xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision fcf53d9b)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
49 
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 #include <sys/mplock2.h>
53 
54 #include <machine/clock.h>
55 #include <machine/stdarg.h>
56 
57 #include "cam.h"
58 #include "cam_ccb.h"
59 #include "cam_periph.h"
60 #include "cam_sim.h"
61 #include "cam_xpt.h"
62 #include "cam_xpt_sim.h"
63 #include "cam_xpt_periph.h"
64 #include "cam_debug.h"
65 
66 #include "scsi/scsi_all.h"
67 #include "scsi/scsi_message.h"
68 #include "scsi/scsi_pass.h"
69 #include <sys/kthread.h>
70 #include "opt_cam.h"
71 
72 /* Datastructures internal to the xpt layer */
73 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
74 
75 /* Object for defering XPT actions to a taskqueue */
76 struct xpt_task {
77 	struct task	task;
78 	void		*data1;
79 	uintptr_t	data2;
80 };
81 
82 /*
83  * Definition of an async handler callback block.  These are used to add
84  * SIMs and peripherals to the async callback lists.
85  */
86 struct async_node {
87 	SLIST_ENTRY(async_node)	links;
88 	u_int32_t	event_enable;	/* Async Event enables */
89 	void		(*callback)(void *arg, u_int32_t code,
90 				    struct cam_path *path, void *args);
91 	void		*callback_arg;
92 };
93 
94 SLIST_HEAD(async_list, async_node);
95 SLIST_HEAD(periph_list, cam_periph);
96 
97 /*
98  * This is the maximum number of high powered commands (e.g. start unit)
99  * that can be outstanding at a particular time.
100  */
101 #ifndef CAM_MAX_HIGHPOWER
102 #define CAM_MAX_HIGHPOWER  4
103 #endif
104 
105 /*
106  * Structure for queueing a device in a run queue.
107  * There is one run queue for allocating new ccbs,
108  * and another for sending ccbs to the controller.
109  */
110 struct cam_ed_qinfo {
111 	cam_pinfo pinfo;
112 	struct	  cam_ed *device;
113 };
114 
115 /*
116  * The CAM EDT (Existing Device Table) contains the device information for
117  * all devices for all busses in the system.  The table contains a
118  * cam_ed structure for each device on the bus.
119  */
120 struct cam_ed {
121 	TAILQ_ENTRY(cam_ed) links;
122 	struct	cam_ed_qinfo alloc_ccb_entry;
123 	struct	cam_ed_qinfo send_ccb_entry;
124 	struct	cam_et	 *target;
125 	struct	cam_sim  *sim;
126 	lun_id_t	 lun_id;
127 	struct	camq drvq;		/*
128 					 * Queue of type drivers wanting to do
129 					 * work on this device.
130 					 */
131 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
132 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
133 	struct	periph_list periphs;	/* All attached devices */
134 	u_int	generation;		/* Generation number */
135 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
136 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
137 					/* Storage for the inquiry data */
138 	cam_proto	 protocol;
139 	u_int		 protocol_version;
140 	cam_xport	 transport;
141 	u_int		 transport_version;
142 	struct		 scsi_inquiry_data inq_data;
143 	u_int8_t	 inq_flags;	/*
144 					 * Current settings for inquiry flags.
145 					 * This allows us to override settings
146 					 * like disconnection and tagged
147 					 * queuing for a device.
148 					 */
149 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
150 	u_int8_t	 serial_num_len;
151 	u_int8_t	*serial_num;
152 	u_int32_t	 qfrozen_cnt;
153 	u_int32_t	 flags;
154 #define CAM_DEV_UNCONFIGURED	 	0x01
155 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
156 #define CAM_DEV_REL_ON_COMPLETE		0x04
157 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
158 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
159 #define CAM_DEV_TAG_AFTER_COUNT		0x20
160 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
161 #define	CAM_DEV_IN_DV			0x80
162 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
163 	u_int32_t	 tag_delay_count;
164 #define	CAM_TAG_DELAY_COUNT		5
165 	u_int32_t	 tag_saved_openings;
166 	u_int32_t	 refcount;
167 	struct callout	 callout;
168 };
169 
170 /*
171  * Each target is represented by an ET (Existing Target).  These
172  * entries are created when a target is successfully probed with an
173  * identify, and removed when a device fails to respond after a number
174  * of retries, or a bus rescan finds the device missing.
175  */
176 struct cam_et {
177 	TAILQ_HEAD(, cam_ed) ed_entries;
178 	TAILQ_ENTRY(cam_et) links;
179 	struct	cam_eb	*bus;
180 	target_id_t	target_id;
181 	u_int32_t	refcount;
182 	u_int		generation;
183 	struct		timeval last_reset;	/* uptime of last reset */
184 };
185 
186 /*
187  * Each bus is represented by an EB (Existing Bus).  These entries
188  * are created by calls to xpt_bus_register and deleted by calls to
189  * xpt_bus_deregister.
190  */
191 struct cam_eb {
192 	TAILQ_HEAD(, cam_et) et_entries;
193 	TAILQ_ENTRY(cam_eb)  links;
194 	path_id_t	     path_id;
195 	struct cam_sim	     *sim;
196 	struct timeval	     last_reset;	/* uptime of last reset */
197 	u_int32_t	     flags;
198 #define	CAM_EB_RUNQ_SCHEDULED	0x01
199 	u_int32_t	     refcount;
200 	u_int		     generation;
201 	int		     counted_to_config;	/* busses_to_config */
202 };
203 
204 struct cam_path {
205 	struct cam_periph *periph;
206 	struct cam_eb	  *bus;
207 	struct cam_et	  *target;
208 	struct cam_ed	  *device;
209 };
210 
211 struct xpt_quirk_entry {
212 	struct scsi_inquiry_pattern inq_pat;
213 	u_int8_t quirks;
214 #define	CAM_QUIRK_NOLUNS	0x01
215 #define	CAM_QUIRK_NOSERIAL	0x02
216 #define	CAM_QUIRK_HILUNS	0x04
217 #define	CAM_QUIRK_NOHILUNS	0x08
218 	u_int mintags;
219 	u_int maxtags;
220 };
221 
222 static int cam_srch_hi = 0;
223 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
224 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
225 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
226     sysctl_cam_search_luns, "I",
227     "allow search above LUN 7 for SCSI3 and greater devices");
228 
229 #define	CAM_SCSI2_MAXLUN	8
230 /*
231  * If we're not quirked to search <= the first 8 luns
232  * and we are either quirked to search above lun 8,
233  * or we're > SCSI-2 and we've enabled hilun searching,
234  * or we're > SCSI-2 and the last lun was a success,
235  * we can look for luns above lun 8.
236  */
237 #define	CAN_SRCH_HI_SPARSE(dv)				\
238   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
239   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
240   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
241 
242 #define	CAN_SRCH_HI_DENSE(dv)				\
243   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
244   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
245   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
246 
247 typedef enum {
248 	XPT_FLAG_OPEN		= 0x01
249 } xpt_flags;
250 
251 struct xpt_softc {
252 	xpt_flags		flags;
253 	u_int32_t		xpt_generation;
254 
255 	/* number of high powered commands that can go through right now */
256 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
257 	int			num_highpower;
258 
259 	/* queue for handling async rescan requests. */
260 	TAILQ_HEAD(, ccb_hdr)	ccb_scanq;
261 	int			ccb_scanq_running;
262 
263 	/* Registered busses */
264 	TAILQ_HEAD(,cam_eb)	xpt_busses;
265 	u_int			bus_generation;
266 
267 	struct intr_config_hook	*xpt_config_hook;
268 
269 	struct lock		xpt_topo_lock;
270 	struct lock		xpt_lock;
271 };
272 
273 static const char quantum[] = "QUANTUM";
274 static const char sony[] = "SONY";
275 static const char west_digital[] = "WDIGTL";
276 static const char samsung[] = "SAMSUNG";
277 static const char seagate[] = "SEAGATE";
278 static const char microp[] = "MICROP";
279 
280 static struct xpt_quirk_entry xpt_quirk_table[] =
281 {
282 	{
283 		/* Reports QUEUE FULL for temporary resource shortages */
284 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
285 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
286 	},
287 	{
288 		/* Reports QUEUE FULL for temporary resource shortages */
289 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
290 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
291 	},
292 	{
293 		/* Reports QUEUE FULL for temporary resource shortages */
294 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
295 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
296 	},
297 	{
298 		/* Broken tagged queuing drive */
299 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
300 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
301 	},
302 	{
303 		/* Broken tagged queuing drive */
304 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
305 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
306 	},
307 	{
308 		/* Broken tagged queuing drive */
309 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
310 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
311 	},
312 	{
313 		/*
314 		 * Unfortunately, the Quantum Atlas III has the same
315 		 * problem as the Atlas II drives above.
316 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
317 		 *
318 		 * For future reference, the drive with the problem was:
319 		 * QUANTUM QM39100TD-SW N1B0
320 		 *
321 		 * It's possible that Quantum will fix the problem in later
322 		 * firmware revisions.  If that happens, the quirk entry
323 		 * will need to be made specific to the firmware revisions
324 		 * with the problem.
325 		 *
326 		 */
327 		/* Reports QUEUE FULL for temporary resource shortages */
328 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
329 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
330 	},
331 	{
332 		/*
333 		 * 18 Gig Atlas III, same problem as the 9G version.
334 		 * Reported by: Andre Albsmeier
335 		 *		<andre.albsmeier@mchp.siemens.de>
336 		 *
337 		 * For future reference, the drive with the problem was:
338 		 * QUANTUM QM318000TD-S N491
339 		 */
340 		/* Reports QUEUE FULL for temporary resource shortages */
341 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
342 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
343 	},
344 	{
345 		/*
346 		 * Broken tagged queuing drive
347 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
348 		 *         and: Martin Renters <martin@tdc.on.ca>
349 		 */
350 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
351 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
352 	},
353 		/*
354 		 * The Seagate Medalist Pro drives have very poor write
355 		 * performance with anything more than 2 tags.
356 		 *
357 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
358 		 * Drive:  <SEAGATE ST36530N 1444>
359 		 *
360 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
361 		 * Drive:  <SEAGATE ST34520W 1281>
362 		 *
363 		 * No one has actually reported that the 9G version
364 		 * (ST39140*) of the Medalist Pro has the same problem, but
365 		 * we're assuming that it does because the 4G and 6.5G
366 		 * versions of the drive are broken.
367 		 */
368 	{
369 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
370 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
371 	},
372 	{
373 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
374 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
375 	},
376 	{
377 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
378 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
379 	},
380 	{
381 		/*
382 		 * Slow when tagged queueing is enabled.  Write performance
383 		 * steadily drops off with more and more concurrent
384 		 * transactions.  Best sequential write performance with
385 		 * tagged queueing turned off and write caching turned on.
386 		 *
387 		 * PR:  kern/10398
388 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
389 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
390 		 *
391 		 * The drive with the problem had the "S65A" firmware
392 		 * revision, and has also been reported (by Stephen J.
393 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
394 		 * firmware revision.
395 		 *
396 		 * Although no one has reported problems with the 2 gig
397 		 * version of the DCAS drive, the assumption is that it
398 		 * has the same problems as the 4 gig version.  Therefore
399 		 * this quirk entries disables tagged queueing for all
400 		 * DCAS drives.
401 		 */
402 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
403 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
404 	},
405 	{
406 		/* Broken tagged queuing drive */
407 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
408 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
409 	},
410 	{
411 		/* Broken tagged queuing drive */
412 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
413 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
414 	},
415 	{
416 		/* This does not support other than LUN 0 */
417 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
418 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
419 	},
420 	{
421 		/*
422 		 * Broken tagged queuing drive.
423 		 * Submitted by:
424 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
425 		 * in PR kern/9535
426 		 */
427 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
428 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
429 	},
430         {
431 		/*
432 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
433 		 * 8MB/sec.)
434 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
435 		 * Best performance with these drives is achieved with
436 		 * tagged queueing turned off, and write caching turned on.
437 		 */
438 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
439 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
440         },
441         {
442 		/*
443 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
444 		 * 8MB/sec.)
445 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
446 		 * Best performance with these drives is achieved with
447 		 * tagged queueing turned off, and write caching turned on.
448 		 */
449 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
450 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
451         },
452 	{
453 		/*
454 		 * Doesn't handle queue full condition correctly,
455 		 * so we need to limit maxtags to what the device
456 		 * can handle instead of determining this automatically.
457 		 */
458 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
459 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
460 	},
461 	{
462 		/* Really only one LUN */
463 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
464 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
465 	},
466 	{
467 		/* I can't believe we need a quirk for DPT volumes. */
468 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
469 		CAM_QUIRK_NOLUNS,
470 		/*mintags*/0, /*maxtags*/255
471 	},
472 	{
473 		/*
474 		 * Many Sony CDROM drives don't like multi-LUN probing.
475 		 */
476 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
477 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
478 	},
479 	{
480 		/*
481 		 * This drive doesn't like multiple LUN probing.
482 		 * Submitted by:  Parag Patel <parag@cgt.com>
483 		 */
484 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
485 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
486 	},
487 	{
488 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
489 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
490 	},
491 	{
492 		/*
493 		 * The 8200 doesn't like multi-lun probing, and probably
494 		 * don't like serial number requests either.
495 		 */
496 		{
497 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
498 			"EXB-8200*", "*"
499 		},
500 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
501 	},
502 	{
503 		/*
504 		 * Let's try the same as above, but for a drive that says
505 		 * it's an IPL-6860 but is actually an EXB 8200.
506 		 */
507 		{
508 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
509 			"IPL-6860*", "*"
510 		},
511 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
512 	},
513 	{
514 		/*
515 		 * These Hitachi drives don't like multi-lun probing.
516 		 * The PR submitter has a DK319H, but says that the Linux
517 		 * kernel has a similar work-around for the DK312 and DK314,
518 		 * so all DK31* drives are quirked here.
519 		 * PR:            misc/18793
520 		 * Submitted by:  Paul Haddad <paul@pth.com>
521 		 */
522 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
523 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
524 	},
525 	{
526 		/*
527 		 * The Hitachi CJ series with J8A8 firmware apparantly has
528 		 * problems with tagged commands.
529 		 * PR: 23536
530 		 * Reported by: amagai@nue.org
531 		 */
532 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
533 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
534 	},
535 	{
536 		/*
537 		 * These are the large storage arrays.
538 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
539 		 */
540 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
541 		CAM_QUIRK_HILUNS, 2, 1024
542 	},
543 	{
544 		/*
545 		 * This old revision of the TDC3600 is also SCSI-1, and
546 		 * hangs upon serial number probing.
547 		 */
548 		{
549 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
550 			" TDC 3600", "U07:"
551 		},
552 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
553 	},
554 	{
555 		/*
556 		 * Would repond to all LUNs if asked for.
557 		 */
558 		{
559 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
560 			"CP150", "*"
561 		},
562 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
563 	},
564 	{
565 		/*
566 		 * Would repond to all LUNs if asked for.
567 		 */
568 		{
569 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
570 			"96X2*", "*"
571 		},
572 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
573 	},
574 	{
575 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
576 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
577 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
578 	},
579 	{
580 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
581 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
582 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
583 	},
584 	{
585 		/* TeraSolutions special settings for TRC-22 RAID */
586 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
587 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
588 	},
589 	{
590 		/* Veritas Storage Appliance */
591 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
592 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
593 	},
594 	{
595 		/*
596 		 * Would respond to all LUNs.  Device type and removable
597 		 * flag are jumper-selectable.
598 		 */
599 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
600 		  "Tahiti 1", "*"
601 		},
602 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
603 	},
604 	{
605 		/* EasyRAID E5A aka. areca ARC-6010 */
606 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
607 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
608 	},
609 	{
610 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
611 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
612 	},
613 	{
614 		/* Default tagged queuing parameters for all devices */
615 		{
616 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
617 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
618 		},
619 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
620 	},
621 };
622 
623 static const int xpt_quirk_table_size =
624 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
625 
626 typedef enum {
627 	DM_RET_COPY		= 0x01,
628 	DM_RET_FLAG_MASK	= 0x0f,
629 	DM_RET_NONE		= 0x00,
630 	DM_RET_STOP		= 0x10,
631 	DM_RET_DESCEND		= 0x20,
632 	DM_RET_ERROR		= 0x30,
633 	DM_RET_ACTION_MASK	= 0xf0
634 } dev_match_ret;
635 
636 typedef enum {
637 	XPT_DEPTH_BUS,
638 	XPT_DEPTH_TARGET,
639 	XPT_DEPTH_DEVICE,
640 	XPT_DEPTH_PERIPH
641 } xpt_traverse_depth;
642 
643 struct xpt_traverse_config {
644 	xpt_traverse_depth	depth;
645 	void			*tr_func;
646 	void			*tr_arg;
647 };
648 
649 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
650 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
651 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
652 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
653 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
654 
655 /* Transport layer configuration information */
656 static struct xpt_softc xsoftc;
657 
658 /* Queues for our software interrupt handler */
659 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
660 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
661 static cam_simq_t cam_simq;
662 static struct spinlock cam_simq_spin;
663 
664 struct cam_periph *xpt_periph;
665 
666 static periph_init_t xpt_periph_init;
667 
668 static periph_init_t probe_periph_init;
669 
670 static struct periph_driver xpt_driver =
671 {
672 	xpt_periph_init, "xpt",
673 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
674 };
675 
676 static struct periph_driver probe_driver =
677 {
678 	probe_periph_init, "probe",
679 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
680 };
681 
682 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
683 PERIPHDRIVER_DECLARE(probe, probe_driver);
684 
685 static d_open_t xptopen;
686 static d_close_t xptclose;
687 static d_ioctl_t xptioctl;
688 
689 static struct dev_ops xpt_ops = {
690 	{ "xpt", 0, 0 },
691 	.d_open = xptopen,
692 	.d_close = xptclose,
693 	.d_ioctl = xptioctl
694 };
695 
696 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
697 static void dead_sim_poll(struct cam_sim *sim);
698 
699 /* Dummy SIM that is used when the real one has gone. */
700 static struct cam_sim cam_dead_sim;
701 static struct lock    cam_dead_lock;
702 
703 /* Storage for debugging datastructures */
704 #ifdef	CAMDEBUG
705 struct cam_path *cam_dpath;
706 u_int32_t cam_dflags;
707 u_int32_t cam_debug_delay;
708 #endif
709 
710 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
711 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
712 #endif
713 
714 /*
715  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
716  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
717  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
718  */
719 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
720     || defined(CAM_DEBUG_LUN)
721 #ifdef CAMDEBUG
722 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
723     || !defined(CAM_DEBUG_LUN)
724 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
725         and CAM_DEBUG_LUN"
726 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
727 #else /* !CAMDEBUG */
728 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
729 #endif /* CAMDEBUG */
730 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
731 
732 /* Our boot-time initialization hook */
733 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
734 
735 static moduledata_t cam_moduledata = {
736 	"cam",
737 	cam_module_event_handler,
738 	NULL
739 };
740 
741 static int	xpt_init(void *);
742 
743 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
744 MODULE_VERSION(cam, 1);
745 
746 
747 static cam_status	xpt_compile_path(struct cam_path *new_path,
748 					 struct cam_periph *perph,
749 					 path_id_t path_id,
750 					 target_id_t target_id,
751 					 lun_id_t lun_id);
752 
753 static void		xpt_release_path(struct cam_path *path);
754 
755 static void		xpt_async_bcast(struct async_list *async_head,
756 					u_int32_t async_code,
757 					struct cam_path *path,
758 					void *async_arg);
759 static void		xpt_dev_async(u_int32_t async_code,
760 				      struct cam_eb *bus,
761 				      struct cam_et *target,
762 				      struct cam_ed *device,
763 				      void *async_arg);
764 static path_id_t xptnextfreepathid(void);
765 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
766 static union ccb *xpt_get_ccb(struct cam_ed *device);
767 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
768 				  u_int32_t new_priority);
769 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
770 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
771 static timeout_t xpt_release_devq_timeout;
772 static void	 xpt_release_bus(struct cam_eb *bus);
773 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
774 					 int run_queue);
775 static struct cam_et*
776 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
777 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
778 static struct cam_ed*
779 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
780 				  lun_id_t lun_id);
781 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
782 				    struct cam_ed *device);
783 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
784 static struct cam_eb*
785 		 xpt_find_bus(path_id_t path_id);
786 static struct cam_et*
787 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
788 static struct cam_ed*
789 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
790 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
791 static void	 xpt_scan_lun(struct cam_periph *periph,
792 			      struct cam_path *path, cam_flags flags,
793 			      union ccb *ccb);
794 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
795 static xpt_busfunc_t	xptconfigbuscountfunc;
796 static xpt_busfunc_t	xptconfigfunc;
797 static void	 xpt_config(void *arg);
798 static xpt_devicefunc_t xptpassannouncefunc;
799 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
800 static void	 xpt_uncount_bus (struct cam_eb *bus);
801 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
802 static void	 xptpoll(struct cam_sim *sim);
803 static inthand2_t swi_cambio;
804 static void	 camisr(void *);
805 static void	 camisr_runqueue(struct cam_sim *);
806 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
807 				    u_int num_patterns, struct cam_eb *bus);
808 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
809 				       u_int num_patterns,
810 				       struct cam_ed *device);
811 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
812 				       u_int num_patterns,
813 				       struct cam_periph *periph);
814 static xpt_busfunc_t	xptedtbusfunc;
815 static xpt_targetfunc_t	xptedttargetfunc;
816 static xpt_devicefunc_t	xptedtdevicefunc;
817 static xpt_periphfunc_t	xptedtperiphfunc;
818 static xpt_pdrvfunc_t	xptplistpdrvfunc;
819 static xpt_periphfunc_t	xptplistperiphfunc;
820 static int		xptedtmatch(struct ccb_dev_match *cdm);
821 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
822 static int		xptbustraverse(struct cam_eb *start_bus,
823 				       xpt_busfunc_t *tr_func, void *arg);
824 static int		xpttargettraverse(struct cam_eb *bus,
825 					  struct cam_et *start_target,
826 					  xpt_targetfunc_t *tr_func, void *arg);
827 static int		xptdevicetraverse(struct cam_et *target,
828 					  struct cam_ed *start_device,
829 					  xpt_devicefunc_t *tr_func, void *arg);
830 static int		xptperiphtraverse(struct cam_ed *device,
831 					  struct cam_periph *start_periph,
832 					  xpt_periphfunc_t *tr_func, void *arg);
833 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
834 					xpt_pdrvfunc_t *tr_func, void *arg);
835 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
836 					    struct cam_periph *start_periph,
837 					    xpt_periphfunc_t *tr_func,
838 					    void *arg);
839 static xpt_busfunc_t	xptdefbusfunc;
840 static xpt_targetfunc_t	xptdeftargetfunc;
841 static xpt_devicefunc_t	xptdefdevicefunc;
842 static xpt_periphfunc_t	xptdefperiphfunc;
843 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
844 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
845 					    void *arg);
846 static xpt_devicefunc_t	xptsetasyncfunc;
847 static xpt_busfunc_t	xptsetasyncbusfunc;
848 static cam_status	xptregister(struct cam_periph *periph,
849 				    void *arg);
850 static cam_status	proberegister(struct cam_periph *periph,
851 				      void *arg);
852 static void	 probeschedule(struct cam_periph *probe_periph);
853 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
854 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
855 static int       proberequestbackoff(struct cam_periph *periph,
856 				     struct cam_ed *device);
857 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
858 static void	 probecleanup(struct cam_periph *periph);
859 static void	 xpt_find_quirk(struct cam_ed *device);
860 static void	 xpt_devise_transport(struct cam_path *path);
861 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
862 					   struct cam_ed *device,
863 					   int async_update);
864 static void	 xpt_toggle_tags(struct cam_path *path);
865 static void	 xpt_start_tags(struct cam_path *path);
866 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
867 					    struct cam_ed *dev);
868 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
869 					   struct cam_ed *dev);
870 static __inline int periph_is_queued(struct cam_periph *periph);
871 static __inline int device_is_alloc_queued(struct cam_ed *device);
872 static __inline int device_is_send_queued(struct cam_ed *device);
873 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
874 
875 static __inline int
876 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
877 {
878 	int retval;
879 
880 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
881 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
882 			cam_ccbq_resize(&dev->ccbq,
883 					dev->ccbq.dev_openings
884 					+ dev->ccbq.dev_active);
885 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
886 		}
887 		/*
888 		 * The priority of a device waiting for CCB resources
889 		 * is that of the the highest priority peripheral driver
890 		 * enqueued.
891 		 */
892 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
893 					  &dev->alloc_ccb_entry.pinfo,
894 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
895 	} else {
896 		retval = 0;
897 	}
898 
899 	return (retval);
900 }
901 
902 static __inline int
903 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
904 {
905 	int	retval;
906 
907 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
908 		/*
909 		 * The priority of a device waiting for controller
910 		 * resources is that of the the highest priority CCB
911 		 * enqueued.
912 		 */
913 		retval =
914 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
915 				     &dev->send_ccb_entry.pinfo,
916 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
917 	} else {
918 		retval = 0;
919 	}
920 	return (retval);
921 }
922 
923 static __inline int
924 periph_is_queued(struct cam_periph *periph)
925 {
926 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
927 }
928 
929 static __inline int
930 device_is_alloc_queued(struct cam_ed *device)
931 {
932 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
933 }
934 
935 static __inline int
936 device_is_send_queued(struct cam_ed *device)
937 {
938 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
939 }
940 
941 static __inline int
942 dev_allocq_is_runnable(struct cam_devq *devq)
943 {
944 	/*
945 	 * Have work to do.
946 	 * Have space to do more work.
947 	 * Allowed to do work.
948 	 */
949 	return ((devq->alloc_queue.qfrozen_cnt == 0)
950 	     && (devq->alloc_queue.entries > 0)
951 	     && (devq->alloc_openings > 0));
952 }
953 
954 static void
955 xpt_periph_init(void)
956 {
957 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
958 }
959 
960 static void
961 probe_periph_init(void)
962 {
963 }
964 
965 
966 static void
967 xptdone(struct cam_periph *periph, union ccb *done_ccb)
968 {
969 	/* Caller will release the CCB */
970 	wakeup(&done_ccb->ccb_h.cbfcnp);
971 }
972 
973 static int
974 xptopen(struct dev_open_args *ap)
975 {
976 	cdev_t dev = ap->a_head.a_dev;
977 
978 	/*
979 	 * Only allow read-write access.
980 	 */
981 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
982 		return(EPERM);
983 
984 	/*
985 	 * We don't allow nonblocking access.
986 	 */
987 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
988 		kprintf("%s: can't do nonblocking access\n", devtoname(dev));
989 		return(ENODEV);
990 	}
991 
992 	/* Mark ourselves open */
993 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
994 	xsoftc.flags |= XPT_FLAG_OPEN;
995 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
996 
997 	return(0);
998 }
999 
1000 static int
1001 xptclose(struct dev_close_args *ap)
1002 {
1003 
1004 	/* Mark ourselves closed */
1005 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1006 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1007 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1008 
1009 	return(0);
1010 }
1011 
1012 /*
1013  * Don't automatically grab the xpt softc lock here even though this is going
1014  * through the xpt device.  The xpt device is really just a back door for
1015  * accessing other devices and SIMs, so the right thing to do is to grab
1016  * the appropriate SIM lock once the bus/SIM is located.
1017  */
1018 static int
1019 xptioctl(struct dev_ioctl_args *ap)
1020 {
1021 	int error;
1022 
1023 	error = 0;
1024 
1025 	switch(ap->a_cmd) {
1026 	/*
1027 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1028 	 * to accept CCB types that don't quite make sense to send through a
1029 	 * passthrough driver.
