xref: /dragonfly/sys/bus/u4b/wlan/if_rum.c (revision 207ba670)
1 /*	$FreeBSD: head/sys/dev/usb/wlan/if_rum.c 298895 2016-05-01 18:53:12Z avos $	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
7  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2501USB/RT2601USB chipset driver
24  * http://www.ralinktech.com.tw/
25  */
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 
40 #include <sys/rman.h>
41 
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_arp.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 
51 #ifdef INET
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/if_ether.h>
56 #include <netinet/ip.h>
57 #endif
58 
59 #include <netproto/802_11/ieee80211_var.h>
60 #include <netproto/802_11/ieee80211_regdomain.h>
61 #include <netproto/802_11/ieee80211_radiotap.h>
62 #include <netproto/802_11/ieee80211_ratectl.h>
63 
64 #include <bus/u4b/usb.h>
65 #include <bus/u4b/usbdi.h>
66 #include "usbdevs.h"
67 
68 #define	USB_DEBUG_VAR rum_debug
69 #include <bus/u4b/usb_debug.h>
70 
71 #include <bus/u4b/wlan/if_rumreg.h>
72 #include <bus/u4b/wlan/if_rumvar.h>
73 #include <bus/u4b/wlan/if_rumfw.h>
74 
75 #ifdef USB_DEBUG
76 static int rum_debug = 0;
77 
78 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
79 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0,
80     "Debug level");
81 #endif
82 
83 static const STRUCT_USB_HOST_ID rum_devs[] = {
84 #define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
85     RUM_DEV(ABOCOM, HWU54DM),
86     RUM_DEV(ABOCOM, RT2573_2),
87     RUM_DEV(ABOCOM, RT2573_3),
88     RUM_DEV(ABOCOM, RT2573_4),
89     RUM_DEV(ABOCOM, WUG2700),
90     RUM_DEV(AMIT, CGWLUSB2GO),
91     RUM_DEV(ASUS, RT2573_1),
92     RUM_DEV(ASUS, RT2573_2),
93     RUM_DEV(BELKIN, F5D7050A),
94     RUM_DEV(BELKIN, F5D9050V3),
95     RUM_DEV(CISCOLINKSYS, WUSB54GC),
96     RUM_DEV(CISCOLINKSYS, WUSB54GR),
97     RUM_DEV(CONCEPTRONIC2, C54RU2),
98     RUM_DEV(COREGA, CGWLUSB2GL),
99     RUM_DEV(COREGA, CGWLUSB2GPX),
100     RUM_DEV(DICKSMITH, CWD854F),
101     RUM_DEV(DICKSMITH, RT2573),
102     RUM_DEV(EDIMAX, EW7318USG),
103     RUM_DEV(DLINK2, DWLG122C1),
104     RUM_DEV(DLINK2, WUA1340),
105     RUM_DEV(DLINK2, DWA111),
106     RUM_DEV(DLINK2, DWA110),
107     RUM_DEV(GIGABYTE, GNWB01GS),
108     RUM_DEV(GIGABYTE, GNWI05GS),
109     RUM_DEV(GIGASET, RT2573),
110     RUM_DEV(GOODWAY, RT2573),
111     RUM_DEV(GUILLEMOT, HWGUSB254LB),
112     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
113     RUM_DEV(HUAWEI3COM, WUB320G),
114     RUM_DEV(MELCO, G54HP),
115     RUM_DEV(MELCO, SG54HP),
116     RUM_DEV(MELCO, SG54HG),
117     RUM_DEV(MELCO, WLIUCG),
118     RUM_DEV(MELCO, WLRUCG),
119     RUM_DEV(MELCO, WLRUCGAOSS),
120     RUM_DEV(MSI, RT2573_1),
121     RUM_DEV(MSI, RT2573_2),
122     RUM_DEV(MSI, RT2573_3),
123     RUM_DEV(MSI, RT2573_4),
124     RUM_DEV(NOVATECH, RT2573),
125     RUM_DEV(PLANEX2, GWUS54HP),
126     RUM_DEV(PLANEX2, GWUS54MINI2),
127     RUM_DEV(PLANEX2, GWUSMM),
128     RUM_DEV(QCOM, RT2573),
129     RUM_DEV(QCOM, RT2573_2),
130     RUM_DEV(QCOM, RT2573_3),
131     RUM_DEV(RALINK, RT2573),
132     RUM_DEV(RALINK, RT2573_2),
133     RUM_DEV(RALINK, RT2671),
134     RUM_DEV(SITECOMEU, WL113R2),
135     RUM_DEV(SITECOMEU, WL172),
136     RUM_DEV(SPARKLAN, RT2573),
137     RUM_DEV(SURECOM, RT2573),
138 #undef RUM_DEV
139 };
140 
141 static device_probe_t rum_match;
142 static device_attach_t rum_attach;
143 static device_detach_t rum_detach;
144 
145 static usb_callback_t rum_bulk_read_callback;
146 static usb_callback_t rum_bulk_write_callback;
147 
148 static usb_error_t	rum_do_request(struct rum_softc *sc,
149 			    struct usb_device_request *req, void *data);
150 static usb_error_t	rum_do_mcu_request(struct rum_softc *sc, int);
151 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
152 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
153 			    int, const uint8_t [IEEE80211_ADDR_LEN],
154 			    const uint8_t [IEEE80211_ADDR_LEN]);
155 static void		rum_vap_delete(struct ieee80211vap *);
156 static void		rum_cmdq_cb(void *, int);
157 static int		rum_cmd_sleepable(struct rum_softc *, const void *,
158 			    size_t, uint8_t, CMD_FUNC_PROTO);
159 static void		rum_tx_free(struct rum_tx_data *, int);
160 static void		rum_setup_tx_list(struct rum_softc *);
161 static void		rum_unsetup_tx_list(struct rum_softc *);
162 static void		rum_beacon_miss(struct ieee80211vap *);
163 static void		rum_sta_recv_mgmt(struct ieee80211_node *,
164 			    struct mbuf *, int,
165 			    const struct ieee80211_rx_stats *, int, int);
166 static int		rum_set_power_state(struct rum_softc *, int);
167 static int		rum_newstate(struct ieee80211vap *,
168 			    enum ieee80211_state, int);
169 static uint8_t		rum_crypto_mode(struct rum_softc *, u_int, int);
170 static void		rum_setup_tx_desc(struct rum_softc *,
171 			    struct rum_tx_desc *, struct ieee80211_key *,
172 			    uint32_t, uint8_t, uint8_t, int, int, int);
173 static uint32_t		rum_tx_crypto_flags(struct rum_softc *,
174 			    struct ieee80211_node *,
175 			    const struct ieee80211_key *);
176 static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
177 			    struct ieee80211_node *);
178 static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
179 			    struct ieee80211_node *,
180 			    const struct ieee80211_bpf_params *);
181 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
182 			    struct ieee80211_node *);
183 static int		rum_transmit(struct ieee80211com *, struct mbuf *);
184 static void		rum_start(struct rum_softc *);
185 static void		rum_parent(struct ieee80211com *);
186 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
187 			    int);
188 static uint32_t		rum_read(struct rum_softc *, uint16_t);
189 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
190 			    int);
191 static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
192 static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
193 			    size_t);
194 static usb_error_t	rum_setbits(struct rum_softc *, uint16_t, uint32_t);
195 static usb_error_t	rum_clrbits(struct rum_softc *, uint16_t, uint32_t);
196 static usb_error_t	rum_modbits(struct rum_softc *, uint16_t, uint32_t,
197 			    uint32_t);
198 static int		rum_bbp_busy(struct rum_softc *);
199 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
200 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
201 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
202 static void		rum_select_antenna(struct rum_softc *);
203 static void		rum_enable_mrr(struct rum_softc *);
204 static void		rum_set_txpreamble(struct rum_softc *);
205 static void		rum_set_basicrates(struct rum_softc *);
206 static void		rum_select_band(struct rum_softc *,
207 			    struct ieee80211_channel *);
208 static void		rum_set_chan(struct rum_softc *,
209 			    struct ieee80211_channel *);
210 static void		rum_set_maxretry(struct rum_softc *,
211 			    struct ieee80211vap *);
212 static int		rum_enable_tsf_sync(struct rum_softc *);
213 static void		rum_enable_tsf(struct rum_softc *);
214 static void		rum_abort_tsf_sync(struct rum_softc *);
215 static void		rum_get_tsf(struct rum_softc *, uint64_t *);
216 static void		rum_update_slot_cb(struct rum_softc *,
217 			    union sec_param *, uint8_t);
218 static void		rum_update_slot(struct ieee80211com *);
219 static int		rum_wme_update(struct ieee80211com *);
220 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
221 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
222 static void		rum_update_mcast(struct ieee80211com *);
223 static void		rum_update_promisc(struct ieee80211com *);
224 static void		rum_setpromisc(struct rum_softc *);
225 static const char	*rum_get_rf(int);
226 static void		rum_read_eeprom(struct rum_softc *);
227 static int		rum_bbp_wakeup(struct rum_softc *);
228 static int		rum_bbp_init(struct rum_softc *);
229 static void		rum_clr_shkey_regs(struct rum_softc *);
230 static int		rum_init(struct rum_softc *);
231 static void		rum_stop(struct rum_softc *);
232 static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
233 			    size_t);
234 static int		rum_set_sleep_time(struct rum_softc *, uint16_t);
235 static int		rum_reset(struct ieee80211vap *, u_long);
236 static int		rum_set_beacon(struct rum_softc *,
237 			    struct ieee80211vap *);
238 static int		rum_alloc_beacon(struct rum_softc *,
239 			    struct ieee80211vap *);
240 static void		rum_update_beacon_cb(struct rum_softc *,
241 			    union sec_param *, uint8_t);
242 static void		rum_update_beacon(struct ieee80211vap *, int);
243 static int		rum_common_key_set(struct rum_softc *,
244 			    struct ieee80211_key *, uint16_t);
245 static void		rum_group_key_set_cb(struct rum_softc *,
246 			    union sec_param *, uint8_t);
247 static void		rum_group_key_del_cb(struct rum_softc *,
248 			    union sec_param *, uint8_t);
249 static void		rum_pair_key_set_cb(struct rum_softc *,
250 			    union sec_param *, uint8_t);
251 static void		rum_pair_key_del_cb(struct rum_softc *,
252 			    union sec_param *, uint8_t);
253 static int		rum_key_alloc(struct ieee80211vap *,
254 			    struct ieee80211_key *, ieee80211_keyix *,
255 			    ieee80211_keyix *);
256 static int		rum_key_set(struct ieee80211vap *,
257 			    const struct ieee80211_key *);
258 static int		rum_key_delete(struct ieee80211vap *,
259 			    const struct ieee80211_key *);
260 static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
261 			    const struct ieee80211_bpf_params *);
262 static void		rum_scan_start(struct ieee80211com *);
263 static void		rum_scan_end(struct ieee80211com *);
264 static void		rum_set_channel(struct ieee80211com *);
265 static void		rum_getradiocaps(struct ieee80211com *, int, int *,
266 			    struct ieee80211_channel[]);
267 static int		rum_get_rssi(struct rum_softc *, uint8_t);
268 static void		rum_ratectl_start(struct rum_softc *,
269 			    struct ieee80211_node *);
270 static void		rum_ratectl_timeout(void *);
271 static void		rum_ratectl_task(void *, int);
272 static int		rum_pause(struct rum_softc *, int);
273 
274 static const struct {
275 	uint32_t	reg;
276 	uint32_t	val;
277 } rum_def_mac[] = {
278 	{ RT2573_TXRX_CSR0,  0x025fb032 },
279 	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
280 	{ RT2573_TXRX_CSR2,  0x8a8b8c8d },
281 	{ RT2573_TXRX_CSR3,  0x00858687 },
282 	{ RT2573_TXRX_CSR7,  0x2e31353b },
283 	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
284 	{ RT2573_TXRX_CSR15, 0x0000000f },
285 	{ RT2573_MAC_CSR6,   0x00000fff },
286 	{ RT2573_MAC_CSR8,   0x016c030a },
287 	{ RT2573_MAC_CSR10,  0x00000718 },
288 	{ RT2573_MAC_CSR12,  0x00000004 },
289 	{ RT2573_MAC_CSR13,  0x00007f00 },
290 	{ RT2573_SEC_CSR2,   0x00000000 },
291 	{ RT2573_SEC_CSR3,   0x00000000 },
292 	{ RT2573_SEC_CSR4,   0x00000000 },
293 	{ RT2573_PHY_CSR1,   0x000023b0 },
294 	{ RT2573_PHY_CSR5,   0x00040a06 },
295 	{ RT2573_PHY_CSR6,   0x00080606 },
296 	{ RT2573_PHY_CSR7,   0x00000408 },
297 	{ RT2573_AIFSN_CSR,  0x00002273 },
298 	{ RT2573_CWMIN_CSR,  0x00002344 },
299 	{ RT2573_CWMAX_CSR,  0x000034aa }
300 };
301 
302 static const struct {
303 	uint8_t	reg;
304 	uint8_t	val;
305 } rum_def_bbp[] = {
306 	{   3, 0x80 },
307 	{  15, 0x30 },
308 	{  17, 0x20 },
309 	{  21, 0xc8 },
310 	{  22, 0x38 },
311 	{  23, 0x06 },
312 	{  24, 0xfe },
313 	{  25, 0x0a },
314 	{  26, 0x0d },
315 	{  32, 0x0b },
316 	{  34, 0x12 },
317 	{  37, 0x07 },
318 	{  39, 0xf8 },
319 	{  41, 0x60 },
320 	{  53, 0x10 },
321 	{  54, 0x18 },
322 	{  60, 0x10 },
323 	{  61, 0x04 },
324 	{  62, 0x04 },
325 	{  75, 0xfe },
326 	{  86, 0xfe },
327 	{  88, 0xfe },
328 	{  90, 0x0f },
329 	{  99, 0x00 },
330 	{ 102, 0x16 },
331 	{ 107, 0x04 }
332 };
333 
334 static const uint8_t rum_chan_2ghz[] =
335 	{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
336 
337 static const uint8_t rum_chan_5ghz[] =
338 	{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64,
339 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
340 	  149, 153, 157, 161, 165 };
341 
342 static const struct rfprog {
343 	uint8_t		chan;
344 	uint32_t	r1, r2, r3, r4;
345 }  rum_rf5226[] = {
346 	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
347 	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
348 	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
349 	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
350 	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
