_error(done_ccb, 0,
5603 					    SF_RETRY_UA|SF_NO_PRINT,
5604 					    &softc->saved_ccb) == ERESTART) {
5605 			return;
5606 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5607 			/* Don't wedge the queue */
5608 			xpt_release_devq(done_ccb->ccb_h.path,
5609 					 /*count*/1, /*run_queue*/TRUE);
5610 		}
5611 		xpt_release_ccb(done_ccb);
5612 		free(mode_hdr, M_TEMP);
5613 		softc->action = PROBE_SERIAL_NUM;
5614 		xpt_schedule(periph, priority);
5615 		return;
5616 	}
5617 	case PROBE_SERIAL_NUM:
5618 	{
5619 		struct ccb_scsiio *csio;
5620 		struct scsi_vpd_unit_serial_number *serial_buf;
5621 		u_int32_t  priority;
5622 		int changed;
5623 		int have_serialnum;
5624 
5625 		changed = 1;
5626 		have_serialnum = 0;
5627 		csio = &done_ccb->csio;
5628 		priority = done_ccb->ccb_h.pinfo.priority;
5629 		serial_buf =
5630 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5631 
5632 		/* Clean up from previous instance of this device */
5633 		if (path->device->serial_num != NULL) {
5634 			free(path->device->serial_num, M_DEVBUF);
5635 			path->device->serial_num = NULL;
5636 			path->device->serial_num_len = 0;
5637 		}
5638 
5639 		if (serial_buf == NULL) {
5640 			/*
5641 			 * Don't process the command as it was never sent
5642 			 */
5643 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5644 			&& (serial_buf->length > 0)) {
5645 
5646 			have_serialnum = 1;
5647 			path->device->serial_num =
5648 				(u_int8_t *)malloc((serial_buf->length + 1),
5649 						   M_DEVBUF, M_NOWAIT);
5650 			if (path->device->serial_num != NULL) {
5651 				bcopy(serial_buf->serial_num,
5652 				      path->device->serial_num,
5653 				      serial_buf->length);
5654 				path->device->serial_num_len =
5655 				    serial_buf->length;
5656 				path->device->serial_num[serial_buf->length]
5657 				    = '\0';
5658 			}
5659 		} else if (cam_periph_error(done_ccb, 0,
5660 					    SF_RETRY_UA|SF_NO_PRINT,
5661 					    &softc->saved_ccb) == ERESTART) {
5662 			return;
5663 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5664 			/* Don't wedge the queue */
5665 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5666 					 /*run_queue*/TRUE);
5667 		}
5668 
5669 		/*
5670 		 * Let's see if we have seen this device before.
5671 		 */
5672 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5673 			MD5_CTX context;
5674 			u_int8_t digest[16];
5675 
5676 			MD5Init(&context);
5677 
5678 			MD5Update(&context,
5679 				  (unsigned char *)&path->device->inq_data,
5680 				  sizeof(struct scsi_inquiry_data));
5681 
5682 			if (have_serialnum)
5683 				MD5Update(&context, serial_buf->serial_num,
5684 					  serial_buf->length);
5685 
5686 			MD5Final(digest, &context);
5687 			if (bcmp(softc->digest, digest, 16) == 0)
5688 				changed = 0;
5689 
5690 			/*
5691 			 * XXX Do we need to do a TUR in order to ensure
5692 			 *     that the device really hasn't changed???
5693 			 */
5694 			if ((changed != 0)
5695 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5696 				xpt_async(AC_LOST_DEVICE, path, NULL);
5697 		}
5698 		if (serial_buf != NULL)
5699 			free(serial_buf, M_TEMP);
5700 
5701 		if (changed != 0) {
5702 			/*
5703 			 * Now that we have all the necessary
5704 			 * information to safely perform transfer
5705 			 * negotiations... Controllers don't perform
5706 			 * any negotiation or tagged queuing until
5707 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5708 			 * received.  So, on a new device, just retreive
5709 			 * the user settings, and set them as the current
5710 			 * settings to set the device up.
5711 			 */
5712 			proberequestdefaultnegotiation(periph);
5713 			xpt_release_ccb(done_ccb);
5714 
5715 			/*
5716 			 * Perform a TUR to allow the controller to
5717 			 * perform any necessary transfer negotiation.
