xref: /dragonfly/sys/bus/pci/pci.c (revision 19fe1c42)
1 /*
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/pci/pci.c,v 1.141.2.15 2002/04/30 17:48:18 tmm Exp $
27  * $DragonFly: src/sys/bus/pci/pci.c,v 1.58 2008/11/16 18:44:00 swildner Exp $
28  *
29  */
30 
31 #include "opt_bus.h"
32 #include "opt_pci.h"
33 
34 #include "opt_compat_oldpci.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/fcntl.h>
41 #include <sys/conf.h>
42 #include <sys/kernel.h>
43 #include <sys/queue.h>
44 #include <sys/types.h>
45 #include <sys/sysctl.h>
46 #include <sys/buf.h>
47 
48 #include <vm/vm.h>
49 #include <vm/pmap.h>
50 #include <vm/vm_extern.h>
51 
52 #include <sys/bus.h>
53 #include <sys/rman.h>
54 #include <machine/smp.h>
55 #include "pci_cfgreg.h"
56 
57 #include <sys/pciio.h>
58 #include "pcireg.h"
59 #include "pcivar.h"
60 #include "pci_private.h"
61 
62 #include "pcib_if.h"
63 
64 devclass_t	pci_devclass;
65 const char	*pcib_owner;
66 
67 static void		pci_read_capabilities(device_t dev, pcicfgregs *cfg);
68 static int		pcie_slotimpl(const pcicfgregs *);
69 
70 struct pci_quirk {
71 	u_int32_t devid;	/* Vendor/device of the card */
72 	int	type;
73 #define PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
74 	int	arg1;
75 	int	arg2;
76 };
77 
78 struct pci_quirk pci_quirks[] = {
79 	/*
80 	 * The Intel 82371AB and 82443MX has a map register at offset 0x90.
81 	 */
82 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
83 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
84 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
85 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
86 
87 	{ 0 }
88 };
89 
90 /* map register information */
91 #define PCI_MAPMEM	0x01	/* memory map */
92 #define PCI_MAPMEMP	0x02	/* prefetchable memory map */
93 #define PCI_MAPPORT	0x04	/* port map */
94 
95 static STAILQ_HEAD(devlist, pci_devinfo) pci_devq;
96 u_int32_t pci_numdevs = 0;
97 static u_int32_t pci_generation = 0;
98 
99 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "pci parameters");
100 static int pci_do_power_nodriver = 0;
101 TUNABLE_INT("hw.pci.do_power_nodriver", &pci_do_power_nodriver);
102 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RW,
103     &pci_do_power_nodriver, 0,
104   "Place a function into D3 state when no driver attaches to it.  0 means\n\
105 disable.  1 means conservatively place devices into D3 state.  2 means\n\
106 aggressively place devices into D3 state.  3 means put absolutely everything\n\
107 in D3 state.");
108 
109 device_t
110 pci_find_bsf(u_int8_t bus, u_int8_t slot, u_int8_t func)
111 {
112 	struct pci_devinfo *dinfo;
113 
114 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
115 		if ((dinfo->cfg.bus == bus) &&
116 		    (dinfo->cfg.slot == slot) &&
117 		    (dinfo->cfg.func == func)) {
118 			return (dinfo->cfg.dev);
119 		}
120 	}
121 
122 	return (NULL);
123 }
124 
125 device_t
126 pci_find_device(u_int16_t vendor, u_int16_t device)
127 {
128 	struct pci_devinfo *dinfo;
129 
130 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
131 		if ((dinfo->cfg.vendor == vendor) &&
132 		    (dinfo->cfg.device == device)) {
133 			return (dinfo->cfg.dev);
134 		}
135 	}
136 
137 	return (NULL);
138 }
139 
140 int
141 pcie_slot_implemented(device_t dev)
142 {
143 	struct pci_devinfo *dinfo = device_get_ivars(dev);
144 
145 	return pcie_slotimpl(&dinfo->cfg);
146 }
147 
148 void
149 pcie_set_max_readrq(device_t dev, uint16_t rqsize)
150 {
151 	uint8_t expr_ptr;
152 	uint16_t val;
153 
154 	rqsize &= PCIEM_DEVCTL_MAX_READRQ_MASK;
155 	if (rqsize > PCIEM_DEVCTL_MAX_READRQ_4096) {
156 		panic("%s: invalid max read request size 0x%02x\n",
157 		      device_get_nameunit(dev), rqsize);
158 	}
159 
160 	expr_ptr = pci_get_pciecap_ptr(dev);
161 	if (!expr_ptr)
162 		panic("%s: not PCIe device\n", device_get_nameunit(dev));
163 
164 	val = pci_read_config(dev, expr_ptr + PCIER_DEVCTRL, 2);
165 	if ((val & PCIEM_DEVCTL_MAX_READRQ_MASK) != rqsize) {
166 		if (bootverbose)
167 			device_printf(dev, "adjust device control 0x%04x", val);
168 
169 		val &= ~PCIEM_DEVCTL_MAX_READRQ_MASK;
170 		val |= rqsize;
171 		pci_write_config(dev, expr_ptr + PCIER_DEVCTRL, val, 2);
172 
173 		if (bootverbose)
174 			kprintf(" -> 0x%04x\n", val);
175 	}
176 }
177 
178 /* return base address of memory or port map */
179 
180 static u_int32_t
181 pci_mapbase(unsigned mapreg)
182 {
183 	int mask = 0x03;
184 	if ((mapreg & 0x01) == 0)
185 		mask = 0x0f;
186 	return (mapreg & ~mask);
187 }
188 
189 /* return map type of memory or port map */
190 
191 static int
192 pci_maptype(unsigned mapreg)
193 {
194 	static u_int8_t maptype[0x10] = {
195 		PCI_MAPMEM,		PCI_MAPPORT,
196 		PCI_MAPMEM,		0,
197 		PCI_MAPMEM,		PCI_MAPPORT,
198 		0,			0,
199 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
200 		PCI_MAPMEM|PCI_MAPMEMP, 0,
201 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
202 		0,			0,
203 	};
204 
205 	return maptype[mapreg & 0x0f];
206 }
207 
208 /* return log2 of map size decoded for memory or port map */
209 
210 static int
211 pci_mapsize(unsigned testval)
212 {
213 	int ln2size;
214 
215 	testval = pci_mapbase(testval);
216 	ln2size = 0;
217 	if (testval != 0) {
218 		while ((testval & 1) == 0)
219 		{
220 			ln2size++;
221 			testval >>= 1;
222 		}
223 	}
224 	return (ln2size);
225 }
226 
227 /* return log2 of address range supported by map register */
228 
229 static int
230 pci_maprange(unsigned mapreg)
231 {
232 	int ln2range = 0;
233 	switch (mapreg & 0x07) {
234 	case 0x00:
235 	case 0x01:
236 	case 0x05:
237 		ln2range = 32;
238 		break;
239 	case 0x02:
240 		ln2range = 20;
241 		break;
242 	case 0x04:
243 		ln2range = 64;
244 		break;
245 	}
246 	return (ln2range);
247 }
248 
249 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
250 
251 static void
252 pci_fixancient(pcicfgregs *cfg)
253 {
254 	if (cfg->hdrtype != 0)
255 		return;
256 
257 	/* PCI to PCI bridges use header type 1 */
258 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
259 		cfg->hdrtype = 1;
260 }
261 
262 /* read config data specific to header type 1 device (PCI to PCI bridge) */
263 
264 static void *
265 pci_readppb(device_t pcib, int b, int s, int f)
266 {
267 	pcih1cfgregs *p;
268 
269 	p = kmalloc(sizeof (pcih1cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
270 
271 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_1, 2);
272 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_1, 2);
273 
274 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_1, 1);
275 
276 	p->iobase = PCI_PPBIOBASE (PCIB_READ_CONFIG(pcib, b, s, f,
277 						    PCIR_IOBASEH_1, 2),
278 				   PCIB_READ_CONFIG(pcib, b, s, f,
279 				   		    PCIR_IOBASEL_1, 1));
280 	p->iolimit = PCI_PPBIOLIMIT (PCIB_READ_CONFIG(pcib, b, s, f,
281 						      PCIR_IOLIMITH_1, 2),
282 				     PCIB_READ_CONFIG(pcib, b, s, f,
283 				     		      PCIR_IOLIMITL_1, 1));
284 
285 	p->membase = PCI_PPBMEMBASE (0,
286 				     PCIB_READ_CONFIG(pcib, b, s, f,
287 				     		      PCIR_MEMBASE_1, 2));
288 	p->memlimit = PCI_PPBMEMLIMIT (0,
289 				       PCIB_READ_CONFIG(pcib, b, s, f,
290 				       		        PCIR_MEMLIMIT_1, 2));
291 
292 	p->pmembase = PCI_PPBMEMBASE (
293 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEH_1, 4),
294 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEL_1, 2));
295 
296 	p->pmemlimit = PCI_PPBMEMLIMIT (
297 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f,
298 					     PCIR_PMLIMITH_1, 4),
299 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMLIMITL_1, 2));
300 
301 	return (p);
302 }
303 
304 /* read config data specific to header type 2 device (PCI to CardBus bridge) */
305 
306 static void *
307 pci_readpcb(device_t pcib, int b, int s, int f)
308 {
309 	pcih2cfgregs *p;
310 
311 	p = kmalloc(sizeof (pcih2cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
312 
313 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_2, 2);
314 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_2, 2);
315 
316 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_2, 1);
317 
318 	p->membase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE0_2, 4);
319 	p->memlimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT0_2, 4);
320 	p->membase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE1_2, 4);
321 	p->memlimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT1_2, 4);
322 
323 	p->iobase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE0_2, 4);
324 	p->iolimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT0_2, 4);
325 	p->iobase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE1_2, 4);
326 	p->iolimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT1_2, 4);
327 
328 	p->pccardif = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PCCARDIF_2, 4);
329 	return p;
330 }
331 
332 /* extract header type specific config data */
333 
334 static void
335 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
336 {
337 #define REG(n,w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
338 	switch (cfg->hdrtype) {
339 	case 0:
340 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
341 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
342 		cfg->nummaps	    = PCI_MAXMAPS_0;
343 		break;
344 	case 1:
345 		cfg->subvendor      = REG(PCIR_SUBVEND_1, 2);
346 		cfg->subdevice      = REG(PCIR_SUBDEV_1, 2);
347 		cfg->secondarybus   = REG(PCIR_SECBUS_1, 1);
348 		cfg->subordinatebus = REG(PCIR_SUBBUS_1, 1);
349 		cfg->nummaps	    = PCI_MAXMAPS_1;
350 		cfg->hdrspec        = pci_readppb(pcib, b, s, f);
351 		break;
352 	case 2:
353 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
354 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
355 		cfg->secondarybus   = REG(PCIR_SECBUS_2, 1);
356 		cfg->subordinatebus = REG(PCIR_SUBBUS_2, 1);
357 		cfg->nummaps	    = PCI_MAXMAPS_2;
358 		cfg->hdrspec        = pci_readpcb(pcib, b, s, f);
359 		break;
360 	}
361 #undef REG
362 }
363 
364 /* read configuration header into pcicfgrect structure */
365 
366 struct pci_devinfo *
367 pci_read_device(device_t pcib, int b, int s, int f, size_t size)
368 {
369 #define REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
370 
371 	pcicfgregs *cfg = NULL;
372 	struct pci_devinfo *devlist_entry;
373 	struct devlist *devlist_head;
374 
375 	devlist_head = &pci_devq;
376 
377 	devlist_entry = NULL;
378 
379 	if (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_DEVVENDOR, 4) != -1) {
380 
381 		devlist_entry = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
382 
383 		cfg = &devlist_entry->cfg;
384 
385 		cfg->bus		= b;
386 		cfg->slot		= s;
387 		cfg->func		= f;
388 		cfg->vendor		= REG(PCIR_VENDOR, 2);
389 		cfg->device		= REG(PCIR_DEVICE, 2);
390 		cfg->cmdreg		= REG(PCIR_COMMAND, 2);
391 		cfg->statreg		= REG(PCIR_STATUS, 2);
392 		cfg->baseclass		= REG(PCIR_CLASS, 1);
393 		cfg->subclass		= REG(PCIR_SUBCLASS, 1);
394 		cfg->progif		= REG(PCIR_PROGIF, 1);
395 		cfg->revid		= REG(PCIR_REVID, 1);
396 		cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
397 		cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
398 		cfg->lattimer		= REG(PCIR_LATTIMER, 1);
399 		cfg->intpin		= REG(PCIR_INTPIN, 1);
400 		cfg->intline		= REG(PCIR_INTLINE, 1);
401 
402 #ifdef APIC_IO
403 		/*
404 		 * If using the APIC the intpin is probably wrong, since it
405 		 * is often setup by the BIOS with the PIC in mind.
