xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision cc93b0eb)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.66 2008/06/29 19:15:34 dillon Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/fcntl.h>
41 #include <sys/md5.h>
42 #include <sys/devicestat.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/bus.h>
47 #include <sys/thread.h>
48 #include <sys/lock.h>
49 #include <sys/spinlock.h>
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 
53 #include <machine/clock.h>
54 #include <machine/stdarg.h>
55 
56 #include "cam.h"
57 #include "cam_ccb.h"
58 #include "cam_periph.h"
59 #include "cam_sim.h"
60 #include "cam_xpt.h"
61 #include "cam_xpt_sim.h"
62 #include "cam_xpt_periph.h"
63 #include "cam_debug.h"
64 
65 #include "scsi/scsi_all.h"
66 #include "scsi/scsi_message.h"
67 #include "scsi/scsi_pass.h"
68 #include <sys/kthread.h>
69 #include "opt_cam.h"
70 
71 /* Datastructures internal to the xpt layer */
72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
73 
74 /* Object for defering XPT actions to a taskqueue */
75 struct xpt_task {
76 	struct task	task;
77 	void		*data1;
78 	uintptr_t	data2;
79 };
80 
81 /*
82  * Definition of an async handler callback block.  These are used to add
83  * SIMs and peripherals to the async callback lists.
84  */
85 struct async_node {
86 	SLIST_ENTRY(async_node)	links;
87 	u_int32_t	event_enable;	/* Async Event enables */
88 	void		(*callback)(void *arg, u_int32_t code,
89 				    struct cam_path *path, void *args);
90 	void		*callback_arg;
91 };
92 
93 SLIST_HEAD(async_list, async_node);
94 SLIST_HEAD(periph_list, cam_periph);
95 
96 /*
97  * This is the maximum number of high powered commands (e.g. start unit)
98  * that can be outstanding at a particular time.
99  */
100 #ifndef CAM_MAX_HIGHPOWER
101 #define CAM_MAX_HIGHPOWER  4
102 #endif
103 
104 /*
105  * Structure for queueing a device in a run queue.
106  * There is one run queue for allocating new ccbs,
107  * and another for sending ccbs to the controller.
108  */
109 struct cam_ed_qinfo {
110 	cam_pinfo pinfo;
111 	struct	  cam_ed *device;
112 };
113 
114 /*
115  * The CAM EDT (Existing Device Table) contains the device information for
116  * all devices for all busses in the system.  The table contains a
117  * cam_ed structure for each device on the bus.
118  */
119 struct cam_ed {
120 	TAILQ_ENTRY(cam_ed) links;
121 	struct	cam_ed_qinfo alloc_ccb_entry;
122 	struct	cam_ed_qinfo send_ccb_entry;
123 	struct	cam_et	 *target;
124 	struct	cam_sim  *sim;
125 	lun_id_t	 lun_id;
126 	struct	camq drvq;		/*
127 					 * Queue of type drivers wanting to do
128 					 * work on this device.
129 					 */
130 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
131 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
132 	struct	periph_list periphs;	/* All attached devices */
133 	u_int	generation;		/* Generation number */
134 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
135 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
136 					/* Storage for the inquiry data */
137 	cam_proto	 protocol;
138 	u_int		 protocol_version;
139 	cam_xport	 transport;
140 	u_int		 transport_version;
141 	struct		 scsi_inquiry_data inq_data;
142 	u_int8_t	 inq_flags;	/*
143 					 * Current settings for inquiry flags.
144 					 * This allows us to override settings
145 					 * like disconnection and tagged
146 					 * queuing for a device.
147 					 */
148 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
149 	u_int8_t	 serial_num_len;
150 	u_int8_t	*serial_num;
151 	u_int32_t	 qfrozen_cnt;
152 	u_int32_t	 flags;
153 #define CAM_DEV_UNCONFIGURED	 	0x01
154 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
155 #define CAM_DEV_REL_ON_COMPLETE		0x04
156 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
157 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
158 #define CAM_DEV_TAG_AFTER_COUNT		0x20
159 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
160 #define	CAM_DEV_IN_DV			0x80
161 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
162 	u_int32_t	 tag_delay_count;
163 #define	CAM_TAG_DELAY_COUNT		5
164 	u_int32_t	 tag_saved_openings;
165 	u_int32_t	 refcount;
166 	struct callout	 callout;
167 };
168 
169 /*
170  * Each target is represented by an ET (Existing Target).  These
171  * entries are created when a target is successfully probed with an
172  * identify, and removed when a device fails to respond after a number
173  * of retries, or a bus rescan finds the device missing.
174  */
175 struct cam_et {
176 	TAILQ_HEAD(, cam_ed) ed_entries;
177 	TAILQ_ENTRY(cam_et) links;
178 	struct	cam_eb	*bus;
179 	target_id_t	target_id;
180 	u_int32_t	refcount;
181 	u_int		generation;
182 	struct		timeval last_reset;	/* uptime of last reset */
183 };
184 
185 /*
186  * Each bus is represented by an EB (Existing Bus).  These entries
187  * are created by calls to xpt_bus_register and deleted by calls to
188  * xpt_bus_deregister.
189  */
190 struct cam_eb {
191 	TAILQ_HEAD(, cam_et) et_entries;
192 	TAILQ_ENTRY(cam_eb)  links;
193 	path_id_t	     path_id;
194 	struct cam_sim	     *sim;
195 	struct timeval	     last_reset;	/* uptime of last reset */
196 	u_int32_t	     flags;
197 #define	CAM_EB_RUNQ_SCHEDULED	0x01
198 	u_int32_t	     refcount;
199 	u_int		     generation;
200 };
201 
202 struct cam_path {
203 	struct cam_periph *periph;
204 	struct cam_eb	  *bus;
205 	struct cam_et	  *target;
206 	struct cam_ed	  *device;
207 };
208 
209 struct xpt_quirk_entry {
210 	struct scsi_inquiry_pattern inq_pat;
211 	u_int8_t quirks;
212 #define	CAM_QUIRK_NOLUNS	0x01
213 #define	CAM_QUIRK_NOSERIAL	0x02
214 #define	CAM_QUIRK_HILUNS	0x04
215 #define	CAM_QUIRK_NOHILUNS	0x08
216 	u_int mintags;
217 	u_int maxtags;
218 };
219 
220 static int cam_srch_hi = 0;
221 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
222 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
223 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
224     sysctl_cam_search_luns, "I",
225     "allow search above LUN 7 for SCSI3 and greater devices");
226 
227 #define	CAM_SCSI2_MAXLUN	8
228 /*
229  * If we're not quirked to search <= the first 8 luns
230  * and we are either quirked to search above lun 8,
231  * or we're > SCSI-2 and we've enabled hilun searching,
232  * or we're > SCSI-2 and the last lun was a success,
233  * we can look for luns above lun 8.
234  */
235 #define	CAN_SRCH_HI_SPARSE(dv)				\
236   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
237   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
238   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
239 
240 #define	CAN_SRCH_HI_DENSE(dv)				\
241   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
242   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
243   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
244 
245 typedef enum {
246 	XPT_FLAG_OPEN		= 0x01
247 } xpt_flags;
248 
249 struct xpt_softc {
250 	xpt_flags		flags;
251 	u_int32_t		xpt_generation;
252 
253 	/* number of high powered commands that can go through right now */
254 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
255 	int			num_highpower;
256 
257 	/* queue for handling async rescan requests. */
258 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
259 
260 	/* Registered busses */
261 	TAILQ_HEAD(,cam_eb)	xpt_busses;
262 	u_int			bus_generation;
263 
264 	struct intr_config_hook	*xpt_config_hook;
265 
266 	struct lock		xpt_topo_lock;
267 	struct lock		xpt_lock;
268 };
269 
270 static const char quantum[] = "QUANTUM";
271 static const char sony[] = "SONY";
272 static const char west_digital[] = "WDIGTL";
273 static const char samsung[] = "SAMSUNG";
274 static const char seagate[] = "SEAGATE";
275 static const char microp[] = "MICROP";
276 
277 static struct xpt_quirk_entry xpt_quirk_table[] =
278 {
279 	{
280 		/* Reports QUEUE FULL for temporary resource shortages */
281 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
282 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
283 	},
284 	{
285 		/* Reports QUEUE FULL for temporary resource shortages */
286 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
287 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
288 	},
289 	{
290 		/* Reports QUEUE FULL for temporary resource shortages */
291 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
292 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
293 	},
294 	{
295 		/* Broken tagged queuing drive */
296 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
297 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
298 	},
299 	{
300 		/* Broken tagged queuing drive */
301 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
302 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
303 	},
304 	{
305 		/* Broken tagged queuing drive */
306 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
307 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
308 	},
309 	{
310 		/*
311 		 * Unfortunately, the Quantum Atlas III has the same
312 		 * problem as the Atlas II drives above.
313 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
314 		 *
315 		 * For future reference, the drive with the problem was:
316 		 * QUANTUM QM39100TD-SW N1B0
317 		 *
318 		 * It's possible that Quantum will fix the problem in later
319 		 * firmware revisions.  If that happens, the quirk entry
320 		 * will need to be made specific to the firmware revisions
321 		 * with the problem.
322 		 *
323 		 */
324 		/* Reports QUEUE FULL for temporary resource shortages */
325 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
326 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
327 	},
328 	{
329 		/*
330 		 * 18 Gig Atlas III, same problem as the 9G version.
331 		 * Reported by: Andre Albsmeier
332 		 *		<andre.albsmeier@mchp.siemens.de>
333 		 *
334 		 * For future reference, the drive with the problem was:
335 		 * QUANTUM QM318000TD-S N491
336 		 */
337 		/* Reports QUEUE FULL for temporary resource shortages */
338 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
339 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
340 	},
341 	{
342 		/*
343 		 * Broken tagged queuing drive
344 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
345 		 *         and: Martin Renters <martin@tdc.on.ca>
346 		 */
347 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
348 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
349 	},
350 		/*
351 		 * The Seagate Medalist Pro drives have very poor write
352 		 * performance with anything more than 2 tags.
353 		 *
354 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
355 		 * Drive:  <SEAGATE ST36530N 1444>
356 		 *
357 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
358 		 * Drive:  <SEAGATE ST34520W 1281>
359 		 *
360 		 * No one has actually reported that the 9G version
361 		 * (ST39140*) of the Medalist Pro has the same problem, but
362 		 * we're assuming that it does because the 4G and 6.5G
363 		 * versions of the drive are broken.
364 		 */
365 	{
366 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
367 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
368 	},
369 	{
370 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
371 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
372 	},
373 	{
374 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
375 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
376 	},
377 	{
378 		/*
379 		 * Slow when tagged queueing is enabled.  Write performance
380 		 * steadily drops off with more and more concurrent
381 		 * transactions.  Best sequential write performance with
382 		 * tagged queueing turned off and write caching turned on.
383 		 *
384 		 * PR:  kern/10398
385 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
386 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
387 		 *
388 		 * The drive with the problem had the "S65A" firmware
389 		 * revision, and has also been reported (by Stephen J.
390 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
391 		 * firmware revision.
392 		 *
393 		 * Although no one has reported problems with the 2 gig
394 		 * version of the DCAS drive, the assumption is that it
395 		 * has the same problems as the 4 gig version.  Therefore
396 		 * this quirk entries disables tagged queueing for all
397 		 * DCAS drives.
398 		 */
399 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
400 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
401 	},
402 	{
403 		/* Broken tagged queuing drive */
404 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
405 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
406 	},
407 	{
408 		/* Broken tagged queuing drive */
409 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
410 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
411 	},
412 	{
413 		/* This does not support other than LUN 0 */
414 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
415 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
416 	},
417 	{
418 		/*
419 		 * Broken tagged queuing drive.
420 		 * Submitted by:
421 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
422 		 * in PR kern/9535
423 		 */
424 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
425 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
426 	},
427         {
428 		/*
429 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
430 		 * 8MB/sec.)
431 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
432 		 * Best performance with these drives is achieved with
433 		 * tagged queueing turned off, and write caching turned on.
434 		 */
435 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
436 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
437         },
438         {
439 		/*
440 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
441 		 * 8MB/sec.)
442 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
443 		 * Best performance with these drives is achieved with
444 		 * tagged queueing turned off, and write caching turned on.
445 		 */
446 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
447 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
448         },
449 	{
450 		/*
451 		 * Doesn't handle queue full condition correctly,
452 		 * so we need to limit maxtags to what the device
453 		 * can handle instead of determining this automatically.
454 		 */
455 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
456 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
457 	},
458 	{
459 		/* Really only one LUN */
460 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
461 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
462 	},
463 	{
464 		/* I can't believe we need a quirk for DPT volumes. */
465 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
466 		CAM_QUIRK_NOLUNS,
467 		/*mintags*/0, /*maxtags*/255
468 	},
469 	{
470 		/*
471 		 * Many Sony CDROM drives don't like multi-LUN probing.
472 		 */
473 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
474 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
475 	},
476 	{
477 		/*
478 		 * This drive doesn't like multiple LUN probing.
479 		 * Submitted by:  Parag Patel <parag@cgt.com>
480 		 */
481 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
482 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
483 	},
484 	{
485 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
486 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
487 	},
488 	{
489 		/*
490 		 * The 8200 doesn't like multi-lun probing, and probably
491 		 * don't like serial number requests either.
492 		 */
493 		{
494 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
495 			"EXB-8200*", "*"
496 		},
497 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
498 	},
499 	{
500 		/*
501 		 * Let's try the same as above, but for a drive that says
502 		 * it's an IPL-6860 but is actually an EXB 8200.
503 		 */
504 		{
505 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
506 			"IPL-6860*", "*"
507 		},
508 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
509 	},
510 	{
511 		/*
512 		 * These Hitachi drives don't like multi-lun probing.
513 		 * The PR submitter has a DK319H, but says that the Linux
514 		 * kernel has a similar work-around for the DK312 and DK314,
515 		 * so all DK31* drives are quirked here.
516 		 * PR:            misc/18793
517 		 * Submitted by:  Paul Haddad <paul@pth.com>
518 		 */
519 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
520 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
521 	},
522 	{
523 		/*
524 		 * The Hitachi CJ series with J8A8 firmware apparantly has
525 		 * problems with tagged commands.
526 		 * PR: 23536
527 		 * Reported by: amagai@nue.org
528 		 */
529 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
530 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
531 	},
532 	{
533 		/*
534 		 * These are the large storage arrays.
535 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
536 		 */
537 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
538 		CAM_QUIRK_HILUNS, 2, 1024
539 	},
540 	{
541 		/*
542 		 * This old revision of the TDC3600 is also SCSI-1, and
543 		 * hangs upon serial number probing.
544 		 */
545 		{
546 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
547 			" TDC 3600", "U07:"
548 		},
549 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
550 	},
551 	{
552 		/*
553 		 * Would repond to all LUNs if asked for.
554 		 */
555 		{
556 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
557 			"CP150", "*"
558 		},
559 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
560 	},
561 	{
562 		/*
563 		 * Would repond to all LUNs if asked for.
564 		 */
565 		{
566 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
567 			"96X2*", "*"
568 		},
569 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
570 	},
571 	{
572 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
573 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
574 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
575 	},
576 	{
577 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
578 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
579 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
580 	},
581 	{
582 		/* TeraSolutions special settings for TRC-22 RAID */
583 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
584 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
585 	},
586 	{
587 		/* Veritas Storage Appliance */
588 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
589 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
590 	},
591 	{
592 		/*
593 		 * Would respond to all LUNs.  Device type and removable
594 		 * flag are jumper-selectable.
595 		 */
596 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
597 		  "Tahiti 1", "*"
598 		},
599 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
600 	},
601 	{
602 		/* EasyRAID E5A aka. areca ARC-6010 */
603 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
604 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
605 	},
606 	{
607 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
608 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
609 	},
610 	{
611 		/* Default tagged queuing parameters for all devices */
612 		{
613 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
614 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
615 		},
616 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
617 	},
618 };
619 
620 static const int xpt_quirk_table_size =
621 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
622 
623 typedef enum {
624 	DM_RET_COPY		= 0x01,
625 	DM_RET_FLAG_MASK	= 0x0f,
626 	DM_RET_NONE		= 0x00,
627 	DM_RET_STOP		= 0x10,
628 	DM_RET_DESCEND		= 0x20,
629 	DM_RET_ERROR		= 0x30,
630 	DM_RET_ACTION_MASK	= 0xf0
631 } dev_match_ret;
632 
633 typedef enum {
634 	XPT_DEPTH_BUS,
635 	XPT_DEPTH_TARGET,
636 	XPT_DEPTH_DEVICE,
637 	XPT_DEPTH_PERIPH
638 } xpt_traverse_depth;
639 
640 struct xpt_traverse_config {
641 	xpt_traverse_depth	depth;
642 	void			*tr_func;
643 	void			*tr_arg;
644 };
645 
646 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
647 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
648 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
649 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
650 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
651 
652 /* Transport layer configuration information */
653 static struct xpt_softc xsoftc;
654 
655 /* Queues for our software interrupt handler */
656 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
657 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
658 static cam_simq_t cam_simq;
659 static struct spinlock cam_simq_spin;
660 
661 struct cam_periph *xpt_periph;
662 
663 static periph_init_t xpt_periph_init;
664 
665 static periph_init_t probe_periph_init;
666 
667 static struct periph_driver xpt_driver =
668 {
669 	xpt_periph_init, "xpt",
670 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
671 };
672 
673 static struct periph_driver probe_driver =
674 {
675 	probe_periph_init, "probe",
676 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
677 };
678 
679 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
680 PERIPHDRIVER_DECLARE(probe, probe_driver);
681 
682 #define XPT_CDEV_MAJOR 104
683 
684 static d_open_t xptopen;
685 static d_close_t xptclose;
686 static d_ioctl_t xptioctl;
687 
688 static struct dev_ops xpt_ops = {
689 	{ "xpt", XPT_CDEV_MAJOR, 0 },
690 	.d_open = xptopen,
691 	.d_close = xptclose,
692 	.d_ioctl = xptioctl
693 };
694 
695 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
696 static void dead_sim_poll(struct cam_sim *sim);
697 
698 /* Dummy SIM that is used when the real one has gone. */
699 static struct cam_sim cam_dead_sim = {
700 	.sim_action =	dead_sim_action,
701 	.sim_poll =	dead_sim_poll,
702 	.sim_name =	"dead_sim",
703 };
704 
705 #define SIM_DEAD(sim)	((sim) == &cam_dead_sim)
706 
707 /* Storage for debugging datastructures */
708 #ifdef	CAMDEBUG
709 struct cam_path *cam_dpath;
710 u_int32_t cam_dflags;
711 u_int32_t cam_debug_delay;
712 #endif
713 
714 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
715 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
716 #endif
717 
718 /*
719  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
720  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
721  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
722  */
723 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
724     || defined(CAM_DEBUG_LUN)
725 #ifdef CAMDEBUG
726 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
727     || !defined(CAM_DEBUG_LUN)
728 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
729         and CAM_DEBUG_LUN"
730 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
731 #else /* !CAMDEBUG */
732 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
733 #endif /* CAMDEBUG */
734 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
735 
736 /* Our boot-time initialization hook */
737 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
738 
739 static moduledata_t cam_moduledata = {
740 	"cam",
741 	cam_module_event_handler,
742 	NULL
743 };
744 
745 static int	xpt_init(void *);
746 
747 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
748 MODULE_VERSION(cam, 1);
749 
750 
751 static cam_status	xpt_compile_path(struct cam_path *new_path,
752 					 struct cam_periph *perph,
753 					 path_id_t path_id,
754 					 target_id_t target_id,
755 					 lun_id_t lun_id);
756 
757 static void		xpt_release_path(struct cam_path *path);
758 
759 static void		xpt_async_bcast(struct async_list *async_head,
760 					u_int32_t async_code,
761 					struct cam_path *path,
762 					void *async_arg);
763 static void		xpt_dev_async(u_int32_t async_code,
764 				      struct cam_eb *bus,
765 				      struct cam_et *target,
766 				      struct cam_ed *device,
767 				      void *async_arg);
768 static path_id_t xptnextfreepathid(void);
769 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
770 static union ccb *xpt_get_ccb(struct cam_ed *device);
771 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
772 				  u_int32_t new_priority);
773 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
774 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
775 static timeout_t xpt_release_devq_timeout;
776 static void	 xpt_release_bus(struct cam_eb *bus);
777 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
778 					 int run_queue);
779 static struct cam_et*
780 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
781 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
782 static struct cam_ed*
783 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
784 				  lun_id_t lun_id);
785 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
786 				    struct cam_ed *device);
787 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
788 static struct cam_eb*
789 		 xpt_find_bus(path_id_t path_id);
790 static struct cam_et*
791 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
792 static struct cam_ed*
793 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
794 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
795 static void	 xpt_scan_lun(struct cam_periph *periph,
796 			      struct cam_path *path, cam_flags flags,
797 			      union ccb *ccb);
798 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
799 static xpt_busfunc_t	xptconfigbuscountfunc;
800 static xpt_busfunc_t	xptconfigfunc;
801 static void	 xpt_config(void *arg);
802 static xpt_devicefunc_t xptpassannouncefunc;
803 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
804 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
805 static void	 xptpoll(struct cam_sim *sim);
806 static inthand2_t swi_cambio;
807 static void	 camisr(void *);
808 static void	 camisr_runqueue(struct cam_sim *);
809 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
810 				    u_int num_patterns, struct cam_eb *bus);
811 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
812 				       u_int num_patterns,
813 				       struct cam_ed *device);
814 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
815 				       u_int num_patterns,
816 				       struct cam_periph *periph);
817 static xpt_busfunc_t	xptedtbusfunc;
818 static xpt_targetfunc_t	xptedttargetfunc;
819 static xpt_devicefunc_t	xptedtdevicefunc;
820 static xpt_periphfunc_t	xptedtperiphfunc;
821 static xpt_pdrvfunc_t	xptplistpdrvfunc;
822 static xpt_periphfunc_t	xptplistperiphfunc;
823 static int		xptedtmatch(struct ccb_dev_match *cdm);
824 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
825 static int		xptbustraverse(struct cam_eb *start_bus,
826 				       xpt_busfunc_t *tr_func, void *arg);
827 static int		xpttargettraverse(struct cam_eb *bus,
828 					  struct cam_et *start_target,
829 					  xpt_targetfunc_t *tr_func, void *arg);
830 static int		xptdevicetraverse(struct cam_et *target,
831 					  struct cam_ed *start_device,
832 					  xpt_devicefunc_t *tr_func, void *arg);
833 static int		xptperiphtraverse(struct cam_ed *device,
834 					  struct cam_periph *start_periph,
835 					  xpt_periphfunc_t *tr_func, void *arg);
836 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
837 					xpt_pdrvfunc_t *tr_func, void *arg);
838 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
839 					    struct cam_periph *start_periph,
840 					    xpt_periphfunc_t *tr_func,
841 					    void *arg);
842 static xpt_busfunc_t	xptdefbusfunc;
843 static xpt_targetfunc_t	xptdeftargetfunc;
844 static xpt_devicefunc_t	xptdefdevicefunc;
845 static xpt_periphfunc_t	xptdefperiphfunc;
846 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
847 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
848 					    void *arg);
849 static xpt_devicefunc_t	xptsetasyncfunc;
850 static xpt_busfunc_t	xptsetasyncbusfunc;
851 static cam_status	xptregister(struct cam_periph *periph,
852 				    void *arg);
853 static cam_status	proberegister(struct cam_periph *periph,
854 				      void *arg);
855 static void	 probeschedule(struct cam_periph *probe_periph);
856 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
857 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
858 static int       proberequestbackoff(struct cam_periph *periph,
859 				     struct cam_ed *device);
860 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
861 static void	 probecleanup(struct cam_periph *periph);
862 static void	 xpt_find_quirk(struct cam_ed *device);
863 static void	 xpt_devise_transport(struct cam_path *path);
864 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
865 					   struct cam_ed *device,
866 					   int async_update);
867 static void	 xpt_toggle_tags(struct cam_path *path);
868 static void	 xpt_start_tags(struct cam_path *path);
869 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
870 					    struct cam_ed *dev);
871 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
872 					   struct cam_ed *dev);
873 static __inline int periph_is_queued(struct cam_periph *periph);
874 static __inline int device_is_alloc_queued(struct cam_ed *device);
875 static __inline int device_is_send_queued(struct cam_ed *device);
876 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
877 
878 static __inline int
879 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
880 {
881 	int retval;
882 
883 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
884 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
885 			cam_ccbq_resize(&dev->ccbq,
886 					dev->ccbq.dev_openings
887 					+ dev->ccbq.dev_active);
888 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
889 		}
890 		/*
891 		 * The priority of a device waiting for CCB resources
892 		 * is that of the the highest priority peripheral driver
893 		 * enqueued.
894 		 */
895 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
896 					  &dev->alloc_ccb_entry.pinfo,
897 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
898 	} else {
899 		retval = 0;
900 	}
901 
902 	return (retval);
903 }
904 
905 static __inline int
906 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
907 {
908 	int	retval;
909 
910 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
911 		/*
912 		 * The priority of a device waiting for controller
913 		 * resources is that of the the highest priority CCB
914 		 * enqueued.
915 		 */
916 		retval =
917 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
918 				     &dev->send_ccb_entry.pinfo,
919 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
920 	} else {
921 		retval = 0;
922 	}
923 	return (retval);
924 }
925 
926 static __inline int
927 periph_is_queued(struct cam_periph *periph)
928 {
929 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
930 }
931 
932 static __inline int
933 device_is_alloc_queued(struct cam_ed *device)
934 {
935 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
936 }
937 
938 static __inline int
939 device_is_send_queued(struct cam_ed *device)
940 {
941 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
942 }
943 
944 static __inline int
945 dev_allocq_is_runnable(struct cam_devq *devq)
946 {
947 	/*
948 	 * Have work to do.
949 	 * Have space to do more work.
950 	 * Allowed to do work.
951 	 */
952 	return ((devq->alloc_queue.qfrozen_cnt == 0)
953 	     && (devq->alloc_queue.entries > 0)
954 	     && (devq->alloc_openings > 0));
955 }
956 
957 static void
958 xpt_periph_init(void)
959 {
960 	dev_ops_add(&xpt_ops, 0, 0);
961 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
962 }
963 
964 static void
965 probe_periph_init(void)
966 {
967 }
968 
969 
970 static void
971 xptdone(struct cam_periph *periph, union ccb *done_ccb)
972 {
973 	/* Caller will release the CCB */
974 	wakeup(&done_ccb->ccb_h.cbfcnp);
975 }
976 
977 static int
978 xptopen(struct dev_open_args *ap)
979 {
980 	cdev_t dev = ap->a_head.a_dev;
981 
982 	/*
983 	 * Only allow read-write access.
984 	 */
985 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
986 		return(EPERM);
987 
988 	/*
989 	 * We don't allow nonblocking access.
990 	 */
991 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
992 		kprintf("%s: can't do nonblocking access\n", devtoname(dev));
993 		return(ENODEV);
994 	}
995 
996 	/* Mark ourselves open */
997 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
998 	xsoftc.flags |= XPT_FLAG_OPEN;
999 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1000 
1001 	return(0);
1002 }
1003 
1004 static int
1005 xptclose(struct dev_close_args *ap)
1006 {
1007 
1008 	/* Mark ourselves closed */
1009 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1010 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1011 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1012 
1013 	return(0);
1014 }
1015 
1016 /*
1017  * Don't automatically grab the xpt softc lock here even though this is going
1018  * through the xpt device.  The xpt device is really just a back door for
1019  * accessing other devices and SIMs, so the right thing to do is to grab
1020  * the appropriate SIM lock once the bus/SIM is located.