351 	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
352 	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
353 	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
354 	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
355 	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
356 	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
357 	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
358 	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
359 	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
360 
361 	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
362 	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
363 	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
364 	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
365 
366 	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
367 	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
368 	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
369 	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
370 	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
371 	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
372 	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
373 	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
374 
375 	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
376 	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
377 	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
378 	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
379 	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
380 	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
381 	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
382 	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
383 	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
384 	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
385 	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
386 
387 	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
388 	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
389 	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
390 	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
391 	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
392 }, rum_rf5225[] = {
393 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
394 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
395 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
396 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
397 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
398 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
399 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
400 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
401 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
402 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
403 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
404 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
405 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
406 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
407 
408 	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
409 	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
410 	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
411 	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
412 
413 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
414 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
415 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
416 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
417 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
418 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
419 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
420 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
421 
422 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
423 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
424 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
425 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
426 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
427 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
428 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
429 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
430 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
431 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
432 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
433 
434 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
435 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
436 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
437 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
438 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
439 };
440 
441 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
442 	[RUM_BULK_WR] = {
443 		.type = UE_BULK,
444 		.endpoint = UE_ADDR_ANY,
445 		.direction = UE_DIR_OUT,
446 		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
447 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
448 		.callback = rum_bulk_write_callback,
449 		.timeout = 5000,	/* ms */
450 	},
451 	[RUM_BULK_RD] = {
452 		.type = UE_BULK,
453 		.endpoint = UE_ADDR_ANY,
454 		.direction = UE_DIR_IN,
455 		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
456 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
457 		.callback = rum_bulk_read_callback,
458 	},
459 };
460 
461 static int
462 rum_match(device_t self)
463 {
464 	struct usb_attach_arg *uaa = device_get_ivars(self);
465 
466 	if (uaa->usb_mode != USB_MODE_HOST)
467 		return (ENXIO);
468 	if (uaa->info.bConfigIndex != 0)
469 		return (ENXIO);
470 	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
471 		return (ENXIO);
472 
473 	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
474 }
475 
476 static int
477 rum_attach(device_t self)
478 {
479 	struct usb_attach_arg *uaa = device_get_ivars(self);
480 	struct rum_softc *sc = device_get_softc(self);
481 	struct ieee80211com *ic = &sc->sc_ic;
482 	uint32_t tmp;
483 	uint8_t iface_index;
484 	int error, ntries;
485 
486 	wlan_serialize_enter();
487 	device_set_usb_desc(self);
488 	sc->sc_udev = uaa->device;
489 	sc->sc_dev = self;
490 
491 	RUM_LOCK_INIT(sc);
492 	RUM_CMDQ_LOCK_INIT(sc);
493 	mbufq_init(&sc->sc_snd, ifqmaxlen);
494 
495 	iface_index = RT2573_IFACE_INDEX;
496 	error = usbd_transfer_setup(uaa->device, &iface_index,
497 	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_lock);
498 	if (error) {
499 		device_printf(self, "could not allocate USB transfers, "
500 		    "err=%s\n", usbd_errstr(error));
501 		goto detach;
502 	}
503 
504 	RUM_LOCK(sc);
505 	/* retrieve RT2573 rev. no */
506 	for (ntries = 0; ntries < 100; ntries++) {
507 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
508 			break;
509 		if (rum_pause(sc, hz / 100))
510 			break;
511 	}
512 	if (ntries == 100) {
513 		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
514 		RUM_UNLOCK(sc);
515 		goto detach;
516 	}
517 
518 	/* retrieve MAC address and various other things from EEPROM */
519 	rum_read_eeprom(sc);
520 
521 	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
522 	    tmp, rum_get_rf(sc->rf_rev));
523 
524 	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
525 	RUM_UNLOCK(sc);
526 
527 	ic->ic_softc = sc;
528 	ic->ic_name = device_get_nameunit(self);
529 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
530 
531 	/* set device capabilities */
532 	ic->ic_caps =
533 	      IEEE80211_C_STA		/* station mode supported */
534 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
535 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
536 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
537 	    | IEEE80211_C_AHDEMO	/* adhoc demo mode */
538 	    | IEEE80211_C_TXPMGT	/* tx power management */
539 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
540 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
541 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
542 	    | IEEE80211_C_WPA		/* 802.11i */
543 	    | IEEE80211_C_WME		/* 802.11e */
544 	    | IEEE80211_C_PMGT		/* Station-side power mgmt */
545 	    | IEEE80211_C_SWSLEEP	/* net80211 managed power mgmt */
546 	    ;
547 
548 	ic->ic_cryptocaps =
549 	    IEEE80211_CRYPTO_WEP |
550 	    IEEE80211_CRYPTO_AES_CCM |
551 	    IEEE80211_CRYPTO_TKIPMIC |
552 	    IEEE80211_CRYPTO_TKIP;
553 
554 	rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
555 	    ic->ic_channels);
556 
557 	ieee80211_ifattach(ic);
558 	ic->ic_update_promisc = rum_update_promisc;
559 	ic->ic_raw_xmit = rum_raw_xmit;
560 	ic->ic_scan_start = rum_scan_start;
561 	ic->ic_scan_end = rum_scan_end;
562 	ic->ic_set_channel = rum_set_channel;
563 	ic->ic_getradiocaps = rum_getradiocaps;
564 	ic->ic_transmit = rum_transmit;
565 	ic->ic_parent = rum_parent;
566 	ic->ic_vap_create = rum_vap_create;
567 	ic->ic_vap_delete = rum_vap_delete;
568 	ic->ic_updateslot = rum_update_slot;
569 	ic->ic_wme.wme_update = rum_wme_update;
570 	ic->ic_update_mcast = rum_update_mcast;
571 
572 	ieee80211_radiotap_attach(ic,
573 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
574 		RT2573_TX_RADIOTAP_PRESENT,
575 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
576 		RT2573_RX_RADIOTAP_PRESENT);
577 
578 	TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc);
579 
580 	if (bootverbose)
581 		ieee80211_announce(ic);
582 
583 	wlan_serialize_exit();
584 	return (0);
585 
586 detach:
587 	wlan_serialize_exit();
588 	rum_detach(self);
589 	return (ENXIO);			/* failure */
590 }
591 
592 static int
593 rum_detach(device_t self)
594 {
595 	struct rum_softc *sc = device_get_softc(self);
596 	struct ieee80211com *ic = &sc->sc_ic;
597 
598 	/* Prevent further ioctls */
599 	RUM_LOCK(sc);
600 	sc->sc_detached = 1;
601 	RUM_UNLOCK(sc);
602 
603 	/* stop all USB transfers */
604 	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
605 
606 	/* free TX list, if any */
607 	RUM_LOCK(sc);
608 	rum_unsetup_tx_list(sc);
609 	RUM_UNLOCK(sc);
610 
611 	if (ic->ic_softc == sc) {
612 		ieee80211_draintask(ic, &sc->cmdq_task);
613 		ieee80211_ifdetach(ic);
614 	}
615 
616 	mbufq_drain(&sc->sc_snd);
617 	RUM_CMDQ_LOCK_DESTROY(sc);
618 	RUM_LOCK_DESTROY(sc);
619 
620 	return (0);
621 }
622 
623 static usb_error_t
624 rum_do_request(struct rum_softc *sc,
625     struct usb_device_request *req, void *data)
626 {
627 	usb_error_t err;
628 	int ntries = 10;
629 
630 	while (ntries--) {
631 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_lock,
632 		    req, data, 0, NULL, 250 /* ms */);
633 		if (err == 0)
634 			break;
635 
636 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
637 		    usbd_errstr(err));
638 		if (rum_pause(sc, hz / 100))
639 			break;
640 	}
641 	return (err);
642 }
643 
644 static usb_error_t
645 rum_do_mcu_request(struct rum_softc *sc, int request)
646 {
647 	struct usb_device_request req;
648 
649 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
650 	req.bRequest = RT2573_MCU_CNTL;
651 	USETW(req.wValue, request);
652 	USETW(req.wIndex, 0);
653 	USETW(req.wLength, 0);
654 
655 	return (rum_do_request(sc, &req, NULL));
656 }
657 
658 static struct ieee80211vap *
659 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
660     enum ieee80211_opmode opmode, int flags,
661     const uint8_t bssid[IEEE80211_ADDR_LEN],
662     const uint8_t mac[IEEE80211_ADDR_LEN])
663 {
664 	struct rum_softc *sc = ic->ic_softc;
665 	struct rum_vap *rvp;
666 	struct ieee80211vap *vap;
667 
668 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
669 		return NULL;
670 	rvp = kmalloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
671 	vap = &rvp->vap;
672 	/* enable s/w bmiss handling for sta mode */
673 
674 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
675 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
676 		/* out of memory */
677 		kfree(rvp, M_80211_VAP);
678 		return (NULL);
679 	}
680 
681 	/* override state transition machine */
682 	rvp->newstate = vap->iv_newstate;
683 	vap->iv_newstate = rum_newstate;
684 	vap->iv_key_alloc = rum_key_alloc;
685 	vap->iv_key_set = rum_key_set;
686 	vap->iv_key_delete = rum_key_delete;
687 	vap->iv_update_beacon = rum_update_beacon;
688 	vap->iv_reset = rum_reset;
689 	vap->iv_max_aid = RT2573_ADDR_MAX;
690 
691 	if (opmode == IEEE80211_M_STA) {
692 		/*
693 		 * Move device to the sleep state when
694 		 * beacon is received and there is no data for us.
695 		 *
696 		 * Used only for IEEE80211_S_SLEEP state.
