xref: /dragonfly/sys/bus/cam/scsi/scsi_ses.c (revision 2038fb68)
1 /* $FreeBSD: src/sys/cam/scsi/scsi_ses.c,v 1.8.2.2 2000/08/08 23:19:21 mjacob Exp $ */
2 /* $DragonFly: src/sys/bus/cam/scsi/scsi_ses.c,v 1.29 2008/05/18 20:30:20 pavalos Exp $ */
3 /*
4  * Copyright (c) 2000 Matthew Jacob
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 #include <sys/param.h>
30 #include <sys/queue.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/fcntl.h>
36 #include <sys/conf.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39 #include <sys/devicestat.h>
40 #include <sys/thread2.h>
41 #include <machine/stdarg.h>
42 
43 #include "../cam.h"
44 #include "../cam_ccb.h"
45 #include "../cam_extend.h"
46 #include "../cam_periph.h"
47 #include "../cam_xpt_periph.h"
48 #include "../cam_debug.h"
49 #include "../cam_sim.h"
50 
51 #include "scsi_all.h"
52 #include "scsi_message.h"
53 #include <sys/ioccom.h>
54 #include "scsi_ses.h"
55 
56 #include <opt_ses.h>
57 
58 MALLOC_DEFINE(M_SCSISES, "SCSI SES", "SCSI SES buffers");
59 
60 /*
61  * Platform Independent Driver Internal Definitions for SES devices.
62  */
63 typedef enum {
64 	SES_NONE,
65 	SES_SES_SCSI2,
66 	SES_SES,
67 	SES_SES_PASSTHROUGH,
68 	SES_SEN,
69 	SES_SAFT
70 } enctyp;
71 
72 struct ses_softc;
73 typedef struct ses_softc ses_softc_t;
74 typedef struct {
75 	int (*softc_init)(ses_softc_t *, int);
76 	int (*init_enc)(ses_softc_t *);
77 	int (*get_encstat)(ses_softc_t *, int);
78 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
79 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
80 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
81 } encvec;
82 
83 #define	ENCI_SVALID	0x80
84 
85 typedef struct {
86 	uint32_t
87 		enctype	: 8,		/* enclosure type */
88 		subenclosure : 8,	/* subenclosure id */
89 		svalid	: 1,		/* enclosure information valid */
90 		priv	: 15;		/* private data, per object */
91 	uint8_t	encstat[4];	/* state && stats */
92 } encobj;
93 
94 #define	SEN_ID		"UNISYS           SUN_SEN"
95 #define	SEN_ID_LEN	24
96 
97 
98 static enctyp ses_type(void *, int);
99 
100 
101 /* Forward reference to Enclosure Functions */
102 static int ses_softc_init(ses_softc_t *, int);
103 static int ses_init_enc(ses_softc_t *);
104 static int ses_get_encstat(ses_softc_t *, int);
105 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
106 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
107 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
108 
109 static int safte_softc_init(ses_softc_t *, int);
110 static int safte_init_enc(ses_softc_t *);
111 static int safte_get_encstat(ses_softc_t *, int);
112 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
113 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
114 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
115 
116 /*
117  * Platform implementation defines/functions for SES internal kernel stuff
118  */
119 
120 #define	STRNCMP			strncmp
121 #define	PRINTF			kprintf
122 #define	SES_LOG			ses_log
123 #ifdef	DEBUG
124 #define	SES_DLOG		ses_log
125 #else
126 #define	SES_DLOG		if (0) ses_log
127 #endif
128 #define	SES_VLOG		if (bootverbose) ses_log
129 #define	SES_MALLOC(amt)		kmalloc(amt, M_SCSISES, M_INTWAIT)
130 #define	SES_FREE(ptr, amt)	kfree(ptr, M_SCSISES)
131 #define	MEMZERO			bzero
132 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
133 
134 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
135 static void ses_log(struct ses_softc *, const char *, ...);
136 
137 /*
138  * Gerenal FreeBSD kernel stuff.
139  */
140 
141 
142 #define ccb_state	ppriv_field0
143 #define ccb_bio		ppriv_ptr1
144 
145 struct ses_softc {
146 	enctyp		ses_type;	/* type of enclosure */
147 	encvec		ses_vec;	/* vector to handlers */
148 	void *		ses_private;	/* per-type private data */
149 	encobj *	ses_objmap;	/* objects */
150 	u_int32_t	ses_nobjects;	/* number of objects */
151 	ses_encstat	ses_encstat;	/* overall status */
152 	u_int8_t	ses_flags;
153 	union ccb	ses_saved_ccb;
154 	struct cam_periph *periph;
155 };
156 #define	SES_FLAG_INVALID	0x01
157 #define	SES_FLAG_OPEN		0x02
158 #define	SES_FLAG_INITIALIZED	0x04
159 
160 #define SESUNIT(x)       (minor((x)))
161 #define SES_CDEV_MAJOR	110
162 
163 static	d_open_t	sesopen;
164 static	d_close_t	sesclose;
165 static	d_ioctl_t	sesioctl;
166 static	periph_init_t	sesinit;
167 static  periph_ctor_t	sesregister;
168 static	periph_oninv_t	sesoninvalidate;
169 static  periph_dtor_t   sescleanup;
170 static  periph_start_t  sesstart;
171 
172 static void sesasync(void *, u_int32_t, struct cam_path *, void *);
173 static void sesdone(struct cam_periph *, union ccb *);
174 static int seserror(union ccb *, u_int32_t, u_int32_t);
175 
176 static struct periph_driver sesdriver = {
177 	sesinit, "ses",
178 	TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
179 };
180 
181 PERIPHDRIVER_DECLARE(ses, sesdriver);
182 
183 static struct dev_ops ses_ops = {
184 	{ "ses", SES_CDEV_MAJOR, 0 },
185 	.d_open =	sesopen,
186 	.d_close =	sesclose,
187 	.d_ioctl =	sesioctl,
188 };
189 static struct extend_array *sesperiphs;
190 
191 static void
192 sesinit(void)
193 {
194 	cam_status status;
195 
196 	/*
197 	 * Create our extend array for storing the devices we attach to.
198 	 */
199 	sesperiphs = cam_extend_new();
200 	if (sesperiphs == NULL) {
201 		kprintf("ses: Failed to alloc extend array!\n");
202 		return;
203 	}
204 
205 	/*
206 	 * Install a global async callback.  This callback will
207 	 * receive async callbacks like "new device found".
208 	 */
209 	status = xpt_register_async(AC_FOUND_DEVICE, sesasync, NULL, NULL);
210 
211 	if (status != CAM_REQ_CMP) {
212 		kprintf("ses: Failed to attach master async callback "
213 		       "due to status 0x%x!\n", status);
214 	}
215 }
216 
217 static void
218 sesoninvalidate(struct cam_periph *periph)
219 {
220 	struct ses_softc *softc;
221 
222 	softc = (struct ses_softc *)periph->softc;
223 
224 	/*
225 	 * Unregister any async callbacks.
226 	 */
227 	xpt_register_async(0, sesasync, periph, periph->path);
228 
229 	softc->ses_flags |= SES_FLAG_INVALID;
230 
231 	xpt_print(periph->path, "lost device\n");
232 }
233 
234 static void
235 sescleanup(struct cam_periph *periph)
236 {
237 	struct ses_softc *softc;
238 
239 	softc = (struct ses_softc *)periph->softc;
240 
241 	cam_extend_release(sesperiphs, periph->unit_number);
242 	xpt_print(periph->path, "removing device entry\n");
243 	dev_ops_remove(&ses_ops, -1, periph->unit_number);
244 	kfree(softc, M_SCSISES);
245 }
246 
247 static void
248 sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
249 {
250 	struct cam_periph *periph;
251 
252 	periph = (struct cam_periph *)callback_arg;
253 
254 	switch(code) {
255 	case AC_FOUND_DEVICE:
256 	{
257 		cam_status status;
258 		struct ccb_getdev *cgd;
259 		int inq_len;
260 
261 		cgd = (struct ccb_getdev *)arg;
262 		if (arg == NULL) {
263 			break;
264 		}
265 
266 		inq_len = cgd->inq_data.additional_length + 4;
267 
268 		/*
269 		 * PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
270 		 * PROBLEM: IS A SAF-TE DEVICE.