406 		 */
407 		if (cfg->intpin != 0) {
408 			int airq;
409 
410 			airq = pci_apic_irq(cfg->bus, cfg->slot, cfg->intpin);
411 			if (airq >= 0) {
412 				/* PCI specific entry found in MP table */
413 				if (airq != cfg->intline) {
414 					undirect_pci_irq(cfg->intline);
415 					cfg->intline = airq;
416 				}
417 			} else {
418 				/*
419 				 * PCI interrupts might be redirected to the
420 				 * ISA bus according to some MP tables. Use the
421 				 * same methods as used by the ISA devices
422 				 * devices to find the proper IOAPIC int pin.
423 				 */
424 				airq = isa_apic_irq(cfg->intline);
425 				if ((airq >= 0) && (airq != cfg->intline)) {
426 					/* XXX: undirect_pci_irq() ? */
427 					undirect_isa_irq(cfg->intline);
428 					cfg->intline = airq;
429 				}
430 			}
431 		}
432 #endif /* APIC_IO */
433 
434 		cfg->mingnt		= REG(PCIR_MINGNT, 1);
435 		cfg->maxlat		= REG(PCIR_MAXLAT, 1);
436 
437 		cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
438 		cfg->hdrtype		&= ~PCIM_MFDEV;
439 
440 		pci_fixancient(cfg);
441 		pci_hdrtypedata(pcib, b, s, f, cfg);
442 		pci_read_capabilities(pcib, cfg);
443 
444 		STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);
445 
446 		devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
447 		devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
448 		devlist_entry->conf.pc_sel.pc_func = cfg->func;
449 		devlist_entry->conf.pc_hdr = cfg->hdrtype;
450 
451 		devlist_entry->conf.pc_subvendor = cfg->subvendor;
452 		devlist_entry->conf.pc_subdevice = cfg->subdevice;
453 		devlist_entry->conf.pc_vendor = cfg->vendor;
454 		devlist_entry->conf.pc_device = cfg->device;
455 
456 		devlist_entry->conf.pc_class = cfg->baseclass;
457 		devlist_entry->conf.pc_subclass = cfg->subclass;
458 		devlist_entry->conf.pc_progif = cfg->progif;
459 		devlist_entry->conf.pc_revid = cfg->revid;
460 
461 		pci_numdevs++;
462 		pci_generation++;
463 	}
464 	return (devlist_entry);
465 #undef REG
466 }
467 
468 static int
469 pci_fixup_nextptr(int *nextptr0)
470 {
471 	int nextptr = *nextptr0;
472 
473 	/* "Next pointer" is only one byte */
474 	KASSERT(nextptr <= 0xff, ("Illegal next pointer %d\n", nextptr));
475 
476 	if (nextptr & 0x3) {
477 		/*
478 		 * PCI local bus spec 3.0:
479 		 *
480 		 * "... The bottom two bits of all pointers are reserved
481 		 *  and must be implemented as 00b although software must
482 		 *  mask them to allow for future uses of these bits ..."
483 		 */
484 		if (bootverbose) {
485 			kprintf("Illegal PCI extended capability "
486 				"offset, fixup 0x%02x -> 0x%02x\n",
487 				nextptr, nextptr & ~0x3);
488 		}
489 		nextptr &= ~0x3;
490 	}
491 	*nextptr0 = nextptr;
492 
493 	if (nextptr < 0x40) {
494 		if (nextptr != 0) {
495 			kprintf("Illegal PCI extended capability "
496 				"offset 0x%02x", nextptr);
497 		}
498 		return 0;
499 	}
500 	return 1;
501 }
502 
503 static void
504 pci_read_cap_pmgt(device_t pcib, int ptr, pcicfgregs *cfg)
505 {
506 #define REG(n, w)	\
507 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
508 
509 	struct pcicfg_pmgt *pmgt = &cfg->pmgt;
510 
511 	if (pmgt->pp_cap)
512 		return;
513 
514 	pmgt->pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
515 	pmgt->pp_status = ptr + PCIR_POWER_STATUS;
516 	pmgt->pp_pmcsr = ptr + PCIR_POWER_PMCSR;
517 	/*
518 	 * XXX
519 	 * Following way may be used to to test whether
520 	 * 'data' register exists:
521 	 * if 'data_select' register of
522 	 * PCIR_POWER_STATUS(bits[12,9]) is read-only
523 	 * then 'data' register is _not_ implemented.
524 	 */
525 	pmgt->pp_data = 0;
526 
527 #undef REG
528 }
529 
530 static int
531 pcie_slotimpl(const pcicfgregs *cfg)
532 {
533 	const struct pcicfg_expr *expr = &cfg->expr;
534 	uint16_t port_type;
535 
536 	/*
537 	 * Only version 1 can be parsed currently
538 	 */
539 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
540 		return 0;
541 
542 	/*
543 	 * - Slot implemented bit is meaningful iff current port is
544 	 *   root port or down stream port.
545 	 * - Testing for root port or down stream port is meanningful
546 	 *   iff PCI configure has type 1 header.
547 	 */
548 
549 	if (cfg->hdrtype != 1)
550 		return 0;
551 
552 	port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
553 	if (port_type != PCIE_ROOT_PORT && port_type != PCIE_DOWN_STREAM_PORT)
554 		return 0;
555 
556 	if (!(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
557 		return 0;
558 
559 	return 1;
560 }
561 
562 static void
563 pci_read_cap_expr(device_t pcib, int ptr, pcicfgregs *cfg)
564 {
565 #define REG(n, w)	\
566 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
567 
568 	struct pcicfg_expr *expr = &cfg->expr;
569 
570 	expr->expr_ptr = ptr;
571 	expr->expr_cap = REG(ptr + PCIER_CAPABILITY, 2);
572 
573 	/*
574 	 * Only version 1 can be parsed currently
575 	 */
576 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
577 		return;
578 
579 	/*
580 	 * Read slot capabilities.  Slot capabilities exists iff
581 	 * current port's slot is implemented
582 	 */
583 	if (pcie_slotimpl(cfg))
584 		expr->expr_slotcap = REG(ptr + PCIER_SLOTCAP, 4);
585 
586 #undef REG
587 }
588 
589 static void
590 pci_read_capabilities(device_t pcib, pcicfgregs *cfg)
591 {
592 #define REG(n, w)	\
593 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
594 
595 	int nextptr, ptrptr;
596 
597 	if ((REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) == 0) {
598 		/* No capabilities */
599 		return;
600 	}
601 
602 	switch (cfg->hdrtype) {
603 	case 0:
604 	case 1:
605 		ptrptr = PCIR_CAP_PTR;
606 		break;
607 	case 2:
608 		ptrptr = PCIR_CAP_PTR_2;
609 		break;
610 	default:
611 		return;		/* No capabilities support */
612 	}
613 	nextptr = REG(ptrptr, 1);
614 
615 	/*
616 	 * Read capability entries.
617 	 */
618 	while (pci_fixup_nextptr(&nextptr)) {
619 		int ptr = nextptr;
620 
621 		/* Process this entry */
622 		switch (REG(ptr + PCICAP_ID, 1)) {
623 		case PCIY_PMG:		/* PCI power management */
624 			pci_read_cap_pmgt(pcib, ptr, cfg);
625 			break;
626 		case PCIY_PCIX:		/* PCI-X */
627 			cfg->pcixcap_ptr = ptr;
628 			break;
629 		case PCIY_EXPRESS:	/* PCI Express */
630 			pci_read_cap_expr(pcib, ptr, cfg);
631 			break;
632 		case PCIY_VPD:		/* Vital Product Data */
633 			cfg->vpdcap_ptr = ptr;
634 			break;
635 		default:
636 			break;
637 		}
638 
639 		/* Find the next entry */
640 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
641 	}
642 
643 #undef REG
644 }
645 
646 /* free pcicfgregs structure and all depending data structures */
647 
648 int
649 pci_freecfg(struct pci_devinfo *dinfo)
650 {
651 	struct devlist *devlist_head;
652 
653 	devlist_head = &pci_devq;
654 
655 	if (dinfo->cfg.hdrspec != NULL)
656 		kfree(dinfo->cfg.hdrspec, M_DEVBUF);
657 	/* XXX this hasn't been tested */
658 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
659 	kfree(dinfo, M_DEVBUF);
660 
661 	/* increment the generation count */
662 	pci_generation++;
663 
664 	/* we're losing one device */
665 	pci_numdevs--;
666 	return (0);
667 }
668 
669 
670 /*
671  * PCI power manangement
672  */
673 int
674 pci_set_powerstate_method(device_t dev, device_t child, int state)
675 {
676 	struct pci_devinfo *dinfo = device_get_ivars(child);
677 	pcicfgregs *cfg = &dinfo->cfg;
678 	uint16_t status;
679 	int result, oldstate, highest, delay;
680 
681 	if (cfg->pmgt.pp_cap == 0)
682 		return (EOPNOTSUPP);
683 
684 	/*
685 	 * Optimize a no state change request away.  While it would be OK to
686 	 * write to the hardware in theory, some devices have shown odd
687 	 * behavior when going from D3 -> D3.
688 	 */
689 	oldstate = pci_get_powerstate(child);
690 	if (oldstate == state)
691 		return (0);
692 
693 	/*
694 	 * The PCI power management specification states that after a state
695 	 * transition between PCI power states, system software must
696 	 * guarantee a minimal delay before the function accesses the device.
697 	 * Compute the worst case delay that we need to guarantee before we
698 	 * access the device.  Many devices will be responsive much more
699 	 * quickly than this delay, but there are some that don't respond
700 	 * instantly to state changes.  Transitions to/from D3 state require
701 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
702 	 * is done below with DELAY rather than a sleeper function because
703 	 * this function can be called from contexts where we cannot sleep.