697 		 */
698 		rvp->recv_mgmt = vap->iv_recv_mgmt;
699 		vap->iv_recv_mgmt = rum_sta_recv_mgmt;
700 
701 		/* Ignored while sleeping. */
702 		rvp->bmiss = vap->iv_bmiss;
703 		vap->iv_bmiss = rum_beacon_miss;
704 	}
705 
706 	usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_lock, 0);
707 	TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
708 	ieee80211_ratectl_init(vap);
709 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
710 	/* complete setup */
711 	ieee80211_vap_attach(vap, ieee80211_media_change,
712 	    ieee80211_media_status, mac);
713 	ic->ic_opmode = opmode;
714 	return vap;
715 }
716 
717 static void
718 rum_vap_delete(struct ieee80211vap *vap)
719 {
720 	struct rum_vap *rvp = RUM_VAP(vap);
721 	struct ieee80211com *ic = vap->iv_ic;
722 
723 	m_freem(rvp->bcn_mbuf);
724 	usb_callout_drain(&rvp->ratectl_ch);
725 	ieee80211_draintask(ic, &rvp->ratectl_task);
726 	ieee80211_ratectl_deinit(vap);
727 	ieee80211_vap_detach(vap);
728 	kfree(rvp, M_80211_VAP);
729 }
730 
731 static void
732 rum_cmdq_cb(void *arg, int pending)
733 {
734 	struct rum_softc *sc = arg;
735 	struct rum_cmdq *rc;
736 
737 	RUM_CMDQ_LOCK(sc);
738 	while (sc->cmdq[sc->cmdq_first].func != NULL) {
739 		rc = &sc->cmdq[sc->cmdq_first];
740 		RUM_CMDQ_UNLOCK(sc);
741 
742 		RUM_LOCK(sc);
743 		rc->func(sc, &rc->data, rc->rvp_id);
744 		RUM_UNLOCK(sc);
745 
746 		RUM_CMDQ_LOCK(sc);
747 		memset(rc, 0, sizeof (*rc));
748 		sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE;
749 	}
750 	RUM_CMDQ_UNLOCK(sc);
751 }
752 
753 static int
754 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len,
755     uint8_t rvp_id, CMD_FUNC_PROTO)
756 {
757 	struct ieee80211com *ic = &sc->sc_ic;
758 
759 	KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
760 
761 	RUM_CMDQ_LOCK(sc);
762 	if (sc->cmdq[sc->cmdq_last].func != NULL) {
763 		device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
764 		RUM_CMDQ_UNLOCK(sc);
765 
766 		return EAGAIN;
767 	}
768 
769 	if (ptr != NULL)
770 		memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
771 	sc->cmdq[sc->cmdq_last].rvp_id = rvp_id;
772 	sc->cmdq[sc->cmdq_last].func = func;
773 	sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE;
774 	RUM_CMDQ_UNLOCK(sc);
775 
776 	ieee80211_runtask(ic, &sc->cmdq_task);
777 
778 	return 0;
779 }
780 
781 static void
782 rum_tx_free(struct rum_tx_data *data, int txerr)
783 {
784 	struct rum_softc *sc = data->sc;
785 
786 	if (data->m != NULL) {
787 		ieee80211_tx_complete(data->ni, data->m, txerr);
788 		data->m = NULL;
789 		data->ni = NULL;
790 	}
791 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
792 	sc->tx_nfree++;
793 }
794 
795 static void
796 rum_setup_tx_list(struct rum_softc *sc)
797 {
798 	struct rum_tx_data *data;
799 	int i;
800 
801 	sc->tx_nfree = 0;
802 	STAILQ_INIT(&sc->tx_q);
803 	STAILQ_INIT(&sc->tx_free);
804 
805 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
806 		data = &sc->tx_data[i];
807 
808 		data->sc = sc;
809 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
810 		sc->tx_nfree++;
811 	}
812 }
813 
814 static void
815 rum_unsetup_tx_list(struct rum_softc *sc)
816 {
817 	struct rum_tx_data *data;
818 	int i;
819 
820 	/* make sure any subsequent use of the queues will fail */
821 	sc->tx_nfree = 0;
822 	STAILQ_INIT(&sc->tx_q);
823 	STAILQ_INIT(&sc->tx_free);
824 
825 	/* free up all node references and mbufs */
826 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
827 		data = &sc->tx_data[i];
828 
829 		if (data->m != NULL) {
830 			m_freem(data->m);
831 			data->m = NULL;
832 		}
833 		if (data->ni != NULL) {
834 			ieee80211_free_node(data->ni);
835 			data->ni = NULL;
836 		}
837 	}
838 }
839 
840 static void
841 rum_beacon_miss(struct ieee80211vap *vap)
842 {
843 	struct ieee80211com *ic = vap->iv_ic;
844 	struct rum_softc *sc = ic->ic_softc;
845 	struct rum_vap *rvp = RUM_VAP(vap);
846 	int sleep;
847 
848 	RUM_LOCK(sc);
849 	if (sc->sc_sleeping && sc->sc_sleep_end < ticks) {
850 		DPRINTFN(12, "dropping 'sleeping' bit, "
851 		    "device must be awake now\n");
852 
853 		sc->sc_sleeping = 0;
854 	}
855 
856 	sleep = sc->sc_sleeping;
857 	RUM_UNLOCK(sc);
858 
859 	if (!sleep)
860 		rvp->bmiss(vap);
861 #ifdef USB_DEBUG
862 	else
863 		DPRINTFN(13, "bmiss event is ignored whilst sleeping\n");
864 #endif
865 }
866 
867 static void
868 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
869     const struct ieee80211_rx_stats *rxs,
870     int rssi, int nf)
871 {
872 	struct ieee80211vap *vap = ni->ni_vap;
873 	struct rum_softc *sc = vap->iv_ic->ic_softc;
874 	struct rum_vap *rvp = RUM_VAP(vap);
875 
876 	if (vap->iv_state == IEEE80211_S_SLEEP &&
877 	    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
878 		RUM_LOCK(sc);
879 		DPRINTFN(12, "beacon, mybss %d (flags %02X)\n",
880 		    !!(sc->last_rx_flags & RT2573_RX_MYBSS),
881 		    sc->last_rx_flags);
882 
883 		if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) ==
884 		    (RT2573_RX_MYBSS | RT2573_RX_BC)) {
885 			/*
886 			 * Put it to sleep here; in case if there is a data
887 			 * for us, iv_recv_mgmt() will wakeup the device via
888 			 * SLEEP -> RUN state transition.
889 			 */
890 			rum_set_power_state(sc, 1);
891 		}
892 		RUM_UNLOCK(sc);
893 	}
894 
895 	rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
896 }
897 
898 static int
899 rum_set_power_state(struct rum_softc *sc, int sleep)
900 {
901 	usb_error_t uerror;
902 
903 	RUM_LOCK_ASSERT(sc);
904 
905 	DPRINTFN(12, "moving to %s state (sleep time %u)\n",
906 	    sleep ? "sleep" : "awake", sc->sc_sleep_time);
907 
908 	uerror = rum_do_mcu_request(sc,
909 	    sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP);
910 	if (uerror != USB_ERR_NORMAL_COMPLETION) {
911 		device_printf(sc->sc_dev,
912 		    "%s: could not change power state: %s\n",
913 		    __func__, usbd_errstr(uerror));
914 		return (EIO);
915 	}
916 
917 	sc->sc_sleeping = !!sleep;
918 	sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0;
919 
920 	return (0);
921 }
922 
923 static int
924 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
925 {
926 	struct rum_vap *rvp = RUM_VAP(vap);
927 	struct ieee80211com *ic = vap->iv_ic;
928 	struct rum_softc *sc = ic->ic_softc;
929 	const struct ieee80211_txparam *tp;
930 	enum ieee80211_state ostate;
931 	struct ieee80211_node *ni;
932 	usb_error_t uerror;
933 	int ret = 0;
934 
935 	ostate = vap->iv_state;
936 	DPRINTF("%s -> %s\n",
937 		ieee80211_state_name[ostate],
938 		ieee80211_state_name[nstate]);
939 
940 	IEEE80211_UNLOCK(ic);
941 	RUM_LOCK(sc);
942 	usb_callout_stop(&rvp->ratectl_ch);
943 
944 	if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) {
945 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
946 		rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
947 
948 		/*
949 		 * Ignore any errors;
950 		 * any subsequent TX will wakeup it anyway
951 		 */
952 		(void) rum_set_power_state(sc, 0);
953 	}
954 
955 	switch (nstate) {
956 	case IEEE80211_S_INIT:
957 		if (ostate == IEEE80211_S_RUN)
958 			rum_abort_tsf_sync(sc);
959 
960 		break;
961 
962 	case IEEE80211_S_RUN:
963 		if (ostate == IEEE80211_S_SLEEP)
964 			break;		/* already handled */
965 
966 		ni = ieee80211_ref_node(vap->iv_bss);
967 
968 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
969 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
970 			    ni->ni_chan == IEEE80211_CHAN_ANYC) {
971 				ret = EINVAL;
972 				goto run_fail;
973 			}
974 			rum_update_slot_cb(sc, NULL, 0);
975 			rum_enable_mrr(sc);
976 			rum_set_txpreamble(sc);
977 			rum_set_basicrates(sc);
978 			rum_set_maxretry(sc, vap);
979 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
980 			rum_set_bssid(sc, sc->sc_bssid);
981 		}
982 
983 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
984 		    vap->iv_opmode == IEEE80211_M_IBSS) {
985 			if ((ret = rum_alloc_beacon(sc, vap)) != 0)
986 				goto run_fail;
987 		}
988 
989 		if (vap->iv_opmode != IEEE80211_M_MONITOR &&
990 		    vap->iv_opmode != IEEE80211_M_AHDEMO) {
991 			if ((ret = rum_enable_tsf_sync(sc)) != 0)
992 				goto run_fail;
993 		} else
994 			rum_enable_tsf(sc);
995 
996 		/* enable automatic rate adaptation */
997 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
998 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
999 			rum_ratectl_start(sc, ni);
1000 run_fail:
1001 		ieee80211_free_node(ni);
1002 		break;
1003 	case IEEE80211_S_SLEEP:
1004 		/* Implemented for STA mode only. */
1005 		if (vap->iv_opmode != IEEE80211_M_STA)
1006 			break;
1007 
1008 		uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
1009 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1010 			ret = EIO;
1011 			break;
1012 		}
1013 
1014 		uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
1015 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1016 			ret = EIO;
1017 			break;
1018 		}
1019 
1020 		ret = rum_set_power_state(sc, 1);
1021 		if (ret != 0) {
1022 			device_printf(sc->sc_dev,
1023 			    "%s: could not move to the SLEEP state: %s\n",
1024 			    __func__, usbd_errstr(uerror));
1025 		}
1026 		break;
1027 	default:
1028 		break;
1029 	}
1030 	RUM_UNLOCK(sc);
1031 	IEEE80211_LOCK(ic);
1032 	return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret);
1033 }
1034 
1035 static void
1036 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
1037 {
1038 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1039 	struct ieee80211vap *vap;
1040 	struct rum_tx_data *data;
1041 	struct mbuf *m;
1042 	struct usb_page_cache *pc;
1043 	unsigned int len;
1044 	int actlen, sumlen;
1045 
1046 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1047 
1048 	switch (USB_GET_STATE(xfer)) {
1049 	case USB_ST_TRANSFERRED:
1050 		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
1051 
1052 		/* free resources */
1053 		data = usbd_xfer_get_priv(xfer);
1054 		rum_tx_free(data, 0);
1055 		usbd_xfer_set_priv(xfer, NULL);
1056 
1057 		/* FALLTHROUGH */
1058 	case USB_ST_SETUP:
1059 tr_setup:
1060 		data = STAILQ_FIRST(&sc->tx_q);
1061 		if (data) {
1062 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
1063 			m = data->m;
1064 
1065 			if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
1066 				DPRINTFN(0, "data overflow, %u bytes\n",
1067 				    m->m_pkthdr.len);
1068 				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
1069 			}
1070 			pc = usbd_xfer_get_frame(xfer, 0);
1071 			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
1072 			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
1073 			    m->m_pkthdr.len);
1074 
1075 			vap = data->ni->ni_vap;
1076 			if (ieee80211_radiotap_active_vap(vap)) {
1077 				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1078 
1079 				tap->wt_flags = 0;
1080 				tap->wt_rate = data->rate;
1081 				rum_get_tsf(sc, &tap->wt_tsf);
1082 				tap->wt_antenna = sc->tx_ant;
1083 
1084 				ieee80211_radiotap_tx(vap, m);
1085 			}
1086 
1087 			/* align end on a 4-bytes boundary */
1088 			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
1089 			if ((len % 64) == 0)
1090 				len += 4;
1091 
1092 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
1093 			    m->m_pkthdr.len, len);
1094 
1095 			usbd_xfer_set_frame_len(xfer, 0, len);
1096 			usbd_xfer_set_priv(xfer, data);
1097 
1098 			usbd_transfer_submit(xfer);
1099 		}
1100 		rum_start(sc);
1101 		break;
1102 
1103 	default:			/* Error */
1104 		DPRINTFN(11, "transfer error, %s\n",
1105 		    usbd_errstr(error));
1106 
1107 #if defined(__DragonFly__)
1108 		++sc->sc_ic.ic_oerrors;
1109 #else
1110 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1111 #endif
1112 		data = usbd_xfer_get_priv(xfer);
1113 		if (data != NULL) {
1114 			rum_tx_free(data, error);
1115 			usbd_xfer_set_priv(xfer, NULL);
1116 		}
1117 
1118 		if (error != USB_ERR_CANCELLED) {
1119 			if (error == USB_ERR_TIMEOUT)
1120 				device_printf(sc->sc_dev, "device timeout\n");
1121 
1122 			/*
1123 			 * Try to clear stall first, also if other
1124 			 * errors occur, hence clearing stall
1125 			 * introduces a 50 ms delay:
1126 			 */
1127 			usbd_xfer_set_stall(xfer);
1128 			goto tr_setup;
1129 		}
1130 		break;
1131 	}
1132 }
1133 
1134 static void
1135 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
1136 {
1137 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1138 	struct ieee80211com *ic = &sc->sc_ic;
1139 	struct ieee80211_frame_min *wh;
1140 	struct ieee80211_node *ni;
1141 	struct mbuf *m = NULL;
1142 	struct usb_page_cache *pc;
1143 	uint32_t flags;
1144 	uint8_t rssi = 0;
1145 	int len;
1146 
1147 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
1148 
1149 	switch (USB_GET_STATE(xfer)) {
1150 	case USB_ST_TRANSFERRED:
1151 
1152 		DPRINTFN(15, "rx done, actlen=%d\n", len);
1153 
1154 		if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
1155 			DPRINTF("%s: xfer too short %d\n",
1156 			    device_get_nameunit(sc->sc_dev), len);
1157 #if defined(__DragonFly__)
1158 			++ic->ic_ierrors;
1159 #else
1160 			counter_u64_add(ic->ic_ierrors, 1);
1161 #endif
1162 			goto tr_setup;
1163 		}
1164 
1165 		len -= RT2573_RX_DESC_SIZE;
1166 		pc = usbd_xfer_get_frame(xfer, 0);
1167 		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
1168 
1169 		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
1170 		flags = le32toh(sc->sc_rx_desc.flags);
1171 		sc->last_rx_flags = flags;
1172 		if (flags & RT2573_RX_CRC_ERROR) {
1173 			/*
1174 		         * This should not happen since we did not
1175 		         * request to receive those frames when we
1176 		         * filled RUM_TXRX_CSR2:
1177 		         */
1178 			DPRINTFN(5, "PHY or CRC error\n");
1179 #if defined(__DragonFly__)
1180 			++ic->ic_ierrors;
1181 #else
1182 			counter_u64_add(ic->ic_ierrors, 1);
1183 #endif
1184 			goto tr_setup;
1185 		}
1186 		if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) {
1187 			switch (flags & RT2573_RX_DEC_MASK) {
1188 			case RT2573_RX_IV_ERROR:
1189 				DPRINTFN(5, "IV/EIV error\n");
1190 				break;
1191 			case RT2573_RX_MIC_ERROR:
1192 				DPRINTFN(5, "MIC error\n");
1193 				break;
1194 			case RT2573_RX_KEY_ERROR:
1195 				DPRINTFN(5, "Key error\n");
1196 				break;
1197 			}
1198 #if defined(__DragonFly__)
1199 			++ic->ic_ierrors;
1200 #else
1201 			counter_u64_add(ic->ic_ierrors, 1);
1202 #endif
1203 			goto tr_setup;
1204 		}
1205 
1206 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1207 		if (m == NULL) {
1208 			DPRINTF("could not allocate mbuf\n");
1209 #if defined(__DragonFly__)
1210 			++ic->ic_ierrors;
1211 #else
1212 			counter_u64_add(ic->ic_ierrors, 1);
1213 #endif
1214 			goto tr_setup;
1215 		}
1216 		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
1217 		    mtod(m, uint8_t *), len);
1218 
1219 		wh = mtod(m, struct ieee80211_frame_min *);
1220 
1221 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1222 		    (flags & RT2573_RX_CIP_MASK) !=
1223 		     RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) {
1224 			wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1225 			m->m_flags |= M_WEP;
1226 		}
1227 
1228 		/* finalize mbuf */
1229 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
1230 
1231 		if (ieee80211_radiotap_active(ic)) {
1232 			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
1233 
1234 			tap->wr_flags = 0;
1235 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
1236 			    (flags & RT2573_RX_OFDM) ?