1021  */
1022 static int
1023 xptioctl(struct dev_ioctl_args *ap)
1024 {
1025 	int error;
1026 
1027 	error = 0;
1028 
1029 	switch(ap->a_cmd) {
1030 	/*
1031 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1032 	 * to accept CCB types that don't quite make sense to send through a
1033 	 * passthrough driver.
1034 	 */
1035 	case CAMIOCOMMAND: {
1036 		union ccb *ccb;
1037 		union ccb *inccb;
1038 		struct cam_eb *bus;
1039 
1040 		inccb = (union ccb *)ap->a_data;
1041 
1042 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1043 		if (bus == NULL) {
1044 			error = EINVAL;
1045 			break;
1046 		}
1047 
1048 		switch(inccb->ccb_h.func_code) {
1049 		case XPT_SCAN_BUS:
1050 		case XPT_RESET_BUS:
1051 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1052 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1053 				error = EINVAL;
1054 				break;
1055 			}
1056 			/* FALLTHROUGH */
1057 		case XPT_PATH_INQ:
1058 		case XPT_ENG_INQ:
1059 		case XPT_SCAN_LUN:
1060 
1061 			ccb = xpt_alloc_ccb();
1062 
1063 			CAM_SIM_LOCK(bus->sim);
1064 
1065 			/*
1066 			 * Create a path using the bus, target, and lun the
1067 			 * user passed in.
1068 			 */
1069 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1070 					    inccb->ccb_h.path_id,
1071 					    inccb->ccb_h.target_id,
1072 					    inccb->ccb_h.target_lun) !=
1073 					    CAM_REQ_CMP){
1074 				error = EINVAL;
1075 				CAM_SIM_UNLOCK(bus->sim);
1076 				xpt_free_ccb(ccb);
1077 				break;
1078 			}
1079 			/* Ensure all of our fields are correct */
1080 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1081 				      inccb->ccb_h.pinfo.priority);
1082 			xpt_merge_ccb(ccb, inccb);
1083 			ccb->ccb_h.cbfcnp = xptdone;
1084 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1085 			bcopy(ccb, inccb, sizeof(union ccb));
1086 			xpt_free_path(ccb->ccb_h.path);
1087 			xpt_free_ccb(ccb);
1088 			CAM_SIM_UNLOCK(bus->sim);
1089 			break;
1090 
1091 		case XPT_DEBUG: {
1092 			union ccb ccb;
1093 
1094 			/*
1095 			 * This is an immediate CCB, so it's okay to
1096 			 * allocate it on the stack.
1097 			 */
1098 
1099 			CAM_SIM_LOCK(bus->sim);
1100 
1101 			/*
1102 			 * Create a path using the bus, target, and lun the
1103 			 * user passed in.
1104 			 */
1105 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1106 					    inccb->ccb_h.path_id,
1107 					    inccb->ccb_h.target_id,
1108 					    inccb->ccb_h.target_lun) !=
1109 					    CAM_REQ_CMP){
1110 				error = EINVAL;
1111 				CAM_SIM_UNLOCK(bus->sim);
1112 				break;
1113 			}
1114 			/* Ensure all of our fields are correct */
1115 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1116 				      inccb->ccb_h.pinfo.priority);
1117 			xpt_merge_ccb(&ccb, inccb);
1118 			ccb.ccb_h.cbfcnp = xptdone;
1119 			xpt_action(&ccb);
1120 			CAM_SIM_UNLOCK(bus->sim);
1121 			bcopy(&ccb, inccb, sizeof(union ccb));
1122 			xpt_free_path(ccb.ccb_h.path);
1123 			break;
1124 
1125 		}
1126 		case XPT_DEV_MATCH: {
1127 			struct cam_periph_map_info mapinfo;
1128 			struct cam_path *old_path;
1129 
1130 			/*
1131 			 * We can't deal with physical addresses for this
1132 			 * type of transaction.
1133 			 */
1134 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1135 				error = EINVAL;
1136 				break;
1137 			}
1138 
1139 			/*
1140 			 * Save this in case the caller had it set to
1141 			 * something in particular.
1142 			 */
1143 			old_path = inccb->ccb_h.path;
1144 
1145 			/*
1146 			 * We really don't need a path for the matching
1147 			 * code.  The path is needed because of the
1148 			 * debugging statements in xpt_action().  They
1149 			 * assume that the CCB has a valid path.
1150 			 */
1151 			inccb->ccb_h.path = xpt_periph->path;
1152 
1153 			bzero(&mapinfo, sizeof(mapinfo));
1154 
1155 			/*
1156 			 * Map the pattern and match buffers into kernel
1157 			 * virtual address space.
1158 			 */
1159 			error = cam_periph_mapmem(inccb, &mapinfo);
1160 
1161 			if (error) {
1162 				inccb->ccb_h.path = old_path;
1163 				break;
1164 			}
1165 
1166 			/*
1167 			 * This is an immediate CCB, we can send it on directly.
1168 			 */
1169 			xpt_action(inccb);
1170 
1171 			/*
1172 			 * Map the buffers back into user space.
1173 			 */
1174 			cam_periph_unmapmem(inccb, &mapinfo);
1175 
1176 			inccb->ccb_h.path = old_path;
1177 
1178 			error = 0;
1179 			break;
1180 		}
1181 		default:
1182 			error = ENOTSUP;
1183 			break;
1184 		}
1185 		xpt_release_bus(bus);
1186 		break;
1187 	}
1188 	/*
1189 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1190 	 * with the periphal driver name and unit name filled in.  The other
1191 	 * fields don't really matter as input.  The passthrough driver name
1192 	 * ("pass"), and unit number are passed back in the ccb.  The current
1193 	 * device generation number, and the index into the device peripheral
1194 	 * driver list, and the status are also passed back.  Note that
1195 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1196 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1197 	 * (or rather should be) impossible for the device peripheral driver
1198 	 * list to change since we look at the whole thing in one pass, and
1199 	 * we do it with lock protection.
1200 	 *
1201 	 */
1202 	case CAMGETPASSTHRU: {
1203 		union ccb *ccb;
1204 		struct cam_periph *periph;
1205 		struct periph_driver **p_drv;
1206 		char   *name;
1207 		u_int unit;
1208 		u_int cur_generation;
1209 		int base_periph_found;
1210 		int splbreaknum;
1211 
1212 		ccb = (union ccb *)ap->a_data;
1213 		unit = ccb->cgdl.unit_number;
1214 		name = ccb->cgdl.periph_name;
1215 		/*
1216 		 * Every 100 devices, we want to drop our lock protection to
1217 		 * give the software interrupt handler a chance to run.
1218 		 * Most systems won't run into this check, but this should
1219 		 * avoid starvation in the software interrupt handler in
1220 		 * large systems.
1221 		 */
1222 		splbreaknum = 100;
1223 
1224 		ccb = (union ccb *)ap->a_data;
1225 
1226 		base_periph_found = 0;
1227 
1228 		/*
1229 		 * Sanity check -- make sure we don't get a null peripheral
1230 		 * driver name.
1231 		 */
1232 		if (*ccb->cgdl.periph_name == '\0') {
1233 			error = EINVAL;
1234 			break;
1235 		}
1236 
1237 		/* Keep the list from changing while we traverse it */
1238 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1239 ptstartover:
1240 		cur_generation = xsoftc.xpt_generation;
1241 
1242 		/* first find our driver in the list of drivers */
1243 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1244 			if (strcmp((*p_drv)->driver_name, name) == 0)
1245 				break;
1246 		}
1247 
1248 		if (*p_drv == NULL) {
1249 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1250 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1251 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1252 			*ccb->cgdl.periph_name = '\0';
1253 			ccb->cgdl.unit_number = 0;
1254 			error = ENOENT;
1255 			break;
1256 		}
1257 
1258 		/*
1259 		 * Run through every peripheral instance of this driver
1260 		 * and check to see whether it matches the unit passed
1261 		 * in by the user.  If it does, get out of the loops and
1262 		 * find the passthrough driver associated with that
1263 		 * peripheral driver.
1264 		 */
1265 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1266 
1267 			if (periph->unit_number == unit) {
1268 				break;
1269 			} else if (--splbreaknum == 0) {
1270 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1271 				lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1272 				splbreaknum = 100;
1273 				if (cur_generation != xsoftc.xpt_generation)
1274 				       goto ptstartover;
1275 			}
1276 		}
1277 		/*
1278 		 * If we found the peripheral driver that the user passed
1279 		 * in, go through all of the peripheral drivers for that
1280 		 * particular device and look for a passthrough driver.
1281 		 */
1282 		if (periph != NULL) {
1283 			struct cam_ed *device;
1284 			int i;
1285 
1286 			base_periph_found = 1;
1287 			device = periph->path->device;
1288 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1289 			     periph != NULL;
1290 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1291 				/*
1292 				 * Check to see whether we have a
1293 				 * passthrough device or not.
1294 				 */
1295 				if (strcmp(periph->periph_name, "pass") == 0) {
1296 					/*
1297 					 * Fill in the getdevlist fields.
1298 					 */
1299 					strcpy(ccb->cgdl.periph_name,
1300 					       periph->periph_name);
1301 					ccb->cgdl.unit_number =
1302 						periph->unit_number;
1303 					if (SLIST_NEXT(periph, periph_links))
1304 						ccb->cgdl.status =
1305 							CAM_GDEVLIST_MORE_DEVS;
1306 					else
1307 						ccb->cgdl.status =
1308 						       CAM_GDEVLIST_LAST_DEVICE;
1309 					ccb->cgdl.generation =
1310 						device->generation;
1311 					ccb->cgdl.index = i;
1312 					/*
1313 					 * Fill in some CCB header fields
1314 					 * that the user may want.
1315 					 */
1316 					ccb->ccb_h.path_id =
1317 						periph->path->bus->path_id;
1318 					ccb->ccb_h.target_id =
1319 						periph->path->target->target_id;
1320 					ccb->ccb_h.target_lun =
1321 						periph->path->device->lun_id;
1322 					ccb->ccb_h.status = CAM_REQ_CMP;
1323 					break;
1324 				}
1325 			}
1326 		}
1327 
1328 		/*
1329 		 * If the periph is null here, one of two things has
1330 		 * happened.  The first possibility is that we couldn't
1331 		 * find the unit number of the particular peripheral driver
1332 		 * that the user is asking about.  e.g. the user asks for
1333 		 * the passthrough driver for "da11".  We find the list of
1334 		 * "da" peripherals all right, but there is no unit 11.
1335 		 * The other possibility is that we went through the list
1336 		 * of peripheral drivers attached to the device structure,
1337 		 * but didn't find one with the name "pass".  Either way,
1338 		 * we return ENOENT, since we couldn't find something.
1339 		 */
1340 		if (periph == NULL) {
1341 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1342 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1343 			*ccb->cgdl.periph_name = '\0';
1344 			ccb->cgdl.unit_number = 0;
1345 			error = ENOENT;
1346 			/*
1347 			 * It is unfortunate that this is even necessary,
1348 			 * but there are many, many clueless users out there.
1349 			 * If this is true, the user is looking for the
1350 			 * passthrough driver, but doesn't have one in his
1351 			 * kernel.
1352 			 */
1353 			if (base_periph_found == 1) {
1354 				kprintf("xptioctl: pass driver is not in the "
1355 				       "kernel\n");
1356 				kprintf("xptioctl: put \"device pass\" in "
1357 				       "your kernel config file\n");
1358 			}
1359 		}
1360 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1361 		break;
1362 		}
1363 	default:
1364 		error = ENOTTY;
1365 		break;
1366 	}
1367 
1368 	return(error);
1369 }
1370 
1371 static int
1372 cam_module_event_handler(module_t mod, int what, void *arg)
1373 {
1374 	int error;
1375 
1376 	switch (what) {
1377 	case MOD_LOAD:
1378 		if ((error = xpt_init(NULL)) != 0)
1379 			return (error);
1380 		break;
1381 	case MOD_UNLOAD:
1382 		return EBUSY;
1383 	default:
1384 		return EOPNOTSUPP;
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 /* thread to handle bus rescans */
1391 static void
1392 xpt_scanner_thread(void *dummy)
1393 {
1394 	cam_isrq_t	queue;
1395 	union ccb	*ccb;
1396 	struct cam_sim	*sim;
1397 
1398 	for (;;) {
1399 		/*
1400 		 * Wait for a rescan request to come in.  When it does, splice
1401 		 * it onto a queue from local storage so that the xpt lock
1402 		 * doesn't need to be held while the requests are being
1403 		 * processed.
1404 		 */
1405 		crit_enter();
1406 		tsleep_interlock(&xsoftc.ccb_scanq);
1407 		xpt_unlock_buses();
1408 		tsleep(&xsoftc.ccb_scanq, 0, "ccb_scanq", 0);
1409 		xpt_lock_buses();
1410 		crit_exit();
1411 		TAILQ_INIT(&queue);
1412 		TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
1413 		xpt_unlock_buses();
1414 
1415 		while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
1416 			TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
1417 
1418 			sim = ccb->ccb_h.path->bus->sim;
1419 			CAM_SIM_LOCK(sim);
1420 
1421 			ccb->ccb_h.func_code = XPT_SCAN_BUS;
1422 			ccb->ccb_h.cbfcnp = xptdone;
1423 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5);
1424 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1425 			xpt_free_path(ccb->ccb_h.path);
1426 			xpt_free_ccb(ccb);
1427 			CAM_SIM_UNLOCK(sim);
1428 		}
1429 	}
1430 }
1431 
1432 void
1433 xpt_rescan(union ccb *ccb)
1434 {
1435 	struct ccb_hdr *hdr;
1436 
1437 	/*
1438 	 * Don't make duplicate entries for the same paths.
1439 	 */
1440 	xpt_lock_buses();
1441 	TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
1442 		if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
1443 			xpt_unlock_buses();
1444 			xpt_print(ccb->ccb_h.path, "rescan already queued\n");
1445 			xpt_free_path(ccb->ccb_h.path);
1446 			xpt_free_ccb(ccb);
1447 			return;
1448 		}
1449 	}
1450 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1451 	wakeup(&xsoftc.ccb_scanq);
1452 	xpt_unlock_buses();
1453 }
1454 
1455 
1456 /* Functions accessed by the peripheral drivers */
1457 static int
1458 xpt_init(void *dummy)
1459 {
1460 	struct cam_sim *xpt_sim;
1461 	struct cam_path *path;
1462 	struct cam_devq *devq;
1463 	cam_status status;
1464 
1465 	TAILQ_INIT(&xsoftc.xpt_busses);
1466 	TAILQ_INIT(&cam_simq);
1467 	TAILQ_INIT(&xsoftc.ccb_scanq);
1468 	STAILQ_INIT(&xsoftc.highpowerq);
1469 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1470 
1471 	spin_init(&cam_simq_spin);
1472 	lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1473 	lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1474 
1475 	/*
1476 	 * The xpt layer is, itself, the equivelent of a SIM.
1477 	 * Allow 16 ccbs in the ccb pool for it.  This should
1478 	 * give decent parallelism when we probe busses and
1479 	 * perform other XPT functions.
1480 	 */
1481 	devq = cam_simq_alloc(16);
1482 	xpt_sim = cam_sim_alloc(xptaction,
1483 				xptpoll,
1484 				"xpt",
1485 				/*softc*/NULL,
1486 				/*unit*/0,
1487 				/*lock*/&xsoftc.xpt_lock,
1488 				/*max_dev_transactions*/0,
1489 				/*max_tagged_dev_transactions*/0,
1490 				devq);
1491 	cam_simq_release(devq);
1492 	if (xpt_sim == NULL)
1493 		return (ENOMEM);
1494 
1495 	xpt_sim->max_ccbs = 16;
1496 
1497 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1498 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1499 		kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1500 		       " failing attach\n", status);
1501 		return (EINVAL);
1502 	}
1503 
1504 	/*
1505 	 * Looking at the XPT from the SIM layer, the XPT is
1506 	 * the equivelent of a peripheral driver.  Allocate
1507 	 * a peripheral driver entry for us.
1508 	 */
1509 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1510 				      CAM_TARGET_WILDCARD,
1511 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1512 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1513 		       " failing attach\n", status);
1514 		return (EINVAL);
1515 	}
1516 
1517 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1518 			 path, NULL, 0, xpt_sim);
1519 	xpt_free_path(path);
1520 
1521 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1522 
1523 	/*
1524 	 * Register a callback for when interrupts are enabled.
1525 	 */
1526 	xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1527 				  M_CAMXPT, M_INTWAIT | M_ZERO);
1528 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1529 	xsoftc.xpt_config_hook->ich_desc = "xpt";
1530 	xsoftc.xpt_config_hook->ich_order = 1000;
1531 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1532 		kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1533 		kprintf("xpt_init: config_intrhook_establish failed "
1534 		       "- failing attach\n");
1535 	}
1536 
1537 	/* fire up rescan thread */
1538 	if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1539 		kprintf("xpt_init: failed to create rescan thread\n");
1540 	}
1541 	/* Install our software interrupt handlers */
1542 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL);
1543 
1544 	return (0);
1545 }
1546 
1547 static cam_status
1548 xptregister(struct cam_periph *periph, void *arg)
1549 {
1550 	struct cam_sim *xpt_sim;
1551 
1552 	if (periph == NULL) {
1553 		kprintf("xptregister: periph was NULL!!\n");
1554 		return(CAM_REQ_CMP_ERR);
1555 	}
1556 
1557 	xpt_sim = (struct cam_sim *)arg;
1558 	xpt_sim->softc = periph;
1559 	xpt_periph = periph;
1560 	periph->softc = NULL;
1561 
1562 	return(CAM_REQ_CMP);
1563 }
1564 
1565 int32_t
1566 xpt_add_periph(struct cam_periph *periph)
1567 {
1568 	struct cam_ed *device;
1569 	int32_t	 status;
1570 	struct periph_list *periph_head;
1571 
1572 	sim_lock_assert_owned(periph->sim->lock);
1573 
1574 	device = periph->path->device;
1575 
1576 	periph_head = &device->periphs;
1577 
1578 	status = CAM_REQ_CMP;
1579 
1580 	if (device != NULL) {
1581 		/*
1582 		 * Make room for this peripheral
1583 		 * so it will fit in the queue
1584 		 * when it's scheduled to run
1585 		 */
1586 		status = camq_resize(&device->drvq,
1587 				     device->drvq.array_size + 1);
1588 
1589 		device->generation++;
1590 
1591 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1592 	}
1593 
1594 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1595 	xsoftc.xpt_generation++;
1596 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1597 
1598 	return (status);
1599 }
1600 
1601 void
1602 xpt_remove_periph(struct cam_periph *periph)
1603 {
1604 	struct cam_ed *device;
1605 
1606 	sim_lock_assert_owned(periph->sim->lock);
1607 
1608 	device = periph->path->device;
1609 
1610 	if (device != NULL) {
1611 		struct periph_list *periph_head;
1612 
1613 		periph_head = &device->periphs;
1614 
1615 		/* Release the slot for this peripheral */
1616 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1617 
1618 		device->generation++;
1619 
1620 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1621 	}
1622 
1623 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1624 	xsoftc.xpt_generation++;
1625 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1626 }
1627 
1628 void
1629 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1630 {
1631 	struct	ccb_pathinq cpi;
1632 	struct	ccb_trans_settings cts;
1633 	struct	cam_path *path;
1634 	u_int	speed;
1635 	u_int	freq;
1636 	u_int	mb;
1637 
1638 	sim_lock_assert_owned(periph->sim->lock);
1639 
1640 	path = periph->path;
1641 	/*
1642 	 * To ensure that this is printed in one piece,
1643 	 * mask out CAM interrupts.
1644 	 */
1645 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1646 	       periph->periph_name, periph->unit_number,
1647 	       path->bus->sim->sim_name,
1648 	       path->bus->sim->unit_number,
1649 	       path->bus->sim->bus_id,
1650 	       path->target->target_id,
1651 	       path->device->lun_id);
1652 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1653 	scsi_print_inquiry(&path->device->inq_data);
1654 	if (bootverbose && path->device->serial_num_len > 0) {
1655 		/* Don't wrap the screen  - print only the first 60 chars */
1656 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1657 		       periph->unit_number, path->device->serial_num);
1658 	}
1659 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1660 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1661 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1662 	xpt_action((union ccb*)&cts);
1663 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1664 		return;
1665 	}
1666 
1667 	/* Ask the SIM for its base transfer speed */
1668 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1669 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1670 	xpt_action((union ccb *)&cpi);
1671 
1672 	speed = cpi.base_transfer_speed;
1673 	freq = 0;
1674 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1675 		struct	ccb_trans_settings_spi *spi;
1676 
1677 		spi = &cts.xport_specific.spi;
1678 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1679 		  && spi->sync_offset != 0) {
1680 			freq = scsi_calc_syncsrate(spi->sync_period);
1681 			speed = freq;
1682 		}
1683 
1684 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1685 			speed *= (0x01 << spi->bus_width);
1686 	}
1687 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1688 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1689 		if (fc->valid & CTS_FC_VALID_SPEED) {
1690 			speed = fc->bitrate;
1691 		}
1692 	}
1693 
1694 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1695 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1696 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1697 			speed = sas->bitrate;
1698 		}
1699 	}
1700 
1701 	mb = speed / 1000;
1702 	if (mb > 0)
1703 		kprintf("%s%d: %d.%03dMB/s transfers",
1704 		       periph->periph_name, periph->unit_number,
1705 		       mb, speed % 1000);
1706 	else
1707 		kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1708 		       periph->unit_number, speed);
1709 	/* Report additional information about SPI connections */
1710 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1711 		struct	ccb_trans_settings_spi *spi;
1712 
1713 		spi = &cts.xport_specific.spi;
1714 		if (freq != 0) {
1715 			kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1716 			       freq % 1000,
1717 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1718 			     ? " DT" : "",
1719 			       spi->sync_offset);
1720 		}
1721 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1722 		 && spi->bus_width > 0) {
1723 			if (freq != 0) {
1724 				kprintf(", ");
1725 			} else {
1726 				kprintf(" (");
1727 			}
1728 			kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1729 		} else if (freq != 0) {
1730 			kprintf(")");
1731 		}
1732 	}
1733 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1734 		struct	ccb_trans_settings_fc *fc;
1735 
1736 		fc = &cts.xport_specific.fc;
1737 		if (fc->valid & CTS_FC_VALID_WWNN)
1738 			kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1739 		if (fc->valid & CTS_FC_VALID_WWPN)
1740 			kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1741 		if (fc->valid & CTS_FC_VALID_PORT)
1742 			kprintf(" PortID 0x%x", fc->port);
1743 	}
1744 
1745 	if (path->device->inq_flags & SID_CmdQue
1746 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1747 		kprintf("\n%s%d: Command Queueing Enabled",
1748 		       periph->periph_name, periph->unit_number);
1749 	}
1750 	kprintf("\n");
1751 
1752 	/*
1753 	 * We only want to print the caller's announce string if they've
1754 	 * passed one in..
1755 	 */
1756 	if (announce_string != NULL)
1757 		kprintf("%s%d: %s\n", periph->periph_name,
1758 		       periph->unit_number, announce_string);
1759 }
1760 
1761 static dev_match_ret
1762 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1763 	    struct cam_eb *bus)
1764 {
1765 	dev_match_ret retval;
1766 	int i;
1767 
1768 	retval = DM_RET_NONE;
1769 
1770 	/*
1771 	 * If we aren't given something to match against, that's an error.
1772 	 */
1773 	if (bus == NULL)
1774 		return(DM_RET_ERROR);
1775 
1776 	/*
1777 	 * If there are no match entries, then this bus matches no
1778 	 * matter what.
1779 	 */
1780 	if ((patterns == NULL) || (num_patterns == 0))
1781 		return(DM_RET_DESCEND | DM_RET_COPY);
1782 
1783 	for (i = 0; i < num_patterns; i++) {
1784 		struct bus_match_pattern *cur_pattern;
1785 
1786 		/*
1787 		 * If the pattern in question isn't for a bus node, we
1788 		 * aren't interested.  However, we do indicate to the
1789 		 * calling routine that we should continue descending the
1790 		 * tree, since the user wants to match against lower-level
1791 		 * EDT elements.
1792 		 */
1793 		if (patterns[i].type != DEV_MATCH_BUS) {
1794 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1795 				retval |= DM_RET_DESCEND;
1796 			continue;
1797 		}
1798 
1799 		cur_pattern = &patterns[i].pattern.bus_pattern;
1800 
1801 		/*
1802 		 * If they want to match any bus node, we give them any
1803 		 * device node.
1804 		 */
1805 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1806 			/* set the copy flag */
1807 			retval |= DM_RET_COPY;
1808 
1809 			/*
1810 			 * If we've already decided on an action, go ahead
1811 			 * and return.
1812 			 */
1813 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1814 				return(retval);
1815 		}
1816 
1817 		/*
1818 		 * Not sure why someone would do this...
1819 		 */
1820 		if (cur_pattern->flags == BUS_MATCH_NONE)
1821 			continue;
1822 
1823 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1824 		 && (cur_pattern->path_id != bus->path_id))
1825 			continue;
1826 
1827 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1828 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1829 			continue;
1830 
1831 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1832 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1833 			continue;
1834 
1835 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1836 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1837 			     DEV_IDLEN) != 0))
1838 			continue;
1839 
1840 		/*
1841 		 * If we get to this point, the user definitely wants
1842 		 * information on this bus.  So tell the caller to copy the
1843 		 * data out.
1844 		 */
1845 		retval |= DM_RET_COPY;
1846 
1847 		/*
1848 		 * If the return action has been set to descend, then we
1849 		 * know that we've already seen a non-bus matching
1850 		 * expression, therefore we need to further descend the tree.
1851 		 * This won't change by continuing around the loop, so we
1852 		 * go ahead and return.  If we haven't seen a non-bus
1853 		 * matching expression, we keep going around the loop until
1854 		 * we exhaust the matching expressions.  We'll set the stop
1855 		 * flag once we fall out of the loop.
1856 		 */
1857 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1858 			return(retval);
1859 	}
1860 
1861 	/*
1862 	 * If the return action hasn't been set to descend yet, that means
1863 	 * we haven't seen anything other than bus matching patterns.  So
1864 	 * tell the caller to stop descending the tree -- the user doesn't
1865 	 * want to match against lower level tree elements.
1866 	 */
1867 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1868 		retval |= DM_RET_STOP;
1869 
1870 	return(retval);
1871 }
1872 
1873 static dev_match_ret
1874 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1875 	       struct cam_ed *device)
1876 {
1877 	dev_match_ret retval;
1878 	int i;
1879 
1880 	retval = DM_RET_NONE;
1881 
1882 	/*
1883 	 * If we aren't given something to match against, that's an error.
1884 	 */
1885 	if (device == NULL)
1886 		return(DM_RET_ERROR);
1887 
1888 	/*
1889 	 * If there are no match entries, then this device matches no
1890 	 * matter what.
1891 	 */
1892 	if ((patterns == NULL) || (num_patterns == 0))
1893 		return(DM_RET_DESCEND | DM_RET_COPY);
1894 
1895 	for (i = 0; i < num_patterns; i++) {
1896 		struct device_match_pattern *cur_pattern;
1897 
1898 		/*
1899 		 * If the pattern in question isn't for a device node, we
1900 		 * aren't interested.
