xref: /dragonfly/sys/cpu/x86_64/include/atomic.h (revision 38c2ea22)
1 /*-
2  * Copyright (c) 1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/i386/include/atomic.h,v 1.9.2.1 2000/07/07 00:38:47 obrien Exp $
27  * $DragonFly: src/sys/cpu/i386/include/atomic.h,v 1.25 2008/06/26 23:06:50 dillon Exp $
28  */
29 #ifndef _CPU_ATOMIC_H_
30 #define _CPU_ATOMIC_H_
31 
32 #ifndef _SYS_TYPES_H_
33 #include <sys/types.h>
34 #endif
35 
36 /*
37  * Various simple arithmetic on memory which is atomic in the presence
38  * of interrupts and multiple processors.
39  *
40  * atomic_set_char(P, V)	(*(u_char*)(P) |= (V))
41  * atomic_clear_char(P, V)	(*(u_char*)(P) &= ~(V))
42  * atomic_add_char(P, V)	(*(u_char*)(P) += (V))
43  * atomic_subtract_char(P, V)	(*(u_char*)(P) -= (V))
44  *
45  * atomic_set_short(P, V)	(*(u_short*)(P) |= (V))
46  * atomic_clear_short(P, V)	(*(u_short*)(P) &= ~(V))
47  * atomic_add_short(P, V)	(*(u_short*)(P) += (V))
48  * atomic_subtract_short(P, V)	(*(u_short*)(P) -= (V))
49  *
50  * atomic_set_int(P, V)		(*(u_int*)(P) |= (V))
51  * atomic_clear_int(P, V)	(*(u_int*)(P) &= ~(V))
52  * atomic_add_int(P, V)		(*(u_int*)(P) += (V))
53  * atomic_subtract_int(P, V)	(*(u_int*)(P) -= (V))
54  *
55  * atomic_set_long(P, V)	(*(u_long*)(P) |= (V))
56  * atomic_clear_long(P, V)	(*(u_long*)(P) &= ~(V))
57  * atomic_add_long(P, V)	(*(u_long*)(P) += (V))
58  * atomic_subtract_long(P, V)	(*(u_long*)(P) -= (V))
59  * atomic_readandclear_long(P)	(return (*(u_long*)(P)); *(u_long*)(P) = 0;)
60  * atomic_readandclear_int(P)	(return (*(u_int*)(P)); *(u_int*)(P) = 0;)
61  */
62 
63 /*
64  * The above functions are expanded inline in the statically-linked
65  * kernel.  Lock prefixes are generated if an SMP kernel is being
66  * built, or if user code is using these functions.
67  *
68  * Kernel modules call real functions which are built into the kernel.
69  * This allows kernel modules to be portable between UP and SMP systems.
70  */
71 #if defined(KLD_MODULE)
72 #define ATOMIC_ASM(NAME, TYPE, OP, CONS, V)		\
73 	extern void atomic_##NAME##_##TYPE(volatile u_##TYPE *p, u_##TYPE v); \
74 	extern void atomic_##NAME##_##TYPE##_nonlocked(volatile u_##TYPE *p, u_##TYPE v);
75 #else /* !KLD_MODULE */
76 #if defined(SMP) || !defined(_KERNEL)
77 #define MPLOCKED	"lock ; "
78 #else
79 #define MPLOCKED
80 #endif
81 
82 /*
83  * The assembly is volatilized to demark potential before-and-after side
84  * effects if an interrupt or SMP collision were to occur.  The primary
85  * atomic instructions are MP safe, the nonlocked instructions are
86  * local-interrupt-safe (so we don't depend on C 'X |= Y' generating an
87  * atomic instruction).
88  *
89  * +m - memory is read and written (=m - memory is only written)
90  * iq - integer constant or %ax/%bx/%cx/%dx (ir = int constant or any reg)
91  *	(Note: byte instructions only work on %ax,%bx,%cx, or %dx).  iq
92  *	is good enough for our needs so don't get fancy.
93  * r  - any register.
94  *
95  * NOTE: 64-bit immediate values are not supported for most x86-64
96  *	 instructions so we have to use "r".