704 	 */
705 	highest = (oldstate > state) ? oldstate : state;
706 	if (highest == PCI_POWERSTATE_D3)
707 	    delay = 10000;
708 	else if (highest == PCI_POWERSTATE_D2)
709 	    delay = 200;
710 	else
711 	    delay = 0;
712 	status = PCI_READ_CONFIG(dev, child, cfg->pmgt.pp_status, 2)
713 	    & ~PCIM_PSTAT_DMASK;
714 	result = 0;
715 	switch (state) {
716 	case PCI_POWERSTATE_D0:
717 		status |= PCIM_PSTAT_D0;
718 		break;
719 	case PCI_POWERSTATE_D1:
720 		if ((cfg->pmgt.pp_cap & PCIM_PCAP_D1SUPP) == 0)
721 			return (EOPNOTSUPP);
722 		status |= PCIM_PSTAT_D1;
723 		break;
724 	case PCI_POWERSTATE_D2:
725 		if ((cfg->pmgt.pp_cap & PCIM_PCAP_D2SUPP) == 0)
726 			return (EOPNOTSUPP);
727 		status |= PCIM_PSTAT_D2;
728 		break;
729 	case PCI_POWERSTATE_D3:
730 		status |= PCIM_PSTAT_D3;
731 		break;
732 	default:
733 		return (EINVAL);
734 	}
735 
736 	if (bootverbose)
737 		kprintf(
738 		    "pci%d:%d:%d: Transition from D%d to D%d\n",
739 		    dinfo->cfg.bus, dinfo->cfg.slot, dinfo->cfg.func,
740 		    oldstate, state);
741 
742 	PCI_WRITE_CONFIG(dev, child, cfg->pmgt.pp_status, status, 2);
743 	if (delay)
744 		DELAY(delay);
745 	return (0);
746 }
747 
748 int
749 pci_get_powerstate_method(device_t dev, device_t child)
750 {
751 	struct pci_devinfo *dinfo = device_get_ivars(child);
752 	pcicfgregs *cfg = &dinfo->cfg;
753 	uint16_t status;
754 	int result;
755 
756 	if (cfg->pmgt.pp_cap != 0) {
757 		status = PCI_READ_CONFIG(dev, child, cfg->pmgt.pp_status, 2);
758 		switch (status & PCIM_PSTAT_DMASK) {
759 		case PCIM_PSTAT_D0:
760 			result = PCI_POWERSTATE_D0;
761 			break;
762 		case PCIM_PSTAT_D1:
763 			result = PCI_POWERSTATE_D1;
764 			break;
765 		case PCIM_PSTAT_D2:
766 			result = PCI_POWERSTATE_D2;
767 			break;
768 		case PCIM_PSTAT_D3:
769 			result = PCI_POWERSTATE_D3;
770 			break;
771 		default:
772 			result = PCI_POWERSTATE_UNKNOWN;
773 			break;
774 		}
775 	} else {
776 		/* No support, device is always at D0 */
777 		result = PCI_POWERSTATE_D0;
778 	}
779 	return (result);
780 }
781 
782 /*
783  * Some convenience functions for PCI device drivers.
784  */
785 
786 static __inline void
787 pci_set_command_bit(device_t dev, device_t child, u_int16_t bit)
788 {
789     u_int16_t	command;
790 
791     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
792     command |= bit;
793     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
794 }
795 
796 static __inline void
797 pci_clear_command_bit(device_t dev, device_t child, u_int16_t bit)
798 {
799     u_int16_t	command;
800 
801     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
802     command &= ~bit;
803     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
804 }
805 
806 int
807 pci_enable_busmaster_method(device_t dev, device_t child)
808 {
809     pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
810     return(0);
811 }
812 
813 int
814 pci_disable_busmaster_method(device_t dev, device_t child)
815 {
816     pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
817     return(0);
818 }
819 
820 int
821 pci_enable_io_method(device_t dev, device_t child, int space)
822 {
823     uint16_t command;
824     uint16_t bit;
825     char *error;
826 
827     bit = 0;
828     error = NULL;
829 
830     switch(space) {
831     case SYS_RES_IOPORT:
832 	bit = PCIM_CMD_PORTEN;
833 	error = "port";
834 	break;
835     case SYS_RES_MEMORY:
836 	bit = PCIM_CMD_MEMEN;
837 	error = "memory";
838 	break;
839     default:
840 	return(EINVAL);
841     }
842     pci_set_command_bit(dev, child, bit);
843     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
844     if (command & bit)
845 	return(0);
846     device_printf(child, "failed to enable %s mapping!\n", error);
847     return(ENXIO);
848 }
849 
850 int
851 pci_disable_io_method(device_t dev, device_t child, int space)
852 {
853     uint16_t command;
854     uint16_t bit;
855     char *error;
856 
857     bit = 0;
858     error = NULL;
859 
860     switch(space) {
861     case SYS_RES_IOPORT:
862 	bit = PCIM_CMD_PORTEN;
863 	error = "port";
864 	break;
865     case SYS_RES_MEMORY:
866 	bit = PCIM_CMD_MEMEN;
867 	error = "memory";
868 	break;
869     default:
870 	return (EINVAL);
871     }
872     pci_clear_command_bit(dev, child, bit);
873     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
874     if (command & bit) {
875 	device_printf(child, "failed to disable %s mapping!\n", error);
876 	return (ENXIO);
877     }
878     return (0);
879 }
880 
881 /*
882  * This is the user interface to PCI configuration space.
883  */
884 
885 static int
886 pci_open(struct dev_open_args *ap)
887 {
888 	if ((ap->a_oflags & FWRITE) && securelevel > 0) {
889 		return EPERM;
890 	}
891 	return 0;
892 }
893 
894 static int
895 pci_close(struct dev_close_args *ap)
896 {
897 	return 0;
898 }
899 
900 /*
901  * Match a single pci_conf structure against an array of pci_match_conf
902  * structures.  The first argument, 'matches', is an array of num_matches
903  * pci_match_conf structures.  match_buf is a pointer to the pci_conf
904  * structure that will be compared to every entry in the matches array.
905  * This function returns 1 on failure, 0 on success.
906  */
907 static int
908 pci_conf_match(struct pci_match_conf *matches, int num_matches,
909 	       struct pci_conf *match_buf)
910 {
911 	int i;
912 
913 	if ((matches == NULL) || (match_buf == NULL) || (num_matches <= 0))
914 		return(1);
915 
916 	for (i = 0; i < num_matches; i++) {
917 		/*
918 		 * I'm not sure why someone would do this...but...
919 		 */
920 		if (matches[i].flags == PCI_GETCONF_NO_MATCH)
921 			continue;
922 
923 		/*
924 		 * Look at each of the match flags.  If it's set, do the
925 		 * comparison.  If the comparison fails, we don't have a
926 		 * match, go on to the next item if there is one.
927 		 */
928 		if (((matches[i].flags & PCI_GETCONF_MATCH_BUS) != 0)
929 		 && (match_buf->pc_sel.pc_bus != matches[i].pc_sel.pc_bus))
930 			continue;
931 
932 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEV) != 0)
933 		 && (match_buf->pc_sel.pc_dev != matches[i].pc_sel.pc_dev))
934 			continue;
935 
936 		if (((matches[i].flags & PCI_GETCONF_MATCH_FUNC) != 0)
937 		 && (match_buf->pc_sel.pc_func != matches[i].pc_sel.pc_func))
938 			continue;
939 
940 		if (((matches[i].flags & PCI_GETCONF_MATCH_VENDOR) != 0)
941 		 && (match_buf->pc_vendor != matches[i].pc_vendor))
942 			continue;
943 
944 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEVICE) != 0)
945 		 && (match_buf->pc_device != matches[i].pc_device))
946 			continue;
947 
948 		if (((matches[i].flags & PCI_GETCONF_MATCH_CLASS) != 0)
949 		 && (match_buf->pc_class != matches[i].pc_class))
950 			continue;
951 
952 		if (((matches[i].flags & PCI_GETCONF_MATCH_UNIT) != 0)
953 		 && (match_buf->pd_unit != matches[i].pd_unit))
954 			continue;
955 
956 		if (((matches[i].flags & PCI_GETCONF_MATCH_NAME) != 0)
957 		 && (strncmp(matches[i].pd_name, match_buf->pd_name,
958 			     sizeof(match_buf->pd_name)) != 0))
959 			continue;
960 
961 		return(0);
962 	}
963 
964 	return(1);
965 }
966 
967 /*
968  * Locate the parent of a PCI device by scanning the PCI devlist
969  * and return the entry for the parent.
970  * For devices on PCI Bus 0 (the host bus), this is the PCI Host.
971  * For devices on secondary PCI busses, this is that bus' PCI-PCI Bridge.
972  */
973 
974 pcicfgregs *
975 pci_devlist_get_parent(pcicfgregs *cfg)
976 {
977 	struct devlist *devlist_head;
978 	struct pci_devinfo *dinfo;
979 	pcicfgregs *bridge_cfg;
980 	int i;
981 
982 	dinfo = STAILQ_FIRST(devlist_head = &pci_devq);
983 
984 	/* If the device is on PCI bus 0, look for the host */
985 	if (cfg->bus == 0) {
986 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
987 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
988 			bridge_cfg = &dinfo->cfg;
989 			if (bridge_cfg->baseclass == PCIC_BRIDGE
990 				&& bridge_cfg->subclass == PCIS_BRIDGE_HOST
991 		    		&& bridge_cfg->bus == cfg->bus) {
992 				return bridge_cfg;
993 			}
994 		}
995 	}
996 
997 	/* If the device is not on PCI bus 0, look for the PCI-PCI bridge */
998 	if (cfg->bus > 0) {
999 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
1000 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
1001 			bridge_cfg = &dinfo->cfg;
1002 			if (bridge_cfg->baseclass == PCIC_BRIDGE
1003 				&& bridge_cfg->subclass == PCIS_BRIDGE_PCI
1004 				&& bridge_cfg->secondarybus == cfg->bus) {
1005 				return bridge_cfg;
1006 			}
1007 		}
1008 	}
1009 
1010 	return NULL;
1011 }
1012 
1013 static int
1014 pci_ioctl(struct dev_ioctl_args *ap)
1015 {
1016 	device_t pci, pcib;
1017 	struct pci_io *io;
1018 	const char *name;
1019 	int error;
1020 
1021 	if (!(ap->a_fflag & FWRITE))
1022 		return EPERM;
1023 
1024 	switch(ap->a_cmd) {
1025 	case PCIOCGETCONF:
1026 		{
1027 		struct pci_devinfo *dinfo;
1028 		struct pci_conf_io *cio;
1029 		struct devlist *devlist_head;
1030 		struct pci_match_conf *pattern_buf;
1031 		int num_patterns;
1032 		size_t iolen;
1033 		int ionum, i;
1034 
1035 		cio = (struct pci_conf_io *)ap->a_data;
1036 
1037 		num_patterns = 0;
1038 		dinfo = NULL;
1039 
1040 		/*
1041 		 * Hopefully the user won't pass in a null pointer, but it
1042 		 * can't hurt to check.