1901 		 */
1902 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1903 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1904 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1905 				retval |= DM_RET_DESCEND;
1906 			continue;
1907 		}
1908 
1909 		cur_pattern = &patterns[i].pattern.device_pattern;
1910 
1911 		/*
1912 		 * If they want to match any device node, we give them any
1913 		 * device node.
1914 		 */
1915 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1916 			/* set the copy flag */
1917 			retval |= DM_RET_COPY;
1918 
1919 
1920 			/*
1921 			 * If we've already decided on an action, go ahead
1922 			 * and return.
1923 			 */
1924 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1925 				return(retval);
1926 		}
1927 
1928 		/*
1929 		 * Not sure why someone would do this...
1930 		 */
1931 		if (cur_pattern->flags == DEV_MATCH_NONE)
1932 			continue;
1933 
1934 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1935 		 && (cur_pattern->path_id != device->target->bus->path_id))
1936 			continue;
1937 
1938 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1939 		 && (cur_pattern->target_id != device->target->target_id))
1940 			continue;
1941 
1942 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1943 		 && (cur_pattern->target_lun != device->lun_id))
1944 			continue;
1945 
1946 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1947 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1948 				    (caddr_t)&cur_pattern->inq_pat,
1949 				    1, sizeof(cur_pattern->inq_pat),
1950 				    scsi_static_inquiry_match) == NULL))
1951 			continue;
1952 
1953 		/*
1954 		 * If we get to this point, the user definitely wants
1955 		 * information on this device.  So tell the caller to copy
1956 		 * the data out.
1957 		 */
1958 		retval |= DM_RET_COPY;
1959 
1960 		/*
1961 		 * If the return action has been set to descend, then we
1962 		 * know that we've already seen a peripheral matching
1963 		 * expression, therefore we need to further descend the tree.
1964 		 * This won't change by continuing around the loop, so we
1965 		 * go ahead and return.  If we haven't seen a peripheral
1966 		 * matching expression, we keep going around the loop until
1967 		 * we exhaust the matching expressions.  We'll set the stop
1968 		 * flag once we fall out of the loop.
1969 		 */
1970 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1971 			return(retval);
1972 	}
1973 
1974 	/*
1975 	 * If the return action hasn't been set to descend yet, that means
1976 	 * we haven't seen any peripheral matching patterns.  So tell the
1977 	 * caller to stop descending the tree -- the user doesn't want to
1978 	 * match against lower level tree elements.
1979 	 */
1980 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1981 		retval |= DM_RET_STOP;
1982 
1983 	return(retval);
1984 }
1985 
1986 /*
1987  * Match a single peripheral against any number of match patterns.
1988  */
1989 static dev_match_ret
1990 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1991 	       struct cam_periph *periph)
1992 {
1993 	dev_match_ret retval;
1994 	int i;
1995 
1996 	/*
1997 	 * If we aren't given something to match against, that's an error.
1998 	 */
1999 	if (periph == NULL)
2000 		return(DM_RET_ERROR);
2001 
2002 	/*
2003 	 * If there are no match entries, then this peripheral matches no
2004 	 * matter what.
2005 	 */
2006 	if ((patterns == NULL) || (num_patterns == 0))
2007 		return(DM_RET_STOP | DM_RET_COPY);
2008 
2009 	/*
2010 	 * There aren't any nodes below a peripheral node, so there's no
2011 	 * reason to descend the tree any further.
2012 	 */
2013 	retval = DM_RET_STOP;
2014 
2015 	for (i = 0; i < num_patterns; i++) {
2016 		struct periph_match_pattern *cur_pattern;
2017 
2018 		/*
2019 		 * If the pattern in question isn't for a peripheral, we
2020 		 * aren't interested.
2021 		 */
2022 		if (patterns[i].type != DEV_MATCH_PERIPH)
2023 			continue;
2024 
2025 		cur_pattern = &patterns[i].pattern.periph_pattern;
2026 
2027 		/*
2028 		 * If they want to match on anything, then we will do so.
2029 		 */
2030 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2031 			/* set the copy flag */
2032 			retval |= DM_RET_COPY;
2033 
2034 			/*
2035 			 * We've already set the return action to stop,
2036 			 * since there are no nodes below peripherals in
2037 			 * the tree.
2038 			 */
2039 			return(retval);
2040 		}
2041 
2042 		/*
2043 		 * Not sure why someone would do this...
2044 		 */
2045 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2046 			continue;
2047 
2048 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2049 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2050 			continue;
2051 
2052 		/*
2053 		 * For the target and lun id's, we have to make sure the
2054 		 * target and lun pointers aren't NULL.  The xpt peripheral
2055 		 * has a wildcard target and device.
2056 		 */
2057 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2058 		 && ((periph->path->target == NULL)
2059 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2060 			continue;
2061 
2062 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2063 		 && ((periph->path->device == NULL)
2064 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2065 			continue;
2066 
2067 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2068 		 && (cur_pattern->unit_number != periph->unit_number))
2069 			continue;
2070 
2071 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2072 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2073 			     DEV_IDLEN) != 0))
2074 			continue;
2075 
2076 		/*
2077 		 * If we get to this point, the user definitely wants
2078 		 * information on this peripheral.  So tell the caller to
2079 		 * copy the data out.
2080 		 */
2081 		retval |= DM_RET_COPY;
2082 
2083 		/*
2084 		 * The return action has already been set to stop, since
2085 		 * peripherals don't have any nodes below them in the EDT.
2086 		 */
2087 		return(retval);
2088 	}
2089 
2090 	/*
2091 	 * If we get to this point, the peripheral that was passed in
2092 	 * doesn't match any of the patterns.
2093 	 */
2094 	return(retval);
2095 }
2096 
2097 static int
2098 xptedtbusfunc(struct cam_eb *bus, void *arg)
2099 {
2100 	struct ccb_dev_match *cdm;
2101 	dev_match_ret retval;
2102 
2103 	cdm = (struct ccb_dev_match *)arg;
2104 
2105 	/*
2106 	 * If our position is for something deeper in the tree, that means
2107 	 * that we've already seen this node.  So, we keep going down.
2108 	 */
2109 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2110 	 && (cdm->pos.cookie.bus == bus)
2111 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2112 	 && (cdm->pos.cookie.target != NULL))
2113 		retval = DM_RET_DESCEND;
2114 	else
2115 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2116 
2117 	/*
2118 	 * If we got an error, bail out of the search.
2119 	 */
2120 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2121 		cdm->status = CAM_DEV_MATCH_ERROR;
2122 		return(0);
2123 	}
2124 
2125 	/*
2126 	 * If the copy flag is set, copy this bus out.
2127 	 */
2128 	if (retval & DM_RET_COPY) {
2129 		int spaceleft, j;
2130 
2131 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2132 			sizeof(struct dev_match_result));
2133 
2134 		/*
2135 		 * If we don't have enough space to put in another
2136 		 * match result, save our position and tell the
2137 		 * user there are more devices to check.
2138 		 */
2139 		if (spaceleft < sizeof(struct dev_match_result)) {
2140 			bzero(&cdm->pos, sizeof(cdm->pos));
2141 			cdm->pos.position_type =
2142 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2143 
2144 			cdm->pos.cookie.bus = bus;
2145 			cdm->pos.generations[CAM_BUS_GENERATION]=
2146 				xsoftc.bus_generation;
2147 			cdm->status = CAM_DEV_MATCH_MORE;
2148 			return(0);
2149 		}
2150 		j = cdm->num_matches;
2151 		cdm->num_matches++;
2152 		cdm->matches[j].type = DEV_MATCH_BUS;
2153 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2154 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2155 		cdm->matches[j].result.bus_result.unit_number =
2156 			bus->sim->unit_number;
2157 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2158 			bus->sim->sim_name, DEV_IDLEN);
2159 	}
2160 
2161 	/*
2162 	 * If the user is only interested in busses, there's no
2163 	 * reason to descend to the next level in the tree.
2164 	 */
2165 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2166 		return(1);
2167 
2168 	/*
2169 	 * If there is a target generation recorded, check it to
2170 	 * make sure the target list hasn't changed.
2171 	 */
2172 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2173 	 && (bus == cdm->pos.cookie.bus)
2174 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2175 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2176 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2177 	     bus->generation)) {
2178 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2179 		return(0);
2180 	}
2181 
2182 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2183 	 && (cdm->pos.cookie.bus == bus)
2184 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2185 	 && (cdm->pos.cookie.target != NULL))
2186 		return(xpttargettraverse(bus,
2187 					(struct cam_et *)cdm->pos.cookie.target,
2188 					 xptedttargetfunc, arg));
2189 	else
2190 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2191 }
2192 
2193 static int
2194 xptedttargetfunc(struct cam_et *target, void *arg)
2195 {
2196 	struct ccb_dev_match *cdm;
2197 
2198 	cdm = (struct ccb_dev_match *)arg;
2199 
2200 	/*
2201 	 * If there is a device list generation recorded, check it to
2202 	 * make sure the device list hasn't changed.
2203 	 */
2204 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2205 	 && (cdm->pos.cookie.bus == target->bus)
2206 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2207 	 && (cdm->pos.cookie.target == target)
2208 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2209 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2210 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2211 	     target->generation)) {
2212 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2213 		return(0);
2214 	}
2215 
2216 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2217 	 && (cdm->pos.cookie.bus == target->bus)
2218 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2219 	 && (cdm->pos.cookie.target == target)
2220 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2221 	 && (cdm->pos.cookie.device != NULL))
2222 		return(xptdevicetraverse(target,
2223 					(struct cam_ed *)cdm->pos.cookie.device,
2224 					 xptedtdevicefunc, arg));
2225 	else
2226 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2227 }
2228 
2229 static int
2230 xptedtdevicefunc(struct cam_ed *device, void *arg)
2231 {
2232 
2233 	struct ccb_dev_match *cdm;
2234 	dev_match_ret retval;
2235 
2236 	cdm = (struct ccb_dev_match *)arg;
2237 
2238 	/*
2239 	 * If our position is for something deeper in the tree, that means
2240 	 * that we've already seen this node.  So, we keep going down.
2241 	 */
2242 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2243 	 && (cdm->pos.cookie.device == device)
2244 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2245 	 && (cdm->pos.cookie.periph != NULL))
2246 		retval = DM_RET_DESCEND;
2247 	else
2248 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2249 					device);
2250 
2251 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2252 		cdm->status = CAM_DEV_MATCH_ERROR;
2253 		return(0);
2254 	}
2255 
2256 	/*
2257 	 * If the copy flag is set, copy this device out.
2258 	 */
2259 	if (retval & DM_RET_COPY) {
2260 		int spaceleft, j;
2261 
2262 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2263 			sizeof(struct dev_match_result));
2264 
2265 		/*
2266 		 * If we don't have enough space to put in another
2267 		 * match result, save our position and tell the
2268 		 * user there are more devices to check.
2269 		 */
2270 		if (spaceleft < sizeof(struct dev_match_result)) {
2271 			bzero(&cdm->pos, sizeof(cdm->pos));
2272 			cdm->pos.position_type =
2273 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2274 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2275 
2276 			cdm->pos.cookie.bus = device->target->bus;
2277 			cdm->pos.generations[CAM_BUS_GENERATION]=
2278 				xsoftc.bus_generation;
2279 			cdm->pos.cookie.target = device->target;
2280 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2281 				device->target->bus->generation;
2282 			cdm->pos.cookie.device = device;
2283 			cdm->pos.generations[CAM_DEV_GENERATION] =
2284 				device->target->generation;
2285 			cdm->status = CAM_DEV_MATCH_MORE;
2286 			return(0);
2287 		}
2288 		j = cdm->num_matches;
2289 		cdm->num_matches++;
2290 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2291 		cdm->matches[j].result.device_result.path_id =
2292 			device->target->bus->path_id;
2293 		cdm->matches[j].result.device_result.target_id =
2294 			device->target->target_id;
2295 		cdm->matches[j].result.device_result.target_lun =
2296 			device->lun_id;
2297 		bcopy(&device->inq_data,
2298 		      &cdm->matches[j].result.device_result.inq_data,
2299 		      sizeof(struct scsi_inquiry_data));
2300 
2301 		/* Let the user know whether this device is unconfigured */
2302 		if (device->flags & CAM_DEV_UNCONFIGURED)
2303 			cdm->matches[j].result.device_result.flags =
2304 				DEV_RESULT_UNCONFIGURED;
2305 		else
2306 			cdm->matches[j].result.device_result.flags =
2307 				DEV_RESULT_NOFLAG;
2308 	}
2309 
2310 	/*
2311 	 * If the user isn't interested in peripherals, don't descend
2312 	 * the tree any further.
2313 	 */
2314 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2315 		return(1);
2316 
2317 	/*
2318 	 * If there is a peripheral list generation recorded, make sure
2319 	 * it hasn't changed.
2320 	 */
2321 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2322 	 && (device->target->bus == cdm->pos.cookie.bus)
2323 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2324 	 && (device->target == cdm->pos.cookie.target)
2325 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2326 	 && (device == cdm->pos.cookie.device)
2327 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2328 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2329 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2330 	     device->generation)){
2331 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2332 		return(0);
2333 	}
2334 
2335 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2336 	 && (cdm->pos.cookie.bus == device->target->bus)
2337 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2338 	 && (cdm->pos.cookie.target == device->target)
2339 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2340 	 && (cdm->pos.cookie.device == device)
2341 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2342 	 && (cdm->pos.cookie.periph != NULL))
2343 		return(xptperiphtraverse(device,
2344 				(struct cam_periph *)cdm->pos.cookie.periph,
2345 				xptedtperiphfunc, arg));
2346 	else
2347 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2348 }
2349 
2350 static int
2351 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2352 {
2353 	struct ccb_dev_match *cdm;
2354 	dev_match_ret retval;
2355 
2356 	cdm = (struct ccb_dev_match *)arg;
2357 
2358 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2359 
2360 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2361 		cdm->status = CAM_DEV_MATCH_ERROR;
2362 		return(0);
2363 	}
2364 
2365 	/*
2366 	 * If the copy flag is set, copy this peripheral out.
2367 	 */
2368 	if (retval & DM_RET_COPY) {
2369 		int spaceleft, j;
2370 
2371 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2372 			sizeof(struct dev_match_result));
2373 
2374 		/*
2375 		 * If we don't have enough space to put in another
2376 		 * match result, save our position and tell the
2377 		 * user there are more devices to check.
2378 		 */
2379 		if (spaceleft < sizeof(struct dev_match_result)) {
2380 			bzero(&cdm->pos, sizeof(cdm->pos));
2381 			cdm->pos.position_type =
2382 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2383 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2384 				CAM_DEV_POS_PERIPH;
2385 
2386 			cdm->pos.cookie.bus = periph->path->bus;
2387 			cdm->pos.generations[CAM_BUS_GENERATION]=
2388 				xsoftc.bus_generation;
2389 			cdm->pos.cookie.target = periph->path->target;
2390 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2391 				periph->path->bus->generation;
2392 			cdm->pos.cookie.device = periph->path->device;
2393 			cdm->pos.generations[CAM_DEV_GENERATION] =
2394 				periph->path->target->generation;
2395 			cdm->pos.cookie.periph = periph;
2396 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2397 				periph->path->device->generation;
2398 			cdm->status = CAM_DEV_MATCH_MORE;
2399 			return(0);
2400 		}
2401 
2402 		j = cdm->num_matches;
2403 		cdm->num_matches++;
2404 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2405 		cdm->matches[j].result.periph_result.path_id =
2406 			periph->path->bus->path_id;
2407 		cdm->matches[j].result.periph_result.target_id =
2408 			periph->path->target->target_id;
2409 		cdm->matches[j].result.periph_result.target_lun =
2410 			periph->path->device->lun_id;
2411 		cdm->matches[j].result.periph_result.unit_number =
2412 			periph->unit_number;
2413 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2414 			periph->periph_name, DEV_IDLEN);
2415 	}
2416 
2417 	return(1);
2418 }
2419 
2420 static int
2421 xptedtmatch(struct ccb_dev_match *cdm)
2422 {
2423 	int ret;
2424 
2425 	cdm->num_matches = 0;
2426 
2427 	/*
2428 	 * Check the bus list generation.  If it has changed, the user
2429 	 * needs to reset everything and start over.
2430 	 */
2431 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2432 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2433 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2434 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2435 		return(0);
2436 	}
2437 
2438 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2439 	 && (cdm->pos.cookie.bus != NULL))
2440 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2441 				     xptedtbusfunc, cdm);
2442 	else
2443 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2444 
2445 	/*
2446 	 * If we get back 0, that means that we had to stop before fully
2447 	 * traversing the EDT.  It also means that one of the subroutines
2448 	 * has set the status field to the proper value.  If we get back 1,
2449 	 * we've fully traversed the EDT and copied out any matching entries.
2450 	 */
2451 	if (ret == 1)
2452 		cdm->status = CAM_DEV_MATCH_LAST;
2453 
2454 	return(ret);
2455 }
2456 
2457 static int
2458 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2459 {
2460 	struct ccb_dev_match *cdm;
2461 
2462 	cdm = (struct ccb_dev_match *)arg;
2463 
2464 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2465 	 && (cdm->pos.cookie.pdrv == pdrv)
2466 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2467 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2468 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2469 	     (*pdrv)->generation)) {
2470 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2471 		return(0);
2472 	}
2473 
2474 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2475 	 && (cdm->pos.cookie.pdrv == pdrv)
2476 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2477 	 && (cdm->pos.cookie.periph != NULL))
2478 		return(xptpdperiphtraverse(pdrv,
2479 				(struct cam_periph *)cdm->pos.cookie.periph,
2480 				xptplistperiphfunc, arg));
2481 	else
2482 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2483 }
2484 
2485 static int
2486 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2487 {
2488 	struct ccb_dev_match *cdm;
2489 	dev_match_ret retval;
2490 
2491 	cdm = (struct ccb_dev_match *)arg;
2492 
2493 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2494 
2495 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2496 		cdm->status = CAM_DEV_MATCH_ERROR;
2497 		return(0);
2498 	}
2499 
2500 	/*
2501 	 * If the copy flag is set, copy this peripheral out.
2502 	 */
2503 	if (retval & DM_RET_COPY) {
2504 		int spaceleft, j;
2505 
2506 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2507 			sizeof(struct dev_match_result));
2508 
2509 		/*
2510 		 * If we don't have enough space to put in another
2511 		 * match result, save our position and tell the
2512 		 * user there are more devices to check.
2513 		 */
2514 		if (spaceleft < sizeof(struct dev_match_result)) {
2515 			struct periph_driver **pdrv;
2516 
2517 			pdrv = NULL;
2518 			bzero(&cdm->pos, sizeof(cdm->pos));
2519 			cdm->pos.position_type =
2520 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2521 				CAM_DEV_POS_PERIPH;
2522 
2523 			/*
2524 			 * This may look a bit non-sensical, but it is
2525 			 * actually quite logical.  There are very few
2526 			 * peripheral drivers, and bloating every peripheral
2527 			 * structure with a pointer back to its parent
2528 			 * peripheral driver linker set entry would cost
2529 			 * more in the long run than doing this quick lookup.
2530 			 */
2531 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2532 				if (strcmp((*pdrv)->driver_name,
2533 				    periph->periph_name) == 0)
2534 					break;
2535 			}
2536 
2537 			if (*pdrv == NULL) {
2538 				cdm->status = CAM_DEV_MATCH_ERROR;
2539 				return(0);
2540 			}
2541 
2542 			cdm->pos.cookie.pdrv = pdrv;
2543 			/*
2544 			 * The periph generation slot does double duty, as
2545 			 * does the periph pointer slot.  They are used for
2546 			 * both edt and pdrv lookups and positioning.
2547 			 */
2548 			cdm->pos.cookie.periph = periph;
2549 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2550 				(*pdrv)->generation;
2551 			cdm->status = CAM_DEV_MATCH_MORE;
2552 			return(0);
2553 		}
2554 
2555 		j = cdm->num_matches;
2556 		cdm->num_matches++;
2557 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2558 		cdm->matches[j].result.periph_result.path_id =
2559 			periph->path->bus->path_id;
2560 
2561 		/*
2562 		 * The transport layer peripheral doesn't have a target or
2563 		 * lun.
2564 		 */
2565 		if (periph->path->target)
2566 			cdm->matches[j].result.periph_result.target_id =
2567 				periph->path->target->target_id;
2568 		else
2569 			cdm->matches[j].result.periph_result.target_id = -1;
2570 
2571 		if (periph->path->device)
2572 			cdm->matches[j].result.periph_result.target_lun =
2573 				periph->path->device->lun_id;
2574 		else
2575 			cdm->matches[j].result.periph_result.target_lun = -1;
2576 
2577 		cdm->matches[j].result.periph_result.unit_number =
2578 			periph->unit_number;
2579 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2580 			periph->periph_name, DEV_IDLEN);
2581 	}
2582 
2583 	return(1);
2584 }
2585 
2586 static int
2587 xptperiphlistmatch(struct ccb_dev_match *cdm)
2588 {
2589 	int ret;
2590 
2591 	cdm->num_matches = 0;
2592 
2593 	/*
2594 	 * At this point in the edt traversal function, we check the bus
2595 	 * list generation to make sure that no busses have been added or
2596 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2597 	 * For the peripheral driver list traversal function, however, we
2598 	 * don't have to worry about new peripheral driver types coming or
2599 	 * going; they're in a linker set, and therefore can't change
2600 	 * without a recompile.
2601 	 */
2602 
2603 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2604 	 && (cdm->pos.cookie.pdrv != NULL))
2605 		ret = xptpdrvtraverse(
2606 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2607 				xptplistpdrvfunc, cdm);
2608 	else
2609 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2610 
2611 	/*
2612 	 * If we get back 0, that means that we had to stop before fully
2613 	 * traversing the peripheral driver tree.  It also means that one of
2614 	 * the subroutines has set the status field to the proper value.  If
2615 	 * we get back 1, we've fully traversed the EDT and copied out any
2616 	 * matching entries.
2617 	 */
2618 	if (ret == 1)
2619 		cdm->status = CAM_DEV_MATCH_LAST;
2620 
2621 	return(ret);
2622 }
2623 
2624 static int
2625 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2626 {
2627 	struct cam_eb *bus, *next_bus;
2628 	int retval;
2629 
2630 	retval = 1;
2631 
2632 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2633 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2634 	     bus != NULL;
2635 	     bus = next_bus) {
2636 		next_bus = TAILQ_NEXT(bus, links);
2637 
2638 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2639 		CAM_SIM_LOCK(bus->sim);
2640 		retval = tr_func(bus, arg);
2641 		CAM_SIM_UNLOCK(bus->sim);
2642 		if (retval == 0)
2643 			return(retval);
2644 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2645 	}
2646 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2647 
2648 	return(retval);
2649 }
2650 
2651 static int
2652 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2653 		  xpt_targetfunc_t *tr_func, void *arg)
2654 {
2655 	struct cam_et *target, *next_target;
2656 	int retval;
2657 
2658 	retval = 1;
2659 	for (target = (start_target ? start_target :
2660 		       TAILQ_FIRST(&bus->et_entries));
2661 	     target != NULL; target = next_target) {
2662 
2663 		next_target = TAILQ_NEXT(target, links);
2664 
2665 		retval = tr_func(target, arg);
2666 
2667 		if (retval == 0)
2668 			return(retval);
2669 	}
2670 
2671 	return(retval);
2672 }
2673 
2674 static int
2675 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2676 		  xpt_devicefunc_t *tr_func, void *arg)
2677 {
2678 	struct cam_ed *device, *next_device;
2679 	int retval;
2680 
2681 	retval = 1;
2682 	for (device = (start_device ? start_device :
2683 		       TAILQ_FIRST(&target->ed_entries));
2684 	     device != NULL;
2685 	     device = next_device) {
2686 
2687 		next_device = TAILQ_NEXT(device, links);
2688 
2689 		retval = tr_func(device, arg);
2690 
2691 		if (retval == 0)
2692 			return(retval);
2693 	}
2694 
2695 	return(retval);
2696 }
2697 
2698 static int
2699 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2700 		  xpt_periphfunc_t *tr_func, void *arg)
2701 {
2702 	struct cam_periph *periph, *next_periph;
2703 	int retval;
2704 
2705 	retval = 1;
2706 
2707 	for (periph = (start_periph ? start_periph :
2708 		       SLIST_FIRST(&device->periphs));
2709 	     periph != NULL;
2710 	     periph = next_periph) {
2711 
2712 		next_periph = SLIST_NEXT(periph, periph_links);
2713 
2714 		retval = tr_func(periph, arg);
2715 		if (retval == 0)
2716 			return(retval);
2717 	}
2718 
2719 	return(retval);
2720 }
2721 
2722 static int
2723 xptpdrvtraverse(struct periph_driver **start_pdrv,
2724 		xpt_pdrvfunc_t *tr_func, void *arg)
2725 {
2726 	struct periph_driver **pdrv;
2727 	int retval;
2728 
2729 	retval = 1;
2730 
2731 	/*
2732 	 * We don't traverse the peripheral driver list like we do the
2733 	 * other lists, because it is a linker set, and therefore cannot be
2734 	 * changed during runtime.  If the peripheral driver list is ever
2735 	 * re-done to be something other than a linker set (i.e. it can
2736 	 * change while the system is running), the list traversal should
2737 	 * be modified to work like the other traversal functions.
2738 	 */
2739 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2740 	     *pdrv != NULL; pdrv++) {
2741 		retval = tr_func(pdrv, arg);
2742 
2743 		if (retval == 0)
2744 			return(retval);
2745 	}
2746 
2747 	return(retval);
2748 }
2749 
2750 static int
2751 xptpdperiphtraverse(struct periph_driver **pdrv,
2752 		    struct cam_periph *start_periph,
2753 		    xpt_periphfunc_t *tr_func, void *arg)
2754 {
2755 	struct cam_periph *periph, *next_periph;
2756 	int retval;
2757 
2758 	retval = 1;
2759 
2760 	for (periph = (start_periph ? start_periph :
2761 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2762 	     periph = next_periph) {
2763 
2764 		next_periph = TAILQ_NEXT(periph, unit_links);
2765 
2766 		retval = tr_func(periph, arg);
2767 		if (retval == 0)
2768 			return(retval);
2769 	}
2770 	return(retval);
2771 }
2772 
2773 static int
2774 xptdefbusfunc(struct cam_eb *bus, void *arg)
2775 {
2776 	struct xpt_traverse_config *tr_config;
2777 
2778 	tr_config = (struct xpt_traverse_config *)arg;
2779 
2780 	if (tr_config->depth == XPT_DEPTH_BUS) {
2781 		xpt_busfunc_t *tr_func;
2782 
2783 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2784 
2785 		return(tr_func(bus, tr_config->tr_arg));
2786 	} else
2787 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2788 }
2789 
2790 static int
2791 xptdeftargetfunc(struct cam_et *target, void *arg)
2792 {
2793 	struct xpt_traverse_config *tr_config;
2794 
2795 	tr_config = (struct xpt_traverse_config *)arg;
2796 
2797 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2798 		xpt_targetfunc_t *tr_func;
2799 
2800 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2801 
2802 		return(tr_func(target, tr_config->tr_arg));
2803 	} else
2804 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2805 }
2806 
2807 static int
2808 xptdefdevicefunc(struct cam_ed *device, void *arg)
2809 {
2810 	struct xpt_traverse_config *tr_config;
2811 
2812 	tr_config = (struct xpt_traverse_config *)arg;
2813 
2814 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2815 		xpt_devicefunc_t *tr_func;
2816 
2817 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2818 
2819 		return(tr_func(device, tr_config->tr_arg));
2820 	} else
2821 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2822 }
2823 
2824 static int
2825 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2826 {
2827 	struct xpt_traverse_config *tr_config;
2828 	xpt_periphfunc_t *tr_func;
2829 
2830 	tr_config = (struct xpt_traverse_config *)arg;
2831 
2832 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2833 
2834 	/*
2835 	 * Unlike the other default functions, we don't check for depth
2836 	 * here.  The peripheral driver level is the last level in the EDT,
2837 	 * so if we're here, we should execute the function in question.