271 		 */
272 		switch (ses_type(&cgd->inq_data, inq_len)) {
273 		case SES_SES:
274 		case SES_SES_SCSI2:
275 		case SES_SES_PASSTHROUGH:
276 		case SES_SEN:
277 		case SES_SAFT:
278 			break;
279 		default:
280 			return;
281 		}
282 
283 		status = cam_periph_alloc(sesregister, sesoninvalidate,
284 		    sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
285 		    cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
286 
287 		if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
288 			kprintf("sesasync: Unable to probe new device due to "
289 			    "status 0x%x\n", status);
290 		}
291 		break;
292 	}
293 	default:
294 		cam_periph_async(periph, code, path, arg);
295 		break;
296 	}
297 }
298 
299 static cam_status
300 sesregister(struct cam_periph *periph, void *arg)
301 {
302 	struct ses_softc *softc;
303 	struct ccb_getdev *cgd;
304 	char *tname;
305 
306 	cgd = (struct ccb_getdev *)arg;
307 	if (periph == NULL) {
308 		kprintf("sesregister: periph was NULL!!\n");
309 		return (CAM_REQ_CMP_ERR);
310 	}
311 
312 	if (cgd == NULL) {
313 		kprintf("sesregister: no getdev CCB, can't register device\n");
314 		return (CAM_REQ_CMP_ERR);
315 	}
316 
317 	softc = kmalloc(sizeof (struct ses_softc), M_SCSISES, M_INTWAIT | M_ZERO);
318 	periph->softc = softc;
319 	softc->periph = periph;
320 
321 	softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
322 
323 	switch (softc->ses_type) {
324 	case SES_SES:
325 	case SES_SES_SCSI2:
326         case SES_SES_PASSTHROUGH:
327 		softc->ses_vec.softc_init = ses_softc_init;
328 		softc->ses_vec.init_enc = ses_init_enc;
329 		softc->ses_vec.get_encstat = ses_get_encstat;
330 		softc->ses_vec.set_encstat = ses_set_encstat;
331 		softc->ses_vec.get_objstat = ses_get_objstat;
332 		softc->ses_vec.set_objstat = ses_set_objstat;
333 		break;
334         case SES_SAFT:
335 		softc->ses_vec.softc_init = safte_softc_init;
336 		softc->ses_vec.init_enc = safte_init_enc;
337 		softc->ses_vec.get_encstat = safte_get_encstat;
338 		softc->ses_vec.set_encstat = safte_set_encstat;
339 		softc->ses_vec.get_objstat = safte_get_objstat;
340 		softc->ses_vec.set_objstat = safte_set_objstat;
341 		break;
342         case SES_SEN:
343 		break;
344 	case SES_NONE:
345 	default:
346 		kfree(softc, M_SCSISES);
347 		return (CAM_REQ_CMP_ERR);
348 	}
349 
350 	cam_extend_set(sesperiphs, periph->unit_number, periph);
351 
352 	cam_periph_unlock(periph);
353 	dev_ops_add(&ses_ops, -1, periph->unit_number);
354 	make_dev(&ses_ops, periph->unit_number,
355 		    UID_ROOT, GID_OPERATOR, 0600, "%s%d",
356 		    periph->periph_name, periph->unit_number);
357 	cam_periph_lock(periph);
358 
359 	/*
360 	 * Add an async callback so that we get
361 	 * notified if this device goes away.
362 	 */
363 	xpt_register_async(AC_LOST_DEVICE, sesasync, periph, periph->path);
364 
365 	switch (softc->ses_type) {
366 	default:
367 	case SES_NONE:
368 		tname = "No SES device";
369 		break;
370 	case SES_SES_SCSI2:
371 		tname = "SCSI-2 SES Device";
372 		break;
373 	case SES_SES:
374 		tname = "SCSI-3 SES Device";
375 		break;
376         case SES_SES_PASSTHROUGH:
377 		tname = "SES Passthrough Device";
378 		break;
379         case SES_SEN:
380 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
381 		break;
382         case SES_SAFT:
383 		tname = "SAF-TE Compliant Device";
384 		break;
385 	}
386 	xpt_announce_periph(periph, tname);
387 	return (CAM_REQ_CMP);
388 }
389 
390 static int
391 sesopen(struct dev_open_args *ap)
392 {
393 	cdev_t dev = ap->a_head.a_dev;
394 	struct cam_periph *periph;
395 	struct ses_softc *softc;
396 	int error = 0;
397 
398 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
399 	if (periph == NULL) {
400 		return (ENXIO);
401 	}
402 
403 	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
404 		cam_periph_unlock(periph);
405 		return (ENXIO);
406 	}
407 
408 	cam_periph_lock(periph);
409 
410 	softc = (struct ses_softc *)periph->softc;
411 
412 	if (softc->ses_flags & SES_FLAG_INVALID) {
413 		error = ENXIO;
414 		goto out;
415 	}
416 	if (softc->ses_flags & SES_FLAG_OPEN) {
417 		error = EBUSY;
418 		goto out;
419 	}
420 	if (softc->ses_vec.softc_init == NULL) {
421 		error = ENXIO;
422 		goto out;
423 	}
424 
425 	softc->ses_flags |= SES_FLAG_OPEN;
426 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
427 		error = (*softc->ses_vec.softc_init)(softc, 1);
428 		if (error)
429 			softc->ses_flags &= ~SES_FLAG_OPEN;
430 		else
431 			softc->ses_flags |= SES_FLAG_INITIALIZED;
432 	}
433 
434 out:
435 	cam_periph_unlock(periph);
436 	if (error) {
437 		cam_periph_release(periph);
438 	}
439 	return (error);
440 }
441 
442 static int
443 sesclose(struct dev_close_args *ap)
444 {
445 	cdev_t dev = ap->a_head.a_dev;
446 	struct cam_periph *periph;
447 	struct ses_softc *softc;
448 	int unit, error;
449 
450 	error = 0;
451 
452 	unit = SESUNIT(dev);
453 	periph = cam_extend_get(sesperiphs, unit);
454 	if (periph == NULL)
455 		return (ENXIO);
456 
457 	cam_periph_lock(periph);
458 
459 	softc = (struct ses_softc *)periph->softc;
460 	softc->ses_flags &= ~SES_FLAG_OPEN;
461 
462 	cam_periph_unlock(periph);
463 	cam_periph_release(periph);
464 
465 	return (0);
466 }
467 
468 static void
469 sesstart(struct cam_periph *p, union ccb *sccb)
470 {
471 	if (p->immediate_priority <= p->pinfo.priority) {
472 		SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
473 		p->immediate_priority = CAM_PRIORITY_NONE;
474 		wakeup(&p->ccb_list);
475 	}
476 }
477 
478 static void
479 sesdone(struct cam_periph *periph, union ccb *dccb)
480 {
481 	wakeup(&dccb->ccb_h.cbfcnp);
482 }
483 
484 static int
485 seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
486 {
487 	struct ses_softc *softc;
488 	struct cam_periph *periph;
489 
490 	periph = xpt_path_periph(ccb->ccb_h.path);
491 	softc = (struct ses_softc *)periph->softc;
492 
493 	return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
494 }
495 
496 static int
497 sesioctl(struct dev_ioctl_args *ap)
498 {
499 	cdev_t dev = ap->a_head.a_dev;
500 	struct cam_periph *periph;
501 	ses_encstat tmp;
502 	ses_objstat objs;
503 	ses_object obj, *uobj;
504 	struct ses_softc *ssc;
505 	void *addr;
506 	int error, i;
507 
508 
509 	if (ap->a_data)
510 		addr = *((caddr_t *)ap->a_data);
511 	else
512 		addr = NULL;
513 
514 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
515 	if (periph == NULL)
516 		return (ENXIO);
517 
518 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
519 
520 	cam_periph_lock(periph);
521 	ssc = (struct ses_softc *)periph->softc;
522 
523 	/*
524 	 * Now check to see whether we're initialized or not.
525 	 */
526 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
527 		cam_periph_unlock(periph);
528 		return (ENXIO);
529 	}
530 	cam_periph_unlock(periph);
531 
532 	error = 0;
533 
534 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
535 	    ("trying to do ioctl %#lx\n", ap->a_cmd));
536 
537 	/*
538 	 * If this command can change the device's state,
539 	 * we must have the device open for writing.
540 	 */
541 	switch (ap->a_cmd) {
542 	case SESIOC_GETNOBJ:
543 	case SESIOC_GETOBJMAP:
544 	case SESIOC_GETENCSTAT:
545 	case SESIOC_GETOBJSTAT:
546 		break;
547 	default:
548 		if ((ap->a_fflag & FWRITE) == 0) {
549 			return (EBADF);
550 		}
551 	}
552 
553 	switch (ap->a_cmd) {
554 	case SESIOC_GETNOBJ:
555 		error = copyout(&ssc->ses_nobjects, addr,
556 		    sizeof (ssc->ses_nobjects));
557 		break;
558 
559 	case SESIOC_GETOBJMAP:
560 		/*
561 		 * XXX Dropping the lock while copying multiple segments is
562 		 * bogus.
563 		 */
564 		cam_periph_lock(periph);
565 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
566 			obj.obj_id = i;
567 			obj.subencid = ssc->ses_objmap[i].subenclosure;
568 			obj.object_type = ssc->ses_objmap[i].enctype;
569 			cam_periph_unlock(periph);
570 			error = copyout(&obj, uobj, sizeof (ses_object));
571 			cam_periph_lock(periph);
572 			if (error) {
573 				break;
574 			}
575 		}
576 		cam_periph_unlock(periph);
577 		break;
578 
579 	case SESIOC_GETENCSTAT:
580 		cam_periph_lock(periph);
581 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
582 		if (error) {
583 			cam_periph_unlock(periph);
584 			break;
585 		}
586 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
587 		cam_periph_unlock(periph);
588 		error = copyout(&tmp, addr, sizeof (ses_encstat));
589 		ssc->ses_encstat = tmp;
590 		break;
591 
592 	case SESIOC_SETENCSTAT:
593 		error = copyin(addr, &tmp, sizeof (ses_encstat));
594 		if (error)
595 			break;
596 		cam_periph_lock(periph);
597 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
598 		cam_periph_unlock(periph);
599 		break;
600 
601 	case SESIOC_GETOBJSTAT:
602 		error = copyin(addr, &objs, sizeof (ses_objstat));
603 		if (error)
604 			break;
605 		if (objs.obj_id >= ssc->ses_nobjects) {
606 			error = EINVAL;
607 			break;
608 		}
609 		cam_periph_lock(periph);
610 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
611 		cam_periph_unlock(periph);
612 		if (error)
613 			break;
614 		error = copyout(&objs, addr, sizeof (ses_objstat));
615 		/*
616 		 * Always (for now) invalidate entry.