1030 	 */
1031 	case CAMIOCOMMAND: {
1032 		union ccb *ccb;
1033 		union ccb *inccb;
1034 		struct cam_eb *bus;
1035 
1036 		inccb = (union ccb *)ap->a_data;
1037 
1038 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1039 		if (bus == NULL) {
1040 			error = EINVAL;
1041 			break;
1042 		}
1043 
1044 		switch(inccb->ccb_h.func_code) {
1045 		case XPT_SCAN_BUS:
1046 		case XPT_RESET_BUS:
1047 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1048 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1049 				error = EINVAL;
1050 				break;
1051 			}
1052 			/* FALLTHROUGH */
1053 		case XPT_PATH_INQ:
1054 		case XPT_ENG_INQ:
1055 		case XPT_SCAN_LUN:
1056 
1057 			ccb = xpt_alloc_ccb();
1058 
1059 			CAM_SIM_LOCK(bus->sim);
1060 
1061 			/*
1062 			 * Create a path using the bus, target, and lun the
1063 			 * user passed in.
1064 			 */
1065 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1066 					    inccb->ccb_h.path_id,
1067 					    inccb->ccb_h.target_id,
1068 					    inccb->ccb_h.target_lun) !=
1069 					    CAM_REQ_CMP){
1070 				error = EINVAL;
1071 				CAM_SIM_UNLOCK(bus->sim);
1072 				xpt_free_ccb(ccb);
1073 				break;
1074 			}
1075 			/* Ensure all of our fields are correct */
1076 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1077 				      inccb->ccb_h.pinfo.priority);
1078 			xpt_merge_ccb(ccb, inccb);
1079 			ccb->ccb_h.cbfcnp = xptdone;
1080 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1081 			bcopy(ccb, inccb, sizeof(union ccb));
1082 			xpt_free_path(ccb->ccb_h.path);
1083 			xpt_free_ccb(ccb);
1084 			CAM_SIM_UNLOCK(bus->sim);
1085 			break;
1086 
1087 		case XPT_DEBUG: {
1088 			union ccb ccb;
1089 
1090 			/*
1091 			 * This is an immediate CCB, so it's okay to
1092 			 * allocate it on the stack.
1093 			 */
1094 
1095 			CAM_SIM_LOCK(bus->sim);
1096 
1097 			/*
1098 			 * Create a path using the bus, target, and lun the
1099 			 * user passed in.
1100 			 */
1101 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1102 					    inccb->ccb_h.path_id,
1103 					    inccb->ccb_h.target_id,
1104 					    inccb->ccb_h.target_lun) !=
1105 					    CAM_REQ_CMP){
1106 				error = EINVAL;
1107 				CAM_SIM_UNLOCK(bus->sim);
1108 				break;
1109 			}
1110 			/* Ensure all of our fields are correct */
1111 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1112 				      inccb->ccb_h.pinfo.priority);
1113 			xpt_merge_ccb(&ccb, inccb);
1114 			ccb.ccb_h.cbfcnp = xptdone;
1115 			xpt_action(&ccb);
1116 			CAM_SIM_UNLOCK(bus->sim);
1117 			bcopy(&ccb, inccb, sizeof(union ccb));
1118 			xpt_free_path(ccb.ccb_h.path);
1119 			break;
1120 
1121 		}
1122 		case XPT_DEV_MATCH: {
1123 			struct cam_periph_map_info mapinfo;
1124 			struct cam_path *old_path;
1125 
1126 			/*
1127 			 * We can't deal with physical addresses for this
1128 			 * type of transaction.
1129 			 */
1130 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1131 				error = EINVAL;
1132 				break;
1133 			}
1134 
1135 			/*
1136 			 * Save this in case the caller had it set to
1137 			 * something in particular.
1138 			 */
1139 			old_path = inccb->ccb_h.path;
1140 
1141 			/*
1142 			 * We really don't need a path for the matching
1143 			 * code.  The path is needed because of the
1144 			 * debugging statements in xpt_action().  They
1145 			 * assume that the CCB has a valid path.
1146 			 */
1147 			inccb->ccb_h.path = xpt_periph->path;
1148 
1149 			bzero(&mapinfo, sizeof(mapinfo));
1150 
1151 			/*
1152 			 * Map the pattern and match buffers into kernel
1153 			 * virtual address space.
1154 			 */
1155 			error = cam_periph_mapmem(inccb, &mapinfo);
1156 
1157 			if (error) {
1158 				inccb->ccb_h.path = old_path;
1159 				break;
1160 			}
1161 
1162 			/*
1163 			 * This is an immediate CCB, we can send it on directly.
1164 			 */
1165 			xpt_action(inccb);
1166 
1167 			/*
1168 			 * Map the buffers back into user space.
1169 			 */
1170 			cam_periph_unmapmem(inccb, &mapinfo);
1171 
1172 			inccb->ccb_h.path = old_path;
1173 
1174 			error = 0;
1175 			break;
1176 		}
1177 		default:
1178 			error = ENOTSUP;
1179 			break;
1180 		}
1181 		xpt_release_bus(bus);
1182 		break;
1183 	}
1184 	/*
1185 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1186 	 * with the periphal driver name and unit name filled in.  The other
1187 	 * fields don't really matter as input.  The passthrough driver name
1188 	 * ("pass"), and unit number are passed back in the ccb.  The current
1189 	 * device generation number, and the index into the device peripheral
1190 	 * driver list, and the status are also passed back.  Note that
1191 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1192 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1193 	 * (or rather should be) impossible for the device peripheral driver
1194 	 * list to change since we look at the whole thing in one pass, and
1195 	 * we do it with lock protection.
1196 	 *
1197 	 */
1198 	case CAMGETPASSTHRU: {
1199 		union ccb *ccb;
1200 		struct cam_periph *periph;
1201 		struct periph_driver **p_drv;
1202 		char   *name;
1203 		u_int unit;
1204 		u_int cur_generation;
1205 		int base_periph_found;
1206 		int splbreaknum;
1207 
1208 		ccb = (union ccb *)ap->a_data;
1209 		unit = ccb->cgdl.unit_number;
1210 		name = ccb->cgdl.periph_name;
1211 		/*
1212 		 * Every 100 devices, we want to drop our lock protection to
1213 		 * give the software interrupt handler a chance to run.
1214 		 * Most systems won't run into this check, but this should
1215 		 * avoid starvation in the software interrupt handler in
1216 		 * large systems.
1217 		 */
1218 		splbreaknum = 100;
1219 
1220 		ccb = (union ccb *)ap->a_data;
1221 
1222 		base_periph_found = 0;
1223 
1224 		/*
1225 		 * Sanity check -- make sure we don't get a null peripheral
1226 		 * driver name.
1227 		 */
1228 		if (*ccb->cgdl.periph_name == '\0') {
1229 			error = EINVAL;
1230 			break;
1231 		}
1232 
1233 		/* Keep the list from changing while we traverse it */
1234 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1235 ptstartover:
1236 		cur_generation = xsoftc.xpt_generation;
1237 
1238 		/* first find our driver in the list of drivers */
1239 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1240 			if (strcmp((*p_drv)->driver_name, name) == 0)
1241 				break;
1242 		}
1243 
1244 		if (*p_drv == NULL) {
1245 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1246 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1247 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1248 			*ccb->cgdl.periph_name = '\0';
1249 			ccb->cgdl.unit_number = 0;
1250 			error = ENOENT;
1251 			break;
1252 		}
1253 
1254 		/*
1255 		 * Run through every peripheral instance of this driver
1256 		 * and check to see whether it matches the unit passed
1257 		 * in by the user.  If it does, get out of the loops and
1258 		 * find the passthrough driver associated with that
1259 		 * peripheral driver.
1260 		 */
1261 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1262 
1263 			if (periph->unit_number == unit) {
1264 				break;
1265 			} else if (--splbreaknum == 0) {
1266 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1267 				lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1268 				splbreaknum = 100;
1269 				if (cur_generation != xsoftc.xpt_generation)
1270 				       goto ptstartover;
1271 			}
1272 		}
1273 		/*
1274 		 * If we found the peripheral driver that the user passed
1275 		 * in, go through all of the peripheral drivers for that
1276 		 * particular device and look for a passthrough driver.
1277 		 */
1278 		if (periph != NULL) {
1279 			struct cam_ed *device;
1280 			int i;
1281 
1282 			base_periph_found = 1;
1283 			device = periph->path->device;
1284 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1285 			     periph != NULL;
1286 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1287 				/*
1288 				 * Check to see whether we have a
1289 				 * passthrough device or not.
1290 				 */
1291 				if (strcmp(periph->periph_name, "pass") == 0) {
1292 					/*
1293 					 * Fill in the getdevlist fields.
1294 					 */
1295 					strcpy(ccb->cgdl.periph_name,
1296 					       periph->periph_name);
1297 					ccb->cgdl.unit_number =
1298 						periph->unit_number;
1299 					if (SLIST_NEXT(periph, periph_links))
1300 						ccb->cgdl.status =
1301 							CAM_GDEVLIST_MORE_DEVS;
1302 					else
1303 						ccb->cgdl.status =
1304 						       CAM_GDEVLIST_LAST_DEVICE;
1305 					ccb->cgdl.generation =
1306 						device->generation;
1307 					ccb->cgdl.index = i;
1308 					/*
1309 					 * Fill in some CCB header fields
1310 					 * that the user may want.
1311 					 */
1312 					ccb->ccb_h.path_id =
1313 						periph->path->bus->path_id;
1314 					ccb->ccb_h.target_id =
1315 						periph->path->target->target_id;
1316 					ccb->ccb_h.target_lun =
1317 						periph->path->device->lun_id;
1318 					ccb->ccb_h.status = CAM_REQ_CMP;
1319 					break;
1320 				}
1321 			}
1322 		}
1323 
1324 		/*
1325 		 * If the periph is null here, one of two things has
1326 		 * happened.  The first possibility is that we couldn't
1327 		 * find the unit number of the particular peripheral driver
1328 		 * that the user is asking about.  e.g. the user asks for
1329 		 * the passthrough driver for "da11".  We find the list of
1330 		 * "da" peripherals all right, but there is no unit 11.
1331 		 * The other possibility is that we went through the list
1332 		 * of peripheral drivers attached to the device structure,
1333 		 * but didn't find one with the name "pass".  Either way,
1334 		 * we return ENOENT, since we couldn't find something.
1335 		 */
1336 		if (periph == NULL) {
1337 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1338 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1339 			*ccb->cgdl.periph_name = '\0';
1340 			ccb->cgdl.unit_number = 0;
1341 			error = ENOENT;
1342 			/*
1343 			 * It is unfortunate that this is even necessary,
1344 			 * but there are many, many clueless users out there.
1345 			 * If this is true, the user is looking for the
1346 			 * passthrough driver, but doesn't have one in his
1347 			 * kernel.
1348 			 */
1349 			if (base_periph_found == 1) {
1350 				kprintf("xptioctl: pass driver is not in the "
1351 				       "kernel\n");
1352 				kprintf("xptioctl: put \"device pass\" in "
1353 				       "your kernel config file\n");
1354 			}
1355 		}
1356 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1357 		break;
1358 		}
1359 	default:
1360 		error = ENOTTY;
1361 		break;
1362 	}
1363 
1364 	return(error);
1365 }
1366 
1367 static int
1368 cam_module_event_handler(module_t mod, int what, void *arg)
1369 {
1370 	int error;
1371 
1372 	switch (what) {
1373 	case MOD_LOAD:
1374 		if ((error = xpt_init(NULL)) != 0)
1375 			return (error);
1376 		break;
1377 	case MOD_UNLOAD:
1378 		return EBUSY;
1379 	default:
1380 		return EOPNOTSUPP;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 /*
1387  * Thread to handle asynchronous main-context requests.
1388  *
1389  * This function is typically used by drivers to perform complex actions
1390  * such as bus scans and engineering requests in a main context instead
1391  * of an interrupt context.
1392  */
1393 static void
1394 xpt_scanner_thread(void *dummy)
1395 {
1396 	union ccb	*ccb;
1397 	struct cam_sim	*sim;
1398 
1399 	get_mplock();
1400 
1401 	for (;;) {
1402 		xpt_lock_buses();
1403 		xsoftc.ccb_scanq_running = 1;
1404 		while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1405 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1406 				     sim_links.tqe);
1407 			xpt_unlock_buses();
1408 
1409 			sim = ccb->ccb_h.path->bus->sim;
1410 			CAM_SIM_LOCK(sim);
1411 			xpt_action(ccb);
1412 			CAM_SIM_UNLOCK(sim);
1413 
1414 			xpt_lock_buses();
1415 		}
1416 		xsoftc.ccb_scanq_running = 0;
1417 		tsleep_interlock(&xsoftc.ccb_scanq, 0);
1418 		xpt_unlock_buses();
1419 		tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1420 	}
1421 
1422 	rel_mplock();	/* not reached */
1423 }
1424 
1425 /*
1426  * Issue an asynchronous asction
1427  */
1428 void
1429 xpt_action_async(union ccb *ccb)
1430 {
1431 	xpt_lock_buses();
1432 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1433 	if (xsoftc.ccb_scanq_running == 0) {
1434 		xsoftc.ccb_scanq_running = 1;
1435 		wakeup(&xsoftc.ccb_scanq);
1436 	}
1437 	xpt_unlock_buses();
1438 }
1439 
1440 
1441 /* Functions accessed by the peripheral drivers */
1442 static int
1443 xpt_init(void *dummy)
1444 {
1445 	struct cam_sim *xpt_sim;
1446 	struct cam_path *path;
1447 	struct cam_devq *devq;
1448 	cam_status status;
1449 
1450 	TAILQ_INIT(&xsoftc.xpt_busses);
1451 	TAILQ_INIT(&cam_simq);
1452 	TAILQ_INIT(&xsoftc.ccb_scanq);
1453 	STAILQ_INIT(&xsoftc.highpowerq);
1454 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1455 
1456 	spin_init(&cam_simq_spin);
1457 	lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1458 	lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1459 
1460 	SLIST_INIT(&cam_dead_sim.ccb_freeq);
1461 	TAILQ_INIT(&cam_dead_sim.sim_doneq);
1462 	spin_init(&cam_dead_sim.sim_spin);
1463 	cam_dead_sim.sim_action = dead_sim_action;
1464 	cam_dead_sim.sim_poll = dead_sim_poll;
1465 	cam_dead_sim.sim_name = "dead_sim";
1466 	cam_dead_sim.lock = &cam_dead_lock;
1467 	lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1468 	cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1469 
1470 	/*
1471 	 * The xpt layer is, itself, the equivelent of a SIM.
1472 	 * Allow 16 ccbs in the ccb pool for it.  This should
1473 	 * give decent parallelism when we probe busses and
1474 	 * perform other XPT functions.
1475 	 */
1476 	devq = cam_simq_alloc(16);
1477 	xpt_sim = cam_sim_alloc(xptaction,
1478 				xptpoll,
1479 				"xpt",
1480 				/*softc*/NULL,
1481 				/*unit*/0,
1482 				/*lock*/&xsoftc.xpt_lock,
1483 				/*max_dev_transactions*/0,
1484 				/*max_tagged_dev_transactions*/0,
1485 				devq);
1486 	cam_simq_release(devq);
1487 	if (xpt_sim == NULL)
1488 		return (ENOMEM);
1489 
1490 	xpt_sim->max_ccbs = 16;
1491 
1492 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1493 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1494 		kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495 		       " failing attach\n", status);
1496 		return (EINVAL);
1497 	}
1498 
1499 	/*
1500 	 * Looking at the XPT from the SIM layer, the XPT is
1501 	 * the equivelent of a peripheral driver.  Allocate
1502 	 * a peripheral driver entry for us.
1503 	 */
1504 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505 				      CAM_TARGET_WILDCARD,
1506 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1508 		       " failing attach\n", status);
1509 		return (EINVAL);
1510 	}
1511 
1512 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1513 			 path, NULL, 0, xpt_sim);
1514 	xpt_free_path(path);
1515 
1516 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1517 
1518 	/*
1519 	 * Register a callback for when interrupts are enabled.
1520 	 */
1521 	xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1522 				  M_CAMXPT, M_INTWAIT | M_ZERO);
1523 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1524 	xsoftc.xpt_config_hook->ich_desc = "xpt";
1525 	xsoftc.xpt_config_hook->ich_order = 1000;
1526 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1527 		kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1528 		kprintf("xpt_init: config_intrhook_establish failed "
1529 		       "- failing attach\n");
1530 	}
1531 
1532 	/* fire up rescan thread */
1533 	if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1534 		kprintf("xpt_init: failed to create rescan thread\n");
1535 	}
1536 	/* Install our software interrupt handlers */
1537 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL);
1538 
1539 	return (0);
1540 }
1541 
1542 static cam_status
1543 xptregister(struct cam_periph *periph, void *arg)
1544 {
1545 	struct cam_sim *xpt_sim;
1546 
1547 	if (periph == NULL) {
1548 		kprintf("xptregister: periph was NULL!!\n");
1549 		return(CAM_REQ_CMP_ERR);
1550 	}
1551 
1552 	xpt_sim = (struct cam_sim *)arg;
1553 	xpt_sim->softc = periph;
1554 	xpt_periph = periph;
1555 	periph->softc = NULL;
1556 
1557 	return(CAM_REQ_CMP);
1558 }
1559 
1560 int32_t
1561 xpt_add_periph(struct cam_periph *periph)
1562 {
1563 	struct cam_ed *device;
1564 	int32_t	 status;
1565 	struct periph_list *periph_head;
1566 
1567 	sim_lock_assert_owned(periph->sim->lock);
1568 
1569 	device = periph->path->device;
1570 
1571 	periph_head = &device->periphs;
1572 
1573 	status = CAM_REQ_CMP;
1574 
1575 	if (device != NULL) {
1576 		/*
1577 		 * Make room for this peripheral
1578 		 * so it will fit in the queue
1579 		 * when it's scheduled to run
1580 		 */
1581 		status = camq_resize(&device->drvq,
1582 				     device->drvq.array_size + 1);
1583 
1584 		device->generation++;
1585 
1586 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1587 	}
1588 
1589 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1590 	xsoftc.xpt_generation++;
1591 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1592 
1593 	return (status);
1594 }
1595 
1596 void
1597 xpt_remove_periph(struct cam_periph *periph)
1598 {
1599 	struct cam_ed *device;
1600 
1601 	sim_lock_assert_owned(periph->sim->lock);
1602 
1603 	device = periph->path->device;
1604 
1605 	if (device != NULL) {
1606 		struct periph_list *periph_head;
1607 
1608 		periph_head = &device->periphs;
1609 
1610 		/* Release the slot for this peripheral */
1611 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1612 
1613 		device->generation++;
1614 
1615 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1616 	}
1617 
1618 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1619 	xsoftc.xpt_generation++;
1620 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1621 }
1622 
1623 void
1624 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1625 {
1626 	struct	ccb_pathinq cpi;
1627 	struct	ccb_trans_settings cts;
1628 	struct	cam_path *path;
1629 	u_int	speed;
1630 	u_int	freq;
1631 	u_int	mb;
1632 
1633 	sim_lock_assert_owned(periph->sim->lock);
1634 
1635 	path = periph->path;
1636 
1637 	/* Report basic attachment and inquiry data */
1638 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1639 	       periph->periph_name, periph->unit_number,
1640 	       path->bus->sim->sim_name,
1641 	       path->bus->sim->unit_number,
1642 	       path->bus->sim->bus_id,
1643 	       path->target->target_id,
1644 	       path->device->lun_id);
1645 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1646 	scsi_print_inquiry(&path->device->inq_data);
1647 
1648 	/* Report serial number */
1649 	if (path->device->serial_num_len > 0) {
1650 		/* Don't wrap the screen  - print only the first 60 chars */
1651 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1652 		       periph->unit_number, path->device->serial_num);
1653 	}
1654 
1655 	/* Acquire and report transfer speed */
1656 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1657 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1658 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1659 	xpt_action((union ccb*)&cts);
1660 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1661 		return;
1662 	}
1663 
1664 	/* Ask the SIM for its base transfer speed */
1665 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1666 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1667 	xpt_action((union ccb *)&cpi);
1668 
1669 	speed = cpi.base_transfer_speed;
1670 	freq = 0;
1671 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1672 		struct	ccb_trans_settings_spi *spi;
1673 
1674 		spi = &cts.xport_specific.spi;
1675 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1676 		  && spi->sync_offset != 0) {
1677 			freq = scsi_calc_syncsrate(spi->sync_period);
1678 			speed = freq;
1679 		}
1680 
1681 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1682 			speed *= (0x01 << spi->bus_width);
1683 	}
1684 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1685 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1686 		if (fc->valid & CTS_FC_VALID_SPEED) {
1687 			speed = fc->bitrate;
1688 		}
1689 	}
1690 
1691 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1692 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1693 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1694 			speed = sas->bitrate;
1695 		}
1696 	}
1697 
1698 	mb = speed / 1000;
1699 	if (mb > 0)
1700 		kprintf("%s%d: %d.%03dMB/s transfers",
1701 		       periph->periph_name, periph->unit_number,
1702 		       mb, speed % 1000);
1703 	else
1704 		kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1705 		       periph->unit_number, speed);
1706 
1707 	/* Report additional information about SPI connections */
1708 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1709 		struct	ccb_trans_settings_spi *spi;
1710 
1711 		spi = &cts.xport_specific.spi;
1712 		if (freq != 0) {
1713 			kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1714 			       freq % 1000,
1715 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1716 			     ? " DT" : "",
1717 			       spi->sync_offset);
1718 		}
1719 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1720 		 && spi->bus_width > 0) {
1721 			if (freq != 0) {
1722 				kprintf(", ");
1723 			} else {
1724 				kprintf(" (");
1725 			}
1726 			kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1727 		} else if (freq != 0) {
1728 			kprintf(")");
1729 		}
1730 	}
1731 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1732 		struct	ccb_trans_settings_fc *fc;
1733 
1734 		fc = &cts.xport_specific.fc;
1735 		if (fc->valid & CTS_FC_VALID_WWNN)
1736 			kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1737 		if (fc->valid & CTS_FC_VALID_WWPN)
1738 			kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1739 		if (fc->valid & CTS_FC_VALID_PORT)
1740 			kprintf(" PortID 0x%x", fc->port);
1741 	}
1742 
1743 	if (path->device->inq_flags & SID_CmdQue
1744 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1745 		kprintf("\n%s%d: Command Queueing Enabled",
1746 		       periph->periph_name, periph->unit_number);
1747 	}
1748 	kprintf("\n");
1749 
1750 	/*
1751 	 * We only want to print the caller's announce string if they've
1752 	 * passed one in..
1753 	 */
1754 	if (announce_string != NULL)
1755 		kprintf("%s%d: %s\n", periph->periph_name,
1756 		       periph->unit_number, announce_string);
1757 }
1758 
1759 static dev_match_ret
1760 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1761 	    struct cam_eb *bus)
1762 {
1763 	dev_match_ret retval;
1764 	int i;
1765 
1766 	retval = DM_RET_NONE;
1767 
1768 	/*
1769 	 * If we aren't given something to match against, that's an error.
1770 	 */
1771 	if (bus == NULL)
1772 		return(DM_RET_ERROR);
1773 
1774 	/*
1775 	 * If there are no match entries, then this bus matches no
1776 	 * matter what.
1777 	 */
1778 	if ((patterns == NULL) || (num_patterns == 0))
1779 		return(DM_RET_DESCEND | DM_RET_COPY);
1780 
1781 	for (i = 0; i < num_patterns; i++) {
1782 		struct bus_match_pattern *cur_pattern;
1783 
1784 		/*
1785 		 * If the pattern in question isn't for a bus node, we
1786 		 * aren't interested.  However, we do indicate to the
1787 		 * calling routine that we should continue descending the
1788 		 * tree, since the user wants to match against lower-level
1789 		 * EDT elements.
1790 		 */
1791 		if (patterns[i].type != DEV_MATCH_BUS) {
1792 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1793 				retval |= DM_RET_DESCEND;
1794 			continue;
1795 		}
1796 
1797 		cur_pattern = &patterns[i].pattern.bus_pattern;
1798 
1799 		/*
1800 		 * If they want to match any bus node, we give them any
1801 		 * device node.
1802 		 */
1803 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1804 			/* set the copy flag */
1805 			retval |= DM_RET_COPY;
1806 
1807 			/*
1808 			 * If we've already decided on an action, go ahead
1809 			 * and return.
1810 			 */
1811 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1812 				return(retval);
1813 		}
1814 
1815 		/*
1816 		 * Not sure why someone would do this...
1817 		 */
1818 		if (cur_pattern->flags == BUS_MATCH_NONE)
1819 			continue;
1820 
1821 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1822 		 && (cur_pattern->path_id != bus->path_id))
1823 			continue;
1824 
1825 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1826 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1827 			continue;
1828 
1829 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1830 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1831 			continue;
1832 
1833 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1834 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1835 			     DEV_IDLEN) != 0))
1836 			continue;
1837 
1838 		/*
1839 		 * If we get to this point, the user definitely wants
1840 		 * information on this bus.  So tell the caller to copy the
1841 		 * data out.
1842 		 */
1843 		retval |= DM_RET_COPY;
1844 
1845 		/*
1846 		 * If the return action has been set to descend, then we
1847 		 * know that we've already seen a non-bus matching
1848 		 * expression, therefore we need to further descend the tree.
1849 		 * This won't change by continuing around the loop, so we
1850 		 * go ahead and return.  If we haven't seen a non-bus
1851 		 * matching expression, we keep going around the loop until
1852 		 * we exhaust the matching expressions.  We'll set the stop
1853 		 * flag once we fall out of the loop.
1854 		 */
1855 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1856 			return(retval);
1857 	}
1858 
1859 	/*
1860 	 * If the return action hasn't been set to descend yet, that means
1861 	 * we haven't seen anything other than bus matching patterns.  So
1862 	 * tell the caller to stop descending the tree -- the user doesn't
1863 	 * want to match against lower level tree elements.
1864 	 */
1865 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1866 		retval |= DM_RET_STOP;
1867 
1868 	return(retval);
1869 }
1870 
1871 static dev_match_ret
1872 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1873 	       struct cam_ed *device)
1874 {
1875 	dev_match_ret retval;
1876 	int i;
1877 
1878 	retval = DM_RET_NONE;
1879 
1880 	/*
1881 	 * If we aren't given something to match against, that's an error.
1882 	 */
1883 	if (device == NULL)
1884 		return(DM_RET_ERROR);
1885 
1886 	/*
1887 	 * If there are no match entries, then this device matches no
1888 	 * matter what.
1889 	 */
1890 	if ((patterns == NULL) || (num_patterns == 0))
1891 		return(DM_RET_DESCEND | DM_RET_COPY);
1892 
1893 	for (i = 0; i < num_patterns; i++) {
1894 		struct device_match_pattern *cur_pattern;
1895 
1896 		/*
1897 		 * If the pattern in question isn't for a device node, we
1898 		 * aren't interested.
1899 		 */
1900 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1901 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1902 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1903 				retval |= DM_RET_DESCEND;
1904 			continue;
1905 		}
1906 
1907 		cur_pattern = &patterns[i].pattern.device_pattern;
1908 
1909 		/*
1910 		 * If they want to match any device node, we give them any
1911 		 * device node.
1912 		 */
1913 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1914 			/* set the copy flag */
1915 			retval |= DM_RET_COPY;
1916 
1917 
1918 			/*
1919 			 * If we've already decided on an action, go ahead
1920 			 * and return.
1921 			 */
1922 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1923 				return(retval);
1924 		}
1925 
1926 		/*
1927 		 * Not sure why someone would do this...
1928 		 */
1929 		if (cur_pattern->flags == DEV_MATCH_NONE)
1930 			continue;
1931 
1932 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1933 		 && (cur_pattern->path_id != device->target->bus->path_id))
1934 			continue;
1935 
1936 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1937 		 && (cur_pattern->target_id != device->target->target_id))
1938 			continue;
1939 
1940 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1941 		 && (cur_pattern->target_lun != device->lun_id))
1942 			continue;
1943 
1944 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1945 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1946 				    (caddr_t)&cur_pattern->inq_pat,
1947 				    1, sizeof(cur_pattern->inq_pat),
1948 				    scsi_static_inquiry_match) == NULL))
1949 			continue;
1950 
1951 		/*
1952 		 * If we get to this point, the user definitely wants
1953 		 * information on this device.  So tell the caller to copy
1954 		 * the data out.
