xref: /dragonfly/sys/bus/u4b/wlan/if_urtwn.c (revision cf37dc20)
1 /*	$OpenBSD: if_urtwn.c,v 1.16 2011/02/10 17:26:40 jakemsr Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2014 Kevin Lo <kevlo@FreeBSD.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD: head/sys/dev/usb/wlan/if_urtwn.c 268487 2014-07-10 09:42:34Z kevlo $
20  */
21 
22 /*
23  * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188EU/RTL8188RU/RTL8192CU.
24  */
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/sysctl.h>
29 #include <sys/lock.h>
30 #include <sys/mbuf.h>
31 #include <sys/kernel.h>
32 #include <sys/socket.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/module.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/linker.h>
39 #include <sys/firmware.h>
40 #include <net/ifq_var.h>
41 
42 #include <sys/rman.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/if_ether.h>
57 #include <netinet/ip.h>
58 
59 #include <netproto/802_11/ieee80211_var.h>
60 #include <netproto/802_11/ieee80211_regdomain.h>
61 #include <netproto/802_11/ieee80211_radiotap.h>
62 #include <netproto/802_11/ieee80211_ratectl.h>
63 
64 #include <bus/u4b/usb.h>
65 #include <bus/u4b/usbdi.h>
66 #include "usbdevs.h"
67 
68 #define USB_DEBUG_VAR urtwn_debug
69 #include <bus/u4b/usb_debug.h>
70 
71 #include <bus/u4b/wlan/if_urtwnreg.h>
72 
73 #ifdef USB_DEBUG
74 static int urtwn_debug = 0;
75 
76 SYSCTL_NODE(_hw_usb, OID_AUTO, urtwn, CTLFLAG_RW, 0, "USB urtwn");
77 SYSCTL_INT(_hw_usb_urtwn, OID_AUTO, debug, CTLFLAG_RW, &urtwn_debug, 0,
78     "Debug level");
79 #endif
80 
81 #define	URTWN_RSSI(r)  (r) - 110
82 #define	IEEE80211_HAS_ADDR4(wh)	\
83 	(((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
84 
85 /* various supported device vendors/products */
86 static const STRUCT_USB_HOST_ID urtwn_devs[] = {
87 #define URTWN_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
88 #define	URTWN_RTL8188E_DEV(v,p)	\
89 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, URTWN_RTL8188E) }
90 #define URTWN_RTL8188E  1
91 	URTWN_DEV(ABOCOM,	RTL8188CU_1),
92 	URTWN_DEV(ABOCOM,	RTL8188CU_2),
93 	URTWN_DEV(ABOCOM,	RTL8192CU),
94 	URTWN_DEV(ASUS,		RTL8192CU),
95 	URTWN_DEV(ASUS,		USBN10NANO),
96 	URTWN_DEV(AZUREWAVE,	RTL8188CE_1),
97 	URTWN_DEV(AZUREWAVE,	RTL8188CE_2),
98 	URTWN_DEV(AZUREWAVE,	RTL8188CU),
99 	URTWN_DEV(BELKIN,	F7D2102),
100 	URTWN_DEV(BELKIN,	RTL8188CU),
101 	URTWN_DEV(BELKIN,	RTL8192CU),
102 	URTWN_DEV(CHICONY,	RTL8188CUS_1),
103 	URTWN_DEV(CHICONY,	RTL8188CUS_2),
104 	URTWN_DEV(CHICONY,	RTL8188CUS_3),
105 	URTWN_DEV(CHICONY,	RTL8188CUS_4),
106 	URTWN_DEV(CHICONY,	RTL8188CUS_5),
107 	URTWN_DEV(COREGA,	RTL8192CU),
108 	URTWN_DEV(DLINK,	RTL8188CU),
109 	URTWN_DEV(DLINK,	RTL8192CU_1),
110 	URTWN_DEV(DLINK,	RTL8192CU_2),
111 	URTWN_DEV(DLINK,	RTL8192CU_3),
112 	URTWN_DEV(DLINK,	DWA131B),
113 	URTWN_DEV(EDIMAX,	EW7811UN),
114 	URTWN_DEV(EDIMAX,	RTL8192CU),
115 	URTWN_DEV(FEIXUN,	RTL8188CU),
116 	URTWN_DEV(FEIXUN,	RTL8192CU),
117 	URTWN_DEV(GUILLEMOT,	HWNUP150),
118 	URTWN_DEV(HAWKING,	RTL8192CU),
119 	URTWN_DEV(HP3,		RTL8188CU),
120 	URTWN_DEV(NETGEAR,	WNA1000M),
121 	URTWN_DEV(NETGEAR,	RTL8192CU),
122 	URTWN_DEV(NETGEAR4,	RTL8188CU),
123 	URTWN_DEV(NOVATECH,	RTL8188CU),
124 	URTWN_DEV(PLANEX2,	RTL8188CU_1),
125 	URTWN_DEV(PLANEX2,	RTL8188CU_2),
126 	URTWN_DEV(PLANEX2,	RTL8188CU_3),
127 	URTWN_DEV(PLANEX2,	RTL8188CU_4),
128 	URTWN_DEV(PLANEX2,	RTL8188CUS),
129 	URTWN_DEV(PLANEX2,	RTL8192CU),
130 	URTWN_DEV(REALTEK,	RTL8188CE_0),
131 	URTWN_DEV(REALTEK,	RTL8188CE_1),
132 	URTWN_DEV(REALTEK,	RTL8188CTV),
133 	URTWN_DEV(REALTEK,	RTL8188CU_0),
134 	URTWN_DEV(REALTEK,	RTL8188CU_1),
135 	URTWN_DEV(REALTEK,	RTL8188CU_2),
136 	URTWN_DEV(REALTEK,	RTL8188CU_COMBO),
137 	URTWN_DEV(REALTEK,	RTL8188CUS),
138 	URTWN_DEV(REALTEK,	RTL8188RU_1),
139 	URTWN_DEV(REALTEK,	RTL8188RU_2),
140 	URTWN_DEV(REALTEK,	RTL8191CU),
141 	URTWN_DEV(REALTEK,	RTL8192CE),
142 	URTWN_DEV(REALTEK,	RTL8192CU),
143 	URTWN_DEV(SITECOMEU,	RTL8188CU_1),
144 	URTWN_DEV(SITECOMEU,	RTL8188CU_2),
145 	URTWN_DEV(SITECOMEU,	RTL8192CU),
146 	URTWN_DEV(TRENDNET,	RTL8188CU),
147 	URTWN_DEV(TRENDNET,	RTL8192CU),
148 	URTWN_DEV(ZYXEL,	RTL8192CU),
149 	/* URTWN_RTL8188E */
150 	URTWN_RTL8188E_DEV(REALTEK,	RTL8188ETV),
151 	URTWN_RTL8188E_DEV(REALTEK,	RTL8188EU),
152 #undef URTWN_RTL8188E_DEV
153 #undef URTWN_DEV
154 };
155 
156 static device_probe_t	urtwn_match;
157 static device_attach_t	urtwn_attach;
158 static device_detach_t	urtwn_detach;
159 
160 static usb_callback_t   urtwn_bulk_tx_callback;
161 static usb_callback_t	urtwn_bulk_rx_callback;
162 
163 static usb_error_t	urtwn_do_request(struct urtwn_softc *sc,
164 			    struct usb_device_request *req, void *data);
165 static struct ieee80211vap *urtwn_vap_create(struct ieee80211com *,
166 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
167                     const uint8_t [IEEE80211_ADDR_LEN],
168                     const uint8_t [IEEE80211_ADDR_LEN]);
169 static void		urtwn_vap_delete(struct ieee80211vap *);
170 static struct mbuf *	urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int,
171 			    int *);
172 static struct mbuf *	urtwn_rxeof(struct usb_xfer *, struct urtwn_data *,
173 			    int *, int8_t *);
174 static void		urtwn_txeof(struct usb_xfer *, struct urtwn_data *);
175 static int		urtwn_alloc_list(struct urtwn_softc *,
176 			    struct urtwn_data[], int, int);
177 static int		urtwn_alloc_rx_list(struct urtwn_softc *);
178 static int		urtwn_alloc_tx_list(struct urtwn_softc *);
179 static void		urtwn_free_tx_list(struct urtwn_softc *);
180 static void		urtwn_free_rx_list(struct urtwn_softc *);
181 static void		urtwn_free_list(struct urtwn_softc *,
182 			    struct urtwn_data data[], int);
183 static struct urtwn_data *	_urtwn_getbuf(struct urtwn_softc *);
184 static struct urtwn_data *	urtwn_getbuf(struct urtwn_softc *);
185 static int		urtwn_write_region_1(struct urtwn_softc *, uint16_t,
186 			    uint8_t *, int);
187 static void		urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t);
188 static void		urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t);
189 static void		urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t);
190 static int		urtwn_read_region_1(struct urtwn_softc *, uint16_t,
191 			    uint8_t *, int);
192 static uint8_t		urtwn_read_1(struct urtwn_softc *, uint16_t);
193 static uint16_t		urtwn_read_2(struct urtwn_softc *, uint16_t);
194 static uint32_t		urtwn_read_4(struct urtwn_softc *, uint16_t);
195 static int		urtwn_fw_cmd(struct urtwn_softc *, uint8_t,
196 			    const void *, int);
197 static void		urtwn_r92c_rf_write(struct urtwn_softc *, int,
198 			    uint8_t, uint32_t);
199 static void		urtwn_r88e_rf_write(struct urtwn_softc *, int,
200 			    uint8_t, uint32_t);
201 static uint32_t		urtwn_rf_read(struct urtwn_softc *, int, uint8_t);
202 static int		urtwn_llt_write(struct urtwn_softc *, uint32_t,
203 			    uint32_t);
204 static uint8_t		urtwn_efuse_read_1(struct urtwn_softc *, uint16_t);
205 static void		urtwn_efuse_read(struct urtwn_softc *);
206 static void		urtwn_efuse_switch_power(struct urtwn_softc *);
207 static int		urtwn_read_chipid(struct urtwn_softc *);
208 static void		urtwn_read_rom(struct urtwn_softc *);
209 static void		urtwn_r88e_read_rom(struct urtwn_softc *);
210 static int		urtwn_ra_init(struct urtwn_softc *);
211 static void		urtwn_tsf_sync_enable(struct urtwn_softc *);
212 static void		urtwn_set_led(struct urtwn_softc *, int, int);
213 static int		urtwn_newstate(struct ieee80211vap *,
214 			    enum ieee80211_state, int);
215 static void		urtwn_watchdog(void *);
216 static void		urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t);
217 static int8_t		urtwn_get_rssi(struct urtwn_softc *, int, void *);
218 static int8_t		urtwn_r88e_get_rssi(struct urtwn_softc *, int, void *);
219 static int		urtwn_tx_start(struct urtwn_softc *,
220 			    struct ieee80211_node *, struct mbuf *,
221 			    struct urtwn_data *);
222 static void		urtwn_start(struct ifnet *, struct ifaltq_subque *);
223 static void		urtwn_start_locked(struct ifnet *);
224 static int		urtwn_ioctl(struct ifnet *, u_long, caddr_t,
225 			    struct ucred *);
226 static int		urtwn_r92c_power_on(struct urtwn_softc *);
227 static int		urtwn_r88e_power_on(struct urtwn_softc *);
228 static int		urtwn_llt_init(struct urtwn_softc *);
229 static void		urtwn_fw_reset(struct urtwn_softc *);
230 static void		urtwn_r88e_fw_reset(struct urtwn_softc *);
231 static int		urtwn_fw_loadpage(struct urtwn_softc *, int,
232 			    const uint8_t *, int);
233 static int		urtwn_load_firmware(struct urtwn_softc *);
234 static int		urtwn_r92c_dma_init(struct urtwn_softc *);
235 static int		urtwn_r88e_dma_init(struct urtwn_softc *);
236 static void		urtwn_mac_init(struct urtwn_softc *);
237 static void		urtwn_bb_init(struct urtwn_softc *);
238 static void		urtwn_rf_init(struct urtwn_softc *);
239 static void		urtwn_cam_init(struct urtwn_softc *);
240 static void		urtwn_pa_bias_init(struct urtwn_softc *);
241 static void		urtwn_rxfilter_init(struct urtwn_softc *);
242 static void		urtwn_edca_init(struct urtwn_softc *);
243 static void		urtwn_write_txpower(struct urtwn_softc *, int,
244 			    uint16_t[]);
245 static void		urtwn_get_txpower(struct urtwn_softc *, int,
246 		      	    struct ieee80211_channel *,
247 			    struct ieee80211_channel *, uint16_t[]);
248 static void		urtwn_r88e_get_txpower(struct urtwn_softc *, int,
249 		      	    struct ieee80211_channel *,
250 			    struct ieee80211_channel *, uint16_t[]);
251 static void		urtwn_set_txpower(struct urtwn_softc *,
252 		    	    struct ieee80211_channel *,
253 			    struct ieee80211_channel *);
254 static void		urtwn_scan_start(struct ieee80211com *);
255 static void		urtwn_scan_end(struct ieee80211com *);
256 static void		urtwn_set_channel(struct ieee80211com *);
257 static void		urtwn_set_chan(struct urtwn_softc *,
258 		    	    struct ieee80211_channel *,
259 			    struct ieee80211_channel *);
260 static void		urtwn_update_mcast(struct ifnet *);
261 static void		urtwn_iq_calib(struct urtwn_softc *);
262 static void		urtwn_lc_calib(struct urtwn_softc *);
263 static void		urtwn_init(void *);
264 static void		urtwn_init_locked(void *);
265 static void		urtwn_stop(struct ifnet *);
266 static void		urtwn_stop_locked(struct ifnet *);
267 static void		urtwn_abort_xfers(struct urtwn_softc *);
268 static int		urtwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
269 			    const struct ieee80211_bpf_params *);
270 static void		urtwn_ms_delay(struct urtwn_softc *);
271 
272 /* Aliases. */
273 #define	urtwn_bb_write	urtwn_write_4
274 #define urtwn_bb_read	urtwn_read_4
275 
276 static const struct usb_config urtwn_config[URTWN_N_TRANSFER] = {
277 	[URTWN_BULK_RX] = {
278 		.type = UE_BULK,
279 		.endpoint = UE_ADDR_ANY,
280 		.direction = UE_DIR_IN,
281 		.bufsize = URTWN_RXBUFSZ,
282 		.flags = {
283 			.pipe_bof = 1,
284 			.short_xfer_ok = 1
285 		},
286 		.callback = urtwn_bulk_rx_callback,
287 	},
288 	[URTWN_BULK_TX_BE] = {
289 		.type = UE_BULK,
290 		.endpoint = 0x03,
291 		.direction = UE_DIR_OUT,
292 		.bufsize = URTWN_TXBUFSZ,
293 		.flags = {
294 			.ext_buffer = 1,
295 			.pipe_bof = 1,
296 			.force_short_xfer = 1
297 		},
298 		.callback = urtwn_bulk_tx_callback,
299 		.timeout = URTWN_TX_TIMEOUT,	/* ms */
300 	},
301 	[URTWN_BULK_TX_BK] = {
302 		.type = UE_BULK,
303 		.endpoint = 0x03,
304 		.direction = UE_DIR_OUT,
305 		.bufsize = URTWN_TXBUFSZ,
306 		.flags = {
307 			.ext_buffer = 1,
308 			.pipe_bof = 1,
309 			.force_short_xfer = 1,
310 		},
311 		.callback = urtwn_bulk_tx_callback,
312 		.timeout = URTWN_TX_TIMEOUT,	/* ms */
313 	},
314 	[URTWN_BULK_TX_VI] = {
315 		.type = UE_BULK,
316 		.endpoint = 0x02,
317 		.direction = UE_DIR_OUT,
318 		.bufsize = URTWN_TXBUFSZ,
319 		.flags = {
320 			.ext_buffer = 1,
321 			.pipe_bof = 1,
322 			.force_short_xfer = 1
323 		},
324 		.callback = urtwn_bulk_tx_callback,
325 		.timeout = URTWN_TX_TIMEOUT,	/* ms */
326 	},
327 	[URTWN_BULK_TX_VO] = {
328 		.type = UE_BULK,
329 		.endpoint = 0x02,
330 		.direction = UE_DIR_OUT,
331 		.bufsize = URTWN_TXBUFSZ,
332 		.flags = {
333 			.ext_buffer = 1,
334 			.pipe_bof = 1,
335 			.force_short_xfer = 1
336 		},
337 		.callback = urtwn_bulk_tx_callback,
338 		.timeout = URTWN_TX_TIMEOUT,	/* ms */
339 	},
340 };
341 
342 static int
343 urtwn_match(device_t self)
344 {
345 	struct usb_attach_arg *uaa = device_get_ivars(self);
346 
347 	if (uaa->usb_mode != USB_MODE_HOST)
348 		return (ENXIO);
349 	if (uaa->info.bConfigIndex != URTWN_CONFIG_INDEX)
350 		return (ENXIO);
351 	if (uaa->info.bIfaceIndex != URTWN_IFACE_INDEX)
352 		return (ENXIO);
353 
354 	return (usbd_lookup_id_by_uaa(urtwn_devs, sizeof(urtwn_devs), uaa));
355 }
356 
357 static int
358 urtwn_attach(device_t self)
359 {
360 	struct usb_attach_arg *uaa = device_get_ivars(self);
361 	struct urtwn_softc *sc = device_get_softc(self);
362 	struct ifnet *ifp;
363 	struct ieee80211com *ic;
364 	uint8_t iface_index, bands;
365 	int error;
366 
367 	wlan_serialize_enter();
368 	device_set_usb_desc(self);
369 	sc->sc_udev = uaa->device;
370 	sc->sc_dev = self;
371 	if (USB_GET_DRIVER_INFO(uaa) == URTWN_RTL8188E)
372 		sc->chip |= URTWN_CHIP_88E;
373 
374 	lockinit(&sc->sc_lock, device_get_nameunit(self), 0, LK_CANRECURSE);