617 		 */
618 		ssc->ses_objmap[objs.obj_id].svalid = 0;
619 		break;
620 
621 	case SESIOC_SETOBJSTAT:
622 		error = copyin(addr, &objs, sizeof (ses_objstat));
623 		if (error)
624 			break;
625 
626 		if (objs.obj_id >= ssc->ses_nobjects) {
627 			error = EINVAL;
628 			break;
629 		}
630 		cam_periph_lock(periph);
631 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
632 		cam_periph_unlock(periph);
633 
634 		/*
635 		 * Always (for now) invalidate entry.
636 		 */
637 		ssc->ses_objmap[objs.obj_id].svalid = 0;
638 		break;
639 
640 	case SESIOC_INIT:
641 
642 		cam_periph_lock(periph);
643 		error = (*ssc->ses_vec.init_enc)(ssc);
644 		cam_periph_unlock(periph);
645 		break;
646 
647 	default:
648 		cam_periph_lock(periph);
649 		error = cam_periph_ioctl(periph, ap->a_cmd, ap->a_data, seserror);
650 		cam_periph_unlock(periph);
651 		break;
652 	}
653 	return (error);
654 }
655 
656 #define	SES_CFLAGS	CAM_RETRY_SELTO
657 #define	SES_FLAGS	SF_NO_PRINT | SF_RETRY_UA
658 static int
659 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
660 {
661 	int error, dlen;
662 	ccb_flags ddf;
663 	union ccb *ccb;
664 
665 	if (dptr) {
666 		if ((dlen = *dlenp) < 0) {
667 			dlen = -dlen;
668 			ddf = CAM_DIR_OUT;
669 		} else {
670 			ddf = CAM_DIR_IN;
671 		}
672 	} else {
673 		dlen = 0;
674 		ddf = CAM_DIR_NONE;
675 	}
676 
677 	if (cdbl > IOCDBLEN) {
678 		cdbl = IOCDBLEN;
679 	}
680 
681 	ccb = cam_periph_getccb(ssc->periph, 1);
682 	cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
683 	    dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
684 	bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
685 
686 	error = cam_periph_runccb(ccb, seserror, SES_CFLAGS, SES_FLAGS, NULL);
687 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
688 		cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
689 	if (error) {
690 		if (dptr) {
691 			*dlenp = dlen;
692 		}
693 	} else {
694 		if (dptr) {
695 			*dlenp = ccb->csio.resid;
696 		}
697 	}
698 	xpt_release_ccb(ccb);
699 	return (error);
700 }
701 
702 static void
703 ses_log(struct ses_softc *ssc, const char *fmt, ...)
704 {
705 	__va_list ap;
706 
707 	kprintf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
708 	__va_start(ap, fmt);
709 	kvprintf(fmt, ap);
710 	__va_end(ap);
711 }
712 
713 /*
714  * The code after this point runs on many platforms,
715  * so forgive the slightly awkward and nonconforming
716  * appearance.
717  */
718 
719 /*
720  * Is this a device that supports enclosure services?
721  *
722  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
723  * an SES device. If it happens to be an old UNISYS SEN device, we can
724  * handle that too.
725  */
726 
727 #define	SAFTE_START	44
728 #define	SAFTE_END	50
729 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
730 
731 static enctyp
732 ses_type(void *buf, int buflen)
733 {
734 	unsigned char *iqd = buf;
735 
736 	if (buflen < 8+SEN_ID_LEN)
737 		return (SES_NONE);
738 
739 	if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
740 		if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
741 			return (SES_SEN);
742 		} else if ((iqd[2] & 0x7) > 2) {
743 			return (SES_SES);
744 		} else {
745 			return (SES_SES_SCSI2);
746 		}
747 		return (SES_NONE);
748 	}
749 
750 #ifdef	SES_ENABLE_PASSTHROUGH
751 	if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
752 		/*
753 		 * PassThrough Device.
754 		 */
755 		return (SES_SES_PASSTHROUGH);
756 	}
757 #endif
758 
759 	/*
760 	 * The comparison is short for a reason-
761 	 * some vendors were chopping it short.
762 	 */
763 
764 	if (buflen < SAFTE_END - 2) {
765 		return (SES_NONE);
766 	}
767 
768 	if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
769 		return (SES_SAFT);
770 	}
771 	return (SES_NONE);
772 }
773 
774 /*
775  * SES Native Type Device Support
776  */
777 
778 /*
779  * SES Diagnostic Page Codes
780  */
781 
782 typedef enum {
783 	SesConfigPage = 0x1,
784 	SesControlPage,
785 #define	SesStatusPage SesControlPage
786 	SesHelpTxt,
787 	SesStringOut,
788 #define	SesStringIn	SesStringOut
789 	SesThresholdOut,
790 #define	SesThresholdIn SesThresholdOut
791 	SesArrayControl,
792 #define	SesArrayStatus	SesArrayControl
793 	SesElementDescriptor,
794 	SesShortStatus
795 } SesDiagPageCodes;
796 
797 /*
798  * minimal amounts
799  */
800 
801 /*
802  * Minimum amount of data, starting from byte 0, to have
803  * the config header.
804  */
805 #define	SES_CFGHDR_MINLEN	12
806 
807 /*
808  * Minimum amount of data, starting from byte 0, to have
809  * the config header and one enclosure header.
810  */
811 #define	SES_ENCHDR_MINLEN	48
812 
813 /*
814  * Take this value, subtract it from VEnclen and you know
815  * the length of the vendor unique bytes.
816  */
817 #define	SES_ENCHDR_VMIN		36
818 
819 /*
820  * SES Data Structures
821  */
822 
823 typedef struct {
824 	uint32_t GenCode;	/* Generation Code */
825 	uint8_t	Nsubenc;	/* Number of Subenclosures */
826 } SesCfgHdr;
827 
828 typedef struct {
829 	uint8_t	Subencid;	/* SubEnclosure Identifier */
830 	uint8_t	Ntypes;		/* # of supported types */
831 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
832 } SesEncHdr;
833 
834 typedef struct {
835 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
836 	uint8_t	encVid[8];
837 	uint8_t	encPid[16];
838 	uint8_t	encRev[4];
839 	uint8_t	encVen[1];
840 } SesEncDesc;
841 
842 typedef struct {
843 	uint8_t	enc_type;		/* type of element */
844 	uint8_t	enc_maxelt;		/* maximum supported */
845 	uint8_t	enc_subenc;		/* in SubEnc # N */
846 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
847 } SesThdr;
848 
849 typedef struct {
850 	uint8_t	comstatus;
851 	uint8_t	comstat[3];
852 } SesComStat;
853 
854 struct typidx {
855 	int ses_tidx;
856 	int ses_oidx;
857 };
858 
859 struct sscfg {
860 	uint8_t ses_ntypes;	/* total number of types supported */
861 
862 	/*
863 	 * We need to keep a type index as well as an
864 	 * object index for each object in an enclosure.
865 	 */
866 	struct typidx *ses_typidx;
867 
868 	/*
869 	 * We also need to keep track of the number of elements
870 	 * per type of element. This is needed later so that we
871 	 * can find precisely in the returned status data the
872 	 * status for the Nth element of the Kth type.
873 	 */
874 	uint8_t *	ses_eltmap;
875 };
876 
877 
878 /*
879  * (de)canonicalization defines
880  */
881 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
882 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
883 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
884 
885 #define	sset16(outp, idx, sval)	\
886 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
887 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
888 
889 
890 #define	sset24(outp, idx, sval)	\
891 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
892 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
893 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
894 
895 
896 #define	sset32(outp, idx, sval)	\
897 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
898 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
899 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
900 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
901 
902 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
903 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
904 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
905 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
906 
907 #define	sget16(inp, idx, lval)	\
908 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
909 		(((uint8_t *)(inp))[idx+1]), idx += 2
910 
911 #define	gget16(inp, idx, lval)	\
912 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
913 		(((uint8_t *)(inp))[idx+1])
914 
915 #define	sget24(inp, idx, lval)	\
916 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
917 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
918 			(((uint8_t *)(inp))[idx+2]), idx += 3
919 
920 #define	gget24(inp, idx, lval)	\
921 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
922 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
923 			(((uint8_t *)(inp))[idx+2])
924 
925 #define	sget32(inp, idx, lval)	\
926 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
927 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
928 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
929 			(((uint8_t *)(inp))[idx+3]), idx += 4
930 
931 #define	gget32(inp, idx, lval)	\
932 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
933 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
934 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
935 			(((uint8_t *)(inp))[idx+3])
936 
937 #define	SCSZ	0x2000
938 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
939 
940 /*
941  * Routines specific && private to SES only
942  */
943 
944 static int ses_getconfig(ses_softc_t *);
945 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
946 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
947 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
948 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
949 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
950 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
951 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
952 
953 static int
954 ses_softc_init(ses_softc_t *ssc, int doinit)
955 {
956 	if (doinit == 0) {
957 		struct sscfg *cc;
958 		if (ssc->ses_nobjects) {
959 			SES_FREE(ssc->ses_objmap,
960 			    ssc->ses_nobjects * sizeof (encobj));
961 			ssc->ses_objmap = NULL;
962 		}
963 		if ((cc = ssc->ses_private) != NULL) {
964 			if (cc->ses_eltmap && cc->ses_ntypes) {
965 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
966 				cc->ses_eltmap = NULL;
967 				cc->ses_ntypes = 0;
968 			}
969 			if (cc->ses_typidx && ssc->ses_nobjects) {
970 				SES_FREE(cc->ses_typidx,
971 				    ssc->ses_nobjects * sizeof (struct typidx));
972 				cc->ses_typidx = NULL;
973 			}
974 			SES_FREE(cc, sizeof (struct sscfg));
975 			ssc->ses_private = NULL;
976 		}
977 		ssc->ses_nobjects = 0;
978 		return (0);
979 	}
980 	if (ssc->ses_private == NULL) {
981 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
982 	}
983 	if (ssc->ses_private == NULL) {
984 		return (ENOMEM);
985 	}
986 	ssc->ses_nobjects = 0;
987 	ssc->ses_encstat = 0;
988 	return (ses_getconfig(ssc));
989 }
990 
991 static int
992 ses_init_enc(ses_softc_t *ssc)
993 {
994 	return (0);
995 }
996 
997 static int
998 ses_get_encstat(ses_softc_t *ssc, int slpflag)
999 {
1000 	SesComStat ComStat;
1001 	int status;
1002 
1003 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
1004 		return (status);
1005 	}
1006 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
1007 	return (0);
1008 }
1009 
1010 static int
1011 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
1012 {
1013 	SesComStat ComStat;
1014 	int status;
1015 
1016 	ComStat.comstatus = encstat & 0xf;
1017 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
1018 		return (status);
1019 	}
1020 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
1021 	return (0);
1022 }
1023 
1024 static int
1025 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1026 {
1027 	int i = (int)obp->obj_id;
1028 
1029 	if (ssc->ses_objmap[i].svalid == 0) {
1030 		SesComStat ComStat;
1031 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
1032 		if (err)
1033 			return (err);
1034 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
1035 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
1036 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
1037 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
1038 		ssc->ses_objmap[i].svalid = 1;
1039 	}
1040 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1041 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1042 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1043 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1044 	return (0);
1045 }
1046 
1047 static int
1048 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1049 {
1050 	SesComStat ComStat;
1051 	int err;
1052 	/*
1053 	 * If this is clear, we don't do diddly.