5718 			 */
5719 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5720 			xpt_schedule(periph, priority);
5721 			return;
5722 		}
5723 		xpt_release_ccb(done_ccb);
5724 		break;
5725 	}
5726 	case PROBE_TUR_FOR_NEGOTIATION:
5727 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5728 			/* Don't wedge the queue */
5729 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5730 					 /*run_queue*/TRUE);
5731 		}
5732 
5733 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5734 
5735 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5736 			/* Inform the XPT that a new device has been found */
5737 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5738 			xpt_action(done_ccb);
5739 
5740 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5741 		}
5742 		xpt_release_ccb(done_ccb);
5743 		break;
5744 	}
5745 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5746 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5747 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5748 	xpt_done(done_ccb);
5749 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5750 		cam_periph_invalidate(periph);
5751 		cam_periph_release(periph);
5752 	} else {
5753 		probeschedule(periph);
5754 	}
5755 }
5756 
5757 static void
5758 probecleanup(struct cam_periph *periph)
5759 {
5760 	free(periph->softc, M_TEMP);
5761 }
5762 
5763 static void
5764 xpt_find_quirk(struct cam_ed *device)
5765 {
5766 	caddr_t	match;
5767 
5768 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5769 			       (caddr_t)xpt_quirk_table,
5770 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5771 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5772 
5773 	if (match == NULL)
5774 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5775 
5776 	device->quirk = (struct xpt_quirk_entry *)match;
5777 }
5778 
5779 static void
5780 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5781 			  int async_update)
5782 {
5783 	struct	cam_sim *sim;
5784 	int	qfrozen;
5785 
5786 	sim = cts->ccb_h.path->bus->sim;
5787 	if (async_update == FALSE) {
5788 		struct	scsi_inquiry_data *inq_data;
5789 		struct	ccb_pathinq cpi;
5790 		struct	ccb_trans_settings cur_cts;
5791 
5792 		if (device == NULL) {
5793 			cts->ccb_h.status = CAM_PATH_INVALID;
5794 			xpt_done((union ccb *)cts);
5795 			return;
5796 		}
5797 
5798 		/*
5799 		 * Perform sanity checking against what the
5800 		 * controller and device can do.
5801 		 */
5802 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5803 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5804 		xpt_action((union ccb *)&cpi);
5805 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5806 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5807 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5808 		xpt_action((union ccb *)&cur_cts);
5809 		inq_data = &device->inq_data;
5810 
5811 		/* Fill in any gaps in what the user gave us */
5812 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5813 			cts->sync_period = cur_cts.sync_period;
5814 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5815 			cts->sync_offset = cur_cts.sync_offset;
5816 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5817 			cts->bus_width = cur_cts.bus_width;
5818 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5819 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5820 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5821 		}
5822 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5823 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5824 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5825 		}
5826 
5827 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5828 		  && (inq_data->flags & SID_Sync) == 0)
5829 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
5830 		 || (cts->sync_offset == 0)
5831 		 || (cts->sync_period == 0)) {
5832 			/* Force async */
5833 			cts->sync_period = 0;
5834 			cts->sync_offset = 0;
5835 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) {
5836 
5837 			if ((inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
5838 			 && cts->sync_period <= 0x9) {
5839 				/*
5840 				 * Don't allow DT transmission rates if the
5841 				 * device does not support it.
5842 				 */
5843 				cts->sync_period = 0xa;
5844 			}
5845 			if ((inq_data->spi3data & SID_SPI_IUS) == 0
5846 			 && cts->sync_period <= 0x8) {
5847 				/*
5848 				 * Don't allow PACE transmission rates
5849 				 * if the device does support packetized
5850 				 * transfers.