1237 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
1238 			rum_get_tsf(sc, &tap->wr_tsf);
1239 			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
1240 			tap->wr_antnoise = RT2573_NOISE_FLOOR;
1241 			tap->wr_antenna = sc->rx_ant;
1242 		}
1243 		/* FALLTHROUGH */
1244 	case USB_ST_SETUP:
1245 tr_setup:
1246 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
1247 		usbd_transfer_submit(xfer);
1248 
1249 		/*
1250 		 * At the end of a USB callback it is always safe to unlock
1251 		 * the private mutex of a device! That is why we do the
1252 		 * "ieee80211_input" here, and not some lines up!
1253 		 */
1254 		RUM_UNLOCK(sc);
1255 		if (m) {
1256 			if (m->m_len >= sizeof(struct ieee80211_frame_min))
1257 				ni = ieee80211_find_rxnode(ic, wh);
1258 			else
1259 				ni = NULL;
1260 
1261 			if (ni != NULL) {
1262 				(void) ieee80211_input(ni, m, rssi,
1263 				    RT2573_NOISE_FLOOR);
1264 				ieee80211_free_node(ni);
1265 			} else
1266 				(void) ieee80211_input_all(ic, m, rssi,
1267 				    RT2573_NOISE_FLOOR);
1268 		}
1269 		RUM_LOCK(sc);
1270 		rum_start(sc);
1271 		return;
1272 
1273 	default:			/* Error */
1274 		if (error != USB_ERR_CANCELLED) {
1275 			/* try to clear stall first */
1276 			usbd_xfer_set_stall(xfer);
1277 			goto tr_setup;
1278 		}
1279 		return;
1280 	}
1281 }
1282 
1283 static uint8_t
1284 rum_plcp_signal(int rate)
1285 {
1286 	switch (rate) {
1287 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1288 	case 12:	return 0xb;
1289 	case 18:	return 0xf;
1290 	case 24:	return 0xa;
1291 	case 36:	return 0xe;
1292 	case 48:	return 0x9;
1293 	case 72:	return 0xd;
1294 	case 96:	return 0x8;
1295 	case 108:	return 0xc;
1296 
1297 	/* CCK rates (NB: not IEEE std, device-specific) */
1298 	case 2:		return 0x0;
1299 	case 4:		return 0x1;
1300 	case 11:	return 0x2;
1301 	case 22:	return 0x3;
1302 	}
1303 	return 0xff;		/* XXX unsupported/unknown rate */
1304 }
1305 
1306 /*
1307  * Map net80211 cipher to RT2573 security mode.
1308  */
1309 static uint8_t
1310 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen)
1311 {
1312 	switch (cipher) {
1313 	case IEEE80211_CIPHER_WEP:
1314 		return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104);
1315 	case IEEE80211_CIPHER_TKIP:
1316 		return RT2573_MODE_TKIP;
1317 	case IEEE80211_CIPHER_AES_CCM:
1318 		return RT2573_MODE_AES_CCMP;
1319 	default:
1320 		device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
1321 		return 0;
1322 	}
1323 }
1324 
1325 static void
1326 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1327     struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid,
1328     int hdrlen, int len, int rate)
1329 {
1330 	struct ieee80211com *ic = &sc->sc_ic;
1331 	struct wmeParams *wmep = &sc->wme_params[qid];
1332 	uint16_t plcp_length;
1333 	int remainder;
1334 
1335 	flags |= RT2573_TX_VALID;
1336 	flags |= len << 16;
1337 
1338 	if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1339 		const struct ieee80211_cipher *cip = k->wk_cipher;
1340 
1341 		len += cip->ic_header + cip->ic_trailer + cip->ic_miclen;
1342 
1343 		desc->eiv = 0;		/* for WEP */
1344 		cip->ic_setiv(k, (uint8_t *)&desc->iv);
1345 	}
1346 
1347 	/* setup PLCP fields */
1348 	desc->plcp_signal  = rum_plcp_signal(rate);
1349 	desc->plcp_service = 4;
1350 
1351 	len += IEEE80211_CRC_LEN;
1352 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1353 		flags |= RT2573_TX_OFDM;
1354 
1355 		plcp_length = len & 0xfff;
1356 		desc->plcp_length_hi = plcp_length >> 6;
1357 		desc->plcp_length_lo = plcp_length & 0x3f;
1358 	} else {
1359 		if (rate == 0)
1360 			rate = 2;	/* avoid division by zero */
1361 		plcp_length = howmany(16 * len, rate);
1362 		if (rate == 22) {
1363 			remainder = (16 * len) % 22;
1364 			if (remainder != 0 && remainder < 7)
1365 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1366 		}
1367 		desc->plcp_length_hi = plcp_length >> 8;
1368 		desc->plcp_length_lo = plcp_length & 0xff;
1369 
1370 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1371 			desc->plcp_signal |= 0x08;
1372 	}
1373 
1374 	desc->flags = htole32(flags);
1375 	desc->hdrlen = hdrlen;
1376 	desc->xflags = xflags;
1377 
1378 	desc->wme = htole16(RT2573_QID(qid) |
1379 	    RT2573_AIFSN(wmep->wmep_aifsn) |
1380 	    RT2573_LOGCWMIN(wmep->wmep_logcwmin) |
1381 	    RT2573_LOGCWMAX(wmep->wmep_logcwmax));
1382 }
1383 
1384 static int
1385 rum_sendprot(struct rum_softc *sc,
1386     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1387 {
1388 	struct ieee80211com *ic = ni->ni_ic;
1389 	const struct ieee80211_frame *wh;
1390 	struct rum_tx_data *data;
1391 	struct mbuf *mprot;
1392 	int protrate, pktlen, flags, isshort;
1393 	uint16_t dur;
1394 
1395 	RUM_LOCK_ASSERT(sc);
1396 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1397 	    ("protection %d", prot));
1398 
1399 	wh = mtod(m, const struct ieee80211_frame *);
1400 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1401 
1402 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1403 
1404 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1405 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1406 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1407 	flags = 0;
1408 	if (prot == IEEE80211_PROT_RTSCTS) {
1409 		/* NB: CTS is the same size as an ACK */
1410 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1411 		flags |= RT2573_TX_NEED_ACK;
1412 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1413 	} else {
1414 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1415 	}
1416 	if (mprot == NULL) {
1417 		/* XXX stat + msg */
1418 		return (ENOBUFS);
1419 	}
1420 	data = STAILQ_FIRST(&sc->tx_free);
1421 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1422 	sc->tx_nfree--;
1423 
1424 	data->m = mprot;
1425 	data->ni = ieee80211_ref_node(ni);
1426 	data->rate = protrate;
1427 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0,
1428 	    mprot->m_pkthdr.len, protrate);
1429 
1430 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1431 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1432 
1433 	return 0;
1434 }
1435 
1436 static uint32_t
1437 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni,
1438     const struct ieee80211_key *k)
1439 {
1440 	struct ieee80211vap *vap = ni->ni_vap;
1441 	u_int cipher;
1442 	uint32_t flags = 0;
1443 	uint8_t mode, pos;
1444 
1445 	if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1446 		cipher = k->wk_cipher->ic_cipher;
1447 		pos = k->wk_keyix;
1448 		mode = rum_crypto_mode(sc, cipher, k->wk_keylen);
1449 		if (mode == 0)
1450 			return 0;
1451 
1452 		flags |= RT2573_TX_CIP_MODE(mode);
1453 
1454 		/* Do not trust GROUP flag */
1455 		if (!(k >= &vap->iv_nw_keys[0] &&
1456 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]))
1457 			flags |= RT2573_TX_KEY_PAIR;
1458 		else
1459 			pos += 0 * RT2573_SKEY_MAX;	/* vap id */
1460 
1461 		flags |= RT2573_TX_KEY_ID(pos);
1462 
1463 		if (cipher == IEEE80211_CIPHER_TKIP)
1464 			flags |= RT2573_TX_TKIPMIC;
1465 	}
1466 
1467 	return flags;
1468 }
1469 
1470 static int
1471 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1472 {
1473 	struct ieee80211vap *vap = ni->ni_vap;
1474 	struct ieee80211com *ic = &sc->sc_ic;
1475 	struct rum_tx_data *data;
1476 	struct ieee80211_frame *wh;
1477 	const struct ieee80211_txparam *tp;
1478 	struct ieee80211_key *k = NULL;
1479 	uint32_t flags = 0;
1480 	uint16_t dur;
1481 	uint8_t ac, type, xflags = 0;
1482 	int hdrlen;
1483 
1484 	RUM_LOCK_ASSERT(sc);
1485 
1486 	data = STAILQ_FIRST(&sc->tx_free);
1487 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1488 	sc->tx_nfree--;
1489 
1490 	wh = mtod(m0, struct ieee80211_frame *);
1491 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1492 	hdrlen = ieee80211_anyhdrsize(wh);
1493 	ac = M_WME_GETAC(m0);
1494 
1495 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1496 		k = ieee80211_crypto_get_txkey(ni, m0);
1497 		if (k == NULL)
1498 			return (ENOENT);
1499 
1500 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1501 		    !k->wk_cipher->ic_encap(k, m0))
1502 			return (ENOBUFS);
1503 
1504 		wh = mtod(m0, struct ieee80211_frame *);
1505 	}
1506 
1507 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1508 
1509 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1510 		flags |= RT2573_TX_NEED_ACK;
1511 
1512 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1513 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1514 		USETW(wh->i_dur, dur);
1515 
1516 		/* tell hardware to add timestamp for probe responses */
1517 		if (type == IEEE80211_FC0_TYPE_MGT &&
1518 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1519 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1520 			flags |= RT2573_TX_TIMESTAMP;
1521 	}
1522 
1523 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1524 		xflags |= RT2573_TX_HWSEQ;
1525 
1526 	if (k != NULL)
1527 		flags |= rum_tx_crypto_flags(sc, ni, k);
1528 
1529 	data->m = m0;
1530 	data->ni = ni;
1531 	data->rate = tp->mgmtrate;
1532 
1533 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1534 	    m0->m_pkthdr.len, tp->mgmtrate);
1535 
1536 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1537 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1538 
1539 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1540 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1541 
1542 	return (0);
1543 }
1544 
1545 static int
1546 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1547     const struct ieee80211_bpf_params *params)
1548 {
1549 	struct ieee80211com *ic = ni->ni_ic;
1550 	struct ieee80211_frame *wh;
1551 	struct rum_tx_data *data;
1552 	uint32_t flags;
1553 	uint8_t ac, type, xflags = 0;
1554 	int rate, error;
1555 
1556 	RUM_LOCK_ASSERT(sc);
1557 
1558 	wh = mtod(m0, struct ieee80211_frame *);
1559 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1560 
1561 	ac = params->ibp_pri & 3;
1562 
1563 	rate = params->ibp_rate0;
1564 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
1565 		return (EINVAL);
1566 
1567 	flags = 0;
1568 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1569 		flags |= RT2573_TX_NEED_ACK;
1570 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1571 		error = rum_sendprot(sc, m0, ni,
1572 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1573 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1574 		    rate);
1575 		if (error || sc->tx_nfree == 0)
1576 			return (ENOBUFS);
1577 
1578 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1579 	}
1580 
1581 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1582 		xflags |= RT2573_TX_HWSEQ;
1583 
1584 	data = STAILQ_FIRST(&sc->tx_free);
1585 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1586 	sc->tx_nfree--;
1587 
1588 	data->m = m0;
1589 	data->ni = ni;
1590 	data->rate = rate;
1591 
1592 	/* XXX need to setup descriptor ourself */