375 	callout_init(&sc->sc_watchdog_ch);
376 
377 	iface_index = URTWN_IFACE_INDEX;
378 	error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
379 	    urtwn_config, URTWN_N_TRANSFER, sc, &sc->sc_lock);
380 	if (error) {
381 		device_printf(self, "could not allocate USB transfers, "
382 		    "err=%s\n", usbd_errstr(error));
383 		goto detach;
384 	}
385 
386 	URTWN_LOCK(sc);
387 
388 	error = urtwn_read_chipid(sc);
389 	if (error) {
390 		device_printf(sc->sc_dev, "unsupported test chip\n");
391 		URTWN_UNLOCK(sc);
392 		goto detach;
393 	}
394 
395 	/* Determine number of Tx/Rx chains. */
396 	if (sc->chip & URTWN_CHIP_92C) {
397 		sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2;
398 		sc->nrxchains = 2;
399 	} else {
400 		sc->ntxchains = 1;
401 		sc->nrxchains = 1;
402 	}
403 
404 	if (sc->chip & URTWN_CHIP_88E)
405 		urtwn_r88e_read_rom(sc);
406 	else
407 		urtwn_read_rom(sc);
408 
409 	device_printf(sc->sc_dev, "MAC/BB RTL%s, RF 6052 %dT%dR\n",
410 	    (sc->chip & URTWN_CHIP_92C) ? "8192CU" :
411 	    (sc->chip & URTWN_CHIP_88E) ? "8188EU" :
412 	    (sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
413 	    (sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" :
414 	    "8188CUS", sc->ntxchains, sc->nrxchains);
415 
416 	URTWN_UNLOCK(sc);
417 
418 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
419 	if (ifp == NULL) {
420 		device_printf(sc->sc_dev, "can not if_alloc()\n");
421 		goto detach;
422 	}
423 	ic = ifp->if_l2com;
424 
425 	ifp->if_softc = sc;
426 	if_initname(ifp, "urtwn", device_get_unit(sc->sc_dev));
427 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
428 	ifp->if_init = urtwn_init;
429 	ifp->if_ioctl = urtwn_ioctl;
430 	ifp->if_start = urtwn_start;
431 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
432 #if 0 /* XXX swildner: see c3d4131842e47b168d93a0650d58d425ebeef789 */
433 	IFQ_SET_READY(&ifp->if_snd);
434 #endif
435 
436 	ic->ic_ifp = ifp;
437 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
438 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
439 
440 	/* set device capabilities */
441 	ic->ic_caps =
442 		  IEEE80211_C_STA		/* station mode */
443 		| IEEE80211_C_MONITOR		/* monitor mode */
444 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
445 		| IEEE80211_C_SHSLOT		/* short slot time supported */
446 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
447 		| IEEE80211_C_WPA		/* 802.11i */
448 		;
449 
450 	bands = 0;
451 	setbit(&bands, IEEE80211_MODE_11B);
452 	setbit(&bands, IEEE80211_MODE_11G);
453 	ieee80211_init_channels(ic, NULL, &bands);
454 
455 	ieee80211_ifattach(ic, sc->sc_bssid);
456 	ic->ic_raw_xmit = urtwn_raw_xmit;
457 	ic->ic_scan_start = urtwn_scan_start;
458 	ic->ic_scan_end = urtwn_scan_end;
459 	ic->ic_set_channel = urtwn_set_channel;
460 
461 	ic->ic_vap_create = urtwn_vap_create;
462 	ic->ic_vap_delete = urtwn_vap_delete;
463 	ic->ic_update_mcast = urtwn_update_mcast;
464 
465 	ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr,
466 	    sizeof(sc->sc_txtap), URTWN_TX_RADIOTAP_PRESENT,
467 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
468 	    URTWN_RX_RADIOTAP_PRESENT);
469 
470 	if (bootverbose)
471 		ieee80211_announce(ic);
472 
473 	wlan_serialize_exit();
474 	return (0);
475 
476 detach:
477 	wlan_serialize_exit();
478 	urtwn_detach(self);
479 	return (ENXIO);			/* failure */
480 }
481 
482 static int
483 urtwn_detach(device_t self)
484 {
485 	struct urtwn_softc *sc = device_get_softc(self);
486 	struct ifnet *ifp = sc->sc_ifp;
487 	struct ieee80211com *ic = ifp->if_l2com;
488 	unsigned int x;
489 
490 	wlan_serialize_enter();
491 
492 	/* Prevent further ioctls. */
493 	URTWN_LOCK(sc);
494 	sc->sc_flags |= URTWN_DETACHED;
495 	URTWN_UNLOCK(sc);
496 
497 	urtwn_stop(ifp);
498 
499 	callout_stop_sync(&sc->sc_watchdog_ch);
500 
501 	/* Prevent further allocations from RX/TX data lists. */
502 	URTWN_LOCK(sc);
503 	STAILQ_INIT(&sc->sc_tx_active);
504 	STAILQ_INIT(&sc->sc_tx_inactive);
505 	STAILQ_INIT(&sc->sc_tx_pending);
506 
507 	STAILQ_INIT(&sc->sc_rx_active);
508 	STAILQ_INIT(&sc->sc_rx_inactive);
509 	URTWN_UNLOCK(sc);
510 
511 	/* drain USB transfers */
512 	for (x = 0; x != URTWN_N_TRANSFER; x++)
513 		usbd_transfer_drain(sc->sc_xfer[x]);
514 
515 	/* Free data buffers. */
516 	URTWN_LOCK(sc);
517 	urtwn_free_tx_list(sc);
518 	urtwn_free_rx_list(sc);
519 	URTWN_UNLOCK(sc);
520 
521 	/* stop all USB transfers */
522 	usbd_transfer_unsetup(sc->sc_xfer, URTWN_N_TRANSFER);
523 	ieee80211_ifdetach(ic);
524 
525 	if_free(ifp);
526 	lockuninit(&sc->sc_lock);
527 
528 	wlan_serialize_exit();
529 	return (0);
530 }
531 
532 static void
533 urtwn_free_tx_list(struct urtwn_softc *sc)
534 {
535 	urtwn_free_list(sc, sc->sc_tx, URTWN_TX_LIST_COUNT);
536 }
537 
538 static void
539 urtwn_free_rx_list(struct urtwn_softc *sc)
540 {
541 	urtwn_free_list(sc, sc->sc_rx, URTWN_RX_LIST_COUNT);
542 }
543 
544 static void
545 urtwn_free_list(struct urtwn_softc *sc, struct urtwn_data data[], int ndata)
546 {
547 	int i;
548 
549 	for (i = 0; i < ndata; i++) {
550 		struct urtwn_data *dp = &data[i];
551 
552 		if (dp->buf != NULL) {
553 			kfree(dp->buf, M_USBDEV);
554 			dp->buf = NULL;
555 		}
556 		if (dp->ni != NULL) {
557 			ieee80211_free_node(dp->ni);
558 			dp->ni = NULL;
559 		}
560 	}
561 }
562 
563 static usb_error_t
564 urtwn_do_request(struct urtwn_softc *sc, struct usb_device_request *req,
565     void *data)
566 {
567 	usb_error_t err;
568 	int ntries = 10;
569 
570 	URTWN_ASSERT_LOCKED(sc);
571 
572 	while (ntries--) {
573 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_lock,
574 		    req, data, 0, NULL, 250 /* ms */);
575 		if (err == 0)
576 			break;
577 
578 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
579 		    usbd_errstr(err));
580 		usb_pause_mtx(&sc->sc_lock, hz / 100);
581 	}
582 	return (err);
583 }
584 
585 static struct ieee80211vap *
586 urtwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
587     enum ieee80211_opmode opmode, int flags,
588     const uint8_t bssid[IEEE80211_ADDR_LEN],
589     const uint8_t mac[IEEE80211_ADDR_LEN])
590 {
591 	struct urtwn_vap *uvp;
592 	struct ieee80211vap *vap;
593 
594 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
595 		return (NULL);
596 
597 	uvp = (struct urtwn_vap *) kmalloc(sizeof(struct urtwn_vap),
598 	    M_80211_VAP, M_INTWAIT | M_ZERO);
599 	vap = &uvp->vap;
600 	/* enable s/w bmiss handling for sta mode */
601 
602 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
603 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) {
604 		/* out of memory */
605 		kfree(uvp, M_80211_VAP);
606 		return (NULL);
607 	}
608 
609 	/* override state transition machine */
610 	uvp->newstate = vap->iv_newstate;
611 	vap->iv_newstate = urtwn_newstate;
612 
613 	/* complete setup */
614 	ieee80211_vap_attach(vap, ieee80211_media_change,
615 	    ieee80211_media_status);
616 	ic->ic_opmode = opmode;
617 	return (vap);
618 }
619 
620 static void
621 urtwn_vap_delete(struct ieee80211vap *vap)
622 {
623 	struct urtwn_vap *uvp = URTWN_VAP(vap);
624 
625 	ieee80211_vap_detach(vap);
626 	kfree(uvp, M_80211_VAP);
627 }
628 
629 static struct mbuf *
630 urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen, int *rssi_p)
631 {
632 	struct ifnet *ifp = sc->sc_ifp;
633 	struct ieee80211com *ic = ifp->if_l2com;
634 	struct ieee80211_frame *wh;
635 	struct mbuf *m;
636 	struct r92c_rx_stat *stat;
637 	uint32_t rxdw0, rxdw3;
638 	uint8_t rate;
639 	int8_t rssi = 0;
640 	int infosz;
641 
642 	/*
643 	 * don't pass packets to the ieee80211 framework if the driver isn't
644 	 * RUNNING.
645 	 */
646 	if (!(ifp->if_flags & IFF_RUNNING))
647 		return (NULL);
648 
649 	stat = (struct r92c_rx_stat *)buf;
650 	rxdw0 = le32toh(stat->rxdw0);
651 	rxdw3 = le32toh(stat->rxdw3);
652 
653 	if (rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR)) {
654 		/*
655 		 * This should not happen since we setup our Rx filter
656 		 * to not receive these frames.
657 		 */
658 		ifp->if_ierrors++;
659 		return (NULL);
660 	}
661 
662 	rate = MS(rxdw3, R92C_RXDW3_RATE);
663 	infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
664 
665 	/* Get RSSI from PHY status descriptor if present. */
666 	if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
667 		if (sc->chip & URTWN_CHIP_88E)
668 			rssi = urtwn_r88e_get_rssi(sc, rate, &stat[1]);
669 		else
670 			rssi = urtwn_get_rssi(sc, rate, &stat[1]);
671 		/* Update our average RSSI. */
672 		urtwn_update_avgrssi(sc, rate, rssi);
673 		/*
674 		 * Convert the RSSI to a range that will be accepted
675 		 * by net80211.
676 		 */
677 		rssi = URTWN_RSSI(rssi);
678 	}
679 
680 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
681 	if (m == NULL) {
682 		device_printf(sc->sc_dev, "could not create RX mbuf\n");
683 		return (NULL);
684 	}
685 
686 	/* Finalize mbuf. */
687 	m->m_pkthdr.rcvif = ifp;
688 	wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz);
689 	memcpy(mtod(m, uint8_t *), wh, pktlen);
690 	m->m_pkthdr.len = m->m_len = pktlen;
691 
692 	if (ieee80211_radiotap_active(ic)) {
693 		struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
694 
695 		tap->wr_flags = 0;
696 		/* Map HW rate index to 802.11 rate. */
697 		if (!(rxdw3 & R92C_RXDW3_HT)) {
698 			switch (rate) {
699 			/* CCK. */
700 			case  0: tap->wr_rate =   2; break;
701 			case  1: tap->wr_rate =   4; break;
702 			case  2: tap->wr_rate =  11; break;
703 			case  3: tap->wr_rate =  22; break;
704 			/* OFDM. */
705 			case  4: tap->wr_rate =  12; break;
706 			case  5: tap->wr_rate =  18; break;
707 			case  6: tap->wr_rate =  24; break;
708 			case  7: tap->wr_rate =  36; break;
709 			case  8: tap->wr_rate =  48; break;
710 			case  9: tap->wr_rate =  72; break;
711 			case 10: tap->wr_rate =  96; break;
712 			case 11: tap->wr_rate = 108; break;
713 			}
714 		} else if (rate >= 12) {	/* MCS0~15. */
715 			/* Bit 7 set means HT MCS instead of rate. */
716 			tap->wr_rate = 0x80 | (rate - 12);
717 		}
718 		tap->wr_dbm_antsignal = rssi;
719 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
720 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
721 	}
722 
723 	*rssi_p = rssi;
724 
725 	return (m);
726 }
727 
728 static struct mbuf *
729 urtwn_rxeof(struct usb_xfer *xfer, struct urtwn_data *data, int *rssi,
730     int8_t *nf)
731 {
732 	struct urtwn_softc *sc = data->sc;
733 	struct ifnet *ifp = sc->sc_ifp;
734 	struct r92c_rx_stat *stat;
735 	struct mbuf *m, *m0 = NULL, *prevm = NULL;
736 	uint32_t rxdw0;
737 	uint8_t *buf;
738 	int len, totlen, pktlen, infosz, npkts;
739 
740 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
741 
742 	if (len < sizeof(*stat)) {
743 		ifp->if_ierrors++;
744 		return (NULL);
745 	}
746 
747 	buf = data->buf;
748 	/* Get the number of encapsulated frames. */
749 	stat = (struct r92c_rx_stat *)buf;
750 	npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT);
751 	DPRINTFN(6, "Rx %d frames in one chunk\n", npkts);
752 
753 	/* Process all of them. */
754 	while (npkts-- > 0) {
755 		if (len < sizeof(*stat))
756 			break;
757 		stat = (struct r92c_rx_stat *)buf;
758 		rxdw0 = le32toh(stat->rxdw0);
759 
760 		pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
761 		if (pktlen == 0)
762 			break;
763 
764 		infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
765 
766 		/* Make sure everything fits in xfer. */
767 		totlen = sizeof(*stat) + infosz + pktlen;
768 		if (totlen > len)
769 			break;
770 
771 		m = urtwn_rx_frame(sc, buf, pktlen, rssi);
772 		if (m0 == NULL)
773 			m0 = m;
774 		if (prevm == NULL)
775 			prevm = m;
776 		else {
777 			prevm->m_next = m;
778 			prevm = m;
779 		}
780 
781 		/* Next chunk is 128-byte aligned. */
782 		totlen = (totlen + 127) & ~127;
783 		buf += totlen;
784 		len -= totlen;
785 	}
786 
787 	return (m0);
788 }
789 
790 static void
791 urtwn_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
792 {
793 	struct urtwn_softc *sc = usbd_xfer_softc(xfer);
794 	struct ifnet *ifp = sc->sc_ifp;
795 	struct ieee80211com *ic = ifp->if_l2com;
796 	struct ieee80211_frame *wh;
797 	struct ieee80211_node *ni;
798 	struct mbuf *m = NULL, *next;
799 	struct urtwn_data *data;
800 	int8_t nf;
801 	int rssi = 1;
802 
803 	URTWN_ASSERT_LOCKED(sc);
804 
805 	switch (USB_GET_STATE(xfer)) {
806 	case USB_ST_TRANSFERRED:
807 		data = STAILQ_FIRST(&sc->sc_rx_active);
808 		if (data == NULL)
809 			goto tr_setup;
810 		STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
811 		m = urtwn_rxeof(xfer, data, &rssi, &nf);
812 		STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
813 		/* FALLTHROUGH */
814 	case USB_ST_SETUP:
815 tr_setup:
816 		data = STAILQ_FIRST(&sc->sc_rx_inactive);
817 		if (data == NULL) {
818 			KASSERT(m == NULL, ("mbuf isn't NULL"));
819 			return;
820 		}
821 		STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
822 		STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
823 		usbd_xfer_set_frame_data(xfer, 0, data->buf,
824 		    usbd_xfer_max_len(xfer));
825 		usbd_transfer_submit(xfer);
826 
827 		/*
828 		 * To avoid LOR we should unlock our private mutex here to call
829 		 * ieee80211_input() because here is at the end of a USB
830 		 * callback and safe to unlock.