5851 				 */
5852 				cts->sync_period = 0x9;
5853 			}
5854 		}
5855 
5856 		switch (cts->bus_width) {
5857 		case MSG_EXT_WDTR_BUS_32_BIT:
5858 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5859 			  || (inq_data->flags & SID_WBus32) != 0)
5860 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5861 				break;
5862 			/* Fall Through to 16-bit */
5863 		case MSG_EXT_WDTR_BUS_16_BIT:
5864 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5865 			  || (inq_data->flags & SID_WBus16) != 0)
5866 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5867 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5868 				break;
5869 			}
5870 			/* Fall Through to 8-bit */
5871 		default: /* New bus width?? */
5872 		case MSG_EXT_WDTR_BUS_8_BIT:
5873 			/* All targets can do this */
5874 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5875 			break;
5876 		}
5877 
5878 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5879 			/*
5880 			 * Can't tag queue without disconnection.
5881 			 */
5882 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5883 			cts->valid |= CCB_TRANS_TQ_VALID;
5884 		}
5885 
5886 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5887 		 || (inq_data->flags & SID_CmdQue) == 0
5888 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5889 		 || (device->quirk->mintags == 0)) {
5890 			/*
5891 			 * Can't tag on hardware that doesn't support,
5892 			 * doesn't have it enabled, or has broken tag support.
5893 			 */
5894 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5895 		}
5896 	}
5897 
5898 	qfrozen = FALSE;
5899 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
5900 		int device_tagenb;
5901 
5902 		/*
5903 		 * If we are transitioning from tags to no-tags or
5904 		 * vice-versa, we need to carefully freeze and restart
5905 		 * the queue so that we don't overlap tagged and non-tagged
5906 		 * commands.  We also temporarily stop tags if there is
5907 		 * a change in transfer negotiation settings to allow
5908 		 * "tag-less" negotiation.
5909 		 */
5910 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5911 		 || (device->inq_flags & SID_CmdQue) != 0)
5912 			device_tagenb = TRUE;
5913 		else
5914 			device_tagenb = FALSE;
5915 
5916 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5917 		  && device_tagenb == FALSE)
5918 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5919 		  && device_tagenb == TRUE)) {
5920 
5921 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5922 				/*
5923 				 * Delay change to use tags until after a
5924 				 * few commands have gone to this device so
5925 				 * the controller has time to perform transfer
5926 				 * negotiations without tagged messages getting
5927 				 * in the way.
5928 				 */
5929 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5930 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5931 			} else {
5932 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5933 				qfrozen = TRUE;
5934 		  		device->inq_flags &= ~SID_CmdQue;
5935 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5936 						    sim->max_dev_openings);
5937 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5938 				device->tag_delay_count = 0;
5939 			}
5940 		}
5941 	}
5942 
5943 	if (async_update == FALSE) {
5944 		/*
5945 		 * If we are currently performing tagged transactions to
5946 		 * this device and want to change its negotiation parameters,
5947 		 * go non-tagged for a bit to give the controller a chance to
5948 		 * negotiate unhampered by tag messages.
5949 		 */
5950 		if ((device->inq_flags & SID_CmdQue) != 0
5951 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5952 				   CCB_TRANS_SYNC_OFFSET_VALID|
5953 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5954 			xpt_toggle_tags(cts->ccb_h.path);
5955 
5956 		(*(sim->sim_action))(sim, (union ccb *)cts);
5957 	}
5958 
5959 	if (qfrozen) {
5960 		struct ccb_relsim crs;
5961 
5962 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5963 			      /*priority*/1);
5964 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5965 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5966 		crs.openings
5967 		    = crs.release_timeout
5968 		    = crs.qfrozen_cnt
5969 		    = 0;
5970 		xpt_action((union ccb *)&crs);
5971 	}
5972 }
5973 
5974 static void
5975 xpt_toggle_tags(struct cam_path *path)
5976 {
5977 	struct cam_ed *dev;
5978 
5979 	/*
5980 	 * Give controllers a chance to renegotiate
5981 	 * before starting tag operations.  We
5982 	 * "toggle" tagged queuing off then on
5983 	 * which causes the tag enable command delay
5984 	 * counter to come into effect.