1593 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0,
1594 	    m0->m_pkthdr.len, rate);
1595 
1596 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1597 	    m0->m_pkthdr.len, rate);
1598 
1599 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1600 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1601 
1602 	return 0;
1603 }
1604 
1605 static int
1606 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1607 {
1608 	struct ieee80211vap *vap = ni->ni_vap;
1609 	struct ieee80211com *ic = &sc->sc_ic;
1610 	struct rum_tx_data *data;
1611 	struct ieee80211_frame *wh;
1612 	const struct ieee80211_txparam *tp;
1613 	struct ieee80211_key *k = NULL;
1614 	uint32_t flags = 0;
1615 	uint16_t dur;
1616 	uint8_t ac, type, qos, xflags = 0;
1617 	int error, hdrlen, rate;
1618 
1619 	RUM_LOCK_ASSERT(sc);
1620 
1621 	wh = mtod(m0, struct ieee80211_frame *);
1622 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1623 	hdrlen = ieee80211_anyhdrsize(wh);
1624 
1625 	if (IEEE80211_QOS_HAS_SEQ(wh))
1626 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
1627 	else
1628 		qos = 0;
1629 	ac = M_WME_GETAC(m0);
1630 
1631 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1632 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1633 		rate = tp->mcastrate;
1634 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1635 		rate = tp->ucastrate;
1636 	else
1637 		rate = ni->ni_txrate;
1638 
1639 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1640 		k = ieee80211_crypto_get_txkey(ni, m0);
1641 		if (k == NULL) {
1642 			m_freem(m0);
1643 			return (ENOENT);
1644 		}
1645 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1646 		    !k->wk_cipher->ic_encap(k, m0)) {
1647 			m_freem(m0);
1648 			return (ENOBUFS);
1649 		}
1650 
1651 		/* packet header may have moved, reset our local pointer */
1652 		wh = mtod(m0, struct ieee80211_frame *);
1653 	}
1654 
1655 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1656 		xflags |= RT2573_TX_HWSEQ;
1657 
1658 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1659 		int prot = IEEE80211_PROT_NONE;
1660 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1661 			prot = IEEE80211_PROT_RTSCTS;
1662 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1663 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1664 			prot = ic->ic_protmode;
1665 		if (prot != IEEE80211_PROT_NONE) {
1666 			error = rum_sendprot(sc, m0, ni, prot, rate);
1667 			if (error || sc->tx_nfree == 0) {
1668 				m_freem(m0);
1669 				return ENOBUFS;
1670 			}
1671 			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1672 		}
1673 	}
1674 
1675 	if (k != NULL)
1676 		flags |= rum_tx_crypto_flags(sc, ni, k);
1677 
1678 	data = STAILQ_FIRST(&sc->tx_free);
1679 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1680 	sc->tx_nfree--;
1681 
1682 	data->m = m0;
1683 	data->ni = ni;
1684 	data->rate = rate;
1685 
1686 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1687 		/* Unicast frame, check if an ACK is expected. */
1688 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
1689 		    IEEE80211_QOS_ACKPOLICY_NOACK)
1690 			flags |= RT2573_TX_NEED_ACK;
1691 
1692 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1693 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1694 		USETW(wh->i_dur, dur);
1695 	}
1696 
1697 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1698 	    m0->m_pkthdr.len, rate);
1699 
1700 	DPRINTFN(10, "sending frame len=%d rate=%d\n",
1701 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1702 
1703 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1704 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1705 
1706 	return 0;
1707 }
1708 
1709 static int
1710 rum_transmit(struct ieee80211com *ic, struct mbuf *m)
1711 {
1712 	struct rum_softc *sc = ic->ic_softc;
1713 	int error;
1714 
1715 	RUM_LOCK(sc);
1716 	if (!sc->sc_running) {
1717 		RUM_UNLOCK(sc);
1718 		return (ENXIO);
1719 	}
1720 	error = mbufq_enqueue(&sc->sc_snd, m);
1721 	if (error) {
1722 		RUM_UNLOCK(sc);
1723 		return (error);
1724 	}
1725 	rum_start(sc);
1726 	RUM_UNLOCK(sc);
1727 
1728 	return (0);
1729 }
1730 
1731 static void
1732 rum_start(struct rum_softc *sc)
1733 {
1734 	struct ieee80211_node *ni;
1735 	struct mbuf *m;
1736 
1737 	RUM_LOCK_ASSERT(sc);
1738 
1739 	if (!sc->sc_running)
1740 		return;
1741 
1742 	while (sc->tx_nfree >= RUM_TX_MINFREE &&
1743 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1744 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1745 		if (rum_tx_data(sc, m, ni) != 0) {
1746 			if_inc_counter(ni->ni_vap->iv_ifp,
1747 			    IFCOUNTER_OERRORS, 1);
1748 			ieee80211_free_node(ni);
1749 			break;
1750 		}
1751 	}
1752 }
1753 
1754 static void
1755 rum_parent(struct ieee80211com *ic)
1756 {
1757 	struct rum_softc *sc = ic->ic_softc;
1758 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1759 
1760 	RUM_LOCK(sc);
1761 	if (sc->sc_detached) {
1762 		RUM_UNLOCK(sc);
1763 		return;
1764 	}
1765 	RUM_UNLOCK(sc);
1766 
1767 	if (ic->ic_nrunning > 0) {
1768 		if (rum_init(sc) == 0)
1769 			ieee80211_start_all(ic);
1770 		else
1771 			ieee80211_stop(vap);
1772 	} else
1773 		rum_stop(sc);
1774 }
1775 
1776 static void
1777 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1778 {
1779 	struct usb_device_request req;
1780 	usb_error_t error;
1781 
1782 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1783 	req.bRequest = RT2573_READ_EEPROM;
1784 	USETW(req.wValue, 0);
1785 	USETW(req.wIndex, addr);
1786 	USETW(req.wLength, len);
1787 
1788 	error = rum_do_request(sc, &req, buf);
1789 	if (error != 0) {
1790 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1791 		    usbd_errstr(error));
1792 	}
1793 }
1794 
1795 static uint32_t
1796 rum_read(struct rum_softc *sc, uint16_t reg)
1797 {
1798 	uint32_t val;
1799 
1800 	rum_read_multi(sc, reg, &val, sizeof val);
1801 
1802 	return le32toh(val);
1803 }
1804 
1805 static void
1806 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1807 {
1808 	struct usb_device_request req;
1809 	usb_error_t error;
1810 
1811 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1812 	req.bRequest = RT2573_READ_MULTI_MAC;
1813 	USETW(req.wValue, 0);
1814 	USETW(req.wIndex, reg);
1815 	USETW(req.wLength, len);
1816 
1817 	error = rum_do_request(sc, &req, buf);
1818 	if (error != 0) {
1819 		device_printf(sc->sc_dev,
1820 		    "could not multi read MAC register: %s\n",
1821 		    usbd_errstr(error));
1822 	}
1823 }
1824 
1825 static usb_error_t
1826 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1827 {
1828 	uint32_t tmp = htole32(val);
1829 
1830 	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1831 }
1832 
1833 static usb_error_t
1834 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1835 {
1836 	struct usb_device_request req;
1837 	usb_error_t error;
1838 	size_t offset;
1839 
1840 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1841 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1842 	USETW(req.wValue, 0);
1843 
1844 	/* write at most 64 bytes at a time */
1845 	for (offset = 0; offset < len; offset += 64) {
1846 		USETW(req.wIndex, reg + offset);
1847 		USETW(req.wLength, MIN(len - offset, 64));
1848 
1849 		error = rum_do_request(sc, &req, (char *)buf + offset);
1850 		if (error != 0) {
1851 			device_printf(sc->sc_dev,
1852 			    "could not multi write MAC register: %s\n",
1853 			    usbd_errstr(error));
1854 			return (error);
1855 		}
1856 	}
1857 
1858 	return (USB_ERR_NORMAL_COMPLETION);
1859 }
1860 
1861 static usb_error_t
1862 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1863 {
1864 	return (rum_write(sc, reg, rum_read(sc, reg) | mask));
1865 }
1866 
1867 static usb_error_t
1868 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1869 {
1870 	return (rum_write(sc, reg, rum_read(sc, reg) & ~mask));
1871 }
1872 
1873 static usb_error_t
1874 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset)
1875 {
1876 	return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set));
1877 }
1878 
1879 static int
1880 rum_bbp_busy(struct rum_softc *sc)
1881 {
1882 	int ntries;
1883 
1884 	for (ntries = 0; ntries < 100; ntries++) {
1885 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1886 			break;
1887 		if (rum_pause(sc, hz / 100))
1888 			break;
1889 	}
1890 	if (ntries == 100)
1891 		return (ETIMEDOUT);
1892 
1893 	return (0);
1894 }
1895 
1896 static void
1897 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1898 {
1899 	uint32_t tmp;
1900 
1901 	DPRINTFN(2, "reg=0x%08x\n", reg);
1902 
1903 	if (rum_bbp_busy(sc) != 0) {
1904 		device_printf(sc->sc_dev, "could not write to BBP\n");
1905 		return;
1906 	}
1907 
1908 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1909 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1910 }
1911 
1912 static uint8_t
1913 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1914 {
1915 	uint32_t val;
1916 	int ntries;
1917 
1918 	DPRINTFN(2, "reg=0x%08x\n", reg);
1919 
1920 	if (rum_bbp_busy(sc) != 0) {
1921 		device_printf(sc->sc_dev, "could not read BBP\n");
1922 		return 0;
1923 	}
1924 
1925 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1926 	rum_write(sc, RT2573_PHY_CSR3, val);
1927 
1928 	for (ntries = 0; ntries < 100; ntries++) {
1929 		val = rum_read(sc, RT2573_PHY_CSR3);
1930 		if (!(val & RT2573_BBP_BUSY))
1931 			return val & 0xff;
1932 		if (rum_pause(sc, hz / 100))
1933 			break;
1934 	}
1935 
1936 	device_printf(sc->sc_dev, "could not read BBP\n");
1937 	return 0;
1938 }
1939 
1940 static void
1941 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1942 {
1943 	uint32_t tmp;
1944 	int ntries;
1945 
1946 	for (ntries = 0; ntries < 100; ntries++) {
1947 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1948 			break;
1949 		if (rum_pause(sc, hz / 100))
1950 			break;
1951 	}
1952 	if (ntries == 100) {
1953 		device_printf(sc->sc_dev, "could not write to RF\n");
1954 		return;
1955 	}
1956 
1957 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1958 	    (reg & 3);
1959 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1960 
1961 	/* remember last written value in sc */
1962 	sc->rf_regs[reg] = val;
1963 
1964 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1965 }
1966 
1967 static void
1968 rum_select_antenna(struct rum_softc *sc)
1969 {
1970 	uint8_t bbp4, bbp77;
1971 	uint32_t tmp;
1972 
1973 	bbp4  = rum_bbp_read(sc, 4);
1974 	bbp77 = rum_bbp_read(sc, 77);
1975 
1976 	/* TBD */
1977 
1978 	/* make sure Rx is disabled before switching antenna */
1979 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1980 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1981 
1982 	rum_bbp_write(sc,  4, bbp4);
1983 	rum_bbp_write(sc, 77, bbp77);
1984 
1985 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1986 }
1987 
1988 /*
1989  * Enable multi-rate retries for frames sent at OFDM rates.
1990  * In 802.11b/g mode, allow fallback to CCK rates.