1955 		 */
1956 		retval |= DM_RET_COPY;
1957 
1958 		/*
1959 		 * If the return action has been set to descend, then we
1960 		 * know that we've already seen a peripheral matching
1961 		 * expression, therefore we need to further descend the tree.
1962 		 * This won't change by continuing around the loop, so we
1963 		 * go ahead and return.  If we haven't seen a peripheral
1964 		 * matching expression, we keep going around the loop until
1965 		 * we exhaust the matching expressions.  We'll set the stop
1966 		 * flag once we fall out of the loop.
1967 		 */
1968 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1969 			return(retval);
1970 	}
1971 
1972 	/*
1973 	 * If the return action hasn't been set to descend yet, that means
1974 	 * we haven't seen any peripheral matching patterns.  So tell the
1975 	 * caller to stop descending the tree -- the user doesn't want to
1976 	 * match against lower level tree elements.
1977 	 */
1978 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1979 		retval |= DM_RET_STOP;
1980 
1981 	return(retval);
1982 }
1983 
1984 /*
1985  * Match a single peripheral against any number of match patterns.
1986  */
1987 static dev_match_ret
1988 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1989 	       struct cam_periph *periph)
1990 {
1991 	dev_match_ret retval;
1992 	int i;
1993 
1994 	/*
1995 	 * If we aren't given something to match against, that's an error.
1996 	 */
1997 	if (periph == NULL)
1998 		return(DM_RET_ERROR);
1999 
2000 	/*
2001 	 * If there are no match entries, then this peripheral matches no
2002 	 * matter what.
2003 	 */
2004 	if ((patterns == NULL) || (num_patterns == 0))
2005 		return(DM_RET_STOP | DM_RET_COPY);
2006 
2007 	/*
2008 	 * There aren't any nodes below a peripheral node, so there's no
2009 	 * reason to descend the tree any further.
2010 	 */
2011 	retval = DM_RET_STOP;
2012 
2013 	for (i = 0; i < num_patterns; i++) {
2014 		struct periph_match_pattern *cur_pattern;
2015 
2016 		/*
2017 		 * If the pattern in question isn't for a peripheral, we
2018 		 * aren't interested.
2019 		 */
2020 		if (patterns[i].type != DEV_MATCH_PERIPH)
2021 			continue;
2022 
2023 		cur_pattern = &patterns[i].pattern.periph_pattern;
2024 
2025 		/*
2026 		 * If they want to match on anything, then we will do so.
2027 		 */
2028 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2029 			/* set the copy flag */
2030 			retval |= DM_RET_COPY;
2031 
2032 			/*
2033 			 * We've already set the return action to stop,
2034 			 * since there are no nodes below peripherals in
2035 			 * the tree.
2036 			 */
2037 			return(retval);
2038 		}
2039 
2040 		/*
2041 		 * Not sure why someone would do this...
2042 		 */
2043 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2044 			continue;
2045 
2046 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2047 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2048 			continue;
2049 
2050 		/*
2051 		 * For the target and lun id's, we have to make sure the
2052 		 * target and lun pointers aren't NULL.  The xpt peripheral
2053 		 * has a wildcard target and device.
2054 		 */
2055 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2056 		 && ((periph->path->target == NULL)
2057 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2058 			continue;
2059 
2060 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2061 		 && ((periph->path->device == NULL)
2062 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2063 			continue;
2064 
2065 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2066 		 && (cur_pattern->unit_number != periph->unit_number))
2067 			continue;
2068 
2069 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2070 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2071 			     DEV_IDLEN) != 0))
2072 			continue;
2073 
2074 		/*
2075 		 * If we get to this point, the user definitely wants
2076 		 * information on this peripheral.  So tell the caller to
2077 		 * copy the data out.
2078 		 */
2079 		retval |= DM_RET_COPY;
2080 
2081 		/*
2082 		 * The return action has already been set to stop, since
2083 		 * peripherals don't have any nodes below them in the EDT.
2084 		 */
2085 		return(retval);
2086 	}
2087 
2088 	/*
2089 	 * If we get to this point, the peripheral that was passed in
2090 	 * doesn't match any of the patterns.
2091 	 */
2092 	return(retval);
2093 }
2094 
2095 static int
2096 xptedtbusfunc(struct cam_eb *bus, void *arg)
2097 {
2098 	struct ccb_dev_match *cdm;
2099 	dev_match_ret retval;
2100 
2101 	cdm = (struct ccb_dev_match *)arg;
2102 
2103 	/*
2104 	 * If our position is for something deeper in the tree, that means
2105 	 * that we've already seen this node.  So, we keep going down.
2106 	 */
2107 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2108 	 && (cdm->pos.cookie.bus == bus)
2109 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2110 	 && (cdm->pos.cookie.target != NULL))
2111 		retval = DM_RET_DESCEND;
2112 	else
2113 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2114 
2115 	/*
2116 	 * If we got an error, bail out of the search.
2117 	 */
2118 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2119 		cdm->status = CAM_DEV_MATCH_ERROR;
2120 		return(0);
2121 	}
2122 
2123 	/*
2124 	 * If the copy flag is set, copy this bus out.
2125 	 */
2126 	if (retval & DM_RET_COPY) {
2127 		int spaceleft, j;
2128 
2129 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2130 			sizeof(struct dev_match_result));
2131 
2132 		/*
2133 		 * If we don't have enough space to put in another
2134 		 * match result, save our position and tell the
2135 		 * user there are more devices to check.
2136 		 */
2137 		if (spaceleft < sizeof(struct dev_match_result)) {
2138 			bzero(&cdm->pos, sizeof(cdm->pos));
2139 			cdm->pos.position_type =
2140 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2141 
2142 			cdm->pos.cookie.bus = bus;
2143 			cdm->pos.generations[CAM_BUS_GENERATION]=
2144 				xsoftc.bus_generation;
2145 			cdm->status = CAM_DEV_MATCH_MORE;
2146 			return(0);
2147 		}
2148 		j = cdm->num_matches;
2149 		cdm->num_matches++;
2150 		cdm->matches[j].type = DEV_MATCH_BUS;
2151 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2152 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2153 		cdm->matches[j].result.bus_result.unit_number =
2154 			bus->sim->unit_number;
2155 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2156 			bus->sim->sim_name, DEV_IDLEN);
2157 	}
2158 
2159 	/*
2160 	 * If the user is only interested in busses, there's no
2161 	 * reason to descend to the next level in the tree.
2162 	 */
2163 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2164 		return(1);
2165 
2166 	/*
2167 	 * If there is a target generation recorded, check it to
2168 	 * make sure the target list hasn't changed.
2169 	 */
2170 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2171 	 && (bus == cdm->pos.cookie.bus)
2172 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2173 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2174 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2175 	     bus->generation)) {
2176 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2177 		return(0);
2178 	}
2179 
2180 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2181 	 && (cdm->pos.cookie.bus == bus)
2182 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2183 	 && (cdm->pos.cookie.target != NULL))
2184 		return(xpttargettraverse(bus,
2185 					(struct cam_et *)cdm->pos.cookie.target,
2186 					 xptedttargetfunc, arg));
2187 	else
2188 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2189 }
2190 
2191 static int
2192 xptedttargetfunc(struct cam_et *target, void *arg)
2193 {
2194 	struct ccb_dev_match *cdm;
2195 
2196 	cdm = (struct ccb_dev_match *)arg;
2197 
2198 	/*
2199 	 * If there is a device list generation recorded, check it to
2200 	 * make sure the device list hasn't changed.
2201 	 */
2202 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2203 	 && (cdm->pos.cookie.bus == target->bus)
2204 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2205 	 && (cdm->pos.cookie.target == target)
2206 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2207 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2208 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2209 	     target->generation)) {
2210 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2211 		return(0);
2212 	}
2213 
2214 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2215 	 && (cdm->pos.cookie.bus == target->bus)
2216 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2217 	 && (cdm->pos.cookie.target == target)
2218 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2219 	 && (cdm->pos.cookie.device != NULL))
2220 		return(xptdevicetraverse(target,
2221 					(struct cam_ed *)cdm->pos.cookie.device,
2222 					 xptedtdevicefunc, arg));
2223 	else
2224 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2225 }
2226 
2227 static int
2228 xptedtdevicefunc(struct cam_ed *device, void *arg)
2229 {
2230 
2231 	struct ccb_dev_match *cdm;
2232 	dev_match_ret retval;
2233 
2234 	cdm = (struct ccb_dev_match *)arg;
2235 
2236 	/*
2237 	 * If our position is for something deeper in the tree, that means
2238 	 * that we've already seen this node.  So, we keep going down.
2239 	 */
2240 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2241 	 && (cdm->pos.cookie.device == device)
2242 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2243 	 && (cdm->pos.cookie.periph != NULL))
2244 		retval = DM_RET_DESCEND;
2245 	else
2246 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2247 					device);
2248 
2249 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2250 		cdm->status = CAM_DEV_MATCH_ERROR;
2251 		return(0);
2252 	}
2253 
2254 	/*
2255 	 * If the copy flag is set, copy this device out.
2256 	 */
2257 	if (retval & DM_RET_COPY) {
2258 		int spaceleft, j;
2259 
2260 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2261 			sizeof(struct dev_match_result));
2262 
2263 		/*
2264 		 * If we don't have enough space to put in another
2265 		 * match result, save our position and tell the
2266 		 * user there are more devices to check.
2267 		 */
2268 		if (spaceleft < sizeof(struct dev_match_result)) {
2269 			bzero(&cdm->pos, sizeof(cdm->pos));
2270 			cdm->pos.position_type =
2271 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2272 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2273 
2274 			cdm->pos.cookie.bus = device->target->bus;
2275 			cdm->pos.generations[CAM_BUS_GENERATION]=
2276 				xsoftc.bus_generation;
2277 			cdm->pos.cookie.target = device->target;
2278 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2279 				device->target->bus->generation;
2280 			cdm->pos.cookie.device = device;
2281 			cdm->pos.generations[CAM_DEV_GENERATION] =
2282 				device->target->generation;
2283 			cdm->status = CAM_DEV_MATCH_MORE;
2284 			return(0);
2285 		}
2286 		j = cdm->num_matches;
2287 		cdm->num_matches++;
2288 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2289 		cdm->matches[j].result.device_result.path_id =
2290 			device->target->bus->path_id;
2291 		cdm->matches[j].result.device_result.target_id =
2292 			device->target->target_id;
2293 		cdm->matches[j].result.device_result.target_lun =
2294 			device->lun_id;
2295 		bcopy(&device->inq_data,
2296 		      &cdm->matches[j].result.device_result.inq_data,
2297 		      sizeof(struct scsi_inquiry_data));
2298 
2299 		/* Let the user know whether this device is unconfigured */
2300 		if (device->flags & CAM_DEV_UNCONFIGURED)
2301 			cdm->matches[j].result.device_result.flags =
2302 				DEV_RESULT_UNCONFIGURED;
2303 		else
2304 			cdm->matches[j].result.device_result.flags =
2305 				DEV_RESULT_NOFLAG;
2306 	}
2307 
2308 	/*
2309 	 * If the user isn't interested in peripherals, don't descend
2310 	 * the tree any further.
2311 	 */
2312 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2313 		return(1);
2314 
2315 	/*
2316 	 * If there is a peripheral list generation recorded, make sure
2317 	 * it hasn't changed.
2318 	 */
2319 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2320 	 && (device->target->bus == cdm->pos.cookie.bus)
2321 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2322 	 && (device->target == cdm->pos.cookie.target)
2323 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2324 	 && (device == cdm->pos.cookie.device)
2325 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2326 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2327 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2328 	     device->generation)){
2329 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2330 		return(0);
2331 	}
2332 
2333 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2334 	 && (cdm->pos.cookie.bus == device->target->bus)
2335 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2336 	 && (cdm->pos.cookie.target == device->target)
2337 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2338 	 && (cdm->pos.cookie.device == device)
2339 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2340 	 && (cdm->pos.cookie.periph != NULL))
2341 		return(xptperiphtraverse(device,
2342 				(struct cam_periph *)cdm->pos.cookie.periph,
2343 				xptedtperiphfunc, arg));
2344 	else
2345 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2346 }
2347 
2348 static int
2349 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2350 {
2351 	struct ccb_dev_match *cdm;
2352 	dev_match_ret retval;
2353 
2354 	cdm = (struct ccb_dev_match *)arg;
2355 
2356 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2357 
2358 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2359 		cdm->status = CAM_DEV_MATCH_ERROR;
2360 		return(0);
2361 	}
2362 
2363 	/*
2364 	 * If the copy flag is set, copy this peripheral out.
2365 	 */
2366 	if (retval & DM_RET_COPY) {
2367 		int spaceleft, j;
2368 
2369 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2370 			sizeof(struct dev_match_result));
2371 
2372 		/*
2373 		 * If we don't have enough space to put in another
2374 		 * match result, save our position and tell the
2375 		 * user there are more devices to check.
2376 		 */
2377 		if (spaceleft < sizeof(struct dev_match_result)) {
2378 			bzero(&cdm->pos, sizeof(cdm->pos));
2379 			cdm->pos.position_type =
2380 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2381 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2382 				CAM_DEV_POS_PERIPH;
2383 
2384 			cdm->pos.cookie.bus = periph->path->bus;
2385 			cdm->pos.generations[CAM_BUS_GENERATION]=
2386 				xsoftc.bus_generation;
2387 			cdm->pos.cookie.target = periph->path->target;
2388 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2389 				periph->path->bus->generation;
2390 			cdm->pos.cookie.device = periph->path->device;
2391 			cdm->pos.generations[CAM_DEV_GENERATION] =
2392 				periph->path->target->generation;
2393 			cdm->pos.cookie.periph = periph;
2394 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2395 				periph->path->device->generation;
2396 			cdm->status = CAM_DEV_MATCH_MORE;
2397 			return(0);
2398 		}
2399 
2400 		j = cdm->num_matches;
2401 		cdm->num_matches++;
2402 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2403 		cdm->matches[j].result.periph_result.path_id =
2404 			periph->path->bus->path_id;
2405 		cdm->matches[j].result.periph_result.target_id =
2406 			periph->path->target->target_id;
2407 		cdm->matches[j].result.periph_result.target_lun =
2408 			periph->path->device->lun_id;
2409 		cdm->matches[j].result.periph_result.unit_number =
2410 			periph->unit_number;
2411 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2412 			periph->periph_name, DEV_IDLEN);
2413 	}
2414 
2415 	return(1);
2416 }
2417 
2418 static int
2419 xptedtmatch(struct ccb_dev_match *cdm)
2420 {
2421 	int ret;
2422 
2423 	cdm->num_matches = 0;
2424 
2425 	/*
2426 	 * Check the bus list generation.  If it has changed, the user
2427 	 * needs to reset everything and start over.
2428 	 */
2429 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2430 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2431 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2432 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2433 		return(0);
2434 	}
2435 
2436 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2437 	 && (cdm->pos.cookie.bus != NULL))
2438 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2439 				     xptedtbusfunc, cdm);
2440 	else
2441 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2442 
2443 	/*
2444 	 * If we get back 0, that means that we had to stop before fully
2445 	 * traversing the EDT.  It also means that one of the subroutines
2446 	 * has set the status field to the proper value.  If we get back 1,
2447 	 * we've fully traversed the EDT and copied out any matching entries.
2448 	 */
2449 	if (ret == 1)
2450 		cdm->status = CAM_DEV_MATCH_LAST;
2451 
2452 	return(ret);
2453 }
2454 
2455 static int
2456 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2457 {
2458 	struct ccb_dev_match *cdm;
2459 
2460 	cdm = (struct ccb_dev_match *)arg;
2461 
2462 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2463 	 && (cdm->pos.cookie.pdrv == pdrv)
2464 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2465 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2466 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2467 	     (*pdrv)->generation)) {
2468 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2469 		return(0);
2470 	}
2471 
2472 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2473 	 && (cdm->pos.cookie.pdrv == pdrv)
2474 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2475 	 && (cdm->pos.cookie.periph != NULL))
2476 		return(xptpdperiphtraverse(pdrv,
2477 				(struct cam_periph *)cdm->pos.cookie.periph,
2478 				xptplistperiphfunc, arg));
2479 	else
2480 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2481 }
2482 
2483 static int
2484 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2485 {
2486 	struct ccb_dev_match *cdm;
2487 	dev_match_ret retval;
2488 
2489 	cdm = (struct ccb_dev_match *)arg;
2490 
2491 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2492 
2493 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2494 		cdm->status = CAM_DEV_MATCH_ERROR;
2495 		return(0);
2496 	}
2497 
2498 	/*
2499 	 * If the copy flag is set, copy this peripheral out.
2500 	 */
2501 	if (retval & DM_RET_COPY) {
2502 		int spaceleft, j;
2503 
2504 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2505 			sizeof(struct dev_match_result));
2506 
2507 		/*
2508 		 * If we don't have enough space to put in another
2509 		 * match result, save our position and tell the
2510 		 * user there are more devices to check.
2511 		 */
2512 		if (spaceleft < sizeof(struct dev_match_result)) {
2513 			struct periph_driver **pdrv;
2514 
2515 			pdrv = NULL;
2516 			bzero(&cdm->pos, sizeof(cdm->pos));
2517 			cdm->pos.position_type =
2518 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2519 				CAM_DEV_POS_PERIPH;
2520 
2521 			/*
2522 			 * This may look a bit non-sensical, but it is
2523 			 * actually quite logical.  There are very few
2524 			 * peripheral drivers, and bloating every peripheral
2525 			 * structure with a pointer back to its parent
2526 			 * peripheral driver linker set entry would cost
2527 			 * more in the long run than doing this quick lookup.
2528 			 */
2529 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2530 				if (strcmp((*pdrv)->driver_name,
2531 				    periph->periph_name) == 0)
2532 					break;
2533 			}
2534 
2535 			if (*pdrv == NULL) {
2536 				cdm->status = CAM_DEV_MATCH_ERROR;
2537 				return(0);
2538 			}
2539 
2540 			cdm->pos.cookie.pdrv = pdrv;
2541 			/*
2542 			 * The periph generation slot does double duty, as
2543 			 * does the periph pointer slot.  They are used for
2544 			 * both edt and pdrv lookups and positioning.
2545 			 */
2546 			cdm->pos.cookie.periph = periph;
2547 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2548 				(*pdrv)->generation;
2549 			cdm->status = CAM_DEV_MATCH_MORE;
2550 			return(0);
2551 		}
2552 
2553 		j = cdm->num_matches;
2554 		cdm->num_matches++;
2555 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2556 		cdm->matches[j].result.periph_result.path_id =
2557 			periph->path->bus->path_id;
2558 
2559 		/*
2560 		 * The transport layer peripheral doesn't have a target or
2561 		 * lun.
2562 		 */
2563 		if (periph->path->target)
2564 			cdm->matches[j].result.periph_result.target_id =
2565 				periph->path->target->target_id;
2566 		else
2567 			cdm->matches[j].result.periph_result.target_id = -1;
2568 
2569 		if (periph->path->device)
2570 			cdm->matches[j].result.periph_result.target_lun =
2571 				periph->path->device->lun_id;
2572 		else
2573 			cdm->matches[j].result.periph_result.target_lun = -1;
2574 
2575 		cdm->matches[j].result.periph_result.unit_number =
2576 			periph->unit_number;
2577 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2578 			periph->periph_name, DEV_IDLEN);
2579 	}
2580 
2581 	return(1);
2582 }
2583 
2584 static int
2585 xptperiphlistmatch(struct ccb_dev_match *cdm)
2586 {
2587 	int ret;
2588 
2589 	cdm->num_matches = 0;
2590 
2591 	/*
2592 	 * At this point in the edt traversal function, we check the bus
2593 	 * list generation to make sure that no busses have been added or
2594 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2595 	 * For the peripheral driver list traversal function, however, we
2596 	 * don't have to worry about new peripheral driver types coming or
2597 	 * going; they're in a linker set, and therefore can't change
2598 	 * without a recompile.
2599 	 */
2600 
2601 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2602 	 && (cdm->pos.cookie.pdrv != NULL))
2603 		ret = xptpdrvtraverse(
2604 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2605 				xptplistpdrvfunc, cdm);
2606 	else
2607 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2608 
2609 	/*
2610 	 * If we get back 0, that means that we had to stop before fully
2611 	 * traversing the peripheral driver tree.  It also means that one of
2612 	 * the subroutines has set the status field to the proper value.  If
2613 	 * we get back 1, we've fully traversed the EDT and copied out any
2614 	 * matching entries.
2615 	 */
2616 	if (ret == 1)
2617 		cdm->status = CAM_DEV_MATCH_LAST;
2618 
2619 	return(ret);
2620 }
2621 
2622 static int
2623 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2624 {
2625 	struct cam_eb *bus, *next_bus;
2626 	int retval;
2627 
2628 	retval = 1;
2629 
2630 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2631 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2632 	     bus != NULL;
2633 	     bus = next_bus) {
2634 		next_bus = TAILQ_NEXT(bus, links);
2635 
2636 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2637 		CAM_SIM_LOCK(bus->sim);
2638 		retval = tr_func(bus, arg);
2639 		CAM_SIM_UNLOCK(bus->sim);
2640 		if (retval == 0)
2641 			return(retval);
2642 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2643 	}
2644 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2645 
2646 	return(retval);
2647 }
2648 
2649 static int
2650 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2651 		  xpt_targetfunc_t *tr_func, void *arg)
2652 {
2653 	struct cam_et *target, *next_target;
2654 	int retval;
2655 
2656 	retval = 1;
2657 	for (target = (start_target ? start_target :
2658 		       TAILQ_FIRST(&bus->et_entries));
2659 	     target != NULL; target = next_target) {
2660 
2661 		next_target = TAILQ_NEXT(target, links);
2662 
2663 		retval = tr_func(target, arg);
2664 
2665 		if (retval == 0)
2666 			return(retval);
2667 	}
2668 
2669 	return(retval);
2670 }
2671 
2672 static int
2673 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2674 		  xpt_devicefunc_t *tr_func, void *arg)
2675 {
2676 	struct cam_ed *device, *next_device;
2677 	int retval;
2678 
2679 	retval = 1;
2680 	for (device = (start_device ? start_device :
2681 		       TAILQ_FIRST(&target->ed_entries));
2682 	     device != NULL;
2683 	     device = next_device) {
2684 
2685 		next_device = TAILQ_NEXT(device, links);
2686 
2687 		retval = tr_func(device, arg);
2688 
2689 		if (retval == 0)
2690 			return(retval);
2691 	}
2692 
2693 	return(retval);
2694 }
2695 
2696 static int
2697 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2698 		  xpt_periphfunc_t *tr_func, void *arg)
2699 {
2700 	struct cam_periph *periph, *next_periph;
2701 	int retval;
2702 
2703 	retval = 1;
2704 
2705 	for (periph = (start_periph ? start_periph :
2706 		       SLIST_FIRST(&device->periphs));
2707 	     periph != NULL;
2708 	     periph = next_periph) {
2709 
2710 		next_periph = SLIST_NEXT(periph, periph_links);
2711 
2712 		retval = tr_func(periph, arg);
2713 		if (retval == 0)
2714 			return(retval);
2715 	}
2716 
2717 	return(retval);
2718 }
2719 
2720 static int
2721 xptpdrvtraverse(struct periph_driver **start_pdrv,
2722 		xpt_pdrvfunc_t *tr_func, void *arg)
2723 {
2724 	struct periph_driver **pdrv;
2725 	int retval;
2726 
2727 	retval = 1;
2728 
2729 	/*
2730 	 * We don't traverse the peripheral driver list like we do the
2731 	 * other lists, because it is a linker set, and therefore cannot be
2732 	 * changed during runtime.  If the peripheral driver list is ever
2733 	 * re-done to be something other than a linker set (i.e. it can
2734 	 * change while the system is running), the list traversal should
2735 	 * be modified to work like the other traversal functions.
2736 	 */
2737 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2738 	     *pdrv != NULL; pdrv++) {
2739 		retval = tr_func(pdrv, arg);
2740 
2741 		if (retval == 0)
2742 			return(retval);
2743 	}
2744 
2745 	return(retval);
2746 }
2747 
2748 static int
2749 xptpdperiphtraverse(struct periph_driver **pdrv,
2750 		    struct cam_periph *start_periph,
2751 		    xpt_periphfunc_t *tr_func, void *arg)
2752 {
2753 	struct cam_periph *periph, *next_periph;
2754 	int retval;
2755 
2756 	retval = 1;
2757 
2758 	for (periph = (start_periph ? start_periph :
2759 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2760 	     periph = next_periph) {
2761 
2762 		next_periph = TAILQ_NEXT(periph, unit_links);
2763 
2764 		retval = tr_func(periph, arg);
2765 		if (retval == 0)
2766 			return(retval);
2767 	}
2768 	return(retval);
2769 }
2770 
2771 static int
2772 xptdefbusfunc(struct cam_eb *bus, void *arg)
2773 {
2774 	struct xpt_traverse_config *tr_config;
2775 
2776 	tr_config = (struct xpt_traverse_config *)arg;
2777 
2778 	if (tr_config->depth == XPT_DEPTH_BUS) {
2779 		xpt_busfunc_t *tr_func;
2780 
2781 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2782 
2783 		return(tr_func(bus, tr_config->tr_arg));
2784 	} else
2785 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2786 }
2787 
2788 static int
2789 xptdeftargetfunc(struct cam_et *target, void *arg)
2790 {
2791 	struct xpt_traverse_config *tr_config;
2792 
2793 	tr_config = (struct xpt_traverse_config *)arg;
2794 
2795 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2796 		xpt_targetfunc_t *tr_func;
2797 
2798 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2799 
2800 		return(tr_func(target, tr_config->tr_arg));
2801 	} else
2802 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2803 }
2804 
2805 static int
2806 xptdefdevicefunc(struct cam_ed *device, void *arg)
2807 {
2808 	struct xpt_traverse_config *tr_config;
2809 
2810 	tr_config = (struct xpt_traverse_config *)arg;
2811 
2812 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2813 		xpt_devicefunc_t *tr_func;
2814 
2815 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2816 
2817 		return(tr_func(device, tr_config->tr_arg));
2818 	} else
2819 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2820 }
2821 
2822 static int
2823 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2824 {
2825 	struct xpt_traverse_config *tr_config;
2826 	xpt_periphfunc_t *tr_func;
2827 
2828 	tr_config = (struct xpt_traverse_config *)arg;
2829 
2830 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2831 
2832 	/*
2833 	 * Unlike the other default functions, we don't check for depth
2834 	 * here.  The peripheral driver level is the last level in the EDT,
2835 	 * so if we're here, we should execute the function in question.
2836 	 */
2837 	return(tr_func(periph, tr_config->tr_arg));
2838 }
2839 
2840 /*
2841  * Execute the given function for every bus in the EDT.
2842  */
2843 static int
2844 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2845 {
2846 	struct xpt_traverse_config tr_config;
2847 
2848 	tr_config.depth = XPT_DEPTH_BUS;
2849 	tr_config.tr_func = tr_func;
2850 	tr_config.tr_arg = arg;
2851 
2852 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2853 }
2854 
2855 /*
2856  * Execute the given function for every device in the EDT.
2857  */
2858 static int
2859 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2860 {
2861 	struct xpt_traverse_config tr_config;
2862 
2863 	tr_config.depth = XPT_DEPTH_DEVICE;
2864 	tr_config.tr_func = tr_func;
2865 	tr_config.tr_arg = arg;
2866 
2867 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2868 }
2869 
2870 static int
2871 xptsetasyncfunc(struct cam_ed *device, void *arg)
2872 {
2873 	struct cam_path path;
2874 	struct ccb_getdev cgd;
2875 	struct async_node *cur_entry;
2876 
2877 	cur_entry = (struct async_node *)arg;
2878 
2879 	/*
2880 	 * Don't report unconfigured devices (Wildcard devs,
2881 	 * devices only for target mode, device instances
2882 	 * that have been invalidated but are waiting for
2883 	 * their last reference count to be released).