2838 	 */
2839 	return(tr_func(periph, tr_config->tr_arg));
2840 }
2841 
2842 /*
2843  * Execute the given function for every bus in the EDT.
2844  */
2845 static int
2846 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2847 {
2848 	struct xpt_traverse_config tr_config;
2849 
2850 	tr_config.depth = XPT_DEPTH_BUS;
2851 	tr_config.tr_func = tr_func;
2852 	tr_config.tr_arg = arg;
2853 
2854 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2855 }
2856 
2857 /*
2858  * Execute the given function for every device in the EDT.
2859  */
2860 static int
2861 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2862 {
2863 	struct xpt_traverse_config tr_config;
2864 
2865 	tr_config.depth = XPT_DEPTH_DEVICE;
2866 	tr_config.tr_func = tr_func;
2867 	tr_config.tr_arg = arg;
2868 
2869 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2870 }
2871 
2872 static int
2873 xptsetasyncfunc(struct cam_ed *device, void *arg)
2874 {
2875 	struct cam_path path;
2876 	struct ccb_getdev cgd;
2877 	struct async_node *cur_entry;
2878 
2879 	cur_entry = (struct async_node *)arg;
2880 
2881 	/*
2882 	 * Don't report unconfigured devices (Wildcard devs,
2883 	 * devices only for target mode, device instances
2884 	 * that have been invalidated but are waiting for
2885 	 * their last reference count to be released).
2886 	 */
2887 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2888 		return (1);
2889 
2890 	xpt_compile_path(&path,
2891 			 NULL,
2892 			 device->target->bus->path_id,
2893 			 device->target->target_id,
2894 			 device->lun_id);
2895 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2896 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2897 	xpt_action((union ccb *)&cgd);
2898 	cur_entry->callback(cur_entry->callback_arg,
2899 			    AC_FOUND_DEVICE,
2900 			    &path, &cgd);
2901 	xpt_release_path(&path);
2902 
2903 	return(1);
2904 }
2905 
2906 static int
2907 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2908 {
2909 	struct cam_path path;
2910 	struct ccb_pathinq cpi;
2911 	struct async_node *cur_entry;
2912 
2913 	cur_entry = (struct async_node *)arg;
2914 
2915 	xpt_compile_path(&path, /*periph*/NULL,
2916 			 bus->sim->path_id,
2917 			 CAM_TARGET_WILDCARD,
2918 			 CAM_LUN_WILDCARD);
2919 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2920 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2921 	xpt_action((union ccb *)&cpi);
2922 	cur_entry->callback(cur_entry->callback_arg,
2923 			    AC_PATH_REGISTERED,
2924 			    &path, &cpi);
2925 	xpt_release_path(&path);
2926 
2927 	return(1);
2928 }
2929 
2930 static void
2931 xpt_action_sasync_cb(void *context, int pending)
2932 {
2933 	struct async_node *cur_entry;
2934 	struct xpt_task *task;
2935 	uint32_t added;
2936 
2937 	task = (struct xpt_task *)context;
2938 	cur_entry = (struct async_node *)task->data1;
2939 	added = task->data2;
2940 
2941 	if ((added & AC_FOUND_DEVICE) != 0) {
2942 		/*
2943 		 * Get this peripheral up to date with all
2944 		 * the currently existing devices.
2945 		 */
2946 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2947 	}
2948 	if ((added & AC_PATH_REGISTERED) != 0) {
2949 		/*
2950 		 * Get this peripheral up to date with all
2951 		 * the currently existing busses.
2952 		 */
2953 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2954 		}
2955 
2956 	kfree(task, M_CAMXPT);
2957 }
2958 
2959 void
2960 xpt_action(union ccb *start_ccb)
2961 {
2962 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2963 
2964 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2965 
2966 	switch (start_ccb->ccb_h.func_code) {
2967 	case XPT_SCSI_IO:
2968 	{
2969 		struct cam_ed *device;
2970 #ifdef CAMDEBUG
2971 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2972 		struct cam_path *path;
2973 
2974 		path = start_ccb->ccb_h.path;
2975 #endif
2976 
2977 		/*
2978 		 * For the sake of compatibility with SCSI-1
2979 		 * devices that may not understand the identify
2980 		 * message, we include lun information in the
2981 		 * second byte of all commands.  SCSI-1 specifies
2982 		 * that luns are a 3 bit value and reserves only 3
2983 		 * bits for lun information in the CDB.  Later
2984 		 * revisions of the SCSI spec allow for more than 8
2985 		 * luns, but have deprecated lun information in the
2986 		 * CDB.  So, if the lun won't fit, we must omit.
2987 		 *
2988 		 * Also be aware that during initial probing for devices,
2989 		 * the inquiry information is unknown but initialized to 0.
2990 		 * This means that this code will be exercised while probing
2991 		 * devices with an ANSI revision greater than 2.
2992 		 */
2993 		device = start_ccb->ccb_h.path->device;
2994 		if (device->protocol_version <= SCSI_REV_2
2995 		 && start_ccb->ccb_h.target_lun < 8
2996 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2997 
2998 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2999 			    start_ccb->ccb_h.target_lun << 5;
3000 		}
3001 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3002 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3003 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3004 			  	       &path->device->inq_data),
3005 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3006 					  cdb_str, sizeof(cdb_str))));
3007 		/* FALLTHROUGH */
3008 	}
3009 	case XPT_TARGET_IO:
3010 	case XPT_CONT_TARGET_IO:
3011 		start_ccb->csio.sense_resid = 0;
3012 		start_ccb->csio.resid = 0;
3013 		/* FALLTHROUGH */
3014 	case XPT_RESET_DEV:
3015 	case XPT_ENG_EXEC:
3016 	{
3017 		struct cam_path *path;
3018 		struct cam_sim *sim;
3019 		int runq;
3020 
3021 		path = start_ccb->ccb_h.path;
3022 
3023 		sim = path->bus->sim;
3024 		if (SIM_DEAD(sim)) {
3025 			/* The SIM has gone; just execute the CCB directly. */
3026 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3027 			(*(sim->sim_action))(sim, start_ccb);
3028 			break;
3029 		}
3030 
3031 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3032 		if (path->device->qfrozen_cnt == 0)
3033 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3034 		else
3035 			runq = 0;
3036 		if (runq != 0)
3037 			xpt_run_dev_sendq(path->bus);
3038 		break;
3039 	}
3040 	case XPT_SET_TRAN_SETTINGS:
3041 	{
3042 		xpt_set_transfer_settings(&start_ccb->cts,
3043 					  start_ccb->ccb_h.path->device,
3044 					  /*async_update*/FALSE);
3045 		break;
3046 	}
3047 	case XPT_CALC_GEOMETRY:
3048 	{
3049 		struct cam_sim *sim;
3050 
3051 		/* Filter out garbage */
3052 		if (start_ccb->ccg.block_size == 0
3053 		 || start_ccb->ccg.volume_size == 0) {
3054 			start_ccb->ccg.cylinders = 0;
3055 			start_ccb->ccg.heads = 0;
3056 			start_ccb->ccg.secs_per_track = 0;
3057 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3058 			break;
3059 		}
3060 		sim = start_ccb->ccb_h.path->bus->sim;
3061 		(*(sim->sim_action))(sim, start_ccb);
3062 		break;
3063 	}
3064 	case XPT_ABORT:
3065 	{
3066 		union ccb* abort_ccb;
3067 
3068 		abort_ccb = start_ccb->cab.abort_ccb;
3069 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3070 
3071 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3072 				struct cam_ccbq *ccbq;
3073 
3074 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3075 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3076 				abort_ccb->ccb_h.status =
3077 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3078 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3079 				xpt_done(abort_ccb);
3080 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3081 				break;
3082 			}
3083 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3084 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3085 				/*
3086 				 * We've caught this ccb en route to
3087 				 * the SIM.  Flag it for abort and the
3088 				 * SIM will do so just before starting
3089 				 * real work on the CCB.
3090 				 */
3091 				abort_ccb->ccb_h.status =
3092 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3093 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3094 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3095 				break;
3096 			}
3097 		}
3098 		if (XPT_FC_IS_QUEUED(abort_ccb)
3099 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3100 			/*
3101 			 * It's already completed but waiting
3102 			 * for our SWI to get to it.
3103 			 */
3104 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3105 			break;
3106 		}
3107 		/*
3108 		 * If we weren't able to take care of the abort request
3109 		 * in the XPT, pass the request down to the SIM for processing.
3110 		 */
3111 		/* FALLTHROUGH */
3112 	}
3113 	case XPT_ACCEPT_TARGET_IO:
3114 	case XPT_EN_LUN:
3115 	case XPT_IMMED_NOTIFY:
3116 	case XPT_NOTIFY_ACK:
3117 	case XPT_GET_TRAN_SETTINGS:
3118 	case XPT_RESET_BUS:
3119 	{
3120 		struct cam_sim *sim;
3121 
3122 		sim = start_ccb->ccb_h.path->bus->sim;
3123 		(*(sim->sim_action))(sim, start_ccb);
3124 		break;
3125 	}
3126 	case XPT_PATH_INQ:
3127 	{
3128 		struct cam_sim *sim;
3129 
3130 		sim = start_ccb->ccb_h.path->bus->sim;
3131 		(*(sim->sim_action))(sim, start_ccb);
3132 		break;
3133 	}
3134 	case XPT_PATH_STATS:
3135 		start_ccb->cpis.last_reset =
3136 			start_ccb->ccb_h.path->bus->last_reset;
3137 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3138 		break;
3139 	case XPT_GDEV_TYPE:
3140 	{
3141 		struct cam_ed *dev;
3142 
3143 		dev = start_ccb->ccb_h.path->device;
3144 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3145 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3146 		} else {
3147 			struct ccb_getdev *cgd;
3148 			struct cam_eb *bus;
3149 			struct cam_et *tar;
3150 
3151 			cgd = &start_ccb->cgd;
3152 			bus = cgd->ccb_h.path->bus;
3153 			tar = cgd->ccb_h.path->target;
3154 			cgd->inq_data = dev->inq_data;
3155 			cgd->ccb_h.status = CAM_REQ_CMP;
3156 			cgd->serial_num_len = dev->serial_num_len;
3157 			if ((dev->serial_num_len > 0)
3158 			 && (dev->serial_num != NULL))
3159 				bcopy(dev->serial_num, cgd->serial_num,
3160 				      dev->serial_num_len);
3161 		}
3162 		break;
3163 	}
3164 	case XPT_GDEV_STATS:
3165 	{
3166 		struct cam_ed *dev;
3167 
3168 		dev = start_ccb->ccb_h.path->device;
3169 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3170 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3171 		} else {
3172 			struct ccb_getdevstats *cgds;
3173 			struct cam_eb *bus;
3174 			struct cam_et *tar;
3175 
3176 			cgds = &start_ccb->cgds;
3177 			bus = cgds->ccb_h.path->bus;
3178 			tar = cgds->ccb_h.path->target;
3179 			cgds->dev_openings = dev->ccbq.dev_openings;
3180 			cgds->dev_active = dev->ccbq.dev_active;
3181 			cgds->devq_openings = dev->ccbq.devq_openings;
3182 			cgds->devq_queued = dev->ccbq.queue.entries;
3183 			cgds->held = dev->ccbq.held;
3184 			cgds->last_reset = tar->last_reset;
3185 			cgds->maxtags = dev->quirk->maxtags;
3186 			cgds->mintags = dev->quirk->mintags;
3187 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3188 				cgds->last_reset = bus->last_reset;
3189 			cgds->ccb_h.status = CAM_REQ_CMP;
3190 		}
3191 		break;
3192 	}
3193 	case XPT_GDEVLIST:
3194 	{
3195 		struct cam_periph	*nperiph;
3196 		struct periph_list	*periph_head;
3197 		struct ccb_getdevlist	*cgdl;
3198 		u_int			i;
3199 		struct cam_ed		*device;
3200 		int			found;
3201 
3202 
3203 		found = 0;
3204 
3205 		/*
3206 		 * Don't want anyone mucking with our data.
3207 		 */
3208 		device = start_ccb->ccb_h.path->device;
3209 		periph_head = &device->periphs;
3210 		cgdl = &start_ccb->cgdl;
3211 
3212 		/*
3213 		 * Check and see if the list has changed since the user
3214 		 * last requested a list member.  If so, tell them that the
3215 		 * list has changed, and therefore they need to start over
3216 		 * from the beginning.
3217 		 */
3218 		if ((cgdl->index != 0) &&
3219 		    (cgdl->generation != device->generation)) {
3220 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3221 			break;
3222 		}
3223 
3224 		/*
3225 		 * Traverse the list of peripherals and attempt to find
3226 		 * the requested peripheral.
3227 		 */
3228 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3229 		     (nperiph != NULL) && (i <= cgdl->index);
3230 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3231 			if (i == cgdl->index) {
3232 				strncpy(cgdl->periph_name,
3233 					nperiph->periph_name,
3234 					DEV_IDLEN);
3235 				cgdl->unit_number = nperiph->unit_number;
3236 				found = 1;
3237 			}
3238 		}
3239 		if (found == 0) {
3240 			cgdl->status = CAM_GDEVLIST_ERROR;
3241 			break;
3242 		}
3243 
3244 		if (nperiph == NULL)
3245 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3246 		else
3247 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3248 
3249 		cgdl->index++;
3250 		cgdl->generation = device->generation;
3251 
3252 		cgdl->ccb_h.status = CAM_REQ_CMP;
3253 		break;
3254 	}
3255 	case XPT_DEV_MATCH:
3256 	{
3257 		dev_pos_type position_type;
3258 		struct ccb_dev_match *cdm;
3259 		int ret;
3260 
3261 		cdm = &start_ccb->cdm;
3262 
3263 		/*
3264 		 * There are two ways of getting at information in the EDT.
3265 		 * The first way is via the primary EDT tree.  It starts
3266 		 * with a list of busses, then a list of targets on a bus,
3267 		 * then devices/luns on a target, and then peripherals on a
3268 		 * device/lun.  The "other" way is by the peripheral driver
3269 		 * lists.  The peripheral driver lists are organized by
3270 		 * peripheral driver.  (obviously)  So it makes sense to
3271 		 * use the peripheral driver list if the user is looking
3272 		 * for something like "da1", or all "da" devices.  If the
3273 		 * user is looking for something on a particular bus/target
3274 		 * or lun, it's generally better to go through the EDT tree.
3275 		 */
3276 
3277 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3278 			position_type = cdm->pos.position_type;
3279 		else {
3280 			u_int i;
3281 
3282 			position_type = CAM_DEV_POS_NONE;
3283 
3284 			for (i = 0; i < cdm->num_patterns; i++) {
3285 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3286 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3287 					position_type = CAM_DEV_POS_EDT;
3288 					break;
3289 				}
3290 			}
3291 
3292 			if (cdm->num_patterns == 0)
3293 				position_type = CAM_DEV_POS_EDT;
3294 			else if (position_type == CAM_DEV_POS_NONE)
3295 				position_type = CAM_DEV_POS_PDRV;
3296 		}
3297 
3298 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3299 		case CAM_DEV_POS_EDT:
3300 			ret = xptedtmatch(cdm);
3301 			break;
3302 		case CAM_DEV_POS_PDRV:
3303 			ret = xptperiphlistmatch(cdm);
3304 			break;
3305 		default:
3306 			cdm->status = CAM_DEV_MATCH_ERROR;
3307 			break;
3308 		}
3309 
3310 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3311 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3312 		else
3313 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3314 
3315 		break;
3316 	}
3317 	case XPT_SASYNC_CB:
3318 	{
3319 		struct ccb_setasync *csa;
3320 		struct async_node *cur_entry;
3321 		struct async_list *async_head;
3322 		u_int32_t added;
3323 
3324 		csa = &start_ccb->csa;
3325 		added = csa->event_enable;
3326 		async_head = &csa->ccb_h.path->device->asyncs;
3327 
3328 		/*
3329 		 * If there is already an entry for us, simply
3330 		 * update it.
3331 		 */
3332 		cur_entry = SLIST_FIRST(async_head);
3333 		while (cur_entry != NULL) {
3334 			if ((cur_entry->callback_arg == csa->callback_arg)
3335 			 && (cur_entry->callback == csa->callback))
3336 				break;
3337 			cur_entry = SLIST_NEXT(cur_entry, links);
3338 		}
3339 
3340 		if (cur_entry != NULL) {
3341 		 	/*
3342 			 * If the request has no flags set,
3343 			 * remove the entry.
3344 			 */
3345 			added &= ~cur_entry->event_enable;
3346 			if (csa->event_enable == 0) {
3347 				SLIST_REMOVE(async_head, cur_entry,
3348 					     async_node, links);
3349 				csa->ccb_h.path->device->refcount--;
3350 				kfree(cur_entry, M_CAMXPT);
3351 			} else {
3352 				cur_entry->event_enable = csa->event_enable;
3353 			}
3354 		} else {
3355 			cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3356 					   M_INTWAIT);
3357 			cur_entry->event_enable = csa->event_enable;
3358 			cur_entry->callback_arg = csa->callback_arg;
3359 			cur_entry->callback = csa->callback;
3360 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3361 			csa->ccb_h.path->device->refcount++;
3362 		}
3363 
3364 		/*
3365 		 * Need to decouple this operation via a taskqueue so that
3366 		 * the locking doesn't become a mess.
3367 		 */
3368 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3369 			struct xpt_task *task;
3370 
3371 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3372 				      M_INTWAIT);
3373 
3374 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3375 			task->data1 = cur_entry;
3376 			task->data2 = added;
3377 			taskqueue_enqueue(taskqueue_thread[mycpuid],
3378 					  &task->task);
3379 		}
3380 
3381 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3382 		break;
3383 	}
3384 	case XPT_REL_SIMQ:
3385 	{
3386 		struct ccb_relsim *crs;
3387 		struct cam_ed *dev;
3388 
3389 		crs = &start_ccb->crs;
3390 		dev = crs->ccb_h.path->device;
3391 		if (dev == NULL) {
3392 
3393 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3394 			break;
3395 		}
3396 
3397 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3398 
3399  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3400 				/* Don't ever go below one opening */
3401 				if (crs->openings > 0) {
3402 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3403 							    crs->openings);
3404 
3405 					if (bootverbose) {
3406 						xpt_print(crs->ccb_h.path,
3407 						    "tagged openings now %d\n",
3408 						    crs->openings);
3409 					}
3410 				}
3411 			}
3412 		}
3413 
3414 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3415 
3416 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3417 
3418 				/*
3419 				 * Just extend the old timeout and decrement
3420 				 * the freeze count so that a single timeout
3421 				 * is sufficient for releasing the queue.
3422 				 */
3423 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3424 				callout_stop(&dev->callout);
3425 			} else {
3426 
3427 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3428 			}
3429 
3430 			callout_reset(&dev->callout,
3431 				      (crs->release_timeout * hz) / 1000,
3432 				      xpt_release_devq_timeout, dev);
3433 
3434 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3435 
3436 		}
3437 
3438 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3439 
3440 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3441 				/*
3442 				 * Decrement the freeze count so that a single
3443 				 * completion is still sufficient to unfreeze
3444 				 * the queue.
3445 				 */
3446 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3447 			} else {
3448 
3449 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3450 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3451 			}
3452 		}
3453 
3454 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3455 
3456 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3457 			 || (dev->ccbq.dev_active == 0)) {
3458 
3459 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3460 			} else {
3461 
3462 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3463 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3464 			}
3465 		}
3466 
3467 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3468 
3469 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3470 					 /*run_queue*/TRUE);
3471 		}
3472 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3473 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3474 		break;
3475 	}
3476 	case XPT_SCAN_BUS:
3477 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3478 		break;
3479 	case XPT_SCAN_LUN:
3480 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3481 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3482 			     start_ccb);
3483 		break;
3484 	case XPT_DEBUG: {
3485 #ifdef CAMDEBUG
3486 #ifdef CAM_DEBUG_DELAY
3487 		cam_debug_delay = CAM_DEBUG_DELAY;
3488 #endif
3489 		cam_dflags = start_ccb->cdbg.flags;
3490 		if (cam_dpath != NULL) {
3491 			xpt_free_path(cam_dpath);
3492 			cam_dpath = NULL;
3493 		}
3494 
3495 		if (cam_dflags != CAM_DEBUG_NONE) {
3496 			if (xpt_create_path(&cam_dpath, xpt_periph,
3497 					    start_ccb->ccb_h.path_id,
3498 					    start_ccb->ccb_h.target_id,
3499 					    start_ccb->ccb_h.target_lun) !=
3500 					    CAM_REQ_CMP) {
3501 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3502 				cam_dflags = CAM_DEBUG_NONE;
3503 			} else {
3504 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3505 				xpt_print(cam_dpath, "debugging flags now %x\n",
3506 				    cam_dflags);
3507 			}
3508 		} else {
3509 			cam_dpath = NULL;
3510 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3511 		}
3512 #else /* !CAMDEBUG */
3513 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3514 #endif /* CAMDEBUG */
3515 		break;
3516 	}
3517 	case XPT_NOOP:
3518 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3519 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3520 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3521 		break;
3522 	default:
3523 	case XPT_SDEV_TYPE:
3524 	case XPT_TERM_IO:
3525 	case XPT_ENG_INQ:
3526 		/* XXX Implement */
3527 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3528 		break;
3529 	}
3530 }
3531 
3532 void
3533 xpt_polled_action(union ccb *start_ccb)
3534 {
3535 	u_int32_t timeout;
3536 	struct	  cam_sim *sim;
3537 	struct	  cam_devq *devq;
3538 	struct	  cam_ed *dev;
3539 
3540 	timeout = start_ccb->ccb_h.timeout;
3541 	sim = start_ccb->ccb_h.path->bus->sim;
3542 	devq = sim->devq;
3543 	dev = start_ccb->ccb_h.path->device;
3544 
3545 	sim_lock_assert_owned(sim->lock);
3546 
3547 	/*
3548 	 * Steal an opening so that no other queued requests
3549 	 * can get it before us while we simulate interrupts.
3550 	 */
3551 	dev->ccbq.devq_openings--;
3552 	dev->ccbq.dev_openings--;
3553 
3554 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3555 	   && (--timeout > 0)) {
3556 		DELAY(1000);
3557 		(*(sim->sim_poll))(sim);
3558 		camisr_runqueue(sim);
3559 	}
3560 
3561 	dev->ccbq.devq_openings++;
3562 	dev->ccbq.dev_openings++;
3563 
3564 	if (timeout != 0) {
3565 		xpt_action(start_ccb);
3566 		while(--timeout > 0) {
3567 			(*(sim->sim_poll))(sim);
3568 			camisr_runqueue(sim);
3569 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3570 			    != CAM_REQ_INPROG)
3571 				break;
3572 			DELAY(1000);
3573 		}
3574 		if (timeout == 0) {
3575 			/*
3576 			 * XXX Is it worth adding a sim_timeout entry
3577 			 * point so we can attempt recovery?  If
3578 			 * this is only used for dumps, I don't think
3579 			 * it is.
3580 			 */
3581 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3582 		}
3583 	} else {
3584 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3585 	}
3586 }
3587 
3588 /*
3589  * Schedule a peripheral driver to receive a ccb when it's
3590  * target device has space for more transactions.
3591  */
3592 void
3593 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3594 {
3595 	struct cam_ed *device;
3596 	union ccb *work_ccb;
3597 	int runq;
3598 
3599 	sim_lock_assert_owned(perph->sim->lock);
3600 
3601 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3602 	device = perph->path->device;
3603 	if (periph_is_queued(perph)) {
3604 		/* Simply reorder based on new priority */
3605 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3606 			  ("   change priority to %d\n", new_priority));
3607 		if (new_priority < perph->pinfo.priority) {
3608 			camq_change_priority(&device->drvq,
3609 					     perph->pinfo.index,
3610 					     new_priority);
3611 		}
3612 		runq = 0;
3613 	} else if (SIM_DEAD(perph->path->bus->sim)) {
3614 		/* The SIM is gone so just call periph_start directly. */
3615 		work_ccb = xpt_get_ccb(perph->path->device);
3616 		if (work_ccb == NULL)
3617 			return; /* XXX */
3618 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3619 		perph->pinfo.priority = new_priority;
3620 		perph->periph_start(perph, work_ccb);
3621 		return;
3622 	} else {
3623 		/* New entry on the queue */
3624 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3625 			  ("   added periph to queue\n"));
3626 		perph->pinfo.priority = new_priority;
3627 		perph->pinfo.generation = ++device->drvq.generation;
3628 		camq_insert(&device->drvq, &perph->pinfo);
3629 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3630 	}
3631 	if (runq != 0) {
3632 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3633 			  ("   calling xpt_run_devq\n"));
3634 		xpt_run_dev_allocq(perph->path->bus);
3635 	}
3636 }
3637 
3638 
3639 /*
3640  * Schedule a device to run on a given queue.
3641  * If the device was inserted as a new entry on the queue,
3642  * return 1 meaning the device queue should be run. If we
3643  * were already queued, implying someone else has already
3644  * started the queue, return 0 so the caller doesn't attempt
3645  * to run the queue.
3646  */
3647 static int
3648 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3649 		 u_int32_t new_priority)
3650 {
3651 	int retval;
3652 	u_int32_t old_priority;
3653 
3654 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3655 
3656 	old_priority = pinfo->priority;
3657 
3658 	/*
3659 	 * Are we already queued?
3660 	 */
3661 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3662 		/* Simply reorder based on new priority */
3663 		if (new_priority < old_priority) {
3664 			camq_change_priority(queue, pinfo->index,
3665 					     new_priority);
3666 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3667 					("changed priority to %d\n",
3668 					 new_priority));
3669 		}
3670 		retval = 0;
3671 	} else {
3672 		/* New entry on the queue */
3673 		if (new_priority < old_priority)
3674 			pinfo->priority = new_priority;
3675 
3676 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3677 				("Inserting onto queue\n"));
3678 		pinfo->generation = ++queue->generation;
3679 		camq_insert(queue, pinfo);
3680 		retval = 1;
3681 	}
3682 	return (retval);
3683 }
3684 
3685 static void
3686 xpt_run_dev_allocq(struct cam_eb *bus)
3687 {
3688 	struct	cam_devq *devq;
3689 
3690 	if ((devq = bus->sim->devq) == NULL) {
3691 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3692 		return;
3693 	}
3694 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3695 
3696 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3697 			("   qfrozen_cnt == 0x%x, entries == %d, "
3698 			 "openings == %d, active == %d\n",
3699 			 devq->alloc_queue.qfrozen_cnt,
3700 			 devq->alloc_queue.entries,
3701 			 devq->alloc_openings,
3702 			 devq->alloc_active));
3703 
3704 	devq->alloc_queue.qfrozen_cnt++;
3705 	while ((devq->alloc_queue.entries > 0)
3706 	    && (devq->alloc_openings > 0)
3707 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3708 		struct	cam_ed_qinfo *qinfo;
3709 		struct	cam_ed *device;
3710 		union	ccb *work_ccb;
3711 		struct	cam_periph *drv;
3712 		struct	camq *drvq;
3713 
3714 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3715 							   CAMQ_HEAD);
3716 		device = qinfo->device;
3717 
3718 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3719 				("running device %p\n", device));
3720 
3721 		drvq = &device->drvq;
3722 
3723 #ifdef CAMDEBUG
3724 		if (drvq->entries <= 0) {
3725 			panic("xpt_run_dev_allocq: "
3726 			      "Device on queue without any work to do");
3727 		}
3728 #endif
3729 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3730 			devq->alloc_openings--;
3731 			devq->alloc_active++;
3732 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3733 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3734 				      drv->pinfo.priority);
3735 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3736 					("calling periph start\n"));
3737 			drv->periph_start(drv, work_ccb);
3738 		} else {
3739 			/*
3740 			 * Malloc failure in alloc_ccb
3741 			 */
3742 			/*
3743 			 * XXX add us to a list to be run from free_ccb
3744 			 * if we don't have any ccbs active on this
3745 			 * device queue otherwise we may never get run
3746 			 * again.