97  */
98 
99 /* egcs 1.1.2+ version */
100 #define ATOMIC_ASM(NAME, TYPE, OP, CONS, V)		\
101 static __inline void					\
102 atomic_##NAME##_##TYPE(volatile u_##TYPE *p, u_##TYPE v)\
103 {							\
104 	__asm __volatile(MPLOCKED OP			\
105 			 : "+m" (*p)			\
106 			 : CONS (V)); 			\
107 }							\
108 static __inline void					\
109 atomic_##NAME##_##TYPE##_nonlocked(volatile u_##TYPE *p, u_##TYPE v)\
110 {							\
111 	__asm __volatile(OP				\
112 			 : "+m" (*p)			\
113 			 : CONS (V)); 			\
114 }
115 
116 #endif /* KLD_MODULE */
117 
118 /* egcs 1.1.2+ version */
119 ATOMIC_ASM(set,	     char,  "orb %b1,%0",  "iq",   v)
120 ATOMIC_ASM(clear,    char,  "andb %b1,%0", "iq",   ~v)
121 ATOMIC_ASM(add,	     char,  "addb %b1,%0", "iq",   v)
122 ATOMIC_ASM(subtract, char,  "subb %b1,%0", "iq",   v)
123 
124 ATOMIC_ASM(set,	     short, "orw %w1,%0",  "iq",   v)
125 ATOMIC_ASM(clear,    short, "andw %w1,%0", "iq",  ~v)
126 ATOMIC_ASM(add,	     short, "addw %w1,%0", "iq",   v)
127 ATOMIC_ASM(subtract, short, "subw %w1,%0", "iq",   v)
128 
129 ATOMIC_ASM(set,	     int,   "orl %1,%0",  "iq",   v)
130 ATOMIC_ASM(clear,    int,   "andl %1,%0", "iq",  ~v)
131 ATOMIC_ASM(add,	     int,   "addl %1,%0", "iq",   v)
132 ATOMIC_ASM(subtract, int,   "subl %1,%0", "iq",   v)
133 
134 ATOMIC_ASM(set,	     long,  "orq %1,%0",  "r",   v)
135 ATOMIC_ASM(clear,    long,  "andq %1,%0", "r",  ~v)
136 ATOMIC_ASM(add,	     long,  "addq %1,%0", "r",   v)
137 ATOMIC_ASM(subtract, long,  "subq %1,%0", "r",   v)
138 
139 #if defined(KLD_MODULE)
140 
141 u_long	atomic_readandclear_long(volatile u_long *addr);
142 u_int	atomic_readandclear_int(volatile u_int *addr);
143 
144 #else /* !KLD_MODULE */
145 
146 static __inline u_long
147 atomic_readandclear_long(volatile u_long *addr)
148 {
149 	u_long res;
150 
151 	res = 0;
152 	__asm __volatile(
153 	"	xchgq	%1,%0 ;		"
154 	"# atomic_readandclear_long"
155 	: "+r" (res),			/* 0 */
156 	  "=m" (*addr)			/* 1 */
157 	: "m" (*addr));
158 
159 	return (res);
160 }
161 
162 static __inline u_int
163 atomic_readandclear_int(volatile u_int *addr)
164 {
165 	u_int res;
166 
167 	res = 0;
168 	__asm __volatile(
169 	"	xchgl	%1,%0 ;		"
170 	"# atomic_readandclear_int"
171 	: "+r" (res),			/* 0 */
172 	  "=m" (*addr)			/* 1 */
173 	: "m" (*addr));
174 
175 	return (res);
176 }
177 
178 #endif /* KLD_MODULE */
179 
180 /*
181  * atomic_poll_acquire_int(P)	Returns non-zero on success, 0 if the lock
182  *				has already been acquired.
183  * atomic_poll_release_int(P)
184  *
185  * These support the NDIS driver and are also used for IPIQ interlocks
186  * between cpus.  Both the acquisition and release must be
187  * cache-synchronizing instructions.