831 		 */
832 		URTWN_UNLOCK(sc);
833 		while (m != NULL) {
834 			next = m->m_next;
835 			m->m_next = NULL;
836 			wh = mtod(m, struct ieee80211_frame *);
837 			ni = ieee80211_find_rxnode(ic,
838 			    (struct ieee80211_frame_min *)wh);
839 			nf = URTWN_NOISE_FLOOR;
840 			if (ni != NULL) {
841 				(void)ieee80211_input(ni, m, rssi, nf);
842 				ieee80211_free_node(ni);
843 			} else
844 				(void)ieee80211_input_all(ic, m, rssi, nf);
845 			m = next;
846 		}
847 		URTWN_LOCK(sc);
848 		break;
849 	default:
850 		/* needs it to the inactive queue due to a error. */
851 		data = STAILQ_FIRST(&sc->sc_rx_active);
852 		if (data != NULL) {
853 			STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
854 			STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
855 		}
856 		if (error != USB_ERR_CANCELLED) {
857 			usbd_xfer_set_stall(xfer);
858 			ifp->if_ierrors++;
859 			goto tr_setup;
860 		}
861 		break;
862 	}
863 }
864 
865 static void
866 urtwn_txeof(struct usb_xfer *xfer, struct urtwn_data *data)
867 {
868 	struct urtwn_softc *sc = usbd_xfer_softc(xfer);
869 	struct ifnet *ifp = sc->sc_ifp;
870 	struct mbuf *m;
871 
872 	URTWN_ASSERT_LOCKED(sc);
873 
874 	/*
875 	 * Do any tx complete callback.  Note this must be done before releasing
876 	 * the node reference.
877 	 */
878 	if (data->m) {
879 		m = data->m;
880 		if (m->m_flags & M_TXCB) {
881 			/* XXX status? */
882 			ieee80211_process_callback(data->ni, m, 0);
883 		}
884 		m_freem(m);
885 		data->m = NULL;
886 	}
887 	if (data->ni) {
888 		ieee80211_free_node(data->ni);
889 		data->ni = NULL;
890 	}
891 	sc->sc_txtimer = 0;
892 	ifp->if_opackets++;
893 	ifq_clr_oactive(&ifp->if_snd);
894 }
895 
896 static void
897 urtwn_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
898 {
899 	struct urtwn_softc *sc = usbd_xfer_softc(xfer);
900 	struct ifnet *ifp = sc->sc_ifp;
901 	struct urtwn_data *data;
902 
903 	URTWN_ASSERT_LOCKED(sc);
904 
905 	switch (USB_GET_STATE(xfer)){
906 	case USB_ST_TRANSFERRED:
907 		data = STAILQ_FIRST(&sc->sc_tx_active);
908 		if (data == NULL)
909 			goto tr_setup;
910 		STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
911 		urtwn_txeof(xfer, data);
912 		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
913 		/* FALLTHROUGH */
914 	case USB_ST_SETUP:
915 tr_setup:
916 		data = STAILQ_FIRST(&sc->sc_tx_pending);
917 		if (data == NULL) {
918 			DPRINTF("%s: empty pending queue\n", __func__);
919 			return;
920 		}
921 		STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
922 		STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
923 		usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
924 		usbd_transfer_submit(xfer);
925 
926 		urtwn_start_locked(ifp);
927 		break;
928 	default:
929 		data = STAILQ_FIRST(&sc->sc_tx_active);
930 		if (data == NULL)
931 			goto tr_setup;
932 		if (data->ni != NULL) {
933 			ieee80211_free_node(data->ni);
934 			data->ni = NULL;
935 			ifp->if_oerrors++;
936 		}
937 		if (error != USB_ERR_CANCELLED) {
938 			usbd_xfer_set_stall(xfer);
939 			goto tr_setup;
940 		}
941 		break;
942 	}
943 }
944 
945 static struct urtwn_data *
946 _urtwn_getbuf(struct urtwn_softc *sc)
947 {
948 	struct urtwn_data *bf;
949 
950 	bf = STAILQ_FIRST(&sc->sc_tx_inactive);
951 	if (bf != NULL)
952 		STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
953 	else
954 		bf = NULL;
955 	if (bf == NULL)
956 		DPRINTF("%s: %s\n", __func__, "out of xmit buffers");
957 	return (bf);
958 }
959 
960 static struct urtwn_data *
961 urtwn_getbuf(struct urtwn_softc *sc)
962 {
963         struct urtwn_data *bf;
964 
965 	URTWN_ASSERT_LOCKED(sc);
966 
967 	bf = _urtwn_getbuf(sc);
968 	if (bf == NULL) {
969 		struct ifnet *ifp = sc->sc_ifp;
970 		DPRINTF("%s: stop queue\n", __func__);
971 		ifq_set_oactive(&ifp->if_snd);
972 	}
973 	return (bf);
974 }
975 
976 static int
977 urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
978     int len)
979 {
980 	usb_device_request_t req;
981 
982 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
983 	req.bRequest = R92C_REQ_REGS;
984 	USETW(req.wValue, addr);
985 	USETW(req.wIndex, 0);
986 	USETW(req.wLength, len);
987 	return (urtwn_do_request(sc, &req, buf));
988 }
989 
990 static void
991 urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val)
992 {
993 	urtwn_write_region_1(sc, addr, &val, 1);
994 }
995 
996 
997 static void
998 urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val)
999 {
1000 	val = htole16(val);
1001 	urtwn_write_region_1(sc, addr, (uint8_t *)&val, 2);
1002 }
1003 
1004 static void
1005 urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val)
1006 {
1007 	val = htole32(val);
1008 	urtwn_write_region_1(sc, addr, (uint8_t *)&val, 4);
1009 }
1010 
1011 static int
1012 urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
1013     int len)
1014 {
1015 	usb_device_request_t req;
1016 
1017 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1018 	req.bRequest = R92C_REQ_REGS;
1019 	USETW(req.wValue, addr);
1020 	USETW(req.wIndex, 0);
1021 	USETW(req.wLength, len);
1022 	return (urtwn_do_request(sc, &req, buf));
1023 }
1024 
1025 static uint8_t
1026 urtwn_read_1(struct urtwn_softc *sc, uint16_t addr)
1027 {
1028 	uint8_t val;
1029 
1030 	if (urtwn_read_region_1(sc, addr, &val, 1) != 0)
1031 		return (0xff);
1032 	return (val);
1033 }
1034 
1035 static uint16_t
1036 urtwn_read_2(struct urtwn_softc *sc, uint16_t addr)
1037 {
1038 	uint16_t val;
1039 
1040 	if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0)
1041 		return (0xffff);
1042 	return (le16toh(val));
1043 }
1044 
1045 static uint32_t
1046 urtwn_read_4(struct urtwn_softc *sc, uint16_t addr)
1047 {
1048 	uint32_t val;
1049 
1050 	if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0)
1051 		return (0xffffffff);
1052 	return (le32toh(val));
1053 }
1054 
1055 static int
1056 urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len)
1057 {
1058 	struct r92c_fw_cmd cmd;
1059 	int ntries;
1060 
1061 	/* Wait for current FW box to be empty. */
1062 	for (ntries = 0; ntries < 100; ntries++) {
1063 		if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << sc->fwcur)))
1064 			break;
1065 		urtwn_ms_delay(sc);
1066 	}
1067 	if (ntries == 100) {
1068 		device_printf(sc->sc_dev,
1069 		    "could not send firmware command\n");
1070 		return (ETIMEDOUT);
1071 	}
1072 	memset(&cmd, 0, sizeof(cmd));
1073 	cmd.id = id;
1074 	if (len > 3)
1075 		cmd.id |= R92C_CMD_FLAG_EXT;
1076 	KASSERT(len <= sizeof(cmd.msg), ("urtwn_fw_cmd\n"));
1077 	memcpy(cmd.msg, buf, len);
1078 
1079 	/* Write the first word last since that will trigger the FW. */
1080 	urtwn_write_region_1(sc, R92C_HMEBOX_EXT(sc->fwcur),
1081 	    (uint8_t *)&cmd + 4, 2);
1082 	urtwn_write_region_1(sc, R92C_HMEBOX(sc->fwcur),
1083 	    (uint8_t *)&cmd + 0, 4);
1084 
1085 	sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
1086 	return (0);
1087 }
1088 
1089 static __inline void
1090 urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
1091 {
1092 
1093 	sc->sc_rf_write(sc, chain, addr, val);
1094 }
1095 
1096 static void
1097 urtwn_r92c_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr,
1098     uint32_t val)
1099 {
1100 	urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
1101 	    SM(R92C_LSSI_PARAM_ADDR, addr) |
1102 	    SM(R92C_LSSI_PARAM_DATA, val));
1103 }
1104 
1105 static void
1106 urtwn_r88e_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr,
1107 uint32_t val)
1108 {
1109 	urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
1110 	    SM(R88E_LSSI_PARAM_ADDR, addr) |
1111 	    SM(R92C_LSSI_PARAM_DATA, val));
1112 }
1113 
1114 static uint32_t
1115 urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr)
1116 {
1117 	uint32_t reg[R92C_MAX_CHAINS], val;
1118 
1119 	reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
1120 	if (chain != 0)
1121 		reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
1122 
1123 	urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
1124 	    reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
1125 	urtwn_ms_delay(sc);
1126 
1127 	urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
1128 	    RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
1129 	    R92C_HSSI_PARAM2_READ_EDGE);
1130 	urtwn_ms_delay(sc);
1131 
1132 	urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
1133 	    reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
1134 	urtwn_ms_delay(sc);
1135 
1136 	if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI)
1137 		val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
1138 	else
1139 		val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
1140 	return (MS(val, R92C_LSSI_READBACK_DATA));
1141 }
1142 
1143 static int
1144 urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
1145 {
1146 	int ntries;
1147 
1148 	urtwn_write_4(sc, R92C_LLT_INIT,
1149 	    SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
1150 	    SM(R92C_LLT_INIT_ADDR, addr) |
1151 	    SM(R92C_LLT_INIT_DATA, data));
1152 	/* Wait for write operation to complete. */
1153 	for (ntries = 0; ntries < 20; ntries++) {
1154 		if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
1155 		    R92C_LLT_INIT_OP_NO_ACTIVE)
1156 			return (0);
1157 		urtwn_ms_delay(sc);
1158 	}
1159 	return (ETIMEDOUT);
1160 }
1161 
1162 static uint8_t
1163 urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr)
1164 {
1165 	uint32_t reg;
1166 	int ntries;
1167 
1168 	reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
1169 	reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
1170 	reg &= ~R92C_EFUSE_CTRL_VALID;
1171 	urtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
1172 	/* Wait for read operation to complete. */
1173 	for (ntries = 0; ntries < 100; ntries++) {
1174 		reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
1175 		if (reg & R92C_EFUSE_CTRL_VALID)
1176 			return (MS(reg, R92C_EFUSE_CTRL_DATA));
1177 		urtwn_ms_delay(sc);
1178 	}
1179 	device_printf(sc->sc_dev,
1180 	    "could not read efuse byte at address 0x%x\n", addr);
1181 	return (0xff);
1182 }
1183 
1184 static void
1185 urtwn_efuse_read(struct urtwn_softc *sc)
1186 {
1187 	uint8_t *rom = (uint8_t *)&sc->rom;
1188 	uint16_t addr = 0;
1189 	uint32_t reg;
1190 	uint8_t off, msk;
1191 	int i;
1192 
1193 	urtwn_efuse_switch_power(sc);
1194 
1195 	memset(&sc->rom, 0xff, sizeof(sc->rom));
1196 	while (addr < 512) {
1197 		reg = urtwn_efuse_read_1(sc, addr);
1198 		if (reg == 0xff)
1199 			break;
1200 		addr++;
1201 		off = reg >> 4;
1202 		msk = reg & 0xf;
1203 		for (i = 0; i < 4; i++) {
1204 			if (msk & (1 << i))
1205 				continue;
1206 			rom[off * 8 + i * 2 + 0] =
1207 			    urtwn_efuse_read_1(sc, addr);
1208 			addr++;
1209 			rom[off * 8 + i * 2 + 1] =
1210 			    urtwn_efuse_read_1(sc, addr);
1211 			addr++;
1212 		}
1213 	}
1214 #ifdef URTWN_DEBUG
1215 	if (urtwn_debug >= 2) {
1216 		/* Dump ROM content. */
1217 		printf("\n");
1218 		for (i = 0; i < sizeof(sc->rom); i++)
1219 			printf("%02x:", rom[i]);
1220 		printf("\n");
1221 	}
1222 #endif
1223 }
1224 static void
1225 urtwn_efuse_switch_power(struct urtwn_softc *sc)
1226 {
1227 	uint32_t reg;
1228 
1229 	reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL);
1230 	if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
1231 		urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
1232 		    reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
1233 	}
1234 	reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
1235 	if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
1236 		urtwn_write_2(sc, R92C_SYS_FUNC_EN,
1237 		    reg | R92C_SYS_FUNC_EN_ELDR);
1238 	}
1239 	reg = urtwn_read_2(sc, R92C_SYS_CLKR);
1240 	if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
1241 	    (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
1242 		urtwn_write_2(sc, R92C_SYS_CLKR,
1243 		    reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
1244 	}
1245 }
1246 
1247 static int
1248 urtwn_read_chipid(struct urtwn_softc *sc)
1249 {
1250 	uint32_t reg;
1251 
1252 	if (sc->chip & URTWN_CHIP_88E)
1253 		return (0);
1254 
1255 	reg = urtwn_read_4(sc, R92C_SYS_CFG);
1256 	if (reg & R92C_SYS_CFG_TRP_VAUX_EN)
1257 		return (EIO);
1258 
1259 	if (reg & R92C_SYS_CFG_TYPE_92C) {
1260 		sc->chip |= URTWN_CHIP_92C;
1261 		/* Check if it is a castrated 8192C. */
1262 		if (MS(urtwn_read_4(sc, R92C_HPON_FSM),
1263 		    R92C_HPON_FSM_CHIP_BONDING_ID) ==
1264 		    R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R)
1265 			sc->chip |= URTWN_CHIP_92C_1T2R;
1266 	}
1267 	if (reg & R92C_SYS_CFG_VENDOR_UMC) {
1268 		sc->chip |= URTWN_CHIP_UMC;
1269 		if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0)
1270 			sc->chip |= URTWN_CHIP_UMC_A_CUT;
1271 	}
1272 	return (0);
1273 }
1274 
1275 static void
1276 urtwn_read_rom(struct urtwn_softc *sc)
1277 {
1278 	struct r92c_rom *rom = &sc->rom;
1279 
1280 	/* Read full ROM image. */
1281 	urtwn_efuse_read(sc);
1282 
1283 	/* XXX Weird but this is what the vendor driver does. */
1284 	sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa);
1285 	DPRINTF("PA setting=0x%x\n", sc->pa_setting);
1286 
1287 	sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
1288 
1289 	sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
1290 	DPRINTF("regulatory type=%d\n", sc->regulatory);
1291 	IEEE80211_ADDR_COPY(sc->sc_bssid, rom->macaddr);
1292 
1293 	sc->sc_rf_write = urtwn_r92c_rf_write;
1294 	sc->sc_power_on = urtwn_r92c_power_on;
1295 	sc->sc_dma_init = urtwn_r92c_dma_init;
1296 }
1297 
1298 static void
1299 urtwn_r88e_read_rom(struct urtwn_softc *sc)
1300 {
1301 	uint8_t *rom = sc->r88e_rom;
1302 	uint16_t addr = 0;
1303 	uint32_t reg;
1304 	uint8_t off, msk, tmp;
1305 	int i;
1306 
1307 	off = 0;
1308 	urtwn_efuse_switch_power(sc);
1309 
1310 	/* Read full ROM image. */
1311 	memset(&sc->r88e_rom, 0xff, sizeof(sc->r88e_rom));
1312 	while (addr < 1024) {
1313 		reg = urtwn_efuse_read_1(sc, addr);
1314 		if (reg == 0xff)
1315 			break;
1316 		addr++;
1317 		if ((reg & 0x1f) == 0x0f) {
1318 			tmp = (reg & 0xe0) >> 5;
1319 			reg = urtwn_efuse_read_1(sc, addr);
1320 			if ((reg & 0x0f) != 0x0f)
1321 				off = ((reg & 0xf0) >> 1) | tmp;
1322 			addr++;
1323 		} else
1324 			off = reg >> 4;
1325 		msk = reg & 0xf;
1326 		for (i = 0; i < 4; i++) {
1327 			if (msk & (1 << i))
1328 				continue;
1329 			rom[off * 8 + i * 2 + 0] =
1330 			    urtwn_efuse_read_1(sc, addr);
1331 			addr++;
1332 			rom[off * 8 + i * 2 + 1] =
1333 			    urtwn_efuse_read_1(sc, addr);
1334 			addr++;
1335 		}
1336 	}
1337 
1338 	addr = 0x10;
1339 	for (i = 0; i < 6; i++)
1340 		sc->cck_tx_pwr[i] = sc->r88e_rom[addr++];
1341 	for (i = 0; i < 5; i++)
1342 		sc->ht40_tx_pwr[i] = sc->r88e_rom[addr++];
1343 	sc->bw20_tx_pwr_diff = (sc->r88e_rom[addr] & 0xf0) >> 4;
1344 	if (sc->bw20_tx_pwr_diff & 0x08)
1345 		sc->bw20_tx_pwr_diff |= 0xf0;
1346 	sc->ofdm_tx_pwr_diff = (sc->r88e_rom[addr] & 0xf);
1347 	if (sc->ofdm_tx_pwr_diff & 0x08)
1348 		sc->ofdm_tx_pwr_diff |= 0xf0;
1349 	sc->regulatory = MS(sc->r88e_rom[0xc1], R92C_ROM_RF1_REGULATORY);
1350 	IEEE80211_ADDR_COPY(sc->sc_bssid, &sc->r88e_rom[0xd7]);
1351 
1352 	sc->sc_rf_write = urtwn_r88e_rf_write;
1353 	sc->sc_power_on = urtwn_r88e_power_on;
1354 	sc->sc_dma_init = urtwn_r88e_dma_init;
1355 }
1356 
1357 /*
1358  * Initialize rate adaptation in firmware.