1054 	 */
1055 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1056 		return (0);
1057 	}
1058 	ComStat.comstatus = obp->cstat[0];
1059 	ComStat.comstat[0] = obp->cstat[1];
1060 	ComStat.comstat[1] = obp->cstat[2];
1061 	ComStat.comstat[2] = obp->cstat[3];
1062 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
1063 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
1064 	return (err);
1065 }
1066 
1067 static int
1068 ses_getconfig(ses_softc_t *ssc)
1069 {
1070 	struct sscfg *cc;
1071 	SesCfgHdr cf;
1072 	SesEncHdr hd;
1073 	SesEncDesc *cdp;
1074 	SesThdr thdr;
1075 	int err, amt, i, nobj, ntype, maxima;
1076 	char storage[CFLEN], *sdata;
1077 	static char cdb[6] = {
1078 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
1079 	};
1080 
1081 	cc = ssc->ses_private;
1082 	if (cc == NULL) {
1083 		return (ENXIO);
1084 	}
1085 
1086 	sdata = SES_MALLOC(SCSZ);
1087 	if (sdata == NULL)
1088 		return (ENOMEM);
1089 
1090 	amt = SCSZ;
1091 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1092 	if (err) {
1093 		SES_FREE(sdata, SCSZ);
1094 		return (err);
1095 	}
1096 	amt = SCSZ - amt;
1097 
1098 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
1099 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
1100 		SES_FREE(sdata, SCSZ);
1101 		return (EIO);
1102 	}
1103 	if (amt < SES_ENCHDR_MINLEN) {
1104 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
1105 		SES_FREE(sdata, SCSZ);
1106 		return (EIO);
1107 	}
1108 
1109 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
1110 
1111 	/*
1112 	 * Now waltz through all the subenclosures toting up the
1113 	 * number of types available in each. For this, we only
1114 	 * really need the enclosure header. However, we get the
1115 	 * enclosure descriptor for debug purposes, as well
1116 	 * as self-consistency checking purposes.
1117 	 */
1118 
1119 	maxima = cf.Nsubenc + 1;
1120 	cdp = (SesEncDesc *) storage;
1121 	for (ntype = i = 0; i < maxima; i++) {
1122 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
1123 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
1124 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
1125 			SES_FREE(sdata, SCSZ);
1126 			return (EIO);
1127 		}
1128 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
1129 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
1130 
1131 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
1132 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1133 			SES_FREE(sdata, SCSZ);
1134 			return (EIO);
1135 		}
1136 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1137 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1138 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1139 		    cdp->encWWN[6], cdp->encWWN[7]);
1140 		ntype += hd.Ntypes;
1141 	}
1142 
1143 	/*
1144 	 * Now waltz through all the types that are available, getting
1145 	 * the type header so we can start adding up the number of
1146 	 * objects available.
1147 	 */
1148 	for (nobj = i = 0; i < ntype; i++) {
1149 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1150 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1151 			SES_FREE(sdata, SCSZ);
1152 			return (EIO);
1153 		}
1154 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1155 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1156 		    thdr.enc_subenc, thdr.enc_tlen);
1157 		nobj += thdr.enc_maxelt;
1158 	}
1159 
1160 
1161 	/*
1162 	 * Now allocate the object array and type map.
1163 	 */
1164 
1165 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1166 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1167 	cc->ses_eltmap = SES_MALLOC(ntype);
1168 
1169 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1170 	    cc->ses_eltmap == NULL) {
1171 		if (ssc->ses_objmap) {
1172 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1173 			ssc->ses_objmap = NULL;
1174 		}
1175 		if (cc->ses_typidx) {
1176 			SES_FREE(cc->ses_typidx,
1177 			    (nobj * sizeof (struct typidx)));
1178 			cc->ses_typidx = NULL;
1179 		}
1180 		if (cc->ses_eltmap) {
1181 			SES_FREE(cc->ses_eltmap, ntype);
1182 			cc->ses_eltmap = NULL;
1183 		}
1184 		SES_FREE(sdata, SCSZ);
1185 		return (ENOMEM);
1186 	}
1187 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1188 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1189 	MEMZERO(cc->ses_eltmap, ntype);
1190 	cc->ses_ntypes = (uint8_t) ntype;
1191 	ssc->ses_nobjects = nobj;
1192 
1193 	/*
1194 	 * Now waltz through the # of types again to fill in the types
1195 	 * (and subenclosure ids) of the allocated objects.
1196 	 */
1197 	nobj = 0;
1198 	for (i = 0; i < ntype; i++) {
1199 		int j;
1200 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1201 			continue;
1202 		}
1203 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1204 		for (j = 0; j < thdr.enc_maxelt; j++) {
1205 			cc->ses_typidx[nobj].ses_tidx = i;
1206 			cc->ses_typidx[nobj].ses_oidx = j;
1207 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1208 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1209 		}
1210 	}
1211 	SES_FREE(sdata, SCSZ);
1212 	return (0);
1213 }
1214 
1215 static int
1216 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1217 {
1218 	struct sscfg *cc;
1219 	int err, amt, bufsiz, tidx, oidx;
1220 	char cdb[6], *sdata;
1221 
1222 	cc = ssc->ses_private;
1223 	if (cc == NULL) {
1224 		return (ENXIO);
1225 	}
1226 
1227 	/*
1228 	 * If we're just getting overall enclosure status,
1229 	 * we only need 2 bytes of data storage.
1230 	 *
1231 	 * If we're getting anything else, we know how much
1232 	 * storage we need by noting that starting at offset
1233 	 * 8 in returned data, all object status bytes are 4
1234 	 * bytes long, and are stored in chunks of types(M)
1235 	 * and nth+1 instances of type M.
1236 	 */
1237 	if (objid == -1) {
1238 		bufsiz = 2;
1239 	} else {
1240 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1241 	}
1242 	sdata = SES_MALLOC(bufsiz);
1243 	if (sdata == NULL)
1244 		return (ENOMEM);
1245 
1246 	cdb[0] = RECEIVE_DIAGNOSTIC;
1247 	cdb[1] = 1;
1248 	cdb[2] = SesStatusPage;
1249 	cdb[3] = bufsiz >> 8;
1250 	cdb[4] = bufsiz & 0xff;
1251 	cdb[5] = 0;
1252 	amt = bufsiz;
1253 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1254 	if (err) {
1255 		SES_FREE(sdata, bufsiz);
1256 		return (err);
1257 	}
1258 	amt = bufsiz - amt;
1259 
1260 	if (objid == -1) {
1261 		tidx = -1;
1262 		oidx = -1;
1263 	} else {
1264 		tidx = cc->ses_typidx[objid].ses_tidx;
1265 		oidx = cc->ses_typidx[objid].ses_oidx;
1266 	}
1267 	if (in) {
1268 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1269 			err = ENODEV;
1270 		}
1271 	} else {
1272 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1273 			err = ENODEV;
1274 		} else {
1275 			cdb[0] = SEND_DIAGNOSTIC;
1276 			cdb[1] = 0x10;
1277 			cdb[2] = 0;
1278 			cdb[3] = bufsiz >> 8;
1279 			cdb[4] = bufsiz & 0xff;
1280 			cdb[5] = 0;
1281 			amt = -bufsiz;
1282 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1283 		}
1284 	}
1285 	SES_FREE(sdata, bufsiz);
1286 	return (0);
1287 }
1288 
1289 
1290 /*
1291  * Routines to parse returned SES data structures.
1292  * Architecture and compiler independent.