188  */
189 
190 #if defined(KLD_MODULE)
191 
192 extern int atomic_swap_int(volatile int *addr, int value);
193 extern int atomic_poll_acquire_int(volatile u_int *p);
194 extern void atomic_poll_release_int(volatile u_int *p);
195 
196 #else
197 
198 static __inline int
199 atomic_swap_int(volatile int *addr, int value)
200 {
201 	__asm __volatile("xchgl %0, %1" :
202 	    "=r" (value), "=m" (*addr) : "0" (value) : "memory");
203 	return (value);
204 }
205 
206 static __inline
207 int
208 atomic_poll_acquire_int(volatile u_int *p)
209 {
210 	u_int data;
211 
212 	__asm __volatile(MPLOCKED "btsl $0,%0; setnc %%al; andl $255,%%eax" : "+m" (*p), "=a" (data));
213 	return(data);
214 }
215 
216 static __inline
217 void
218 atomic_poll_release_int(volatile u_int *p)
219 {
220 	__asm __volatile(MPLOCKED "btrl $0,%0" : "+m" (*p));
221 }
222 
223 #endif
224 
225 /*
226  * These functions operate on a 32 bit interrupt interlock which is defined
227  * as follows:
228  *
229  *	bit 0-30	interrupt handler disabled bits (counter)
230  *	bit 31		interrupt handler currently running bit (1 = run)
231  *
232  * atomic_intr_cond_test(P)	Determine if the interlock is in an
233  *				acquired state.  Returns 0 if it not
234  *				acquired, non-zero if it is.
235  *
236  * atomic_intr_cond_try(P)
237  *				Increment the request counter and attempt to
238  *				set bit 31 to acquire the interlock.  If
239  *				we are unable to set bit 31 the request
240  *				counter is decremented and we return -1,
241  *				otherwise we return 0.
242  *
243  * atomic_intr_cond_enter(P, func, arg)
244  *				Increment the request counter and attempt to
245  *				set bit 31 to acquire the interlock.  If
246  *				we are unable to set bit 31 func(arg) is
247  *				called in a loop until we are able to set
248  *				bit 31.
249  *
250  * atomic_intr_cond_exit(P, func, arg)
251  *				Decrement the request counter and clear bit
252  *				31.  If the request counter is still non-zero
253  *				call func(arg) once.
254  *
255  * atomic_intr_handler_disable(P)
256  *				Set bit 30, indicating that the interrupt
257  *				handler has been disabled.  Must be called
258  *				after the hardware is disabled.
259  *
260  *				Returns bit 31 indicating whether a serialized
261  *				accessor is active (typically the interrupt
262  *				handler is running).  0 == not active,
263  *				non-zero == active.
264  *
265  * atomic_intr_handler_enable(P)
266  *				Clear bit 30, indicating that the interrupt
267  *				handler has been enabled.  Must be called
268  *				before the hardware is actually enabled.
269  *
270  * atomic_intr_handler_is_enabled(P)
271  *				Returns bit 30, 0 indicates that the handler
272  *				is enabled, non-zero indicates that it is
273  *				disabled.  The request counter portion of
274  *				the field is ignored.
275  */
276 
277 #if defined(KLD_MODULE)
278 
279 void atomic_intr_init(__atomic_intr_t *p);
280 int atomic_intr_handler_disable(__atomic_intr_t *p);
281 void atomic_intr_handler_enable(__atomic_intr_t *p);
282 int atomic_intr_handler_is_enabled(__atomic_intr_t *p);
283 int atomic_intr_cond_test(__atomic_intr_t *p);
284 int atomic_intr_cond_try(__atomic_intr_t *p);
285 void atomic_intr_cond_enter(__atomic_intr_t *p, void (*func)(void *), void *arg);
286 void atomic_intr_cond_exit(__atomic_intr_t *p, void (*func)(void *), void *arg);
287 
288 #else
289 
290 static __inline
291 void
292 atomic_intr_init(__atomic_intr_t *p)
293 {
294 	*p = 0;
295 }
296 
297 static __inline
298 int
299 atomic_intr_handler_disable(__atomic_intr_t *p)
300 {
301 	int data;
302 
303 	__asm __volatile(MPLOCKED "orl $0x40000000,%1; movl %1,%%eax; " \
304 				  "andl $0x80000000,%%eax" \
305 				  : "=a"(data) , "+m"(*p));
306 	return(data);
307 }
308 
309 static __inline
310 void
311 atomic_intr_handler_enable(__atomic_intr_t *p)
312 {
313 	__asm __volatile(MPLOCKED "andl $0xBFFFFFFF,%0" : "+m" (*p));
314 }
315 
316 static __inline
317 int
318 atomic_intr_handler_is_enabled(__atomic_intr_t *p)
319 {
320 	int data;
321 
322 	__asm __volatile("movl %1,%%eax; andl $0x40000000,%%eax" \
323 			 : "=a"(data) : "m"(*p));
324 	return(data);
325 }
326 
327 static __inline
328 void
329 atomic_intr_cond_enter(__atomic_intr_t *p, void (*func)(void *), void *arg)
330 {
331 	__asm __volatile(MPLOCKED "incl %0; " \
332 			 "1: ;" \
333 			 MPLOCKED "btsl $31,%0; jnc 2f; " \
334 			 "movq %2,%%rdi; call *%1; " \
335 			 "jmp 1b; " \
336 			 "2: ;" \
337 			 : "+m" (*p) \
338 			 : "r"(func), "m"(arg) \
339 			 : "ax", "cx", "dx", "rsi", "rdi", "r8", "r9", "r10", "r11");
340 		/* YYY the function call may clobber even more registers? */
341 }
342 
343 /*
344  * Attempt to enter the interrupt condition variable.  Returns zero on
345  * success, 1 on failure.