3747 			 */
3748 			break;
3749 		}
3750 
3751 		if (drvq->entries > 0) {
3752 			/* We have more work.  Attempt to reschedule */
3753 			xpt_schedule_dev_allocq(bus, device);
3754 		}
3755 	}
3756 	devq->alloc_queue.qfrozen_cnt--;
3757 }
3758 
3759 static void
3760 xpt_run_dev_sendq(struct cam_eb *bus)
3761 {
3762 	struct	cam_devq *devq;
3763 
3764 	if ((devq = bus->sim->devq) == NULL) {
3765 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3766 		return;
3767 	}
3768 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3769 
3770 	devq->send_queue.qfrozen_cnt++;
3771 	while ((devq->send_queue.entries > 0)
3772 	    && (devq->send_openings > 0)) {
3773 		struct	cam_ed_qinfo *qinfo;
3774 		struct	cam_ed *device;
3775 		union ccb *work_ccb;
3776 		struct	cam_sim *sim;
3777 
3778 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3779 			break;
3780 		}
3781 
3782 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3783 							   CAMQ_HEAD);
3784 		device = qinfo->device;
3785 
3786 		/*
3787 		 * If the device has been "frozen", don't attempt
3788 		 * to run it.
3789 		 */
3790 		if (device->qfrozen_cnt > 0) {
3791 			continue;
3792 		}
3793 
3794 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3795 				("running device %p\n", device));
3796 
3797 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3798 		if (work_ccb == NULL) {
3799 			kprintf("device on run queue with no ccbs???\n");
3800 			continue;
3801 		}
3802 
3803 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3804 
3805 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3806 			if (xsoftc.num_highpower <= 0) {
3807 				/*
3808 				 * We got a high power command, but we
3809 				 * don't have any available slots.  Freeze
3810 				 * the device queue until we have a slot
3811 				 * available.
3812 				 */
3813 				device->qfrozen_cnt++;
3814 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3815 						   &work_ccb->ccb_h,
3816 						   xpt_links.stqe);
3817 
3818 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3819 				continue;
3820 			} else {
3821 				/*
3822 				 * Consume a high power slot while
3823 				 * this ccb runs.
3824 				 */
3825 				xsoftc.num_highpower--;
3826 			}
3827 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3828 		}
3829 		devq->active_dev = device;
3830 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3831 
3832 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3833 
3834 		devq->send_openings--;
3835 		devq->send_active++;
3836 
3837 		if (device->ccbq.queue.entries > 0)
3838 			xpt_schedule_dev_sendq(bus, device);
3839 
3840 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3841 			/*
3842 			 * The client wants to freeze the queue
3843 			 * after this CCB is sent.
3844 			 */
3845 			device->qfrozen_cnt++;
3846 		}
3847 
3848 		/* In Target mode, the peripheral driver knows best... */
3849 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3850 			if ((device->inq_flags & SID_CmdQue) != 0
3851 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3852 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3853 			else
3854 				/*
3855 				 * Clear this in case of a retried CCB that
3856 				 * failed due to a rejected tag.
3857 				 */
3858 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3859 		}
3860 
3861 		/*
3862 		 * Device queues can be shared among multiple sim instances
3863 		 * that reside on different busses.  Use the SIM in the queue
3864 		 * CCB's path, rather than the one in the bus that was passed
3865 		 * into this function.
3866 		 */
3867 		sim = work_ccb->ccb_h.path->bus->sim;
3868 		(*(sim->sim_action))(sim, work_ccb);
3869 
3870 		devq->active_dev = NULL;
3871 	}
3872 	devq->send_queue.qfrozen_cnt--;
3873 }
3874 
3875 /*
3876  * This function merges stuff from the slave ccb into the master ccb, while
3877  * keeping important fields in the master ccb constant.
3878  */
3879 void
3880 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3881 {
3882 	/*
3883 	 * Pull fields that are valid for peripheral drivers to set
3884 	 * into the master CCB along with the CCB "payload".
3885 	 */
3886 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3887 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3888 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3889 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3890 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3891 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3892 }
3893 
3894 void
3895 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3896 {
3897 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3898 	callout_init(&ccb_h->timeout_ch);
3899 	ccb_h->pinfo.priority = priority;
3900 	ccb_h->path = path;
3901 	ccb_h->path_id = path->bus->path_id;
3902 	if (path->target)
3903 		ccb_h->target_id = path->target->target_id;
3904 	else
3905 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3906 	if (path->device) {
3907 		ccb_h->target_lun = path->device->lun_id;
3908 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3909 	} else {
3910 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3911 	}
3912 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3913 	ccb_h->flags = 0;
3914 }
3915 
3916 /* Path manipulation functions */
3917 cam_status
3918 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3919 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3920 {
3921 	struct	   cam_path *path;
3922 	cam_status status;
3923 
3924 	path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3925 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3926 	if (status != CAM_REQ_CMP) {
3927 		kfree(path, M_CAMXPT);
3928 		path = NULL;
3929 	}
3930 	*new_path_ptr = path;
3931 	return (status);
3932 }
3933 
3934 cam_status
3935 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3936 			 struct cam_periph *periph, path_id_t path_id,
3937 			 target_id_t target_id, lun_id_t lun_id)
3938 {
3939 	struct	   cam_path *path;
3940 	struct	   cam_eb *bus = NULL;
3941 	cam_status status;
3942 	int	   need_unlock = 0;
3943 
3944 	path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3945 
3946 	if (path_id != CAM_BUS_WILDCARD) {
3947 		bus = xpt_find_bus(path_id);
3948 		if (bus != NULL) {
3949 			need_unlock = 1;
3950 			CAM_SIM_LOCK(bus->sim);
3951 		}
3952 	}
3953 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3954 	if (need_unlock)
3955 		CAM_SIM_UNLOCK(bus->sim);
3956 	if (status != CAM_REQ_CMP) {
3957 		kfree(path, M_CAMXPT);
3958 		path = NULL;
3959 	}
3960 	*new_path_ptr = path;
3961 	return (status);
3962 }
3963 
3964 static cam_status
3965 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3966 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3967 {
3968 	struct	     cam_eb *bus;
3969 	struct	     cam_et *target;
3970 	struct	     cam_ed *device;
3971 	cam_status   status;
3972 
3973 	status = CAM_REQ_CMP;	/* Completed without error */
3974 	target = NULL;		/* Wildcarded */
3975 	device = NULL;		/* Wildcarded */
3976 
3977 	/*
3978 	 * We will potentially modify the EDT, so block interrupts
3979 	 * that may attempt to create cam paths.
3980 	 */
3981 	bus = xpt_find_bus(path_id);
3982 	if (bus == NULL) {
3983 		status = CAM_PATH_INVALID;
3984 	} else {
3985 		target = xpt_find_target(bus, target_id);
3986 		if (target == NULL) {
3987 			/* Create one */
3988 			struct cam_et *new_target;
3989 
3990 			new_target = xpt_alloc_target(bus, target_id);
3991 			if (new_target == NULL) {
3992 				status = CAM_RESRC_UNAVAIL;
3993 			} else {
3994 				target = new_target;
3995 			}
3996 		}
3997 		if (target != NULL) {
3998 			device = xpt_find_device(target, lun_id);
3999 			if (device == NULL) {
4000 				/* Create one */
4001 				struct cam_ed *new_device;
4002 
4003 				new_device = xpt_alloc_device(bus,
4004 							      target,
4005 							      lun_id);
4006 				if (new_device == NULL) {
4007 					status = CAM_RESRC_UNAVAIL;
4008 				} else {
4009 					device = new_device;
4010 				}
4011 			}
4012 		}
4013 	}
4014 
4015 	/*
4016 	 * Only touch the user's data if we are successful.
4017 	 */
4018 	if (status == CAM_REQ_CMP) {
4019 		new_path->periph = perph;
4020 		new_path->bus = bus;
4021 		new_path->target = target;
4022 		new_path->device = device;
4023 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4024 	} else {
4025 		if (device != NULL)
4026 			xpt_release_device(bus, target, device);
4027 		if (target != NULL)
4028 			xpt_release_target(bus, target);
4029 		if (bus != NULL)
4030 			xpt_release_bus(bus);
4031 	}
4032 	return (status);
4033 }
4034 
4035 static void
4036 xpt_release_path(struct cam_path *path)
4037 {
4038 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4039 	if (path->device != NULL) {
4040 		xpt_release_device(path->bus, path->target, path->device);
4041 		path->device = NULL;
4042 	}
4043 	if (path->target != NULL) {
4044 		xpt_release_target(path->bus, path->target);
4045 		path->target = NULL;
4046 	}
4047 	if (path->bus != NULL) {
4048 		xpt_release_bus(path->bus);
4049 		path->bus = NULL;
4050 	}
4051 }
4052 
4053 void
4054 xpt_free_path(struct cam_path *path)
4055 {
4056 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4057 	xpt_release_path(path);
4058 	kfree(path, M_CAMXPT);
4059 }
4060 
4061 
4062 /*
4063  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4064  * in path1, 2 for match with wildcards in path2.
4065  */
4066 int
4067 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4068 {
4069 	int retval = 0;
4070 
4071 	if (path1->bus != path2->bus) {
4072 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4073 			retval = 1;
4074 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4075 			retval = 2;
4076 		else
4077 			return (-1);
4078 	}
4079 	if (path1->target != path2->target) {
4080 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4081 			if (retval == 0)
4082 				retval = 1;
4083 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4084 			retval = 2;
4085 		else
4086 			return (-1);
4087 	}
4088 	if (path1->device != path2->device) {
4089 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4090 			if (retval == 0)
4091 				retval = 1;
4092 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4093 			retval = 2;
4094 		else
4095 			return (-1);
4096 	}
4097 	return (retval);
4098 }
4099 
4100 void
4101 xpt_print_path(struct cam_path *path)
4102 {
4103 
4104 	if (path == NULL)
4105 		kprintf("(nopath): ");
4106 	else {
4107 		if (path->periph != NULL)
4108 			kprintf("(%s%d:", path->periph->periph_name,
4109 			       path->periph->unit_number);
4110 		else
4111 			kprintf("(noperiph:");
4112 
4113 		if (path->bus != NULL)
4114 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4115 			       path->bus->sim->unit_number,
4116 			       path->bus->sim->bus_id);
4117 		else
4118 			kprintf("nobus:");
4119 
4120 		if (path->target != NULL)
4121 			kprintf("%d:", path->target->target_id);
4122 		else
4123 			kprintf("X:");
4124 
4125 		if (path->device != NULL)
4126 			kprintf("%d): ", path->device->lun_id);
4127 		else
4128 			kprintf("X): ");
4129 	}
4130 }
4131 
4132 void
4133 xpt_print(struct cam_path *path, const char *fmt, ...)
4134 {
4135 	__va_list ap;
4136 	xpt_print_path(path);
4137 	__va_start(ap, fmt);
4138 	kvprintf(fmt, ap);
4139 	__va_end(ap);
4140 }
4141 
4142 int
4143 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4144 {
4145 	struct sbuf sb;
4146 
4147 	sim_lock_assert_owned(path->bus->sim->lock);
4148 
4149 	sbuf_new(&sb, str, str_len, 0);
4150 
4151 	if (path == NULL)
4152 		sbuf_printf(&sb, "(nopath): ");
4153 	else {
4154 		if (path->periph != NULL)
4155 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4156 				    path->periph->unit_number);
4157 		else
4158 			sbuf_printf(&sb, "(noperiph:");
4159 
4160 		if (path->bus != NULL)
4161 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4162 				    path->bus->sim->unit_number,
4163 				    path->bus->sim->bus_id);
4164 		else
4165 			sbuf_printf(&sb, "nobus:");
4166 
4167 		if (path->target != NULL)
4168 			sbuf_printf(&sb, "%d:", path->target->target_id);
4169 		else
4170 			sbuf_printf(&sb, "X:");
4171 
4172 		if (path->device != NULL)
4173 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4174 		else
4175 			sbuf_printf(&sb, "X): ");
4176 	}
4177 	sbuf_finish(&sb);
4178 
4179 	return(sbuf_len(&sb));
4180 }
4181 
4182 path_id_t
4183 xpt_path_path_id(struct cam_path *path)
4184 {
4185 	sim_lock_assert_owned(path->bus->sim->lock);
4186 
4187 	return(path->bus->path_id);
4188 }
4189 
4190 target_id_t
4191 xpt_path_target_id(struct cam_path *path)
4192 {
4193 	sim_lock_assert_owned(path->bus->sim->lock);
4194 
4195 	if (path->target != NULL)
4196 		return (path->target->target_id);
4197 	else
4198 		return (CAM_TARGET_WILDCARD);
4199 }
4200 
4201 lun_id_t
4202 xpt_path_lun_id(struct cam_path *path)
4203 {
4204 	sim_lock_assert_owned(path->bus->sim->lock);
4205 
4206 	if (path->device != NULL)
4207 		return (path->device->lun_id);
4208 	else
4209 		return (CAM_LUN_WILDCARD);
4210 }
4211 
4212 struct cam_sim *
4213 xpt_path_sim(struct cam_path *path)
4214 {
4215 	return (path->bus->sim);
4216 }
4217 
4218 struct cam_periph*
4219 xpt_path_periph(struct cam_path *path)
4220 {
4221 	sim_lock_assert_owned(path->bus->sim->lock);
4222 
4223 	return (path->periph);
4224 }
4225 
4226 /*
4227  * Release a CAM control block for the caller.  Remit the cost of the structure
4228  * to the device referenced by the path.  If the this device had no 'credits'
4229  * and peripheral drivers have registered async callbacks for this notification
4230  * call them now.
4231  */
4232 void
4233 xpt_release_ccb(union ccb *free_ccb)
4234 {
4235 	struct	 cam_path *path;
4236 	struct	 cam_ed *device;
4237 	struct	 cam_eb *bus;
4238 	struct   cam_sim *sim;
4239 
4240 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4241 	path = free_ccb->ccb_h.path;
4242 	device = path->device;
4243 	bus = path->bus;
4244 	sim = bus->sim;
4245 
4246 	sim_lock_assert_owned(sim->lock);
4247 
4248 	cam_ccbq_release_opening(&device->ccbq);
4249 	if (sim->ccb_count > sim->max_ccbs) {
4250 		xpt_free_ccb(free_ccb);
4251 		sim->ccb_count--;
4252 	} else {
4253 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4254 		    xpt_links.sle);
4255 	}
4256 	if (sim->devq == NULL) {
4257 		return;
4258 	}
4259 	sim->devq->alloc_openings++;
4260 	sim->devq->alloc_active--;
4261 	/* XXX Turn this into an inline function - xpt_run_device?? */
4262 	if ((device_is_alloc_queued(device) == 0)
4263 	 && (device->drvq.entries > 0)) {
4264 		xpt_schedule_dev_allocq(bus, device);
4265 	}
4266 	if (dev_allocq_is_runnable(sim->devq))
4267 		xpt_run_dev_allocq(bus);
4268 }
4269 
4270 /* Functions accessed by SIM drivers */
4271 
4272 /*
4273  * A sim structure, listing the SIM entry points and instance
4274  * identification info is passed to xpt_bus_register to hook the SIM
4275  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4276  * for this new bus and places it in the array of busses and assigns
4277  * it a path_id.  The path_id may be influenced by "hard wiring"
4278  * information specified by the user.  Once interrupt services are
4279  * availible, the bus will be probed.
4280  */
4281 int32_t
4282 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4283 {
4284 	struct cam_eb *new_bus;
4285 	struct cam_eb *old_bus;
4286 	struct ccb_pathinq cpi;
4287 
4288 	sim_lock_assert_owned(sim->lock);
4289 
4290 	sim->bus_id = bus;
4291 	new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4292 
4293 	if (strcmp(sim->sim_name, "xpt") != 0) {
4294 		sim->path_id =
4295 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4296 	}
4297 
4298 	TAILQ_INIT(&new_bus->et_entries);
4299 	new_bus->path_id = sim->path_id;
4300 	new_bus->sim = sim;
4301 	++sim->refcount;
4302 	timevalclear(&new_bus->last_reset);
4303 	new_bus->flags = 0;
4304 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4305 	new_bus->generation = 0;
4306 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4307 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4308 	while (old_bus != NULL
4309 	    && old_bus->path_id < new_bus->path_id)
4310 		old_bus = TAILQ_NEXT(old_bus, links);
4311 	if (old_bus != NULL)
4312 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4313 	else
4314 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4315 	xsoftc.bus_generation++;
4316 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4317 
4318 	/* Notify interested parties */
4319 	if (sim->path_id != CAM_XPT_PATH_ID) {
4320 		struct cam_path path;
4321 
4322 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4323 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4324 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4325 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4326 		xpt_action((union ccb *)&cpi);
4327 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4328 		xpt_release_path(&path);
4329 	}
4330 	return (CAM_SUCCESS);
4331 }
4332 
4333 /*
4334  * Deregister a bus.  We must clean out all transactions pending on the bus.
4335  * This routine is typically called prior to cam_sim_free() (e.g. see
4336  * dev/usbmisc/umass/umass.c)
4337  */
4338 int32_t
4339 xpt_bus_deregister(path_id_t pathid)
4340 {
4341 	struct cam_path bus_path;
4342 	struct cam_ed *device;
4343 	struct cam_ed_qinfo *qinfo;
4344 	struct cam_devq *devq;
4345 	struct cam_periph *periph;
4346 	struct cam_sim *ccbsim;
4347 	union ccb *work_ccb;
4348 	cam_status status;
4349 
4350 	status = xpt_compile_path(&bus_path, NULL, pathid,
4351 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4352 	if (status != CAM_REQ_CMP)
4353 		return (status);
4354 
4355 	/*
4356 	 * This should clear out all pending requests and timeouts, but
4357 	 * the ccb's may be queued to a software interrupt.
4358 	 *
4359 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4360 	 * and it really ought to.
4361 	 */
4362 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4363 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4364 
4365 	/* The SIM may be gone, so use a dummy SIM for any stray operations. */
4366 	devq = bus_path.bus->sim->devq;
4367 	ccbsim = bus_path.bus->sim;
4368 	bus_path.bus->sim = &cam_dead_sim;
4369 
4370 	/* Execute any pending operations now. */
4371 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4372 	    CAMQ_HEAD)) != NULL ||
4373 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4374 	    CAMQ_HEAD)) != NULL) {
4375 		do {
4376 			device = qinfo->device;
4377 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4378 			if (work_ccb != NULL) {
4379 				devq->active_dev = device;
4380 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4381 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4382 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4383 			}
4384 
4385 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4386 			    CAMQ_HEAD);
4387 			if (periph != NULL)
4388 				xpt_schedule(periph, periph->pinfo.priority);
4389 		} while (work_ccb != NULL || periph != NULL);
4390 	}
4391 
4392 	/* Make sure all completed CCBs are processed. */
4393 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4394 		camisr_runqueue(ccbsim);
4395 
4396 		/* Repeat the async's for the benefit of any new devices. */
4397 		xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4398 		xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4399 	}
4400 
4401 	/* Release the reference count held while registered. */
4402 	xpt_release_bus(bus_path.bus);
4403 	xpt_release_path(&bus_path);
4404 
4405 	return (CAM_REQ_CMP);
4406 }
4407 
4408 static path_id_t
4409 xptnextfreepathid(void)
4410 {
4411 	struct cam_eb *bus;
4412 	path_id_t pathid;
4413 	char *strval;
4414 
4415 	pathid = 0;
4416 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4417 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4418 retry:
4419 	/* Find an unoccupied pathid */
4420 	while (bus != NULL && bus->path_id <= pathid) {
4421 		if (bus->path_id == pathid)
4422 			pathid++;
4423 		bus = TAILQ_NEXT(bus, links);
4424 	}
4425 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4426 
4427 	/*
4428 	 * Ensure that this pathid is not reserved for
4429 	 * a bus that may be registered in the future.
4430 	 */
4431 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4432 		++pathid;
4433 		/* Start the search over */
4434 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4435 		goto retry;
4436 	}
4437 	return (pathid);
4438 }
4439 
4440 static path_id_t
4441 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4442 {
4443 	path_id_t pathid;
4444 	int i, dunit, val;
4445 	char buf[32];
4446 
4447 	pathid = CAM_XPT_PATH_ID;
4448 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4449 	i = -1;
4450 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4451 		if (strcmp(resource_query_name(i), "scbus")) {
4452 			/* Avoid a bit of foot shooting. */
4453 			continue;
4454 		}
4455 		dunit = resource_query_unit(i);
4456 		if (dunit < 0)		/* unwired?! */
4457 			continue;
4458 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4459 			if (sim_bus == val) {
4460 				pathid = dunit;
4461 				break;
4462 			}
4463 		} else if (sim_bus == 0) {
4464 			/* Unspecified matches bus 0 */
4465 			pathid = dunit;
4466 			break;
4467 		} else {
4468 			kprintf("Ambiguous scbus configuration for %s%d "
4469 			       "bus %d, cannot wire down.  The kernel "
4470 			       "config entry for scbus%d should "
4471 			       "specify a controller bus.\n"
4472 			       "Scbus will be assigned dynamically.\n",
4473 			       sim_name, sim_unit, sim_bus, dunit);
4474 			break;
4475 		}
4476 	}
4477 
4478 	if (pathid == CAM_XPT_PATH_ID)
4479 		pathid = xptnextfreepathid();
4480 	return (pathid);
4481 }
4482 
4483 void
4484 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4485 {
4486 	struct cam_eb *bus;
4487 	struct cam_et *target, *next_target;
4488 	struct cam_ed *device, *next_device;
4489 
4490 	sim_lock_assert_owned(path->bus->sim->lock);
4491 
4492 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4493 
4494 	/*
4495 	 * Most async events come from a CAM interrupt context.  In
4496 	 * a few cases, the error recovery code at the peripheral layer,
4497 	 * which may run from our SWI or a process context, may signal
4498 	 * deferred events with a call to xpt_async.
4499 	 */
4500 
4501 	bus = path->bus;
4502 
4503 	if (async_code == AC_BUS_RESET) {
4504 		/* Update our notion of when the last reset occurred */
4505 		microuptime(&bus->last_reset);
4506 	}
4507 
4508 	for (target = TAILQ_FIRST(&bus->et_entries);
4509 	     target != NULL;
4510 	     target = next_target) {
4511 
4512 		next_target = TAILQ_NEXT(target, links);
4513 
4514 		if (path->target != target
4515 		 && path->target->target_id != CAM_TARGET_WILDCARD
4516 		 && target->target_id != CAM_TARGET_WILDCARD)
4517 			continue;
4518 
4519 		if (async_code == AC_SENT_BDR) {
4520 			/* Update our notion of when the last reset occurred */
4521 			microuptime(&path->target->last_reset);
4522 		}
4523 
4524 		for (device = TAILQ_FIRST(&target->ed_entries);
4525 		     device != NULL;
4526 		     device = next_device) {
4527 
4528 			next_device = TAILQ_NEXT(device, links);
4529 
4530 			if (path->device != device
4531 			 && path->device->lun_id != CAM_LUN_WILDCARD
4532 			 && device->lun_id != CAM_LUN_WILDCARD)
4533 				continue;
4534 
4535 			xpt_dev_async(async_code, bus, target,
4536 				      device, async_arg);
4537 
4538 			xpt_async_bcast(&device->asyncs, async_code,
4539 					path, async_arg);
4540 		}
4541 	}
4542 
4543 	/*
4544 	 * If this wasn't a fully wildcarded async, tell all
4545 	 * clients that want all async events.
4546 	 */
4547 	if (bus != xpt_periph->path->bus)
4548 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4549 				path, async_arg);
4550 }
4551 
4552 static void
4553 xpt_async_bcast(struct async_list *async_head,
4554 		u_int32_t async_code,
4555 		struct cam_path *path, void *async_arg)
4556 {
4557 	struct async_node *cur_entry;
4558 
4559 	cur_entry = SLIST_FIRST(async_head);
4560 	while (cur_entry != NULL) {
4561 		struct async_node *next_entry;
4562 		/*
4563 		 * Grab the next list entry before we call the current
4564 		 * entry's callback.  This is because the callback function
4565 		 * can delete its async callback entry.
4566 		 */
4567 		next_entry = SLIST_NEXT(cur_entry, links);
4568 		if ((cur_entry->event_enable & async_code) != 0)
4569 			cur_entry->callback(cur_entry->callback_arg,
4570 					    async_code, path,
4571 					    async_arg);
4572 		cur_entry = next_entry;
4573 	}
4574 }
4575 
4576 /*
4577  * Handle any per-device event notifications that require action by the XPT.
4578  */
4579 static void
4580 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4581 	      struct cam_ed *device, void *async_arg)
4582 {
4583 	cam_status status;
4584 	struct cam_path newpath;
4585 
4586 	/*
4587 	 * We only need to handle events for real devices.
4588 	 */
4589 	if (target->target_id == CAM_TARGET_WILDCARD
4590 	 || device->lun_id == CAM_LUN_WILDCARD)
4591 		return;
4592 
4593 	/*
4594 	 * We need our own path with wildcards expanded to
4595 	 * handle certain types of events.
4596 	 */
4597 	if ((async_code == AC_SENT_BDR)
4598 	 || (async_code == AC_BUS_RESET)
4599 	 || (async_code == AC_INQ_CHANGED))
4600 		status = xpt_compile_path(&newpath, NULL,
4601 					  bus->path_id,
4602 					  target->target_id,
4603 					  device->lun_id);
4604 	else
4605 		status = CAM_REQ_CMP_ERR;
4606 
4607 	if (status == CAM_REQ_CMP) {
4608 
4609 		/*
4610 		 * Allow transfer negotiation to occur in a
4611 		 * tag free environment.
4612 		 */
4613 		if (async_code == AC_SENT_BDR
4614 		 || async_code == AC_BUS_RESET)
4615 			xpt_toggle_tags(&newpath);
4616 
4617 		if (async_code == AC_INQ_CHANGED) {
4618 			/*
4619 			 * We've sent a start unit command, or
4620 			 * something similar to a device that
4621 			 * may have caused its inquiry data to
4622 			 * change. So we re-scan the device to
4623 			 * refresh the inquiry data for it.