1359  */
1360 static int
1361 urtwn_ra_init(struct urtwn_softc *sc)
1362 {
1363 	static const uint8_t map[] =
1364 	    { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1365 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1366 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1367 	struct ieee80211_node *ni;
1368 	struct ieee80211_rateset *rs;
1369 	struct r92c_fw_cmd_macid_cfg cmd;
1370 	uint32_t rates, basicrates;
1371 	uint8_t mode;
1372 	int maxrate, maxbasicrate, error, i, j;
1373 
1374 	ni = ieee80211_ref_node(vap->iv_bss);
1375 	rs = &ni->ni_rates;
1376 
1377 	/* Get normal and basic rates mask. */
1378 	rates = basicrates = 0;
1379 	maxrate = maxbasicrate = 0;
1380 	for (i = 0; i < rs->rs_nrates; i++) {
1381 		/* Convert 802.11 rate to HW rate index. */
1382 		for (j = 0; j < NELEM(map); j++)
1383 			if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j])
1384 				break;
1385 		if (j == NELEM(map))	/* Unknown rate, skip. */
1386 			continue;
1387 		rates |= 1 << j;
1388 		if (j > maxrate)
1389 			maxrate = j;
1390 		if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
1391 			basicrates |= 1 << j;
1392 			if (j > maxbasicrate)
1393 				maxbasicrate = j;
1394 		}
1395 	}
1396 	if (ic->ic_curmode == IEEE80211_MODE_11B)
1397 		mode = R92C_RAID_11B;
1398 	else
1399 		mode = R92C_RAID_11BG;
1400 	DPRINTF("mode=0x%x rates=0x%08x, basicrates=0x%08x\n",
1401 	    mode, rates, basicrates);
1402 
1403 	/* Set rates mask for group addressed frames. */
1404 	cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID;
1405 	cmd.mask = htole32(mode << 28 | basicrates);
1406 	error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1407 	if (error != 0) {
1408 		ieee80211_free_node(ni);
1409 		device_printf(sc->sc_dev,
1410 		    "could not add broadcast station\n");
1411 		return (error);
1412 	}
1413 	/* Set initial MRR rate. */
1414 	DPRINTF("maxbasicrate=%d\n", maxbasicrate);
1415 	urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC),
1416 	    maxbasicrate);
1417 
1418 	/* Set rates mask for unicast frames. */
1419 	cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID;
1420 	cmd.mask = htole32(mode << 28 | rates);
1421 	error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1422 	if (error != 0) {
1423 		ieee80211_free_node(ni);
1424 		device_printf(sc->sc_dev, "could not add BSS station\n");
1425 		return (error);
1426 	}
1427 	/* Set initial MRR rate. */
1428 	DPRINTF("maxrate=%d\n", maxrate);
1429 	urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS),
1430 	    maxrate);
1431 
1432 	/* Indicate highest supported rate. */
1433 	ni->ni_txrate = rs->rs_rates[rs->rs_nrates - 1];
1434 	ieee80211_free_node(ni);
1435 
1436 	return (0);
1437 }
1438 
1439 void
1440 urtwn_tsf_sync_enable(struct urtwn_softc *sc)
1441 {
1442 	struct ifnet *ifp = sc->sc_ifp;
1443 	struct ieee80211com *ic = ifp->if_l2com;
1444 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1445 	struct ieee80211_node *ni = vap->iv_bss;
1446 
1447 	uint64_t tsf;
1448 
1449 	/* Enable TSF synchronization. */
1450 	urtwn_write_1(sc, R92C_BCN_CTRL,
1451 	    urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
1452 
1453 	urtwn_write_1(sc, R92C_BCN_CTRL,
1454 	    urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
1455 
1456 	/* Set initial TSF. */
1457 	memcpy(&tsf, ni->ni_tstamp.data, 8);
1458 	tsf = le64toh(tsf);
1459 	tsf = tsf - (tsf % (vap->iv_bss->ni_intval * IEEE80211_DUR_TU));
1460 	tsf -= IEEE80211_DUR_TU;
1461 	urtwn_write_4(sc, R92C_TSFTR + 0, tsf);
1462 	urtwn_write_4(sc, R92C_TSFTR + 4, tsf >> 32);
1463 
1464 	urtwn_write_1(sc, R92C_BCN_CTRL,
1465 	    urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
1466 }
1467 
1468 static void
1469 urtwn_set_led(struct urtwn_softc *sc, int led, int on)
1470 {
1471 	uint8_t reg;
1472 
1473 	if (led == URTWN_LED_LINK) {
1474 		if (sc->chip & URTWN_CHIP_88E) {
1475 			reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0xf0;
1476 			urtwn_write_1(sc, R92C_LEDCFG2, reg | 0x60);
1477 			if (!on) {
1478 				reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0x90;
1479 				urtwn_write_1(sc, R92C_LEDCFG2,
1480 				    reg | R92C_LEDCFG0_DIS);
1481 				urtwn_write_1(sc, R92C_MAC_PINMUX_CFG,
1482 				    urtwn_read_1(sc, R92C_MAC_PINMUX_CFG) &
1483 				    0xfe);
1484 			}
1485 		} else {
1486 			reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
1487 			if (!on)
1488 				reg |= R92C_LEDCFG0_DIS;
1489 			urtwn_write_1(sc, R92C_LEDCFG0, reg);
1490 		}
1491 		sc->ledlink = on;       /* Save LED state. */
1492 	}
1493 }
1494 
1495 static int
1496 urtwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1497 {
1498 	struct urtwn_vap *uvp = URTWN_VAP(vap);
1499 	struct ieee80211com *ic = vap->iv_ic;
1500 	struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1501 	struct ieee80211_node *ni;
1502 	enum ieee80211_state ostate;
1503 	uint32_t reg;
1504 
1505 	ostate = vap->iv_state;
1506 	DPRINTF("%s -> %s\n", ieee80211_state_name[ostate],
1507 	    ieee80211_state_name[nstate]);
1508 
1509 	URTWN_LOCK(sc);
1510 	callout_stop(&sc->sc_watchdog_ch);
1511 
1512 	if (ostate == IEEE80211_S_RUN) {
1513 		/* Turn link LED off. */
1514 		urtwn_set_led(sc, URTWN_LED_LINK, 0);
1515 
1516 		/* Set media status to 'No Link'. */
1517 		reg = urtwn_read_4(sc, R92C_CR);
1518 		reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_NOLINK);
1519 		urtwn_write_4(sc, R92C_CR, reg);
1520 
1521 		/* Stop Rx of data frames. */
1522 		urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1523 
1524 		/* Rest TSF. */
1525 		urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
1526 
1527 		/* Disable TSF synchronization. */
1528 		urtwn_write_1(sc, R92C_BCN_CTRL,
1529 		    urtwn_read_1(sc, R92C_BCN_CTRL) |
1530 		    R92C_BCN_CTRL_DIS_TSF_UDT0);
1531 
1532 		/* Reset EDCA parameters. */
1533 		urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
1534 		urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
1535 		urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
1536 		urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
1537 	}
1538 
1539 	switch (nstate) {
1540 	case IEEE80211_S_INIT:
1541 		/* Turn link LED off. */
1542 		urtwn_set_led(sc, URTWN_LED_LINK, 0);
1543 		break;
1544 	case IEEE80211_S_SCAN:
1545 		if (ostate != IEEE80211_S_SCAN) {
1546 			/* Allow Rx from any BSSID. */
1547 			urtwn_write_4(sc, R92C_RCR,
1548 			    urtwn_read_4(sc, R92C_RCR) &
1549 			    ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1550 
1551 			/* Set gain for scanning. */
1552 			reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1553 			reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1554 			urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1555 
1556 			if (!(sc->chip & URTWN_CHIP_88E)) {
1557 				reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1558 				reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1559 				urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1560 			}
1561 		}
1562 		/* Make link LED blink during scan. */
1563 		urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink);
1564 
1565 		/* Pause AC Tx queues. */
1566 		urtwn_write_1(sc, R92C_TXPAUSE,
1567 		    urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f);
1568 
1569 		urtwn_set_chan(sc, ic->ic_curchan, NULL);
1570 		break;
1571 	case IEEE80211_S_AUTH:
1572 		/* Set initial gain under link. */
1573 		reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1574 		reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1575 		urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1576 
1577 		if (!(sc->chip & URTWN_CHIP_88E)) {
1578 			reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1579 			reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1580 			urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1581 		}
1582 		urtwn_set_chan(sc, ic->ic_curchan, NULL);
1583 		break;
1584 	case IEEE80211_S_RUN:
1585 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1586 			/* Enable Rx of data frames. */
1587 			urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1588 
1589 			/* Turn link LED on. */
1590 			urtwn_set_led(sc, URTWN_LED_LINK, 1);
1591 			break;
1592 		}
1593 
1594 		ni = ieee80211_ref_node(vap->iv_bss);
1595 		/* Set media status to 'Associated'. */
1596 		reg = urtwn_read_4(sc, R92C_CR);
1597 		reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
1598 		urtwn_write_4(sc, R92C_CR, reg);
1599 
1600 		/* Set BSSID. */
1601 		urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
1602 		urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
1603 
1604 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1605 			urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
1606 		else	/* 802.11b/g */
1607 			urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
1608 
1609 		/* Enable Rx of data frames. */
1610 		urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1611 
1612 		/* Flush all AC queues. */
1613 		urtwn_write_1(sc, R92C_TXPAUSE, 0);
1614 
1615 		/* Set beacon interval. */
1616 		urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
1617 
1618 		/* Allow Rx from our BSSID only. */
1619 		urtwn_write_4(sc, R92C_RCR,
1620 		    urtwn_read_4(sc, R92C_RCR) |
1621 		    R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1622 
1623 		/* Enable TSF synchronization. */
1624 		urtwn_tsf_sync_enable(sc);
1625 
1626 		urtwn_write_1(sc, R92C_SIFS_CCK + 1, 10);
1627 		urtwn_write_1(sc, R92C_SIFS_OFDM + 1, 10);
1628 		urtwn_write_1(sc, R92C_SPEC_SIFS + 1, 10);
1629 		urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, 10);
1630 		urtwn_write_1(sc, R92C_R2T_SIFS + 1, 10);
1631 		urtwn_write_1(sc, R92C_T2T_SIFS + 1, 10);
1632 
1633 		/* Intialize rate adaptation. */
1634 		if (sc->chip & URTWN_CHIP_88E)
1635 			ni->ni_txrate =
1636 			    ni->ni_rates.rs_rates[ni->ni_rates.rs_nrates-1];
1637 		else
1638 			urtwn_ra_init(sc);
1639 		/* Turn link LED on. */
1640 		urtwn_set_led(sc, URTWN_LED_LINK, 1);
1641 
1642 		sc->avg_pwdb = -1;	/* Reset average RSSI. */
1643 		/* Reset temperature calibration state machine. */
1644 		sc->thcal_state = 0;
1645 		sc->thcal_lctemp = 0;
1646 		ieee80211_free_node(ni);
1647 		break;
1648 	default:
1649 		break;
1650 	}
1651 	URTWN_UNLOCK(sc);
1652 	return(uvp->newstate(vap, nstate, arg));
1653 }
1654 
1655 static void
1656 urtwn_watchdog(void *arg)
1657 {
1658 	struct urtwn_softc *sc = arg;
1659 	struct ifnet *ifp = sc->sc_ifp;
1660 
1661 	if (sc->sc_txtimer > 0) {
1662 		if (--sc->sc_txtimer == 0) {
1663 			device_printf(sc->sc_dev, "device timeout\n");
1664 			ifp->if_oerrors++;
1665 			return;
1666 		}
1667 		callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
1668 	}
1669 }
1670 
1671 static void
1672 urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi)
1673 {
1674 	int pwdb;
1675 
1676 	/* Convert antenna signal to percentage. */
1677 	if (rssi <= -100 || rssi >= 20)
1678 		pwdb = 0;
1679 	else if (rssi >= 0)
1680 		pwdb = 100;
1681 	else
1682 		pwdb = 100 + rssi;
1683 	if (!(sc->chip & URTWN_CHIP_88E)) {
1684 		if (rate <= 3) {
1685 			/* CCK gain is smaller than OFDM/MCS gain. */
1686 			pwdb += 6;
1687 			if (pwdb > 100)
1688 				pwdb = 100;
1689 			if (pwdb <= 14)
1690 				pwdb -= 4;
1691 			else if (pwdb <= 26)
1692 				pwdb -= 8;
1693 			else if (pwdb <= 34)
1694 				pwdb -= 6;
1695 			else if (pwdb <= 42)
1696 				pwdb -= 2;
1697 		}
1698 	}
1699 	if (sc->avg_pwdb == -1)	/* Init. */
1700 		sc->avg_pwdb = pwdb;
1701 	else if (sc->avg_pwdb < pwdb)
1702 		sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
1703 	else
1704 		sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
1705 	DPRINTFN(4, "PWDB=%d EMA=%d\n", pwdb, sc->avg_pwdb);
1706 }
1707 
1708 static int8_t
1709 urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
1710 {
1711 	static const int8_t cckoff[] = { 16, -12, -26, -46 };
1712 	struct r92c_rx_phystat *phy;
1713 	struct r92c_rx_cck *cck;
1714 	uint8_t rpt;
1715 	int8_t rssi;
1716 
1717 	if (rate <= 3) {
1718 		cck = (struct r92c_rx_cck *)physt;
1719 		if (sc->sc_flags & URTWN_FLAG_CCK_HIPWR) {
1720 			rpt = (cck->agc_rpt >> 5) & 0x3;
1721 			rssi = (cck->agc_rpt & 0x1f) << 1;
1722 		} else {
1723 			rpt = (cck->agc_rpt >> 6) & 0x3;
1724 			rssi = cck->agc_rpt & 0x3e;
1725 		}
1726 		rssi = cckoff[rpt] - rssi;
1727 	} else {	/* OFDM/HT. */
1728 		phy = (struct r92c_rx_phystat *)physt;
1729 		rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
1730 	}
1731 	return (rssi);
1732 }
1733 
1734 static int8_t
1735 urtwn_r88e_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
1736 {
1737 	struct r92c_rx_phystat *phy;
1738 	struct r88e_rx_cck *cck;
1739 	uint8_t cck_agc_rpt, lna_idx, vga_idx;
1740 	int8_t rssi;
1741 
1742 	rssi = 0;
1743 	if (rate <= 3) {
1744 		cck = (struct r88e_rx_cck *)physt;
1745 		cck_agc_rpt = cck->agc_rpt;
1746 		lna_idx = (cck_agc_rpt & 0xe0) >> 5;
1747 		vga_idx = cck_agc_rpt & 0x1f;
1748 		switch (lna_idx) {
1749 		case 7:
1750 			if (vga_idx <= 27)
1751 				rssi = -100 + 2* (27 - vga_idx);
1752 			else
1753 				rssi = -100;
1754 			break;
1755 		case 6:
1756 			rssi = -48 + 2 * (2 - vga_idx);
1757 			break;
1758 		case 5:
1759 			rssi = -42 + 2 * (7 - vga_idx);
1760 			break;
1761 		case 4:
1762 			rssi = -36 + 2 * (7 - vga_idx);
1763 			break;
1764 		case 3:
1765 			rssi = -24 + 2 * (7 - vga_idx);
1766 			break;
1767 		case 2:
1768 			rssi = -12 + 2 * (5 - vga_idx);
1769 			break;
1770 		case 1:
1771 			rssi = 8 - (2 * vga_idx);
1772 			break;
1773 		case 0:
1774 			rssi = 14 - (2 * vga_idx);
1775 			break;
1776 		}
1777 		rssi += 6;
1778 	} else {	/* OFDM/HT. */
1779 		phy = (struct r92c_rx_phystat *)physt;
1780 		rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
1781 	}
1782 	return (rssi);
1783 }
1784 
1785 
1786 static int
1787 urtwn_tx_start(struct urtwn_softc *sc, struct ieee80211_node *ni,
1788     struct mbuf *m0, struct urtwn_data *data)
1789 {
1790 	struct ifnet *ifp = sc->sc_ifp;
1791 	struct ieee80211_frame *wh;
1792 	struct ieee80211_key *k;
1793 	struct ieee80211com *ic = ifp->if_l2com;
1794 	struct ieee80211vap *vap = ni->ni_vap;
1795 	struct usb_xfer *xfer;
1796 	struct r92c_tx_desc *txd;
1797 	uint8_t raid, type;
1798 	uint16_t sum;
1799 	int i, hasqos, xferlen;
1800 	struct usb_xfer *urtwn_pipes[4] = {
1801 		sc->sc_xfer[URTWN_BULK_TX_BE],
1802 		sc->sc_xfer[URTWN_BULK_TX_BK],
1803 		sc->sc_xfer[URTWN_BULK_TX_VI],
1804 		sc->sc_xfer[URTWN_BULK_TX_VO]
1805 	};
1806 
1807 	URTWN_ASSERT_LOCKED(sc);
1808 
1809 	/*
1810 	 * Software crypto.