1293  */
1294 
1295 static int
1296 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1297 {
1298 	if (buflen < SES_CFGHDR_MINLEN) {
1299 		return (-1);
1300 	}
1301 	gget8(buffer, 1, cfp->Nsubenc);
1302 	gget32(buffer, 4, cfp->GenCode);
1303 	return (0);
1304 }
1305 
1306 static int
1307 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1308 {
1309 	int s, off = 8;
1310 	for (s = 0; s < SubEncId; s++) {
1311 		if (off + 3 > amt)
1312 			return (-1);
1313 		off += buffer[off+3] + 4;
1314 	}
1315 	if (off + 3 > amt) {
1316 		return (-1);
1317 	}
1318 	gget8(buffer, off+1, chp->Subencid);
1319 	gget8(buffer, off+2, chp->Ntypes);
1320 	gget8(buffer, off+3, chp->VEnclen);
1321 	return (0);
1322 }
1323 
1324 static int
1325 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1326 {
1327 	int s, e, enclen, off = 8;
1328 	for (s = 0; s < SubEncId; s++) {
1329 		if (off + 3 > amt)
1330 			return (-1);
1331 		off += buffer[off+3] + 4;
1332 	}
1333 	if (off + 3 > amt) {
1334 		return (-1);
1335 	}
1336 	gget8(buffer, off+3, enclen);
1337 	off += 4;
1338 	if (off  >= amt)
1339 		return (-1);
1340 
1341 	e = off + enclen;
1342 	if (e > amt) {
1343 		e = amt;
1344 	}
1345 	MEMCPY(cdp, &buffer[off], e - off);
1346 	return (0);
1347 }
1348 
1349 static int
1350 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1351 {
1352 	int s, off = 8;
1353 
1354 	if (amt < SES_CFGHDR_MINLEN) {
1355 		return (-1);
1356 	}
1357 	for (s = 0; s < buffer[1]; s++) {
1358 		if (off + 3 > amt)
1359 			return (-1);
1360 		off += buffer[off+3] + 4;
1361 	}
1362 	if (off + 3 > amt) {
1363 		return (-1);
1364 	}
1365 	off += buffer[off+3] + 4 + (nth * 4);
1366 	if (amt < (off + 4))
1367 		return (-1);
1368 
1369 	gget8(buffer, off++, thp->enc_type);
1370 	gget8(buffer, off++, thp->enc_maxelt);
1371 	gget8(buffer, off++, thp->enc_subenc);
1372 	gget8(buffer, off, thp->enc_tlen);
1373 	return (0);
1374 }
1375 
1376 /*
1377  * This function needs a little explanation.
1378  *
1379  * The arguments are:
1380  *
1381  *
1382  *	char *b, int amt
1383  *
1384  *		These describes the raw input SES status data and length.
1385  *
1386  *	uint8_t *ep
1387  *
1388  *		This is a map of the number of types for each element type
1389  *		in the enclosure.
1390  *
1391  *	int elt
1392  *
1393  *		This is the element type being sought. If elt is -1,
1394  *		then overall enclosure status is being sought.
1395  *
1396  *	int elm
1397  *
1398  *		This is the ordinal Mth element of type elt being sought.
1399  *
1400  *	SesComStat *sp
1401  *
1402  *		This is the output area to store the status for
1403  *		the Mth element of type Elt.
1404  */
1405 
1406 static int
1407 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1408 {
1409 	int idx, i;
1410 
1411 	/*
1412 	 * If it's overall enclosure status being sought, get that.
1413 	 * We need at least 2 bytes of status data to get that.
1414 	 */
1415 	if (elt == -1) {
1416 		if (amt < 2)
1417 			return (-1);
1418 		gget8(b, 1, sp->comstatus);
1419 		sp->comstat[0] = 0;
1420 		sp->comstat[1] = 0;
1421 		sp->comstat[2] = 0;
1422 		return (0);
1423 	}
1424 
1425 	/*
1426 	 * Check to make sure that the Mth element is legal for type Elt.
1427 	 */
1428 
1429 	if (elm >= ep[elt])
1430 		return (-1);
1431 
1432 	/*
1433 	 * Starting at offset 8, start skipping over the storage
1434 	 * for the element types we're not interested in.
1435 	 */
1436 	for (idx = 8, i = 0; i < elt; i++) {
1437 		idx += ((ep[i] + 1) * 4);
1438 	}
1439 
1440 	/*
1441 	 * Skip over Overall status for this element type.
1442 	 */
1443 	idx += 4;
1444 
1445 	/*
1446 	 * And skip to the index for the Mth element that we're going for.
1447 	 */
1448 	idx += (4 * elm);
1449 
1450 	/*
1451 	 * Make sure we haven't overflowed the buffer.
1452 	 */
1453 	if (idx+4 > amt)
1454 		return (-1);
1455 
1456 	/*
1457 	 * Retrieve the status.
1458 	 */
1459 	gget8(b, idx++, sp->comstatus);
1460 	gget8(b, idx++, sp->comstat[0]);
1461 	gget8(b, idx++, sp->comstat[1]);
1462 	gget8(b, idx++, sp->comstat[2]);
1463 #if	0
1464 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1465 #endif
1466 	return (0);
1467 }
1468 
1469 /*
1470  * This is the mirror function to ses_decode, but we set the 'select'
1471  * bit for the object which we're interested in. All other objects,
1472  * after a status fetch, should have that bit off. Hmm. It'd be easy
1473  * enough to ensure this, so we will.
1474  */
1475 
1476 static int
1477 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1478 {
1479 	int idx, i;
1480 
1481 	/*
1482 	 * If it's overall enclosure status being sought, get that.
1483 	 * We need at least 2 bytes of status data to get that.
1484 	 */
1485 	if (elt == -1) {
1486 		if (amt < 2)
1487 			return (-1);
1488 		i = 0;
1489 		sset8(b, i, 0);
1490 		sset8(b, i, sp->comstatus & 0xf);
1491 #if	0
1492 		PRINTF("set EncStat %x\n", sp->comstatus);
1493 #endif
1494 		return (0);
1495 	}
1496 
1497 	/*
1498 	 * Check to make sure that the Mth element is legal for type Elt.
1499 	 */
1500 
1501 	if (elm >= ep[elt])
1502 		return (-1);
1503 
1504 	/*
1505 	 * Starting at offset 8, start skipping over the storage
1506 	 * for the element types we're not interested in.
1507 	 */
1508 	for (idx = 8, i = 0; i < elt; i++) {
1509 		idx += ((ep[i] + 1) * 4);
1510 	}
1511 
1512 	/*
1513 	 * Skip over Overall status for this element type.
1514 	 */
1515 	idx += 4;
1516 
1517 	/*
1518 	 * And skip to the index for the Mth element that we're going for.
1519 	 */
1520 	idx += (4 * elm);
1521 
1522 	/*
1523 	 * Make sure we haven't overflowed the buffer.
1524 	 */
1525 	if (idx+4 > amt)
1526 		return (-1);
1527 
1528 	/*
1529 	 * Set the status.
1530 	 */
1531 	sset8(b, idx, sp->comstatus);
1532 	sset8(b, idx, sp->comstat[0]);
1533 	sset8(b, idx, sp->comstat[1]);
1534 	sset8(b, idx, sp->comstat[2]);
1535 	idx -= 4;
1536 
1537 #if	0
1538 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1539 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1540 	    sp->comstat[1], sp->comstat[2]);
1541 #endif
1542 
1543 	/*
1544 	 * Now make sure all other 'Select' bits are off.
1545 	 */
1546 	for (i = 8; i < amt; i += 4) {
1547 		if (i != idx)
1548 			b[i] &= ~0x80;
1549 	}
1550 	/*
1551 	 * And make sure the INVOP bit is clear.
1552 	 */
1553 	b[2] &= ~0x10;
1554 
1555 	return (0);
1556 }
1557 
1558 /*
1559  * SAF-TE Type Device Emulation
1560  */
1561 
1562 static int safte_getconfig(ses_softc_t *);
1563 static int safte_rdstat(ses_softc_t *, int);
1564 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1565 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1566 static void wrslot_stat(ses_softc_t *, int);
1567 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1568 
1569 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1570 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1571 /*
1572  * SAF-TE specific defines- Mandatory ones only...
1573  */
1574 
1575 /*
1576  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1577  */
1578 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1579 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1580 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1581 
1582 /*
1583  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1584  */
1585 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1586 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1587 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1588 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1589 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1590 
1591 
1592 #define	SAFT_SCRATCH	64
1593 #define	NPSEUDO_THERM	16
1594 #define	NPSEUDO_ALARM	1
1595 struct scfg {
1596 	/*
1597 	 * Cached Configuration
1598 	 */
1599 	uint8_t	Nfans;		/* Number of Fans */
1600 	uint8_t	Npwr;		/* Number of Power Supplies */
1601 	uint8_t	Nslots;		/* Number of Device Slots */
1602 	uint8_t	DoorLock;	/* Door Lock Installed */
1603 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1604 	uint8_t	Nspkrs;		/* Number of Speakers */
1605 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1606 	/*
1607 	 * Cached Flag Bytes for Global Status
1608 	 */
1609 	uint8_t	flag1;
1610 	uint8_t	flag2;
1611 	/*
1612 	 * What object index ID is where various slots start.