1991  */
1992 static void
1993 rum_enable_mrr(struct rum_softc *sc)
1994 {
1995 	struct ieee80211com *ic = &sc->sc_ic;
1996 
1997 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
1998 		rum_setbits(sc, RT2573_TXRX_CSR4,
1999 		    RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK);
2000 	} else {
2001 		rum_modbits(sc, RT2573_TXRX_CSR4,
2002 		    RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK);
2003 	}
2004 }
2005 
2006 static void
2007 rum_set_txpreamble(struct rum_softc *sc)
2008 {
2009 	struct ieee80211com *ic = &sc->sc_ic;
2010 
2011 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2012 		rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2013 	else
2014 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2015 }
2016 
2017 static void
2018 rum_set_basicrates(struct rum_softc *sc)
2019 {
2020 	struct ieee80211com *ic = &sc->sc_ic;
2021 
2022 	/* update basic rate set */
2023 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2024 		/* 11b basic rates: 1, 2Mbps */
2025 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
2026 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2027 		/* 11a basic rates: 6, 12, 24Mbps */
2028 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
2029 	} else {
2030 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2031 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
2032 	}
2033 }
2034 
2035 /*
2036  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2037  * driver.
2038  */
2039 static void
2040 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
2041 {
2042 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2043 
2044 	/* update all BBP registers that depend on the band */
2045 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2046 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2047 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2048 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2049 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2050 	}
2051 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2052 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2053 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2054 	}
2055 
2056 	sc->bbp17 = bbp17;
2057 	rum_bbp_write(sc,  17, bbp17);
2058 	rum_bbp_write(sc,  96, bbp96);
2059 	rum_bbp_write(sc, 104, bbp104);
2060 
2061 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2062 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2063 		rum_bbp_write(sc, 75, 0x80);
2064 		rum_bbp_write(sc, 86, 0x80);
2065 		rum_bbp_write(sc, 88, 0x80);
2066 	}
2067 
2068 	rum_bbp_write(sc, 35, bbp35);
2069 	rum_bbp_write(sc, 97, bbp97);
2070 	rum_bbp_write(sc, 98, bbp98);
2071 
2072 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
2073 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ,
2074 		    RT2573_PA_PE_5GHZ);
2075 	} else {
2076 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ,
2077 		    RT2573_PA_PE_2GHZ);
2078 	}
2079 }
2080 
2081 static void
2082 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
2083 {
2084 	struct ieee80211com *ic = &sc->sc_ic;
2085 	const struct rfprog *rfprog;
2086 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
2087 	int8_t power;
2088 	int i, chan;
2089 
2090 	chan = ieee80211_chan2ieee(ic, c);
2091 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2092 		return;
2093 
2094 	/* select the appropriate RF settings based on what EEPROM says */
2095 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
2096 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
2097 
2098 	/* find the settings for this channel (we know it exists) */
2099 	for (i = 0; rfprog[i].chan != chan; i++);
2100 
2101 	power = sc->txpow[i];
2102 	if (power < 0) {
2103 		bbp94 += power;
2104 		power = 0;
2105 	} else if (power > 31) {
2106 		bbp94 += power - 31;
2107 		power = 31;
2108 	}
2109 
2110 	/*
2111 	 * If we are switching from the 2GHz band to the 5GHz band or
2112 	 * vice-versa, BBP registers need to be reprogrammed.
2113 	 */
2114 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
2115 		rum_select_band(sc, c);
2116 		rum_select_antenna(sc);
2117 	}
2118 	ic->ic_curchan = c;
2119 
2120 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2121 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2122 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2123 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2124 
2125 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2126 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2127 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
2128 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2129 
2130 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2131 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2132 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2133 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2134 
2135 	rum_pause(sc, hz / 100);
2136 
2137 	/* enable smart mode for MIMO-capable RFs */
2138 	bbp3 = rum_bbp_read(sc, 3);
2139 
2140 	bbp3 &= ~RT2573_SMART_MODE;
2141 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
2142 		bbp3 |= RT2573_SMART_MODE;
2143 
2144 	rum_bbp_write(sc, 3, bbp3);
2145 
2146 	if (bbp94 != RT2573_BBPR94_DEFAULT)
2147 		rum_bbp_write(sc, 94, bbp94);
2148 
2149 	/* give the chip some extra time to do the switchover */
2150 	rum_pause(sc, hz / 100);
2151 }
2152 
2153 static void
2154 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap)
2155 {
2156 	const struct ieee80211_txparam *tp;
2157 	struct ieee80211_node *ni = vap->iv_bss;
2158 	struct rum_vap *rvp = RUM_VAP(vap);
2159 
2160 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2161 	rvp->maxretry = tp->maxretry < 0xf ? tp->maxretry : 0xf;
2162 
2163 	rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) |
2164 	    RT2573_LONG_RETRY(rvp->maxretry),
2165 	    RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK);
2166 }
2167 
2168 /*
2169  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2170  * and HostAP operating modes.
2171  */
2172 static int
2173 rum_enable_tsf_sync(struct rum_softc *sc)
2174 {
2175 	struct ieee80211com *ic = &sc->sc_ic;
2176 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2177 	uint32_t tmp;
2178 	uint16_t bintval;
2179 
2180 	if (vap->iv_opmode != IEEE80211_M_STA) {
2181 		/*
2182 		 * Change default 16ms TBTT adjustment to 8ms.
2183 		 * Must be done before enabling beacon generation.
2184 		 */
2185 		if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0)
2186 			return EIO;
2187 	}
2188 
2189 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
2190 
2191 	/* set beacon interval (in 1/16ms unit) */
2192 	bintval = vap->iv_bss->ni_intval;
2193 	tmp |= bintval * 16;
2194 	tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN;
2195 
2196 	switch (vap->iv_opmode) {
2197 	case IEEE80211_M_STA:
2198 		/*
2199 		 * Local TSF is always updated with remote TSF on beacon
2200 		 * reception.
2201 		 */
2202 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA);
2203 		break;
2204 	case IEEE80211_M_IBSS:
2205 		/*
2206 		 * Local TSF is updated with remote TSF on beacon reception
2207 		 * only if the remote TSF is greater than local TSF.
2208 		 */
2209 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS);
2210 		tmp |= RT2573_BCN_TX_EN;
2211 		break;
2212 	case IEEE80211_M_HOSTAP:
2213 		/* SYNC with nobody */
2214 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP);
2215 		tmp |= RT2573_BCN_TX_EN;
2216 		break;
2217 	default:
2218 		device_printf(sc->sc_dev,
2219 		    "Enabling TSF failed. undefined opmode %d\n",
2220 		    vap->iv_opmode);
2221 		return EINVAL;
2222 	}
2223 
2224 	if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0)
2225 		return EIO;
2226 
2227 	/* refresh current sleep time */
2228 	return (rum_set_sleep_time(sc, bintval));
2229 }
2230 
2231 static void
2232 rum_enable_tsf(struct rum_softc *sc)
2233 {
2234 	rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN |
2235 	    RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff);
2236 }
2237 
2238 static void
2239 rum_abort_tsf_sync(struct rum_softc *sc)
2240 {
2241 	rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff);
2242 }
2243 
2244 static void
2245 rum_get_tsf(struct rum_softc *sc, uint64_t *buf)
2246 {
2247 	rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf));
2248 }
2249 
2250 static void
2251 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id)
2252 {
2253 	struct ieee80211com *ic = &sc->sc_ic;
2254 	uint8_t slottime;
2255 
2256 	slottime = IEEE80211_GET_SLOTTIME(ic);
2257 
2258 	rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff);
2259 
2260 	DPRINTF("setting slot time to %uus\n", slottime);
2261 }
2262 
2263 static void
2264 rum_update_slot(struct ieee80211com *ic)
2265 {
2266 	rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb);
2267 }
2268 
2269 static int
2270 rum_wme_update(struct ieee80211com *ic)
2271 {
2272 	const struct wmeParams *chanp =
2273 	    ic->ic_wme.wme_chanParams.cap_wmeParams;
2274 	struct rum_softc *sc = ic->ic_softc;
2275 	int error = 0;
2276 
2277 	RUM_LOCK(sc);
2278 	error = rum_write(sc, RT2573_AIFSN_CSR,
2279 	    chanp[WME_AC_VO].wmep_aifsn  << 12 |
2280 	    chanp[WME_AC_VI].wmep_aifsn  <<  8 |
2281 	    chanp[WME_AC_BK].wmep_aifsn  <<  4 |
2282 	    chanp[WME_AC_BE].wmep_aifsn);
2283 	if (error)
2284 		goto print_err;
2285 	error = rum_write(sc, RT2573_CWMIN_CSR,
2286 	    chanp[WME_AC_VO].wmep_logcwmin << 12 |
2287 	    chanp[WME_AC_VI].wmep_logcwmin <<  8 |
2288 	    chanp[WME_AC_BK].wmep_logcwmin <<  4 |
2289 	    chanp[WME_AC_BE].wmep_logcwmin);
2290 	if (error)
2291 		goto print_err;
2292 	error = rum_write(sc, RT2573_CWMAX_CSR,
2293 	    chanp[WME_AC_VO].wmep_logcwmax << 12 |
2294 	    chanp[WME_AC_VI].wmep_logcwmax <<  8 |
2295 	    chanp[WME_AC_BK].wmep_logcwmax <<  4 |
2296 	    chanp[WME_AC_BE].wmep_logcwmax);
2297 	if (error)
2298 		goto print_err;
2299 	error = rum_write(sc, RT2573_TXOP01_CSR,
2300 	    chanp[WME_AC_BK].wmep_txopLimit << 16 |
2301 	    chanp[WME_AC_BE].wmep_txopLimit);
2302 	if (error)
2303 		goto print_err;
2304 	error = rum_write(sc, RT2573_TXOP23_CSR,
2305 	    chanp[WME_AC_VO].wmep_txopLimit << 16 |
2306 	    chanp[WME_AC_VI].wmep_txopLimit);
2307 	if (error)
2308 		goto print_err;
2309 
2310 	memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC);
2311 
2312 print_err:
2313 	RUM_UNLOCK(sc);
2314 	if (error != 0) {
2315 		device_printf(sc->sc_dev, "%s: WME update failed, error %d\n",
2316 		    __func__, error);
2317 	}
2318 
2319 	return (error);
2320 }
2321 
2322 static void
2323 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
2324 {
2325 
2326 	rum_write(sc, RT2573_MAC_CSR4,
2327 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2328 	rum_write(sc, RT2573_MAC_CSR5,
2329 	    bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1));
2330 }
2331 
2332 static void
2333 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
2334 {
2335 
2336 	rum_write(sc, RT2573_MAC_CSR2,
2337 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2338 	rum_write(sc, RT2573_MAC_CSR3,
2339 	    addr[4] | addr[5] << 8 | 0xff << 16);
2340 }
2341 
2342 static void
2343 rum_setpromisc(struct rum_softc *sc)
2344 {
2345 	struct ieee80211com *ic = &sc->sc_ic;
2346 
2347 	if (ic->ic_promisc == 0)