1811 	 */
1812 	wh = mtod(m0, struct ieee80211_frame *);
1813 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1814 
1815 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1816 		k = ieee80211_crypto_encap(ni, m0);
1817 		if (k == NULL) {
1818 			device_printf(sc->sc_dev,
1819 			    "ieee80211_crypto_encap returns NULL.\n");
1820 			/* XXX we don't expect the fragmented frames */
1821 			m_freem(m0);
1822 			return (ENOBUFS);
1823 		}
1824 
1825 		/* in case packet header moved, reset pointer */
1826 		wh = mtod(m0, struct ieee80211_frame *);
1827 	}
1828 
1829 	switch (type) {
1830 	case IEEE80211_FC0_TYPE_CTL:
1831 	case IEEE80211_FC0_TYPE_MGT:
1832 		xfer = sc->sc_xfer[URTWN_BULK_TX_VO];
1833 		break;
1834 	default:
1835 		KASSERT(M_WME_GETAC(m0) < 4,
1836 		    ("unsupported WME pipe %d", M_WME_GETAC(m0)));
1837 		xfer = urtwn_pipes[M_WME_GETAC(m0)];
1838 		break;
1839 	}
1840 
1841 	hasqos = 0;
1842 
1843 	/* Fill Tx descriptor. */
1844 	txd = (struct r92c_tx_desc *)data->buf;
1845 	memset(txd, 0, sizeof(*txd));
1846 
1847 	txd->txdw0 |= htole32(
1848 	    SM(R92C_TXDW0_PKTLEN, m0->m_pkthdr.len) |
1849 	    SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
1850 	    R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
1851 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1852 		txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
1853 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1854 	    type == IEEE80211_FC0_TYPE_DATA) {
1855 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1856 			raid = R92C_RAID_11B;
1857 		else
1858 			raid = R92C_RAID_11BG;
1859 		if (sc->chip & URTWN_CHIP_88E) {
1860 			txd->txdw1 |= htole32(
1861 			    SM(R88E_TXDW1_MACID, URTWN_MACID_BSS) |
1862 			    SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BE) |
1863 			    SM(R92C_TXDW1_RAID, raid));
1864 			txd->txdw2 |= htole32(R88E_TXDW2_AGGBK);
1865 		} else {
1866 			txd->txdw1 |= htole32(
1867 			    SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
1868 			    SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BE) |
1869 		 	    SM(R92C_TXDW1_RAID, raid) | R92C_TXDW1_AGGBK);
1870 		}
1871 		if (ic->ic_flags & IEEE80211_F_USEPROT) {
1872 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
1873 				txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
1874 				    R92C_TXDW4_HWRTSEN);
1875 			} else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
1876 				txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
1877 				    R92C_TXDW4_HWRTSEN);
1878 			}
1879 		}
1880 		/* Send RTS at OFDM24. */
1881 		txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
1882 		txd->txdw5 |= htole32(0x0001ff00);
1883 		/* Send data at OFDM54. */
1884 		if (sc->chip & URTWN_CHIP_88E)
1885 			txd->txdw5 |= htole32(0x13 & 0x3f);
1886 		else
1887 			txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
1888 	} else {
1889 		txd->txdw1 |= htole32(
1890 		    SM(R92C_TXDW1_MACID, 0) |
1891 		    SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
1892 		    SM(R92C_TXDW1_RAID, R92C_RAID_11B));
1893 
1894 		/* Force CCK1. */
1895 		txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
1896 		txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
1897 	}
1898 	/* Set sequence number (already little endian). */
1899 	txd->txdseq |= *(uint16_t *)wh->i_seq;
1900 
1901 	if (!hasqos) {
1902 		/* Use HW sequence numbering for non-QoS frames. */
1903 		txd->txdw4  |= htole32(R92C_TXDW4_HWSEQ);
1904 		txd->txdseq |= htole16(0x8000);
1905 	} else
1906 		txd->txdw4 |= htole32(R92C_TXDW4_QOS);
1907 
1908 	/* Compute Tx descriptor checksum. */
1909 	sum = 0;
1910 	for (i = 0; i < sizeof(*txd) / 2; i++)
1911 		sum ^= ((uint16_t *)txd)[i];
1912 	txd->txdsum = sum; 	/* NB: already little endian. */
1913 
1914 	if (ieee80211_radiotap_active_vap(vap)) {
1915 		struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
1916 
1917 		tap->wt_flags = 0;
1918 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1919 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1920 		ieee80211_radiotap_tx(vap, m0);
1921 	}
1922 
1923 	xferlen = sizeof(*txd) + m0->m_pkthdr.len;
1924 	m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&txd[1]);
1925 
1926 	data->buflen = xferlen;
1927 	data->ni = ni;
1928 	data->m = m0;
1929 
1930 	STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1931 	usbd_transfer_start(xfer);
1932 	return (0);
1933 }
1934 
1935 static void
1936 urtwn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1937 {
1938 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1939 		return;
1940 
1941 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1942 	urtwn_start_locked(ifp);
1943 }
1944 
1945 static void
1946 urtwn_start_locked(struct ifnet *ifp)
1947 {
1948 	struct urtwn_softc *sc = ifp->if_softc;
1949 	struct ieee80211_node *ni;
1950 	struct mbuf *m;
1951 	struct urtwn_data *bf;
1952 
1953 	URTWN_LOCK(sc);
1954 	for (;;) {
1955 		m = ifq_dequeue(&ifp->if_snd);
1956 		if (m == NULL)
1957 			break;
1958 		bf = urtwn_getbuf(sc);
1959 		if (bf == NULL) {
1960 			ifq_prepend(&ifp->if_snd, m);
1961 			break;
1962 		}
1963 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1964 		m->m_pkthdr.rcvif = NULL;
1965 
1966 		if (urtwn_tx_start(sc, ni, m, bf) != 0) {
1967 			ifp->if_oerrors++;
1968 			STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
1969 			ieee80211_free_node(ni);
1970 			break;
1971 		}
1972 
1973 		sc->sc_txtimer = 5;
1974 		callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
1975 	}
1976 	URTWN_UNLOCK(sc);
1977 }
1978 
1979 static int
1980 urtwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
1981 {
1982 	struct urtwn_softc *sc = ifp->if_softc;
1983 	struct ieee80211com *ic = ifp->if_l2com;
1984 	struct ifreq *ifr = (struct ifreq *) data;
1985 	int error = 0, startall = 0;
1986 
1987 	URTWN_LOCK(sc);
1988 	error = (sc->sc_flags & URTWN_DETACHED) ? ENXIO : 0;
1989 	URTWN_UNLOCK(sc);
1990 	if (error != 0)
1991 		return (error);
1992 
1993 	switch (cmd) {
1994 	case SIOCSIFFLAGS:
1995 		if (ifp->if_flags & IFF_UP) {
1996 			if ((ifp->if_flags & IFF_RUNNING) == 0) {
1997 				urtwn_init(ifp->if_softc);
1998 				startall = 1;
1999 			}
2000 		} else {
2001 			if (ifp->if_flags & IFF_RUNNING)
2002 				urtwn_stop(ifp);
2003 		}
2004 		if (startall)
2005 			ieee80211_start_all(ic);
2006 		break;
2007 	case SIOCGIFMEDIA:
2008 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2009 		break;
2010 	case SIOCGIFADDR:
2011 		error = ether_ioctl(ifp, cmd, data);
2012 		break;
2013 	default:
2014 		error = EINVAL;
2015 		break;
2016 	}
2017 	return (error);
2018 }
2019 
2020 static int
2021 urtwn_alloc_list(struct urtwn_softc *sc, struct urtwn_data data[],
2022     int ndata, int maxsz)
2023 {
2024 	int i;
2025 
2026 	for (i = 0; i < ndata; i++) {
2027 		struct urtwn_data *dp = &data[i];
2028 		dp->sc = sc;
2029 		dp->m = NULL;
2030 		dp->buf = kmalloc(maxsz, M_USBDEV, M_WAITOK);
2031 		dp->ni = NULL;
2032 	}
2033 
2034 	return (0);
2035 }
2036 
2037 static int
2038 urtwn_alloc_rx_list(struct urtwn_softc *sc)
2039 {
2040         int error, i;
2041 
2042 	error = urtwn_alloc_list(sc, sc->sc_rx, URTWN_RX_LIST_COUNT,
2043 	    URTWN_RXBUFSZ);
2044 	if (error != 0)
2045 		return (error);
2046 
2047 	STAILQ_INIT(&sc->sc_rx_active);
2048 	STAILQ_INIT(&sc->sc_rx_inactive);
2049 
2050 	for (i = 0; i < URTWN_RX_LIST_COUNT; i++)
2051 		STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next);
2052 
2053 	return (0);
2054 }
2055 
2056 static int
2057 urtwn_alloc_tx_list(struct urtwn_softc *sc)
2058 {
2059 	int error, i;
2060 
2061 	error = urtwn_alloc_list(sc, sc->sc_tx, URTWN_TX_LIST_COUNT,
2062 	    URTWN_TXBUFSZ);
2063 	if (error != 0)
2064 		return (error);
2065 
2066 	STAILQ_INIT(&sc->sc_tx_active);
2067 	STAILQ_INIT(&sc->sc_tx_inactive);
2068 	STAILQ_INIT(&sc->sc_tx_pending);
2069 
2070 	for (i = 0; i < URTWN_TX_LIST_COUNT; i++)
2071 		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next);
2072 
2073 	return (0);
2074 }
2075 
2076 static __inline int
2077 urtwn_power_on(struct urtwn_softc *sc)
2078 {
2079 
2080 	return sc->sc_power_on(sc);
2081 }
2082 
2083 static int
2084 urtwn_r92c_power_on(struct urtwn_softc *sc)
2085 {
2086 	uint32_t reg;
2087 	int ntries;
2088 
2089 	/* Wait for autoload done bit. */
2090 	for (ntries = 0; ntries < 1000; ntries++) {
2091 		if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
2092 			break;
2093 		urtwn_ms_delay(sc);
2094 	}
2095 	if (ntries == 1000) {
2096 		device_printf(sc->sc_dev,
2097 		    "timeout waiting for chip autoload\n");
2098 		return (ETIMEDOUT);
2099 	}
2100 
2101 	/* Unlock ISO/CLK/Power control register. */
2102 	urtwn_write_1(sc, R92C_RSV_CTRL, 0);
2103 	/* Move SPS into PWM mode. */
2104 	urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
2105 	urtwn_ms_delay(sc);
2106 
2107 	reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
2108 	if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
2109 		urtwn_write_1(sc, R92C_LDOV12D_CTRL,
2110 		    reg | R92C_LDOV12D_CTRL_LDV12_EN);
2111 		urtwn_ms_delay(sc);
2112 		urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
2113 		    urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
2114 		    ~R92C_SYS_ISO_CTRL_MD2PP);
2115 	}
2116 
2117 	/* Auto enable WLAN. */
2118 	urtwn_write_2(sc, R92C_APS_FSMCO,
2119 	    urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
2120 	for (ntries = 0; ntries < 1000; ntries++) {
2121 		if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
2122 		    R92C_APS_FSMCO_APFM_ONMAC))
2123 			break;
2124 		urtwn_ms_delay(sc);
2125 	}
2126 	if (ntries == 1000) {
2127 		device_printf(sc->sc_dev,
2128 		    "timeout waiting for MAC auto ON\n");
2129 		return (ETIMEDOUT);
2130 	}
2131 
2132 	/* Enable radio, GPIO and LED functions. */
2133 	urtwn_write_2(sc, R92C_APS_FSMCO,
2134 	    R92C_APS_FSMCO_AFSM_HSUS |
2135 	    R92C_APS_FSMCO_PDN_EN |
2136 	    R92C_APS_FSMCO_PFM_ALDN);
2137 	/* Release RF digital isolation. */
2138 	urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
2139 	    urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
2140 
2141 	/* Initialize MAC. */
2142 	urtwn_write_1(sc, R92C_APSD_CTRL,
2143 	    urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
2144 	for (ntries = 0; ntries < 200; ntries++) {
2145 		if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
2146 		    R92C_APSD_CTRL_OFF_STATUS))
2147 			break;
2148 		urtwn_ms_delay(sc);
2149 	}
2150 	if (ntries == 200) {
2151 		device_printf(sc->sc_dev,
2152 		    "timeout waiting for MAC initialization\n");
2153 		return (ETIMEDOUT);
2154 	}
2155 
2156 	/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
2157 	reg = urtwn_read_2(sc, R92C_CR);
2158 	reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
2159 	    R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
2160 	    R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
2161 	    R92C_CR_ENSEC;
2162 	urtwn_write_2(sc, R92C_CR, reg);
2163 
2164 	urtwn_write_1(sc, 0xfe10, 0x19);
2165 	return (0);
2166 }
2167 
2168 static int
2169 urtwn_r88e_power_on(struct urtwn_softc *sc)
2170 {
2171 	uint8_t val;
2172 	uint32_t reg;
2173 	int ntries;
2174 
2175 	/* Wait for power ready bit. */
2176 	for (ntries = 0; ntries < 5000; ntries++) {
2177 		val = urtwn_read_1(sc, 0x6) & 0x2;
2178 		if (val == 0x2)
2179 			break;
2180 		urtwn_ms_delay(sc);
2181 	}
2182 	if (ntries == 5000) {
2183 		device_printf(sc->sc_dev,
2184 		    "timeout waiting for chip power up\n");
2185 		return (ETIMEDOUT);
2186 	}
2187 
2188 	/* Reset BB. */
2189 	urtwn_write_1(sc, R92C_SYS_FUNC_EN,
2190 	    urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~(R92C_SYS_FUNC_EN_BBRSTB |
2191 	    R92C_SYS_FUNC_EN_BB_GLB_RST));
2192 
2193 	urtwn_write_1(sc, 0x26, urtwn_read_1(sc, 0x26) | 0x80);
2194 
2195 	/* Disable HWPDN. */
2196 	urtwn_write_1(sc, 0x5, urtwn_read_1(sc, 0x5) & ~0x80);
2197 
2198 	/* Disable WL suspend. */
2199 	urtwn_write_1(sc, 0x5, urtwn_read_1(sc, 0x5) & ~0x18);
2200 
2201 	urtwn_write_1(sc, 0x5, urtwn_read_1(sc, 0x5) | 0x1);
2202 	for (ntries = 0; ntries < 5000; ntries++) {
2203 		if (!(urtwn_read_1(sc, 0x5) & 0x1))
2204 			break;
2205 		urtwn_ms_delay(sc);
2206 	}
2207 	if (ntries == 5000)
2208 		return (ETIMEDOUT);
2209 
2210 	/* Enable LDO normal mode. */
2211 	urtwn_write_1(sc, 0x23, urtwn_read_1(sc, 0x23) & ~0x10);
2212 
2213 	/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
2214 	urtwn_write_2(sc, R92C_CR, 0);
2215 	reg = urtwn_read_2(sc, R92C_CR);
2216 	reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
2217 	    R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
2218 	    R92C_CR_SCHEDULE_EN | R92C_CR_ENSEC | R92C_CR_CALTMR_EN;
2219 	urtwn_write_2(sc, R92C_CR, reg);
2220 
2221 	return (0);
2222 }
2223 
2224 static int
2225 urtwn_llt_init(struct urtwn_softc *sc)
2226 {
2227 	int i, error, page_count, pktbuf_count;
2228 
2229 	page_count = (sc->chip & URTWN_CHIP_88E) ?
