xref: /dragonfly/sys/cpu/x86_64/include/cpufunc.h (revision aeaecd48)
1 /*-
2  * Copyright (c) 2003 Peter Wemm.
3  * Copyright (c) 1993 The Regents of the University of California.
4  * Copyright (c) 2008 The DragonFly Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/amd64/include/cpufunc.h,v 1.139 2004/01/28 23:53:04 peter Exp $
36  */
37 
38 /*
39  * Functions to provide access to special i386 instructions.
40  * This in included in sys/systm.h, and that file should be
41  * used in preference to this.
42  */
43 
44 #ifndef _CPU_CPUFUNC_H_
45 #define	_CPU_CPUFUNC_H_
46 
47 #include <sys/cdefs.h>
48 #include <sys/thread.h>
49 #include <machine/psl.h>
50 #include <machine/smp.h>
51 
52 struct thread;
53 struct region_descriptor;
54 
55 __BEGIN_DECLS
56 #define readb(va)	(*(volatile u_int8_t *) (va))
57 #define readw(va)	(*(volatile u_int16_t *) (va))
58 #define readl(va)	(*(volatile u_int32_t *) (va))
59 #define readq(va)	(*(volatile u_int64_t *) (va))
60 
61 #define writeb(va, d)	(*(volatile u_int8_t *) (va) = (d))
62 #define writew(va, d)	(*(volatile u_int16_t *) (va) = (d))
63 #define writel(va, d)	(*(volatile u_int32_t *) (va) = (d))
64 #define writeq(va, d)	(*(volatile u_int64_t *) (va) = (d))
65 
66 #ifdef	__GNUC__
67 
68 #include <machine/lock.h>		/* XXX */
69 
70 static __inline void
71 breakpoint(void)
72 {
73 	__asm __volatile("int $3");
74 }
75 
76 static __inline void
77 cpu_pause(void)
78 {
79 	__asm __volatile("pause":::"memory");
80 }
81 
82 static __inline u_int
83 bsfl(u_int mask)
84 {
85 	u_int	result;
86 
87 	__asm __volatile("bsfl %1,%0" : "=r" (result) : "rm" (mask));
88 	return (result);
89 }
90 
91 static __inline u_long
92 bsfq(u_long mask)
93 {
94 	u_long	result;
95 
96 	__asm __volatile("bsfq %1,%0" : "=r" (result) : "rm" (mask));
97 	return (result);
98 }
99 
100 static __inline u_long
101 bsflong(u_long mask)
102 {
103 	u_long	result;
104 
105 	__asm __volatile("bsfq %1,%0" : "=r" (result) : "rm" (mask));
106 	return (result);
107 }
108 
109 static __inline u_int
110 bsrl(u_int mask)
111 {
112 	u_int	result;
113 
114 	__asm __volatile("bsrl %1,%0" : "=r" (result) : "rm" (mask));
115 	return (result);
116 }
117 
118 static __inline u_long
119 bsrq(u_long mask)
120 {
121 	u_long	result;
122 
123 	__asm __volatile("bsrq %1,%0" : "=r" (result) : "rm" (mask));
124 	return (result);
125 }
126 
127 static __inline void
128 clflush(u_long addr)
129 {
130 	__asm __volatile("clflush %0" : : "m" (*(char *) addr));
131 }
132 
133 static __inline void
134 do_cpuid(u_int ax, u_int *p)
135 {
136 	__asm __volatile("cpuid"
137 			 : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
138 			 :  "0" (ax));
139 }
140 
141 static __inline void
142 cpuid_count(u_int ax, u_int cx, u_int *p)
143 {
144 	__asm __volatile("cpuid"
145 			 : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
146 			 :  "0" (ax), "c" (cx));
147 }
148 
149 #ifndef _CPU_DISABLE_INTR_DEFINED
150 
151 static __inline void
152 cpu_disable_intr(void)
153 {
154 	__asm __volatile("cli" : : : "memory");
155 }
156 
157 #endif
158 
159 #ifndef _CPU_ENABLE_INTR_DEFINED
160 
161 static __inline void
162 cpu_enable_intr(void)
163 {
164 	__asm __volatile("sti");
165 }
166 
167 #endif
168 
169 /*
170  * Cpu and compiler memory ordering fence.  mfence ensures strong read and
171  * write ordering.