1613 	 */
1614 	uint8_t	pwroff;
1615 	uint8_t	slotoff;
1616 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1617 };
1618 
1619 #define	SAFT_FLG1_ALARM		0x1
1620 #define	SAFT_FLG1_GLOBFAIL	0x2
1621 #define	SAFT_FLG1_GLOBWARN	0x4
1622 #define	SAFT_FLG1_ENCPWROFF	0x8
1623 #define	SAFT_FLG1_ENCFANFAIL	0x10
1624 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1625 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1626 #define	SAFT_FLG1_ENCDRVWARN	0x80
1627 
1628 #define	SAFT_FLG2_LOCKDOOR	0x4
1629 #define	SAFT_PRIVATE		sizeof (struct scfg)
1630 
1631 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1632 #define	SAFT_BAIL(r, x, k, l)	\
1633 	if ((r) >= (x)) { \
1634 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1635 		SES_FREE((k), (l)); \
1636 		return (EIO); \
1637 	}
1638 
1639 
1640 static int
1641 safte_softc_init(ses_softc_t *ssc, int doinit)
1642 {
1643 	int err, i, r;
1644 	struct scfg *cc;
1645 
1646 	if (doinit == 0) {
1647 		if (ssc->ses_nobjects) {
1648 			if (ssc->ses_objmap) {
1649 				SES_FREE(ssc->ses_objmap,
1650 				    ssc->ses_nobjects * sizeof (encobj));
1651 				ssc->ses_objmap = NULL;
1652 			}
1653 			ssc->ses_nobjects = 0;
1654 		}
1655 		if (ssc->ses_private) {
1656 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1657 			ssc->ses_private = NULL;
1658 		}
1659 		return (0);
1660 	}
1661 
1662 	if (ssc->ses_private == NULL) {
1663 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1664 		if (ssc->ses_private == NULL) {
1665 			return (ENOMEM);
1666 		}
1667 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1668 	}
1669 
1670 	ssc->ses_nobjects = 0;
1671 	ssc->ses_encstat = 0;
1672 
1673 	if ((err = safte_getconfig(ssc)) != 0) {
1674 		return (err);
1675 	}
1676 
1677 	/*
1678 	 * The number of objects here, as well as that reported by the
1679 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1680 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1681 	 */
1682 	cc = ssc->ses_private;
1683 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1684 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1685 	ssc->ses_objmap = (encobj *)
1686 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1687 	if (ssc->ses_objmap == NULL) {
1688 		return (ENOMEM);
1689 	}
1690 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1691 
1692 	r = 0;
1693 	/*
1694 	 * Note that this is all arranged for the convenience
1695 	 * in later fetches of status.
1696 	 */
1697 	for (i = 0; i < cc->Nfans; i++)
1698 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1699 	cc->pwroff = (uint8_t) r;
1700 	for (i = 0; i < cc->Npwr; i++)
1701 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1702 	for (i = 0; i < cc->DoorLock; i++)
1703 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1704 	for (i = 0; i < cc->Nspkrs; i++)
1705 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1706 	for (i = 0; i < cc->Ntherm; i++)
1707 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1708 	for (i = 0; i < NPSEUDO_THERM; i++)
1709 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1710 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1711 	cc->slotoff = (uint8_t) r;
1712 	for (i = 0; i < cc->Nslots; i++)
1713 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1714 	return (0);
1715 }
1716 
1717 static int
1718 safte_init_enc(ses_softc_t *ssc)
1719 {
1720 	int err;
1721 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1722 
1723 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1724 	if (err) {
1725 		return (err);
1726 	}
1727 	DELAY(5000);
1728 	err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
1729 	return (err);
1730 }
1731 
1732 static int
1733 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1734 {
1735 	return (safte_rdstat(ssc, slpflg));
1736 }
1737 
1738 static int
1739 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1740 {
1741 	struct scfg *cc = ssc->ses_private;
1742 	if (cc == NULL)
1743 		return (0);
1744 	/*
1745 	 * Since SAF-TE devices aren't necessarily sticky in terms
1746 	 * of state, make our soft copy of enclosure status 'sticky'-
1747 	 * that is, things set in enclosure status stay set (as implied
1748 	 * by conditions set in reading object status) until cleared.
1749 	 */
1750 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1751 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1752 	ssc->ses_encstat |= ENCI_SVALID;
1753 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1754 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1755 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1756 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1757 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1758 	}
1759 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1760 }
1761 
1762 static int
1763 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1764 {
1765 	int i = (int)obp->obj_id;
1766 
1767 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1768 	    (ssc->ses_objmap[i].svalid) == 0) {
1769 		int err = safte_rdstat(ssc, slpflg);
1770 		if (err)
1771 			return (err);
1772 	}
1773 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1774 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1775 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1776 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1777 	return (0);
1778 }
1779 
1780 
1781 static int
1782 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1783 {
1784 	int idx, err;
1785 	encobj *ep;
1786 	struct scfg *cc;
1787 
1788 
1789 	SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1790 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1791 	    obp->cstat[3]);
1792 
1793 	/*
1794 	 * If this is clear, we don't do diddly.
1795 	 */
1796 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1797 		return (0);
1798 	}
1799 
1800 	err = 0;
1801 	/*
1802 	 * Check to see if the common bits are set and do them first.
1803 	 */
1804 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1805 		err = set_objstat_sel(ssc, obp, slp);
1806 		if (err)
1807 			return (err);
1808 	}
1809 
1810 	cc = ssc->ses_private;
1811 	if (cc == NULL)
1812 		return (0);
1813 
1814 	idx = (int)obp->obj_id;
1815 	ep = &ssc->ses_objmap[idx];
1816 
1817 	switch (ep->enctype) {
1818 	case SESTYP_DEVICE:
1819 	{
1820 		uint8_t slotop = 0;
1821 		/*
1822 		 * XXX: I should probably cache the previous state
1823 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1824 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1825 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1826 		 */
1827 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1828 			slotop |= 0x2;
1829 		}
1830 		if (obp->cstat[2] & SESCTL_RQSID) {
1831 			slotop |= 0x4;
1832 		}
1833 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1834 		    slotop, slp);
1835 		if (err)
1836 			return (err);
1837 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1838 			ep->priv |= 0x2;
1839 		} else {
1840 			ep->priv &= ~0x2;
1841 		}
1842 		if (ep->priv & 0xc6) {
1843 			ep->priv &= ~0x1;
1844 		} else {
1845 			ep->priv |= 0x1;	/* no errors */
1846 		}
1847 		wrslot_stat(ssc, slp);
1848 		break;
1849 	}
1850 	case SESTYP_POWER:
1851 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1852 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1853 		} else {
1854 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1855 		}
1856 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1857 		    cc->flag2, 0, slp);
1858 		if (err)
1859 			return (err);
1860 		if (obp->cstat[3] & SESCTL_RQSTON) {
1861 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1862 				idx - cc->pwroff, 0, 0, slp);
1863 		} else {
1864 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1865 				idx - cc->pwroff, 0, 1, slp);
1866 		}
1867 		break;
1868 	case SESTYP_FAN:
1869 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1870 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1871 		} else {
1872 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1873 		}
1874 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1875 		    cc->flag2, 0, slp);
1876 		if (err)
1877 			return (err);
1878 		if (obp->cstat[3] & SESCTL_RQSTON) {
1879 			uint8_t fsp;
1880 			if ((obp->cstat[3] & 0x7) == 7) {
1881 				fsp = 4;
1882 			} else if ((obp->cstat[3] & 0x7) == 6) {
1883 				fsp = 3;
1884 			} else if ((obp->cstat[3] & 0x7) == 4) {
1885 				fsp = 2;
1886 			} else {
1887 				fsp = 1;
1888 			}
1889 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1890 		} else {
1891 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1892 		}
1893 		break;
1894 	case SESTYP_DOORLOCK:
1895 		if (obp->cstat[3] & 0x1) {
1896 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1897 		} else {
1898 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1899 		}
1900 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1901 		break;
1902 	case SESTYP_ALARM:
1903 		/*
1904 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1905 		 */
1906 		obp->cstat[3] &= ~0xa;
1907 		if (obp->cstat[3] & 0x40) {
1908 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1909 		} else if (obp->cstat[3] != 0) {
1910 			cc->flag2 |= SAFT_FLG1_ALARM;
1911 		} else {
1912 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1913 		}
1914 		ep->priv = obp->cstat[3];
1915 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1916 		break;
1917 	default:
1918 		break;
1919 	}
1920 	ep->svalid = 0;
1921 	return (0);
1922 }
1923 
1924 static int
1925 safte_getconfig(ses_softc_t *ssc)
1926 {
1927 	struct scfg *cfg;
1928 	int err, amt;
1929 	char *sdata;
1930 	static char cdb[10] =
1931 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1932 
1933 	cfg = ssc->ses_private;
1934 	if (cfg == NULL)
1935 		return (ENXIO);
1936 
1937 	sdata = SES_MALLOC(SAFT_SCRATCH);
1938 	if (sdata == NULL)
1939 		return (ENOMEM);
1940 
1941 	amt = SAFT_SCRATCH;
1942 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1943 	if (err) {
1944 		SES_FREE(sdata, SAFT_SCRATCH);
1945 		return (err);
1946 	}
1947 	amt = SAFT_SCRATCH - amt;
1948 	if (amt < 6) {
1949 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1950 		SES_FREE(sdata, SAFT_SCRATCH);
1951 		return (EIO);
1952 	}
1953 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1954 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1955 	cfg->Nfans = sdata[0];
1956 	cfg->Npwr = sdata[1];
1957 	cfg->Nslots = sdata[2];
1958 	cfg->DoorLock = sdata[3];
1959 	cfg->Ntherm = sdata[4];
1960 	cfg->Nspkrs = sdata[5];
1961 	cfg->Nalarm = NPSEUDO_ALARM;
1962 	SES_FREE(sdata, SAFT_SCRATCH);
1963 	return (0);
1964 }
1965 
1966 static int
1967 safte_rdstat(ses_softc_t *ssc, int slpflg)
1968 {
1969 	int err, oid, r, i, hiwater, nitems, amt;
1970 	uint16_t tempflags;
1971 	size_t buflen;
1972 	uint8_t status, oencstat;
1973 	char *sdata, cdb[10];
1974 	struct scfg *cc = ssc->ses_private;
1975 
1976 
1977 	/*
1978 	 * The number of objects overstates things a bit,
1979 	 * both for the bogus 'thermometer' entries and
1980 	 * the drive status (which isn't read at the same
1981 	 * time as the enclosure status), but that's okay.