2230 	    R88E_TX_PAGE_COUNT : R92C_TX_PAGE_COUNT;
2231 	pktbuf_count = (sc->chip & URTWN_CHIP_88E) ?
2232 	    R88E_TXPKTBUF_COUNT : R92C_TXPKTBUF_COUNT;
2233 
2234 	/* Reserve pages [0; page_count]. */
2235 	for (i = 0; i < page_count; i++) {
2236 		if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2237 			return (error);
2238 	}
2239 	/* NB: 0xff indicates end-of-list. */
2240 	if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
2241 		return (error);
2242 	/*
2243 	 * Use pages [page_count + 1; pktbuf_count - 1]
2244 	 * as ring buffer.
2245 	 */
2246 	for (++i; i < pktbuf_count - 1; i++) {
2247 		if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2248 			return (error);
2249 	}
2250 	/* Make the last page point to the beginning of the ring buffer. */
2251 	error = urtwn_llt_write(sc, i, page_count + 1);
2252 	return (error);
2253 }
2254 
2255 static void
2256 urtwn_fw_reset(struct urtwn_softc *sc)
2257 {
2258 	uint16_t reg;
2259 	int ntries;
2260 
2261 	/* Tell 8051 to reset itself. */
2262 	urtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
2263 
2264 	/* Wait until 8051 resets by itself. */
2265 	for (ntries = 0; ntries < 100; ntries++) {
2266 		reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
2267 		if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
2268 			return;
2269 		urtwn_ms_delay(sc);
2270 	}
2271 	/* Force 8051 reset. */
2272 	urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
2273 }
2274 
2275 static void
2276 urtwn_r88e_fw_reset(struct urtwn_softc *sc)
2277 {
2278 	uint16_t reg;
2279 
2280 	reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
2281 	urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
2282 	urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg | R92C_SYS_FUNC_EN_CPUEN);
2283 }
2284 
2285 static int
2286 urtwn_fw_loadpage(struct urtwn_softc *sc, int page, const uint8_t *buf, int len)
2287 {
2288 	uint32_t reg;
2289 	int off, mlen, error = 0;
2290 
2291 	reg = urtwn_read_4(sc, R92C_MCUFWDL);
2292 	reg = RW(reg, R92C_MCUFWDL_PAGE, page);
2293 	urtwn_write_4(sc, R92C_MCUFWDL, reg);
2294 
2295 	off = R92C_FW_START_ADDR;
2296 	while (len > 0) {
2297 		if (len > 196)
2298 			mlen = 196;
2299 		else if (len > 4)
2300 			mlen = 4;
2301 		else
2302 			mlen = 1;
2303 		/* XXX fix this deconst */
2304 		error = urtwn_write_region_1(sc, off,
2305 		    __DECONST(uint8_t *, buf), mlen);
2306 		if (error != 0)
2307 			break;
2308 		off += mlen;
2309 		buf += mlen;
2310 		len -= mlen;
2311 	}
2312 	return (error);
2313 }
2314 
2315 static int
2316 urtwn_load_firmware(struct urtwn_softc *sc)
2317 {
2318 	const struct firmware *fw;
2319 	const struct r92c_fw_hdr *hdr;
2320 	const char *imagename;
2321 	const u_char *ptr;
2322 	size_t len;
2323 	uint32_t reg;
2324 	int mlen, ntries, page, error;
2325 
2326 	URTWN_UNLOCK(sc);
2327 	/* Read firmware image from the filesystem. */
2328 	if (sc->chip & URTWN_CHIP_88E)
2329 		imagename = "urtwn-rtl8188eufw";
2330 	else if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
2331 		    URTWN_CHIP_UMC_A_CUT)
2332 		imagename = "urtwn-rtl8192cfwU";
2333 	else
2334 		imagename = "urtwn-rtl8192cfwT";
2335 
2336 	fw = firmware_get(imagename);
2337 	URTWN_LOCK(sc);
2338 	if (fw == NULL) {
2339 		device_printf(sc->sc_dev,
2340 		    "failed loadfirmware of file %s\n", imagename);
2341 		return (ENOENT);
2342 	}
2343 
2344 	len = fw->datasize;
2345 
2346 	if (len < sizeof(*hdr)) {
2347 		device_printf(sc->sc_dev, "firmware too short\n");
2348 		error = EINVAL;
2349 		goto fail;
2350 	}
2351 	ptr = fw->data;
2352 	hdr = (const struct r92c_fw_hdr *)ptr;
2353 	/* Check if there is a valid FW header and skip it. */
2354 	if ((le16toh(hdr->signature) >> 4) == 0x88c ||
2355 	    (le16toh(hdr->signature) >> 4) == 0x88e ||
2356 	    (le16toh(hdr->signature) >> 4) == 0x92c) {
2357 		DPRINTF("FW V%d.%d %02d-%02d %02d:%02d\n",
2358 		    le16toh(hdr->version), le16toh(hdr->subversion),
2359 		    hdr->month, hdr->date, hdr->hour, hdr->minute);
2360 		ptr += sizeof(*hdr);
2361 		len -= sizeof(*hdr);
2362 	}
2363 
2364 	if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL) {
2365 		if (sc->chip & URTWN_CHIP_88E)
2366 			urtwn_r88e_fw_reset(sc);
2367 		else
2368 			urtwn_fw_reset(sc);
2369 		urtwn_write_1(sc, R92C_MCUFWDL, 0);
2370 	}
2371 
2372 	if (!(sc->chip & URTWN_CHIP_88E)) {
2373 		urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2374 		    urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2375 		    R92C_SYS_FUNC_EN_CPUEN);
2376 	}
2377 	urtwn_write_1(sc, R92C_MCUFWDL,
2378 	    urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
2379 	urtwn_write_1(sc, R92C_MCUFWDL + 2,
2380 	    urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
2381 
2382 	/* Reset the FWDL checksum. */
2383 	urtwn_write_1(sc, R92C_MCUFWDL,
2384 	    urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_CHKSUM_RPT);
2385 
2386 	for (page = 0; len > 0; page++) {
2387 		mlen = min(len, R92C_FW_PAGE_SIZE);
2388 		error = urtwn_fw_loadpage(sc, page, ptr, mlen);
2389 		if (error != 0) {
2390 			device_printf(sc->sc_dev,
2391 			    "could not load firmware page\n");
2392 			goto fail;
2393 		}
2394 		ptr += mlen;
2395 		len -= mlen;
2396 	}
2397 	urtwn_write_1(sc, R92C_MCUFWDL,
2398 	    urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
2399 	urtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
2400 
2401 	/* Wait for checksum report. */
2402 	for (ntries = 0; ntries < 1000; ntries++) {
2403 		if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
2404 			break;
2405 		urtwn_ms_delay(sc);
2406 	}
2407 	if (ntries == 1000) {
2408 		device_printf(sc->sc_dev,
2409 		    "timeout waiting for checksum report\n");
2410 		error = ETIMEDOUT;
2411 		goto fail;
2412 	}
2413 
2414 	reg = urtwn_read_4(sc, R92C_MCUFWDL);
2415 	reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
2416 	urtwn_write_4(sc, R92C_MCUFWDL, reg);
2417 	if (sc->chip & URTWN_CHIP_88E)
2418 		urtwn_r88e_fw_reset(sc);
2419 	/* Wait for firmware readiness. */
2420 	for (ntries = 0; ntries < 1000; ntries++) {
2421 		if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
2422 			break;
2423 		urtwn_ms_delay(sc);
2424 	}
2425 	if (ntries == 1000) {
2426 		device_printf(sc->sc_dev,
2427 		    "timeout waiting for firmware readiness\n");
2428 		error = ETIMEDOUT;
2429 		goto fail;
2430 	}
2431 fail:
2432 	firmware_put(fw, FIRMWARE_UNLOAD);
2433 	return (error);
2434 }
2435 
2436 static __inline int
2437 urtwn_dma_init(struct urtwn_softc *sc)
2438 {
2439 
2440 	return sc->sc_dma_init(sc);
2441 }
2442 
2443 static int
2444 urtwn_r92c_dma_init(struct urtwn_softc *sc)
2445 {
2446 	int hashq, hasnq, haslq, nqueues, nqpages, nrempages;
2447 	uint32_t reg;
2448 	int error;
2449 
2450 	/* Initialize LLT table. */
2451 	error = urtwn_llt_init(sc);
2452 	if (error != 0)
2453 		return (error);
2454 
2455 	/* Get Tx queues to USB endpoints mapping. */
2456 	hashq = hasnq = haslq = 0;
2457 	reg = urtwn_read_2(sc, R92C_USB_EP + 1);
2458 	DPRINTFN(2, "USB endpoints mapping 0x%x\n", reg);
2459 	if (MS(reg, R92C_USB_EP_HQ) != 0)
2460 		hashq = 1;
2461 	if (MS(reg, R92C_USB_EP_NQ) != 0)
2462 		hasnq = 1;
2463 	if (MS(reg, R92C_USB_EP_LQ) != 0)
2464 		haslq = 1;
2465 	nqueues = hashq + hasnq + haslq;
2466 	if (nqueues == 0)
2467 		return (EIO);
2468 	/* Get the number of pages for each queue. */
2469 	nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues;
2470 	/* The remaining pages are assigned to the high priority queue. */
2471 	nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues;
2472 
2473 	/* Set number of pages for normal priority queue. */
2474 	urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
2475 	urtwn_write_4(sc, R92C_RQPN,
2476 	    /* Set number of pages for public queue. */
2477 	    SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) |
2478 	    /* Set number of pages for high priority queue. */
2479 	    SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) |
2480 	    /* Set number of pages for low priority queue. */
2481 	    SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) |
2482 	    /* Load values. */
2483 	    R92C_RQPN_LD);
2484 
2485 	urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2486 	urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2487 	urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY);
2488 	urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY);
2489 	urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY);
2490 
2491 	/* Set queue to USB pipe mapping. */
2492 	reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
2493 	reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
2494 	if (nqueues == 1) {
2495 		if (hashq)
2496 			reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
2497 		else if (hasnq)
2498 			reg |= R92C_TRXDMA_CTRL_QMAP_NQ;
2499 		else
2500 			reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
2501 	} else if (nqueues == 2) {
2502 		/* All 2-endpoints configs have a high priority queue. */
2503 		if (!hashq)
2504 			return (EIO);
2505 		if (hasnq)
2506 			reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
2507 		else
2508 			reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ;
2509 	} else
2510 		reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
2511 	urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
2512 
2513 	/* Set Tx/Rx transfer page boundary. */
2514 	urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff);
2515 
2516 	/* Set Tx/Rx transfer page size. */
2517 	urtwn_write_1(sc, R92C_PBP,
2518 	    SM(R92C_PBP_PSRX, R92C_PBP_128) |
2519 	    SM(R92C_PBP_PSTX, R92C_PBP_128));
2520 	return (0);
2521 }
2522 
2523 static int
2524 urtwn_r88e_dma_init(struct urtwn_softc *sc)
2525 {
2526 	struct usb_interface *iface;
2527 	uint32_t reg;
2528 	int nqueues;
2529 	int error;
2530 
2531 	/* Initialize LLT table. */
2532 	error = urtwn_llt_init(sc);
2533 	if (error != 0)
2534 		return (error);
2535 
2536 	/* Get Tx queues to USB endpoints mapping. */
2537 	iface = usbd_get_iface(sc->sc_udev, 0);
2538 	nqueues = iface->idesc->bNumEndpoints - 1;
2539 	if (nqueues == 0)
2540 		return (EIO);
2541 
2542 	/* Set number of pages for normal priority queue. */
2543 	urtwn_write_2(sc, R92C_RQPN_NPQ, 0);
2544 	urtwn_write_2(sc, R92C_RQPN_NPQ, 0x000d);
2545 	urtwn_write_4(sc, R92C_RQPN, 0x808e000d);
2546 
2547 	urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R88E_TX_PAGE_BOUNDARY);
2548 	urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R88E_TX_PAGE_BOUNDARY);
2549 	urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R88E_TX_PAGE_BOUNDARY);
2550 	urtwn_write_1(sc, R92C_TRXFF_BNDY, R88E_TX_PAGE_BOUNDARY);
2551 	urtwn_write_1(sc, R92C_TDECTRL + 1, R88E_TX_PAGE_BOUNDARY);
2552 
2553 	/* Set queue to USB pipe mapping. */
2554 	reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
2555 	reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
2556 	if (nqueues == 1)
2557 		reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
2558 	else if (nqueues == 2)
2559 		reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
2560 	else
2561 		reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
2562 	urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
2563 
2564 	/* Set Tx/Rx transfer page boundary. */
2565 	urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x23ff);
2566 
2567 	/* Set Tx/Rx transfer page size. */
2568 	urtwn_write_1(sc, R92C_PBP,
2569 	    SM(R92C_PBP_PSRX, R92C_PBP_128) |
2570 	    SM(R92C_PBP_PSTX, R92C_PBP_128));
2571 
2572 	return (0);
2573 }
2574 
2575 static void
2576 urtwn_mac_init(struct urtwn_softc *sc)
2577 {
2578 	int i;
2579 
2580 	/* Write MAC initialization values. */
2581 	if (sc->chip & URTWN_CHIP_88E) {
2582 		for (i = 0; i < NELEM(rtl8188eu_mac); i++) {
2583 			urtwn_write_1(sc, rtl8188eu_mac[i].reg,
2584 			    rtl8188eu_mac[i].val);
2585 		}
2586 		urtwn_write_1(sc, R92C_MAX_AGGR_NUM, 0x07);
2587 	} else {
2588 		for (i = 0; i < NELEM(rtl8192cu_mac); i++)
2589 			urtwn_write_1(sc, rtl8192cu_mac[i].reg,
2590 			    rtl8192cu_mac[i].val);
2591 	}
2592 }
2593 
2594 static void
2595 urtwn_bb_init(struct urtwn_softc *sc)
2596 {
2597 	const struct urtwn_bb_prog *prog;
2598 	uint32_t reg;
2599 	uint8_t crystalcap;
2600 	int i;
2601 
2602 	/* Enable BB and RF. */
2603 	urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2604 	    urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2605 	    R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
2606 	    R92C_SYS_FUNC_EN_DIO_RF);
2607 
2608 	if (!(sc->chip & URTWN_CHIP_88E))
2609 		urtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0xdb83);
2610 
2611 	urtwn_write_1(sc, R92C_RF_CTRL,
2612 	    R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
2613 	urtwn_write_1(sc, R92C_SYS_FUNC_EN,
2614 	    R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
2615 	    R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
2616 
2617 	if (!(sc->chip & URTWN_CHIP_88E)) {
2618 		urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
2619 		urtwn_write_1(sc, 0x15, 0xe9);
2620 		urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
2621 	}
2622 
2623 	/* Select BB programming based on board type. */
2624 	if (sc->chip & URTWN_CHIP_88E)
2625 		prog = &rtl8188eu_bb_prog;
2626 	else if (!(sc->chip & URTWN_CHIP_92C)) {
2627 		if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
2628 			prog = &rtl8188ce_bb_prog;
2629 		else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
2630 			prog = &rtl8188ru_bb_prog;
2631 		else
2632 			prog = &rtl8188cu_bb_prog;
2633 	} else {
2634 		if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
2635 			prog = &rtl8192ce_bb_prog;
2636 		else
2637 			prog = &rtl8192cu_bb_prog;
2638 	}
2639 	/* Write BB initialization values. */
2640 	for (i = 0; i < prog->count; i++) {
2641 		urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
2642 		urtwn_ms_delay(sc);
2643 	}
2644 
2645 	if (sc->chip & URTWN_CHIP_92C_1T2R) {
2646 		/* 8192C 1T only configuration. */
2647 		reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
2648 		reg = (reg & ~0x00000003) | 0x2;
2649 		urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
2650 
2651 		reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
2652 		reg = (reg & ~0x00300033) | 0x00200022;
2653 		urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
2654 
2655 		reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
2656 		reg = (reg & ~0xff000000) | 0x45 << 24;
2657 		urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
2658 
2659 		reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
2660 		reg = (reg & ~0x000000ff) | 0x23;
2661 		urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
2662 
2663 		reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
2664 		reg = (reg & ~0x00000030) | 1 << 4;
2665 		urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
2666 
2667 		reg = urtwn_bb_read(sc, 0xe74);
2668 		reg = (reg & ~0x0c000000) | 2 << 26;
2669 		urtwn_bb_write(sc, 0xe74, reg);
2670 		reg = urtwn_bb_read(sc, 0xe78);
2671 		reg = (reg & ~0x0c000000) | 2 << 26;
2672 		urtwn_bb_write(sc, 0xe78, reg);
2673 		reg = urtwn_bb_read(sc, 0xe7c);
2674 		reg = (reg & ~0x0c000000) | 2 << 26;
2675 		urtwn_bb_write(sc, 0xe7c, reg);
2676 		reg = urtwn_bb_read(sc, 0xe80);
2677 		reg = (reg & ~0x0c000000) | 2 << 26;
2678 		urtwn_bb_write(sc, 0xe80, reg);
2679 		reg = urtwn_bb_read(sc, 0xe88);
2680 		reg = (reg & ~0x0c000000) | 2 << 26;
2681 		urtwn_bb_write(sc, 0xe88, reg);
2682 	}
2683 
2684 	/* Write AGC values. */
2685 	for (i = 0; i < prog->agccount; i++) {
2686 		urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE,
2687 		    prog->agcvals[i]);
2688 		urtwn_ms_delay(sc);
2689 	}
2690 
2691 	if (sc->chip & URTWN_CHIP_88E) {
2692 		urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553422);
2693 		urtwn_ms_delay(sc);
2694 		urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553420);
2695 		urtwn_ms_delay(sc);
2696 
2697 		crystalcap = sc->r88e_rom[0xb9];
2698 		if (crystalcap == 0xff)
2699 			crystalcap = 0x20;
2700 		crystalcap &= 0x3f;
2701 		reg = urtwn_bb_read(sc, R92C_AFE_XTAL_CTRL);
2702 		urtwn_bb_write(sc, R92C_AFE_XTAL_CTRL,
2703 		    RW(reg, R92C_AFE_XTAL_CTRL_ADDR,
2704 		    crystalcap | crystalcap << 6));
2705 	} else {
2706 		if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
2707 		    R92C_HSSI_PARAM2_CCK_HIPWR)
2708 			sc->sc_flags |= URTWN_FLAG_CCK_HIPWR;
2709 	}
2710 }
2711 
2712 void
2713 urtwn_rf_init(struct urtwn_softc *sc)
2714 {
2715 	const struct urtwn_rf_prog *prog;
2716 	uint32_t reg, type;
2717 	int i, j, idx, off;
2718 
2719 	/* Select RF programming based on board type. */
2720 	if (sc->chip & URTWN_CHIP_88E)
2721 		prog = rtl8188eu_rf_prog;
2722 	else if (!(sc->chip & URTWN_CHIP_92C)) {
2723 		if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
2724 			prog = rtl8188ce_rf_prog;
2725 		else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
2726 			prog = rtl8188ru_rf_prog;
2727 		else
2728 			prog = rtl8188cu_rf_prog;
2729 	} else
2730 		prog = rtl8192ce_rf_prog;
2731 
2732 	for (i = 0; i < sc->nrxchains; i++) {
2733 		/* Save RF_ENV control type. */
2734 		idx = i / 2;
2735 		off = (i % 2) * 16;
2736 		reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx));
2737 		type = (reg >> off) & 0x10;
2738 
2739 		/* Set RF_ENV enable. */
2740 		reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
2741 		reg |= 0x100000;
2742 		urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
2743 		urtwn_ms_delay(sc);
2744 		/* Set RF_ENV output high. */
2745 		reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
2746 		reg |= 0x10;
2747 		urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
2748 		urtwn_ms_delay(sc);
2749 		/* Set address and data lengths of RF registers. */
2750 		reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
2751 		reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
2752 		urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
2753 		urtwn_ms_delay(sc);
2754 		reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
2755 		reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
2756 		urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
2757 		urtwn_ms_delay(sc);
2758 
2759 		/* Write RF initialization values for this chain. */
2760 		for (j = 0; j < prog[i].count; j++) {
2761 			if (prog[i].regs[j] >= 0xf9 &&
2762 			    prog[i].regs[j] <= 0xfe) {
2763 				/*
2764 				 * These are fake RF registers offsets that
2765 				 * indicate a delay is required.