346  */
347 static __inline
348 int
349 atomic_intr_cond_try(__atomic_intr_t *p)
350 {
351 	int ret;
352 
353 	__asm __volatile(MPLOCKED "incl %0; "			\
354 			 "1: ;"					\
355 			 "subl %%eax,%%eax; "			\
356 			 MPLOCKED "btsl $31,%0; jnc 2f; "	\
357 			 MPLOCKED "decl %0; "			\
358 			 "movl $1,%%eax;"			\
359 			 "2: ;"
360 			 : "+m" (*p), "=&a"(ret)
361                          : : "cx", "dx");
362 	return (ret);
363 }
364 
365 
366 static __inline
367 int
368 atomic_intr_cond_test(__atomic_intr_t *p)
369 {
370 	return((int)(*p & 0x80000000));
371 }
372 
373 static __inline
374 void
375 atomic_intr_cond_exit(__atomic_intr_t *p, void (*func)(void *), void *arg)
376 {
377 	__asm __volatile(MPLOCKED "decl %0; " \
378 			MPLOCKED "btrl $31,%0; " \
379 			"testl $0x3FFFFFFF,%0; jz 1f; " \
380 			 "movq %2,%%rdi; call *%1; " \
381 			 "1: ;" \
382 			 : "+m" (*p) \
383 			 : "r"(func), "m"(arg) \
384 			 : "ax", "cx", "dx", "rsi", "rdi", "r8", "r9", "r10", "r11");
385 		/* YYY the function call may clobber even more registers? */
386 }
387 
388 #endif
389 
390 /*
391  * Atomic compare and set
392  *
393  * if (*_dst == _old) *_dst = _new (all 32 bit words)
394  *
395  * Returns 0 on failure, non-zero on success.  The inline is designed to
396  * allow the compiler to optimize the common case where the caller calls
397  * these functions from inside a conditional.
398  */
399 #if defined(KLD_MODULE)
400 
401 extern int atomic_cmpset_int(volatile u_int *_dst, u_int _old, u_int _new);
402 extern long atomic_cmpset_long(volatile u_long *_dst, u_long _exp, u_long _src);
403 extern u_int atomic_fetchadd_int(volatile u_int *_p, u_int _v);
404 extern u_long atomic_fetchadd_long(volatile u_long *_p, u_long _v);
405 
406 #else
407 
408 static __inline int
409 atomic_cmpset_int(volatile u_int *_dst, u_int _old, u_int _new)
410 {
411 	u_int res = _old;
412 
413 	__asm __volatile(MPLOCKED "cmpxchgl %2,%1; " \
414 			 : "+a" (res), "=m" (*_dst) \
415 			 : "r" (_new), "m" (*_dst) \
416 			 : "memory");
417 	return (res == _old);
418 }
419 
420 static __inline long
421 atomic_cmpset_long(volatile u_long *_dst, u_long _old, u_long _new)
422 {
423 	u_long res = _old;
424 
425 	__asm __volatile(MPLOCKED "cmpxchgq %2,%1; " \
426 			 : "+a" (res), "=m" (*_dst) \
427 			 : "r" (_new), "m" (*_dst) \
428 			 : "memory");
429 	return (res == _old);
430 }
431 
432 /*
433  * Atomically add the value of v to the integer pointed to by p and return
434  * the previous value of *p.