2884 	 */
2885 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2886 		return (1);
2887 
2888 	xpt_compile_path(&path,
2889 			 NULL,
2890 			 device->target->bus->path_id,
2891 			 device->target->target_id,
2892 			 device->lun_id);
2893 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2894 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2895 	xpt_action((union ccb *)&cgd);
2896 	cur_entry->callback(cur_entry->callback_arg,
2897 			    AC_FOUND_DEVICE,
2898 			    &path, &cgd);
2899 	xpt_release_path(&path);
2900 
2901 	return(1);
2902 }
2903 
2904 static int
2905 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2906 {
2907 	struct cam_path path;
2908 	struct ccb_pathinq cpi;
2909 	struct async_node *cur_entry;
2910 
2911 	cur_entry = (struct async_node *)arg;
2912 
2913 	xpt_compile_path(&path, /*periph*/NULL,
2914 			 bus->sim->path_id,
2915 			 CAM_TARGET_WILDCARD,
2916 			 CAM_LUN_WILDCARD);
2917 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2918 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2919 	xpt_action((union ccb *)&cpi);
2920 	cur_entry->callback(cur_entry->callback_arg,
2921 			    AC_PATH_REGISTERED,
2922 			    &path, &cpi);
2923 	xpt_release_path(&path);
2924 
2925 	return(1);
2926 }
2927 
2928 static void
2929 xpt_action_sasync_cb(void *context, int pending)
2930 {
2931 	struct async_node *cur_entry;
2932 	struct xpt_task *task;
2933 	uint32_t added;
2934 
2935 	task = (struct xpt_task *)context;
2936 	cur_entry = (struct async_node *)task->data1;
2937 	added = task->data2;
2938 
2939 	if ((added & AC_FOUND_DEVICE) != 0) {
2940 		/*
2941 		 * Get this peripheral up to date with all
2942 		 * the currently existing devices.
2943 		 */
2944 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2945 	}
2946 	if ((added & AC_PATH_REGISTERED) != 0) {
2947 		/*
2948 		 * Get this peripheral up to date with all
2949 		 * the currently existing busses.
2950 		 */
2951 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2952 	}
2953 	kfree(task, M_CAMXPT);
2954 }
2955 
2956 void
2957 xpt_action(union ccb *start_ccb)
2958 {
2959 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2960 
2961 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2962 
2963 	switch (start_ccb->ccb_h.func_code) {
2964 	case XPT_SCSI_IO:
2965 	{
2966 		struct cam_ed *device;
2967 #ifdef CAMDEBUG
2968 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2969 		struct cam_path *path;
2970 
2971 		path = start_ccb->ccb_h.path;
2972 #endif
2973 
2974 		/*
2975 		 * For the sake of compatibility with SCSI-1
2976 		 * devices that may not understand the identify
2977 		 * message, we include lun information in the
2978 		 * second byte of all commands.  SCSI-1 specifies
2979 		 * that luns are a 3 bit value and reserves only 3
2980 		 * bits for lun information in the CDB.  Later
2981 		 * revisions of the SCSI spec allow for more than 8
2982 		 * luns, but have deprecated lun information in the
2983 		 * CDB.  So, if the lun won't fit, we must omit.
2984 		 *
2985 		 * Also be aware that during initial probing for devices,
2986 		 * the inquiry information is unknown but initialized to 0.
2987 		 * This means that this code will be exercised while probing
2988 		 * devices with an ANSI revision greater than 2.
2989 		 */
2990 		device = start_ccb->ccb_h.path->device;
2991 		if (device->protocol_version <= SCSI_REV_2
2992 		 && start_ccb->ccb_h.target_lun < 8
2993 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2994 
2995 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2996 			    start_ccb->ccb_h.target_lun << 5;
2997 		}
2998 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2999 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3000 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3001 			  	       &path->device->inq_data),
3002 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3003 					  cdb_str, sizeof(cdb_str))));
3004 		/* FALLTHROUGH */
3005 	}
3006 	case XPT_TARGET_IO:
3007 	case XPT_CONT_TARGET_IO:
3008 		start_ccb->csio.sense_resid = 0;
3009 		start_ccb->csio.resid = 0;
3010 		/* FALLTHROUGH */
3011 	case XPT_RESET_DEV:
3012 	case XPT_ENG_EXEC:
3013 	{
3014 		struct cam_path *path;
3015 		struct cam_sim *sim;
3016 		int runq;
3017 
3018 		path = start_ccb->ccb_h.path;
3019 
3020 		sim = path->bus->sim;
3021 		if (sim == &cam_dead_sim) {
3022 			/* The SIM has gone; just execute the CCB directly. */
3023 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3024 			(*(sim->sim_action))(sim, start_ccb);
3025 			break;
3026 		}
3027 
3028 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3029 		if (path->device->qfrozen_cnt == 0)
3030 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3031 		else
3032 			runq = 0;
3033 		if (runq != 0)
3034 			xpt_run_dev_sendq(path->bus);
3035 		break;
3036 	}
3037 	case XPT_SET_TRAN_SETTINGS:
3038 	{
3039 		xpt_set_transfer_settings(&start_ccb->cts,
3040 					  start_ccb->ccb_h.path->device,
3041 					  /*async_update*/FALSE);
3042 		break;
3043 	}
3044 	case XPT_CALC_GEOMETRY:
3045 	{
3046 		struct cam_sim *sim;
3047 
3048 		/* Filter out garbage */
3049 		if (start_ccb->ccg.block_size == 0
3050 		 || start_ccb->ccg.volume_size == 0) {
3051 			start_ccb->ccg.cylinders = 0;
3052 			start_ccb->ccg.heads = 0;
3053 			start_ccb->ccg.secs_per_track = 0;
3054 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3055 			break;
3056 		}
3057 		sim = start_ccb->ccb_h.path->bus->sim;
3058 		(*(sim->sim_action))(sim, start_ccb);
3059 		break;
3060 	}
3061 	case XPT_ABORT:
3062 	{
3063 		union ccb* abort_ccb;
3064 
3065 		abort_ccb = start_ccb->cab.abort_ccb;
3066 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3067 
3068 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3069 				struct cam_ccbq *ccbq;
3070 
3071 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3072 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3073 				abort_ccb->ccb_h.status =
3074 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3075 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3076 				xpt_done(abort_ccb);
3077 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3078 				break;
3079 			}
3080 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3081 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3082 				/*
3083 				 * We've caught this ccb en route to
3084 				 * the SIM.  Flag it for abort and the
3085 				 * SIM will do so just before starting
3086 				 * real work on the CCB.
3087 				 */
3088 				abort_ccb->ccb_h.status =
3089 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3090 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3091 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3092 				break;
3093 			}
3094 		}
3095 		if (XPT_FC_IS_QUEUED(abort_ccb)
3096 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3097 			/*
3098 			 * It's already completed but waiting
3099 			 * for our SWI to get to it.
3100 			 */
3101 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3102 			break;
3103 		}
3104 		/*
3105 		 * If we weren't able to take care of the abort request
3106 		 * in the XPT, pass the request down to the SIM for processing.
3107 		 */
3108 		/* FALLTHROUGH */
3109 	}
3110 	case XPT_ACCEPT_TARGET_IO:
3111 	case XPT_EN_LUN:
3112 	case XPT_IMMED_NOTIFY:
3113 	case XPT_NOTIFY_ACK:
3114 	case XPT_GET_TRAN_SETTINGS:
3115 	case XPT_RESET_BUS:
3116 	{
3117 		struct cam_sim *sim;
3118 
3119 		sim = start_ccb->ccb_h.path->bus->sim;
3120 		(*(sim->sim_action))(sim, start_ccb);
3121 		break;
3122 	}
3123 	case XPT_PATH_INQ:
3124 	{
3125 		struct cam_sim *sim;
3126 
3127 		sim = start_ccb->ccb_h.path->bus->sim;
3128 		(*(sim->sim_action))(sim, start_ccb);
3129 		break;
3130 	}
3131 	case XPT_PATH_STATS:
3132 		start_ccb->cpis.last_reset =
3133 			start_ccb->ccb_h.path->bus->last_reset;
3134 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3135 		break;
3136 	case XPT_GDEV_TYPE:
3137 	{
3138 		struct cam_ed *dev;
3139 
3140 		dev = start_ccb->ccb_h.path->device;
3141 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3142 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3143 		} else {
3144 			struct ccb_getdev *cgd;
3145 			struct cam_eb *bus;
3146 			struct cam_et *tar;
3147 
3148 			cgd = &start_ccb->cgd;
3149 			bus = cgd->ccb_h.path->bus;
3150 			tar = cgd->ccb_h.path->target;
3151 			cgd->inq_data = dev->inq_data;
3152 			cgd->ccb_h.status = CAM_REQ_CMP;
3153 			cgd->serial_num_len = dev->serial_num_len;
3154 			if ((dev->serial_num_len > 0)
3155 			 && (dev->serial_num != NULL))
3156 				bcopy(dev->serial_num, cgd->serial_num,
3157 				      dev->serial_num_len);
3158 		}
3159 		break;
3160 	}
3161 	case XPT_GDEV_STATS:
3162 	{
3163 		struct cam_ed *dev;
3164 
3165 		dev = start_ccb->ccb_h.path->device;
3166 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3167 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3168 		} else {
3169 			struct ccb_getdevstats *cgds;
3170 			struct cam_eb *bus;
3171 			struct cam_et *tar;
3172 
3173 			cgds = &start_ccb->cgds;
3174 			bus = cgds->ccb_h.path->bus;
3175 			tar = cgds->ccb_h.path->target;
3176 			cgds->dev_openings = dev->ccbq.dev_openings;
3177 			cgds->dev_active = dev->ccbq.dev_active;
3178 			cgds->devq_openings = dev->ccbq.devq_openings;
3179 			cgds->devq_queued = dev->ccbq.queue.entries;
3180 			cgds->held = dev->ccbq.held;
3181 			cgds->last_reset = tar->last_reset;
3182 			cgds->maxtags = dev->quirk->maxtags;
3183 			cgds->mintags = dev->quirk->mintags;
3184 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3185 				cgds->last_reset = bus->last_reset;
3186 			cgds->ccb_h.status = CAM_REQ_CMP;
3187 		}
3188 		break;
3189 	}
3190 	case XPT_GDEVLIST:
3191 	{
3192 		struct cam_periph	*nperiph;
3193 		struct periph_list	*periph_head;
3194 		struct ccb_getdevlist	*cgdl;
3195 		u_int			i;
3196 		struct cam_ed		*device;
3197 		int			found;
3198 
3199 
3200 		found = 0;
3201 
3202 		/*
3203 		 * Don't want anyone mucking with our data.
3204 		 */
3205 		device = start_ccb->ccb_h.path->device;
3206 		periph_head = &device->periphs;
3207 		cgdl = &start_ccb->cgdl;
3208 
3209 		/*
3210 		 * Check and see if the list has changed since the user
3211 		 * last requested a list member.  If so, tell them that the
3212 		 * list has changed, and therefore they need to start over
3213 		 * from the beginning.
3214 		 */
3215 		if ((cgdl->index != 0) &&
3216 		    (cgdl->generation != device->generation)) {
3217 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3218 			break;
3219 		}
3220 
3221 		/*
3222 		 * Traverse the list of peripherals and attempt to find
3223 		 * the requested peripheral.
3224 		 */
3225 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3226 		     (nperiph != NULL) && (i <= cgdl->index);
3227 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3228 			if (i == cgdl->index) {
3229 				strncpy(cgdl->periph_name,
3230 					nperiph->periph_name,
3231 					DEV_IDLEN);
3232 				cgdl->unit_number = nperiph->unit_number;
3233 				found = 1;
3234 			}
3235 		}
3236 		if (found == 0) {
3237 			cgdl->status = CAM_GDEVLIST_ERROR;
3238 			break;
3239 		}
3240 
3241 		if (nperiph == NULL)
3242 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3243 		else
3244 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3245 
3246 		cgdl->index++;
3247 		cgdl->generation = device->generation;
3248 
3249 		cgdl->ccb_h.status = CAM_REQ_CMP;
3250 		break;
3251 	}
3252 	case XPT_DEV_MATCH:
3253 	{
3254 		dev_pos_type position_type;
3255 		struct ccb_dev_match *cdm;
3256 		int ret;
3257 
3258 		cdm = &start_ccb->cdm;
3259 
3260 		/*
3261 		 * There are two ways of getting at information in the EDT.
3262 		 * The first way is via the primary EDT tree.  It starts
3263 		 * with a list of busses, then a list of targets on a bus,
3264 		 * then devices/luns on a target, and then peripherals on a
3265 		 * device/lun.  The "other" way is by the peripheral driver
3266 		 * lists.  The peripheral driver lists are organized by
3267 		 * peripheral driver.  (obviously)  So it makes sense to
3268 		 * use the peripheral driver list if the user is looking
3269 		 * for something like "da1", or all "da" devices.  If the
3270 		 * user is looking for something on a particular bus/target
3271 		 * or lun, it's generally better to go through the EDT tree.
3272 		 */
3273 
3274 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3275 			position_type = cdm->pos.position_type;
3276 		else {
3277 			u_int i;
3278 
3279 			position_type = CAM_DEV_POS_NONE;
3280 
3281 			for (i = 0; i < cdm->num_patterns; i++) {
3282 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3283 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3284 					position_type = CAM_DEV_POS_EDT;
3285 					break;
3286 				}
3287 			}
3288 
3289 			if (cdm->num_patterns == 0)
3290 				position_type = CAM_DEV_POS_EDT;
3291 			else if (position_type == CAM_DEV_POS_NONE)
3292 				position_type = CAM_DEV_POS_PDRV;
3293 		}
3294 
3295 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3296 		case CAM_DEV_POS_EDT:
3297 			ret = xptedtmatch(cdm);
3298 			break;
3299 		case CAM_DEV_POS_PDRV:
3300 			ret = xptperiphlistmatch(cdm);
3301 			break;
3302 		default:
3303 			cdm->status = CAM_DEV_MATCH_ERROR;
3304 			break;
3305 		}
3306 
3307 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3308 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3309 		else
3310 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3311 
3312 		break;
3313 	}
3314 	case XPT_SASYNC_CB:
3315 	{
3316 		struct ccb_setasync *csa;
3317 		struct async_node *cur_entry;
3318 		struct async_list *async_head;
3319 		u_int32_t added;
3320 
3321 		csa = &start_ccb->csa;
3322 		added = csa->event_enable;
3323 		async_head = &csa->ccb_h.path->device->asyncs;
3324 
3325 		/*
3326 		 * If there is already an entry for us, simply
3327 		 * update it.
3328 		 */
3329 		cur_entry = SLIST_FIRST(async_head);
3330 		while (cur_entry != NULL) {
3331 			if ((cur_entry->callback_arg == csa->callback_arg)
3332 			 && (cur_entry->callback == csa->callback))
3333 				break;
3334 			cur_entry = SLIST_NEXT(cur_entry, links);
3335 		}
3336 
3337 		if (cur_entry != NULL) {
3338 		 	/*
3339 			 * If the request has no flags set,
3340 			 * remove the entry.
3341 			 */
3342 			added &= ~cur_entry->event_enable;
3343 			if (csa->event_enable == 0) {
3344 				SLIST_REMOVE(async_head, cur_entry,
3345 					     async_node, links);
3346 				csa->ccb_h.path->device->refcount--;
3347 				kfree(cur_entry, M_CAMXPT);
3348 			} else {
3349 				cur_entry->event_enable = csa->event_enable;
3350 			}
3351 		} else {
3352 			cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3353 					   M_INTWAIT);
3354 			cur_entry->event_enable = csa->event_enable;
3355 			cur_entry->callback_arg = csa->callback_arg;
3356 			cur_entry->callback = csa->callback;
3357 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3358 			csa->ccb_h.path->device->refcount++;
3359 		}
3360 
3361 		/*
3362 		 * Need to decouple this operation via a taskqueue so that
3363 		 * the locking doesn't become a mess.
3364 		 */
3365 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3366 			struct xpt_task *task;
3367 
3368 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3369 				      M_INTWAIT);
3370 
3371 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3372 			task->data1 = cur_entry;
3373 			task->data2 = added;
3374 			taskqueue_enqueue(taskqueue_thread[mycpuid],
3375 					  &task->task);
3376 		}
3377 
3378 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3379 		break;
3380 	}
3381 	case XPT_REL_SIMQ:
3382 	{
3383 		struct ccb_relsim *crs;
3384 		struct cam_ed *dev;
3385 
3386 		crs = &start_ccb->crs;
3387 		dev = crs->ccb_h.path->device;
3388 		if (dev == NULL) {
3389 
3390 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3391 			break;
3392 		}
3393 
3394 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3395 
3396  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3397 				/* Don't ever go below one opening */
3398 				if (crs->openings > 0) {
3399 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3400 							    crs->openings);
3401 
3402 					if (bootverbose) {
3403 						xpt_print(crs->ccb_h.path,
3404 						    "tagged openings now %d\n",
3405 						    crs->openings);
3406 					}
3407 				}
3408 			}
3409 		}
3410 
3411 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3412 
3413 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3414 
3415 				/*
3416 				 * Just extend the old timeout and decrement
3417 				 * the freeze count so that a single timeout
3418 				 * is sufficient for releasing the queue.
3419 				 */
3420 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3421 				callout_stop(&dev->callout);
3422 			} else {
3423 
3424 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3425 			}
3426 
3427 			callout_reset(&dev->callout,
3428 				      (crs->release_timeout * hz) / 1000,
3429 				      xpt_release_devq_timeout, dev);
3430 
3431 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3432 
3433 		}
3434 
3435 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3436 
3437 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3438 				/*
3439 				 * Decrement the freeze count so that a single
3440 				 * completion is still sufficient to unfreeze
3441 				 * the queue.
3442 				 */
3443 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3444 			} else {
3445 
3446 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3447 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3448 			}
3449 		}
3450 
3451 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3452 
3453 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3454 			 || (dev->ccbq.dev_active == 0)) {
3455 
3456 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3457 			} else {
3458 
3459 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3460 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3461 			}
3462 		}
3463 
3464 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3465 
3466 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3467 					 /*run_queue*/TRUE);
3468 		}
3469 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3470 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3471 		break;
3472 	}
3473 	case XPT_SCAN_BUS:
3474 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3475 		break;
3476 	case XPT_SCAN_LUN:
3477 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3478 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3479 			     start_ccb);
3480 		break;
3481 	case XPT_DEBUG: {
3482 #ifdef CAMDEBUG
3483 #ifdef CAM_DEBUG_DELAY
3484 		cam_debug_delay = CAM_DEBUG_DELAY;
3485 #endif
3486 		cam_dflags = start_ccb->cdbg.flags;
3487 		if (cam_dpath != NULL) {
3488 			xpt_free_path(cam_dpath);
3489 			cam_dpath = NULL;
3490 		}
3491 
3492 		if (cam_dflags != CAM_DEBUG_NONE) {
3493 			if (xpt_create_path(&cam_dpath, xpt_periph,
3494 					    start_ccb->ccb_h.path_id,
3495 					    start_ccb->ccb_h.target_id,
3496 					    start_ccb->ccb_h.target_lun) !=
3497 					    CAM_REQ_CMP) {
3498 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3499 				cam_dflags = CAM_DEBUG_NONE;
3500 			} else {
3501 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3502 				xpt_print(cam_dpath, "debugging flags now %x\n",
3503 				    cam_dflags);
3504 			}
3505 		} else {
3506 			cam_dpath = NULL;
3507 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3508 		}
3509 #else /* !CAMDEBUG */
3510 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3511 #endif /* CAMDEBUG */
3512 		break;
3513 	}
3514 	case XPT_NOOP:
3515 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3516 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3517 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3518 		break;
3519 	default:
3520 	case XPT_SDEV_TYPE:
3521 	case XPT_TERM_IO:
3522 	case XPT_ENG_INQ:
3523 		/* XXX Implement */
3524 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3525 		break;
3526 	}
3527 }
3528 
3529 void
3530 xpt_polled_action(union ccb *start_ccb)
3531 {
3532 	u_int32_t timeout;
3533 	struct	  cam_sim *sim;
3534 	struct	  cam_devq *devq;
3535 	struct	  cam_ed *dev;
3536 
3537 	timeout = start_ccb->ccb_h.timeout;
3538 	sim = start_ccb->ccb_h.path->bus->sim;
3539 	devq = sim->devq;
3540 	dev = start_ccb->ccb_h.path->device;
3541 
3542 	sim_lock_assert_owned(sim->lock);
3543 
3544 	/*
3545 	 * Steal an opening so that no other queued requests
3546 	 * can get it before us while we simulate interrupts.
3547 	 */
3548 	dev->ccbq.devq_openings--;
3549 	dev->ccbq.dev_openings--;
3550 
3551 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3552 	   && (--timeout > 0)) {
3553 		DELAY(1000);
3554 		(*(sim->sim_poll))(sim);
3555 		camisr_runqueue(sim);
3556 	}
3557 
3558 	dev->ccbq.devq_openings++;
3559 	dev->ccbq.dev_openings++;
3560 
3561 	if (timeout != 0) {
3562 		xpt_action(start_ccb);
3563 		while(--timeout > 0) {
3564 			(*(sim->sim_poll))(sim);
3565 			camisr_runqueue(sim);
3566 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3567 			    != CAM_REQ_INPROG)
3568 				break;
3569 			DELAY(1000);
3570 		}
3571 		if (timeout == 0) {
3572 			/*
3573 			 * XXX Is it worth adding a sim_timeout entry
3574 			 * point so we can attempt recovery?  If
3575 			 * this is only used for dumps, I don't think
3576 			 * it is.
3577 			 */
3578 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3579 		}
3580 	} else {
3581 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3582 	}
3583 }
3584 
3585 /*
3586  * Schedule a peripheral driver to receive a ccb when it's
3587  * target device has space for more transactions.
3588  */
3589 void
3590 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3591 {
3592 	struct cam_ed *device;
3593 	union ccb *work_ccb;
3594 	int runq;
3595 
3596 	sim_lock_assert_owned(perph->sim->lock);
3597 
3598 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3599 	device = perph->path->device;
3600 	if (periph_is_queued(perph)) {
3601 		/* Simply reorder based on new priority */
3602 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3603 			  ("   change priority to %d\n", new_priority));
3604 		if (new_priority < perph->pinfo.priority) {
3605 			camq_change_priority(&device->drvq,
3606 					     perph->pinfo.index,
3607 					     new_priority);
3608 		}
3609 		runq = 0;
3610 	} else if (perph->path->bus->sim == &cam_dead_sim) {
3611 		/* The SIM is gone so just call periph_start directly. */
3612 		work_ccb = xpt_get_ccb(perph->path->device);
3613 		if (work_ccb == NULL)
3614 			return; /* XXX */
3615 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3616 		perph->pinfo.priority = new_priority;
3617 		perph->periph_start(perph, work_ccb);
3618 		return;
3619 	} else {
3620 		/* New entry on the queue */
3621 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3622 			  ("   added periph to queue\n"));
3623 		perph->pinfo.priority = new_priority;
3624 		perph->pinfo.generation = ++device->drvq.generation;
3625 		camq_insert(&device->drvq, &perph->pinfo);
3626 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3627 	}
3628 	if (runq != 0) {
3629 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3630 			  ("   calling xpt_run_devq\n"));
3631 		xpt_run_dev_allocq(perph->path->bus);
3632 	}
3633 }
3634 
3635 
3636 /*
3637  * Schedule a device to run on a given queue.
3638  * If the device was inserted as a new entry on the queue,
3639  * return 1 meaning the device queue should be run. If we
3640  * were already queued, implying someone else has already
3641  * started the queue, return 0 so the caller doesn't attempt
3642  * to run the queue.
3643  */
3644 static int
3645 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3646 		 u_int32_t new_priority)
3647 {
3648 	int retval;
3649 	u_int32_t old_priority;
3650 
3651 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3652 
3653 	old_priority = pinfo->priority;
3654 
3655 	/*
3656 	 * Are we already queued?
3657 	 */
3658 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3659 		/* Simply reorder based on new priority */
3660 		if (new_priority < old_priority) {
3661 			camq_change_priority(queue, pinfo->index,
3662 					     new_priority);
3663 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3664 					("changed priority to %d\n",
3665 					 new_priority));
3666 		}
3667 		retval = 0;
3668 	} else {
3669 		/* New entry on the queue */
3670 		if (new_priority < old_priority)
3671 			pinfo->priority = new_priority;
3672 
3673 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3674 				("Inserting onto queue\n"));
3675 		pinfo->generation = ++queue->generation;
3676 		camq_insert(queue, pinfo);
3677 		retval = 1;
3678 	}
3679 	return (retval);
3680 }
3681 
3682 static void
3683 xpt_run_dev_allocq(struct cam_eb *bus)
3684 {
3685 	struct	cam_devq *devq;
3686 
3687 	if ((devq = bus->sim->devq) == NULL) {
3688 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3689 		return;
3690 	}
3691 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3692 
3693 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3694 			("   qfrozen_cnt == 0x%x, entries == %d, "
3695 			 "openings == %d, active == %d\n",
3696 			 devq->alloc_queue.qfrozen_cnt,
3697 			 devq->alloc_queue.entries,
3698 			 devq->alloc_openings,
3699 			 devq->alloc_active));
3700 
3701 	devq->alloc_queue.qfrozen_cnt++;
3702 	while ((devq->alloc_queue.entries > 0)
3703 	    && (devq->alloc_openings > 0)
3704 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3705 		struct	cam_ed_qinfo *qinfo;
3706 		struct	cam_ed *device;
3707 		union	ccb *work_ccb;
3708 		struct	cam_periph *drv;
3709 		struct	camq *drvq;
3710 
3711 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3712 							   CAMQ_HEAD);
3713 		device = qinfo->device;
3714 
3715 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3716 				("running device %p\n", device));
3717 
3718 		drvq = &device->drvq;
3719 
3720 #ifdef CAMDEBUG
3721 		if (drvq->entries <= 0) {
3722 			panic("xpt_run_dev_allocq: "
3723 			      "Device on queue without any work to do");
3724 		}
3725 #endif
3726 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3727 			devq->alloc_openings--;
3728 			devq->alloc_active++;
3729 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3730 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3731 				      drv->pinfo.priority);
3732 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3733 					("calling periph start\n"));
3734 			drv->periph_start(drv, work_ccb);
3735 		} else {
3736 			/*
3737 			 * Malloc failure in alloc_ccb
3738 			 */
3739 			/*
3740 			 * XXX add us to a list to be run from free_ccb
3741 			 * if we don't have any ccbs active on this
3742 			 * device queue otherwise we may never get run
3743 			 * again.
3744 			 */
3745 			break;
3746 		}
3747 
3748 		if (drvq->entries > 0) {
3749 			/* We have more work.  Attempt to reschedule */
3750 			xpt_schedule_dev_allocq(bus, device);
3751 		}
3752 	}
3753 	devq->alloc_queue.qfrozen_cnt--;
3754 }
3755 
3756 static void
3757 xpt_run_dev_sendq(struct cam_eb *bus)
3758 {
3759 	struct	cam_devq *devq;
3760 
3761 	if ((devq = bus->sim->devq) == NULL) {
3762 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3763 		return;
3764 	}
3765 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3766 
3767 	devq->send_queue.qfrozen_cnt++;
3768 	while ((devq->send_queue.entries > 0)
3769 	    && (devq->send_openings > 0)) {
3770 		struct	cam_ed_qinfo *qinfo;
3771 		struct	cam_ed *device;
3772 		union ccb *work_ccb;
3773 		struct	cam_sim *sim;
3774 
3775 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3776 			break;
3777 		}
3778 
3779 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3780 							   CAMQ_HEAD);
3781 		device = qinfo->device;
3782 
3783 		/*
3784 		 * If the device has been "frozen", don't attempt
3785 		 * to run it.