2766 				 */
2767 				usb_pause_mtx(&sc->sc_lock, hz / 20);
2768 				continue;
2769 			}
2770 			urtwn_rf_write(sc, i, prog[i].regs[j],
2771 			    prog[i].vals[j]);
2772 			urtwn_ms_delay(sc);
2773 		}
2774 
2775 		/* Restore RF_ENV control type. */
2776 		reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx));
2777 		reg &= ~(0x10 << off) | (type << off);
2778 		urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg);
2779 
2780 		/* Cache RF register CHNLBW. */
2781 		sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW);
2782 	}
2783 
2784 	if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
2785 	    URTWN_CHIP_UMC_A_CUT) {
2786 		urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
2787 		urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
2788 	}
2789 }
2790 
2791 static void
2792 urtwn_cam_init(struct urtwn_softc *sc)
2793 {
2794 	/* Invalidate all CAM entries. */
2795 	urtwn_write_4(sc, R92C_CAMCMD,
2796 	    R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
2797 }
2798 
2799 static void
2800 urtwn_pa_bias_init(struct urtwn_softc *sc)
2801 {
2802 	uint8_t reg;
2803 	int i;
2804 
2805 	for (i = 0; i < sc->nrxchains; i++) {
2806 		if (sc->pa_setting & (1 << i))
2807 			continue;
2808 		urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
2809 		urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
2810 		urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
2811 		urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
2812 	}
2813 	if (!(sc->pa_setting & 0x10)) {
2814 		reg = urtwn_read_1(sc, 0x16);
2815 		reg = (reg & ~0xf0) | 0x90;
2816 		urtwn_write_1(sc, 0x16, reg);
2817 	}
2818 }
2819 
2820 static void
2821 urtwn_rxfilter_init(struct urtwn_softc *sc)
2822 {
2823 	/* Initialize Rx filter. */
2824 	/* TODO: use better filter for monitor mode. */
2825 	urtwn_write_4(sc, R92C_RCR,
2826 	    R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
2827 	    R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
2828 	    R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
2829 	/* Accept all multicast frames. */
2830 	urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
2831 	urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
2832 	/* Accept all management frames. */
2833 	urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
2834 	/* Reject all control frames. */
2835 	urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
2836 	/* Accept all data frames. */
2837 	urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
2838 }
2839 
2840 static void
2841 urtwn_edca_init(struct urtwn_softc *sc)
2842 {
2843 	urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
2844 	urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
2845 	urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
2846 	urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
2847 	urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
2848 	urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
2849 	urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324);
2850 	urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226);
2851 }
2852 
2853 void
2854 urtwn_write_txpower(struct urtwn_softc *sc, int chain,
2855     uint16_t power[URTWN_RIDX_COUNT])
2856 {
2857 	uint32_t reg;
2858 
2859 	/* Write per-CCK rate Tx power. */
2860 	if (chain == 0) {
2861 		reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
2862 		reg = RW(reg, R92C_TXAGC_A_CCK1,  power[0]);
2863 		urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
2864 		reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
2865 		reg = RW(reg, R92C_TXAGC_A_CCK2,  power[1]);
2866 		reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
2867 		reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
2868 		urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
2869 	} else {
2870 		reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
2871 		reg = RW(reg, R92C_TXAGC_B_CCK1,  power[0]);
2872 		reg = RW(reg, R92C_TXAGC_B_CCK2,  power[1]);
2873 		reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
2874 		urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
2875 		reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
2876 		reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
2877 		urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
2878 	}
2879 	/* Write per-OFDM rate Tx power. */
2880 	urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
2881 	    SM(R92C_TXAGC_RATE06, power[ 4]) |
2882 	    SM(R92C_TXAGC_RATE09, power[ 5]) |
2883 	    SM(R92C_TXAGC_RATE12, power[ 6]) |
2884 	    SM(R92C_TXAGC_RATE18, power[ 7]));
2885 	urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
2886 	    SM(R92C_TXAGC_RATE24, power[ 8]) |
2887 	    SM(R92C_TXAGC_RATE36, power[ 9]) |
2888 	    SM(R92C_TXAGC_RATE48, power[10]) |
2889 	    SM(R92C_TXAGC_RATE54, power[11]));
2890 	/* Write per-MCS Tx power. */
2891 	urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
2892 	    SM(R92C_TXAGC_MCS00,  power[12]) |
2893 	    SM(R92C_TXAGC_MCS01,  power[13]) |
2894 	    SM(R92C_TXAGC_MCS02,  power[14]) |
2895 	    SM(R92C_TXAGC_MCS03,  power[15]));
2896 	urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
2897 	    SM(R92C_TXAGC_MCS04,  power[16]) |
2898 	    SM(R92C_TXAGC_MCS05,  power[17]) |
2899 	    SM(R92C_TXAGC_MCS06,  power[18]) |
2900 	    SM(R92C_TXAGC_MCS07,  power[19]));
2901 	urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
2902 	    SM(R92C_TXAGC_MCS08,  power[20]) |
2903 	    SM(R92C_TXAGC_MCS09,  power[21]) |
2904 	    SM(R92C_TXAGC_MCS10,  power[22]) |
2905 	    SM(R92C_TXAGC_MCS11,  power[23]));
2906 	urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
2907 	    SM(R92C_TXAGC_MCS12,  power[24]) |
2908 	    SM(R92C_TXAGC_MCS13,  power[25]) |
2909 	    SM(R92C_TXAGC_MCS14,  power[26]) |
2910 	    SM(R92C_TXAGC_MCS15,  power[27]));
2911 }
2912 
2913 void
2914 urtwn_get_txpower(struct urtwn_softc *sc, int chain,
2915     struct ieee80211_channel *c, struct ieee80211_channel *extc,
2916     uint16_t power[URTWN_RIDX_COUNT])
2917 {
2918 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2919 	struct r92c_rom *rom = &sc->rom;
2920 	uint16_t cckpow, ofdmpow, htpow, diff, max;
2921 	const struct urtwn_txpwr *base;
2922 	int ridx, chan, group;
2923 
2924 	/* Determine channel group. */
2925 	chan = ieee80211_chan2ieee(ic, c);	/* XXX center freq! */
2926 	if (chan <= 3)
2927 		group = 0;
2928 	else if (chan <= 9)
2929 		group = 1;
2930 	else
2931 		group = 2;
2932 
2933 	/* Get original Tx power based on board type and RF chain. */
2934 	if (!(sc->chip & URTWN_CHIP_92C)) {
2935 		if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
2936 			base = &rtl8188ru_txagc[chain];
2937 		else
2938 			base = &rtl8192cu_txagc[chain];
2939 	} else
2940 		base = &rtl8192cu_txagc[chain];
2941 
2942 	memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
2943 	if (sc->regulatory == 0) {
2944 		for (ridx = 0; ridx <= 3; ridx++)
2945 			power[ridx] = base->pwr[0][ridx];
2946 	}
2947 	for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
2948 		if (sc->regulatory == 3) {
2949 			power[ridx] = base->pwr[0][ridx];
2950 			/* Apply vendor limits. */
2951 			if (extc != NULL)
2952 				max = rom->ht40_max_pwr[group];
2953 			else
2954 				max = rom->ht20_max_pwr[group];
2955 			max = (max >> (chain * 4)) & 0xf;
2956 			if (power[ridx] > max)
2957 				power[ridx] = max;
2958 		} else if (sc->regulatory == 1) {
2959 			if (extc == NULL)
2960 				power[ridx] = base->pwr[group][ridx];
2961 		} else if (sc->regulatory != 2)
2962 			power[ridx] = base->pwr[0][ridx];
2963 	}
2964 
2965 	/* Compute per-CCK rate Tx power. */
2966 	cckpow = rom->cck_tx_pwr[chain][group];
2967 	for (ridx = 0; ridx <= 3; ridx++) {
2968 		power[ridx] += cckpow;
2969 		if (power[ridx] > R92C_MAX_TX_PWR)
2970 			power[ridx] = R92C_MAX_TX_PWR;
2971 	}
2972 
2973 	htpow = rom->ht40_1s_tx_pwr[chain][group];
2974 	if (sc->ntxchains > 1) {
2975 		/* Apply reduction for 2 spatial streams. */
2976 		diff = rom->ht40_2s_tx_pwr_diff[group];
2977 		diff = (diff >> (chain * 4)) & 0xf;
2978 		htpow = (htpow > diff) ? htpow - diff : 0;
2979 	}
2980 
2981 	/* Compute per-OFDM rate Tx power. */
2982 	diff = rom->ofdm_tx_pwr_diff[group];
2983 	diff = (diff >> (chain * 4)) & 0xf;
2984 	ofdmpow = htpow + diff;	/* HT->OFDM correction. */
2985 	for (ridx = 4; ridx <= 11; ridx++) {
2986 		power[ridx] += ofdmpow;
2987 		if (power[ridx] > R92C_MAX_TX_PWR)
2988 			power[ridx] = R92C_MAX_TX_PWR;
2989 	}
2990 
2991 	/* Compute per-MCS Tx power. */
2992 	if (extc == NULL) {
2993 		diff = rom->ht20_tx_pwr_diff[group];
2994 		diff = (diff >> (chain * 4)) & 0xf;
2995 		htpow += diff;	/* HT40->HT20 correction. */
2996 	}
2997 	for (ridx = 12; ridx <= 27; ridx++) {
2998 		power[ridx] += htpow;
2999 		if (power[ridx] > R92C_MAX_TX_PWR)
3000 			power[ridx] = R92C_MAX_TX_PWR;
3001 	}
3002 #ifdef URTWN_DEBUG
3003 	if (urtwn_debug >= 4) {
3004 		/* Dump per-rate Tx power values. */
3005 		printf("Tx power for chain %d:\n", chain);
3006 		for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++)
3007 			printf("Rate %d = %u\n", ridx, power[ridx]);
3008 	}
3009 #endif
3010 }
3011 
3012 void
3013 urtwn_r88e_get_txpower(struct urtwn_softc *sc, int chain,
3014     struct ieee80211_channel *c, struct ieee80211_channel *extc,
3015     uint16_t power[URTWN_RIDX_COUNT])
3016 {
3017 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3018 	uint16_t cckpow, ofdmpow, bw20pow, htpow;
3019 	const struct urtwn_r88e_txpwr *base;
3020 	int ridx, chan, group;
3021 
3022 	/* Determine channel group. */
3023 	chan = ieee80211_chan2ieee(ic, c);	/* XXX center freq! */
3024 	if (chan <= 2)
3025 		group = 0;
3026 	else if (chan <= 5)
3027 		group = 1;
3028 	else if (chan <= 8)
3029 		group = 2;
3030 	else if (chan <= 11)
3031 		group = 3;
3032 	else if (chan <= 13)
3033 		group = 4;
3034 	else
3035 		group = 5;
3036 
3037 	/* Get original Tx power based on board type and RF chain. */
3038 	base = &rtl8188eu_txagc[chain];
3039 
3040 	memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
3041 	if (sc->regulatory == 0) {
3042 		for (ridx = 0; ridx <= 3; ridx++)
3043 			power[ridx] = base->pwr[0][ridx];
3044 	}
3045 	for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
3046 		if (sc->regulatory == 3)
3047 			power[ridx] = base->pwr[0][ridx];
3048 		else if (sc->regulatory == 1) {
3049 			if (extc == NULL)
3050 				power[ridx] = base->pwr[group][ridx];
3051 		} else if (sc->regulatory != 2)
3052 			power[ridx] = base->pwr[0][ridx];
3053 	}
3054 
3055 	/* Compute per-CCK rate Tx power. */
3056 	cckpow = sc->cck_tx_pwr[group];
3057 	for (ridx = 0; ridx <= 3; ridx++) {
3058 		power[ridx] += cckpow;
3059 		if (power[ridx] > R92C_MAX_TX_PWR)
3060 			power[ridx] = R92C_MAX_TX_PWR;
3061 	}
3062 
3063 	htpow = sc->ht40_tx_pwr[group];
3064 
3065 	/* Compute per-OFDM rate Tx power. */
3066 	ofdmpow = htpow + sc->ofdm_tx_pwr_diff;
3067 	for (ridx = 4; ridx <= 11; ridx++) {
3068 		power[ridx] += ofdmpow;
3069 		if (power[ridx] > R92C_MAX_TX_PWR)
3070 			power[ridx] = R92C_MAX_TX_PWR;
3071 	}
3072 
3073 	bw20pow = htpow + sc->bw20_tx_pwr_diff;
3074 	for (ridx = 12; ridx <= 27; ridx++) {
3075 		power[ridx] += bw20pow;
3076 		if (power[ridx] > R92C_MAX_TX_PWR)
3077 			power[ridx] = R92C_MAX_TX_PWR;
3078 	}
3079 }
3080 
3081 void
3082 urtwn_set_txpower(struct urtwn_softc *sc, struct ieee80211_channel *c,
3083     struct ieee80211_channel *extc)
3084 {
3085 	uint16_t power[URTWN_RIDX_COUNT];
3086 	int i;
3087 
3088 	for (i = 0; i < sc->ntxchains; i++) {
3089 		/* Compute per-rate Tx power values. */
3090 		if (sc->chip & URTWN_CHIP_88E)
3091 			urtwn_r88e_get_txpower(sc, i, c, extc, power);
3092 		else
3093 			urtwn_get_txpower(sc, i, c, extc, power);
3094 		/* Write per-rate Tx power values to hardware. */
3095 		urtwn_write_txpower(sc, i, power);
3096 	}
3097 }
3098 
3099 static void
3100 urtwn_scan_start(struct ieee80211com *ic)
3101 {
3102 	/* XXX do nothing?  */
3103 }
3104 
3105 static void
3106 urtwn_scan_end(struct ieee80211com *ic)
3107 {
3108 	/* XXX do nothing?  */
3109 }
3110 
3111 static void
3112 urtwn_set_channel(struct ieee80211com *ic)
3113 {
3114 	struct urtwn_softc *sc = ic->ic_ifp->if_softc;
3115 
3116 	URTWN_LOCK(sc);
3117 	urtwn_set_chan(sc, ic->ic_curchan, NULL);
3118 	URTWN_UNLOCK(sc);
3119 }
3120 
3121 static void
3122 urtwn_update_mcast(struct ifnet *ifp)
3123 {
3124 	/* XXX do nothing?  */
3125 }
3126 
3127 static void
3128 urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c,
3129     struct ieee80211_channel *extc)
3130 {
3131 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3132 	uint32_t reg;
3133 	u_int chan;
3134 	int i;
3135 
3136 	chan = ieee80211_chan2ieee(ic, c);	/* XXX center freq! */
3137 	if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
3138 		device_printf(sc->sc_dev,
3139 		    "%s: invalid channel %x\n", __func__, chan);
3140 		return;
3141 	}
3142 
3143 	/* Set Tx power for this new channel. */
3144 	urtwn_set_txpower(sc, c, extc);
3145 
3146 	for (i = 0; i < sc->nrxchains; i++) {
3147 		urtwn_rf_write(sc, i, R92C_RF_CHNLBW,
3148 		    RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