435  */
436 static __inline u_int
437 atomic_fetchadd_int(volatile u_int *_p, u_int _v)
438 {
439 	__asm __volatile(MPLOCKED "xaddl %0,%1; " \
440 			 : "+r" (_v), "=m" (*_p)	\
441 			 : "m" (*_p)		\
442 			 : "memory");
443 	return (_v);
444 }
445 
446 static __inline u_long
447 atomic_fetchadd_long(volatile u_long *_p, u_long _v)
448 {
449 	__asm __volatile(MPLOCKED "xaddq %0,%1; " \
450 			 : "+r" (_v), "=m" (*_p)	\
451 			 : "m" (*_p)		\
452 			 : "memory");
453 	return (_v);
454 }
455 
456 #endif	/* KLD_MODULE */
457 
458 #if defined(KLD_MODULE)
459 
460 #define ATOMIC_STORE_LOAD(TYPE, LOP, SOP)			\
461 extern u_##TYPE	atomic_load_acq_##TYPE(volatile u_##TYPE *p);	\
462 extern void	atomic_store_rel_##TYPE(volatile u_##TYPE *p, u_##TYPE v);
463 
464 #else /* !KLD_MODULE */
465 
466 #if defined(_KERNEL) && !defined(SMP)
467 /*
468  * We assume that a = b will do atomic loads and stores.  However, on a
469  * PentiumPro or higher, reads may pass writes, so for that case we have
470  * to use a serializing instruction (i.e. with LOCK) to do the load in
471  * SMP kernels.  For UP kernels, however, the cache of the single processor
472  * is always consistent, so we don't need any memory barriers.
473  */
474 #define ATOMIC_STORE_LOAD(TYPE, LOP, SOP)		\
475 static __inline u_##TYPE				\
476 atomic_load_acq_##TYPE(volatile u_##TYPE *p)		\
477 {							\
478 	return (*p);					\
479 }							\
480 							\
481 static __inline void					\
482 atomic_store_rel_##TYPE(volatile u_##TYPE *p, u_##TYPE v)\
483 {							\
484 	*p = v;						\
485 }							\
486 struct __hack
487 
488 #else /* !(_KERNEL && !SMP) */
489 
490 #define ATOMIC_STORE_LOAD(TYPE, LOP, SOP)		\
491 static __inline u_##TYPE				\
492 atomic_load_acq_##TYPE(volatile u_##TYPE *p)		\
493 {							\
494 	u_##TYPE res;					\
495 							\
496 	__asm __volatile(MPLOCKED LOP			\
497 	: "=a" (res),			/* 0 */		\
498 	  "=m" (*p)			/* 1 */		\
499 	: "m" (*p)			/* 2 */		\
500 	: "memory");					\
501 							\
502 	return (res);					\
503 }							\
504 							\
505 /*							\
506  * The XCHG instruction asserts LOCK automagically.	\
507  */							\
508 static __inline void					\
509 atomic_store_rel_##TYPE(volatile u_##TYPE *p, u_##TYPE v)\
510 {							\
511 	__asm __volatile(SOP				\
512 	: "=m" (*p),			/* 0 */		\
513 	  "+r" (v)			/* 1 */		\
514 	: "m" (*p));			/* 2 */		\
515 }							\
516 struct __hack
517 
518 #endif /* _KERNEL && !SMP */
519 
520 #endif /* !KLD_MODULE */
521 
522 ATOMIC_STORE_LOAD(char, "cmpxchgb %b0,%1", "xchgb %b1,%0");
523 ATOMIC_STORE_LOAD(short,"cmpxchgw %w0,%1", "xchgw %w1,%0");
524 ATOMIC_STORE_LOAD(int,  "cmpxchgl %0,%1",  "xchgl %1,%0");
525 ATOMIC_STORE_LOAD(long, "cmpxchgq %0,%1",  "xchgq %1,%0");
526 
527 #undef ATOMIC_ASM
528 #undef ATOMIC_STORE_LOAD
529 
530 /* Acquire and release variants are identical to the normal ones. */
531 #define	atomic_set_acq_char		atomic_set_char
532 #define	atomic_set_rel_char		atomic_set_char
533 #define	atomic_clear_acq_char		atomic_clear_char
534 #define	atomic_clear_rel_char		atomic_clear_char
535 #define	atomic_add_acq_char		atomic_add_char
536 #define	atomic_add_rel_char		atomic_add_char