4624 			 */
4625 			xpt_scan_lun(newpath.periph, &newpath,
4626 				     CAM_EXPECT_INQ_CHANGE, NULL);
4627 		}
4628 		xpt_release_path(&newpath);
4629 	} else if (async_code == AC_LOST_DEVICE) {
4630 		/*
4631 		 * When we lose a device the device may be about to detach
4632 		 * the sim, we have to clear out all pending timeouts and
4633 		 * requests before that happens.  XXX it would be nice if
4634 		 * we could abort the requests pertaining to the device.
4635 		 */
4636 		xpt_release_devq_timeout(device);
4637 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4638 			device->flags |= CAM_DEV_UNCONFIGURED;
4639 			xpt_release_device(bus, target, device);
4640 		}
4641 	} else if (async_code == AC_TRANSFER_NEG) {
4642 		struct ccb_trans_settings *settings;
4643 
4644 		settings = (struct ccb_trans_settings *)async_arg;
4645 		xpt_set_transfer_settings(settings, device,
4646 					  /*async_update*/TRUE);
4647 	}
4648 }
4649 
4650 u_int32_t
4651 xpt_freeze_devq(struct cam_path *path, u_int count)
4652 {
4653 	struct ccb_hdr *ccbh;
4654 
4655 	sim_lock_assert_owned(path->bus->sim->lock);
4656 
4657 	path->device->qfrozen_cnt += count;
4658 
4659 	/*
4660 	 * Mark the last CCB in the queue as needing
4661 	 * to be requeued if the driver hasn't
4662 	 * changed it's state yet.  This fixes a race
4663 	 * where a ccb is just about to be queued to
4664 	 * a controller driver when it's interrupt routine
4665 	 * freezes the queue.  To completly close the
4666 	 * hole, controller drives must check to see
4667 	 * if a ccb's status is still CAM_REQ_INPROG
4668 	 * just before they queue
4669 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4670 	 * an example.
4671 	 */
4672 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4673 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4674 		ccbh->status = CAM_REQUEUE_REQ;
4675 	return (path->device->qfrozen_cnt);
4676 }
4677 
4678 u_int32_t
4679 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4680 {
4681 	sim_lock_assert_owned(sim->lock);
4682 
4683 	if (sim->devq == NULL)
4684 		return(count);
4685 	sim->devq->send_queue.qfrozen_cnt += count;
4686 	if (sim->devq->active_dev != NULL) {
4687 		struct ccb_hdr *ccbh;
4688 
4689 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4690 				  ccb_hdr_tailq);
4691 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4692 			ccbh->status = CAM_REQUEUE_REQ;
4693 	}
4694 	return (sim->devq->send_queue.qfrozen_cnt);
4695 }
4696 
4697 /*
4698  * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4699  * We ref-count the sim (and the bus only NULLs it out when the bus has been
4700  * freed, which is not the case here), but the device queue is also freed XXX
4701  * and we have to check that here.
4702  *
4703  * XXX fixme: could we simply not null-out the device queue via
4704  * cam_sim_free()?
4705  */
4706 static void
4707 xpt_release_devq_timeout(void *arg)
4708 {
4709 	struct cam_ed *device;
4710 
4711 	device = (struct cam_ed *)arg;
4712 
4713 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4714 }
4715 
4716 void
4717 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4718 {
4719 	sim_lock_assert_owned(path->bus->sim->lock);
4720 
4721 	xpt_release_devq_device(path->device, count, run_queue);
4722 }
4723 
4724 static void
4725 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4726 {
4727 	int	rundevq;
4728 
4729 	rundevq = 0;
4730 
4731 	if (dev->qfrozen_cnt > 0) {
4732 
4733 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4734 		dev->qfrozen_cnt -= count;
4735 		if (dev->qfrozen_cnt == 0) {
4736 
4737 			/*
4738 			 * No longer need to wait for a successful
4739 			 * command completion.
4740 			 */
4741 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4742 
4743 			/*
4744 			 * Remove any timeouts that might be scheduled
4745 			 * to release this queue.
4746 			 */
4747 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4748 				callout_stop(&dev->callout);
4749 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4750 			}
4751 
4752 			/*
4753 			 * Now that we are unfrozen schedule the
4754 			 * device so any pending transactions are
4755 			 * run.
4756 			 */
4757 			if ((dev->ccbq.queue.entries > 0)
4758 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4759 			 && (run_queue != 0)) {
4760 				rundevq = 1;
4761 			}
4762 		}
4763 	}
4764 	if (rundevq != 0)
4765 		xpt_run_dev_sendq(dev->target->bus);
4766 }
4767 
4768 void
4769 xpt_release_simq(struct cam_sim *sim, int run_queue)
4770 {
4771 	struct	camq *sendq;
4772 
4773 	sim_lock_assert_owned(sim->lock);
4774 
4775 	if (sim->devq == NULL)
4776 		return;
4777 
4778 	sendq = &(sim->devq->send_queue);
4779 	if (sendq->qfrozen_cnt > 0) {
4780 		sendq->qfrozen_cnt--;
4781 		if (sendq->qfrozen_cnt == 0) {
4782 			struct cam_eb *bus;
4783 
4784 			/*
4785 			 * If there is a timeout scheduled to release this
4786 			 * sim queue, remove it.  The queue frozen count is
4787 			 * already at 0.
4788 			 */
4789 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4790 				callout_stop(&sim->callout);
4791 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4792 			}
4793 			bus = xpt_find_bus(sim->path_id);
4794 
4795 			if (run_queue) {
4796 				/*
4797 				 * Now that we are unfrozen run the send queue.
4798 				 */
4799 				xpt_run_dev_sendq(bus);
4800 			}
4801 			xpt_release_bus(bus);
4802 		}
4803 	}
4804 }
4805 
4806 void
4807 xpt_done(union ccb *done_ccb)
4808 {
4809 	struct cam_sim *sim;
4810 
4811 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4812 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4813 		/*
4814 		 * Queue up the request for handling by our SWI handler
4815 		 * any of the "non-immediate" type of ccbs.
4816 		 */
4817 		sim = done_ccb->ccb_h.path->bus->sim;
4818 		switch (done_ccb->ccb_h.path->periph->type) {
4819 		case CAM_PERIPH_BIO:
4820 			spin_lock_wr(&sim->sim_spin);
4821 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4822 					  sim_links.tqe);
4823 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4824 			spin_unlock_wr(&sim->sim_spin);
4825 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4826 				spin_lock_wr(&cam_simq_spin);
4827 				if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4828 					TAILQ_INSERT_TAIL(&cam_simq, sim,
4829 							  links);
4830 					sim->flags |= CAM_SIM_ON_DONEQ;
4831 				}
4832 				spin_unlock_wr(&cam_simq_spin);
4833 			}
4834 			if ((done_ccb->ccb_h.path->periph->flags &
4835 			    CAM_PERIPH_POLLED) == 0)
4836 				setsoftcambio();
4837 			break;
4838 		default:
4839 			panic("unknown periph type %d",
4840 				done_ccb->ccb_h.path->periph->type);
4841 		}
4842 	}
4843 }
4844 
4845 union ccb *
4846 xpt_alloc_ccb(void)
4847 {
4848 	union ccb *new_ccb;
4849 
4850 	new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4851 	return (new_ccb);
4852 }
4853 
4854 void
4855 xpt_free_ccb(union ccb *free_ccb)
4856 {
4857 	kfree(free_ccb, M_CAMXPT);
4858 }
4859 
4860 
4861 
4862 /* Private XPT functions */
4863 
4864 /*
4865  * Get a CAM control block for the caller. Charge the structure to the device
4866  * referenced by the path.  If the this device has no 'credits' then the
4867  * device already has the maximum number of outstanding operations under way
4868  * and we return NULL. If we don't have sufficient resources to allocate more
4869  * ccbs, we also return NULL.
4870  */
4871 static union ccb *
4872 xpt_get_ccb(struct cam_ed *device)
4873 {
4874 	union ccb *new_ccb;
4875 	struct cam_sim *sim;
4876 
4877 	sim = device->sim;
4878 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4879 		new_ccb = xpt_alloc_ccb();
4880 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4881 			callout_init(&new_ccb->ccb_h.timeout_ch);
4882 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4883 				  xpt_links.sle);
4884 		sim->ccb_count++;
4885 	}
4886 	cam_ccbq_take_opening(&device->ccbq);
4887 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4888 	return (new_ccb);
4889 }
4890 
4891 static void
4892 xpt_release_bus(struct cam_eb *bus)
4893 {
4894 
4895 	if ((--bus->refcount == 0)
4896 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4897 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4898 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4899 		xsoftc.bus_generation++;
4900 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4901 		kfree(bus, M_CAMXPT);
4902 	}
4903 }
4904 
4905 static struct cam_et *
4906 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4907 {
4908 	struct cam_et *target;
4909 	struct cam_et *cur_target;
4910 
4911 	target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4912 
4913 	TAILQ_INIT(&target->ed_entries);
4914 	target->bus = bus;
4915 	target->target_id = target_id;
4916 	target->refcount = 1;
4917 	target->generation = 0;
4918 	timevalclear(&target->last_reset);
4919 	/*
4920 	 * Hold a reference to our parent bus so it
4921 	 * will not go away before we do.
4922 	 */
4923 	bus->refcount++;
4924 
4925 	/* Insertion sort into our bus's target list */
4926 	cur_target = TAILQ_FIRST(&bus->et_entries);
4927 	while (cur_target != NULL && cur_target->target_id < target_id)
4928 		cur_target = TAILQ_NEXT(cur_target, links);
4929 
4930 	if (cur_target != NULL) {
4931 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4932 	} else {
4933 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4934 	}
4935 	bus->generation++;
4936 	return (target);
4937 }
4938 
4939 static void
4940 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4941 {
4942 	if (target->refcount == 1) {
4943 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
4944 		TAILQ_REMOVE(&bus->et_entries, target, links);
4945 		bus->generation++;
4946 		xpt_release_bus(bus);
4947 		KKASSERT(target->refcount == 1);
4948 		kfree(target, M_CAMXPT);
4949 	} else {
4950 		--target->refcount;
4951 	}
4952 }
4953 
4954 static struct cam_ed *
4955 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4956 {
4957 	struct	   cam_path path;
4958 	struct	   cam_ed *device;
4959 	struct	   cam_devq *devq;
4960 	cam_status status;
4961 
4962 	if (SIM_DEAD(bus->sim))
4963 		return (NULL);
4964 
4965 	/* Make space for us in the device queue on our bus */
4966 	if (bus->sim->devq == NULL)
4967 		return(NULL);
4968 	devq = bus->sim->devq;
4969 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4970 
4971 	if (status != CAM_REQ_CMP) {
4972 		device = NULL;
4973 	} else {
4974 		device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
4975 	}
4976 
4977 	if (device != NULL) {
4978 		struct cam_ed *cur_device;
4979 
4980 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4981 		device->alloc_ccb_entry.device = device;
4982 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4983 		device->send_ccb_entry.device = device;
4984 		device->target = target;
4985 		device->lun_id = lun_id;
4986 		device->sim = bus->sim;
4987 		/* Initialize our queues */
4988 		if (camq_init(&device->drvq, 0) != 0) {
4989 			kfree(device, M_CAMXPT);
4990 			return (NULL);
4991 		}
4992 		if (cam_ccbq_init(&device->ccbq,
4993 				  bus->sim->max_dev_openings) != 0) {
4994 			camq_fini(&device->drvq);
4995 			kfree(device, M_CAMXPT);
4996 			return (NULL);
4997 		}
4998 		SLIST_INIT(&device->asyncs);
4999 		SLIST_INIT(&device->periphs);
5000 		device->generation = 0;
5001 		device->owner = NULL;
5002 		/*
5003 		 * Take the default quirk entry until we have inquiry
5004 		 * data and can determine a better quirk to use.
5005 		 */
5006 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5007 		bzero(&device->inq_data, sizeof(device->inq_data));
5008 		device->inq_flags = 0;
5009 		device->queue_flags = 0;
5010 		device->serial_num = NULL;
5011 		device->serial_num_len = 0;
5012 		device->qfrozen_cnt = 0;
5013 		device->flags = CAM_DEV_UNCONFIGURED;
5014 		device->tag_delay_count = 0;
5015 		device->tag_saved_openings = 0;
5016 		device->refcount = 1;
5017 		callout_init(&device->callout);
5018 
5019 		/*
5020 		 * Hold a reference to our parent target so it
5021 		 * will not go away before we do.
5022 		 */
5023 		target->refcount++;
5024 
5025 		/*
5026 		 * XXX should be limited by number of CCBs this bus can
5027 		 * do.
5028 		 */
5029 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5030 		/* Insertion sort into our target's device list */
5031 		cur_device = TAILQ_FIRST(&target->ed_entries);
5032 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5033 			cur_device = TAILQ_NEXT(cur_device, links);
5034 		if (cur_device != NULL) {
5035 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5036 		} else {
5037 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5038 		}
5039 		target->generation++;
5040 		if (lun_id != CAM_LUN_WILDCARD) {
5041 			xpt_compile_path(&path,
5042 					 NULL,
5043 					 bus->path_id,
5044 					 target->target_id,
5045 					 lun_id);
5046 			xpt_devise_transport(&path);
5047 			xpt_release_path(&path);
5048 		}
5049 	}
5050 	return (device);
5051 }
5052 
5053 static void
5054 xpt_reference_device(struct cam_ed *device)
5055 {
5056 	++device->refcount;
5057 }
5058 
5059 static void
5060 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5061 		   struct cam_ed *device)
5062 {
5063 	struct cam_devq *devq;
5064 
5065 	if (device->refcount == 1) {
5066 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5067 
5068 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5069 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5070 			panic("Removing device while still queued for ccbs");
5071 
5072 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5073 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5074 			callout_stop(&device->callout);
5075 		}
5076 
5077 		TAILQ_REMOVE(&target->ed_entries, device,links);
5078 		target->generation++;
5079 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
5080 		if (!SIM_DEAD(bus->sim)) {
5081 			/* Release our slot in the devq */
5082 			devq = bus->sim->devq;
5083 			cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5084 		}
5085 		camq_fini(&device->drvq);
5086 		camq_fini(&device->ccbq.queue);
5087 		xpt_release_target(bus, target);
5088 		KKASSERT(device->refcount == 1);
5089 		kfree(device, M_CAMXPT);
5090 	} else {
5091 		--device->refcount;
5092 	}
5093 }
5094 
5095 static u_int32_t
5096 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5097 {
5098 	int	diff;
5099 	int	result;
5100 	struct	cam_ed *dev;
5101 
5102 	dev = path->device;
5103 
5104 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5105 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5106 	if (result == CAM_REQ_CMP && (diff < 0)) {
5107 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5108 	}
5109 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5110 	 || (dev->inq_flags & SID_CmdQue) != 0)
5111 		dev->tag_saved_openings = newopenings;
5112 	/* Adjust the global limit */
5113 	dev->sim->max_ccbs += diff;
5114 	return (result);
5115 }
5116 
5117 static struct cam_eb *
5118 xpt_find_bus(path_id_t path_id)
5119 {
5120 	struct cam_eb *bus;
5121 
5122 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5123 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5124 		if (bus->path_id == path_id) {
5125 			bus->refcount++;
5126 			break;
5127 		}
5128 	}
5129 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5130 	return (bus);
5131 }
5132 
5133 static struct cam_et *
5134 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5135 {
5136 	struct cam_et *target;
5137 
5138 	TAILQ_FOREACH(target, &bus->et_entries, links) {
5139 		if (target->target_id == target_id) {
5140 			target->refcount++;
5141 			break;
5142 		}
5143 	}
5144 	return (target);
5145 }
5146 
5147 static struct cam_ed *
5148 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5149 {
5150 	struct cam_ed *device;
5151 
5152 	TAILQ_FOREACH(device, &target->ed_entries, links) {
5153 		if (device->lun_id == lun_id) {
5154 			device->refcount++;
5155 			break;
5156 		}
5157 	}
5158 	return (device);
5159 }
5160 
5161 typedef struct {
5162 	union	ccb *request_ccb;
5163 	struct 	ccb_pathinq *cpi;
5164 	int	counter;
5165 } xpt_scan_bus_info;
5166 
5167 /*
5168  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5169  * As the scan progresses, xpt_scan_bus is used as the
5170  * callback on completion function.
5171  */
5172 static void
5173 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5174 {
5175 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5176 		  ("xpt_scan_bus\n"));
5177 	switch (request_ccb->ccb_h.func_code) {
5178 	case XPT_SCAN_BUS:
5179 	{
5180 		xpt_scan_bus_info *scan_info;
5181 		union	ccb *work_ccb;
5182 		struct	cam_path *path;
5183 		u_int	i;
5184 		u_int	max_target;
5185 		u_int	initiator_id;
5186 
5187 		/* Find out the characteristics of the bus */
5188 		work_ccb = xpt_alloc_ccb();
5189 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5190 			      request_ccb->ccb_h.pinfo.priority);
5191 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5192 		xpt_action(work_ccb);
5193 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5194 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5195 			xpt_free_ccb(work_ccb);
5196 			xpt_done(request_ccb);
5197 			return;
5198 		}
5199 
5200 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5201 			/*
5202 			 * Can't scan the bus on an adapter that
5203 			 * cannot perform the initiator role.
5204 			 */
5205 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5206 			xpt_free_ccb(work_ccb);
5207 			xpt_done(request_ccb);
5208 			return;
5209 		}
5210 
5211 		/* Save some state for use while we probe for devices */
5212 		scan_info = (xpt_scan_bus_info *)
5213 		    kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5214 		scan_info->request_ccb = request_ccb;
5215 		scan_info->cpi = &work_ccb->cpi;
5216 
5217 		/* Cache on our stack so we can work asynchronously */
5218 		max_target = scan_info->cpi->max_target;
5219 		initiator_id = scan_info->cpi->initiator_id;
5220 
5221 
5222 		/*
5223 		 * We can scan all targets in parallel, or do it sequentially.
5224 		 */
5225 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5226 			max_target = 0;
5227 			scan_info->counter = 0;
5228 		} else {
5229 			scan_info->counter = scan_info->cpi->max_target + 1;
5230 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5231 				scan_info->counter--;
5232 			}
5233 		}
5234 
5235 		for (i = 0; i <= max_target; i++) {
5236 			cam_status status;
5237 			if (i == initiator_id)
5238 				continue;
5239 
5240 			status = xpt_create_path(&path, xpt_periph,
5241 						 request_ccb->ccb_h.path_id,
5242 						 i, 0);
5243 			if (status != CAM_REQ_CMP) {
5244 				kprintf("xpt_scan_bus: xpt_create_path failed"
5245 				       " with status %#x, bus scan halted\n",
5246 				       status);
5247 				kfree(scan_info, M_CAMXPT);
5248 				request_ccb->ccb_h.status = status;
5249 				xpt_free_ccb(work_ccb);
5250 				xpt_done(request_ccb);
5251 				break;
5252 			}
5253 			work_ccb = xpt_alloc_ccb();
5254 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5255 				      request_ccb->ccb_h.pinfo.priority);
5256 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5257 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5258 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5259 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5260 			xpt_action(work_ccb);
5261 		}
5262 		break;
5263 	}
5264 	case XPT_SCAN_LUN:
5265 	{
5266 		cam_status status;
5267 		struct cam_path *path;
5268 		xpt_scan_bus_info *scan_info;
5269 		path_id_t path_id;
5270 		target_id_t target_id;
5271 		lun_id_t lun_id;
5272 
5273 		/* Reuse the same CCB to query if a device was really found */
5274 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5275 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5276 			      request_ccb->ccb_h.pinfo.priority);
5277 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5278 
5279 		path_id = request_ccb->ccb_h.path_id;
5280 		target_id = request_ccb->ccb_h.target_id;
5281 		lun_id = request_ccb->ccb_h.target_lun;
5282 		xpt_action(request_ccb);
5283 
5284 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5285 			struct cam_ed *device;
5286 			struct cam_et *target;
5287 			int phl;
5288 
5289 			/*
5290 			 * If we already probed lun 0 successfully, or
5291 			 * we have additional configured luns on this
5292 			 * target that might have "gone away", go onto
5293 			 * the next lun.
5294 			 */
5295 			target = request_ccb->ccb_h.path->target;
5296 			/*
5297 			 * We may touch devices that we don't
5298 			 * hold references too, so ensure they
5299 			 * don't disappear out from under us.
5300 			 * The target above is referenced by the
5301 			 * path in the request ccb.
5302 			 */
5303 			phl = 0;
5304 			device = TAILQ_FIRST(&target->ed_entries);
5305 			if (device != NULL) {
5306 				phl = CAN_SRCH_HI_SPARSE(device);
5307 				if (device->lun_id == 0)
5308 					device = TAILQ_NEXT(device, links);
5309 			}
5310 			if ((lun_id != 0) || (device != NULL)) {
5311 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5312 					lun_id++;
5313 			}
5314 		} else {
5315 			struct cam_ed *device;
5316 
5317 			device = request_ccb->ccb_h.path->device;
5318 
5319 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5320 				/* Try the next lun */
5321 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5322 				  || CAN_SRCH_HI_DENSE(device))
5323 					lun_id++;
5324 			}
5325 		}
5326 
5327 		/*
5328 		 * Free the current request path- we're done with it.
5329 		 */
5330 		xpt_free_path(request_ccb->ccb_h.path);
5331 
5332 		/*
5333 		 * Check to see if we scan any further luns.
5334 		 */
5335 		if (lun_id == request_ccb->ccb_h.target_lun
5336                  || lun_id > scan_info->cpi->max_lun) {
5337 			int done;
5338 
5339  hop_again:
5340 			done = 0;
5341 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5342 				scan_info->counter++;
5343 				if (scan_info->counter ==
5344 				    scan_info->cpi->initiator_id) {
5345 					scan_info->counter++;
5346 				}
5347 				if (scan_info->counter >=
5348 				    scan_info->cpi->max_target+1) {
5349 					done = 1;
5350 				}
5351 			} else {
5352 				scan_info->counter--;
5353 				if (scan_info->counter == 0) {
5354 					done = 1;
5355 				}
5356 			}
5357 			if (done) {
5358 				xpt_free_ccb(request_ccb);
5359 				xpt_free_ccb((union ccb *)scan_info->cpi);
5360 				request_ccb = scan_info->request_ccb;
5361 				kfree(scan_info, M_CAMXPT);
5362 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5363 				xpt_done(request_ccb);
5364 				break;
5365 			}
5366 
5367 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5368 				break;
5369 			}
5370 			status = xpt_create_path(&path, xpt_periph,
5371 			    scan_info->request_ccb->ccb_h.path_id,
5372 			    scan_info->counter, 0);
5373 			if (status != CAM_REQ_CMP) {
5374 				kprintf("xpt_scan_bus: xpt_create_path failed"
5375 				    " with status %#x, bus scan halted\n",
5376 			       	    status);
5377 				xpt_free_ccb(request_ccb);
5378 				xpt_free_ccb((union ccb *)scan_info->cpi);
5379 				request_ccb = scan_info->request_ccb;
5380 				kfree(scan_info, M_CAMXPT);
5381 				request_ccb->ccb_h.status = status;
5382 				xpt_done(request_ccb);
5383 				break;
5384 			}
5385 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5386 			    request_ccb->ccb_h.pinfo.priority);
5387 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5388 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5389 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5390 			request_ccb->crcn.flags =
5391 			    scan_info->request_ccb->crcn.flags;
5392 		} else {
5393 			status = xpt_create_path(&path, xpt_periph,
5394 						 path_id, target_id, lun_id);
5395 			if (status != CAM_REQ_CMP) {
5396 				kprintf("xpt_scan_bus: xpt_create_path failed "
5397 				       "with status %#x, halting LUN scan\n",
5398 			 	       status);
5399 				goto hop_again;
5400 			}
5401 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5402 				      request_ccb->ccb_h.pinfo.priority);
5403 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5404 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5405 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5406 			request_ccb->crcn.flags =
5407 				scan_info->request_ccb->crcn.flags;
5408 		}
5409 		xpt_action(request_ccb);
5410 		break;
5411 	}
5412 	default:
5413 		break;
5414 	}
5415 }
5416 
5417 typedef enum {
5418 	PROBE_TUR,
5419 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5420 	PROBE_FULL_INQUIRY,
5421 	PROBE_MODE_SENSE,
5422 	PROBE_SERIAL_NUM_0,
5423 	PROBE_SERIAL_NUM_1,
5424 	PROBE_TUR_FOR_NEGOTIATION,
5425 	PROBE_INQUIRY_BASIC_DV1,
5426 	PROBE_INQUIRY_BASIC_DV2,
5427 	PROBE_DV_EXIT
5428 } probe_action;
5429 
5430 typedef enum {
5431 	PROBE_INQUIRY_CKSUM	= 0x01,
5432 	PROBE_SERIAL_CKSUM	= 0x02,
5433 	PROBE_NO_ANNOUNCE	= 0x04
5434 } probe_flags;
5435 
5436 typedef struct {
5437 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5438 	probe_action	action;
5439 	union ccb	saved_ccb;
5440 	probe_flags	flags;
5441 	MD5_CTX		context;
5442 	u_int8_t	digest[16];
5443 } probe_softc;
5444 
5445 static void
5446 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5447 	     cam_flags flags, union ccb *request_ccb)
5448 {
5449 	struct ccb_pathinq cpi;
5450 	cam_status status;
5451 	struct cam_path *new_path;
5452 	struct cam_periph *old_periph;
5453 
5454 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5455 		  ("xpt_scan_lun\n"));
5456 
5457 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5458 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5459 	xpt_action((union ccb *)&cpi);
5460 
5461 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5462 		if (request_ccb != NULL) {
5463 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5464 			xpt_done(request_ccb);
5465 		}
5466 		return;
5467 	}
5468 
5469 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5470 		/*
5471 		 * Can't scan the bus on an adapter that
5472 		 * cannot perform the initiator role.
5473 		 */
5474 		if (request_ccb != NULL) {
5475 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5476 			xpt_done(request_ccb);
5477 		}
5478 		return;
5479 	}
5480 
5481 	if (request_ccb == NULL) {
5482 		request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5483 		new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5484 		status = xpt_compile_path(new_path, xpt_periph,
5485 					  path->bus->path_id,
5486 					  path->target->target_id,
5487 					  path->device->lun_id);
5488 
5489 		if (status != CAM_REQ_CMP) {
5490 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5491 			    "can't continue\n");
5492 			kfree(request_ccb, M_CAMXPT);
5493 			kfree(new_path, M_CAMXPT);
5494 			return;
5495 		}
5496 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5497 		request_ccb->ccb_h.cbfcnp = xptscandone;
5498 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5499 		request_ccb->crcn.flags = flags;
5500 	}
5501 
5502 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5503 		probe_softc *softc;
5504 
5505 		softc = (probe_softc *)old_periph->softc;
5506 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5507 				  periph_links.tqe);
5508 	} else {
5509 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5510 					  probestart, "probe",
5511 					  CAM_PERIPH_BIO,
5512 					  request_ccb->ccb_h.path, NULL, 0,
5513 					  request_ccb);
5514 
5515 		if (status != CAM_REQ_CMP) {
5516 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5517 			    "returned an error, can't continue probe\n");
5518 			request_ccb->ccb_h.status = status;
5519 			xpt_done(request_ccb);
5520 		}
5521 	}
5522 }
5523 
5524 static void
5525 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5526 {
5527 	xpt_release_path(done_ccb->ccb_h.path);
5528 	kfree(done_ccb->ccb_h.path, M_CAMXPT);
5529 	kfree(done_ccb, M_CAMXPT);
5530 }
5531 
5532 static cam_status
5533 proberegister(struct cam_periph *periph, void *arg)
5534 {
5535 	union ccb *request_ccb;	/* CCB representing the probe request */
5536 	cam_status status;
5537 	probe_softc *softc;
5538 
5539 	request_ccb = (union ccb *)arg;
5540 	if (periph == NULL) {
5541 		kprintf("proberegister: periph was NULL!!\n");
5542 		return(CAM_REQ_CMP_ERR);
5543 	}
5544 
5545 	if (request_ccb == NULL) {
5546 		kprintf("proberegister: no probe CCB, "
5547 		       "can't register device\n");
5548 		return(CAM_REQ_CMP_ERR);
5549 	}
5550 
5551 	softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5552 	TAILQ_INIT(&softc->request_ccbs);
5553 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5554 			  periph_links.tqe);
5555 	softc->flags = 0;
5556 	periph->softc = softc;
5557 	status = cam_periph_acquire(periph);
5558 	if (status != CAM_REQ_CMP) {
5559 		return (status);
5560 	}
5561 
5562 
5563 	/*
5564 	 * Ensure we've waited at least a bus settle
5565 	 * delay before attempting to probe the device.