3786 		 */
3787 		if (device->qfrozen_cnt > 0) {
3788 			continue;
3789 		}
3790 
3791 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3792 				("running device %p\n", device));
3793 
3794 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3795 		if (work_ccb == NULL) {
3796 			kprintf("device on run queue with no ccbs???\n");
3797 			continue;
3798 		}
3799 
3800 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3801 
3802 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3803 			if (xsoftc.num_highpower <= 0) {
3804 				/*
3805 				 * We got a high power command, but we
3806 				 * don't have any available slots.  Freeze
3807 				 * the device queue until we have a slot
3808 				 * available.
3809 				 */
3810 				device->qfrozen_cnt++;
3811 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3812 						   &work_ccb->ccb_h,
3813 						   xpt_links.stqe);
3814 
3815 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3816 				continue;
3817 			} else {
3818 				/*
3819 				 * Consume a high power slot while
3820 				 * this ccb runs.
3821 				 */
3822 				xsoftc.num_highpower--;
3823 			}
3824 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3825 		}
3826 		devq->active_dev = device;
3827 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3828 
3829 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3830 
3831 		devq->send_openings--;
3832 		devq->send_active++;
3833 
3834 		if (device->ccbq.queue.entries > 0)
3835 			xpt_schedule_dev_sendq(bus, device);
3836 
3837 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3838 			/*
3839 			 * The client wants to freeze the queue
3840 			 * after this CCB is sent.
3841 			 */
3842 			device->qfrozen_cnt++;
3843 		}
3844 
3845 		/* In Target mode, the peripheral driver knows best... */
3846 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3847 			if ((device->inq_flags & SID_CmdQue) != 0
3848 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3849 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3850 			else
3851 				/*
3852 				 * Clear this in case of a retried CCB that
3853 				 * failed due to a rejected tag.
3854 				 */
3855 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3856 		}
3857 
3858 		/*
3859 		 * Device queues can be shared among multiple sim instances
3860 		 * that reside on different busses.  Use the SIM in the queue
3861 		 * CCB's path, rather than the one in the bus that was passed
3862 		 * into this function.
3863 		 */
3864 		sim = work_ccb->ccb_h.path->bus->sim;
3865 		(*(sim->sim_action))(sim, work_ccb);
3866 
3867 		devq->active_dev = NULL;
3868 	}
3869 	devq->send_queue.qfrozen_cnt--;
3870 }
3871 
3872 /*
3873  * This function merges stuff from the slave ccb into the master ccb, while
3874  * keeping important fields in the master ccb constant.
3875  */
3876 void
3877 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3878 {
3879 	/*
3880 	 * Pull fields that are valid for peripheral drivers to set
3881 	 * into the master CCB along with the CCB "payload".
3882 	 */
3883 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3884 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3885 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3886 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3887 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3888 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3889 }
3890 
3891 void
3892 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3893 {
3894 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3895 	callout_init(&ccb_h->timeout_ch);
3896 	ccb_h->pinfo.priority = priority;
3897 	ccb_h->path = path;
3898 	ccb_h->path_id = path->bus->path_id;
3899 	if (path->target)
3900 		ccb_h->target_id = path->target->target_id;
3901 	else
3902 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3903 	if (path->device) {
3904 		ccb_h->target_lun = path->device->lun_id;
3905 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3906 	} else {
3907 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3908 	}
3909 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3910 	ccb_h->flags = 0;
3911 }
3912 
3913 /* Path manipulation functions */
3914 cam_status
3915 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3916 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3917 {
3918 	struct	   cam_path *path;
3919 	cam_status status;
3920 
3921 	path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3922 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3923 	if (status != CAM_REQ_CMP) {
3924 		kfree(path, M_CAMXPT);
3925 		path = NULL;
3926 	}
3927 	*new_path_ptr = path;
3928 	return (status);
3929 }
3930 
3931 cam_status
3932 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3933 			 struct cam_periph *periph, path_id_t path_id,
3934 			 target_id_t target_id, lun_id_t lun_id)
3935 {
3936 	struct	   cam_path *path;
3937 	struct	   cam_eb *bus = NULL;
3938 	cam_status status;
3939 	int	   need_unlock = 0;
3940 
3941 	path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3942 
3943 	if (path_id != CAM_BUS_WILDCARD) {
3944 		bus = xpt_find_bus(path_id);
3945 		if (bus != NULL) {
3946 			need_unlock = 1;
3947 			CAM_SIM_LOCK(bus->sim);
3948 		}
3949 	}
3950 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3951 	if (need_unlock)
3952 		CAM_SIM_UNLOCK(bus->sim);
3953 	if (status != CAM_REQ_CMP) {
3954 		kfree(path, M_CAMXPT);
3955 		path = NULL;
3956 	}
3957 	*new_path_ptr = path;
3958 	return (status);
3959 }
3960 
3961 static cam_status
3962 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3963 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3964 {
3965 	struct	     cam_eb *bus;
3966 	struct	     cam_et *target;
3967 	struct	     cam_ed *device;
3968 	cam_status   status;
3969 
3970 	status = CAM_REQ_CMP;	/* Completed without error */
3971 	target = NULL;		/* Wildcarded */
3972 	device = NULL;		/* Wildcarded */
3973 
3974 	/*
3975 	 * We will potentially modify the EDT, so block interrupts
3976 	 * that may attempt to create cam paths.
3977 	 */
3978 	bus = xpt_find_bus(path_id);
3979 	if (bus == NULL) {
3980 		status = CAM_PATH_INVALID;
3981 	} else {
3982 		target = xpt_find_target(bus, target_id);
3983 		if (target == NULL) {
3984 			/* Create one */
3985 			struct cam_et *new_target;
3986 
3987 			new_target = xpt_alloc_target(bus, target_id);
3988 			if (new_target == NULL) {
3989 				status = CAM_RESRC_UNAVAIL;
3990 			} else {
3991 				target = new_target;
3992 			}
3993 		}
3994 		if (target != NULL) {
3995 			device = xpt_find_device(target, lun_id);
3996 			if (device == NULL) {
3997 				/* Create one */
3998 				struct cam_ed *new_device;
3999 
4000 				new_device = xpt_alloc_device(bus,
4001 							      target,
4002 							      lun_id);
4003 				if (new_device == NULL) {
4004 					status = CAM_RESRC_UNAVAIL;
4005 				} else {
4006 					device = new_device;
4007 				}
4008 			}
4009 		}
4010 	}
4011 
4012 	/*
4013 	 * Only touch the user's data if we are successful.
4014 	 */
4015 	if (status == CAM_REQ_CMP) {
4016 		new_path->periph = perph;
4017 		new_path->bus = bus;
4018 		new_path->target = target;
4019 		new_path->device = device;
4020 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4021 	} else {
4022 		if (device != NULL)
4023 			xpt_release_device(bus, target, device);
4024 		if (target != NULL)
4025 			xpt_release_target(bus, target);
4026 		if (bus != NULL)
4027 			xpt_release_bus(bus);
4028 	}
4029 	return (status);
4030 }
4031 
4032 static void
4033 xpt_release_path(struct cam_path *path)
4034 {
4035 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4036 	if (path->device != NULL) {
4037 		xpt_release_device(path->bus, path->target, path->device);
4038 		path->device = NULL;
4039 	}
4040 	if (path->target != NULL) {
4041 		xpt_release_target(path->bus, path->target);
4042 		path->target = NULL;
4043 	}
4044 	if (path->bus != NULL) {
4045 		xpt_release_bus(path->bus);
4046 		path->bus = NULL;
4047 	}
4048 }
4049 
4050 void
4051 xpt_free_path(struct cam_path *path)
4052 {
4053 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4054 	xpt_release_path(path);
4055 	kfree(path, M_CAMXPT);
4056 }
4057 
4058 
4059 /*
4060  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4061  * in path1, 2 for match with wildcards in path2.
4062  */
4063 int
4064 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4065 {
4066 	int retval = 0;
4067 
4068 	if (path1->bus != path2->bus) {
4069 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4070 			retval = 1;
4071 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4072 			retval = 2;
4073 		else
4074 			return (-1);
4075 	}
4076 	if (path1->target != path2->target) {
4077 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4078 			if (retval == 0)
4079 				retval = 1;
4080 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4081 			retval = 2;
4082 		else
4083 			return (-1);
4084 	}
4085 	if (path1->device != path2->device) {
4086 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4087 			if (retval == 0)
4088 				retval = 1;
4089 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4090 			retval = 2;
4091 		else
4092 			return (-1);
4093 	}
4094 	return (retval);
4095 }
4096 
4097 void
4098 xpt_print_path(struct cam_path *path)
4099 {
4100 
4101 	if (path == NULL)
4102 		kprintf("(nopath): ");
4103 	else {
4104 		if (path->periph != NULL)
4105 			kprintf("(%s%d:", path->periph->periph_name,
4106 			       path->periph->unit_number);
4107 		else
4108 			kprintf("(noperiph:");
4109 
4110 		if (path->bus != NULL)
4111 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4112 			       path->bus->sim->unit_number,
4113 			       path->bus->sim->bus_id);
4114 		else
4115 			kprintf("nobus:");
4116 
4117 		if (path->target != NULL)
4118 			kprintf("%d:", path->target->target_id);
4119 		else
4120 			kprintf("X:");
4121 
4122 		if (path->device != NULL)
4123 			kprintf("%d): ", path->device->lun_id);
4124 		else
4125 			kprintf("X): ");
4126 	}
4127 }
4128 
4129 void
4130 xpt_print(struct cam_path *path, const char *fmt, ...)
4131 {
4132 	__va_list ap;
4133 	xpt_print_path(path);
4134 	__va_start(ap, fmt);
4135 	kvprintf(fmt, ap);
4136 	__va_end(ap);
4137 }
4138 
4139 int
4140 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4141 {
4142 	struct sbuf sb;
4143 
4144 	sim_lock_assert_owned(path->bus->sim->lock);
4145 
4146 	sbuf_new(&sb, str, str_len, 0);
4147 
4148 	if (path == NULL)
4149 		sbuf_printf(&sb, "(nopath): ");
4150 	else {
4151 		if (path->periph != NULL)
4152 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4153 				    path->periph->unit_number);
4154 		else
4155 			sbuf_printf(&sb, "(noperiph:");
4156 
4157 		if (path->bus != NULL)
4158 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4159 				    path->bus->sim->unit_number,
4160 				    path->bus->sim->bus_id);
4161 		else
4162 			sbuf_printf(&sb, "nobus:");
4163 
4164 		if (path->target != NULL)
4165 			sbuf_printf(&sb, "%d:", path->target->target_id);
4166 		else
4167 			sbuf_printf(&sb, "X:");
4168 
4169 		if (path->device != NULL)
4170 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4171 		else
4172 			sbuf_printf(&sb, "X): ");
4173 	}
4174 	sbuf_finish(&sb);
4175 
4176 	return(sbuf_len(&sb));
4177 }
4178 
4179 path_id_t
4180 xpt_path_path_id(struct cam_path *path)
4181 {
4182 	sim_lock_assert_owned(path->bus->sim->lock);
4183 
4184 	return(path->bus->path_id);
4185 }
4186 
4187 target_id_t
4188 xpt_path_target_id(struct cam_path *path)
4189 {
4190 	sim_lock_assert_owned(path->bus->sim->lock);
4191 
4192 	if (path->target != NULL)
4193 		return (path->target->target_id);
4194 	else
4195 		return (CAM_TARGET_WILDCARD);
4196 }
4197 
4198 lun_id_t
4199 xpt_path_lun_id(struct cam_path *path)
4200 {
4201 	sim_lock_assert_owned(path->bus->sim->lock);
4202 
4203 	if (path->device != NULL)
4204 		return (path->device->lun_id);
4205 	else
4206 		return (CAM_LUN_WILDCARD);
4207 }
4208 
4209 struct cam_sim *
4210 xpt_path_sim(struct cam_path *path)
4211 {
4212 	return (path->bus->sim);
4213 }
4214 
4215 struct cam_periph*
4216 xpt_path_periph(struct cam_path *path)
4217 {
4218 	sim_lock_assert_owned(path->bus->sim->lock);
4219 
4220 	return (path->periph);
4221 }
4222 
4223 char *
4224 xpt_path_serialno(struct cam_path *path)
4225 {
4226 	return (path->device->serial_num);
4227 }
4228 
4229 /*
4230  * Release a CAM control block for the caller.  Remit the cost of the structure
4231  * to the device referenced by the path.  If the this device had no 'credits'
4232  * and peripheral drivers have registered async callbacks for this notification
4233  * call them now.
4234  */
4235 void
4236 xpt_release_ccb(union ccb *free_ccb)
4237 {
4238 	struct	 cam_path *path;
4239 	struct	 cam_ed *device;
4240 	struct	 cam_eb *bus;
4241 	struct   cam_sim *sim;
4242 
4243 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4244 	path = free_ccb->ccb_h.path;
4245 	device = path->device;
4246 	bus = path->bus;
4247 	sim = bus->sim;
4248 
4249 	sim_lock_assert_owned(sim->lock);
4250 
4251 	cam_ccbq_release_opening(&device->ccbq);
4252 	if (sim->ccb_count > sim->max_ccbs) {
4253 		xpt_free_ccb(free_ccb);
4254 		sim->ccb_count--;
4255 	} else if (sim == &cam_dead_sim) {
4256 		xpt_free_ccb(free_ccb);
4257 	} else  {
4258 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4259 		    xpt_links.sle);
4260 	}
4261 	if (sim->devq == NULL) {
4262 		return;
4263 	}
4264 	sim->devq->alloc_openings++;
4265 	sim->devq->alloc_active--;
4266 	/* XXX Turn this into an inline function - xpt_run_device?? */
4267 	if ((device_is_alloc_queued(device) == 0)
4268 	 && (device->drvq.entries > 0)) {
4269 		xpt_schedule_dev_allocq(bus, device);
4270 	}
4271 	if (dev_allocq_is_runnable(sim->devq))
4272 		xpt_run_dev_allocq(bus);
4273 }
4274 
4275 /* Functions accessed by SIM drivers */
4276 
4277 /*
4278  * A sim structure, listing the SIM entry points and instance
4279  * identification info is passed to xpt_bus_register to hook the SIM
4280  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4281  * for this new bus and places it in the array of busses and assigns
4282  * it a path_id.  The path_id may be influenced by "hard wiring"
4283  * information specified by the user.  Once interrupt services are
4284  * availible, the bus will be probed.
4285  */
4286 int32_t
4287 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4288 {
4289 	struct cam_eb *new_bus;
4290 	struct cam_eb *old_bus;
4291 	struct ccb_pathinq cpi;
4292 
4293 	sim_lock_assert_owned(sim->lock);
4294 
4295 	sim->bus_id = bus;
4296 	new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4297 
4298 	if (strcmp(sim->sim_name, "xpt") != 0) {
4299 		sim->path_id =
4300 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4301 	}
4302 
4303 	TAILQ_INIT(&new_bus->et_entries);
4304 	new_bus->path_id = sim->path_id;
4305 	new_bus->sim = sim;
4306 	++sim->refcount;
4307 	timevalclear(&new_bus->last_reset);
4308 	new_bus->flags = 0;
4309 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4310 	new_bus->generation = 0;
4311 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4312 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4313 	while (old_bus != NULL
4314 	    && old_bus->path_id < new_bus->path_id)
4315 		old_bus = TAILQ_NEXT(old_bus, links);
4316 	if (old_bus != NULL)
4317 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4318 	else
4319 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4320 	xsoftc.bus_generation++;
4321 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4322 
4323 	/* Notify interested parties */
4324 	if (sim->path_id != CAM_XPT_PATH_ID) {
4325 		struct cam_path path;
4326 
4327 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4328 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4329 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4330 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4331 		xpt_action((union ccb *)&cpi);
4332 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4333 		xpt_release_path(&path);
4334 	}
4335 	return (CAM_SUCCESS);
4336 }
4337 
4338 /*
4339  * Deregister a bus.  We must clean out all transactions pending on the bus.
4340  * This routine is typically called prior to cam_sim_free() (e.g. see
4341  * dev/usbmisc/umass/umass.c)
4342  */
4343 int32_t
4344 xpt_bus_deregister(path_id_t pathid)
4345 {
4346 	struct cam_path bus_path;
4347 	struct cam_et *target;
4348 	struct cam_ed *device;
4349 	struct cam_ed_qinfo *qinfo;
4350 	struct cam_devq *devq;
4351 	struct cam_periph *periph;
4352 	struct cam_sim *ccbsim;
4353 	union ccb *work_ccb;
4354 	cam_status status;
4355 	int retries = 0;
4356 
4357 	status = xpt_compile_path(&bus_path, NULL, pathid,
4358 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4359 	if (status != CAM_REQ_CMP)
4360 		return (status);
4361 
4362 	/*
4363 	 * This should clear out all pending requests and timeouts, but
4364 	 * the ccb's may be queued to a software interrupt.
4365 	 *
4366 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4367 	 * and it really ought to.
4368 	 */
4369 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4370 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4371 
4372 	/*
4373 	 * Mark the SIM as having been deregistered.  This prevents
4374 	 * certain operations from re-queueing to it, stops new devices
4375 	 * from being added, etc.
4376 	 */
4377 	devq = bus_path.bus->sim->devq;
4378 	ccbsim = bus_path.bus->sim;
4379 	ccbsim->flags |= CAM_SIM_DEREGISTERED;
4380 
4381 again:
4382 	/*
4383 	 * Execute any pending operations now.
4384 	 */
4385 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4386 	    CAMQ_HEAD)) != NULL ||
4387 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4388 	    CAMQ_HEAD)) != NULL) {
4389 		do {
4390 			device = qinfo->device;
4391 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4392 			if (work_ccb != NULL) {
4393 				devq->active_dev = device;
4394 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4395 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4396 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4397 			}
4398 
4399 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4400 			    CAMQ_HEAD);
4401 			if (periph != NULL)
4402 				xpt_schedule(periph, periph->pinfo.priority);
4403 		} while (work_ccb != NULL || periph != NULL);
4404 	}
4405 
4406 	/*
4407 	 * Make sure all completed CCBs are processed.
4408 	 */
4409 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4410 		camisr_runqueue(ccbsim);
4411 	}
4412 
4413 	/*
4414 	 * Check for requeues, reissues asyncs if necessary
4415 	 */
4416 	if (CAMQ_GET_HEAD(&devq->send_queue))
4417 		kprintf("camq: devq send_queue still in use (%d entries)\n",
4418 			devq->send_queue.entries);
4419 	if (CAMQ_GET_HEAD(&devq->alloc_queue))
4420 		kprintf("camq: devq alloc_queue still in use (%d entries)\n",
4421 			devq->alloc_queue.entries);
4422 	if (CAMQ_GET_HEAD(&devq->send_queue) ||
4423 	    CAMQ_GET_HEAD(&devq->alloc_queue)) {
4424 		if (++retries < 5) {
4425 			xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4426 			xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4427 			goto again;
4428 		}
4429 	}
4430 
4431 	/*
4432 	 * Retarget the bus and all cached sim pointers to dead_sim.
4433 	 *
4434 	 * Various CAM subsystems may be holding on to targets, devices,
4435 	 * and/or peripherals and may attempt to use the sim pointer cached
4436 	 * in some of these structures during close.
4437 	 */
4438 	bus_path.bus->sim = &cam_dead_sim;
4439 	TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4440 		TAILQ_FOREACH(device, &target->ed_entries, links) {
4441 			device->sim = &cam_dead_sim;
4442 			SLIST_FOREACH(periph, &device->periphs, periph_links) {
4443 				periph->sim = &cam_dead_sim;
4444 			}
4445 		}
4446 	}
4447 
4448 	/*
4449 	 * Repeat the async's for the benefit of any new devices, such as
4450 	 * might be created from completed probes.  Any new device
4451 	 * ops will run on dead_sim.
4452 	 *
4453 	 * XXX There are probably races :-(
4454 	 */
4455 	CAM_SIM_LOCK(&cam_dead_sim);
4456 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4457 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4458 	CAM_SIM_UNLOCK(&cam_dead_sim);
4459 
4460 	/* Release the reference count held while registered. */
4461 	xpt_release_bus(bus_path.bus);
4462 	xpt_release_path(&bus_path);
4463 
4464 	/* Release the ref we got when the bus was registered */
4465 	cam_sim_release(ccbsim, 0);
4466 
4467 	return (CAM_REQ_CMP);
4468 }
4469 
4470 static path_id_t
4471 xptnextfreepathid(void)
4472 {
4473 	struct cam_eb *bus;
4474 	path_id_t pathid;
4475 	char *strval;
4476 
4477 	pathid = 0;
4478 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4479 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4480 retry:
4481 	/* Find an unoccupied pathid */
4482 	while (bus != NULL && bus->path_id <= pathid) {
4483 		if (bus->path_id == pathid)
4484 			pathid++;
4485 		bus = TAILQ_NEXT(bus, links);
4486 	}
4487 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4488 
4489 	/*
4490 	 * Ensure that this pathid is not reserved for
4491 	 * a bus that may be registered in the future.
4492 	 */
4493 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4494 		++pathid;
4495 		/* Start the search over */
4496 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4497 		goto retry;
4498 	}
4499 	return (pathid);
4500 }
4501 
4502 static path_id_t
4503 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4504 {
4505 	path_id_t pathid;
4506 	int i, dunit, val;
4507 	char buf[32];
4508 
4509 	pathid = CAM_XPT_PATH_ID;
4510 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4511 	i = -1;
4512 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4513 		if (strcmp(resource_query_name(i), "scbus")) {
4514 			/* Avoid a bit of foot shooting. */
4515 			continue;
4516 		}
4517 		dunit = resource_query_unit(i);
4518 		if (dunit < 0)		/* unwired?! */
4519 			continue;
4520 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4521 			if (sim_bus == val) {
4522 				pathid = dunit;
4523 				break;
4524 			}
4525 		} else if (sim_bus == 0) {
4526 			/* Unspecified matches bus 0 */
4527 			pathid = dunit;
4528 			break;
4529 		} else {
4530 			kprintf("Ambiguous scbus configuration for %s%d "
4531 			       "bus %d, cannot wire down.  The kernel "
4532 			       "config entry for scbus%d should "
4533 			       "specify a controller bus.\n"
4534 			       "Scbus will be assigned dynamically.\n",
4535 			       sim_name, sim_unit, sim_bus, dunit);
4536 			break;
4537 		}
4538 	}
4539 
4540 	if (pathid == CAM_XPT_PATH_ID)
4541 		pathid = xptnextfreepathid();
4542 	return (pathid);
4543 }
4544 
4545 void
4546 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4547 {
4548 	struct cam_eb *bus;
4549 	struct cam_et *target, *next_target;
4550 	struct cam_ed *device, *next_device;
4551 
4552 	sim_lock_assert_owned(path->bus->sim->lock);
4553 
4554 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4555 
4556 	/*
4557 	 * Most async events come from a CAM interrupt context.  In
4558 	 * a few cases, the error recovery code at the peripheral layer,
4559 	 * which may run from our SWI or a process context, may signal
4560 	 * deferred events with a call to xpt_async.
4561 	 */
4562 
4563 	bus = path->bus;
4564 
4565 	if (async_code == AC_BUS_RESET) {
4566 		/* Update our notion of when the last reset occurred */
4567 		microuptime(&bus->last_reset);
4568 	}
4569 
4570 	for (target = TAILQ_FIRST(&bus->et_entries);
4571 	     target != NULL;
4572 	     target = next_target) {
4573 
4574 		next_target = TAILQ_NEXT(target, links);
4575 
4576 		if (path->target != target
4577 		 && path->target->target_id != CAM_TARGET_WILDCARD
4578 		 && target->target_id != CAM_TARGET_WILDCARD)
4579 			continue;
4580 
4581 		if (async_code == AC_SENT_BDR) {
4582 			/* Update our notion of when the last reset occurred */
4583 			microuptime(&path->target->last_reset);
4584 		}
4585 
4586 		for (device = TAILQ_FIRST(&target->ed_entries);
4587 		     device != NULL;
4588 		     device = next_device) {
4589 
4590 			next_device = TAILQ_NEXT(device, links);
4591 
4592 			if (path->device != device
4593 			 && path->device->lun_id != CAM_LUN_WILDCARD
4594 			 && device->lun_id != CAM_LUN_WILDCARD)
4595 				continue;
4596 
4597 			xpt_dev_async(async_code, bus, target,
4598 				      device, async_arg);
4599 
4600 			xpt_async_bcast(&device->asyncs, async_code,
4601 					path, async_arg);
4602 		}
4603 	}
4604 
4605 	/*
4606 	 * If this wasn't a fully wildcarded async, tell all
4607 	 * clients that want all async events.
4608 	 */
4609 	if (bus != xpt_periph->path->bus)
4610 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4611 				path, async_arg);
4612 }
4613 
4614 static void
4615 xpt_async_bcast(struct async_list *async_head,
4616 		u_int32_t async_code,
4617 		struct cam_path *path, void *async_arg)
4618 {
4619 	struct async_node *cur_entry;
4620 
4621 	cur_entry = SLIST_FIRST(async_head);
4622 	while (cur_entry != NULL) {
4623 		struct async_node *next_entry;
4624 		/*
4625 		 * Grab the next list entry before we call the current
4626 		 * entry's callback.  This is because the callback function
4627 		 * can delete its async callback entry.
4628 		 */
4629 		next_entry = SLIST_NEXT(cur_entry, links);
4630 		if ((cur_entry->event_enable & async_code) != 0)
4631 			cur_entry->callback(cur_entry->callback_arg,
4632 					    async_code, path,
4633 					    async_arg);
4634 		cur_entry = next_entry;
4635 	}
4636 }
4637 
4638 /*
4639  * Handle any per-device event notifications that require action by the XPT.
4640  */
4641 static void
4642 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4643 	      struct cam_ed *device, void *async_arg)
4644 {
4645 	cam_status status;
4646 	struct cam_path newpath;
4647 
4648 	/*
4649 	 * We only need to handle events for real devices.
4650 	 */
4651 	if (target->target_id == CAM_TARGET_WILDCARD
4652 	 || device->lun_id == CAM_LUN_WILDCARD)
4653 		return;
4654 
4655 	/*
4656 	 * We need our own path with wildcards expanded to
4657 	 * handle certain types of events.
4658 	 */
4659 	if ((async_code == AC_SENT_BDR)
4660 	 || (async_code == AC_BUS_RESET)
4661 	 || (async_code == AC_INQ_CHANGED))
4662 		status = xpt_compile_path(&newpath, NULL,
4663 					  bus->path_id,
4664 					  target->target_id,
4665 					  device->lun_id);
4666 	else
4667 		status = CAM_REQ_CMP_ERR;
4668 
4669 	if (status == CAM_REQ_CMP) {
4670 
4671 		/*
4672 		 * Allow transfer negotiation to occur in a
4673 		 * tag free environment.
4674 		 */
4675 		if (async_code == AC_SENT_BDR
4676 		 || async_code == AC_BUS_RESET)
4677 			xpt_toggle_tags(&newpath);
4678 
4679 		if (async_code == AC_INQ_CHANGED) {
4680 			/*
4681 			 * We've sent a start unit command, or
4682 			 * something similar to a device that
4683 			 * may have caused its inquiry data to
4684 			 * change. So we re-scan the device to
4685 			 * refresh the inquiry data for it.
4686 			 */
4687 			xpt_scan_lun(newpath.periph, &newpath,
4688 				     CAM_EXPECT_INQ_CHANGE, NULL);
4689 		}
4690 		xpt_release_path(&newpath);
4691 	} else if (async_code == AC_LOST_DEVICE) {
4692 		/*
4693 		 * When we lose a device the device may be about to detach
4694 		 * the sim, we have to clear out all pending timeouts and
4695 		 * requests before that happens.  XXX it would be nice if
4696 		 * we could abort the requests pertaining to the device.