2348 		rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2349 	else
2350 		rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2351 
2352 	DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ?
2353 	    "entering" : "leaving");
2354 }
2355 
2356 static void
2357 rum_update_promisc(struct ieee80211com *ic)
2358 {
2359 	struct rum_softc *sc = ic->ic_softc;
2360 
2361 	RUM_LOCK(sc);
2362 	if (sc->sc_running)
2363 		rum_setpromisc(sc);
2364 	RUM_UNLOCK(sc);
2365 }
2366 
2367 static void
2368 rum_update_mcast(struct ieee80211com *ic)
2369 {
2370 	/* Ignore. */
2371 }
2372 
2373 static const char *
2374 rum_get_rf(int rev)
2375 {
2376 	switch (rev) {
2377 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
2378 	case RT2573_RF_2528:	return "RT2528";
2379 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
2380 	case RT2573_RF_5226:	return "RT5226";
2381 	default:		return "unknown";
2382 	}
2383 }
2384 
2385 static void
2386 rum_read_eeprom(struct rum_softc *sc)
2387 {
2388 	uint16_t val;
2389 #ifdef RUM_DEBUG
2390 	int i;
2391 #endif
2392 
2393 	/* read MAC address */
2394 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
2395 
2396 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
2397 	val = le16toh(val);
2398 	sc->rf_rev =   (val >> 11) & 0x1f;
2399 	sc->hw_radio = (val >> 10) & 0x1;
2400 	sc->rx_ant =   (val >> 4)  & 0x3;
2401 	sc->tx_ant =   (val >> 2)  & 0x3;
2402 	sc->nb_ant =   val & 0x3;
2403 
2404 	DPRINTF("RF revision=%d\n", sc->rf_rev);
2405 
2406 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
2407 	val = le16toh(val);
2408 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2409 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2410 
2411 	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2412 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);
2413 
2414 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
2415 	val = le16toh(val);
2416 	if ((val & 0xff) != 0xff)
2417 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2418 
2419 	/* Only [-10, 10] is valid */
2420 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2421 		sc->rssi_2ghz_corr = 0;
2422 
2423 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
2424 	val = le16toh(val);
2425 	if ((val & 0xff) != 0xff)
2426 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2427 
2428 	/* Only [-10, 10] is valid */
2429 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2430 		sc->rssi_5ghz_corr = 0;
2431 
2432 	if (sc->ext_2ghz_lna)
2433 		sc->rssi_2ghz_corr -= 14;
2434 	if (sc->ext_5ghz_lna)
2435 		sc->rssi_5ghz_corr -= 14;
2436 
2437 	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2438 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
2439 
2440 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2441 	val = le16toh(val);
2442 	if ((val & 0xff) != 0xff)
2443 		sc->rffreq = val & 0xff;
2444 
2445 	DPRINTF("RF freq=%d\n", sc->rffreq);
2446 
2447 	/* read Tx power for all a/b/g channels */
2448 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2449 	/* XXX default Tx power for 802.11a channels */
2450 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2451 #ifdef RUM_DEBUG
2452 	for (i = 0; i < 14; i++)
2453 		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
2454 #endif
2455 
2456 	/* read default values for BBP registers */
2457 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2458 #ifdef RUM_DEBUG
2459 	for (i = 0; i < 14; i++) {
2460 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2461 			continue;
2462 		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2463 		    sc->bbp_prom[i].val);
2464 	}
2465 #endif
2466 }
2467 
2468 static int
2469 rum_bbp_wakeup(struct rum_softc *sc)
2470 {
2471 	unsigned int ntries;
2472 
2473 	for (ntries = 0; ntries < 100; ntries++) {
2474 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2475 			break;
2476 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2477 		if (rum_pause(sc, hz / 100))
2478 			break;
2479 	}
2480 	if (ntries == 100) {
2481 		device_printf(sc->sc_dev,
2482 		    "timeout waiting for BBP/RF to wakeup\n");
2483 		return (ETIMEDOUT);
2484 	}
2485 
2486 	return (0);
2487 }
2488 
2489 static int
2490 rum_bbp_init(struct rum_softc *sc)
2491 {
2492 	int i, ntries;
2493 
2494 	/* wait for BBP to be ready */
2495 	for (ntries = 0; ntries < 100; ntries++) {
2496 		const uint8_t val = rum_bbp_read(sc, 0);
2497 		if (val != 0 && val != 0xff)
2498 			break;
2499 		if (rum_pause(sc, hz / 100))
2500 			break;
2501 	}
2502 	if (ntries == 100) {
2503 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2504 		return EIO;
2505 	}
2506 
2507 	/* initialize BBP registers to default values */
2508 	for (i = 0; i < nitems(rum_def_bbp); i++)
2509 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2510 
2511 	/* write vendor-specific BBP values (from EEPROM) */
2512 	for (i = 0; i < 16; i++) {
2513 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2514 			continue;
2515 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2516 	}
2517 
2518 	return 0;
2519 }
2520 
2521 static void
2522 rum_clr_shkey_regs(struct rum_softc *sc)
2523 {
2524 	rum_write(sc, RT2573_SEC_CSR0, 0);
2525 	rum_write(sc, RT2573_SEC_CSR1, 0);
2526 	rum_write(sc, RT2573_SEC_CSR5, 0);
2527 }
2528 
2529 static int
2530 rum_init(struct rum_softc *sc)
2531 {
2532 	struct ieee80211com *ic = &sc->sc_ic;
2533 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2534 	uint32_t tmp;
2535 	int i, ret;
2536 
2537 	RUM_LOCK(sc);
2538 	if (sc->sc_running) {
2539 		ret = 0;
2540 		goto end;
2541 	}
2542 
2543 	/* initialize MAC registers to default values */
2544 	for (i = 0; i < nitems(rum_def_mac); i++)
2545 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2546 
2547 	/* reset some WME parameters to default values */
2548 	sc->wme_params[0].wmep_aifsn = 2;
2549 	sc->wme_params[0].wmep_logcwmin = 4;
2550 	sc->wme_params[0].wmep_logcwmax = 10;
2551 
2552 	/* set host ready */
2553 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2554 	rum_write(sc, RT2573_MAC_CSR1, 0);
2555 
2556 	/* wait for BBP/RF to wakeup */
2557 	if ((ret = rum_bbp_wakeup(sc)) != 0)
2558 		goto end;
2559 
2560 	if ((ret = rum_bbp_init(sc)) != 0)
2561 		goto end;
2562 
2563 	/* select default channel */
2564 	rum_select_band(sc, ic->ic_curchan);
2565 	rum_select_antenna(sc);
2566 	rum_set_chan(sc, ic->ic_curchan);
2567 
2568 	/* clear STA registers */
2569 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2570 
2571 	/* clear security registers (if required) */
2572 	if (sc->sc_clr_shkeys == 0) {
2573 		rum_clr_shkey_regs(sc);
2574 		sc->sc_clr_shkeys = 1;
2575 	}
2576 
2577 	rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2578 
2579 	/* initialize ASIC */
2580 	rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY);
2581 
2582 	/*
2583 	 * Allocate Tx and Rx xfer queues.
2584 	 */
2585 	rum_setup_tx_list(sc);
2586 
2587 	/* update Rx filter */
2588 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2589 
2590 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2591 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2592 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2593 		       RT2573_DROP_ACKCTS;
2594 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2595 			tmp |= RT2573_DROP_TODS;
2596 		if (ic->ic_promisc == 0)
2597 			tmp |= RT2573_DROP_NOT_TO_ME;
2598 	}
2599 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2600 
2601 	sc->sc_running = 1;
2602 	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2603 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2604 
2605 end:	RUM_UNLOCK(sc);
2606 
2607 	if (ret != 0)
2608 		rum_stop(sc);
2609 
2610 	return ret;
2611 }
2612 
2613 static void
2614 rum_stop(struct rum_softc *sc)
2615 {
2616 
2617 	RUM_LOCK(sc);
2618 	if (!sc->sc_running) {
2619 		RUM_UNLOCK(sc);
2620 		return;
2621 	}
2622 	sc->sc_running = 0;
2623 	RUM_UNLOCK(sc);
2624 
2625 	/*
2626 	 * Drain the USB transfers, if not already drained:
2627 	 */
2628 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2629 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2630 
2631 	RUM_LOCK(sc);
2632 	rum_unsetup_tx_list(sc);
2633 
2634 	/* disable Rx */
2635 	rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX);
2636 
2637 	/* reset ASIC */
2638 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2639 	rum_write(sc, RT2573_MAC_CSR1, 0);
2640 	RUM_UNLOCK(sc);
2641 }
2642 
2643 static void
2644 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2645 {
2646 	uint16_t reg = RT2573_MCU_CODE_BASE;
2647 	usb_error_t err;
2648 
2649 	/* copy firmware image into NIC */
2650 	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2651 		err = rum_write(sc, reg, UGETDW(ucode));
2652 		if (err) {
2653 			/* firmware already loaded ? */
2654 			device_printf(sc->sc_dev, "Firmware load "
2655 			    "failure! (ignored)\n");
2656 			break;
2657 		}
2658 	}
2659 
2660 	err = rum_do_mcu_request(sc, RT2573_MCU_RUN);
2661 	if (err != USB_ERR_NORMAL_COMPLETION) {
2662 		device_printf(sc->sc_dev, "could not run firmware: %s\n",
2663 		    usbd_errstr(err));
2664 	}
2665 
2666 	/* give the chip some time to boot */
2667 	rum_pause(sc, hz / 8);
2668 }
2669 
2670 static int
2671 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval)
2672 {
2673 	struct ieee80211com *ic = &sc->sc_ic;
2674 	usb_error_t uerror;
2675 	int exp, delay;
2676 
2677 	RUM_LOCK_ASSERT(sc);
2678 
2679 	exp = ic->ic_lintval / bintval;
2680 	delay = ic->ic_lintval % bintval;
2681 
2682 	if (exp > RT2573_TBCN_EXP_MAX)
2683 		exp = RT2573_TBCN_EXP_MAX;
2684 	if (delay > RT2573_TBCN_DELAY_MAX)
2685 		delay = RT2573_TBCN_DELAY_MAX;
2686 
2687 	uerror = rum_modbits(sc, RT2573_MAC_CSR11,
2688 	    RT2573_TBCN_EXP(exp) |
2689 	    RT2573_TBCN_DELAY(delay),
2690 	    RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) |
2691 	    RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX));
2692 
2693 	if (uerror != USB_ERR_NORMAL_COMPLETION)
2694 		return (EIO);
2695 
2696 	sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay);
2697 
2698 	return (0);
2699 }
2700 
2701 static int
2702 rum_reset(struct ieee80211vap *vap, u_long cmd)
2703 {
2704 	struct ieee80211com *ic = vap->iv_ic;
2705 	struct ieee80211_node *ni;
2706 	struct rum_softc *sc = ic->ic_softc;
2707 	int error;
2708 
2709 	switch (cmd) {
2710 	case IEEE80211_IOC_POWERSAVE:
2711 		error = 0;
2712 		break;
2713 	case IEEE80211_IOC_POWERSAVESLEEP:
2714 		ni = ieee80211_ref_node(vap->iv_bss);
2715 
2716 		RUM_LOCK(sc);
2717 		error = rum_set_sleep_time(sc, ni->ni_intval);
2718 		if (vap->iv_state == IEEE80211_S_SLEEP) {
2719 			/* Use new values for wakeup timer. */
2720 			rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2721 			rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2722 		}
2723 		/* XXX send reassoc */
2724 		RUM_UNLOCK(sc);
2725 
2726 		ieee80211_free_node(ni);
2727 		break;
2728 	default:
2729 		error = ENETRESET;
2730 		break;
2731 	}
2732 
2733 	return (error);
2734 }
2735 
2736 static int
2737 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2738 {
2739 	struct ieee80211com *ic = vap->iv_ic;
2740 	struct rum_vap *rvp = RUM_VAP(vap);
2741 	struct mbuf *m = rvp->bcn_mbuf;
2742 	const struct ieee80211_txparam *tp;
2743 	struct rum_tx_desc desc;
2744 
2745 	RUM_LOCK_ASSERT(sc);
2746 
2747 	if (m == NULL)
2748 		return EINVAL;
2749 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
2750 		return EINVAL;
2751 
2752 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2753 	rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP,
2754 	    RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate);
2755 
2756 	/* copy the Tx descriptor into NIC memory */
2757 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc,
2758 	    RT2573_TX_DESC_SIZE) != 0)
2759 		return EIO;
2760 
2761 	/* copy beacon header and payload into NIC memory */
2762 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE,
2763 	    mtod(m, uint8_t *), m->m_pkthdr.len) != 0)
2764 		return EIO;
2765 
2766 	return 0;
2767 }
2768 
2769 static int
2770 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2771 {
2772 	struct rum_vap *rvp = RUM_VAP(vap);
2773 	struct ieee80211_node *ni = vap->iv_bss;
2774 	struct mbuf *m;
2775 
2776 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
2777 		return EINVAL;
2778 
2779 	m = ieee80211_beacon_alloc(ni);
2780 	if (m == NULL)
2781 		return ENOMEM;
2782 
2783 	if (rvp->bcn_mbuf != NULL)
2784 		m_freem(rvp->bcn_mbuf);
2785 
2786 	rvp->bcn_mbuf = m;
2787 
2788 	return (rum_set_beacon(sc, vap));
2789 }
2790 
2791 static void
2792 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data,
2793     uint8_t rvp_id)
2794 {
2795 	struct ieee80211vap *vap = data->vap;
2796 
2797 	rum_set_beacon(sc, vap);
2798 }
2799 
2800 static void
2801 rum_update_beacon(struct ieee80211vap *vap, int item)
2802 {
2803 	struct ieee80211com *ic = vap->iv_ic;
2804 	struct rum_softc *sc = ic->ic_softc;
2805 	struct rum_vap *rvp = RUM_VAP(vap);
2806 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2807 	struct ieee80211_node *ni = vap->iv_bss;
2808 	struct mbuf *m = rvp->bcn_mbuf;
2809 	int mcast = 0;
2810 
2811 	RUM_LOCK(sc);
2812 	if (m == NULL) {
2813 		m = ieee80211_beacon_alloc(ni);
2814 		if (m == NULL) {
2815 			device_printf(sc->sc_dev,
2816 			    "%s: could not allocate beacon frame\n", __func__);