1043 		 */
1044 		if (cio == NULL) {
1045 			error = EINVAL;
1046 			break;
1047 		}
1048 
1049 		/*
1050 		 * If the user specified an offset into the device list,
1051 		 * but the list has changed since they last called this
1052 		 * ioctl, tell them that the list has changed.  They will
1053 		 * have to get the list from the beginning.
1054 		 */
1055 		if ((cio->offset != 0)
1056 		 && (cio->generation != pci_generation)){
1057 			cio->num_matches = 0;
1058 			cio->status = PCI_GETCONF_LIST_CHANGED;
1059 			error = 0;
1060 			break;
1061 		}
1062 
1063 		/*
1064 		 * Check to see whether the user has asked for an offset
1065 		 * past the end of our list.
1066 		 */
1067 		if (cio->offset >= pci_numdevs) {
1068 			cio->num_matches = 0;
1069 			cio->status = PCI_GETCONF_LAST_DEVICE;
1070 			error = 0;
1071 			break;
1072 		}
1073 
1074 		/* get the head of the device queue */
1075 		devlist_head = &pci_devq;
1076 
1077 		/*
1078 		 * Determine how much room we have for pci_conf structures.
1079 		 * Round the user's buffer size down to the nearest
1080 		 * multiple of sizeof(struct pci_conf) in case the user
1081 		 * didn't specify a multiple of that size.
1082 		 */
1083 		iolen = min(cio->match_buf_len -
1084 			    (cio->match_buf_len % sizeof(struct pci_conf)),
1085 			    pci_numdevs * sizeof(struct pci_conf));
1086 
1087 		/*
1088 		 * Since we know that iolen is a multiple of the size of
1089 		 * the pciconf union, it's okay to do this.
1090 		 */
1091 		ionum = iolen / sizeof(struct pci_conf);
1092 
1093 		/*
1094 		 * If this test is true, the user wants the pci_conf
1095 		 * structures returned to match the supplied entries.
1096 		 */
1097 		if ((cio->num_patterns > 0)
1098 		 && (cio->pat_buf_len > 0)) {
1099 			/*
1100 			 * pat_buf_len needs to be:
1101 			 * num_patterns * sizeof(struct pci_match_conf)
1102 			 * While it is certainly possible the user just
1103 			 * allocated a large buffer, but set the number of
1104 			 * matches correctly, it is far more likely that
1105 			 * their kernel doesn't match the userland utility
1106 			 * they're using.  It's also possible that the user
1107 			 * forgot to initialize some variables.  Yes, this
1108 			 * may be overly picky, but I hazard to guess that
1109 			 * it's far more likely to just catch folks that
1110 			 * updated their kernel but not their userland.
1111 			 */
1112 			if ((cio->num_patterns *
1113 			    sizeof(struct pci_match_conf)) != cio->pat_buf_len){
1114 				/* The user made a mistake, return an error*/
1115 				cio->status = PCI_GETCONF_ERROR;
1116 				kprintf("pci_ioctl: pat_buf_len %d != "
1117 				       "num_patterns (%d) * sizeof(struct "
1118 				       "pci_match_conf) (%d)\npci_ioctl: "
1119 				       "pat_buf_len should be = %d\n",
1120 				       cio->pat_buf_len, cio->num_patterns,
1121 				       (int)sizeof(struct pci_match_conf),
1122 				       (int)sizeof(struct pci_match_conf) *
1123 				       cio->num_patterns);
1124 				kprintf("pci_ioctl: do your headers match your "
1125 				       "kernel?\n");
1126 				cio->num_matches = 0;
1127 				error = EINVAL;
1128 				break;
1129 			}
1130 
1131 			/*
1132 			 * Check the user's buffer to make sure it's readable.
1133 			 */
1134 			if (!useracc((caddr_t)cio->patterns,
1135 				    cio->pat_buf_len, VM_PROT_READ)) {
1136 				kprintf("pci_ioctl: pattern buffer %p, "
1137 				       "length %u isn't user accessible for"
1138 				       " READ\n", cio->patterns,
1139 				       cio->pat_buf_len);
1140 				error = EACCES;
1141 				break;
1142 			}
1143 			/*
1144 			 * Allocate a buffer to hold the patterns.
1145 			 */
1146 			pattern_buf = kmalloc(cio->pat_buf_len, M_TEMP,
1147 					     M_WAITOK);
1148 			error = copyin(cio->patterns, pattern_buf,
1149 				       cio->pat_buf_len);
1150 			if (error != 0)
1151 				break;
1152 			num_patterns = cio->num_patterns;
1153 
1154 		} else if ((cio->num_patterns > 0)
1155 			|| (cio->pat_buf_len > 0)) {
1156 			/*
1157 			 * The user made a mistake, spit out an error.
1158 			 */
1159 			cio->status = PCI_GETCONF_ERROR;
1160 			cio->num_matches = 0;
1161 			kprintf("pci_ioctl: invalid GETCONF arguments\n");
1162 			error = EINVAL;
1163 			break;
1164 		} else
1165 			pattern_buf = NULL;
1166 
1167 		/*
1168 		 * Make sure we can write to the match buffer.
1169 		 */
1170 		if (!useracc((caddr_t)cio->matches,
1171 			     cio->match_buf_len, VM_PROT_WRITE)) {
1172 			kprintf("pci_ioctl: match buffer %p, length %u "
1173 			       "isn't user accessible for WRITE\n",
1174 			       cio->matches, cio->match_buf_len);
1175 			error = EACCES;
1176 			break;
1177 		}
1178 
1179 		/*
1180 		 * Go through the list of devices and copy out the devices
1181 		 * that match the user's criteria.
1182 		 */
1183 		for (cio->num_matches = 0, error = 0, i = 0,
1184 		     dinfo = STAILQ_FIRST(devlist_head);
1185 		     (dinfo != NULL) && (cio->num_matches < ionum)
1186 		     && (error == 0) && (i < pci_numdevs);
1187 		     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
1188 
1189 			if (i < cio->offset)
1190 				continue;
1191 
1192 			/* Populate pd_name and pd_unit */
1193 			name = NULL;
1194 			if (dinfo->cfg.dev && dinfo->conf.pd_name[0] == '\0')
1195 				name = device_get_name(dinfo->cfg.dev);
1196 			if (name) {
1197 				strncpy(dinfo->conf.pd_name, name,
1198 					sizeof(dinfo->conf.pd_name));
1199 				dinfo->conf.pd_name[PCI_MAXNAMELEN] = 0;
1200 				dinfo->conf.pd_unit =
1201 					device_get_unit(dinfo->cfg.dev);
1202 			}
1203 
1204 			if ((pattern_buf == NULL) ||
1205 			    (pci_conf_match(pattern_buf, num_patterns,
1206 					    &dinfo->conf) == 0)) {
1207 
1208 				/*
1209 				 * If we've filled up the user's buffer,
1210 				 * break out at this point.  Since we've
1211 				 * got a match here, we'll pick right back
1212 				 * up at the matching entry.  We can also
1213 				 * tell the user that there are more matches
1214 				 * left.
1215 				 */
1216 				if (cio->num_matches >= ionum)
1217 					break;
1218 
1219 				error = copyout(&dinfo->conf,
1220 					        &cio->matches[cio->num_matches],
1221 						sizeof(struct pci_conf));
1222 				cio->num_matches++;
1223 			}
1224 		}
1225 
1226 		/*
1227 		 * Set the pointer into the list, so if the user is getting
1228 		 * n records at a time, where n < pci_numdevs,
1229 		 */
1230 		cio->offset = i;
1231 
1232 		/*
1233 		 * Set the generation, the user will need this if they make
1234 		 * another ioctl call with offset != 0.
1235 		 */
1236 		cio->generation = pci_generation;
1237 
1238 		/*
1239 		 * If this is the last device, inform the user so he won't
1240 		 * bother asking for more devices.  If dinfo isn't NULL, we
1241 		 * know that there are more matches in the list because of
1242 		 * the way the traversal is done.
1243 		 */
1244 		if (dinfo == NULL)
1245 			cio->status = PCI_GETCONF_LAST_DEVICE;
1246 		else
1247 			cio->status = PCI_GETCONF_MORE_DEVS;
1248 
1249 		if (pattern_buf != NULL)
1250 			kfree(pattern_buf, M_TEMP);
1251 
1252 		break;
1253 		}
1254 	case PCIOCREAD:
1255 		io = (struct pci_io *)ap->a_data;
1256 		switch(io->pi_width) {
1257 		case 4:
1258 		case 2:
1259 		case 1:
1260 			/*
1261 			 * Assume that the user-level bus number is
1262 			 * actually the pciN instance number. We map
1263 			 * from that to the real pcib+bus combination.
1264 			 */
1265 			pci = devclass_get_device(pci_devclass,
1266 						  io->pi_sel.pc_bus);
1267 			if (pci) {
1268 				/*
1269 				 * pci is the pci device and may contain
1270 				 * several children (for each function code).
1271 				 * The governing pci bus is the parent to
1272 				 * the pci device.
1273 				 */
1274 				int b;
1275 
1276 				pcib = device_get_parent(pci);
1277 				b = pcib_get_bus(pcib);
1278 				io->pi_data =
1279 					PCIB_READ_CONFIG(pcib,
1280 							 b,
1281 							 io->pi_sel.pc_dev,
1282 							 io->pi_sel.pc_func,
1283 							 io->pi_reg,
1284 							 io->pi_width);
1285 				error = 0;
1286 			} else {
1287 				error = ENODEV;
1288 			}
1289 			break;
1290 		default:
1291 			error = ENODEV;
1292 			break;
1293 		}
1294 		break;
1295 
1296 	case PCIOCWRITE:
1297 		io = (struct pci_io *)ap->a_data;
1298 		switch(io->pi_width) {
1299 		case 4:
1300 		case 2:
1301 		case 1:
1302 			/*
1303 			 * Assume that the user-level bus number is
1304 			 * actually the pciN instance number. We map
1305 			 * from that to the real pcib+bus combination.
1306 			 */
1307 			pci = devclass_get_device(pci_devclass,
1308 						  io->pi_sel.pc_bus);
1309 			if (pci) {
1310 				/*
1311 				 * pci is the pci device and may contain
1312 				 * several children (for each function code).
1313 				 * The governing pci bus is the parent to
1314 				 * the pci device.