5985 	 */
5986 	dev = path->device;
5987 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5988 	 || ((dev->inq_flags & SID_CmdQue) != 0
5989  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5990 		struct ccb_trans_settings cts;
5991 
5992 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5993 		cts.flags = 0;
5994 		cts.valid = CCB_TRANS_TQ_VALID;
5995 		xpt_set_transfer_settings(&cts, path->device,
5996 					  /*async_update*/TRUE);
5997 		cts.flags = CCB_TRANS_TAG_ENB;
5998 		xpt_set_transfer_settings(&cts, path->device,
5999 					  /*async_update*/TRUE);
6000 	}
6001 }
6002 
6003 static void
6004 xpt_start_tags(struct cam_path *path)
6005 {
6006 	struct ccb_relsim crs;
6007 	struct cam_ed *device;
6008 	struct cam_sim *sim;
6009 	int    newopenings;
6010 
6011 	device = path->device;
6012 	sim = path->bus->sim;
6013 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6014 	xpt_freeze_devq(path, /*count*/1);
6015 	device->inq_flags |= SID_CmdQue;
6016 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
6017 	xpt_dev_ccbq_resize(path, newopenings);
6018 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6019 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6020 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6021 	crs.openings
6022 	    = crs.release_timeout
6023 	    = crs.qfrozen_cnt
6024 	    = 0;
6025 	xpt_action((union ccb *)&crs);
6026 }
6027 
6028 static int busses_to_config;
6029 static int busses_to_reset;
6030 
6031 static int
6032 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6033 {
6034 	if (bus->path_id != CAM_XPT_PATH_ID) {
6035 		struct cam_path path;
6036 		struct ccb_pathinq cpi;
6037 		int can_negotiate;
6038 
6039 		busses_to_config++;
6040 		xpt_compile_path(&path, NULL, bus->path_id,
6041 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6042 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6043 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6044 		xpt_action((union ccb *)&cpi);
6045 		can_negotiate = cpi.hba_inquiry;
6046 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6047 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6048 		 && can_negotiate)
6049 			busses_to_reset++;
6050 		xpt_release_path(&path);
6051 	}
6052 
6053 	return(1);
6054 }
6055 
6056 static int
6057 xptconfigfunc(struct cam_eb *bus, void *arg)
6058 {
6059 	struct	cam_path *path;
6060 	union	ccb *work_ccb;
6061 
6062 	if (bus->path_id != CAM_XPT_PATH_ID) {
6063 		cam_status status;
6064 		int can_negotiate;
6065 
6066 		work_ccb = xpt_alloc_ccb();
6067 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6068 					      CAM_TARGET_WILDCARD,
6069 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6070 			printf("xptconfigfunc: xpt_create_path failed with "
6071 			       "status %#x for bus %d\n", status, bus->path_id);
6072 			printf("xptconfigfunc: halting bus configuration\n");
6073 			xpt_free_ccb(work_ccb);
6074 			busses_to_config--;
6075 			xpt_finishconfig(xpt_periph, NULL);
6076 			return(0);
6077 		}
6078 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6079 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6080 		xpt_action(work_ccb);
6081 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6082 			printf("xptconfigfunc: CPI failed on bus %d "
6083 			       "with status %d\n", bus->path_id,
6084 			       work_ccb->ccb_h.status);
6085 			xpt_finishconfig(xpt_periph, work_ccb);
6086 			return(1);
6087 		}
6088 
6089 		can_negotiate = work_ccb->cpi.hba_inquiry;
6090 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6091 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6092 		 && (can_negotiate != 0)) {
6093 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6094 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6095 			work_ccb->ccb_h.cbfcnp = NULL;
6096 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6097 				  ("Resetting Bus\n"));
6098 			xpt_action(work_ccb);
6099 			xpt_finishconfig(xpt_periph, work_ccb);
6100 		} else {
6101 			/* Act as though we performed a successful BUS RESET */
6102 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6103 			xpt_finishconfig(xpt_periph, work_ccb);
6104 		}
6105 	}
6106 
6107 	return(1);
6108 }
6109 
6110 static void
6111 xpt_config(void *arg)
6112 {
6113 	/* Now that interrupts are enabled, go find our devices */
6114 
6115 #ifdef CAMDEBUG
6116 	/* Setup debugging flags and path */
6117 #ifdef CAM_DEBUG_FLAGS
6118 	cam_dflags = CAM_DEBUG_FLAGS;
6119 #else /* !CAM_DEBUG_FLAGS */
6120 	cam_dflags = CAM_DEBUG_NONE;
6121 #endif /* CAM_DEBUG_FLAGS */
6122 #ifdef CAM_DEBUG_BUS
6123 	if (cam_dflags != CAM_DEBUG_NONE) {
6124 		if (xpt_create_path(&cam_dpath, xpt_periph,
6125 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6126 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6127 			printf("xpt_config: xpt_create_path() failed for debug"
6128 			       " target %d:%d:%d, debugging disabled\n",
6129 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6130 			cam_dflags = CAM_DEBUG_NONE;
6131 		}
6132 	} else
6133 		cam_dpath = NULL;
6134 #else /* !CAM_DEBUG_BUS */
6135 	cam_dpath = NULL;
6136 #endif /* CAM_DEBUG_BUS */
6137 #endif /* CAMDEBUG */
6138 
6139 	/*
6140 	 * Scan all installed busses.