2817 			RUM_UNLOCK(sc);
2818 			return;
2819 		}
2820 		rvp->bcn_mbuf = m;
2821 	}
2822 
2823 	switch (item) {
2824 	case IEEE80211_BEACON_ERP:
2825 		rum_update_slot(ic);
2826 		break;
2827 	case IEEE80211_BEACON_TIM:
2828 		mcast = 1;	/*TODO*/
2829 		break;
2830 	default:
2831 		break;
2832 	}
2833 	RUM_UNLOCK(sc);
2834 
2835 	setbit(bo->bo_flags, item);
2836 	ieee80211_beacon_update(ni, m, mcast);
2837 
2838 	rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb);
2839 }
2840 
2841 static int
2842 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k,
2843     uint16_t base)
2844 {
2845 
2846 	if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen))
2847 		return EIO;
2848 
2849 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2850 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE,
2851 		    k->wk_txmic, 8))
2852 			return EIO;
2853 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8,
2854 		    k->wk_rxmic, 8))
2855 			return EIO;
2856 	}
2857 
2858 	return 0;
2859 }
2860 
2861 static void
2862 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data,
2863     uint8_t rvp_id)
2864 {
2865 	struct ieee80211_key *k = &data->key;
2866 	uint8_t mode;
2867 
2868 	if (sc->sc_clr_shkeys == 0) {
2869 		rum_clr_shkey_regs(sc);
2870 		sc->sc_clr_shkeys = 1;
2871 	}
2872 
2873 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2874 	if (mode == 0)
2875 		goto print_err;
2876 
2877 	DPRINTFN(1, "setting group key %d for vap %d, mode %d "
2878 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2879 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2880 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2881 
2882 	/* Install the key. */
2883 	if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0)
2884 		goto print_err;
2885 
2886 	/* Set cipher mode. */
2887 	if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2888 	      mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX,
2889 	      RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX)
2890 	    != 0)
2891 		goto print_err;
2892 
2893 	/* Mark this key as valid. */
2894 	if (rum_setbits(sc, RT2573_SEC_CSR0,
2895 	      1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0)
2896 		goto print_err;
2897 
2898 	return;
2899 
2900 print_err:
2901 	device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n",
2902 	    __func__, k->wk_keyix, rvp_id);
2903 }
2904 
2905 static void
2906 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data,
2907     uint8_t rvp_id)
2908 {
2909 	struct ieee80211_key *k = &data->key;
2910 
2911 	DPRINTF("%s: removing group key %d for vap %d\n", __func__,
2912 	    k->wk_keyix, rvp_id);
2913 	rum_clrbits(sc,
2914 	    rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2915 	    RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX);
2916 	rum_clrbits(sc, RT2573_SEC_CSR0,
2917 	    rvp_id * RT2573_SKEY_MAX + k->wk_keyix);
2918 }
2919 
2920 static void
2921 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data,
2922     uint8_t rvp_id)
2923 {
2924 	struct ieee80211_key *k = &data->key;
2925 	uint8_t buf[IEEE80211_ADDR_LEN + 1];
2926 	uint8_t mode;
2927 
2928 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2929 	if (mode == 0)
2930 		goto print_err;
2931 
2932 	DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d "
2933 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2934 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2935 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2936 
2937 	/* Install the key. */
2938 	if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0)
2939 		goto print_err;
2940 
2941 	IEEE80211_ADDR_COPY(buf, k->wk_macaddr);
2942 	buf[IEEE80211_ADDR_LEN] = mode;
2943 
2944 	/* Set transmitter address and cipher mode. */
2945 	if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix),
2946 	      buf, sizeof buf) != 0)
2947 		goto print_err;
2948 
2949 	/* Enable key table lookup for this vap. */
2950 	if (sc->vap_key_count[rvp_id]++ == 0)
2951 		if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0)
2952 			goto print_err;
2953 
2954 	/* Mark this key as valid. */
2955 	if (rum_setbits(sc,
2956 	      k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2957 	      1 << (k->wk_keyix % 32)) != 0)
2958 		goto print_err;
2959 
2960 	return;
2961 
2962 print_err:
2963 	device_printf(sc->sc_dev,
2964 	    "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix,
2965 	    rvp_id);
2966 }
2967 
2968 static void
2969 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data,
2970     uint8_t rvp_id)
2971 {
2972 	struct ieee80211_key *k = &data->key;
2973 
2974 	DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix);
2975 	rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2976 	    1 << (k->wk_keyix % 32));
2977 	sc->keys_bmap &= ~(1ULL << k->wk_keyix);
2978 	if (--sc->vap_key_count[rvp_id] == 0)
2979 		rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id);
2980 }
2981 
2982 static int
2983 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2984     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2985 {
2986 	struct rum_softc *sc = vap->iv_ic->ic_softc;
2987 	uint8_t i;
2988 
2989 	if (!(&vap->iv_nw_keys[0] <= k &&
2990 	     k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2991 		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2992 			RUM_LOCK(sc);
2993 			for (i = 0; i < RT2573_ADDR_MAX; i++) {
2994 				if ((sc->keys_bmap & (1ULL << i)) == 0) {
2995 					sc->keys_bmap |= (1ULL << i);
2996 					*keyix = i;
2997 					break;
2998 				}
2999 			}
3000 			RUM_UNLOCK(sc);
3001 			if (i == RT2573_ADDR_MAX) {
3002 				device_printf(sc->sc_dev,
3003 				    "%s: no free space in the key table\n",
3004 				    __func__);
3005 				return 0;
3006 			}
3007 		} else
3008 			*keyix = 0;
3009 	} else {
3010 		*keyix = k - vap->iv_nw_keys;
3011 	}
3012 	*rxkeyix = *keyix;
3013 	return 1;
3014 }
3015 
3016 static int
3017 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
3018 {
3019 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3020 	int group;
3021 
3022 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3023 		/* Not for us. */
3024 		return 1;
3025 	}
3026 
3027 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3028 
3029 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3030 		   group ? rum_group_key_set_cb : rum_pair_key_set_cb);
3031 }
3032 
3033 static int
3034 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
3035 {
3036 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3037 	int group;
3038 
3039 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3040 		/* Not for us. */
3041 		return 1;
3042 	}
3043 
3044 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3045 
3046 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3047 		   group ? rum_group_key_del_cb : rum_pair_key_del_cb);
3048 }
3049 
3050 static int
3051 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3052     const struct ieee80211_bpf_params *params)
3053 {
3054 	struct rum_softc *sc = ni->ni_ic->ic_softc;
3055 	int ret;
3056 
3057 	RUM_LOCK(sc);
3058 	/* prevent management frames from being sent if we're not ready */
3059 	if (!sc->sc_running) {
3060 		ret = ENETDOWN;
3061 		goto bad;
3062 	}
3063 	if (sc->tx_nfree < RUM_TX_MINFREE) {
3064 		ret = EIO;
3065 		goto bad;
3066 	}
3067 
3068 	if (params == NULL) {
3069 		/*
3070 		 * Legacy path; interpret frame contents to decide
3071 		 * precisely how to send the frame.
3072 		 */
3073 		if ((ret = rum_tx_mgt(sc, m, ni)) != 0)
3074 			goto bad;
3075 	} else {
3076 		/*
3077 		 * Caller supplied explicit parameters to use in
3078 		 * sending the frame.
3079 		 */
3080 		if ((ret = rum_tx_raw(sc, m, ni, params)) != 0)
3081 			goto bad;
3082 	}
3083 	RUM_UNLOCK(sc);
3084 
3085 	return 0;
3086 bad:
3087 	RUM_UNLOCK(sc);
3088 	m_freem(m);
3089 	return ret;
3090 }
3091 
3092 static void
3093 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
3094 {
3095 	struct ieee80211vap *vap = ni->ni_vap;
3096 	struct rum_vap *rvp = RUM_VAP(vap);
3097 
3098 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
3099 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
3100 
3101 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3102 }
3103 
3104 static void
3105 rum_ratectl_timeout(void *arg)
3106 {
3107 	struct rum_vap *rvp = arg;
3108 	struct ieee80211vap *vap = &rvp->vap;
3109 	struct ieee80211com *ic = vap->iv_ic;
3110 
3111 	ieee80211_runtask(ic, &rvp->ratectl_task);
3112 }
3113 
3114 static void
3115 rum_ratectl_task(void *arg, int pending)
3116 {
3117 	struct rum_vap *rvp = arg;
3118 	struct ieee80211vap *vap = &rvp->vap;
3119 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3120 	struct ieee80211_node *ni;
3121 	int ok[3], fail;
3122 	int sum, success, retrycnt;
3123 
3124 	RUM_LOCK(sc);
3125 	/* read and clear statistic registers (STA_CSR0 to STA_CSR5) */
3126 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
3127 
3128 	ok[0] = (le32toh(sc->sta[4]) & 0xffff);	/* TX ok w/o retry */
3129 	ok[1] = (le32toh(sc->sta[4]) >> 16);	/* TX ok w/ one retry */
3130 	ok[2] = (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ multiple retries */
3131 	fail =  (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
3132 
3133 	success = ok[0] + ok[1] + ok[2];
3134 	sum = success + fail;
3135 	/* XXX at least */
3136 	retrycnt = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1);
3137 
3138 	if (sum != 0) {
3139 		ni = ieee80211_ref_node(vap->iv_bss);
3140 		ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
3141 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3142 		ieee80211_free_node(ni);
3143 	}
3144 
3145 	/* count TX retry-fail as Tx errors */
3146 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
3147 
3148 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3149 	RUM_UNLOCK(sc);
3150 }
3151 
3152 static void
3153 rum_scan_start(struct ieee80211com *ic)
3154 {
3155 	struct rum_softc *sc = ic->ic_softc;
3156 
3157 	RUM_LOCK(sc);
3158 	rum_abort_tsf_sync(sc);
3159 	rum_set_bssid(sc, ieee80211broadcastaddr);
3160 	RUM_UNLOCK(sc);
3161 
3162 }
3163 
3164 static void
3165 rum_scan_end(struct ieee80211com *ic)
3166 {
3167 	struct rum_softc *sc = ic->ic_softc;
3168 
3169 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
3170 		RUM_LOCK(sc);
3171 		if (ic->ic_opmode != IEEE80211_M_AHDEMO)
3172 			rum_enable_tsf_sync(sc);
3173 		else
3174 			rum_enable_tsf(sc);
3175 		rum_set_bssid(sc, sc->sc_bssid);
3176 		RUM_UNLOCK(sc);
3177 	}
3178 }
3179 
3180 static void
3181 rum_set_channel(struct ieee80211com *ic)
3182 {
3183 	struct rum_softc *sc = ic->ic_softc;
3184 
3185 	RUM_LOCK(sc);
3186 	rum_set_chan(sc, ic->ic_curchan);
3187 	RUM_UNLOCK(sc);
3188 }
3189 
3190 static void
3191 rum_getradiocaps(struct ieee80211com *ic,
3192     int maxchans, int *nchans, struct ieee80211_channel chans[])
3193 {
3194 	struct rum_softc *sc = ic->ic_softc;
3195 	uint8_t bands[IEEE80211_MODE_BYTES];
3196 
3197 	memset(bands, 0, sizeof(bands));
3198 	setbit(bands, IEEE80211_MODE_11B);
3199 	setbit(bands, IEEE80211_MODE_11G);
3200 	ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
3201 	    rum_chan_2ghz, nitems(rum_chan_2ghz), bands, 0);
3202 
3203 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
3204 		setbit(bands, IEEE80211_MODE_11A);
3205 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3206 		    rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0);
3207 	}
3208 }
3209 
3210 static int
3211 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
3212 {
3213 	struct ieee80211com *ic = &sc->sc_ic;
3214 	int lna, agc, rssi;
3215 
3216 	lna = (raw >> 5) & 0x3;
3217 	agc = raw & 0x1f;
3218 
3219 	if (lna == 0) {
3220 		/*
3221 		 * No RSSI mapping
3222 		 *
3223 		 * NB: Since RSSI is relative to noise floor, -1 is
3224 		 *     adequate for caller to know error happened.
3225 		 */
3226 		return -1;
3227 	}
3228 
3229 	rssi = (2 * agc) - RT2573_NOISE_FLOOR;
3230 
3231 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3232 		rssi += sc->rssi_2ghz_corr;
3233 
3234 		if (lna == 1)
3235 			rssi -= 64;
3236 		else if (lna == 2)
3237 			rssi -= 74;
3238 		else if (lna == 3)
3239 			rssi -= 90;
3240 	} else {
3241 		rssi += sc->rssi_5ghz_corr;
3242 
3243 		if (!sc->ext_5ghz_lna && lna != 1)
3244 			rssi += 4;
3245 
3246 		if (lna == 1)
3247 			rssi -= 64;
3248 		else if (lna == 2)
3249 			rssi -= 86;
3250 		else if (lna == 3)
3251 			rssi -= 100;
3252 	}
3253 	return rssi;
3254 }
3255 
3256 static int
3257 rum_pause(struct rum_softc *sc, int timeout)
3258 {
3259 
3260 	usb_pause_mtx(&sc->sc_lock, timeout);
3261 	return (0);
3262 }
3263 
3264 static device_method_t rum_methods[] = {
3265 	/* Device interface */
3266 	DEVMETHOD(device_probe,		rum_match),
3267 	DEVMETHOD(device_attach,	rum_attach),
3268 	DEVMETHOD(device_detach,	rum_detach),
3269 	DEVMETHOD_END
3270 };
3271 
3272 static driver_t rum_driver = {
3273 	.name = "rum",
3274 	.methods = rum_methods,
3275 	.size = sizeof(struct rum_softc),
3276 };
3277 
3278 static devclass_t rum_devclass;
3279 
3280 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, NULL);
3281 MODULE_DEPEND(rum, wlan, 1, 1, 1);
3282 MODULE_DEPEND(rum, usb, 1, 1, 1);
3283 MODULE_VERSION(rum, 1);
3284 #if 0	/* Not implemented by DragonFly */
3285 USB_PNP_HOST_INFO(rum_devs);
3286 #endif
3287