5566 	 * For HBAs that don't do bus resets, this won't make a difference.
5567 	 */
5568 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5569 				      scsi_delay);
5570 	probeschedule(periph);
5571 	return(CAM_REQ_CMP);
5572 }
5573 
5574 static void
5575 probeschedule(struct cam_periph *periph)
5576 {
5577 	struct ccb_pathinq cpi;
5578 	union ccb *ccb;
5579 	probe_softc *softc;
5580 
5581 	softc = (probe_softc *)periph->softc;
5582 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5583 
5584 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5585 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5586 	xpt_action((union ccb *)&cpi);
5587 
5588 	/*
5589 	 * If a device has gone away and another device, or the same one,
5590 	 * is back in the same place, it should have a unit attention
5591 	 * condition pending.  It will not report the unit attention in
5592 	 * response to an inquiry, which may leave invalid transfer
5593 	 * negotiations in effect.  The TUR will reveal the unit attention
5594 	 * condition.  Only send the TUR for lun 0, since some devices
5595 	 * will get confused by commands other than inquiry to non-existent
5596 	 * luns.  If you think a device has gone away start your scan from
5597 	 * lun 0.  This will insure that any bogus transfer settings are
5598 	 * invalidated.
5599 	 *
5600 	 * If we haven't seen the device before and the controller supports
5601 	 * some kind of transfer negotiation, negotiate with the first
5602 	 * sent command if no bus reset was performed at startup.  This
5603 	 * ensures that the device is not confused by transfer negotiation
5604 	 * settings left over by loader or BIOS action.
5605 	 */
5606 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5607 	 && (ccb->ccb_h.target_lun == 0)) {
5608 		softc->action = PROBE_TUR;
5609 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5610 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5611 		proberequestdefaultnegotiation(periph);
5612 		softc->action = PROBE_INQUIRY;
5613 	} else {
5614 		softc->action = PROBE_INQUIRY;
5615 	}
5616 
5617 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5618 		softc->flags |= PROBE_NO_ANNOUNCE;
5619 	else
5620 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5621 
5622 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5623 }
5624 
5625 static void
5626 probestart(struct cam_periph *periph, union ccb *start_ccb)
5627 {
5628 	/* Probe the device that our peripheral driver points to */
5629 	struct ccb_scsiio *csio;
5630 	probe_softc *softc;
5631 
5632 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5633 
5634 	softc = (probe_softc *)periph->softc;
5635 	csio = &start_ccb->csio;
5636 
5637 	switch (softc->action) {
5638 	case PROBE_TUR:
5639 	case PROBE_TUR_FOR_NEGOTIATION:
5640 	case PROBE_DV_EXIT:
5641 	{
5642 		scsi_test_unit_ready(csio,
5643 				     /*retries*/4,
5644 				     probedone,
5645 				     MSG_SIMPLE_Q_TAG,
5646 				     SSD_FULL_SIZE,
5647 				     /*timeout*/60000);
5648 		break;
5649 	}
5650 	case PROBE_INQUIRY:
5651 	case PROBE_FULL_INQUIRY:
5652 	case PROBE_INQUIRY_BASIC_DV1:
5653 	case PROBE_INQUIRY_BASIC_DV2:
5654 	{
5655 		u_int inquiry_len;
5656 		struct scsi_inquiry_data *inq_buf;
5657 
5658 		inq_buf = &periph->path->device->inq_data;
5659 
5660 		/*
5661 		 * If the device is currently configured, we calculate an
5662 		 * MD5 checksum of the inquiry data, and if the serial number
5663 		 * length is greater than 0, add the serial number data
5664 		 * into the checksum as well.  Once the inquiry and the
5665 		 * serial number check finish, we attempt to figure out
5666 		 * whether we still have the same device.
5667 		 */
5668 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5669 
5670 			MD5Init(&softc->context);
5671 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5672 				  sizeof(struct scsi_inquiry_data));
5673 			softc->flags |= PROBE_INQUIRY_CKSUM;
5674 			if (periph->path->device->serial_num_len > 0) {
5675 				MD5Update(&softc->context,
5676 					  periph->path->device->serial_num,
5677 					  periph->path->device->serial_num_len);
5678 				softc->flags |= PROBE_SERIAL_CKSUM;
5679 			}
5680 			MD5Final(softc->digest, &softc->context);
5681 		}
5682 
5683 		if (softc->action == PROBE_INQUIRY)
5684 			inquiry_len = SHORT_INQUIRY_LENGTH;
5685 		else
5686 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5687 
5688 		/*
5689 		 * Some parallel SCSI devices fail to send an
5690 		 * ignore wide residue message when dealing with
5691 		 * odd length inquiry requests.  Round up to be
5692 		 * safe.
5693 		 */
5694 		inquiry_len = roundup2(inquiry_len, 2);
5695 
5696 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5697 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5698 			inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5699 		}
5700 		scsi_inquiry(csio,
5701 			     /*retries*/4,
5702 			     probedone,
5703 			     MSG_SIMPLE_Q_TAG,
5704 			     (u_int8_t *)inq_buf,
5705 			     inquiry_len,
5706 			     /*evpd*/FALSE,
5707 			     /*page_code*/0,
5708 			     SSD_MIN_SIZE,
5709 			     /*timeout*/60 * 1000);
5710 		break;
5711 	}
5712 	case PROBE_MODE_SENSE:
5713 	{
5714 		void  *mode_buf;
5715 		int    mode_buf_len;
5716 
5717 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5718 			     + sizeof(struct scsi_mode_blk_desc)
5719 			     + sizeof(struct scsi_control_page);
5720 		mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5721 		scsi_mode_sense(csio,
5722 				/*retries*/4,
5723 				probedone,
5724 				MSG_SIMPLE_Q_TAG,
5725 				/*dbd*/FALSE,
5726 				SMS_PAGE_CTRL_CURRENT,
5727 				SMS_CONTROL_MODE_PAGE,
5728 				mode_buf,
5729 				mode_buf_len,
5730 				SSD_FULL_SIZE,
5731 				/*timeout*/60000);
5732 		break;
5733 	}
5734 	case PROBE_SERIAL_NUM_0:
5735 	{
5736 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5737 		struct cam_ed *device;
5738 
5739 		device = periph->path->device;
5740 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5741 			vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5742 			    M_INTWAIT | M_ZERO);
5743 		}
5744 
5745 		if (vpd_list != NULL) {
5746 			scsi_inquiry(csio,
5747 				     /*retries*/4,
5748 				     probedone,
5749 				     MSG_SIMPLE_Q_TAG,
5750 				     (u_int8_t *)vpd_list,
5751 				     sizeof(*vpd_list),
5752 				     /*evpd*/TRUE,
5753 				     SVPD_SUPPORTED_PAGE_LIST,
5754 				     SSD_MIN_SIZE,
5755 				     /*timeout*/60 * 1000);
5756 			break;
5757 		}
5758 		/*
5759 		 * We'll have to do without, let our probedone
5760 		 * routine finish up for us.
5761 		 */
5762 		start_ccb->csio.data_ptr = NULL;
5763 		probedone(periph, start_ccb);
5764 		return;
5765 	}
5766 	case PROBE_SERIAL_NUM_1:
5767 	{
5768 		struct scsi_vpd_unit_serial_number *serial_buf;
5769 		struct cam_ed* device;
5770 
5771 		serial_buf = NULL;
5772 		device = periph->path->device;
5773 		device->serial_num = NULL;
5774 		device->serial_num_len = 0;
5775 
5776 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5777 			kmalloc(sizeof(*serial_buf), M_CAMXPT,
5778 				M_INTWAIT | M_ZERO);
5779 		scsi_inquiry(csio,
5780 			     /*retries*/4,
5781 			     probedone,
5782 			     MSG_SIMPLE_Q_TAG,
5783 			     (u_int8_t *)serial_buf,
5784 			     sizeof(*serial_buf),
5785 			     /*evpd*/TRUE,
5786 			     SVPD_UNIT_SERIAL_NUMBER,
5787 			     SSD_MIN_SIZE,
5788 			     /*timeout*/60 * 1000);
5789 		break;
5790 	}
5791 	}
5792 	xpt_action(start_ccb);
5793 }
5794 
5795 static void
5796 proberequestdefaultnegotiation(struct cam_periph *periph)
5797 {
5798 	struct ccb_trans_settings cts;
5799 
5800 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5801 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5802 	cts.type = CTS_TYPE_USER_SETTINGS;
5803 	xpt_action((union ccb *)&cts);
5804 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5805 		return;
5806 	}
5807 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5808 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5809 	xpt_action((union ccb *)&cts);
5810 }
5811 
5812 /*
5813  * Backoff Negotiation Code- only pertinent for SPI devices.
5814  */
5815 static int
5816 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5817 {
5818 	struct ccb_trans_settings cts;
5819 	struct ccb_trans_settings_spi *spi;
5820 
5821 	memset(&cts, 0, sizeof (cts));
5822 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5823 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5824 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5825 	xpt_action((union ccb *)&cts);
5826 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5827 		if (bootverbose) {
5828 			xpt_print(periph->path,
5829 			    "failed to get current device settings\n");
5830 		}
5831 		return (0);
5832 	}
5833 	if (cts.transport != XPORT_SPI) {
5834 		if (bootverbose) {
5835 			xpt_print(periph->path, "not SPI transport\n");
5836 		}
5837 		return (0);
5838 	}
5839 	spi = &cts.xport_specific.spi;
5840 
5841 	/*
5842 	 * We cannot renegotiate sync rate if we don't have one.
5843 	 */
5844 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5845 		if (bootverbose) {
5846 			xpt_print(periph->path, "no sync rate known\n");
5847 		}
5848 		return (0);
5849 	}
5850 
5851 	/*
5852 	 * We'll assert that we don't have to touch PPR options- the
5853 	 * SIM will see what we do with period and offset and adjust
5854 	 * the PPR options as appropriate.
5855 	 */
5856 
5857 	/*
5858 	 * A sync rate with unknown or zero offset is nonsensical.
5859 	 * A sync period of zero means Async.
5860 	 */
5861 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5862 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
5863 		if (bootverbose) {
5864 			xpt_print(periph->path, "no sync rate available\n");
5865 		}
5866 		return (0);
5867 	}
5868 
5869 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5870 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5871 		    ("hit async: giving up on DV\n"));
5872 		return (0);
5873 	}
5874 
5875 
5876 	/*
5877 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5878 	 * We don't try to remember 'last' settings to see if the SIM actually
5879 	 * gets into the speed we want to set. We check on the SIM telling
5880 	 * us that a requested speed is bad, but otherwise don't try and
5881 	 * check the speed due to the asynchronous and handshake nature
5882 	 * of speed setting.
5883 	 */
5884 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5885 	for (;;) {
5886 		spi->sync_period++;
5887 		if (spi->sync_period >= 0xf) {
5888 			spi->sync_period = 0;
5889 			spi->sync_offset = 0;
5890 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5891 			    ("setting to async for DV\n"));
5892 			/*
5893 			 * Once we hit async, we don't want to try
5894 			 * any more settings.
5895 			 */
5896 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5897 		} else if (bootverbose) {
5898 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5899 			    ("DV: period 0x%x\n", spi->sync_period));
5900 			kprintf("setting period to 0x%x\n", spi->sync_period);
5901 		}
5902 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5903 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
5904 		xpt_action((union ccb *)&cts);
5905 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5906 			break;
5907 		}
5908 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5909 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
5910 		if (spi->sync_period == 0) {
5911 			return (0);
5912 		}
5913 	}
5914 	return (1);
5915 }
5916 
5917 static void
5918 probedone(struct cam_periph *periph, union ccb *done_ccb)
5919 {
5920 	probe_softc *softc;
5921 	struct cam_path *path;
5922 	u_int32_t  priority;
5923 
5924 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5925 
5926 	softc = (probe_softc *)periph->softc;
5927 	path = done_ccb->ccb_h.path;
5928 	priority = done_ccb->ccb_h.pinfo.priority;
5929 
5930 	switch (softc->action) {
5931 	case PROBE_TUR:
5932 	{
5933 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5934 
5935 			if (cam_periph_error(done_ccb, 0,
5936 					     SF_NO_PRINT, NULL) == ERESTART)
5937 				return;
5938 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5939 				/* Don't wedge the queue */
5940 				xpt_release_devq(done_ccb->ccb_h.path,
5941 						 /*count*/1,
5942 						 /*run_queue*/TRUE);
5943 		}
5944 		softc->action = PROBE_INQUIRY;
5945 		xpt_release_ccb(done_ccb);
5946 		xpt_schedule(periph, priority);
5947 		return;
5948 	}
5949 	case PROBE_INQUIRY:
5950 	case PROBE_FULL_INQUIRY:
5951 	{
5952 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5953 			struct scsi_inquiry_data *inq_buf;
5954 			u_int8_t periph_qual;
5955 
5956 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5957 			inq_buf = &path->device->inq_data;
5958 
5959 			periph_qual = SID_QUAL(inq_buf);
5960 
5961 			switch(periph_qual) {
5962 			case SID_QUAL_LU_CONNECTED:
5963 			{
5964 				u_int8_t len;
5965 
5966 				/*
5967 				 * We conservatively request only
5968 				 * SHORT_INQUIRY_LEN bytes of inquiry
5969 				 * information during our first try
5970 				 * at sending an INQUIRY. If the device
5971 				 * has more information to give,
5972 				 * perform a second request specifying
5973 				 * the amount of information the device
5974 				 * is willing to give.
5975 				 */
5976 				len = inq_buf->additional_length
5977 				    + offsetof(struct scsi_inquiry_data,
5978 						additional_length) + 1;
5979 				if (softc->action == PROBE_INQUIRY
5980 				    && len > SHORT_INQUIRY_LENGTH) {
5981 					softc->action = PROBE_FULL_INQUIRY;
5982 					xpt_release_ccb(done_ccb);
5983 					xpt_schedule(periph, priority);
5984 					return;
5985 				}
5986 
5987 				xpt_find_quirk(path->device);
5988 
5989 				xpt_devise_transport(path);
5990 				if (INQ_DATA_TQ_ENABLED(inq_buf))
5991 					softc->action = PROBE_MODE_SENSE;
5992 				else
5993 					softc->action = PROBE_SERIAL_NUM_0;
5994 
5995 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5996 				xpt_reference_device(path->device);
5997 
5998 				xpt_release_ccb(done_ccb);
5999 				xpt_schedule(periph, priority);
6000 				return;
6001 			}
6002 			default:
6003 				break;
6004 			}
6005 		} else if (cam_periph_error(done_ccb, 0,
6006 					    done_ccb->ccb_h.target_lun > 0
6007 					    ? SF_RETRY_UA|SF_QUIET_IR
6008 					    : SF_RETRY_UA,
6009 					    &softc->saved_ccb) == ERESTART) {
6010 			return;
6011 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6012 			/* Don't wedge the queue */
6013 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6014 					 /*run_queue*/TRUE);
6015 		}
6016 		/*
6017 		 * If we get to this point, we got an error status back
6018 		 * from the inquiry and the error status doesn't require
6019 		 * automatically retrying the command.  Therefore, the
6020 		 * inquiry failed.  If we had inquiry information before
6021 		 * for this device, but this latest inquiry command failed,
6022 		 * the device has probably gone away.  If this device isn't
6023 		 * already marked unconfigured, notify the peripheral
6024 		 * drivers that this device is no more.
6025 		 */
6026 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6027 			/* Send the async notification. */
6028 			xpt_async(AC_LOST_DEVICE, path, NULL);
6029 		}
6030 
6031 		xpt_release_ccb(done_ccb);
6032 		break;
6033 	}
6034 	case PROBE_MODE_SENSE:
6035 	{
6036 		struct ccb_scsiio *csio;
6037 		struct scsi_mode_header_6 *mode_hdr;
6038 
6039 		csio = &done_ccb->csio;
6040 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6041 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6042 			struct scsi_control_page *page;
6043 			u_int8_t *offset;
6044 
6045 			offset = ((u_int8_t *)&mode_hdr[1])
6046 			    + mode_hdr->blk_desc_len;
6047 			page = (struct scsi_control_page *)offset;
6048 			path->device->queue_flags = page->queue_flags;
6049 		} else if (cam_periph_error(done_ccb, 0,
6050 					    SF_RETRY_UA|SF_NO_PRINT,
6051 					    &softc->saved_ccb) == ERESTART) {
6052 			return;
6053 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6054 			/* Don't wedge the queue */
6055 			xpt_release_devq(done_ccb->ccb_h.path,
6056 					 /*count*/1, /*run_queue*/TRUE);
6057 		}
6058 		xpt_release_ccb(done_ccb);
6059 		kfree(mode_hdr, M_CAMXPT);
6060 		softc->action = PROBE_SERIAL_NUM_0;
6061 		xpt_schedule(periph, priority);
6062 		return;
6063 	}
6064 	case PROBE_SERIAL_NUM_0:
6065 	{
6066 		struct ccb_scsiio *csio;
6067 		struct scsi_vpd_supported_page_list *page_list;
6068 		int length, serialnum_supported, i;
6069 
6070 		serialnum_supported = 0;
6071 		csio = &done_ccb->csio;
6072 		page_list =
6073 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6074 
6075 		if (page_list == NULL) {
6076 			/*
6077 			 * Don't process the command as it was never sent
6078 			 */
6079 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6080 		    && (page_list->length > 0)) {
6081 			length = min(page_list->length,
6082 			    SVPD_SUPPORTED_PAGES_SIZE);
6083 			for (i = 0; i < length; i++) {
6084 				if (page_list->list[i] ==
6085 				    SVPD_UNIT_SERIAL_NUMBER) {
6086 					serialnum_supported = 1;
6087 					break;
6088 				}
6089 			}
6090 		} else if (cam_periph_error(done_ccb, 0,
6091 					    SF_RETRY_UA|SF_NO_PRINT,
6092 					    &softc->saved_ccb) == ERESTART) {
6093 			return;
6094 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6095 			/* Don't wedge the queue */
6096 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6097 					 /*run_queue*/TRUE);
6098 		}
6099 
6100 		if (page_list != NULL)
6101 			kfree(page_list, M_DEVBUF);
6102 
6103 		if (serialnum_supported) {
6104 			xpt_release_ccb(done_ccb);
6105 			softc->action = PROBE_SERIAL_NUM_1;
6106 			xpt_schedule(periph, priority);
6107 			return;
6108 		}
6109 		xpt_release_ccb(done_ccb);
6110 		softc->action = PROBE_TUR_FOR_NEGOTIATION;
6111 		xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority);
6112 		return;
6113 	}
6114 
6115 	case PROBE_SERIAL_NUM_1:
6116 	{
6117 		struct ccb_scsiio *csio;
6118 		struct scsi_vpd_unit_serial_number *serial_buf;
6119 		u_int32_t  priority;
6120 		int changed;
6121 		int have_serialnum;
6122 
6123 		changed = 1;
6124 		have_serialnum = 0;
6125 		csio = &done_ccb->csio;
6126 		priority = done_ccb->ccb_h.pinfo.priority;
6127 		serial_buf =
6128 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6129 
6130 		/* Clean up from previous instance of this device */
6131 		if (path->device->serial_num != NULL) {
6132 			kfree(path->device->serial_num, M_CAMXPT);
6133 			path->device->serial_num = NULL;
6134 			path->device->serial_num_len = 0;
6135 		}
6136 
6137 		if (serial_buf == NULL) {
6138 			/*
6139 			 * Don't process the command as it was never sent
6140 			 */
6141 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6142 			&& (serial_buf->length > 0)) {
6143 
6144 			have_serialnum = 1;
6145 			path->device->serial_num =
6146 				kmalloc((serial_buf->length + 1),
6147 				       M_CAMXPT, M_INTWAIT);
6148 			bcopy(serial_buf->serial_num,
6149 			      path->device->serial_num,
6150 			      serial_buf->length);
6151 			path->device->serial_num_len = serial_buf->length;
6152 			path->device->serial_num[serial_buf->length] = '\0';
6153 		} else if (cam_periph_error(done_ccb, 0,
6154 					    SF_RETRY_UA|SF_NO_PRINT,
6155 					    &softc->saved_ccb) == ERESTART) {
6156 			return;
6157 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6158 			/* Don't wedge the queue */
6159 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6160 					 /*run_queue*/TRUE);
6161 		}
6162 
6163 		/*
6164 		 * Let's see if we have seen this device before.
6165 		 */
6166 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6167 			MD5_CTX context;
6168 			u_int8_t digest[16];
6169 
6170 			MD5Init(&context);
6171 
6172 			MD5Update(&context,
6173 				  (unsigned char *)&path->device->inq_data,
6174 				  sizeof(struct scsi_inquiry_data));
6175 
6176 			if (have_serialnum)
6177 				MD5Update(&context, serial_buf->serial_num,
6178 					  serial_buf->length);
6179 
6180 			MD5Final(digest, &context);
6181 			if (bcmp(softc->digest, digest, 16) == 0)
6182 				changed = 0;
6183 
6184 			/*
6185 			 * XXX Do we need to do a TUR in order to ensure
6186 			 *     that the device really hasn't changed???
6187 			 */
6188 			if ((changed != 0)
6189 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6190 				xpt_async(AC_LOST_DEVICE, path, NULL);
6191 		}
6192 		if (serial_buf != NULL)
6193 			kfree(serial_buf, M_CAMXPT);
6194 
6195 		if (changed != 0) {
6196 			/*
6197 			 * Now that we have all the necessary
6198 			 * information to safely perform transfer
6199 			 * negotiations... Controllers don't perform
6200 			 * any negotiation or tagged queuing until
6201 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6202 			 * received.  So, on a new device, just retrieve
6203 			 * the user settings, and set them as the current
6204 			 * settings to set the device up.
6205 			 */
6206 			proberequestdefaultnegotiation(periph);
6207 			xpt_release_ccb(done_ccb);
6208 
6209 			/*
6210 			 * Perform a TUR to allow the controller to
6211 			 * perform any necessary transfer negotiation.
6212 			 */
6213 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
6214 			xpt_schedule(periph, priority);
6215 			return;
6216 		}
6217 		xpt_release_ccb(done_ccb);
6218 		break;
6219 	}
6220 	case PROBE_TUR_FOR_NEGOTIATION:
6221 	case PROBE_DV_EXIT:
6222 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6223 			/* Don't wedge the queue */
6224 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6225 					 /*run_queue*/TRUE);
6226 		}
6227 
6228 		xpt_reference_device(path->device);
6229 		/*
6230 		 * Do Domain Validation for lun 0 on devices that claim
6231 		 * to support Synchronous Transfer modes.
6232 		 */
6233 		if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6234 		 && done_ccb->ccb_h.target_lun == 0
6235 		 && (path->device->inq_data.flags & SID_Sync) != 0
6236                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6237 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6238 			    ("Begin Domain Validation\n"));
6239 			path->device->flags |= CAM_DEV_IN_DV;
6240 			xpt_release_ccb(done_ccb);
6241 			softc->action = PROBE_INQUIRY_BASIC_DV1;
6242 			xpt_schedule(periph, priority);
6243 			return;
6244 		}
6245 		if (softc->action == PROBE_DV_EXIT) {
6246 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6247 			    ("Leave Domain Validation\n"));
6248 		}
6249 		path->device->flags &=
6250 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6251 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6252 			/* Inform the XPT that a new device has been found */
6253 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6254 			xpt_action(done_ccb);
6255 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6256 				  done_ccb);
6257 		}
6258 		xpt_release_ccb(done_ccb);
6259 		break;
6260 	case PROBE_INQUIRY_BASIC_DV1:
6261 	case PROBE_INQUIRY_BASIC_DV2:
6262 	{
6263 		struct scsi_inquiry_data *nbuf;
6264 		struct ccb_scsiio *csio;
6265 
6266 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6267 			/* Don't wedge the queue */
6268 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6269 					 /*run_queue*/TRUE);
6270 		}
6271 		csio = &done_ccb->csio;
6272 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6273 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6274 			xpt_print(path,
6275 			    "inquiry data fails comparison at DV%d step\n",
6276 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6277 			if (proberequestbackoff(periph, path->device)) {
6278 				path->device->flags &= ~CAM_DEV_IN_DV;
6279 				softc->action = PROBE_TUR_FOR_NEGOTIATION;
6280 			} else {
6281 				/* give up */
6282 				softc->action = PROBE_DV_EXIT;
6283 			}
6284 			kfree(nbuf, M_CAMXPT);
6285 			xpt_release_ccb(done_ccb);
6286 			xpt_schedule(periph, priority);
6287 			return;
6288 		}
6289 		kfree(nbuf, M_CAMXPT);
6290 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6291 			softc->action = PROBE_INQUIRY_BASIC_DV2;
6292 			xpt_release_ccb(done_ccb);
6293 			xpt_schedule(periph, priority);
6294 			return;
6295 		}
6296 		if (softc->action == PROBE_DV_EXIT) {
6297 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6298 			    ("Leave Domain Validation Successfully\n"));
6299 		}
6300 		path->device->flags &=
6301 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6302 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6303 			/* Inform the XPT that a new device has been found */
6304 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6305 			xpt_action(done_ccb);
6306 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6307 				  done_ccb);
6308 		}
6309 		xpt_release_ccb(done_ccb);
6310 		break;
6311 	}
6312 	}
6313 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6314 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6315 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6316 	xpt_done(done_ccb);
6317 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6318 		cam_periph_invalidate(periph);
6319 		cam_periph_release(periph);
6320 	} else {
6321 		probeschedule(periph);
6322 	}
6323 }
6324 
6325 static void
6326 probecleanup(struct cam_periph *periph)
6327 {
6328 	kfree(periph->softc, M_CAMXPT);
6329 }
6330 
6331 static void
6332 xpt_find_quirk(struct cam_ed *device)
6333 {
6334 	caddr_t	match;
6335 
6336 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6337 			       (caddr_t)xpt_quirk_table,
6338 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6339 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6340 
6341 	if (match == NULL)
6342 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6343 
6344 	device->quirk = (struct xpt_quirk_entry *)match;
6345 }
6346 
6347 static int
6348 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6349 {
6350 	int error, bool;
6351 
6352 	bool = cam_srch_hi;
6353 	error = sysctl_handle_int(oidp, &bool, 0, req);
6354 	if (error != 0 || req->newptr == NULL)
6355 		return (error);
6356 	if (bool == 0 || bool == 1) {
6357 		cam_srch_hi = bool;
6358 		return (0);
6359 	} else {
6360 		return (EINVAL);
6361 	}
6362 }
6363 
6364 static void
6365 xpt_devise_transport(struct cam_path *path)
6366 {
6367 	struct ccb_pathinq cpi;
6368 	struct ccb_trans_settings cts;
6369 	struct scsi_inquiry_data *inq_buf;
6370 
6371 	/* Get transport information from the SIM */
6372 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6373 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6374 	xpt_action((union ccb *)&cpi);
6375 
6376 	inq_buf = NULL;
6377 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6378 		inq_buf = &path->device->inq_data;
6379 	path->device->protocol = PROTO_SCSI;
6380 	path->device->protocol_version =
6381 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6382 	path->device->transport = cpi.transport;
6383 	path->device->transport_version = cpi.transport_version;
6384 
6385 	/*
6386 	 * Any device not using SPI3 features should
6387 	 * be considered SPI2 or lower.