1315 				 */
1316 				int b;
1317 
1318 				pcib = device_get_parent(pci);
1319 				b = pcib_get_bus(pcib);
1320 				PCIB_WRITE_CONFIG(pcib,
1321 						  b,
1322 						  io->pi_sel.pc_dev,
1323 						  io->pi_sel.pc_func,
1324 						  io->pi_reg,
1325 						  io->pi_data,
1326 						  io->pi_width);
1327 				error = 0;
1328 			} else {
1329 				error = ENODEV;
1330 			}
1331 			break;
1332 		default:
1333 			error = ENODEV;
1334 			break;
1335 		}
1336 		break;
1337 
1338 	default:
1339 		error = ENOTTY;
1340 		break;
1341 	}
1342 
1343 	return (error);
1344 }
1345 
1346 #define	PCI_CDEV	78
1347 
1348 static struct dev_ops pcic_ops = {
1349 	{ "pci", PCI_CDEV, 0 },
1350 	.d_open =	pci_open,
1351 	.d_close =	pci_close,
1352 	.d_ioctl =	pci_ioctl,
1353 };
1354 
1355 #include "pci_if.h"
1356 
1357 /*
1358  * New style pci driver.  Parent device is either a pci-host-bridge or a
1359  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
1360  */
1361 const char *
1362 pci_class_to_string(int baseclass)
1363 {
1364 	const char *name;
1365 
1366 	switch(baseclass) {
1367 	case PCIC_OLD:
1368 		name = "OLD";
1369 		break;
1370 	case PCIC_STORAGE:
1371 		name = "STORAGE";
1372 		break;
1373 	case PCIC_NETWORK:
1374 		name = "NETWORK";
1375 		break;
1376 	case PCIC_DISPLAY:
1377 		name = "DISPLAY";
1378 		break;
1379 	case PCIC_MULTIMEDIA:
1380 		name = "MULTIMEDIA";
1381 		break;
1382 	case PCIC_MEMORY:
1383 		name = "MEMORY";
1384 		break;
1385 	case PCIC_BRIDGE:
1386 		name = "BRIDGE";
1387 		break;
1388 	case PCIC_SIMPLECOMM:
1389 		name = "SIMPLECOMM";
1390 		break;
1391 	case PCIC_BASEPERIPH:
1392 		name = "BASEPERIPH";
1393 		break;
1394 	case PCIC_INPUTDEV:
1395 		name = "INPUTDEV";
1396 		break;
1397 	case PCIC_DOCKING:
1398 		name = "DOCKING";
1399 		break;
1400 	case PCIC_PROCESSOR:
1401 		name = "PROCESSOR";
1402 		break;
1403 	case PCIC_SERIALBUS:
1404 		name = "SERIALBUS";
1405 		break;
1406 	case PCIC_WIRELESS:
1407 		name = "WIRELESS";
1408 		break;
1409 	case PCIC_I2O:
1410 		name = "I20";
1411 		break;
1412 	case PCIC_SATELLITE:
1413 		name = "SATELLITE";
1414 		break;
1415 	case PCIC_CRYPTO:
1416 		name = "CRYPTO";
1417 		break;
1418 	case PCIC_SIGPROC:
1419 		name = "SIGPROC";
1420 		break;
1421 	case PCIC_OTHER:
1422 		name = "OTHER";
1423 		break;
1424 	default:
1425 		name = "?";
1426 		break;
1427 	}
1428 	return(name);
1429 }
1430 
1431 static void
1432 pci_print_verbose_expr(const pcicfgregs *cfg)
1433 {
1434 	const struct pcicfg_expr *expr = &cfg->expr;
1435 	const char *port_name;
1436 	uint16_t port_type;
1437 
1438 	if (!bootverbose)
1439 		return;
1440 
1441 	if (expr->expr_ptr == 0) /* No PCI Express capability */
1442 		return;
1443 
1444 	kprintf("\tPCI Express ver.%d cap=0x%04x",
1445 		expr->expr_cap & PCIEM_CAP_VER_MASK, expr->expr_cap);
1446 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
1447 		goto back;
1448 
1449 	port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
1450 
1451 	switch (port_type) {
1452 	case PCIE_END_POINT:
1453 		port_name = "DEVICE";
1454 		break;
1455 	case PCIE_LEG_END_POINT:
1456 		port_name = "LEGDEV";
1457 		break;
1458 	case PCIE_ROOT_PORT:
1459 		port_name = "ROOT";
1460 		break;
1461 	case PCIE_UP_STREAM_PORT:
1462 		port_name = "UPSTREAM";
1463 		break;
1464 	case PCIE_DOWN_STREAM_PORT:
1465 		port_name = "DOWNSTRM";
1466 		break;
1467 	case PCIE_PCIE2PCI_BRIDGE:
1468 		port_name = "PCIE2PCI";
1469 		break;
1470 	case PCIE_PCI2PCIE_BRIDGE:
1471 		port_name = "PCI2PCIE";
1472 		break;
1473 	default:
1474 		port_name = NULL;
1475 		break;
1476 	}
1477 	if ((port_type == PCIE_ROOT_PORT ||
1478 	     port_type == PCIE_DOWN_STREAM_PORT) &&
1479 	    !(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
1480 		port_name = NULL;
1481 	if (port_name != NULL)
1482 		kprintf("[%s]", port_name);
1483 
1484 	if (pcie_slotimpl(cfg)) {
1485 		kprintf(", slotcap=0x%08x", expr->expr_slotcap);
1486 		if (expr->expr_slotcap & PCIEM_SLTCAP_HP_CAP)
1487 			kprintf("[HOTPLUG]");
1488 	}
1489 back:
1490 	kprintf("\n");
1491 }
1492 
1493 void
1494 pci_print_verbose(struct pci_devinfo *dinfo)
1495 {
1496 	if (bootverbose) {
1497 		pcicfgregs *cfg = &dinfo->cfg;
1498 
1499 		kprintf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
1500 		       cfg->vendor, cfg->device, cfg->revid);
1501 		kprintf("\tbus=%d, slot=%d, func=%d\n",
1502 		       cfg->bus, cfg->slot, cfg->func);
1503 		kprintf("\tclass=[%s]%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
1504 		       pci_class_to_string(cfg->baseclass),
1505 		       cfg->baseclass, cfg->subclass, cfg->progif,
1506 		       cfg->hdrtype, cfg->mfdev);
1507 		kprintf("\tsubordinatebus=%x \tsecondarybus=%x\n",
1508 		       cfg->subordinatebus, cfg->secondarybus);
1509 #ifdef PCI_DEBUG
1510 		kprintf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
1511 		       cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
1512 		kprintf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
1513 		       cfg->lattimer, cfg->lattimer * 30,
1514 		       cfg->mingnt, cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
1515 #endif /* PCI_DEBUG */
1516 		if (cfg->intpin > 0)
1517 			kprintf("\tintpin=%c, irq=%d\n", cfg->intpin +'a' -1, cfg->intline);
1518 
1519 		pci_print_verbose_expr(cfg);
1520 	}
1521 }
1522 
1523 static int
1524 pci_porten(device_t pcib, int b, int s, int f)
1525 {
1526 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1527 		& PCIM_CMD_PORTEN) != 0;
1528 }
1529 
1530 static int
1531 pci_memen(device_t pcib, int b, int s, int f)
1532 {
1533 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1534 		& PCIM_CMD_MEMEN) != 0;
1535 }
1536 
1537 /*
1538  * Add a resource based on a pci map register. Return 1 if the map
1539  * register is a 32bit map register or 2 if it is a 64bit register.
1540  */
1541 static int
1542 pci_add_map(device_t pcib, int b, int s, int f, int reg,
1543 	    struct resource_list *rl)
1544 {
1545 	u_int32_t map;
1546 	u_int64_t base;
1547 	u_int8_t ln2size;
1548 	u_int8_t ln2range;
1549 	u_int32_t testval;
1550 
1551 
1552 #ifdef PCI_ENABLE_IO_MODES
1553 	u_int16_t cmd;
1554 #endif
1555 	int type;
1556 
1557 	map = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1558 
1559 	if (map == 0 || map == 0xffffffff)
1560 		return 1; /* skip invalid entry */
1561 
1562 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, 0xffffffff, 4);
1563 	testval = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1564 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, map, 4);
1565 
1566 	base = pci_mapbase(map);
1567 	if (pci_maptype(map) & PCI_MAPMEM)
1568 		type = SYS_RES_MEMORY;
1569 	else
1570 		type = SYS_RES_IOPORT;
1571 	ln2size = pci_mapsize(testval);
1572 	ln2range = pci_maprange(testval);
1573 	if (ln2range == 64) {
1574 		/* Read the other half of a 64bit map register */
1575 		base |= (u_int64_t) PCIB_READ_CONFIG(pcib, b, s, f, reg+4, 4);
1576 	}
1577 
1578 	/*
1579 	 * This code theoretically does the right thing, but has
1580 	 * undesirable side effects in some cases where
1581 	 * peripherals respond oddly to having these bits
1582 	 * enabled.  Leave them alone by default.
1583 	 */
1584 #ifdef PCI_ENABLE_IO_MODES
1585 	if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f)) {
1586 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1587 		cmd |= PCIM_CMD_PORTEN;
1588 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1589 	}
1590 	if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f)) {
1591 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1592 		cmd |= PCIM_CMD_MEMEN;
1593 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1594 	}
1595 #else
1596         if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
1597                 return 1;
1598         if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
1599 		return 1;
1600 #endif
1601 
1602 	resource_list_add(rl, type, reg,
1603 			  base, base + (1 << ln2size) - 1,
1604 			  (1 << ln2size));
1605 
1606 	if (bootverbose) {
1607 		kprintf("\tmap[%02x]: type %x, range %2d, base %08x, size %2d\n",
1608 		       reg, pci_maptype(base), ln2range,
1609 		       (unsigned int) base, ln2size);
1610 	}
1611 
1612 	return (ln2range == 64) ? 2 : 1;
1613 }
1614 
1615 #ifdef PCI_MAP_FIXUP
1616 /*
1617  * For ATA devices we need to decide early on what addressing mode to use.
1618  * Legacy demands that the primary and secondary ATA ports sits on the
1619  * same addresses that old ISA hardware did. This dictates that we use
1620  * those addresses and ignore the BARs if we cannot set PCI native
1621  * addressing mode.
1622  */
1623 static void
1624 pci_ata_maps(device_t pcib, device_t bus, device_t dev, int b, int s, int f,
1625 	     struct resource_list *rl)
1626 {
1627 	int rid, type, progif;
1628 #if 0
1629 	/* if this device supports PCI native addressing use it */
1630 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1631 	if ((progif &0x8a) == 0x8a) {
1632 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
1633 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
1634 			kprintf("Trying ATA native PCI addressing mode\n");
1635 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
1636 		}
1637 	}
1638 #endif
1639 	/*
1640 	 * Because we return any preallocated resources for lazy
1641 	 * allocation for PCI devices in pci_alloc_resource(), we can
1642 	 * allocate our legacy resources here.