4697 		 */
4698 		xpt_release_devq_timeout(device);
4699 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4700 			device->flags |= CAM_DEV_UNCONFIGURED;
4701 			xpt_release_device(bus, target, device);
4702 		}
4703 	} else if (async_code == AC_TRANSFER_NEG) {
4704 		struct ccb_trans_settings *settings;
4705 
4706 		settings = (struct ccb_trans_settings *)async_arg;
4707 		xpt_set_transfer_settings(settings, device,
4708 					  /*async_update*/TRUE);
4709 	}
4710 }
4711 
4712 u_int32_t
4713 xpt_freeze_devq(struct cam_path *path, u_int count)
4714 {
4715 	struct ccb_hdr *ccbh;
4716 
4717 	sim_lock_assert_owned(path->bus->sim->lock);
4718 
4719 	path->device->qfrozen_cnt += count;
4720 
4721 	/*
4722 	 * Mark the last CCB in the queue as needing
4723 	 * to be requeued if the driver hasn't
4724 	 * changed it's state yet.  This fixes a race
4725 	 * where a ccb is just about to be queued to
4726 	 * a controller driver when it's interrupt routine
4727 	 * freezes the queue.  To completly close the
4728 	 * hole, controller drives must check to see
4729 	 * if a ccb's status is still CAM_REQ_INPROG
4730 	 * just before they queue
4731 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4732 	 * an example.
4733 	 */
4734 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4735 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4736 		ccbh->status = CAM_REQUEUE_REQ;
4737 	return (path->device->qfrozen_cnt);
4738 }
4739 
4740 u_int32_t
4741 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4742 {
4743 	sim_lock_assert_owned(sim->lock);
4744 
4745 	if (sim->devq == NULL)
4746 		return(count);
4747 	sim->devq->send_queue.qfrozen_cnt += count;
4748 	if (sim->devq->active_dev != NULL) {
4749 		struct ccb_hdr *ccbh;
4750 
4751 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4752 				  ccb_hdr_tailq);
4753 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4754 			ccbh->status = CAM_REQUEUE_REQ;
4755 	}
4756 	return (sim->devq->send_queue.qfrozen_cnt);
4757 }
4758 
4759 /*
4760  * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4761  * We ref-count the sim (and the bus only NULLs it out when the bus has been
4762  * freed, which is not the case here), but the device queue is also freed XXX
4763  * and we have to check that here.
4764  *
4765  * XXX fixme: could we simply not null-out the device queue via
4766  * cam_sim_free()?
4767  */
4768 static void
4769 xpt_release_devq_timeout(void *arg)
4770 {
4771 	struct cam_ed *device;
4772 
4773 	device = (struct cam_ed *)arg;
4774 
4775 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4776 }
4777 
4778 void
4779 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4780 {
4781 	sim_lock_assert_owned(path->bus->sim->lock);
4782 
4783 	xpt_release_devq_device(path->device, count, run_queue);
4784 }
4785 
4786 static void
4787 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4788 {
4789 	int	rundevq;
4790 
4791 	rundevq = 0;
4792 
4793 	if (dev->qfrozen_cnt > 0) {
4794 
4795 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4796 		dev->qfrozen_cnt -= count;
4797 		if (dev->qfrozen_cnt == 0) {
4798 
4799 			/*
4800 			 * No longer need to wait for a successful
4801 			 * command completion.
4802 			 */
4803 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4804 
4805 			/*
4806 			 * Remove any timeouts that might be scheduled
4807 			 * to release this queue.
4808 			 */
4809 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4810 				callout_stop(&dev->callout);
4811 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4812 			}
4813 
4814 			/*
4815 			 * Now that we are unfrozen schedule the
4816 			 * device so any pending transactions are
4817 			 * run.
4818 			 */
4819 			if ((dev->ccbq.queue.entries > 0)
4820 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4821 			 && (run_queue != 0)) {
4822 				rundevq = 1;
4823 			}
4824 		}
4825 	}
4826 	if (rundevq != 0)
4827 		xpt_run_dev_sendq(dev->target->bus);
4828 }
4829 
4830 void
4831 xpt_release_simq(struct cam_sim *sim, int run_queue)
4832 {
4833 	struct	camq *sendq;
4834 
4835 	sim_lock_assert_owned(sim->lock);
4836 
4837 	if (sim->devq == NULL)
4838 		return;
4839 
4840 	sendq = &(sim->devq->send_queue);
4841 	if (sendq->qfrozen_cnt > 0) {
4842 		sendq->qfrozen_cnt--;
4843 		if (sendq->qfrozen_cnt == 0) {
4844 			struct cam_eb *bus;
4845 
4846 			/*
4847 			 * If there is a timeout scheduled to release this
4848 			 * sim queue, remove it.  The queue frozen count is
4849 			 * already at 0.
4850 			 */
4851 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4852 				callout_stop(&sim->callout);
4853 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4854 			}
4855 			bus = xpt_find_bus(sim->path_id);
4856 
4857 			if (run_queue) {
4858 				/*
4859 				 * Now that we are unfrozen run the send queue.
4860 				 */
4861 				xpt_run_dev_sendq(bus);
4862 			}
4863 			xpt_release_bus(bus);
4864 		}
4865 	}
4866 }
4867 
4868 void
4869 xpt_done(union ccb *done_ccb)
4870 {
4871 	struct cam_sim *sim;
4872 
4873 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4874 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4875 		/*
4876 		 * Queue up the request for handling by our SWI handler
4877 		 * any of the "non-immediate" type of ccbs.
4878 		 */
4879 		sim = done_ccb->ccb_h.path->bus->sim;
4880 		switch (done_ccb->ccb_h.path->periph->type) {
4881 		case CAM_PERIPH_BIO:
4882 			spin_lock(&sim->sim_spin);
4883 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4884 					  sim_links.tqe);
4885 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4886 			spin_unlock(&sim->sim_spin);
4887 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4888 				spin_lock(&cam_simq_spin);
4889 				if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4890 					TAILQ_INSERT_TAIL(&cam_simq, sim,
4891 							  links);
4892 					sim->flags |= CAM_SIM_ON_DONEQ;
4893 				}
4894 				spin_unlock(&cam_simq_spin);
4895 			}
4896 			if ((done_ccb->ccb_h.flags & CAM_POLLED) == 0)
4897 				setsoftcambio();
4898 			break;
4899 		default:
4900 			panic("unknown periph type %d",
4901 				done_ccb->ccb_h.path->periph->type);
4902 		}
4903 	}
4904 }
4905 
4906 union ccb *
4907 xpt_alloc_ccb(void)
4908 {
4909 	union ccb *new_ccb;
4910 
4911 	new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4912 	return (new_ccb);
4913 }
4914 
4915 void
4916 xpt_free_ccb(union ccb *free_ccb)
4917 {
4918 	kfree(free_ccb, M_CAMXPT);
4919 }
4920 
4921 
4922 
4923 /* Private XPT functions */
4924 
4925 /*
4926  * Get a CAM control block for the caller. Charge the structure to the device
4927  * referenced by the path.  If the this device has no 'credits' then the
4928  * device already has the maximum number of outstanding operations under way
4929  * and we return NULL. If we don't have sufficient resources to allocate more
4930  * ccbs, we also return NULL.
4931  */
4932 static union ccb *
4933 xpt_get_ccb(struct cam_ed *device)
4934 {
4935 	union ccb *new_ccb;
4936 	struct cam_sim *sim;
4937 
4938 	sim = device->sim;
4939 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4940 		new_ccb = xpt_alloc_ccb();
4941 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4942 			callout_init(&new_ccb->ccb_h.timeout_ch);
4943 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4944 				  xpt_links.sle);
4945 		sim->ccb_count++;
4946 	}
4947 	cam_ccbq_take_opening(&device->ccbq);
4948 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4949 	return (new_ccb);
4950 }
4951 
4952 static void
4953 xpt_release_bus(struct cam_eb *bus)
4954 {
4955 
4956 	if ((--bus->refcount == 0)
4957 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4958 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4959 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4960 		xsoftc.bus_generation++;
4961 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4962 		kfree(bus, M_CAMXPT);
4963 	}
4964 }
4965 
4966 static struct cam_et *
4967 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4968 {
4969 	struct cam_et *target;
4970 	struct cam_et *cur_target;
4971 
4972 	target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4973 
4974 	TAILQ_INIT(&target->ed_entries);
4975 	target->bus = bus;
4976 	target->target_id = target_id;
4977 	target->refcount = 1;
4978 	target->generation = 0;
4979 	timevalclear(&target->last_reset);
4980 	/*
4981 	 * Hold a reference to our parent bus so it
4982 	 * will not go away before we do.
4983 	 */
4984 	bus->refcount++;
4985 
4986 	/* Insertion sort into our bus's target list */
4987 	cur_target = TAILQ_FIRST(&bus->et_entries);
4988 	while (cur_target != NULL && cur_target->target_id < target_id)
4989 		cur_target = TAILQ_NEXT(cur_target, links);
4990 
4991 	if (cur_target != NULL) {
4992 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4993 	} else {
4994 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4995 	}
4996 	bus->generation++;
4997 	return (target);
4998 }
4999 
5000 static void
5001 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5002 {
5003 	if (target->refcount == 1) {
5004 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
5005 		TAILQ_REMOVE(&bus->et_entries, target, links);
5006 		bus->generation++;
5007 		xpt_release_bus(bus);
5008 		KKASSERT(target->refcount == 1);
5009 		kfree(target, M_CAMXPT);
5010 	} else {
5011 		--target->refcount;
5012 	}
5013 }
5014 
5015 static struct cam_ed *
5016 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5017 {
5018 	struct	   cam_path path;
5019 	struct	   cam_ed *device;
5020 	struct	   cam_devq *devq;
5021 	cam_status status;
5022 
5023 	/*
5024 	 * Disallow new devices while trying to deregister a sim
5025 	 */
5026 	if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5027 		return (NULL);
5028 
5029 	/*
5030 	 * Make space for us in the device queue on our bus
5031 	 */
5032 	devq = bus->sim->devq;
5033 	if (devq == NULL)
5034 		return(NULL);
5035 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5036 
5037 	if (status != CAM_REQ_CMP) {
5038 		device = NULL;
5039 	} else {
5040 		device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5041 	}
5042 
5043 	if (device != NULL) {
5044 		struct cam_ed *cur_device;
5045 
5046 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5047 		device->alloc_ccb_entry.device = device;
5048 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5049 		device->send_ccb_entry.device = device;
5050 		device->target = target;
5051 		device->lun_id = lun_id;
5052 		device->sim = bus->sim;
5053 		/* Initialize our queues */
5054 		if (camq_init(&device->drvq, 0) != 0) {
5055 			kfree(device, M_CAMXPT);
5056 			return (NULL);
5057 		}
5058 		if (cam_ccbq_init(&device->ccbq,
5059 				  bus->sim->max_dev_openings) != 0) {
5060 			camq_fini(&device->drvq);
5061 			kfree(device, M_CAMXPT);
5062 			return (NULL);
5063 		}
5064 		SLIST_INIT(&device->asyncs);
5065 		SLIST_INIT(&device->periphs);
5066 		device->generation = 0;
5067 		device->owner = NULL;
5068 		/*
5069 		 * Take the default quirk entry until we have inquiry
5070 		 * data and can determine a better quirk to use.
5071 		 */
5072 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5073 		bzero(&device->inq_data, sizeof(device->inq_data));
5074 		device->inq_flags = 0;
5075 		device->queue_flags = 0;
5076 		device->serial_num = NULL;
5077 		device->serial_num_len = 0;
5078 		device->qfrozen_cnt = 0;
5079 		device->flags = CAM_DEV_UNCONFIGURED;
5080 		device->tag_delay_count = 0;
5081 		device->tag_saved_openings = 0;
5082 		device->refcount = 1;
5083 		callout_init(&device->callout);
5084 
5085 		/*
5086 		 * Hold a reference to our parent target so it
5087 		 * will not go away before we do.
5088 		 */
5089 		target->refcount++;
5090 
5091 		/*
5092 		 * XXX should be limited by number of CCBs this bus can
5093 		 * do.
5094 		 */
5095 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5096 		/* Insertion sort into our target's device list */
5097 		cur_device = TAILQ_FIRST(&target->ed_entries);
5098 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5099 			cur_device = TAILQ_NEXT(cur_device, links);
5100 		if (cur_device != NULL) {
5101 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5102 		} else {
5103 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5104 		}
5105 		target->generation++;
5106 		if (lun_id != CAM_LUN_WILDCARD) {
5107 			xpt_compile_path(&path,
5108 					 NULL,
5109 					 bus->path_id,
5110 					 target->target_id,
5111 					 lun_id);
5112 			xpt_devise_transport(&path);
5113 			xpt_release_path(&path);
5114 		}
5115 	}
5116 	return (device);
5117 }
5118 
5119 static void
5120 xpt_reference_device(struct cam_ed *device)
5121 {
5122 	++device->refcount;
5123 }
5124 
5125 static void
5126 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5127 		   struct cam_ed *device)
5128 {
5129 	struct cam_devq *devq;
5130 
5131 	if (device->refcount == 1) {
5132 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5133 
5134 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5135 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5136 			panic("Removing device while still queued for ccbs");
5137 
5138 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5139 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5140 			callout_stop(&device->callout);
5141 		}
5142 
5143 		TAILQ_REMOVE(&target->ed_entries, device,links);
5144 		target->generation++;
5145 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
5146 		if ((devq = bus->sim->devq) != NULL) {
5147 			/* Release our slot in the devq */
5148 			cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5149 		}
5150 		camq_fini(&device->drvq);
5151 		camq_fini(&device->ccbq.queue);
5152 		xpt_release_target(bus, target);
5153 		KKASSERT(device->refcount == 1);
5154 		kfree(device, M_CAMXPT);
5155 	} else {
5156 		--device->refcount;
5157 	}
5158 }
5159 
5160 static u_int32_t
5161 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5162 {
5163 	int	diff;
5164 	int	result;
5165 	struct	cam_ed *dev;
5166 
5167 	dev = path->device;
5168 
5169 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5170 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5171 	if (result == CAM_REQ_CMP && (diff < 0)) {
5172 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5173 	}
5174 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5175 	 || (dev->inq_flags & SID_CmdQue) != 0)
5176 		dev->tag_saved_openings = newopenings;
5177 	/* Adjust the global limit */
5178 	dev->sim->max_ccbs += diff;
5179 	return (result);
5180 }
5181 
5182 static struct cam_eb *
5183 xpt_find_bus(path_id_t path_id)
5184 {
5185 	struct cam_eb *bus;
5186 
5187 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5188 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5189 		if (bus->path_id == path_id) {
5190 			bus->refcount++;
5191 			break;
5192 		}
5193 	}
5194 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5195 	return (bus);
5196 }
5197 
5198 static struct cam_et *
5199 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5200 {
5201 	struct cam_et *target;
5202 
5203 	TAILQ_FOREACH(target, &bus->et_entries, links) {
5204 		if (target->target_id == target_id) {
5205 			target->refcount++;
5206 			break;
5207 		}
5208 	}
5209 	return (target);
5210 }
5211 
5212 static struct cam_ed *
5213 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5214 {
5215 	struct cam_ed *device;
5216 
5217 	TAILQ_FOREACH(device, &target->ed_entries, links) {
5218 		if (device->lun_id == lun_id) {
5219 			device->refcount++;
5220 			break;
5221 		}
5222 	}
5223 	return (device);
5224 }
5225 
5226 typedef struct {
5227 	union	ccb *request_ccb;
5228 	struct 	ccb_pathinq *cpi;
5229 	int	counter;
5230 } xpt_scan_bus_info;
5231 
5232 /*
5233  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5234  * As the scan progresses, xpt_scan_bus is used as the
5235  * callback on completion function.
5236  */
5237 static void
5238 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5239 {
5240 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5241 		  ("xpt_scan_bus\n"));
5242 	switch (request_ccb->ccb_h.func_code) {
5243 	case XPT_SCAN_BUS:
5244 	{
5245 		xpt_scan_bus_info *scan_info;
5246 		union	ccb *work_ccb;
5247 		struct	cam_path *path;
5248 		u_int	i;
5249 		u_int	max_target;
5250 		u_int	initiator_id;
5251 
5252 		/* Find out the characteristics of the bus */
5253 		work_ccb = xpt_alloc_ccb();
5254 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5255 			      request_ccb->ccb_h.pinfo.priority);
5256 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5257 		xpt_action(work_ccb);
5258 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5259 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5260 			xpt_free_ccb(work_ccb);
5261 			xpt_done(request_ccb);
5262 			return;
5263 		}
5264 
5265 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5266 			/*
5267 			 * Can't scan the bus on an adapter that
5268 			 * cannot perform the initiator role.
5269 			 */
5270 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5271 			xpt_free_ccb(work_ccb);
5272 			xpt_done(request_ccb);
5273 			return;
5274 		}
5275 
5276 		/* Save some state for use while we probe for devices */
5277 		scan_info = (xpt_scan_bus_info *)
5278 		    kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5279 		scan_info->request_ccb = request_ccb;
5280 		scan_info->cpi = &work_ccb->cpi;
5281 
5282 		/* Cache on our stack so we can work asynchronously */
5283 		max_target = scan_info->cpi->max_target;
5284 		initiator_id = scan_info->cpi->initiator_id;
5285 
5286 
5287 		/*
5288 		 * We can scan all targets in parallel, or do it sequentially.
5289 		 */
5290 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5291 			max_target = 0;
5292 			scan_info->counter = 0;
5293 		} else {
5294 			scan_info->counter = scan_info->cpi->max_target + 1;
5295 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5296 				scan_info->counter--;
5297 			}
5298 		}
5299 
5300 		for (i = 0; i <= max_target; i++) {
5301 			cam_status status;
5302 			if (i == initiator_id)
5303 				continue;
5304 
5305 			status = xpt_create_path(&path, xpt_periph,
5306 						 request_ccb->ccb_h.path_id,
5307 						 i, 0);
5308 			if (status != CAM_REQ_CMP) {
5309 				kprintf("xpt_scan_bus: xpt_create_path failed"
5310 				       " with status %#x, bus scan halted\n",
5311 				       status);
5312 				kfree(scan_info, M_CAMXPT);
5313 				request_ccb->ccb_h.status = status;
5314 				xpt_free_ccb(work_ccb);
5315 				xpt_done(request_ccb);
5316 				break;
5317 			}
5318 			work_ccb = xpt_alloc_ccb();
5319 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5320 				      request_ccb->ccb_h.pinfo.priority);
5321 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5322 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5323 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5324 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5325 			xpt_action(work_ccb);
5326 		}
5327 		break;
5328 	}
5329 	case XPT_SCAN_LUN:
5330 	{
5331 		cam_status status;
5332 		struct cam_path *path;
5333 		xpt_scan_bus_info *scan_info;
5334 		path_id_t path_id;
5335 		target_id_t target_id;
5336 		lun_id_t lun_id;
5337 
5338 		/* Reuse the same CCB to query if a device was really found */
5339 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5340 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5341 			      request_ccb->ccb_h.pinfo.priority);
5342 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5343 
5344 		path_id = request_ccb->ccb_h.path_id;
5345 		target_id = request_ccb->ccb_h.target_id;
5346 		lun_id = request_ccb->ccb_h.target_lun;
5347 		xpt_action(request_ccb);
5348 
5349 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5350 			struct cam_ed *device;
5351 			struct cam_et *target;
5352 			int phl;
5353 
5354 			/*
5355 			 * If we already probed lun 0 successfully, or
5356 			 * we have additional configured luns on this
5357 			 * target that might have "gone away", go onto
5358 			 * the next lun.
5359 			 */
5360 			target = request_ccb->ccb_h.path->target;
5361 			/*
5362 			 * We may touch devices that we don't
5363 			 * hold references too, so ensure they
5364 			 * don't disappear out from under us.
5365 			 * The target above is referenced by the
5366 			 * path in the request ccb.
5367 			 */
5368 			phl = 0;
5369 			device = TAILQ_FIRST(&target->ed_entries);
5370 			if (device != NULL) {
5371 				phl = CAN_SRCH_HI_SPARSE(device);
5372 				if (device->lun_id == 0)
5373 					device = TAILQ_NEXT(device, links);
5374 			}
5375 			if ((lun_id != 0) || (device != NULL)) {
5376 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5377 					lun_id++;
5378 			}
5379 		} else {
5380 			struct cam_ed *device;
5381 
5382 			device = request_ccb->ccb_h.path->device;
5383 
5384 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5385 				/* Try the next lun */
5386 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5387 				  || CAN_SRCH_HI_DENSE(device))
5388 					lun_id++;
5389 			}
5390 		}
5391 
5392 		/*
5393 		 * Free the current request path- we're done with it.
5394 		 */
5395 		xpt_free_path(request_ccb->ccb_h.path);
5396 
5397 		/*
5398 		 * Check to see if we scan any further luns.
5399 		 */
5400 		if (lun_id == request_ccb->ccb_h.target_lun
5401                  || lun_id > scan_info->cpi->max_lun) {
5402 			int done;
5403 
5404  hop_again:
5405 			done = 0;
5406 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5407 				scan_info->counter++;
5408 				if (scan_info->counter ==
5409 				    scan_info->cpi->initiator_id) {
5410 					scan_info->counter++;
5411 				}
5412 				if (scan_info->counter >=
5413 				    scan_info->cpi->max_target+1) {
5414 					done = 1;
5415 				}
5416 			} else {
5417 				scan_info->counter--;
5418 				if (scan_info->counter == 0) {
5419 					done = 1;
5420 				}
5421 			}
5422 			if (done) {
5423 				xpt_free_ccb(request_ccb);
5424 				xpt_free_ccb((union ccb *)scan_info->cpi);
5425 				request_ccb = scan_info->request_ccb;
5426 				kfree(scan_info, M_CAMXPT);
5427 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5428 				xpt_done(request_ccb);
5429 				break;
5430 			}
5431 
5432 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5433 				break;
5434 			}
5435 			status = xpt_create_path(&path, xpt_periph,
5436 			    scan_info->request_ccb->ccb_h.path_id,
5437 			    scan_info->counter, 0);
5438 			if (status != CAM_REQ_CMP) {
5439 				kprintf("xpt_scan_bus: xpt_create_path failed"
5440 				    " with status %#x, bus scan halted\n",
5441 			       	    status);
5442 				xpt_free_ccb(request_ccb);
5443 				xpt_free_ccb((union ccb *)scan_info->cpi);
5444 				request_ccb = scan_info->request_ccb;
5445 				kfree(scan_info, M_CAMXPT);
5446 				request_ccb->ccb_h.status = status;
5447 				xpt_done(request_ccb);
5448 				break;
5449 			}
5450 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5451 			    request_ccb->ccb_h.pinfo.priority);
5452 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5453 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5454 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5455 			request_ccb->crcn.flags =
5456 			    scan_info->request_ccb->crcn.flags;
5457 		} else {
5458 			status = xpt_create_path(&path, xpt_periph,
5459 						 path_id, target_id, lun_id);
5460 			if (status != CAM_REQ_CMP) {
5461 				kprintf("xpt_scan_bus: xpt_create_path failed "
5462 				       "with status %#x, halting LUN scan\n",
5463 			 	       status);
5464 				goto hop_again;
5465 			}
5466 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5467 				      request_ccb->ccb_h.pinfo.priority);
5468 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5469 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5470 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5471 			request_ccb->crcn.flags =
5472 				scan_info->request_ccb->crcn.flags;
5473 		}
5474 		xpt_action(request_ccb);
5475 		break;
5476 	}
5477 	default:
5478 		break;
5479 	}
5480 }
5481 
5482 typedef enum {
5483 	PROBE_TUR,
5484 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5485 	PROBE_FULL_INQUIRY,
5486 	PROBE_MODE_SENSE,
5487 	PROBE_SERIAL_NUM_0,
5488 	PROBE_SERIAL_NUM_1,
5489 	PROBE_TUR_FOR_NEGOTIATION,
5490 	PROBE_INQUIRY_BASIC_DV1,
5491 	PROBE_INQUIRY_BASIC_DV2,
5492 	PROBE_DV_EXIT
5493 } probe_action;
5494 
5495 typedef enum {
5496 	PROBE_INQUIRY_CKSUM	= 0x01,
5497 	PROBE_SERIAL_CKSUM	= 0x02,
5498 	PROBE_NO_ANNOUNCE	= 0x04
5499 } probe_flags;
5500 
5501 typedef struct {
5502 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5503 	probe_action	action;
5504 	union ccb	saved_ccb;
5505 	probe_flags	flags;
5506 	MD5_CTX		context;
5507 	u_int8_t	digest[16];
5508 }probe_softc;
5509 
5510 static void
5511 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5512 	     cam_flags flags, union ccb *request_ccb)
5513 {
5514 	struct ccb_pathinq cpi;
5515 	cam_status status;
5516 	struct cam_path *new_path;
5517 	struct cam_periph *old_periph;
5518 
5519 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5520 		  ("xpt_scan_lun\n"));
5521 
5522 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5523 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5524 	xpt_action((union ccb *)&cpi);
5525 
5526 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5527 		if (request_ccb != NULL) {
5528 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5529 			xpt_done(request_ccb);
5530 		}
5531 		return;
5532 	}
5533 
5534 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5535 		/*
5536 		 * Can't scan the bus on an adapter that
5537 		 * cannot perform the initiator role.
5538 		 */
5539 		if (request_ccb != NULL) {
5540 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5541 			xpt_done(request_ccb);
5542 		}
5543 		return;
5544 	}
5545 
5546 	if (request_ccb == NULL) {
5547 		request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5548 		new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5549 		status = xpt_compile_path(new_path, xpt_periph,
5550 					  path->bus->path_id,
5551 					  path->target->target_id,
5552 					  path->device->lun_id);
5553 
5554 		if (status != CAM_REQ_CMP) {
5555 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5556 			    "can't continue\n");
5557 			kfree(request_ccb, M_CAMXPT);
5558 			kfree(new_path, M_CAMXPT);
5559 			return;
5560 		}
5561 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5562 		request_ccb->ccb_h.cbfcnp = xptscandone;
5563 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5564 		request_ccb->crcn.flags = flags;
5565 	}
5566 
5567 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5568 		probe_softc *softc;
5569 
5570 		softc = (probe_softc *)old_periph->softc;
5571 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5572 				  periph_links.tqe);
5573 	} else {
5574 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5575 					  probestart, "probe",
5576 					  CAM_PERIPH_BIO,
5577 					  request_ccb->ccb_h.path, NULL, 0,
5578 					  request_ccb);
5579 
5580 		if (status != CAM_REQ_CMP) {
5581 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5582 			    "returned an error, can't continue probe\n");
5583 			request_ccb->ccb_h.status = status;
5584 			xpt_done(request_ccb);
5585 		}
5586 	}
5587 }
5588 
5589 static void
5590 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5591 {
5592 	xpt_release_path(done_ccb->ccb_h.path);
5593 	kfree(done_ccb->ccb_h.path, M_CAMXPT);
5594 	kfree(done_ccb, M_CAMXPT);
5595 }
5596 
5597 static cam_status
5598 proberegister(struct cam_periph *periph, void *arg)
5599 {
5600 	union ccb *request_ccb;	/* CCB representing the probe request */
5601 	cam_status status;
5602 	probe_softc *softc;
5603 
5604 	request_ccb = (union ccb *)arg;
5605 	if (periph == NULL) {
5606 		kprintf("proberegister: periph was NULL!!\n");
5607 		return(CAM_REQ_CMP_ERR);
5608 	}
5609 
5610 	if (request_ccb == NULL) {
5611 		kprintf("proberegister: no probe CCB, "
5612 		       "can't register device\n");
5613 		return(CAM_REQ_CMP_ERR);
5614 	}
5615 
5616 	softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5617 	TAILQ_INIT(&softc->request_ccbs);
5618 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5619 			  periph_links.tqe);
5620 	softc->flags = 0;
5621 	periph->softc = softc;
5622 	status = cam_periph_acquire(periph);
5623 	if (status != CAM_REQ_CMP) {
5624 		return (status);
5625 	}
5626 
5627 
5628 	/*
5629 	 * Ensure we've waited at least a bus settle
5630 	 * delay before attempting to probe the device.