1982 	 */
1983 	buflen = 4 * cc->Nslots;
1984 	if (ssc->ses_nobjects > buflen)
1985 		buflen = ssc->ses_nobjects;
1986 	sdata = SES_MALLOC(buflen);
1987 	if (sdata == NULL)
1988 		return (ENOMEM);
1989 
1990 	cdb[0] = READ_BUFFER;
1991 	cdb[1] = 1;
1992 	cdb[2] = SAFTE_RD_RDESTS;
1993 	cdb[3] = 0;
1994 	cdb[4] = 0;
1995 	cdb[5] = 0;
1996 	cdb[6] = 0;
1997 	cdb[7] = (buflen >> 8) & 0xff;
1998 	cdb[8] = buflen & 0xff;
1999 	cdb[9] = 0;
2000 	amt = buflen;
2001 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2002 	if (err) {
2003 		SES_FREE(sdata, buflen);
2004 		return (err);
2005 	}
2006 	hiwater = buflen - amt;
2007 
2008 
2009 	/*
2010 	 * invalidate all status bits.
2011 	 */
2012 	for (i = 0; i < ssc->ses_nobjects; i++)
2013 		ssc->ses_objmap[i].svalid = 0;
2014 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
2015 	ssc->ses_encstat = 0;
2016 
2017 
2018 	/*
2019 	 * Now parse returned buffer.
2020 	 * If we didn't get enough data back,
2021 	 * that's considered a fatal error.
2022 	 */
2023 	oid = r = 0;
2024 
2025 	for (nitems = i = 0; i < cc->Nfans; i++) {
2026 		SAFT_BAIL(r, hiwater, sdata, buflen);
2027 		/*
2028 		 * 0 = Fan Operational
2029 		 * 1 = Fan is malfunctioning
2030 		 * 2 = Fan is not present
2031 		 * 0x80 = Unknown or Not Reportable Status
2032 		 */
2033 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2034 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2035 		switch ((int)(uint8_t)sdata[r]) {
2036 		case 0:
2037 			nitems++;
2038 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2039 			/*
2040 			 * We could get fancier and cache
2041 			 * fan speeds that we have set, but
2042 			 * that isn't done now.
2043 			 */
2044 			ssc->ses_objmap[oid].encstat[3] = 7;
2045 			break;
2046 
2047 		case 1:
2048 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2049 			/*
2050 			 * FAIL and FAN STOPPED synthesized
2051 			 */
2052 			ssc->ses_objmap[oid].encstat[3] = 0x40;
2053 			/*
2054 			 * Enclosure marked with CRITICAL error
2055 			 * if only one fan or no thermometers,
2056 			 * else the NONCRITICAL error is set.
2057 			 */
2058 			if (cc->Nfans == 1 || cc->Ntherm == 0)
2059 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2060 			else
2061 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2062 			break;
2063 		case 2:
2064 			ssc->ses_objmap[oid].encstat[0] =
2065 			    SES_OBJSTAT_NOTINSTALLED;
2066 			ssc->ses_objmap[oid].encstat[3] = 0;
2067 			/*
2068 			 * Enclosure marked with CRITICAL error
2069 			 * if only one fan or no thermometers,
2070 			 * else the NONCRITICAL error is set.
2071 			 */
2072 			if (cc->Nfans == 1)
2073 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2074 			else
2075 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2076 			break;
2077 		case 0x80:
2078 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2079 			ssc->ses_objmap[oid].encstat[3] = 0;
2080 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2081 			break;
2082 		default:
2083 			ssc->ses_objmap[oid].encstat[0] =
2084 			    SES_OBJSTAT_UNSUPPORTED;
2085 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
2086 			    sdata[r] & 0xff);
2087 			break;
2088 		}
2089 		ssc->ses_objmap[oid++].svalid = 1;
2090 		r++;
2091 	}
2092 
2093 	/*
2094 	 * No matter how you cut it, no cooling elements when there
2095 	 * should be some there is critical.
2096 	 */
2097 	if (cc->Nfans && nitems == 0) {
2098 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2099 	}
2100 
2101 
2102 	for (i = 0; i < cc->Npwr; i++) {
2103 		SAFT_BAIL(r, hiwater, sdata, buflen);
2104 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2105 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2106 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2107 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
2108 		switch ((uint8_t)sdata[r]) {
2109 		case 0x00:	/* pws operational and on */
2110 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2111 			break;
2112 		case 0x01:	/* pws operational and off */
2113 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2114 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2115 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2116 			break;
2117 		case 0x10:	/* pws is malfunctioning and commanded on */
2118 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2119 			ssc->ses_objmap[oid].encstat[3] = 0x61;
2120 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2121 			break;
2122 
2123 		case 0x11:	/* pws is malfunctioning and commanded off */
2124 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2125 			ssc->ses_objmap[oid].encstat[3] = 0x51;
2126 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2127 			break;
2128 		case 0x20:	/* pws is not present */
2129 			ssc->ses_objmap[oid].encstat[0] =
2130 			    SES_OBJSTAT_NOTINSTALLED;
2131 			ssc->ses_objmap[oid].encstat[3] = 0;
2132 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2133 			break;
2134 		case 0x21:	/* pws is present */
2135 			/*
2136 			 * This is for enclosures that cannot tell whether the
2137 			 * device is on or malfunctioning, but know that it is
2138 			 * present. Just fall through.
2139 			 */
2140 			/* FALLTHROUGH */
2141 		case 0x80:	/* Unknown or Not Reportable Status */
2142 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2143 			ssc->ses_objmap[oid].encstat[3] = 0;
2144 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2145 			break;
2146 		default:
2147 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2148 			    i, sdata[r] & 0xff);
2149 			break;
2150 		}
2151 		ssc->ses_objmap[oid++].svalid = 1;
2152 		r++;
2153 	}
2154 
2155 	/*
2156 	 * Skip over Slot SCSI IDs
2157 	 */
2158 	r += cc->Nslots;
2159 
2160 	/*
2161 	 * We always have doorlock status, no matter what,
2162 	 * but we only save the status if we have one.
2163 	 */
2164 	SAFT_BAIL(r, hiwater, sdata, buflen);
2165 	if (cc->DoorLock) {
2166 		/*
2167 		 * 0 = Door Locked
2168 		 * 1 = Door Unlocked, or no Lock Installed
2169 		 * 0x80 = Unknown or Not Reportable Status
2170 		 */
2171 		ssc->ses_objmap[oid].encstat[1] = 0;
2172 		ssc->ses_objmap[oid].encstat[2] = 0;
2173 		switch ((uint8_t)sdata[r]) {
2174 		case 0:
2175 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2176 			ssc->ses_objmap[oid].encstat[3] = 0;
2177 			break;
2178 		case 1:
2179 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2180 			ssc->ses_objmap[oid].encstat[3] = 1;
2181 			break;
2182 		case 0x80:
2183 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2184 			ssc->ses_objmap[oid].encstat[3] = 0;
2185 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2186 			break;
2187 		default:
2188 			ssc->ses_objmap[oid].encstat[0] =
2189 			    SES_OBJSTAT_UNSUPPORTED;
2190 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2191 			    sdata[r] & 0xff);
2192 			break;
2193 		}
2194 		ssc->ses_objmap[oid++].svalid = 1;
2195 	}
2196 	r++;
2197 
2198 	/*
2199 	 * We always have speaker status, no matter what,
2200 	 * but we only save the status if we have one.
2201 	 */
2202 	SAFT_BAIL(r, hiwater, sdata, buflen);
2203 	if (cc->Nspkrs) {
2204 		ssc->ses_objmap[oid].encstat[1] = 0;
2205 		ssc->ses_objmap[oid].encstat[2] = 0;
2206 		if (sdata[r] == 1) {
2207 			/*
2208 			 * We need to cache tone urgency indicators.
2209 			 * Someday.
2210 			 */
2211 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2212 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2213 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2214 		} else if (sdata[r] == 0) {
2215 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2216 			ssc->ses_objmap[oid].encstat[3] = 0;
2217 		} else {
2218 			ssc->ses_objmap[oid].encstat[0] =
2219 			    SES_OBJSTAT_UNSUPPORTED;
2220 			ssc->ses_objmap[oid].encstat[3] = 0;
2221 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2222 			    sdata[r] & 0xff);
2223 		}
2224 		ssc->ses_objmap[oid++].svalid = 1;
2225 	}
2226 	r++;
2227 
2228 	for (i = 0; i < cc->Ntherm; i++) {
2229 		SAFT_BAIL(r, hiwater, sdata, buflen);
2230 		/*
2231 		 * Status is a range from -10 to 245 deg Celsius,
2232 		 * which we need to normalize to -20 to -245 according
2233 		 * to the latest SCSI spec, which makes little
2234 		 * sense since this would overflow an 8bit value.
2235 		 * Well, still, the base normalization is -20,
2236 		 * not -10, so we have to adjust.
2237 		 *
2238 		 * So what's over and under temperature?
2239 		 * Hmm- we'll state that 'normal' operating
2240 		 * is 10 to 40 deg Celsius.
2241 		 */
2242 
2243 		/*
2244 		 * Actually.... All of the units that people out in the world
2245 		 * seem to have do not come even close to setting a value that
2246 		 * complies with this spec.