1643 	 */
1644 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1645 	type = SYS_RES_IOPORT;
1646 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
1647 		pci_add_map(pcib, b, s, f, PCIR_BAR(0), rl);
1648 		pci_add_map(pcib, b, s, f, PCIR_BAR(1), rl);
1649 	} else {
1650 		rid = PCIR_BAR(0);
1651 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
1652 		resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8,
1653 				    0);
1654 		rid = PCIR_BAR(1);
1655 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
1656 		resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1,
1657 				    0);
1658 	}
1659 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
1660 		pci_add_map(pcib, b, s, f, PCIR_BAR(2), rl);
1661 		pci_add_map(pcib, b, s, f, PCIR_BAR(3), rl);
1662 	} else {
1663 		rid = PCIR_BAR(2);
1664 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
1665 		resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177, 8,
1666 				    0);
1667 		rid = PCIR_BAR(3);
1668 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
1669 		resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376, 1,
1670 				    0);
1671 	}
1672 	pci_add_map(pcib, b, s, f, PCIR_BAR(4), rl);
1673 	pci_add_map(pcib, b, s, f, PCIR_BAR(5), rl);
1674 }
1675 #endif /* PCI_MAP_FIXUP */
1676 
1677 static void
1678 pci_add_resources(device_t pcib, device_t bus, device_t dev)
1679 {
1680 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1681 	pcicfgregs *cfg = &dinfo->cfg;
1682 	struct resource_list *rl = &dinfo->resources;
1683 	struct pci_quirk *q;
1684 	int b, i, f, s;
1685 #if 0	/* WILL BE USED WITH ADDITIONAL IMPORT FROM FREEBSD-5 XXX */
1686 	int irq;
1687 #endif
1688 
1689 	b = cfg->bus;
1690 	s = cfg->slot;
1691 	f = cfg->func;
1692 #ifdef PCI_MAP_FIXUP
1693 	/* atapci devices in legacy mode need special map treatment */
1694 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
1695 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
1696 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
1697 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
1698 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
1699 		pci_ata_maps(pcib, bus, dev, b, s, f, rl);
1700 	else
1701 #endif /* PCI_MAP_FIXUP */
1702 		for (i = 0; i < cfg->nummaps;) {
1703 			i += pci_add_map(pcib, b, s, f, PCIR_BAR(i),rl);
1704 		}
1705 
1706 	for (q = &pci_quirks[0]; q->devid; q++) {
1707 		if (q->devid == ((cfg->device << 16) | cfg->vendor)
1708 		    && q->type == PCI_QUIRK_MAP_REG)
1709 			pci_add_map(pcib, b, s, f, q->arg1, rl);
1710 	}
1711 
1712 	if (cfg->intpin > 0 && cfg->intline != 255)
1713 		resource_list_add(rl, SYS_RES_IRQ, 0,
1714 				  cfg->intline, cfg->intline, 1);
1715 }
1716 
1717 void
1718 pci_add_children(device_t dev, int busno, size_t dinfo_size)
1719 {
1720 #define REG(n, w)       PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
1721 	device_t pcib = device_get_parent(dev);
1722 	struct pci_devinfo *dinfo;
1723 	int maxslots;
1724 	int s, f, pcifunchigh;
1725 	uint8_t hdrtype;
1726 
1727 	KKASSERT(dinfo_size >= sizeof(struct pci_devinfo));
1728 
1729 	maxslots = PCIB_MAXSLOTS(pcib);
1730 
1731 	for (s = 0; s <= maxslots; s++) {
1732 		pcifunchigh = 0;
1733 		f = 0;
1734 		hdrtype = REG(PCIR_HDRTYPE, 1);
1735 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
1736 			continue;
1737 		if (hdrtype & PCIM_MFDEV)
1738 			pcifunchigh = PCI_FUNCMAX;
1739 		for (f = 0; f <= pcifunchigh; f++) {
1740 			dinfo = pci_read_device(pcib, busno, s, f, dinfo_size);
1741 			if (dinfo != NULL) {
1742 				pci_add_child(dev, dinfo);
1743 			}
1744 		}
1745 	}
1746 #undef REG
1747 }
1748 
1749 /*
1750  * The actual PCI child that we add has a NULL driver whos parent
1751  * device will be "pci".  The child contains the ivars, not the parent.
1752  */
1753 void
1754 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
1755 {
1756 	device_t pcib;
1757 
1758 	pcib = device_get_parent(bus);
1759 	dinfo->cfg.dev = device_add_child(bus, NULL, -1);
1760 	device_set_ivars(dinfo->cfg.dev, dinfo);
1761 	pci_cfg_save(dinfo->cfg.dev, dinfo, 0);
1762 	pci_cfg_restore(dinfo->cfg.dev, dinfo);
1763 	pci_add_resources(pcib, bus, dinfo->cfg.dev);
1764 	pci_print_verbose(dinfo);
1765 }
1766 
1767 /*
1768  * Probe the PCI bus.  Note: probe code is not supposed to add children
1769  * or call attach.
1770  */
1771 static int
1772 pci_probe(device_t dev)
1773 {
1774 	device_set_desc(dev, "PCI bus");
1775 
1776 	/* Allow other subclasses to override this driver */
1777 	return(-1000);
1778 }
1779 
1780 static int
1781 pci_attach(device_t dev)
1782 {
1783 	int busno;
1784 	int lunit = device_get_unit(dev);
1785 
1786 	dev_ops_add(&pcic_ops, -1, lunit);
1787 	make_dev(&pcic_ops, lunit, UID_ROOT, GID_WHEEL, 0644, "pci%d", lunit);
1788 
1789         /*
1790          * Since there can be multiple independantly numbered PCI
1791          * busses on some large alpha systems, we can't use the unit
1792          * number to decide what bus we are probing. We ask the parent
1793          * pcib what our bus number is.
1794 	 *
1795 	 * pcib_get_bus() must act on the pci bus device, not on the pci
1796 	 * device, because it uses badly hacked nexus-based ivars to
1797 	 * store and retrieve the physical bus number.  XXX
1798          */
1799         busno = pcib_get_bus(device_get_parent(dev));
1800         if (bootverbose)
1801                 device_printf(dev, "pci_attach() physical bus=%d\n", busno);
1802 
1803         pci_add_children(dev, busno, sizeof(struct pci_devinfo));
1804 
1805         return (bus_generic_attach(dev));
1806 }
1807 
1808 static int
1809 pci_print_resources(struct resource_list *rl, const char *name, int type,
1810 		    const char *format)
1811 {
1812 	struct resource_list_entry *rle;
1813 	int printed, retval;
1814 
1815 	printed = 0;
1816 	retval = 0;
1817 	/* Yes, this is kinda cheating */
1818 	SLIST_FOREACH(rle, rl, link) {
1819 		if (rle->type == type) {
1820 			if (printed == 0)
1821 				retval += kprintf(" %s ", name);
1822 			else if (printed > 0)
1823 				retval += kprintf(",");
1824 			printed++;
1825 			retval += kprintf(format, rle->start);
1826 			if (rle->count > 1) {
1827 				retval += kprintf("-");
1828 				retval += kprintf(format, rle->start +
1829 						 rle->count - 1);
1830 			}
1831 		}
1832 	}
1833 	return retval;
1834 }
1835 
1836 int
1837 pci_print_child(device_t dev, device_t child)
1838 {
1839 	struct pci_devinfo *dinfo;
1840 	struct resource_list *rl;
1841 	pcicfgregs *cfg;
1842 	int retval = 0;
1843 
1844 	dinfo = device_get_ivars(child);
1845 	cfg = &dinfo->cfg;
1846 	rl = &dinfo->resources;
1847 
1848 	retval += bus_print_child_header(dev, child);
1849 
1850 	retval += pci_print_resources(rl, "port", SYS_RES_IOPORT, "%#lx");
1851 	retval += pci_print_resources(rl, "mem", SYS_RES_MEMORY, "%#lx");
1852 	retval += pci_print_resources(rl, "irq", SYS_RES_IRQ, "%ld");
1853 	if (device_get_flags(dev))
1854 		retval += kprintf(" flags %#x", device_get_flags(dev));
1855 
1856 	retval += kprintf(" at device %d.%d", pci_get_slot(child),
1857 			 pci_get_function(child));
1858 
1859 	retval += bus_print_child_footer(dev, child);
1860 
1861 	return (retval);
1862 }
1863 
1864 void
1865 pci_probe_nomatch(device_t dev, device_t child)
1866 {
1867 	struct pci_devinfo *dinfo;
1868 	pcicfgregs *cfg;
1869 	const char *desc;
1870 	int unknown;
1871 
1872 	unknown = 0;
1873 	dinfo = device_get_ivars(child);
1874 	cfg = &dinfo->cfg;
1875 	desc = pci_ata_match(child);
1876 	if (!desc) desc = pci_usb_match(child);
1877 	if (!desc) desc = pci_vga_match(child);
1878 	if (!desc) desc = pci_chip_match(child);
1879 	if (!desc) {
1880 		desc = "unknown card";
1881 		unknown++;
1882 	}
1883 	device_printf(dev, "<%s>", desc);
1884 	if (bootverbose || unknown) {
1885 		kprintf(" (vendor=0x%04x, dev=0x%04x)",
1886 			cfg->vendor,
1887 			cfg->device);
1888 	}
1889 	kprintf(" at %d.%d",
1890 		pci_get_slot(child),
1891 		pci_get_function(child));
1892 	if (cfg->intpin > 0 && cfg->intline != 255) {
1893 		kprintf(" irq %d", cfg->intline);
1894 	}
1895 	kprintf("\n");
1896 	pci_cfg_save(child, (struct pci_devinfo *)device_get_ivars(child), 1);
1897 
1898 	return;
1899 }
1900 
1901 int
1902 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1903 {
1904 	struct pci_devinfo *dinfo;
1905 	pcicfgregs *cfg;
1906 
1907 	dinfo = device_get_ivars(child);
1908 	cfg = &dinfo->cfg;
1909 
1910 	switch (which) {
1911 	case PCI_IVAR_SUBVENDOR:
1912 		*result = cfg->subvendor;
1913 		break;
1914 	case PCI_IVAR_SUBDEVICE:
1915 		*result = cfg->subdevice;
1916 		break;
1917 	case PCI_IVAR_VENDOR:
1918 		*result = cfg->vendor;
1919 		break;
1920 	case PCI_IVAR_DEVICE:
1921 		*result = cfg->device;
1922 		break;
1923 	case PCI_IVAR_DEVID:
1924 		*result = (cfg->device << 16) | cfg->vendor;
1925 		break;
1926 	case PCI_IVAR_CLASS:
1927 		*result = cfg->baseclass;
1928 		break;
1929 	case PCI_IVAR_SUBCLASS:
1930 		*result = cfg->subclass;
1931 		break;
1932 	case PCI_IVAR_PROGIF:
1933 		*result = cfg->progif;
1934 		break;
1935 	case PCI_IVAR_REVID:
1936 		*result = cfg->revid;
1937 		break;
1938 	case PCI_IVAR_INTPIN:
1939 		*result = cfg->intpin;
1940 		break;
1941 	case PCI_IVAR_IRQ:
1942 		*result = cfg->intline;
1943 		break;
1944 	case PCI_IVAR_BUS:
1945 		*result = cfg->bus;
1946 		break;
1947 	case PCI_IVAR_SLOT:
1948 		*result = cfg->slot;
1949 		break;
1950 	case PCI_IVAR_FUNCTION:
1951 		*result = cfg->func;
1952 		break;
1953 	case PCI_IVAR_SECONDARYBUS:
1954 		*result = cfg->secondarybus;
1955 		break;
1956 	case PCI_IVAR_SUBORDINATEBUS:
1957 		*result = cfg->subordinatebus;
1958 		break;
1959 	case PCI_IVAR_ETHADDR:
1960 		/*
1961 		 * The generic accessor doesn't deal with failure, so
1962 		 * we set the return value, then return an error.