5631 	 * For HBAs that don't do bus resets, this won't make a difference.
5632 	 */
5633 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5634 				      scsi_delay);
5635 	probeschedule(periph);
5636 	return(CAM_REQ_CMP);
5637 }
5638 
5639 static void
5640 probeschedule(struct cam_periph *periph)
5641 {
5642 	struct ccb_pathinq cpi;
5643 	union ccb *ccb;
5644 	probe_softc *softc;
5645 
5646 	softc = (probe_softc *)periph->softc;
5647 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5648 
5649 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5650 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5651 	xpt_action((union ccb *)&cpi);
5652 
5653 	/*
5654 	 * If a device has gone away and another device, or the same one,
5655 	 * is back in the same place, it should have a unit attention
5656 	 * condition pending.  It will not report the unit attention in
5657 	 * response to an inquiry, which may leave invalid transfer
5658 	 * negotiations in effect.  The TUR will reveal the unit attention
5659 	 * condition.  Only send the TUR for lun 0, since some devices
5660 	 * will get confused by commands other than inquiry to non-existent
5661 	 * luns.  If you think a device has gone away start your scan from
5662 	 * lun 0.  This will insure that any bogus transfer settings are
5663 	 * invalidated.
5664 	 *
5665 	 * If we haven't seen the device before and the controller supports
5666 	 * some kind of transfer negotiation, negotiate with the first
5667 	 * sent command if no bus reset was performed at startup.  This
5668 	 * ensures that the device is not confused by transfer negotiation
5669 	 * settings left over by loader or BIOS action.
5670 	 */
5671 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5672 	 && (ccb->ccb_h.target_lun == 0)) {
5673 		softc->action = PROBE_TUR;
5674 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5675 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5676 		proberequestdefaultnegotiation(periph);
5677 		softc->action = PROBE_INQUIRY;
5678 	} else {
5679 		softc->action = PROBE_INQUIRY;
5680 	}
5681 
5682 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5683 		softc->flags |= PROBE_NO_ANNOUNCE;
5684 	else
5685 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5686 
5687 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5688 }
5689 
5690 static void
5691 probestart(struct cam_periph *periph, union ccb *start_ccb)
5692 {
5693 	/* Probe the device that our peripheral driver points to */
5694 	struct ccb_scsiio *csio;
5695 	probe_softc *softc;
5696 
5697 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5698 
5699 	softc = (probe_softc *)periph->softc;
5700 	csio = &start_ccb->csio;
5701 
5702 	switch (softc->action) {
5703 	case PROBE_TUR:
5704 	case PROBE_TUR_FOR_NEGOTIATION:
5705 	case PROBE_DV_EXIT:
5706 	{
5707 		scsi_test_unit_ready(csio,
5708 				     /*retries*/4,
5709 				     probedone,
5710 				     MSG_SIMPLE_Q_TAG,
5711 				     SSD_FULL_SIZE,
5712 				     /*timeout*/60000);
5713 		break;
5714 	}
5715 	case PROBE_INQUIRY:
5716 	case PROBE_FULL_INQUIRY:
5717 	case PROBE_INQUIRY_BASIC_DV1:
5718 	case PROBE_INQUIRY_BASIC_DV2:
5719 	{
5720 		u_int inquiry_len;
5721 		struct scsi_inquiry_data *inq_buf;
5722 
5723 		inq_buf = &periph->path->device->inq_data;
5724 
5725 		/*
5726 		 * If the device is currently configured, we calculate an
5727 		 * MD5 checksum of the inquiry data, and if the serial number
5728 		 * length is greater than 0, add the serial number data
5729 		 * into the checksum as well.  Once the inquiry and the
5730 		 * serial number check finish, we attempt to figure out
5731 		 * whether we still have the same device.
5732 		 */
5733 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5734 
5735 			MD5Init(&softc->context);
5736 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5737 				  sizeof(struct scsi_inquiry_data));
5738 			softc->flags |= PROBE_INQUIRY_CKSUM;
5739 			if (periph->path->device->serial_num_len > 0) {
5740 				MD5Update(&softc->context,
5741 					  periph->path->device->serial_num,
5742 					  periph->path->device->serial_num_len);
5743 				softc->flags |= PROBE_SERIAL_CKSUM;
5744 			}
5745 			MD5Final(softc->digest, &softc->context);
5746 		}
5747 
5748 		if (softc->action == PROBE_INQUIRY)
5749 			inquiry_len = SHORT_INQUIRY_LENGTH;
5750 		else
5751 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5752 
5753 		/*
5754 		 * Some parallel SCSI devices fail to send an
5755 		 * ignore wide residue message when dealing with
5756 		 * odd length inquiry requests.  Round up to be
5757 		 * safe.
5758 		 */
5759 		inquiry_len = roundup2(inquiry_len, 2);
5760 
5761 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5762 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5763 			inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5764 		}
5765 		scsi_inquiry(csio,
5766 			     /*retries*/4,
5767 			     probedone,
5768 			     MSG_SIMPLE_Q_TAG,
5769 			     (u_int8_t *)inq_buf,
5770 			     inquiry_len,
5771 			     /*evpd*/FALSE,
5772 			     /*page_code*/0,
5773 			     SSD_MIN_SIZE,
5774 			     /*timeout*/60 * 1000);
5775 		break;
5776 	}
5777 	case PROBE_MODE_SENSE:
5778 	{
5779 		void  *mode_buf;
5780 		int    mode_buf_len;
5781 
5782 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5783 			     + sizeof(struct scsi_mode_blk_desc)
5784 			     + sizeof(struct scsi_control_page);
5785 		mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5786 		scsi_mode_sense(csio,
5787 				/*retries*/4,
5788 				probedone,
5789 				MSG_SIMPLE_Q_TAG,
5790 				/*dbd*/FALSE,
5791 				SMS_PAGE_CTRL_CURRENT,
5792 				SMS_CONTROL_MODE_PAGE,
5793 				mode_buf,
5794 				mode_buf_len,
5795 				SSD_FULL_SIZE,
5796 				/*timeout*/60000);
5797 		break;
5798 	}
5799 	case PROBE_SERIAL_NUM_0:
5800 	{
5801 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5802 		struct cam_ed *device;
5803 
5804 		device = periph->path->device;
5805 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5806 			vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5807 			    M_INTWAIT | M_ZERO);
5808 		}
5809 
5810 		if (vpd_list != NULL) {
5811 			scsi_inquiry(csio,
5812 				     /*retries*/4,
5813 				     probedone,
5814 				     MSG_SIMPLE_Q_TAG,
5815 				     (u_int8_t *)vpd_list,
5816 				     sizeof(*vpd_list),
5817 				     /*evpd*/TRUE,
5818 				     SVPD_SUPPORTED_PAGE_LIST,
5819 				     SSD_MIN_SIZE,
5820 				     /*timeout*/60 * 1000);
5821 			break;
5822 		}
5823 		/*
5824 		 * We'll have to do without, let our probedone
5825 		 * routine finish up for us.
5826 		 */
5827 		start_ccb->csio.data_ptr = NULL;
5828 		probedone(periph, start_ccb);
5829 		return;
5830 	}
5831 	case PROBE_SERIAL_NUM_1:
5832 	{
5833 		struct scsi_vpd_unit_serial_number *serial_buf;
5834 		struct cam_ed* device;
5835 
5836 		serial_buf = NULL;
5837 		device = periph->path->device;
5838 		device->serial_num = NULL;
5839 		device->serial_num_len = 0;
5840 
5841 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5842 			kmalloc(sizeof(*serial_buf), M_CAMXPT,
5843 				M_INTWAIT | M_ZERO);
5844 		scsi_inquiry(csio,
5845 			     /*retries*/4,
5846 			     probedone,
5847 			     MSG_SIMPLE_Q_TAG,
5848 			     (u_int8_t *)serial_buf,
5849 			     sizeof(*serial_buf),
5850 			     /*evpd*/TRUE,
5851 			     SVPD_UNIT_SERIAL_NUMBER,
5852 			     SSD_MIN_SIZE,
5853 			     /*timeout*/60 * 1000);
5854 		break;
5855 	}
5856 	}
5857 	xpt_action(start_ccb);
5858 }
5859 
5860 static void
5861 proberequestdefaultnegotiation(struct cam_periph *periph)
5862 {
5863 	struct ccb_trans_settings cts;
5864 
5865 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5866 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5867 	cts.type = CTS_TYPE_USER_SETTINGS;
5868 	xpt_action((union ccb *)&cts);
5869 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5870 		return;
5871 	}
5872 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5873 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5874 	xpt_action((union ccb *)&cts);
5875 }
5876 
5877 /*
5878  * Backoff Negotiation Code- only pertinent for SPI devices.
5879  */
5880 static int
5881 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5882 {
5883 	struct ccb_trans_settings cts;
5884 	struct ccb_trans_settings_spi *spi;
5885 
5886 	memset(&cts, 0, sizeof (cts));
5887 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5888 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5889 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5890 	xpt_action((union ccb *)&cts);
5891 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5892 		if (bootverbose) {
5893 			xpt_print(periph->path,
5894 			    "failed to get current device settings\n");
5895 		}
5896 		return (0);
5897 	}
5898 	if (cts.transport != XPORT_SPI) {
5899 		if (bootverbose) {
5900 			xpt_print(periph->path, "not SPI transport\n");
5901 		}
5902 		return (0);
5903 	}
5904 	spi = &cts.xport_specific.spi;
5905 
5906 	/*
5907 	 * We cannot renegotiate sync rate if we don't have one.
5908 	 */
5909 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5910 		if (bootverbose) {
5911 			xpt_print(periph->path, "no sync rate known\n");
5912 		}
5913 		return (0);
5914 	}
5915 
5916 	/*
5917 	 * We'll assert that we don't have to touch PPR options- the
5918 	 * SIM will see what we do with period and offset and adjust
5919 	 * the PPR options as appropriate.
5920 	 */
5921 
5922 	/*
5923 	 * A sync rate with unknown or zero offset is nonsensical.
5924 	 * A sync period of zero means Async.
5925 	 */
5926 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5927 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
5928 		if (bootverbose) {
5929 			xpt_print(periph->path, "no sync rate available\n");
5930 		}
5931 		return (0);
5932 	}
5933 
5934 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5935 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5936 		    ("hit async: giving up on DV\n"));
5937 		return (0);
5938 	}
5939 
5940 
5941 	/*
5942 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5943 	 * We don't try to remember 'last' settings to see if the SIM actually
5944 	 * gets into the speed we want to set. We check on the SIM telling
5945 	 * us that a requested speed is bad, but otherwise don't try and
5946 	 * check the speed due to the asynchronous and handshake nature
5947 	 * of speed setting.
5948 	 */
5949 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5950 	for (;;) {
5951 		spi->sync_period++;
5952 		if (spi->sync_period >= 0xf) {
5953 			spi->sync_period = 0;
5954 			spi->sync_offset = 0;
5955 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5956 			    ("setting to async for DV\n"));
5957 			/*
5958 			 * Once we hit async, we don't want to try
5959 			 * any more settings.
5960 			 */
5961 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5962 		} else if (bootverbose) {
5963 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5964 			    ("DV: period 0x%x\n", spi->sync_period));
5965 			kprintf("setting period to 0x%x\n", spi->sync_period);
5966 		}
5967 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5968 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
5969 		xpt_action((union ccb *)&cts);
5970 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5971 			break;
5972 		}
5973 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5974 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
5975 		if (spi->sync_period == 0) {
5976 			return (0);
5977 		}
5978 	}
5979 	return (1);
5980 }
5981 
5982 static void
5983 probedone(struct cam_periph *periph, union ccb *done_ccb)
5984 {
5985 	probe_softc *softc;
5986 	struct cam_path *path;
5987 	u_int32_t  priority;
5988 
5989 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5990 
5991 	softc = (probe_softc *)periph->softc;
5992 	path = done_ccb->ccb_h.path;
5993 	priority = done_ccb->ccb_h.pinfo.priority;
5994 
5995 	switch (softc->action) {
5996 	case PROBE_TUR:
5997 	{
5998 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5999 
6000 			if (cam_periph_error(done_ccb, 0,
6001 					     SF_NO_PRINT, NULL) == ERESTART)
6002 				return;
6003 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6004 				/* Don't wedge the queue */
6005 				xpt_release_devq(done_ccb->ccb_h.path,
6006 						 /*count*/1,
6007 						 /*run_queue*/TRUE);
6008 		}
6009 		softc->action = PROBE_INQUIRY;
6010 		xpt_release_ccb(done_ccb);
6011 		xpt_schedule(periph, priority);
6012 		return;
6013 	}
6014 	case PROBE_INQUIRY:
6015 	case PROBE_FULL_INQUIRY:
6016 	{
6017 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6018 			struct scsi_inquiry_data *inq_buf;
6019 			u_int8_t periph_qual;
6020 
6021 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6022 			inq_buf = &path->device->inq_data;
6023 
6024 			periph_qual = SID_QUAL(inq_buf);
6025 
6026 			switch(periph_qual) {
6027 			case SID_QUAL_LU_CONNECTED:
6028 			{
6029 				u_int8_t len;
6030 
6031 				/*
6032 				 * We conservatively request only
6033 				 * SHORT_INQUIRY_LEN bytes of inquiry
6034 				 * information during our first try
6035 				 * at sending an INQUIRY. If the device
6036 				 * has more information to give,
6037 				 * perform a second request specifying
6038 				 * the amount of information the device
6039 				 * is willing to give.
6040 				 */
6041 				len = inq_buf->additional_length
6042 				    + offsetof(struct scsi_inquiry_data,
6043 						additional_length) + 1;
6044 				if (softc->action == PROBE_INQUIRY
6045 				    && len > SHORT_INQUIRY_LENGTH) {
6046 					softc->action = PROBE_FULL_INQUIRY;
6047 					xpt_release_ccb(done_ccb);
6048 					xpt_schedule(periph, priority);
6049 					return;
6050 				}
6051 
6052 				xpt_find_quirk(path->device);
6053 
6054 				xpt_devise_transport(path);
6055 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6056 					softc->action = PROBE_MODE_SENSE;
6057 				else
6058 					softc->action = PROBE_SERIAL_NUM_0;
6059 
6060 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6061 				xpt_reference_device(path->device);
6062 
6063 				xpt_release_ccb(done_ccb);
6064 				xpt_schedule(periph, priority);
6065 				return;
6066 			}
6067 			default:
6068 				break;
6069 			}
6070 		} else if (cam_periph_error(done_ccb, 0,
6071 					    done_ccb->ccb_h.target_lun > 0
6072 					    ? SF_RETRY_UA|SF_QUIET_IR
6073 					    : SF_RETRY_UA,
6074 					    &softc->saved_ccb) == ERESTART) {
6075 			return;
6076 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6077 			/* Don't wedge the queue */
6078 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6079 					 /*run_queue*/TRUE);
6080 		}
6081 		/*
6082 		 * If we get to this point, we got an error status back
6083 		 * from the inquiry and the error status doesn't require
6084 		 * automatically retrying the command.  Therefore, the
6085 		 * inquiry failed.  If we had inquiry information before
6086 		 * for this device, but this latest inquiry command failed,
6087 		 * the device has probably gone away.  If this device isn't
6088 		 * already marked unconfigured, notify the peripheral
6089 		 * drivers that this device is no more.
6090 		 */
6091 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6092 			/* Send the async notification. */
6093 			xpt_async(AC_LOST_DEVICE, path, NULL);
6094 		}
6095 
6096 		xpt_release_ccb(done_ccb);
6097 		break;
6098 	}
6099 	case PROBE_MODE_SENSE:
6100 	{
6101 		struct ccb_scsiio *csio;
6102 		struct scsi_mode_header_6 *mode_hdr;
6103 
6104 		csio = &done_ccb->csio;
6105 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6106 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6107 			struct scsi_control_page *page;
6108 			u_int8_t *offset;
6109 
6110 			offset = ((u_int8_t *)&mode_hdr[1])
6111 			    + mode_hdr->blk_desc_len;
6112 			page = (struct scsi_control_page *)offset;
6113 			path->device->queue_flags = page->queue_flags;
6114 		} else if (cam_periph_error(done_ccb, 0,
6115 					    SF_RETRY_UA|SF_NO_PRINT,
6116 					    &softc->saved_ccb) == ERESTART) {
6117 			return;
6118 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6119 			/* Don't wedge the queue */
6120 			xpt_release_devq(done_ccb->ccb_h.path,
6121 					 /*count*/1, /*run_queue*/TRUE);
6122 		}
6123 		xpt_release_ccb(done_ccb);
6124 		kfree(mode_hdr, M_CAMXPT);
6125 		softc->action = PROBE_SERIAL_NUM_0;
6126 		xpt_schedule(periph, priority);
6127 		return;
6128 	}
6129 	case PROBE_SERIAL_NUM_0:
6130 	{
6131 		struct ccb_scsiio *csio;
6132 		struct scsi_vpd_supported_page_list *page_list;
6133 		int length, serialnum_supported, i;
6134 
6135 		serialnum_supported = 0;
6136 		csio = &done_ccb->csio;
6137 		page_list =
6138 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6139 
6140 		if (page_list == NULL) {
6141 			/*
6142 			 * Don't process the command as it was never sent
6143 			 */
6144 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6145 		    && (page_list->length > 0)) {
6146 			length = min(page_list->length,
6147 			    SVPD_SUPPORTED_PAGES_SIZE);
6148 			for (i = 0; i < length; i++) {
6149 				if (page_list->list[i] ==
6150 				    SVPD_UNIT_SERIAL_NUMBER) {
6151 					serialnum_supported = 1;
6152 					break;
6153 				}
6154 			}
6155 		} else if (cam_periph_error(done_ccb, 0,
6156 					    SF_RETRY_UA|SF_NO_PRINT,
6157 					    &softc->saved_ccb) == ERESTART) {
6158 			return;
6159 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6160 			/* Don't wedge the queue */
6161 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6162 					 /*run_queue*/TRUE);
6163 		}
6164 
6165 		if (page_list != NULL)
6166 			kfree(page_list, M_DEVBUF);
6167 
6168 		if (serialnum_supported) {
6169 			xpt_release_ccb(done_ccb);
6170 			softc->action = PROBE_SERIAL_NUM_1;
6171 			xpt_schedule(periph, priority);
6172 			return;
6173 		}
6174 		xpt_release_ccb(done_ccb);
6175 		softc->action = PROBE_TUR_FOR_NEGOTIATION;
6176 		xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority);
6177 		return;
6178 	}
6179 
6180 	case PROBE_SERIAL_NUM_1:
6181 	{
6182 		struct ccb_scsiio *csio;
6183 		struct scsi_vpd_unit_serial_number *serial_buf;
6184 		u_int32_t  priority;
6185 		int changed;
6186 		int have_serialnum;
6187 
6188 		changed = 1;
6189 		have_serialnum = 0;
6190 		csio = &done_ccb->csio;
6191 		priority = done_ccb->ccb_h.pinfo.priority;
6192 		serial_buf =
6193 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6194 
6195 		/* Clean up from previous instance of this device */
6196 		if (path->device->serial_num != NULL) {
6197 			kfree(path->device->serial_num, M_CAMXPT);
6198 			path->device->serial_num = NULL;
6199 			path->device->serial_num_len = 0;
6200 		}
6201 
6202 		if (serial_buf == NULL) {
6203 			/*
6204 			 * Don't process the command as it was never sent
6205 			 */
6206 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6207 			&& (serial_buf->length > 0)) {
6208 
6209 			have_serialnum = 1;
6210 			path->device->serial_num =
6211 				kmalloc((serial_buf->length + 1),
6212 				       M_CAMXPT, M_INTWAIT);
6213 			bcopy(serial_buf->serial_num,
6214 			      path->device->serial_num,
6215 			      serial_buf->length);
6216 			path->device->serial_num_len = serial_buf->length;
6217 			path->device->serial_num[serial_buf->length] = '\0';
6218 		} else if (cam_periph_error(done_ccb, 0,
6219 					    SF_RETRY_UA|SF_NO_PRINT,
6220 					    &softc->saved_ccb) == ERESTART) {
6221 			return;
6222 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6223 			/* Don't wedge the queue */
6224 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6225 					 /*run_queue*/TRUE);
6226 		}
6227 
6228 		/*
6229 		 * Let's see if we have seen this device before.
6230 		 */
6231 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6232 			MD5_CTX context;
6233 			u_int8_t digest[16];
6234 
6235 			MD5Init(&context);
6236 
6237 			MD5Update(&context,
6238 				  (unsigned char *)&path->device->inq_data,
6239 				  sizeof(struct scsi_inquiry_data));
6240 
6241 			if (have_serialnum)
6242 				MD5Update(&context, serial_buf->serial_num,
6243 					  serial_buf->length);
6244 
6245 			MD5Final(digest, &context);
6246 			if (bcmp(softc->digest, digest, 16) == 0)
6247 				changed = 0;
6248 
6249 			/*
6250 			 * XXX Do we need to do a TUR in order to ensure
6251 			 *     that the device really hasn't changed???
6252 			 */
6253 			if ((changed != 0)
6254 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6255 				xpt_async(AC_LOST_DEVICE, path, NULL);
6256 		}
6257 		if (serial_buf != NULL)
6258 			kfree(serial_buf, M_CAMXPT);
6259 
6260 		if (changed != 0) {
6261 			/*
6262 			 * Now that we have all the necessary
6263 			 * information to safely perform transfer
6264 			 * negotiations... Controllers don't perform
6265 			 * any negotiation or tagged queuing until
6266 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6267 			 * received.  So, on a new device, just retrieve
6268 			 * the user settings, and set them as the current
6269 			 * settings to set the device up.
6270 			 */
6271 			proberequestdefaultnegotiation(periph);
6272 			xpt_release_ccb(done_ccb);
6273 
6274 			/*
6275 			 * Perform a TUR to allow the controller to
6276 			 * perform any necessary transfer negotiation.
6277 			 */
6278 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
6279 			xpt_schedule(periph, priority);
6280 			return;
6281 		}
6282 		xpt_release_ccb(done_ccb);
6283 		break;
6284 	}
6285 	case PROBE_TUR_FOR_NEGOTIATION:
6286 	case PROBE_DV_EXIT:
6287 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6288 			/* Don't wedge the queue */
6289 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6290 					 /*run_queue*/TRUE);
6291 		}
6292 
6293 		xpt_reference_device(path->device);
6294 		/*
6295 		 * Do Domain Validation for lun 0 on devices that claim
6296 		 * to support Synchronous Transfer modes.
6297 		 */
6298 		if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6299 		 && done_ccb->ccb_h.target_lun == 0
6300 		 && (path->device->inq_data.flags & SID_Sync) != 0
6301                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6302 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6303 			    ("Begin Domain Validation\n"));
6304 			path->device->flags |= CAM_DEV_IN_DV;
6305 			xpt_release_ccb(done_ccb);
6306 			softc->action = PROBE_INQUIRY_BASIC_DV1;
6307 			xpt_schedule(periph, priority);
6308 			return;
6309 		}
6310 		if (softc->action == PROBE_DV_EXIT) {
6311 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6312 			    ("Leave Domain Validation\n"));
6313 		}
6314 		path->device->flags &=
6315 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6316 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6317 			/* Inform the XPT that a new device has been found */
6318 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6319 			xpt_action(done_ccb);
6320 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6321 				  done_ccb);
6322 		}
6323 		xpt_release_ccb(done_ccb);
6324 		break;
6325 	case PROBE_INQUIRY_BASIC_DV1:
6326 	case PROBE_INQUIRY_BASIC_DV2:
6327 	{
6328 		struct scsi_inquiry_data *nbuf;
6329 		struct ccb_scsiio *csio;
6330 
6331 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6332 			/* Don't wedge the queue */
6333 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6334 					 /*run_queue*/TRUE);
6335 		}
6336 		csio = &done_ccb->csio;
6337 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6338 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6339 			xpt_print(path,
6340 			    "inquiry data fails comparison at DV%d step\n",
6341 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6342 			if (proberequestbackoff(periph, path->device)) {
6343 				path->device->flags &= ~CAM_DEV_IN_DV;
6344 				softc->action = PROBE_TUR_FOR_NEGOTIATION;
6345 			} else {
6346 				/* give up */
6347 				softc->action = PROBE_DV_EXIT;
6348 			}
6349 			kfree(nbuf, M_CAMXPT);
6350 			xpt_release_ccb(done_ccb);
6351 			xpt_schedule(periph, priority);
6352 			return;
6353 		}
6354 		kfree(nbuf, M_CAMXPT);
6355 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6356 			softc->action = PROBE_INQUIRY_BASIC_DV2;
6357 			xpt_release_ccb(done_ccb);
6358 			xpt_schedule(periph, priority);
6359 			return;
6360 		}
6361 		if (softc->action == PROBE_DV_EXIT) {
6362 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6363 			    ("Leave Domain Validation Successfully\n"));
6364 		}
6365 		path->device->flags &=
6366 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6367 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6368 			/* Inform the XPT that a new device has been found */
6369 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6370 			xpt_action(done_ccb);
6371 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6372 				  done_ccb);
6373 		}
6374 		xpt_release_ccb(done_ccb);
6375 		break;
6376 	}
6377 	}
6378 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6379 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6380 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6381 	xpt_done(done_ccb);
6382 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6383 		cam_periph_invalidate(periph);
6384 		cam_periph_release(periph);
6385 	} else {
6386 		probeschedule(periph);
6387 	}
6388 }
6389 
6390 static void
6391 probecleanup(struct cam_periph *periph)
6392 {
6393 	kfree(periph->softc, M_CAMXPT);
6394 }
6395 
6396 static void
6397 xpt_find_quirk(struct cam_ed *device)
6398 {
6399 	caddr_t	match;
6400 
6401 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6402 			       (caddr_t)xpt_quirk_table,
6403 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6404 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6405 
6406 	if (match == NULL)
6407 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6408 
6409 	device->quirk = (struct xpt_quirk_entry *)match;
6410 }
6411 
6412 static int
6413 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6414 {
6415 	int error, bool;
6416 
6417 	bool = cam_srch_hi;
6418 	error = sysctl_handle_int(oidp, &bool, 0, req);
6419 	if (error != 0 || req->newptr == NULL)
6420 		return (error);
6421 	if (bool == 0 || bool == 1) {
6422 		cam_srch_hi = bool;
6423 		return (0);
6424 	} else {
6425 		return (EINVAL);
6426 	}
6427 }
6428 
6429 static void
6430 xpt_devise_transport(struct cam_path *path)
6431 {
6432 	struct ccb_pathinq cpi;
6433 	struct ccb_trans_settings cts;
6434 	struct scsi_inquiry_data *inq_buf;
6435 
6436 	/* Get transport information from the SIM */
6437 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6438 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6439 	xpt_action((union ccb *)&cpi);
6440 
6441 	inq_buf = NULL;
6442 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6443 		inq_buf = &path->device->inq_data;
6444 	path->device->protocol = PROTO_SCSI;
6445 	path->device->protocol_version =
6446 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6447 	path->device->transport = cpi.transport;
6448 	path->device->transport_version = cpi.transport_version;
6449 
6450 	/*
6451 	 * Any device not using SPI3 features should
6452 	 * be considered SPI2 or lower.