537 #define	atomic_subtract_acq_char	atomic_subtract_char
538 #define	atomic_subtract_rel_char	atomic_subtract_char
539 
540 #define	atomic_set_acq_short		atomic_set_short
541 #define	atomic_set_rel_short		atomic_set_short
542 #define	atomic_clear_acq_short		atomic_clear_short
543 #define	atomic_clear_rel_short		atomic_clear_short
544 #define	atomic_add_acq_short		atomic_add_short
545 #define	atomic_add_rel_short		atomic_add_short
546 #define	atomic_subtract_acq_short	atomic_subtract_short
547 #define	atomic_subtract_rel_short	atomic_subtract_short
548 
549 #define	atomic_set_acq_int		atomic_set_int
550 #define	atomic_set_rel_int		atomic_set_int
551 #define	atomic_clear_acq_int		atomic_clear_int
552 #define	atomic_clear_rel_int		atomic_clear_int
553 #define	atomic_add_acq_int		atomic_add_int
554 #define	atomic_add_rel_int		atomic_add_int
555 #define	atomic_subtract_acq_int		atomic_subtract_int
556 #define	atomic_subtract_rel_int		atomic_subtract_int
557 #define	atomic_cmpset_acq_int		atomic_cmpset_int
558 #define	atomic_cmpset_rel_int		atomic_cmpset_int
559 
560 #define	atomic_set_acq_long		atomic_set_long
561 #define	atomic_set_rel_long		atomic_set_long
562 #define	atomic_clear_acq_long		atomic_clear_long
563 #define	atomic_clear_rel_long		atomic_clear_long
564 #define	atomic_add_acq_long		atomic_add_long
565 #define	atomic_add_rel_long		atomic_add_long
566 #define	atomic_subtract_acq_long	atomic_subtract_long
567 #define	atomic_subtract_rel_long	atomic_subtract_long
568 #define	atomic_cmpset_acq_long		atomic_cmpset_long
569 #define	atomic_cmpset_rel_long		atomic_cmpset_long
570 
571 /* cpumask_t is 64-bits on x86-64 */
572 #define atomic_set_cpumask		atomic_set_long
573 #define atomic_clear_cpumask		atomic_clear_long
574 #define atomic_cmpset_cpumask		atomic_cmpset_long
575 
576 /* Operations on 8-bit bytes. */
577 #define	atomic_set_8		atomic_set_char
578 #define	atomic_set_acq_8	atomic_set_acq_char
579 #define	atomic_set_rel_8	atomic_set_rel_char
580 #define	atomic_clear_8		atomic_clear_char
581 #define	atomic_clear_acq_8	atomic_clear_acq_char
582 #define	atomic_clear_rel_8	atomic_clear_rel_char
583 #define	atomic_add_8		atomic_add_char
584 #define	atomic_add_acq_8	atomic_add_acq_char
585 #define	atomic_add_rel_8	atomic_add_rel_char
586 #define	atomic_subtract_8	atomic_subtract_char
587 #define	atomic_subtract_acq_8	atomic_subtract_acq_char
588 #define	atomic_subtract_rel_8	atomic_subtract_rel_char
589 #define	atomic_load_acq_8	atomic_load_acq_char
590 #define	atomic_store_rel_8	atomic_store_rel_char
591 
592 /* Operations on 16-bit words. */
593 #define	atomic_set_16		atomic_set_short
594 #define	atomic_set_acq_16	atomic_set_acq_short
595 #define	atomic_set_rel_16	atomic_set_rel_short
596 #define	atomic_clear_16		atomic_clear_short
597 #define	atomic_clear_acq_16	atomic_clear_acq_short
598 #define	atomic_clear_rel_16	atomic_clear_rel_short
599 #define	atomic_add_16		atomic_add_short
600 #define	atomic_add_acq_16	atomic_add_acq_short
601 #define	atomic_add_rel_16	atomic_add_rel_short
602 #define	atomic_subtract_16	atomic_subtract_short
603 #define	atomic_subtract_acq_16	atomic_subtract_acq_short
604 #define	atomic_subtract_rel_16	atomic_subtract_rel_short