1963 		 */
1964 		*result = 0;
1965 		return (EINVAL);
1966 	case PCI_IVAR_PCIXCAP_PTR:
1967 		*result = cfg->pcixcap_ptr;
1968 		break;
1969 	case PCI_IVAR_PCIECAP_PTR:
1970 		*result = cfg->expr.expr_ptr;
1971 		break;
1972 	case PCI_IVAR_VPDCAP_PTR:
1973 		*result = cfg->vpdcap_ptr;
1974 		break;
1975 	default:
1976 		return ENOENT;
1977 	}
1978 	return 0;
1979 }
1980 
1981 int
1982 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
1983 {
1984 	struct pci_devinfo *dinfo;
1985 	pcicfgregs *cfg;
1986 
1987 	dinfo = device_get_ivars(child);
1988 	cfg = &dinfo->cfg;
1989 
1990 	switch (which) {
1991 	case PCI_IVAR_SUBVENDOR:
1992 	case PCI_IVAR_SUBDEVICE:
1993 	case PCI_IVAR_VENDOR:
1994 	case PCI_IVAR_DEVICE:
1995 	case PCI_IVAR_DEVID:
1996 	case PCI_IVAR_CLASS:
1997 	case PCI_IVAR_SUBCLASS:
1998 	case PCI_IVAR_PROGIF:
1999 	case PCI_IVAR_REVID:
2000 	case PCI_IVAR_INTPIN:
2001 	case PCI_IVAR_IRQ:
2002 	case PCI_IVAR_BUS:
2003 	case PCI_IVAR_SLOT:
2004 	case PCI_IVAR_FUNCTION:
2005 	case PCI_IVAR_ETHADDR:
2006 	case PCI_IVAR_PCIXCAP_PTR:
2007 	case PCI_IVAR_PCIECAP_PTR:
2008 		return EINVAL;	/* disallow for now */
2009 
2010 	case PCI_IVAR_SECONDARYBUS:
2011 		cfg->secondarybus = value;
2012 		break;
2013 	case PCI_IVAR_SUBORDINATEBUS:
2014 		cfg->subordinatebus = value;
2015 		break;
2016 	default:
2017 		return ENOENT;
2018 	}
2019 	return 0;
2020 }
2021 
2022 #ifdef PCI_MAP_FIXUP
2023 static struct resource *
2024 pci_alloc_map(device_t dev, device_t child, int type, int *rid, u_long start,
2025 	      u_long end, u_long count, u_int flags)
2026 {
2027 	struct pci_devinfo *dinfo = device_get_ivars(child);
2028 	struct resource_list *rl = &dinfo->resources;
2029 	struct resource_list_entry *rle;
2030 	struct resource *res;
2031 	uint32_t map, testval;
2032 	int mapsize;
2033 
2034 	/*
2035 	 * Weed out the bogons, and figure out how large the BAR/map
2036 	 * is. BARs that read back 0 here are bogus and unimplemented.
2037 	 *
2038 	 * Note: atapci in legacy mode are special and handled elsewhere
2039 	 * in the code. If you have an atapci device in legacy mode and
2040 	 * it fails here, that other code is broken.
2041 	 */
2042 	res = NULL;
2043 	map = pci_read_config(child, *rid, 4);
2044 	pci_write_config(child, *rid, 0xffffffff, 4);
2045 	testval = pci_read_config(child, *rid, 4);
2046 	if (pci_mapbase(testval) == 0)
2047 		goto out;
2048 	if (pci_maptype(testval) & PCI_MAPMEM) {
2049 		if (type != SYS_RES_MEMORY) {
2050 			if (bootverbose)
2051 				device_printf(dev, "child %s requested type %d"
2052 					      " for rid %#x, but the BAR says "
2053 					      "it is a memio\n",
2054 					      device_get_nameunit(child), type,
2055 					      *rid);
2056 			goto out;
2057 		}
2058 	} else {
2059 		if (type != SYS_RES_IOPORT) {
2060 			if (bootverbose)
2061 				device_printf(dev, "child %s requested type %d"
2062 					      " for rid %#x, but the BAR says "
2063 					      "it is an ioport\n",
2064 					      device_get_nameunit(child), type,
2065 					      *rid);
2066 			goto out;
2067 		}
2068 	}
2069 	/*
2070 	 * For real BARs, we need to override the size that
2071 	 * the driver requests, because that's what the BAR
2072 	 * actually uses and we would otherwise have a
2073 	 * situation where we might allocate the excess to
2074 	 * another driver, which won't work.
2075 	 */
2076 	mapsize = pci_mapsize(testval);
2077 	count = 1 << mapsize;
2078 	if (RF_ALIGNMENT(flags) < mapsize)
2079 		flags = (flags & ~RF_ALIGNMENT_MASK) |
2080 		   RF_ALIGNMENT_LOG2(mapsize);
2081 	/*
2082 	 * Allocate enough resource, and then write back the
2083 	 * appropriate BAR for that resource.
2084 	 */
2085 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
2086 				 start, end, count, flags);
2087 	if (res == NULL) {
2088 		device_printf(child, "%#lx bytes at rid %#x res %d failed "
2089 			      "(%#lx, %#lx)\n", count, *rid, type, start, end);
2090 		goto out;
2091 	}
2092 	resource_list_add(rl, type, *rid, start, end, count);
2093 	rle = resource_list_find(rl, type, *rid);
2094 	if (rle == NULL)
2095 		panic("pci_alloc_map: unexpectedly can't find resource.");
2096 	rle->res = res;
2097 	rle->start = rman_get_start(res);
2098 	rle->end = rman_get_end(res);
2099 	rle->count = count;
2100 	if (bootverbose)
2101 		device_printf(child, "lazy allocation of %#lx bytes rid %#x "
2102 			      "type %d at %#lx\n", count, *rid, type,
2103 			      rman_get_start(res));
2104 	map = rman_get_start(res);
2105 out:;
2106 	pci_write_config(child, *rid, map, 4);
2107 	return res;
2108 }
2109 #endif /* PCI_MAP_FIXUP */
2110 
2111 struct resource *
2112 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
2113 		   u_long start, u_long end, u_long count, u_int flags)
2114 {
2115 	struct pci_devinfo *dinfo = device_get_ivars(child);
2116 	struct resource_list *rl = &dinfo->resources;
2117 #ifdef PCI_MAP_FIXUP
2118 	struct resource_list_entry *rle;
2119 #endif /* PCI_MAP_FIXUP */
2120 	pcicfgregs *cfg = &dinfo->cfg;
2121 
2122 	/*
2123 	 * Perform lazy resource allocation
2124 	 */
2125 	if (device_get_parent(child) == dev) {
2126 		switch (type) {
2127 		case SYS_RES_IRQ:
2128 #if defined(__i386__) || defined(__amd64__)
2129 		/*
2130 		 * If device doesn't have an interrupt routed, and is
2131 		 * deserving of an interrupt, try to assign it one.
2132 		 */
2133 			if ((cfg->intline == 255 || cfg->intline == 0) &&
2134 			    (cfg->intpin != 0) &&
2135 			    (start == 0) && (end == ~0UL)) {
2136 				cfg->intline = PCIB_ROUTE_INTERRUPT(
2137 					device_get_parent(dev), child,
2138 					cfg->intpin);
2139 				if (cfg->intline != 255) {
2140 					pci_write_config(child, PCIR_INTLINE,
2141 					    cfg->intline, 1);
2142 					resource_list_add(rl, SYS_RES_IRQ, 0,
2143 					    cfg->intline, cfg->intline, 1);
2144 				}
2145 			}
2146 			break;
2147 #endif
2148 		case SYS_RES_IOPORT:
2149 			/* FALLTHROUGH */
2150 		case SYS_RES_MEMORY:
2151 			if (*rid < PCIR_BAR(cfg->nummaps)) {
2152 				/*
2153 				 * Enable the I/O mode.  We should
2154 				 * also be assigning resources too
2155 				 * when none are present.  The
2156 				 * resource_list_alloc kind of sorta does
2157 				 * this...
2158 				 */
2159 				if (PCI_ENABLE_IO(dev, child, type))
2160 					return (NULL);
2161 			}
2162 #ifdef PCI_MAP_FIXUP
2163 			rle = resource_list_find(rl, type, *rid);
2164 			if (rle == NULL)
2165 				return pci_alloc_map(dev, child, type, rid,
2166 						     start, end, count, flags);
2167 #endif /* PCI_MAP_FIXUP */
2168 			break;
2169 		}
2170 #ifdef PCI_MAP_FIXUP
2171 		/*
2172 		 * If we've already allocated the resource, then
2173 		 * return it now. But first we may need to activate
2174 		 * it, since we don't allocate the resource as active
2175 		 * above. Normally this would be done down in the
2176 		 * nexus, but since we short-circuit that path we have
2177 		 * to do its job here. Not sure if we should free the
2178 		 * resource if it fails to activate.
2179 		 *
2180 		 * Note: this also finds and returns resources for
2181 		 * atapci devices in legacy mode as allocated in
2182 		 * pci_ata_maps().