2247 		 *
2248 		 * The closest explanation I could find was in an
2249 		 * LSI-Logic manual, which seemed to indicate that
2250 		 * this value would be set by whatever the I2C code
2251 		 * would interpolate from the output of an LM75
2252 		 * temperature sensor.
2253 		 *
2254 		 * This means that it is impossible to use the actual
2255 		 * numeric value to predict anything. But we don't want
2256 		 * to lose the value. So, we'll propagate the *uncorrected*
2257 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2258 		 * temperature flags for warnings.
2259 		 */
2260 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2261 		ssc->ses_objmap[oid].encstat[1] = 0;
2262 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2263 		ssc->ses_objmap[oid].encstat[3] = 0;
2264 		ssc->ses_objmap[oid++].svalid = 1;
2265 		r++;
2266 	}
2267 
2268 	/*
2269 	 * Now, for "pseudo" thermometers, we have two bytes
2270 	 * of information in enclosure status- 16 bits. Actually,
2271 	 * the MSB is a single TEMP ALERT flag indicating whether
2272 	 * any other bits are set, but, thanks to fuzzy thinking,
2273 	 * in the SAF-TE spec, this can also be set even if no
2274 	 * other bits are set, thus making this really another
2275 	 * binary temperature sensor.
2276 	 */
2277 
2278 	SAFT_BAIL(r, hiwater, sdata, buflen);
2279 	tempflags = sdata[r++];
2280 	SAFT_BAIL(r, hiwater, sdata, buflen);
2281 	tempflags |= (tempflags << 8) | sdata[r++];
2282 
2283 	for (i = 0; i < NPSEUDO_THERM; i++) {
2284 		ssc->ses_objmap[oid].encstat[1] = 0;
2285 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2286 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2287 			ssc->ses_objmap[4].encstat[2] = 0xff;
2288 			/*
2289 			 * Set 'over temperature' failure.
2290 			 */
2291 			ssc->ses_objmap[oid].encstat[3] = 8;
2292 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2293 		} else {
2294 			/*
2295 			 * We used to say 'not available' and synthesize a
2296 			 * nominal 30 deg (C)- that was wrong. Actually,
2297 			 * Just say 'OK', and use the reserved value of
2298 			 * zero.
2299 			 */
2300 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2301 			ssc->ses_objmap[oid].encstat[2] = 0;
2302 			ssc->ses_objmap[oid].encstat[3] = 0;
2303 		}
2304 		ssc->ses_objmap[oid++].svalid = 1;
2305 	}
2306 
2307 	/*
2308 	 * Get alarm status.
2309 	 */
2310 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2311 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2312 	ssc->ses_objmap[oid++].svalid = 1;
2313 
2314 	/*
2315 	 * Now get drive slot status
2316 	 */
2317 	cdb[2] = SAFTE_RD_RDDSTS;
2318 	amt = buflen;
2319 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2320 	if (err) {
2321 		SES_FREE(sdata, buflen);
2322 		return (err);
2323 	}
2324 	hiwater = buflen - amt;
2325 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2326 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2327 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2328 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2329 		ssc->ses_objmap[oid].encstat[2] = 0;
2330 		ssc->ses_objmap[oid].encstat[3] = 0;
2331 		status = sdata[r+3];
2332 		if ((status & 0x1) == 0) {	/* no device */
2333 			ssc->ses_objmap[oid].encstat[0] =
2334 			    SES_OBJSTAT_NOTINSTALLED;
2335 		} else {
2336 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2337 		}
2338 		if (status & 0x2) {
2339 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2340 		}
2341 		if ((status & 0x4) == 0) {
2342 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2343 		}
2344 		ssc->ses_objmap[oid++].svalid = 1;
2345 	}
2346 	/* see comment below about sticky enclosure status */
2347 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2348 	SES_FREE(sdata, buflen);
2349 	return (0);
2350 }
2351 
2352 static int
2353 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2354 {
2355 	int idx;
2356 	encobj *ep;
2357 	struct scfg *cc = ssc->ses_private;
2358 
2359 	if (cc == NULL)
2360 		return (0);
2361 
2362 	idx = (int)obp->obj_id;
2363 	ep = &ssc->ses_objmap[idx];
2364 
2365 	switch (ep->enctype) {
2366 	case SESTYP_DEVICE:
2367 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2368 			ep->priv |= 0x40;
2369 		}
2370 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2371 		if (obp->cstat[0] & SESCTL_DISABLE) {
2372 			ep->priv |= 0x80;
2373 			/*
2374 			 * Hmm. Try to set the 'No Drive' flag.
2375 			 * Maybe that will count as a 'disable'.
2376 			 */
2377 		}
2378 		if (ep->priv & 0xc6) {
2379 			ep->priv &= ~0x1;
2380 		} else {
2381 			ep->priv |= 0x1;	/* no errors */
2382 		}
2383 		wrslot_stat(ssc, slp);
2384 		break;
2385 	case SESTYP_POWER:
2386 		/*
2387 		 * Okay- the only one that makes sense here is to
2388 		 * do the 'disable' for a power supply.
2389 		 */
2390 		if (obp->cstat[0] & SESCTL_DISABLE) {
2391 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
2392 				idx - cc->pwroff, 0, 0, slp);
2393 		}
2394 		break;
2395 	case SESTYP_FAN:
2396 		/*
2397 		 * Okay- the only one that makes sense here is to
2398 		 * set fan speed to zero on disable.
2399 		 */
2400 		if (obp->cstat[0] & SESCTL_DISABLE) {
2401 			/* remember- fans are the first items, so idx works */
2402 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2403 		}
2404 		break;
2405 	case SESTYP_DOORLOCK:
2406 		/*
2407 		 * Well, we can 'disable' the lock.
2408 		 */
2409 		if (obp->cstat[0] & SESCTL_DISABLE) {
2410 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2411 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2412 				cc->flag2, 0, slp);
2413 		}
2414 		break;
2415 	case SESTYP_ALARM:
2416 		/*
2417 		 * Well, we can 'disable' the alarm.
2418 		 */
2419 		if (obp->cstat[0] & SESCTL_DISABLE) {
2420 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2421 			ep->priv |= 0x40;	/* Muted */
2422 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2423 				cc->flag2, 0, slp);
2424 		}
2425 		break;
2426 	default:
2427 		break;
2428 	}
2429 	ep->svalid = 0;
2430 	return (0);
2431 }
2432 
2433 /*
2434  * This function handles all of the 16 byte WRITE BUFFER commands.
2435  */
2436 static int
2437 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2438     uint8_t b3, int slp)
2439 {
2440 	int err, amt;
2441 	char *sdata;
2442 	struct scfg *cc = ssc->ses_private;
2443 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2444 
2445 	if (cc == NULL)
2446 		return (0);
2447 
2448 	sdata = SES_MALLOC(16);
2449 	if (sdata == NULL)
2450 		return (ENOMEM);
2451 
2452 	SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2453 
2454 	sdata[0] = op;
2455 	sdata[1] = b1;
2456 	sdata[2] = b2;
2457 	sdata[3] = b3;
2458 	MEMZERO(&sdata[4], 12);
2459 	amt = -16;
2460 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2461 	SES_FREE(sdata, 16);
2462 	return (err);
2463 }
2464 
2465 /*
2466  * This function updates the status byte for the device slot described.
2467  *
2468  * Since this is an optional SAF-TE command, there's no point in
2469  * returning an error.
2470  */
2471 static void
2472 wrslot_stat(ses_softc_t *ssc, int slp)
2473 {
2474 	int i, amt;
2475 	encobj *ep;
2476 	char cdb[10], *sdata;
2477 	struct scfg *cc = ssc->ses_private;
2478 
2479 	if (cc == NULL)
2480 		return;
2481 
2482 	SES_DLOG(ssc, "saf_wrslot\n");
2483 	cdb[0] = WRITE_BUFFER;
2484 	cdb[1] = 1;
2485 	cdb[2] = 0;
2486 	cdb[3] = 0;
2487 	cdb[4] = 0;
2488 	cdb[5] = 0;
2489 	cdb[6] = 0;
2490 	cdb[7] = 0;
2491 	cdb[8] = cc->Nslots * 3 + 1;
2492 	cdb[9] = 0;
2493 
2494 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2495 	if (sdata == NULL)
2496 		return;
2497 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2498 
2499 	sdata[0] = SAFTE_WT_DSTAT;
2500 	for (i = 0; i < cc->Nslots; i++) {
2501 		ep = &ssc->ses_objmap[cc->slotoff + i];
2502 		SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2503 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2504 	}
2505 	amt = -(cc->Nslots * 3 + 1);
2506 	ses_runcmd(ssc, cdb, 10, sdata, &amt);
2507 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2508 }
2509 
2510 /*
2511  * This function issues the "PERFORM SLOT OPERATION" command.
2512  */
2513 static int
2514 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2515 {
2516 	int err, amt;
2517 	char *sdata;
2518 	struct scfg *cc = ssc->ses_private;
2519 	static char cdb[10] =
2520 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2521 
2522 	if (cc == NULL)
2523 		return (0);
2524 
2525 	sdata = SES_MALLOC(SAFT_SCRATCH);
2526 	if (sdata == NULL)
2527 		return (ENOMEM);
2528 	MEMZERO(sdata, SAFT_SCRATCH);
2529 
2530 	sdata[0] = SAFTE_WT_SLTOP;
2531 	sdata[1] = slot;
2532 	sdata[2] = opflag;
2533 	SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2534 	amt = -SAFT_SCRATCH;
2535 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2536 	SES_FREE(sdata, SAFT_SCRATCH);
2537 	return (err);
2538 }
2539