6141 	 */
6142 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6143 
6144 	if (busses_to_config == 0) {
6145 		/* Call manually because we don't have any busses */
6146 		xpt_finishconfig(xpt_periph, NULL);
6147 	} else  {
6148 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6149 			printf("Waiting %d seconds for SCSI "
6150 			       "devices to settle\n", SCSI_DELAY/1000);
6151 		}
6152 		xpt_for_all_busses(xptconfigfunc, NULL);
6153 	}
6154 }
6155 
6156 /*
6157  * If the given device only has one peripheral attached to it, and if that
6158  * peripheral is the passthrough driver, announce it.  This insures that the
6159  * user sees some sort of announcement for every peripheral in their system.
6160  */
6161 static int
6162 xptpassannouncefunc(struct cam_ed *device, void *arg)
6163 {
6164 	struct cam_periph *periph;
6165 	int i;
6166 
6167 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6168 	     periph = SLIST_NEXT(periph, periph_links), i++);
6169 
6170 	periph = SLIST_FIRST(&device->periphs);
6171 	if ((i == 1)
6172 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6173 		xpt_announce_periph(periph, NULL);
6174 
6175 	return(1);
6176 }
6177 
6178 static void
6179 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6180 {
6181 	struct	periph_driver **p_drv;
6182 	int	i;
6183 
6184 	if (done_ccb != NULL) {
6185 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6186 			  ("xpt_finishconfig\n"));
6187 		switch(done_ccb->ccb_h.func_code) {
6188 		case XPT_RESET_BUS:
6189 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6190 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6191 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6192 				xpt_action(done_ccb);
6193 				return;
6194 			}
6195 			/* FALLTHROUGH */
6196 		case XPT_SCAN_BUS:
6197 		default:
6198 			xpt_free_path(done_ccb->ccb_h.path);
6199 			busses_to_config--;
6200 			break;
6201 		}
6202 	}
6203 
6204 	if (busses_to_config == 0) {
6205 		/* Register all the peripheral drivers */
6206 		/* XXX This will have to change when we have loadable modules */
6207 		p_drv = (struct periph_driver **)periphdriver_set.ls_items;
6208 		for (i = 0; p_drv[i] != NULL; i++) {
6209 			(*p_drv[i]->init)();
6210 		}
6211 
6212 		/*
6213 		 * Check for devices with no "standard" peripheral driver
6214 		 * attached.  For any devices like that, announce the
6215 		 * passthrough driver so the user will see something.
6216 		 */
6217 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6218 
6219 		/* Release our hook so that the boot can continue. */
6220 		config_intrhook_disestablish(xpt_config_hook);
6221 		free(xpt_config_hook, M_TEMP);
6222 		xpt_config_hook = NULL;
6223 	}
6224 	if (done_ccb != NULL)
6225 		xpt_free_ccb(done_ccb);
6226 }
6227 
6228 static void
6229 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6230 {
6231 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6232 
6233 	switch (work_ccb->ccb_h.func_code) {
6234 	/* Common cases first */
6235 	case XPT_PATH_INQ:		/* Path routing inquiry */
6236 	{
6237 		struct ccb_pathinq *cpi;
6238 
6239 		cpi = &work_ccb->cpi;
6240 		cpi->version_num = 1; /* XXX??? */
6241 		cpi->hba_inquiry = 0;
6242 		cpi->target_sprt = 0;
6243 		cpi->hba_misc = 0;
6244 		cpi->hba_eng_cnt = 0;
6245 		cpi->max_target = 0;
6246 		cpi->max_lun = 0;
6247 		cpi->initiator_id = 0;
6248 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6249 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6250 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6251 		cpi->unit_number = sim->unit_number;
6252 		cpi->bus_id = sim->bus_id;
6253 		cpi->base_transfer_speed = 0;
6254 		cpi->ccb_h.status = CAM_REQ_CMP;
6255 		xpt_done(work_ccb);
6256 		break;
6257 	}
6258 	default:
6259 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6260 		xpt_done(work_ccb);
6261 		break;
6262 	}
6263 }
6264 
6265 /*
6266  * The xpt as a "controller" has no interrupt sources, so polling
6267  * is a no-op.