6453 	 */
6454 	if (inq_buf != NULL) {
6455 		if (path->device->transport == XPORT_SPI
6456 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6457 		 && path->device->transport_version > 2)
6458 			path->device->transport_version = 2;
6459 	} else {
6460 		struct cam_ed* otherdev;
6461 
6462 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6463 		     otherdev != NULL;
6464 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6465 			if (otherdev != path->device)
6466 				break;
6467 		}
6468 
6469 		if (otherdev != NULL) {
6470 			/*
6471 			 * Initially assume the same versioning as
6472 			 * prior luns for this target.
6473 			 */
6474 			path->device->protocol_version =
6475 			    otherdev->protocol_version;
6476 			path->device->transport_version =
6477 			    otherdev->transport_version;
6478 		} else {
6479 			/* Until we know better, opt for safty */
6480 			path->device->protocol_version = 2;
6481 			if (path->device->transport == XPORT_SPI)
6482 				path->device->transport_version = 2;
6483 			else
6484 				path->device->transport_version = 0;
6485 		}
6486 	}
6487 
6488 	/*
6489 	 * XXX
6490 	 * For a device compliant with SPC-2 we should be able
6491 	 * to determine the transport version supported by
6492 	 * scrutinizing the version descriptors in the
6493 	 * inquiry buffer.
6494 	 */
6495 
6496 	/* Tell the controller what we think */
6497 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6498 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6499 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6500 	cts.transport = path->device->transport;
6501 	cts.transport_version = path->device->transport_version;
6502 	cts.protocol = path->device->protocol;
6503 	cts.protocol_version = path->device->protocol_version;
6504 	cts.proto_specific.valid = 0;
6505 	cts.xport_specific.valid = 0;
6506 	xpt_action((union ccb *)&cts);
6507 }
6508 
6509 static void
6510 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6511 			  int async_update)
6512 {
6513 	struct	ccb_pathinq cpi;
6514 	struct	ccb_trans_settings cur_cts;
6515 	struct	ccb_trans_settings_scsi *scsi;
6516 	struct	ccb_trans_settings_scsi *cur_scsi;
6517 	struct	cam_sim *sim;
6518 	struct	scsi_inquiry_data *inq_data;
6519 
6520 	if (device == NULL) {
6521 		cts->ccb_h.status = CAM_PATH_INVALID;
6522 		xpt_done((union ccb *)cts);
6523 		return;
6524 	}
6525 
6526 	if (cts->protocol == PROTO_UNKNOWN
6527 	 || cts->protocol == PROTO_UNSPECIFIED) {
6528 		cts->protocol = device->protocol;
6529 		cts->protocol_version = device->protocol_version;
6530 	}
6531 
6532 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6533 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6534 		cts->protocol_version = device->protocol_version;
6535 
6536 	if (cts->protocol != device->protocol) {
6537 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6538 		       cts->protocol, device->protocol);
6539 		cts->protocol = device->protocol;
6540 	}
6541 
6542 	if (cts->protocol_version > device->protocol_version) {
6543 		if (bootverbose) {
6544 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6545 			    "Version from %d to %d?\n", cts->protocol_version,
6546 			    device->protocol_version);
6547 		}
6548 		cts->protocol_version = device->protocol_version;
6549 	}
6550 
6551 	if (cts->transport == XPORT_UNKNOWN
6552 	 || cts->transport == XPORT_UNSPECIFIED) {
6553 		cts->transport = device->transport;
6554 		cts->transport_version = device->transport_version;
6555 	}
6556 
6557 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6558 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6559 		cts->transport_version = device->transport_version;
6560 
6561 	if (cts->transport != device->transport) {
6562 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6563 		    cts->transport, device->transport);
6564 		cts->transport = device->transport;
6565 	}
6566 
6567 	if (cts->transport_version > device->transport_version) {
6568 		if (bootverbose) {
6569 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6570 			    "Version from %d to %d?\n", cts->transport_version,
6571 			    device->transport_version);
6572 		}
6573 		cts->transport_version = device->transport_version;
6574 	}
6575 
6576 	sim = cts->ccb_h.path->bus->sim;
6577 
6578 	/*
6579 	 * Nothing more of interest to do unless
6580 	 * this is a device connected via the
6581 	 * SCSI protocol.
6582 	 */
6583 	if (cts->protocol != PROTO_SCSI) {
6584 		if (async_update == FALSE)
6585 			(*(sim->sim_action))(sim, (union ccb *)cts);
6586 		return;
6587 	}
6588 
6589 	inq_data = &device->inq_data;
6590 	scsi = &cts->proto_specific.scsi;
6591 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6592 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6593 	xpt_action((union ccb *)&cpi);
6594 
6595 	/* SCSI specific sanity checking */
6596 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6597 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6598 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6599 	 || (device->quirk->mintags == 0)) {
6600 		/*
6601 		 * Can't tag on hardware that doesn't support tags,
6602 		 * doesn't have it enabled, or has broken tag support.
6603 		 */
6604 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6605 	}
6606 
6607 	if (async_update == FALSE) {
6608 		/*
6609 		 * Perform sanity checking against what the
6610 		 * controller and device can do.
6611 		 */
6612 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6613 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6614 		cur_cts.type = cts->type;
6615 		xpt_action((union ccb *)&cur_cts);
6616 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6617 			return;
6618 		}
6619 		cur_scsi = &cur_cts.proto_specific.scsi;
6620 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6621 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6622 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6623 		}
6624 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6625 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6626 	}
6627 
6628 	/* SPI specific sanity checking */
6629 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6630 		u_int spi3caps;
6631 		struct ccb_trans_settings_spi *spi;
6632 		struct ccb_trans_settings_spi *cur_spi;
6633 
6634 		spi = &cts->xport_specific.spi;
6635 
6636 		cur_spi = &cur_cts.xport_specific.spi;
6637 
6638 		/* Fill in any gaps in what the user gave us */
6639 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6640 			spi->sync_period = cur_spi->sync_period;
6641 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6642 			spi->sync_period = 0;
6643 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6644 			spi->sync_offset = cur_spi->sync_offset;
6645 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6646 			spi->sync_offset = 0;
6647 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6648 			spi->ppr_options = cur_spi->ppr_options;
6649 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6650 			spi->ppr_options = 0;
6651 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6652 			spi->bus_width = cur_spi->bus_width;
6653 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6654 			spi->bus_width = 0;
6655 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6656 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6657 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6658 		}
6659 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6660 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6661 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6662 		  && (inq_data->flags & SID_Sync) == 0
6663 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6664 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6665 		 || (spi->sync_offset == 0)
6666 		 || (spi->sync_period == 0)) {
6667 			/* Force async */
6668 			spi->sync_period = 0;
6669 			spi->sync_offset = 0;
6670 		}
6671 
6672 		switch (spi->bus_width) {
6673 		case MSG_EXT_WDTR_BUS_32_BIT:
6674 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6675 			  || (inq_data->flags & SID_WBus32) != 0
6676 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6677 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6678 				break;
6679 			/* Fall Through to 16-bit */
6680 		case MSG_EXT_WDTR_BUS_16_BIT:
6681 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6682 			  || (inq_data->flags & SID_WBus16) != 0
6683 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6684 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6685 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6686 				break;
6687 			}
6688 			/* Fall Through to 8-bit */
6689 		default: /* New bus width?? */
6690 		case MSG_EXT_WDTR_BUS_8_BIT:
6691 			/* All targets can do this */
6692 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6693 			break;
6694 		}
6695 
6696 		spi3caps = cpi.xport_specific.spi.ppr_options;
6697 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6698 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6699 			spi3caps &= inq_data->spi3data;
6700 
6701 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6702 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6703 
6704 		if ((spi3caps & SID_SPI_IUS) == 0)
6705 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6706 
6707 		if ((spi3caps & SID_SPI_QAS) == 0)
6708 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6709 
6710 		/* No SPI Transfer settings are allowed unless we are wide */
6711 		if (spi->bus_width == 0)
6712 			spi->ppr_options = 0;
6713 
6714 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6715 			/*
6716 			 * Can't tag queue without disconnection.
6717 			 */
6718 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6719 			scsi->valid |= CTS_SCSI_VALID_TQ;
6720 		}
6721 
6722 		/*
6723 		 * If we are currently performing tagged transactions to
6724 		 * this device and want to change its negotiation parameters,
6725 		 * go non-tagged for a bit to give the controller a chance to
6726 		 * negotiate unhampered by tag messages.
6727 		 */
6728 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6729 		 && (device->inq_flags & SID_CmdQue) != 0
6730 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6731 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6732 				   CTS_SPI_VALID_SYNC_OFFSET|
6733 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6734 			xpt_toggle_tags(cts->ccb_h.path);
6735 	}
6736 
6737 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6738 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6739 		int device_tagenb;
6740 
6741 		/*
6742 		 * If we are transitioning from tags to no-tags or
6743 		 * vice-versa, we need to carefully freeze and restart
6744 		 * the queue so that we don't overlap tagged and non-tagged
6745 		 * commands.  We also temporarily stop tags if there is
6746 		 * a change in transfer negotiation settings to allow
6747 		 * "tag-less" negotiation.
6748 		 */
6749 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6750 		 || (device->inq_flags & SID_CmdQue) != 0)
6751 			device_tagenb = TRUE;
6752 		else
6753 			device_tagenb = FALSE;
6754 
6755 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6756 		  && device_tagenb == FALSE)
6757 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6758 		  && device_tagenb == TRUE)) {
6759 
6760 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6761 				/*
6762 				 * Delay change to use tags until after a
6763 				 * few commands have gone to this device so
6764 				 * the controller has time to perform transfer
6765 				 * negotiations without tagged messages getting
6766 				 * in the way.
6767 				 */
6768 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6769 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6770 			} else {
6771 				struct ccb_relsim crs;
6772 
6773 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6774 				device->inq_flags &= ~SID_CmdQue;
6775 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6776 						    sim->max_dev_openings);
6777 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6778 				device->tag_delay_count = 0;
6779 
6780 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6781 					      /*priority*/1);
6782 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6783 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6784 				crs.openings
6785 				    = crs.release_timeout
6786 				    = crs.qfrozen_cnt
6787 				    = 0;
6788 				xpt_action((union ccb *)&crs);
6789 			}
6790 		}
6791 	}
6792 	if (async_update == FALSE)
6793 		(*(sim->sim_action))(sim, (union ccb *)cts);
6794 }
6795 
6796 static void
6797 xpt_toggle_tags(struct cam_path *path)
6798 {
6799 	struct cam_ed *dev;
6800 
6801 	/*
6802 	 * Give controllers a chance to renegotiate
6803 	 * before starting tag operations.  We
6804 	 * "toggle" tagged queuing off then on
6805 	 * which causes the tag enable command delay
6806 	 * counter to come into effect.
6807 	 */
6808 	dev = path->device;
6809 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6810 	 || ((dev->inq_flags & SID_CmdQue) != 0
6811  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6812 		struct ccb_trans_settings cts;
6813 
6814 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6815 		cts.protocol = PROTO_SCSI;
6816 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6817 		cts.transport = XPORT_UNSPECIFIED;
6818 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6819 		cts.proto_specific.scsi.flags = 0;
6820 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6821 		xpt_set_transfer_settings(&cts, path->device,
6822 					  /*async_update*/TRUE);
6823 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6824 		xpt_set_transfer_settings(&cts, path->device,
6825 					  /*async_update*/TRUE);
6826 	}
6827 }
6828 
6829 static void
6830 xpt_start_tags(struct cam_path *path)
6831 {
6832 	struct ccb_relsim crs;
6833 	struct cam_ed *device;
6834 	struct cam_sim *sim;
6835 	int    newopenings;
6836 
6837 	device = path->device;
6838 	sim = path->bus->sim;
6839 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6840 	xpt_freeze_devq(path, /*count*/1);
6841 	device->inq_flags |= SID_CmdQue;
6842 	if (device->tag_saved_openings != 0)
6843 		newopenings = device->tag_saved_openings;
6844 	else
6845 		newopenings = min(device->quirk->maxtags,
6846 				  sim->max_tagged_dev_openings);
6847 	xpt_dev_ccbq_resize(path, newopenings);
6848 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6849 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6850 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6851 	crs.openings
6852 	    = crs.release_timeout
6853 	    = crs.qfrozen_cnt
6854 	    = 0;
6855 	xpt_action((union ccb *)&crs);
6856 }
6857 
6858 static int busses_to_config;
6859 static int busses_to_reset;
6860 
6861 static int
6862 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6863 {
6864 	sim_lock_assert_owned(bus->sim->lock);
6865 
6866 	if (bus->counted_to_config == 0 && bus->path_id != CAM_XPT_PATH_ID) {
6867 		struct cam_path path;
6868 		struct ccb_pathinq cpi;
6869 		int can_negotiate;
6870 
6871 		if (bootverbose) {
6872 			kprintf("CAM: Configuring bus:");
6873 			if (bus->sim) {
6874 				kprintf(" %s%d\n",
6875 					bus->sim->sim_name,
6876 					bus->sim->unit_number);
6877 			} else {
6878 				kprintf(" (unknown)\n");
6879 			}
6880 		}
6881 		atomic_add_int(&busses_to_config, 1);
6882 		bus->counted_to_config = 1;
6883 		xpt_compile_path(&path, NULL, bus->path_id,
6884 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6885 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6886 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6887 		xpt_action((union ccb *)&cpi);
6888 		can_negotiate = cpi.hba_inquiry;
6889 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6890 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 && can_negotiate)
6891 			busses_to_reset++;
6892 		xpt_release_path(&path);
6893 	} else
6894 	if (bus->counted_to_config == 0 && bus->path_id == CAM_XPT_PATH_ID) {
6895 		/* this is our dummy periph/bus */
6896 		atomic_add_int(&busses_to_config, 1);
6897 		bus->counted_to_config = 1;
6898 	}
6899 
6900 	return(1);
6901 }
6902 
6903 static int
6904 xptconfigfunc(struct cam_eb *bus, void *arg)
6905 {
6906 	struct	cam_path *path;
6907 	union	ccb *work_ccb;
6908 
6909 	sim_lock_assert_owned(bus->sim->lock);
6910 
6911 	if (bus->path_id != CAM_XPT_PATH_ID) {
6912 		cam_status status;
6913 		int can_negotiate;
6914 
6915 		work_ccb = xpt_alloc_ccb();
6916 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6917 					      CAM_TARGET_WILDCARD,
6918 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6919 			kprintf("xptconfigfunc: xpt_create_path failed with "
6920 			       "status %#x for bus %d\n", status, bus->path_id);
6921 			kprintf("xptconfigfunc: halting bus configuration\n");
6922 			xpt_free_ccb(work_ccb);
6923 			xpt_uncount_bus(bus);
6924 			return(0);
6925 		}
6926 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6927 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6928 		xpt_action(work_ccb);
6929 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6930 			kprintf("xptconfigfunc: CPI failed on bus %d "
6931 			       "with status %d\n", bus->path_id,
6932 			       work_ccb->ccb_h.status);
6933 			xpt_finishconfig(xpt_periph, work_ccb);
6934 			return(1);
6935 		}
6936 
6937 		can_negotiate = work_ccb->cpi.hba_inquiry;
6938 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6939 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6940 		 && (can_negotiate != 0)) {
6941 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6942 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6943 			work_ccb->ccb_h.cbfcnp = NULL;
6944 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6945 				  ("Resetting Bus\n"));
6946 			xpt_action(work_ccb);
6947 			xpt_finishconfig(xpt_periph, work_ccb);
6948 		} else {
6949 			/* Act as though we performed a successful BUS RESET */
6950 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6951 			xpt_finishconfig(xpt_periph, work_ccb);
6952 		}
6953 	} else {
6954 		xpt_uncount_bus(bus);
6955 	}
6956 
6957 	return(1);
6958 }
6959 
6960 /*
6961  * Now that interrupts are enabled, go find our devices.
6962  *
6963  * This hook function is called once by run_interrupt_driven_config_hooks().
6964  * XPT is expected to disestablish its hook when done.
6965  */
6966 static void
6967 xpt_config(void *arg)
6968 {
6969 
6970 #ifdef CAMDEBUG
6971 	/* Setup debugging flags and path */
6972 #ifdef CAM_DEBUG_FLAGS
6973 	cam_dflags = CAM_DEBUG_FLAGS;
6974 #else /* !CAM_DEBUG_FLAGS */
6975 	cam_dflags = CAM_DEBUG_NONE;
6976 #endif /* CAM_DEBUG_FLAGS */
6977 #ifdef CAM_DEBUG_BUS
6978 	if (cam_dflags != CAM_DEBUG_NONE) {
6979 		/*
6980 		 * Locking is specifically omitted here.  No SIMs have
6981 		 * registered yet, so xpt_create_path will only be searching
6982 		 * empty lists of targets and devices.
6983 		 */
6984 		if (xpt_create_path(&cam_dpath, xpt_periph,
6985 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6986 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6987 			kprintf("xpt_config: xpt_create_path() failed for debug"
6988 			       " target %d:%d:%d, debugging disabled\n",
6989 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6990 			cam_dflags = CAM_DEBUG_NONE;
6991 		}
6992 	} else {
6993 		cam_dpath = NULL;
6994 	}
6995 #else /* !CAM_DEBUG_BUS */
6996 	cam_dpath = NULL;
6997 #endif /* CAM_DEBUG_BUS */
6998 #endif /* CAMDEBUG */
6999 
7000 	/*
7001 	 * Scan all installed busses.  This will also add a count
7002 	 * for our dummy placeholder (xpt_periph).
7003 	 */
7004 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7005 
7006 	kprintf("CAM: Configuring %d busses\n", busses_to_config - 1);
7007 	if (busses_to_reset > 0 && scsi_delay >= 2000) {
7008 		kprintf("Waiting %d seconds for SCSI "
7009 			"devices to settle\n",
7010 			scsi_delay/1000);
7011 	}
7012 	xpt_for_all_busses(xptconfigfunc, NULL);
7013 }
7014 
7015 /*
7016  * If the given device only has one peripheral attached to it, and if that
7017  * peripheral is the passthrough driver, announce it.  This insures that the
7018  * user sees some sort of announcement for every peripheral in their system.
7019  */
7020 static int
7021 xptpassannouncefunc(struct cam_ed *device, void *arg)
7022 {
7023 	struct cam_periph *periph;
7024 	int i;
7025 
7026 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7027 	     periph = SLIST_NEXT(periph, periph_links), i++);
7028 
7029 	periph = SLIST_FIRST(&device->periphs);
7030 	if ((i == 1)
7031 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7032 		xpt_announce_periph(periph, NULL);
7033 
7034 	return(1);
7035 }
7036 
7037 static void
7038 xpt_finishconfig_task(void *context, int pending)
7039 {
7040 	struct	periph_driver **p_drv;
7041 	int	i;
7042 
7043 	kprintf("CAM: finished configuring all busses\n");
7044 
7045 	if (busses_to_config == 0) {
7046 		/* Register all the peripheral drivers */
7047 		/* XXX This will have to change when we have loadable modules */
7048 		p_drv = periph_drivers;
7049 		for (i = 0; p_drv[i] != NULL; i++) {
7050 			(*p_drv[i]->init)();
7051 		}
7052 
7053 		/*
7054 		 * Check for devices with no "standard" peripheral driver
7055 		 * attached.  For any devices like that, announce the
7056 		 * passthrough driver so the user will see something.
7057 		 */
7058 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7059 
7060 		/* Release our hook so that the boot can continue. */
7061 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7062 		kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7063 		xsoftc.xpt_config_hook = NULL;
7064 	}
7065 	kfree(context, M_CAMXPT);
7066 }
7067 
7068 static void
7069 xpt_uncount_bus (struct cam_eb *bus)
7070 {
7071 	struct xpt_task *task;
7072 
7073 	if (bus->counted_to_config) {
7074 		bus->counted_to_config = 0;
7075 		if (atomic_fetchadd_int(&busses_to_config, -1) == 1) {
7076 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
7077 				       M_INTWAIT | M_ZERO);
7078 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7079 			taskqueue_enqueue(taskqueue_thread[mycpuid],
7080 					  &task->task);
7081 		}
7082 	}
7083 }
7084 
7085 static void
7086 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7087 {
7088 	struct cam_path *path;
7089 
7090 	path = done_ccb->ccb_h.path;
7091 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_finishconfig\n"));
7092 
7093 	switch(done_ccb->ccb_h.func_code) {
7094 	case XPT_RESET_BUS:
7095 		if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7096 			done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7097 			done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7098 			done_ccb->crcn.flags = 0;
7099 			xpt_action(done_ccb);
7100 			return;
7101 		}
7102 		/* FALLTHROUGH */
7103 	case XPT_SCAN_BUS:
7104 	default:
7105 		if (bootverbose) {
7106 			kprintf("CAM: Finished configuring bus:");
7107 			if (path->bus->sim) {
7108 				kprintf(" %s%d\n",
7109 					path->bus->sim->sim_name,
7110 					path->bus->sim->unit_number);
7111 			} else {
7112 				kprintf(" (unknown)\n");
7113 			}
7114 		}
7115 		xpt_uncount_bus(path->bus);
7116 		xpt_free_path(path);
7117 		xpt_free_ccb(done_ccb);
7118 		break;
7119 	}
7120 }
7121 
7122 cam_status
7123 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7124 		   struct cam_path *path)
7125 {
7126 	struct ccb_setasync csa;
7127 	cam_status status;
7128 	int xptpath = 0;
7129 
7130 	if (path == NULL) {
7131 		lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7132 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7133 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7134 		if (status != CAM_REQ_CMP) {
7135 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7136 			return (status);
7137 		}
7138 		xptpath = 1;
7139 	}
7140 
7141 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7142 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7143 	csa.event_enable = event;
7144 	csa.callback = cbfunc;
7145 	csa.callback_arg = cbarg;
7146 	xpt_action((union ccb *)&csa);
7147 	status = csa.ccb_h.status;
7148 	if (xptpath) {
7149 		xpt_free_path(path);
7150 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7151 	}
7152 	return (status);
7153 }
7154 
7155 static void
7156 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7157 {
7158 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7159 
7160 	switch (work_ccb->ccb_h.func_code) {
7161 	/* Common cases first */
7162 	case XPT_PATH_INQ:		/* Path routing inquiry */
7163 	{
7164 		struct ccb_pathinq *cpi;
7165 
7166 		cpi = &work_ccb->cpi;
7167 		cpi->version_num = 1; /* XXX??? */
7168 		cpi->hba_inquiry = 0;
7169 		cpi->target_sprt = 0;
7170 		cpi->hba_misc = 0;
7171 		cpi->hba_eng_cnt = 0;
7172 		cpi->max_target = 0;
7173 		cpi->max_lun = 0;
7174 		cpi->initiator_id = 0;
7175 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7176 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7177 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7178 		cpi->unit_number = sim->unit_number;
7179 		cpi->bus_id = sim->bus_id;
7180 		cpi->base_transfer_speed = 0;
7181 		cpi->protocol = PROTO_UNSPECIFIED;
7182 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7183 		cpi->transport = XPORT_UNSPECIFIED;
7184 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7185 		cpi->ccb_h.status = CAM_REQ_CMP;
7186 		xpt_done(work_ccb);
7187 		break;
7188 	}
7189 	default:
7190 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7191 		xpt_done(work_ccb);
7192 		break;
7193 	}
7194 }
7195 
7196 /*
7197  * The xpt as a "controller" has no interrupt sources, so polling
7198  * is a no-op.
7199  */
7200 static void
7201 xptpoll(struct cam_sim *sim)
7202 {
7203 }
7204 
7205 void
7206 xpt_lock_buses(void)
7207 {
7208 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7209 }
7210 
7211 void
7212 xpt_unlock_buses(void)
7213 {
7214 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7215 }
7216 
7217 
7218 /*
7219  * Should only be called by the machine interrupt dispatch routines,
7220  * so put these prototypes here instead of in the header.
7221  */
7222 
7223 static void
7224 swi_cambio(void *arg, void *frame)
7225 {
7226 	camisr(NULL);
7227 }
7228 
7229 static void
7230 camisr(void *dummy)
7231 {
7232 	cam_simq_t queue;
7233 	struct cam_sim *sim;
7234 
7235 	spin_lock(&cam_simq_spin);
7236 	TAILQ_INIT(&queue);
7237 	TAILQ_CONCAT(&queue, &cam_simq, links);
7238 	spin_unlock(&cam_simq_spin);
7239 
7240 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7241 		TAILQ_REMOVE(&queue, sim, links);
7242 		CAM_SIM_LOCK(sim);
7243 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7244 		camisr_runqueue(sim);
7245 		CAM_SIM_UNLOCK(sim);
7246 	}
7247 }
7248 
7249 static void
7250 camisr_runqueue(struct cam_sim *sim)
7251 {
7252 	struct	ccb_hdr *ccb_h;
7253 	int	runq;
7254 
7255 	spin_lock(&sim->sim_spin);
7256 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7257 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7258 		spin_unlock(&sim->sim_spin);
7259 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7260 
7261 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7262 			  ("camisr\n"));
7263 
7264 		runq = FALSE;
7265 
7266 		if (ccb_h->flags & CAM_HIGH_POWER) {
7267 			struct highpowerlist	*hphead;
7268 			struct cam_ed		*device;
7269 			union ccb		*send_ccb;
7270 
7271 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7272 			hphead = &xsoftc.highpowerq;
7273 
7274 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7275 
7276 			/*
7277 			 * Increment the count since this command is done.
7278 			 */
7279 			xsoftc.num_highpower++;
7280 
7281 			/*
7282 			 * Any high powered commands queued up?
7283 			 */
7284 			if (send_ccb != NULL) {
7285 				device = send_ccb->ccb_h.path->device;
7286 
7287 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7288 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7289 
7290 				xpt_release_devq(send_ccb->ccb_h.path,
7291 						 /*count*/1, /*runqueue*/TRUE);
7292 			} else
7293 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7294 		}
7295 
7296 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7297 			struct cam_ed *dev;
7298 
7299 			dev = ccb_h->path->device;
7300 
7301 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7302 
7303 			/*
7304 			 * devq may be NULL if this is cam_dead_sim
7305 			 */
7306 			if (ccb_h->path->bus->sim->devq) {
7307 				ccb_h->path->bus->sim->devq->send_active--;
7308 				ccb_h->path->bus->sim->devq->send_openings++;
7309 			}
7310 
7311 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7312 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7313 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7314 			  && (dev->ccbq.dev_active == 0))) {
7315 
7316 				xpt_release_devq(ccb_h->path, /*count*/1,
7317 						 /*run_queue*/TRUE);
7318 			}
7319 
7320 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7321 			 && (--dev->tag_delay_count == 0))
7322 				xpt_start_tags(ccb_h->path);
7323 
7324 			if ((dev->ccbq.queue.entries > 0)
7325 			 && (dev->qfrozen_cnt == 0)
7326 			 && (device_is_send_queued(dev) == 0)) {
7327 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7328 							      dev);
7329 			}
7330 		}
7331 
7332 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7333 			xpt_release_simq(ccb_h->path->bus->sim,
7334 					 /*run_queue*/TRUE);
7335 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7336 			runq = FALSE;
7337 		}
7338 
7339 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7340 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7341 			xpt_release_devq(ccb_h->path, /*count*/1,
7342 					 /*run_queue*/TRUE);
7343 			ccb_h->status &= ~CAM_DEV_QFRZN;
7344 		} else if (runq) {
7345 			xpt_run_dev_sendq(ccb_h->path->bus);
7346 		}
7347 
7348 		/* Call the peripheral driver's callback */
7349 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7350 		spin_lock(&sim->sim_spin);
7351 	}
7352 	spin_unlock(&sim->sim_spin);
7353 }
7354 
7355 /*
7356  * The dead_sim isn't completely hooked into CAM, we have to make sure
7357  * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7358  * doesn't block.
7359  */
7360 static void
7361 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7362 {
7363 
7364 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7365 	xpt_done(ccb);
7366 	camisr_runqueue(sim);
7367 }
7368 
7369 static void
7370 dead_sim_poll(struct cam_sim *sim)
7371 {
7372 }
7373