605 #define	atomic_load_acq_16	atomic_load_acq_short
606 #define	atomic_store_rel_16	atomic_store_rel_short
607 
608 /* Operations on 32-bit double words. */
609 #define	atomic_set_32		atomic_set_int
610 #define	atomic_set_acq_32	atomic_set_acq_int
611 #define	atomic_set_rel_32	atomic_set_rel_int
612 #define	atomic_clear_32		atomic_clear_int
613 #define	atomic_clear_acq_32	atomic_clear_acq_int
614 #define	atomic_clear_rel_32	atomic_clear_rel_int
615 #define	atomic_add_32		atomic_add_int
616 #define	atomic_add_acq_32	atomic_add_acq_int
617 #define	atomic_add_rel_32	atomic_add_rel_int
618 #define	atomic_subtract_32	atomic_subtract_int
619 #define	atomic_subtract_acq_32	atomic_subtract_acq_int
620 #define	atomic_subtract_rel_32	atomic_subtract_rel_int
621 #define	atomic_load_acq_32	atomic_load_acq_int
622 #define	atomic_store_rel_32	atomic_store_rel_int
623 #define	atomic_cmpset_32	atomic_cmpset_int
624 #define	atomic_cmpset_acq_32	atomic_cmpset_acq_int
625 #define	atomic_cmpset_rel_32	atomic_cmpset_rel_int
626 #define	atomic_readandclear_32	atomic_readandclear_int
627 #define	atomic_fetchadd_32	atomic_fetchadd_int
628 
629 /* Operations on pointers. */
630 #define atomic_set_ptr(p, v) \
631 	atomic_set_long((volatile u_long *)(p), (u_long)(v))
632 #define atomic_set_acq_ptr(p, v) \
633 	atomic_set_acq_long((volatile u_long *)(p), (u_long)(v))
634 #define atomic_set_rel_ptr(p, v) \
635 	atomic_set_rel_long((volatile u_long *)(p), (u_long)(v))
636 #define atomic_clear_ptr(p, v) \
637 	atomic_clear_long((volatile u_long *)(p), (u_long)(v))
638 #define atomic_clear_acq_ptr(p, v) \
639 	atomic_clear_acq_long((volatile u_long *)(p), (u_long)(v))
640 #define atomic_clear_rel_ptr(p, v) \
641 	atomic_clear_rel_long((volatile u_long *)(p), (u_long)(v))
642 #define atomic_add_ptr(p, v) \
643 	atomic_add_long((volatile u_long *)(p), (u_long)(v))
644 #define atomic_add_acq_ptr(p, v) \
645 	atomic_add_acq_long((volatile u_long *)(p), (u_long)(v))
646 #define atomic_add_rel_ptr(p, v) \
647 	atomic_add_rel_long((volatile u_long *)(p), (u_long)(v))
648 #define atomic_subtract_ptr(p, v) \
649 	atomic_subtract_long((volatile u_long *)(p), (u_long)(v))
650 #define atomic_subtract_acq_ptr(p, v) \
651 	atomic_subtract_acq_long((volatile u_long *)(p), (u_long)(v))
652 #define atomic_subtract_rel_ptr(p, v) \
653 	atomic_subtract_rel_long((volatile u_long *)(p), (u_long)(v))
654 #define atomic_load_acq_ptr(p) \
655 	atomic_load_acq_long((volatile u_long *)(p))
656 #define atomic_store_rel_ptr(p, v) \
657 	atomic_store_rel_long((volatile u_long *)(p), (v))
658 #define atomic_cmpset_ptr(dst, old, new) 				\
659 	atomic_cmpset_long((volatile u_long *)(dst), (u_long)(old),	\
660 				(u_long)(new))
661 #define atomic_cmpset_acq_ptr(dst, old, new)				\
662 	atomic_cmpset_acq_long((volatile u_long *)(dst), (u_long)(old), \
663 				(u_long)(new))
664 #define atomic_cmpset_rel_ptr(dst, old, new)				\
665 	atomic_cmpset_rel_long((volatile u_long *)(dst), (u_long)(old), \
666 				(u_long)(new))
667 #define atomic_readandclear_ptr(p)					\
668 	atomic_readandclear_long((volatile u_long *)(p))
669 
670 #endif /* ! _CPU_ATOMIC_H_ */
671