3149 	}
3150 #ifndef IEEE80211_NO_HT
3151 	if (extc != NULL) {
3152 		/* Is secondary channel below or above primary? */
3153 		int prichlo = c->ic_freq < extc->ic_freq;
3154 
3155 		urtwn_write_1(sc, R92C_BWOPMODE,
3156 		    urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
3157 
3158 		reg = urtwn_read_1(sc, R92C_RRSR + 2);
3159 		reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
3160 		urtwn_write_1(sc, R92C_RRSR + 2, reg);
3161 
3162 		urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3163 		    urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
3164 		urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3165 		    urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
3166 
3167 		/* Set CCK side band. */
3168 		reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM);
3169 		reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
3170 		urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
3171 
3172 		reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF);
3173 		reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
3174 		urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
3175 
3176 		urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3177 		    urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
3178 		    ~R92C_FPGA0_ANAPARAM2_CBW20);
3179 
3180 		reg = urtwn_bb_read(sc, 0x818);
3181 		reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
3182 		urtwn_bb_write(sc, 0x818, reg);
3183 
3184 		/* Select 40MHz bandwidth. */
3185 		urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3186 		    (sc->rf_chnlbw[0] & ~0xfff) | chan);
3187 	} else
3188 #endif
3189 	{
3190 		urtwn_write_1(sc, R92C_BWOPMODE,
3191 		    urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
3192 
3193 		urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3194 		    urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
3195 		urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3196 		    urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
3197 
3198 		if (!(sc->chip & URTWN_CHIP_88E)) {
3199 			urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3200 			    urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
3201 			    R92C_FPGA0_ANAPARAM2_CBW20);
3202 		}
3203 
3204 		/* Select 20MHz bandwidth. */
3205 		urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3206 		    (sc->rf_chnlbw[0] & ~0xfff) | chan |
3207 		    ((sc->chip & URTWN_CHIP_88E) ? R88E_RF_CHNLBW_BW20 :
3208 		    R92C_RF_CHNLBW_BW20));
3209 	}
3210 }
3211 
3212 static void
3213 urtwn_iq_calib(struct urtwn_softc *sc)
3214 {
3215 	/* TODO */
3216 }
3217 
3218 static void
3219 urtwn_lc_calib(struct urtwn_softc *sc)
3220 {
3221 	uint32_t rf_ac[2];
3222 	uint8_t txmode;
3223 	int i;
3224 
3225 	txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
3226 	if ((txmode & 0x70) != 0) {
3227 		/* Disable all continuous Tx. */
3228 		urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
3229 
3230 		/* Set RF mode to standby mode. */
3231 		for (i = 0; i < sc->nrxchains; i++) {
3232 			rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC);
3233 			urtwn_rf_write(sc, i, R92C_RF_AC,
3234 			    RW(rf_ac[i], R92C_RF_AC_MODE,
3235 				R92C_RF_AC_MODE_STANDBY));
3236 		}
3237 	} else {
3238 		/* Block all Tx queues. */
3239 		urtwn_write_1(sc, R92C_TXPAUSE, 0xff);
3240 	}
3241 	/* Start calibration. */
3242 	urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3243 	    urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
3244 
3245 	/* Give calibration the time to complete. */
3246 	usb_pause_mtx(&sc->sc_lock, hz / 10);		/* 100ms */
3247 
3248 	/* Restore configuration. */
3249 	if ((txmode & 0x70) != 0) {
3250 		/* Restore Tx mode. */
3251 		urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
3252 		/* Restore RF mode. */
3253 		for (i = 0; i < sc->nrxchains; i++)
3254 			urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
3255 	} else {
3256 		/* Unblock all Tx queues. */
3257 		urtwn_write_1(sc, R92C_TXPAUSE, 0x00);
3258 	}
3259 }
3260 
3261 static void
3262 urtwn_init_locked(void *arg)
3263 {
3264 	struct urtwn_softc *sc = arg;
3265 	struct ifnet *ifp = sc->sc_ifp;
3266 	uint32_t reg;
3267 	int error;
3268 
3269 	URTWN_ASSERT_LOCKED(sc);
3270 
3271 	if (ifp->if_flags & IFF_RUNNING)
3272 		urtwn_stop_locked(ifp);
3273 
3274 	/* Init firmware commands ring. */
3275 	sc->fwcur = 0;
3276 
3277 	/* Allocate Tx/Rx buffers. */
3278 	error = urtwn_alloc_rx_list(sc);
3279 	if (error != 0)
3280 		goto fail;
3281 
3282 	error = urtwn_alloc_tx_list(sc);
3283 	if (error != 0)
3284 		goto fail;
3285 
3286 	/* Power on adapter. */
3287 	error = urtwn_power_on(sc);
3288 	if (error != 0)
3289 		goto fail;
3290 
3291 	/* Initialize DMA. */
3292 	error = urtwn_dma_init(sc);
3293 	if (error != 0)
3294 		goto fail;
3295 
3296 	/* Set info size in Rx descriptors (in 64-bit words). */
3297 	urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
3298 
3299 	/* Init interrupts. */
3300 	if (sc->chip & URTWN_CHIP_88E) {
3301 		urtwn_write_4(sc, R88E_HISR, 0xffffffff);
3302 		urtwn_write_4(sc, R88E_HIMR, R88E_HIMR_CPWM | R88E_HIMR_CPWM2 |
3303 		    R88E_HIMR_TBDER | R88E_HIMR_PSTIMEOUT);
3304 		urtwn_write_4(sc, R88E_HIMRE, R88E_HIMRE_RXFOVW |
3305 		    R88E_HIMRE_TXFOVW | R88E_HIMRE_RXERR | R88E_HIMRE_TXERR);
3306 		urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
3307 		    urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) |
3308 		    R92C_USB_SPECIAL_OPTION_INT_BULK_SEL);
3309 	} else {
3310 		urtwn_write_4(sc, R92C_HISR, 0xffffffff);
3311 		urtwn_write_4(sc, R92C_HIMR, 0xffffffff);
3312 	}
3313 
3314 	/* Set MAC address. */
3315 	urtwn_write_region_1(sc, R92C_MACID, IF_LLADDR(ifp),
3316 	    IEEE80211_ADDR_LEN);
3317 
3318 	/* Set initial network type. */
3319 	reg = urtwn_read_4(sc, R92C_CR);
3320 	reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
3321 	urtwn_write_4(sc, R92C_CR, reg);
3322 
3323 	urtwn_rxfilter_init(sc);
3324 
3325 	reg = urtwn_read_4(sc, R92C_RRSR);
3326 	reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M);
3327 	urtwn_write_4(sc, R92C_RRSR, reg);
3328 
3329 	/* Set short/long retry limits. */
3330 	urtwn_write_2(sc, R92C_RL,
3331 	    SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
3332 
3333 	/* Initialize EDCA parameters. */
3334 	urtwn_edca_init(sc);
3335 
3336 	/* Setup rate fallback. */
3337 	if (!(sc->chip & URTWN_CHIP_88E)) {
3338 		urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
3339 		urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
3340 		urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
3341 		urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
3342 	}
3343 
3344 	urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
3345 	    urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
3346 	    R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
3347 	/* Set ACK timeout. */
3348 	urtwn_write_1(sc, R92C_ACKTO, 0x40);
3349 
3350 	/* Setup USB aggregation. */
3351 	reg = urtwn_read_4(sc, R92C_TDECTRL);
3352 	reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6);
3353 	urtwn_write_4(sc, R92C_TDECTRL, reg);
3354 	urtwn_write_1(sc, R92C_TRXDMA_CTRL,
3355 	    urtwn_read_1(sc, R92C_TRXDMA_CTRL) |
3356 	    R92C_TRXDMA_CTRL_RXDMA_AGG_EN);
3357 	urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
3358 	    urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) |
3359 	    R92C_USB_SPECIAL_OPTION_AGG_EN);
3360 	urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48);
3361 	if (sc->chip & URTWN_CHIP_88E)
3362 		urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH + 1, 4);
3363 	else
3364 		urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4);
3365 	urtwn_write_1(sc, R92C_USB_AGG_TH, 8);
3366 	urtwn_write_1(sc, R92C_USB_AGG_TO, 6);
3367 
3368 	/* Initialize beacon parameters. */
3369 	urtwn_write_2(sc, R92C_BCN_CTRL, 0x1010);
3370 	urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
3371 	urtwn_write_1(sc, R92C_DRVERLYINT, 0x05);
3372 	urtwn_write_1(sc, R92C_BCNDMATIM, 0x02);
3373 	urtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
3374 
3375 	if (!(sc->chip & URTWN_CHIP_88E)) {
3376 		/* Setup AMPDU aggregation. */
3377 		urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631);	/* MCS7~0 */
3378 		urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
3379 		urtwn_write_2(sc, R92C_MAX_AGGR_NUM, 0x0708);
3380 
3381 		urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
3382 	}
3383 
3384 	/* Load 8051 microcode. */
3385 	error = urtwn_load_firmware(sc);
3386 	if (error != 0)
3387 		goto fail;
3388 
3389 	/* Initialize MAC/BB/RF blocks. */
3390 	urtwn_mac_init(sc);
3391 	urtwn_bb_init(sc);
3392 	urtwn_rf_init(sc);
3393 
3394 	if (sc->chip & URTWN_CHIP_88E) {
3395 		urtwn_write_2(sc, R92C_CR,
3396 		    urtwn_read_2(sc, R92C_CR) | R92C_CR_MACTXEN |
3397 		    R92C_CR_MACRXEN);
3398 	}
3399 
3400 	/* Turn CCK and OFDM blocks on. */
3401 	reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3402 	reg |= R92C_RFMOD_CCK_EN;
3403 	urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3404 	reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3405 	reg |= R92C_RFMOD_OFDM_EN;
3406 	urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3407 
3408 	/* Clear per-station keys table. */
3409 	urtwn_cam_init(sc);
3410 
3411 	/* Enable hardware sequence numbering. */
3412 	urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
3413 
3414 	/* Perform LO and IQ calibrations. */
3415 	urtwn_iq_calib(sc);
3416 	/* Perform LC calibration. */
3417 	urtwn_lc_calib(sc);
3418 
3419 	/* Fix USB interference issue. */
3420 	if (!(sc->chip & URTWN_CHIP_88E)) {
3421 		urtwn_write_1(sc, 0xfe40, 0xe0);
3422 		urtwn_write_1(sc, 0xfe41, 0x8d);
3423 		urtwn_write_1(sc, 0xfe42, 0x80);
3424 
3425 		urtwn_pa_bias_init(sc);
3426 	}
3427 
3428 	/* Initialize GPIO setting. */
3429 	urtwn_write_1(sc, R92C_GPIO_MUXCFG,
3430 	    urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
3431 
3432 	/* Fix for lower temperature. */
3433 	if (!(sc->chip & URTWN_CHIP_88E))
3434 		urtwn_write_1(sc, 0x15, 0xe9);
3435 
3436 	usbd_transfer_start(sc->sc_xfer[URTWN_BULK_RX]);
3437 
3438 	ifq_clr_oactive(&ifp->if_snd);
3439 	ifp->if_flags |= IFF_RUNNING;
3440 
3441 	callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
3442 fail:
3443 	return;
3444 }
3445 
3446 static void
3447 urtwn_init(void *arg)
3448 {
3449 	struct urtwn_softc *sc = arg;
3450 
3451 	URTWN_LOCK(sc);
3452 	urtwn_init_locked(arg);
3453 	URTWN_UNLOCK(sc);
3454 }
3455 
3456 static void
3457 urtwn_stop_locked(struct ifnet *ifp)
3458 {
3459 	struct urtwn_softc *sc = ifp->if_softc;
3460 
3461 	URTWN_ASSERT_LOCKED(sc);
3462 
3463 	ifp->if_flags &= ~IFF_RUNNING;
3464 	ifq_clr_oactive(&ifp->if_snd);
3465 
3466 	callout_stop(&sc->sc_watchdog_ch);
3467 	urtwn_abort_xfers(sc);
3468 }
3469 
3470 static void
3471 urtwn_stop(struct ifnet *ifp)
3472 {
3473 	struct urtwn_softc *sc = ifp->if_softc;
3474 
3475 	URTWN_LOCK(sc);
3476 	urtwn_stop_locked(ifp);
3477 	URTWN_UNLOCK(sc);
3478 }
3479 
3480 static void
3481 urtwn_abort_xfers(struct urtwn_softc *sc)
3482 {
3483 	int i;
3484 
3485 	URTWN_ASSERT_LOCKED(sc);
3486 
3487 	/* abort any pending transfers */
3488 	for (i = 0; i < URTWN_N_TRANSFER; i++)
3489 		usbd_transfer_stop(sc->sc_xfer[i]);
3490 }
3491 
3492 static int
3493 urtwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3494     const struct ieee80211_bpf_params *params)
3495 {
3496 	struct ieee80211com *ic = ni->ni_ic;
3497 	struct ifnet *ifp = ic->ic_ifp;
3498 	struct urtwn_softc *sc = ifp->if_softc;
3499 	struct urtwn_data *bf;
3500 
3501 	/* prevent management frames from being sent if we're not ready */
3502 	if (!(ifp->if_flags & IFF_RUNNING)) {
3503 		m_freem(m);
3504 		ieee80211_free_node(ni);
3505 		return (ENETDOWN);
3506 	}
3507 	URTWN_LOCK(sc);
3508 	bf = urtwn_getbuf(sc);
3509 	if (bf == NULL) {
3510 		ieee80211_free_node(ni);
3511 		m_freem(m);
3512 		URTWN_UNLOCK(sc);
3513 		return (ENOBUFS);
3514 	}
3515 
3516 	ifp->if_opackets++;
3517 	if (urtwn_tx_start(sc, ni, m, bf) != 0) {
3518 		ieee80211_free_node(ni);
3519 		ifp->if_oerrors++;
3520 		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
3521 		URTWN_UNLOCK(sc);
3522 		return (EIO);
3523 	}
3524 	URTWN_UNLOCK(sc);
3525 
3526 	sc->sc_txtimer = 5;
3527 	return (0);
3528 }
3529 
3530 static void
3531 urtwn_ms_delay(struct urtwn_softc *sc)
3532 {
3533 	usb_pause_ls(&sc->sc_lock, &wlan_global_serializer, hz / 100);
3534 }
3535 
3536 static device_method_t urtwn_methods[] = {
3537 	/* Device interface */
3538 	DEVMETHOD(device_probe,		urtwn_match),
3539 	DEVMETHOD(device_attach,	urtwn_attach),
3540 	DEVMETHOD(device_detach,	urtwn_detach),
3541 
3542 	DEVMETHOD_END
3543 };
3544 
3545 static driver_t urtwn_driver = {
3546 	"urtwn",
3547 	urtwn_methods,
3548 	sizeof(struct urtwn_softc)
3549 };
3550 
3551 static devclass_t urtwn_devclass;
3552 
3553 DRIVER_MODULE(urtwn, uhub, urtwn_driver, urtwn_devclass, NULL, NULL);
3554 MODULE_DEPEND(urtwn, usb, 1, 1, 1);
3555 MODULE_DEPEND(urtwn, wlan, 1, 1, 1);
3556 MODULE_DEPEND(urtwn, firmware, 1, 1, 1);
3557 MODULE_VERSION(urtwn, 1);
3558