6388 	 */
6389 	if (inq_buf != NULL) {
6390 		if (path->device->transport == XPORT_SPI
6391 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6392 		 && path->device->transport_version > 2)
6393 			path->device->transport_version = 2;
6394 	} else {
6395 		struct cam_ed* otherdev;
6396 
6397 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6398 		     otherdev != NULL;
6399 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6400 			if (otherdev != path->device)
6401 				break;
6402 		}
6403 
6404 		if (otherdev != NULL) {
6405 			/*
6406 			 * Initially assume the same versioning as
6407 			 * prior luns for this target.
6408 			 */
6409 			path->device->protocol_version =
6410 			    otherdev->protocol_version;
6411 			path->device->transport_version =
6412 			    otherdev->transport_version;
6413 		} else {
6414 			/* Until we know better, opt for safty */
6415 			path->device->protocol_version = 2;
6416 			if (path->device->transport == XPORT_SPI)
6417 				path->device->transport_version = 2;
6418 			else
6419 				path->device->transport_version = 0;
6420 		}
6421 	}
6422 
6423 	/*
6424 	 * XXX
6425 	 * For a device compliant with SPC-2 we should be able
6426 	 * to determine the transport version supported by
6427 	 * scrutinizing the version descriptors in the
6428 	 * inquiry buffer.
6429 	 */
6430 
6431 	/* Tell the controller what we think */
6432 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6433 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6434 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6435 	cts.transport = path->device->transport;
6436 	cts.transport_version = path->device->transport_version;
6437 	cts.protocol = path->device->protocol;
6438 	cts.protocol_version = path->device->protocol_version;
6439 	cts.proto_specific.valid = 0;
6440 	cts.xport_specific.valid = 0;
6441 	xpt_action((union ccb *)&cts);
6442 }
6443 
6444 static void
6445 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6446 			  int async_update)
6447 {
6448 	struct	ccb_pathinq cpi;
6449 	struct	ccb_trans_settings cur_cts;
6450 	struct	ccb_trans_settings_scsi *scsi;
6451 	struct	ccb_trans_settings_scsi *cur_scsi;
6452 	struct	cam_sim *sim;
6453 	struct	scsi_inquiry_data *inq_data;
6454 
6455 	if (device == NULL) {
6456 		cts->ccb_h.status = CAM_PATH_INVALID;
6457 		xpt_done((union ccb *)cts);
6458 		return;
6459 	}
6460 
6461 	if (cts->protocol == PROTO_UNKNOWN
6462 	 || cts->protocol == PROTO_UNSPECIFIED) {
6463 		cts->protocol = device->protocol;
6464 		cts->protocol_version = device->protocol_version;
6465 	}
6466 
6467 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6468 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6469 		cts->protocol_version = device->protocol_version;
6470 
6471 	if (cts->protocol != device->protocol) {
6472 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6473 		       cts->protocol, device->protocol);
6474 		cts->protocol = device->protocol;
6475 	}
6476 
6477 	if (cts->protocol_version > device->protocol_version) {
6478 		if (bootverbose) {
6479 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6480 			    "Version from %d to %d?\n", cts->protocol_version,
6481 			    device->protocol_version);
6482 		}
6483 		cts->protocol_version = device->protocol_version;
6484 	}
6485 
6486 	if (cts->transport == XPORT_UNKNOWN
6487 	 || cts->transport == XPORT_UNSPECIFIED) {
6488 		cts->transport = device->transport;
6489 		cts->transport_version = device->transport_version;
6490 	}
6491 
6492 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6493 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6494 		cts->transport_version = device->transport_version;
6495 
6496 	if (cts->transport != device->transport) {
6497 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6498 		    cts->transport, device->transport);
6499 		cts->transport = device->transport;
6500 	}
6501 
6502 	if (cts->transport_version > device->transport_version) {
6503 		if (bootverbose) {
6504 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6505 			    "Version from %d to %d?\n", cts->transport_version,
6506 			    device->transport_version);
6507 		}
6508 		cts->transport_version = device->transport_version;
6509 	}
6510 
6511 	sim = cts->ccb_h.path->bus->sim;
6512 
6513 	/*
6514 	 * Nothing more of interest to do unless
6515 	 * this is a device connected via the
6516 	 * SCSI protocol.
6517 	 */
6518 	if (cts->protocol != PROTO_SCSI) {
6519 		if (async_update == FALSE)
6520 			(*(sim->sim_action))(sim, (union ccb *)cts);
6521 		return;
6522 	}
6523 
6524 	inq_data = &device->inq_data;
6525 	scsi = &cts->proto_specific.scsi;
6526 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6527 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6528 	xpt_action((union ccb *)&cpi);
6529 
6530 	/* SCSI specific sanity checking */
6531 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6532 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6533 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6534 	 || (device->quirk->mintags == 0)) {
6535 		/*
6536 		 * Can't tag on hardware that doesn't support tags,
6537 		 * doesn't have it enabled, or has broken tag support.
6538 		 */
6539 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6540 	}
6541 
6542 	if (async_update == FALSE) {
6543 		/*
6544 		 * Perform sanity checking against what the
6545 		 * controller and device can do.
6546 		 */
6547 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6548 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6549 		cur_cts.type = cts->type;
6550 		xpt_action((union ccb *)&cur_cts);
6551 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6552 			return;
6553 		}
6554 		cur_scsi = &cur_cts.proto_specific.scsi;
6555 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6556 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6557 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6558 		}
6559 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6560 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6561 	}
6562 
6563 	/* SPI specific sanity checking */
6564 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6565 		u_int spi3caps;
6566 		struct ccb_trans_settings_spi *spi;
6567 		struct ccb_trans_settings_spi *cur_spi;
6568 
6569 		spi = &cts->xport_specific.spi;
6570 
6571 		cur_spi = &cur_cts.xport_specific.spi;
6572 
6573 		/* Fill in any gaps in what the user gave us */
6574 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6575 			spi->sync_period = cur_spi->sync_period;
6576 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6577 			spi->sync_period = 0;
6578 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6579 			spi->sync_offset = cur_spi->sync_offset;
6580 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6581 			spi->sync_offset = 0;
6582 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6583 			spi->ppr_options = cur_spi->ppr_options;
6584 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6585 			spi->ppr_options = 0;
6586 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6587 			spi->bus_width = cur_spi->bus_width;
6588 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6589 			spi->bus_width = 0;
6590 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6591 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6592 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6593 		}
6594 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6595 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6596 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6597 		  && (inq_data->flags & SID_Sync) == 0
6598 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6599 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6600 		 || (spi->sync_offset == 0)
6601 		 || (spi->sync_period == 0)) {
6602 			/* Force async */
6603 			spi->sync_period = 0;
6604 			spi->sync_offset = 0;
6605 		}
6606 
6607 		switch (spi->bus_width) {
6608 		case MSG_EXT_WDTR_BUS_32_BIT:
6609 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6610 			  || (inq_data->flags & SID_WBus32) != 0
6611 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6612 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6613 				break;
6614 			/* Fall Through to 16-bit */
6615 		case MSG_EXT_WDTR_BUS_16_BIT:
6616 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6617 			  || (inq_data->flags & SID_WBus16) != 0
6618 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6619 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6620 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6621 				break;
6622 			}
6623 			/* Fall Through to 8-bit */
6624 		default: /* New bus width?? */
6625 		case MSG_EXT_WDTR_BUS_8_BIT:
6626 			/* All targets can do this */
6627 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6628 			break;
6629 		}
6630 
6631 		spi3caps = cpi.xport_specific.spi.ppr_options;
6632 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6633 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6634 			spi3caps &= inq_data->spi3data;
6635 
6636 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6637 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6638 
6639 		if ((spi3caps & SID_SPI_IUS) == 0)
6640 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6641 
6642 		if ((spi3caps & SID_SPI_QAS) == 0)
6643 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6644 
6645 		/* No SPI Transfer settings are allowed unless we are wide */
6646 		if (spi->bus_width == 0)
6647 			spi->ppr_options = 0;
6648 
6649 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6650 			/*
6651 			 * Can't tag queue without disconnection.
6652 			 */
6653 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6654 			scsi->valid |= CTS_SCSI_VALID_TQ;
6655 		}
6656 
6657 		/*
6658 		 * If we are currently performing tagged transactions to
6659 		 * this device and want to change its negotiation parameters,
6660 		 * go non-tagged for a bit to give the controller a chance to
6661 		 * negotiate unhampered by tag messages.
6662 		 */
6663 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6664 		 && (device->inq_flags & SID_CmdQue) != 0
6665 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6666 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6667 				   CTS_SPI_VALID_SYNC_OFFSET|
6668 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6669 			xpt_toggle_tags(cts->ccb_h.path);
6670 	}
6671 
6672 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6673 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6674 		int device_tagenb;
6675 
6676 		/*
6677 		 * If we are transitioning from tags to no-tags or
6678 		 * vice-versa, we need to carefully freeze and restart
6679 		 * the queue so that we don't overlap tagged and non-tagged
6680 		 * commands.  We also temporarily stop tags if there is
6681 		 * a change in transfer negotiation settings to allow
6682 		 * "tag-less" negotiation.
6683 		 */
6684 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6685 		 || (device->inq_flags & SID_CmdQue) != 0)
6686 			device_tagenb = TRUE;
6687 		else
6688 			device_tagenb = FALSE;
6689 
6690 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6691 		  && device_tagenb == FALSE)
6692 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6693 		  && device_tagenb == TRUE)) {
6694 
6695 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6696 				/*
6697 				 * Delay change to use tags until after a
6698 				 * few commands have gone to this device so
6699 				 * the controller has time to perform transfer
6700 				 * negotiations without tagged messages getting
6701 				 * in the way.
6702 				 */
6703 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6704 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6705 			} else {
6706 				struct ccb_relsim crs;
6707 
6708 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6709 				device->inq_flags &= ~SID_CmdQue;
6710 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6711 						    sim->max_dev_openings);
6712 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6713 				device->tag_delay_count = 0;
6714 
6715 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6716 					      /*priority*/1);
6717 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6718 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6719 				crs.openings
6720 				    = crs.release_timeout
6721 				    = crs.qfrozen_cnt
6722 				    = 0;
6723 				xpt_action((union ccb *)&crs);
6724 			}
6725 		}
6726 	}
6727 	if (async_update == FALSE)
6728 		(*(sim->sim_action))(sim, (union ccb *)cts);
6729 }
6730 
6731 static void
6732 xpt_toggle_tags(struct cam_path *path)
6733 {
6734 	struct cam_ed *dev;
6735 
6736 	/*
6737 	 * Give controllers a chance to renegotiate
6738 	 * before starting tag operations.  We
6739 	 * "toggle" tagged queuing off then on
6740 	 * which causes the tag enable command delay
6741 	 * counter to come into effect.
6742 	 */
6743 	dev = path->device;
6744 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6745 	 || ((dev->inq_flags & SID_CmdQue) != 0
6746  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6747 		struct ccb_trans_settings cts;
6748 
6749 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6750 		cts.protocol = PROTO_SCSI;
6751 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6752 		cts.transport = XPORT_UNSPECIFIED;
6753 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6754 		cts.proto_specific.scsi.flags = 0;
6755 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6756 		xpt_set_transfer_settings(&cts, path->device,
6757 					  /*async_update*/TRUE);
6758 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6759 		xpt_set_transfer_settings(&cts, path->device,
6760 					  /*async_update*/TRUE);
6761 	}
6762 }
6763 
6764 static void
6765 xpt_start_tags(struct cam_path *path)
6766 {
6767 	struct ccb_relsim crs;
6768 	struct cam_ed *device;
6769 	struct cam_sim *sim;
6770 	int    newopenings;
6771 
6772 	device = path->device;
6773 	sim = path->bus->sim;
6774 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6775 	xpt_freeze_devq(path, /*count*/1);
6776 	device->inq_flags |= SID_CmdQue;
6777 	if (device->tag_saved_openings != 0)
6778 		newopenings = device->tag_saved_openings;
6779 	else
6780 		newopenings = min(device->quirk->maxtags,
6781 				  sim->max_tagged_dev_openings);
6782 	xpt_dev_ccbq_resize(path, newopenings);
6783 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6784 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6785 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6786 	crs.openings
6787 	    = crs.release_timeout
6788 	    = crs.qfrozen_cnt
6789 	    = 0;
6790 	xpt_action((union ccb *)&crs);
6791 }
6792 
6793 static int busses_to_config;
6794 static int busses_to_reset;
6795 
6796 static int
6797 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6798 {
6799 
6800 	sim_lock_assert_owned(bus->sim->lock);
6801 
6802 	if (bus->path_id != CAM_XPT_PATH_ID) {
6803 		struct cam_path path;
6804 		struct ccb_pathinq cpi;
6805 		int can_negotiate;
6806 
6807 		busses_to_config++;
6808 		xpt_compile_path(&path, NULL, bus->path_id,
6809 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6810 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6811 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6812 		xpt_action((union ccb *)&cpi);
6813 		can_negotiate = cpi.hba_inquiry;
6814 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6815 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6816 		 && can_negotiate)
6817 			busses_to_reset++;
6818 		xpt_release_path(&path);
6819 	}
6820 
6821 	return(1);
6822 }
6823 
6824 static int
6825 xptconfigfunc(struct cam_eb *bus, void *arg)
6826 {
6827 	struct	cam_path *path;
6828 	union	ccb *work_ccb;
6829 
6830 	sim_lock_assert_owned(bus->sim->lock);
6831 
6832 	if (bus->path_id != CAM_XPT_PATH_ID) {
6833 		cam_status status;
6834 		int can_negotiate;
6835 
6836 		work_ccb = xpt_alloc_ccb();
6837 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6838 					      CAM_TARGET_WILDCARD,
6839 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6840 			kprintf("xptconfigfunc: xpt_create_path failed with "
6841 			       "status %#x for bus %d\n", status, bus->path_id);
6842 			kprintf("xptconfigfunc: halting bus configuration\n");
6843 			xpt_free_ccb(work_ccb);
6844 			busses_to_config--;
6845 			xpt_finishconfig(xpt_periph, NULL);
6846 			return(0);
6847 		}
6848 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6849 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6850 		xpt_action(work_ccb);
6851 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6852 			kprintf("xptconfigfunc: CPI failed on bus %d "
6853 			       "with status %d\n", bus->path_id,
6854 			       work_ccb->ccb_h.status);
6855 			xpt_finishconfig(xpt_periph, work_ccb);
6856 			return(1);
6857 		}
6858 
6859 		can_negotiate = work_ccb->cpi.hba_inquiry;
6860 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6861 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6862 		 && (can_negotiate != 0)) {
6863 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6864 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6865 			work_ccb->ccb_h.cbfcnp = NULL;
6866 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6867 				  ("Resetting Bus\n"));
6868 			xpt_action(work_ccb);
6869 			xpt_finishconfig(xpt_periph, work_ccb);
6870 		} else {
6871 			/* Act as though we performed a successful BUS RESET */
6872 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6873 			xpt_finishconfig(xpt_periph, work_ccb);
6874 		}
6875 	}
6876 
6877 	return(1);
6878 }
6879 
6880 static void
6881 xpt_config(void *arg)
6882 {
6883 	/*
6884 	 * Now that interrupts are enabled, go find our devices
6885 	 */
6886 
6887 #ifdef CAMDEBUG
6888 	/* Setup debugging flags and path */
6889 #ifdef CAM_DEBUG_FLAGS
6890 	cam_dflags = CAM_DEBUG_FLAGS;
6891 #else /* !CAM_DEBUG_FLAGS */
6892 	cam_dflags = CAM_DEBUG_NONE;
6893 #endif /* CAM_DEBUG_FLAGS */
6894 #ifdef CAM_DEBUG_BUS
6895 	if (cam_dflags != CAM_DEBUG_NONE) {
6896 		/*
6897 		 * Locking is specifically omitted here.  No SIMs have
6898 		 * registered yet, so xpt_create_path will only be searching
6899 		 * empty lists of targets and devices.
6900 		 */
6901 		if (xpt_create_path(&cam_dpath, xpt_periph,
6902 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6903 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6904 			kprintf("xpt_config: xpt_create_path() failed for debug"
6905 			       " target %d:%d:%d, debugging disabled\n",
6906 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6907 			cam_dflags = CAM_DEBUG_NONE;
6908 		}
6909 	} else
6910 		cam_dpath = NULL;
6911 #else /* !CAM_DEBUG_BUS */
6912 	cam_dpath = NULL;
6913 #endif /* CAM_DEBUG_BUS */
6914 #endif /* CAMDEBUG */
6915 
6916 	/*
6917 	 * Scan all installed busses.
6918 	 */
6919 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6920 
6921 	if (busses_to_config == 0) {
6922 		/* Call manually because we don't have any busses */
6923 		xpt_finishconfig(xpt_periph, NULL);
6924 	} else  {
6925 		if (busses_to_reset > 0 && scsi_delay >= 2000) {
6926 			kprintf("Waiting %d seconds for SCSI "
6927 			       "devices to settle\n", scsi_delay/1000);
6928 		}
6929 		xpt_for_all_busses(xptconfigfunc, NULL);
6930 	}
6931 }
6932 
6933 /*
6934  * If the given device only has one peripheral attached to it, and if that
6935  * peripheral is the passthrough driver, announce it.  This insures that the
6936  * user sees some sort of announcement for every peripheral in their system.
6937  */
6938 static int
6939 xptpassannouncefunc(struct cam_ed *device, void *arg)
6940 {
6941 	struct cam_periph *periph;
6942 	int i;
6943 
6944 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6945 	     periph = SLIST_NEXT(periph, periph_links), i++);
6946 
6947 	periph = SLIST_FIRST(&device->periphs);
6948 	if ((i == 1)
6949 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6950 		xpt_announce_periph(periph, NULL);
6951 
6952 	return(1);
6953 }
6954 
6955 static void
6956 xpt_finishconfig_task(void *context, int pending)
6957 {
6958 	struct	periph_driver **p_drv;
6959 	int	i;
6960 
6961 	if (busses_to_config == 0) {
6962 		/* Register all the peripheral drivers */
6963 		/* XXX This will have to change when we have loadable modules */
6964 		p_drv = periph_drivers;
6965 		for (i = 0; p_drv[i] != NULL; i++) {
6966 			(*p_drv[i]->init)();
6967 		}
6968 
6969 		/*
6970 		 * Check for devices with no "standard" peripheral driver
6971 		 * attached.  For any devices like that, announce the
6972 		 * passthrough driver so the user will see something.
6973 		 */
6974 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6975 
6976 		/* Release our hook so that the boot can continue. */
6977 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
6978 		kfree(xsoftc.xpt_config_hook, M_CAMXPT);
6979 		xsoftc.xpt_config_hook = NULL;
6980 	}
6981 
6982 	kfree(context, M_CAMXPT);
6983 }
6984 
6985 static void
6986 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6987 {
6988 	struct	xpt_task *task;
6989 
6990 	if (done_ccb != NULL) {
6991 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6992 			  ("xpt_finishconfig\n"));
6993 		switch(done_ccb->ccb_h.func_code) {
6994 		case XPT_RESET_BUS:
6995 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6996 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6997 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6998 				done_ccb->crcn.flags = 0;
6999 				xpt_action(done_ccb);
7000 				return;
7001 			}
7002 			/* FALLTHROUGH */
7003 		case XPT_SCAN_BUS:
7004 		default:
7005 			xpt_free_path(done_ccb->ccb_h.path);
7006 			busses_to_config--;
7007 			break;
7008 		}
7009 	}
7010 
7011 	if (busses_to_config == 0) {
7012 		task = kmalloc(sizeof(struct xpt_task), M_CAMXPT, M_INTWAIT);
7013 		TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7014 		taskqueue_enqueue(taskqueue_thread[mycpuid], &task->task);
7015 	}
7016 
7017 	if (done_ccb != NULL)
7018 		xpt_free_ccb(done_ccb);
7019 }
7020 
7021 cam_status
7022 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7023 		   struct cam_path *path)
7024 {
7025 	struct ccb_setasync csa;
7026 	cam_status status;
7027 	int xptpath = 0;
7028 
7029 	if (path == NULL) {
7030 		lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7031 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7032 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7033 		if (status != CAM_REQ_CMP) {
7034 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7035 			return (status);
7036 		}
7037 		xptpath = 1;
7038 	}
7039 
7040 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7041 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7042 	csa.event_enable = event;
7043 	csa.callback = cbfunc;
7044 	csa.callback_arg = cbarg;
7045 	xpt_action((union ccb *)&csa);
7046 	status = csa.ccb_h.status;
7047 	if (xptpath) {
7048 		xpt_free_path(path);
7049 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7050 	}
7051 	return (status);
7052 }
7053 
7054 static void
7055 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7056 {
7057 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7058 
7059 	switch (work_ccb->ccb_h.func_code) {
7060 	/* Common cases first */
7061 	case XPT_PATH_INQ:		/* Path routing inquiry */
7062 	{
7063 		struct ccb_pathinq *cpi;
7064 
7065 		cpi = &work_ccb->cpi;
7066 		cpi->version_num = 1; /* XXX??? */
7067 		cpi->hba_inquiry = 0;
7068 		cpi->target_sprt = 0;
7069 		cpi->hba_misc = 0;
7070 		cpi->hba_eng_cnt = 0;
7071 		cpi->max_target = 0;
7072 		cpi->max_lun = 0;
7073 		cpi->initiator_id = 0;
7074 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7075 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7076 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7077 		cpi->unit_number = sim->unit_number;
7078 		cpi->bus_id = sim->bus_id;
7079 		cpi->base_transfer_speed = 0;
7080 		cpi->protocol = PROTO_UNSPECIFIED;
7081 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7082 		cpi->transport = XPORT_UNSPECIFIED;
7083 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7084 		cpi->ccb_h.status = CAM_REQ_CMP;
7085 		xpt_done(work_ccb);
7086 		break;
7087 	}
7088 	default:
7089 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7090 		xpt_done(work_ccb);
7091 		break;
7092 	}
7093 }
7094 
7095 /*
7096  * The xpt as a "controller" has no interrupt sources, so polling
7097  * is a no-op.
7098  */
7099 static void
7100 xptpoll(struct cam_sim *sim)
7101 {
7102 }
7103 
7104 void
7105 xpt_lock_buses(void)
7106 {
7107 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7108 }
7109 
7110 void
7111 xpt_unlock_buses(void)
7112 {
7113 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7114 }
7115 
7116 
7117 /*
7118  * Should only be called by the machine interrupt dispatch routines,
7119  * so put these prototypes here instead of in the header.
7120  */
7121 
7122 static void
7123 swi_cambio(void *arg, void *frame)
7124 {
7125 	camisr(NULL);
7126 }
7127 
7128 static void
7129 camisr(void *dummy)
7130 {
7131 	cam_simq_t queue;
7132 	struct cam_sim *sim;
7133 
7134 	spin_lock_wr(&cam_simq_spin);
7135 	TAILQ_INIT(&queue);
7136 	TAILQ_CONCAT(&queue, &cam_simq, links);
7137 	spin_unlock_wr(&cam_simq_spin);
7138 
7139 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7140 		TAILQ_REMOVE(&queue, sim, links);
7141 		CAM_SIM_LOCK(sim);
7142 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7143 		camisr_runqueue(sim);
7144 		CAM_SIM_UNLOCK(sim);
7145 	}
7146 }
7147 
7148 static void
7149 camisr_runqueue(struct cam_sim *sim)
7150 {
7151 	struct	ccb_hdr *ccb_h;
7152 	int	runq;
7153 
7154 	spin_lock_wr(&sim->sim_spin);
7155 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7156 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7157 		spin_unlock_wr(&sim->sim_spin);
7158 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7159 
7160 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7161 			  ("camisr\n"));
7162 
7163 		runq = FALSE;
7164 
7165 		if (ccb_h->flags & CAM_HIGH_POWER) {
7166 			struct highpowerlist	*hphead;
7167 			struct cam_ed		*device;
7168 			union ccb		*send_ccb;
7169 
7170 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7171 			hphead = &xsoftc.highpowerq;
7172 
7173 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7174 
7175 			/*
7176 			 * Increment the count since this command is done.
7177 			 */
7178 			xsoftc.num_highpower++;
7179 
7180 			/*
7181 			 * Any high powered commands queued up?
7182 			 */
7183 			if (send_ccb != NULL) {
7184 				device = send_ccb->ccb_h.path->device;
7185 
7186 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7187 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7188 
7189 				xpt_release_devq(send_ccb->ccb_h.path,
7190 						 /*count*/1, /*runqueue*/TRUE);
7191 			} else
7192 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7193 		}
7194 
7195 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7196 			struct cam_ed *dev;
7197 
7198 			dev = ccb_h->path->device;
7199 
7200 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7201 
7202 			if (!SIM_DEAD(ccb_h->path->bus->sim)) {
7203 				ccb_h->path->bus->sim->devq->send_active--;
7204 				ccb_h->path->bus->sim->devq->send_openings++;
7205 			}
7206 
7207 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7208 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7209 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7210 			  && (dev->ccbq.dev_active == 0))) {
7211 
7212 				xpt_release_devq(ccb_h->path, /*count*/1,
7213 						 /*run_queue*/TRUE);
7214 			}
7215 
7216 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7217 			 && (--dev->tag_delay_count == 0))
7218 				xpt_start_tags(ccb_h->path);
7219 
7220 			if ((dev->ccbq.queue.entries > 0)
7221 			 && (dev->qfrozen_cnt == 0)
7222 			 && (device_is_send_queued(dev) == 0)) {
7223 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7224 							      dev);
7225 			}
7226 		}
7227 
7228 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7229 			xpt_release_simq(ccb_h->path->bus->sim,
7230 					 /*run_queue*/TRUE);
7231 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7232 			runq = FALSE;
7233 		}
7234 
7235 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7236 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7237 			xpt_release_devq(ccb_h->path, /*count*/1,
7238 					 /*run_queue*/TRUE);
7239 			ccb_h->status &= ~CAM_DEV_QFRZN;
7240 		} else if (runq) {
7241 			xpt_run_dev_sendq(ccb_h->path->bus);
7242 		}
7243 
7244 		/* Call the peripheral driver's callback */
7245 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7246 		spin_lock_wr(&sim->sim_spin);
7247 	}
7248 	spin_unlock_wr(&sim->sim_spin);
7249 }
7250 
7251 static void
7252 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7253 {
7254 
7255 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7256 	xpt_done(ccb);
7257 }
7258 
7259 static void
7260 dead_sim_poll(struct cam_sim *sim)
7261 {
7262 }
7263