2183 		 */
2184 		rle = resource_list_find(rl, type, *rid);
2185 		if (rle != NULL && rle->res != NULL) {
2186 			if (bootverbose)
2187 				device_printf(child, "reserved %#lx bytes for "
2188 					      "rid %#x type %d at %#lx\n",
2189 					      rman_get_size(rle->res), *rid,
2190 					      type, rman_get_start(rle->res));
2191 			if ((flags & RF_ACTIVE) &&
2192 			    bus_generic_activate_resource(dev, child, type,
2193 							  *rid, rle->res) != 0)
2194 				return NULL;
2195 			return rle->res;
2196 		}
2197 #endif /* PCI_MAP_FIXUP */
2198 	}
2199 	return resource_list_alloc(rl, dev, child, type, rid,
2200 				   start, end, count, flags);
2201 }
2202 
2203 static int
2204 pci_release_resource(device_t dev, device_t child, int type, int rid,
2205 		     struct resource *r)
2206 {
2207 	struct pci_devinfo *dinfo = device_get_ivars(child);
2208 	struct resource_list *rl = &dinfo->resources;
2209 
2210 	return resource_list_release(rl, dev, child, type, rid, r);
2211 }
2212 
2213 static int
2214 pci_set_resource(device_t dev, device_t child, int type, int rid,
2215 		 u_long start, u_long count)
2216 {
2217 	struct pci_devinfo *dinfo = device_get_ivars(child);
2218 	struct resource_list *rl = &dinfo->resources;
2219 
2220 	resource_list_add(rl, type, rid, start, start + count - 1, count);
2221 	return 0;
2222 }
2223 
2224 static int
2225 pci_get_resource(device_t dev, device_t child, int type, int rid,
2226 		 u_long *startp, u_long *countp)
2227 {
2228 	struct pci_devinfo *dinfo = device_get_ivars(child);
2229 	struct resource_list *rl = &dinfo->resources;
2230 	struct resource_list_entry *rle;
2231 
2232 	rle = resource_list_find(rl, type, rid);
2233 	if (!rle)
2234 		return ENOENT;
2235 
2236 	if (startp)
2237 		*startp = rle->start;
2238 	if (countp)
2239 		*countp = rle->count;
2240 
2241 	return 0;
2242 }
2243 
2244 void
2245 pci_delete_resource(device_t dev, device_t child, int type, int rid)
2246 {
2247 	kprintf("pci_delete_resource: PCI resources can not be deleted\n");
2248 }
2249 
2250 struct resource_list *
2251 pci_get_resource_list (device_t dev, device_t child)
2252 {
2253 	struct pci_devinfo *dinfo = device_get_ivars(child);
2254 
2255 	if (dinfo == NULL)
2256 		return (NULL);
2257 	return (&dinfo->resources);
2258 }
2259 
2260 u_int32_t
2261 pci_read_config_method(device_t dev, device_t child, int reg, int width)
2262 {
2263 	struct pci_devinfo *dinfo = device_get_ivars(child);
2264 	pcicfgregs *cfg = &dinfo->cfg;
2265 
2266 	return PCIB_READ_CONFIG(device_get_parent(dev),
2267 				 cfg->bus, cfg->slot, cfg->func,
2268 				 reg, width);
2269 }
2270 
2271 void
2272 pci_write_config_method(device_t dev, device_t child, int reg,
2273 			u_int32_t val, int width)
2274 {
2275 	struct pci_devinfo *dinfo = device_get_ivars(child);
2276 	pcicfgregs *cfg = &dinfo->cfg;
2277 
2278 	PCIB_WRITE_CONFIG(device_get_parent(dev),
2279 			  cfg->bus, cfg->slot, cfg->func,
2280 			  reg, val, width);
2281 }
2282 
2283 int
2284 pci_child_location_str_method(device_t cbdev, device_t child, char *buf,
2285     size_t buflen)
2286 {
2287 	struct pci_devinfo *dinfo;
2288 
2289 	dinfo = device_get_ivars(child);
2290 	ksnprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
2291 	    pci_get_function(child));
2292 	return (0);
2293 }
2294 
2295 int
2296 pci_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
2297     size_t buflen)
2298 {
2299 	struct pci_devinfo *dinfo;
2300 	pcicfgregs *cfg;
2301 
2302 	dinfo = device_get_ivars(child);
2303 	cfg = &dinfo->cfg;
2304 	ksnprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
2305 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
2306 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
2307 	    cfg->progif);
2308 	return (0);
2309 }
2310 
2311 int
2312 pci_assign_interrupt_method(device_t dev, device_t child)
2313 {
2314         struct pci_devinfo *dinfo = device_get_ivars(child);
2315         pcicfgregs *cfg = &dinfo->cfg;
2316 
2317         return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
2318             cfg->intpin));
2319 }
2320 
2321 static int
2322 pci_modevent(module_t mod, int what, void *arg)
2323 {
2324 	switch (what) {
2325 	case MOD_LOAD:
2326 		STAILQ_INIT(&pci_devq);
2327 		break;
2328 	case MOD_UNLOAD:
2329 		break;
2330 	}
2331 
2332 	return 0;
2333 }
2334 
2335 void
2336 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
2337 {
2338 	int i;
2339 
2340 	/*
2341 	 * Only do header type 0 devices.  Type 1 devices are bridges,
2342 	 * which we know need special treatment.  Type 2 devices are
2343 	 * cardbus bridges which also require special treatment.
2344 	 * Other types are unknown, and we err on the side of safety
2345 	 * by ignoring them.
2346 	 */
2347 	if (dinfo->cfg.hdrtype != 0)
2348 		return;
2349 
2350 	/*
2351 	 * Restore the device to full power mode.  We must do this
2352 	 * before we restore the registers because moving from D3 to
2353 	 * D0 will cause the chip's BARs and some other registers to
2354 	 * be reset to some unknown power on reset values.  Cut down
2355 	 * the noise on boot by doing nothing if we are already in
2356 	 * state D0.
2357 	 */
2358 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2359 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2360 	}
2361 	for (i = 0; i < dinfo->cfg.nummaps; i++)
2362 		pci_write_config(dev, PCIR_BAR(i), dinfo->cfg.bar[i], 4);
2363 	pci_write_config(dev, PCIR_BIOS, dinfo->cfg.bios, 4);
2364 	pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
2365 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
2366 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
2367 	pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
2368 	pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
2369 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
2370 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
2371 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
2372 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
2373 #if 0
2374 	/* Restore MSI and MSI-X configurations if they are present. */
2375 	if (dinfo->cfg.msi.msi_location != 0)
2376 		pci_resume_msi(dev);
2377 	if (dinfo->cfg.msix.msix_location != 0)
2378 		pci_resume_msix(dev);
2379 #endif
2380 }
2381 
2382 void
2383 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
2384 {
2385 	int i;
2386 	uint32_t cls;
2387 	int ps;
2388 
2389 	/*
2390 	 * Only do header type 0 devices.  Type 1 devices are bridges, which
2391 	 * we know need special treatment.  Type 2 devices are cardbus bridges
2392 	 * which also require special treatment.  Other types are unknown, and
2393 	 * we err on the side of safety by ignoring them.  Powering down
2394 	 * bridges should not be undertaken lightly.
2395 	 */
2396 	if (dinfo->cfg.hdrtype != 0)
2397 		return;
2398 	for (i = 0; i < dinfo->cfg.nummaps; i++)
2399 		dinfo->cfg.bar[i] = pci_read_config(dev, PCIR_BAR(i), 4);
2400 	dinfo->cfg.bios = pci_read_config(dev, PCIR_BIOS, 4);
2401 
2402 	/*
2403 	 * Some drivers apparently write to these registers w/o updating our
2404 	 * cached copy.  No harm happens if we update the copy, so do so here
2405 	 * so we can restore them.  The COMMAND register is modified by the
2406 	 * bus w/o updating the cache.  This should represent the normally
2407 	 * writable portion of the 'defined' part of type 0 headers.  In
2408 	 * theory we also need to save/restore the PCI capability structures
2409 	 * we know about, but apart from power we don't know any that are
2410 	 * writable.
2411 	 */
2412 	dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
2413 	dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
2414 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
2415 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
2416 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
2417 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
2418 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
2419 	dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
2420 	dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
2421 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2422 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2423 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
2424 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
2425 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
2426 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
2427 
2428 	/*
2429 	 * don't set the state for display devices, base peripherals and
2430 	 * memory devices since bad things happen when they are powered down.
2431 	 * We should (a) have drivers that can easily detach and (b) use
2432 	 * generic drivers for these devices so that some device actually
2433 	 * attaches.  We need to make sure that when we implement (a) we don't
2434 	 * power the device down on a reattach.
2435 	 */
2436 	cls = pci_get_class(dev);
2437 	if (!setstate)
2438 		return;
2439 
2440 	switch (pci_do_power_nodriver)
2441 	{
2442 		case 0:		/* NO powerdown at all */
2443 			return;
2444 		case 1:		/* Conservative about what to power down */
2445 			if (cls == PCIC_STORAGE)
2446 				return;
2447 			/*FALLTHROUGH*/
2448 		case 2:		/* Agressive about what to power down */
2449 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
2450 			    cls == PCIC_BASEPERIPH)
2451 				return;
2452 			/*FALLTHROUGH*/
2453 		case 3:		/* Power down everything */
2454 			break;
2455 	}
2456 
2457 	if (cls == PCIC_STORAGE)
2458 		return;
2459 
2460 	/*
2461 	 * PCI spec says we can only go into D3 state from D0 state.
2462 	 * Transition from D[12] into D0 before going to D3 state.
2463 	 */
2464 	ps = pci_get_powerstate(dev);
2465 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
2466 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2467 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
2468 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
2469 }
2470 
2471 int
2472 pci_resume(device_t dev)
2473 {
2474         int                     numdevs;
2475         int                     i;
2476         device_t                *children;
2477         device_t                child;
2478         struct pci_devinfo      *dinfo;
2479         pcicfgregs              *cfg;
2480 
2481         device_get_children(dev, &children, &numdevs);
2482 
2483         for (i = 0; i < numdevs; i++) {
2484                 child = children[i];
2485 
2486                 dinfo = device_get_ivars(child);
2487                 cfg = &dinfo->cfg;
2488                 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
2489                         cfg->intline = PCI_ASSIGN_INTERRUPT(dev, child);
2490                         if (PCI_INTERRUPT_VALID(cfg->intline)) {
2491                                 pci_write_config(child, PCIR_INTLINE,
2492                                     cfg->intline, 1);
2493                         }
2494                 }
2495         }
2496 
2497         kfree(children, M_TEMP);
2498 
2499         return (bus_generic_resume(dev));
2500 }
2501 
2502 void
2503 pci_driver_added(device_t dev, driver_t *driver)
2504 {
2505 	int numdevs;
2506 	device_t *devlist;
2507 	device_t child;
2508 	struct pci_devinfo *dinfo;
2509 	int i;
2510 
2511 	if (bootverbose)
2512 		device_printf(dev, "driver added\n");
2513 	DEVICE_IDENTIFY(driver, dev);
2514 	device_get_children(dev, &devlist, &numdevs);
2515 	for (i = 0; i < numdevs; i++) {
2516 		child = devlist[i];
2517 		if (device_get_state(child) != DS_NOTPRESENT)
2518 			continue;
2519 		dinfo = device_get_ivars(child);
2520 		pci_print_verbose(dinfo);
2521 		if (bootverbose)
2522 			kprintf("pci%d:%d:%d: reprobing on driver added\n",
2523 			    dinfo->cfg.bus, dinfo->cfg.slot, dinfo->cfg.func);
2524 		pci_cfg_restore(child, dinfo);
2525 		if (device_probe_and_attach(child) != 0)
2526 			pci_cfg_save(child, dinfo, 1);
2527 	}
2528 	kfree(devlist, M_TEMP);
2529 }
2530 
2531 static void
2532 pci_child_detached(device_t parent __unused, device_t child) {
2533 	/* Turn child's power off */
2534 	pci_cfg_save(child, device_get_ivars(child), 1);
2535 }
2536 
2537 static device_method_t pci_methods[] = {
2538 	/* Device interface */
2539 	DEVMETHOD(device_probe,		pci_probe),
2540 	DEVMETHOD(device_attach,	pci_attach),
2541 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2542 	DEVMETHOD(device_suspend,	bus_generic_suspend),
2543 	DEVMETHOD(device_resume,	pci_resume),
2544 
2545 	/* Bus interface */
2546 	DEVMETHOD(bus_print_child,	pci_print_child),
2547 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
2548 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
2549 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
2550 	DEVMETHOD(bus_driver_added,	pci_driver_added),
2551 	DEVMETHOD(bus_child_detached,	pci_child_detached),
2552 	DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
2553 	DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
2554 
2555 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
2556 	DEVMETHOD(bus_set_resource,	pci_set_resource),
2557 	DEVMETHOD(bus_get_resource,	pci_get_resource),
2558 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
2559 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
2560 	DEVMETHOD(bus_release_resource,	pci_release_resource),
2561 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
2562 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
2563 	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
2564 	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
2565 
2566 	/* PCI interface */
2567 	DEVMETHOD(pci_read_config,	pci_read_config_method),
2568 	DEVMETHOD(pci_write_config,	pci_write_config_method),
2569 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
2570 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
2571 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
2572 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
2573 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
2574 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
2575 	DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
2576 
2577 	{ 0, 0 }
2578 };
2579 
2580 driver_t pci_driver = {
2581 	"pci",
2582 	pci_methods,
2583 	1,			/* no softc */
2584 };
2585 
2586 DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, 0);
2587 MODULE_VERSION(pci, 1);
2588