6268  */
6269 static void
6270 xptpoll(struct cam_sim *sim)
6271 {
6272 }
6273 
6274 /*
6275  * Should only be called by the machine interrupt dispatch routines,
6276  * so put these prototypes here instead of in the header.
6277  */
6278 
6279 static void
6280 swi_camnet(void)
6281 {
6282 	camisr(&cam_netq);
6283 }
6284 
6285 static void
6286 swi_cambio(void)
6287 {
6288 	camisr(&cam_bioq);
6289 }
6290 
6291 static void
6292 camisr(cam_isrq_t *queue)
6293 {
6294 	int	s;
6295 	struct	ccb_hdr *ccb_h;
6296 
6297 	s = splcam();
6298 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6299 		int	runq;
6300 
6301 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6302 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6303 		splx(s);
6304 
6305 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6306 			  ("camisr\n"));
6307 
6308 		runq = FALSE;
6309 
6310 		if (ccb_h->flags & CAM_HIGH_POWER) {
6311 			struct highpowerlist	*hphead;
6312 			struct cam_ed		*device;
6313 			union ccb		*send_ccb;
6314 
6315 			hphead = &highpowerq;
6316 
6317 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6318 
6319 			/*
6320 			 * Increment the count since this command is done.
6321 			 */
6322 			num_highpower++;
6323 
6324 			/*
6325 			 * Any high powered commands queued up?
6326 			 */
6327 			if (send_ccb != NULL) {
6328 				device = send_ccb->ccb_h.path->device;
6329 
6330 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6331 
6332 				xpt_release_devq(send_ccb->ccb_h.path,
6333 						 /*count*/1, /*runqueue*/TRUE);
6334 			}
6335 		}
6336 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6337 			struct cam_ed *dev;
6338 
6339 			dev = ccb_h->path->device;
6340 
6341 			s = splcam();
6342 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6343 
6344 			ccb_h->path->bus->sim->devq->send_active--;
6345 			ccb_h->path->bus->sim->devq->send_openings++;
6346 			splx(s);
6347 
6348 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6349 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6350 			  && (dev->ccbq.dev_active == 0))) {
6351 
6352 				xpt_release_devq(ccb_h->path, /*count*/1,
6353 						 /*run_queue*/TRUE);
6354 			}
6355 
6356 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6357 			 && (--dev->tag_delay_count == 0))
6358 				xpt_start_tags(ccb_h->path);
6359 
6360 			if ((dev->ccbq.queue.entries > 0)
6361 			 && (dev->qfrozen_cnt == 0)
6362 			 && (device_is_send_queued(dev) == 0)) {
6363 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6364 							      dev);
6365 			}
6366 		}
6367 
6368 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6369 			xpt_release_simq(ccb_h->path->bus->sim,
6370 					 /*run_queue*/TRUE);
6371 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6372 			runq = FALSE;
6373 		}
6374 
6375 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6376 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6377 			xpt_release_devq(ccb_h->path, /*count*/1,
6378 					 /*run_queue*/TRUE);
6379 			ccb_h->status &= ~CAM_DEV_QFRZN;
6380 		} else if (runq) {
6381 			xpt_run_dev_sendq(ccb_h->path->bus);
6382 		}
6383 
6384 		/* Call the peripheral driver's callback */
6385 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6386 
6387 		/* Raise IPL for while test */
6388 		s = splcam();
6389 	}
6390 	splx(s);
6391 }
6392