172  *
173  * A serializing or fence instruction is required here.  A locked bus
174  * cycle on data for which we already own cache mastership is the most
175  * portable.
176  */
177 static __inline void
178 cpu_mfence(void)
179 {
180 	__asm __volatile("mfence" : : : "memory");
181 }
182 
183 /*
184  * cpu_lfence() ensures strong read ordering for reads issued prior
185  * to the instruction verses reads issued afterwords.
186  *
187  * A serializing or fence instruction is required here.  A locked bus
188  * cycle on data for which we already own cache mastership is the most
189  * portable.
190  */
191 static __inline void
192 cpu_lfence(void)
193 {
194 	__asm __volatile("lfence" : : : "memory");
195 }
196 
197 /*
198  * cpu_sfence() ensures strong write ordering for writes issued prior
199  * to the instruction verses writes issued afterwords.  Writes are
200  * ordered on intel cpus so we do not actually have to do anything.
201  */
202 static __inline void
203 cpu_sfence(void)
204 {
205 	/*
206 	 * NOTE:
207 	 * Don't use 'sfence' here, as it will create a lot of
208 	 * unnecessary stalls.
209 	 */
210 	__asm __volatile("" : : : "memory");
211 }
212 
213 /*
214  * cpu_ccfence() prevents the compiler from reordering instructions, in
215  * particular stores, relative to the current cpu.  Use cpu_sfence() if
216  * you need to guarentee ordering by both the compiler and by the cpu.
217  *
218  * This also prevents the compiler from caching memory loads into local
219  * variables across the routine.
220  */
221 static __inline void
222 cpu_ccfence(void)
223 {
224 	__asm __volatile("" : : : "memory");
225 }
226 
227 /*
228  * This is a horrible, horrible hack that might have to be put at the
229  * end of certain procedures (on a case by case basis), just before it
230  * returns to avoid what we believe to be an unreported AMD cpu bug.
231  * Found to occur on both a Phenom II X4 820 (two of them), as well
232  * as a 48-core built around an Opteron 6168 (Id = 0x100f91  Stepping = 1).
233  * The problem does not appear to occur w/Intel cpus.
234  *
235  * The bug is likely related to either a write combining issue or the
236  * Return Address Stack (RAS) hardware cache.
237  *
238  * In particular, we had to do this for GCC's fill_sons_in_loop() routine
239  * which due to its deep recursion and stack flow appears to be able to
240  * tickle the amd cpu bug (w/ gcc-4.4.7).  Adding a single 'nop' to the
241  * end of the routine just before it returns works around the bug.
242  *
243  * The bug appears to be extremely sensitive to %rip and %rsp values, to
244  * the point where even just inserting an instruction in an unrelated
245  * procedure (shifting the entire code base being run) effects the outcome.
246  * DragonFly is probably able to more readily reproduce the bug due to
247  * the stackgap randomization code.  We would expect OpenBSD (where we got
248  * the stackgap randomization code from) to also be able to reproduce the
249  * issue.  To date we have only reproduced the issue in DragonFly.
250  */
251 #define __AMDCPUBUG_DFLY01_AVAILABLE__
252 
253 static __inline void
254 cpu_amdcpubug_dfly01(void)
255 {
256 	__asm __volatile("nop" : : : "memory");
257 }
258 
259 #ifdef _KERNEL
260 
261 #define	HAVE_INLINE_FFS
262 
263 static __inline int
264 ffs(int mask)
265 {
266 #if 0
267 	/*
268 	 * Note that gcc-2's builtin ffs would be used if we didn't declare
269 	 * this inline or turn off the builtin.  The builtin is faster but
270 	 * broken in gcc-2.4.5 and slower but working in gcc-2.5 and later
271 	 * versions.
272 	 */
273 	return (mask == 0 ? mask : (int)bsfl((u_int)mask) + 1);
274 #else
275 	/* Actually, the above is way out of date.  The builtins use cmov etc */
276 	return (__builtin_ffs(mask));
277 #endif
278 }
279 
280 #define	HAVE_INLINE_FFSL
281 
282 static __inline int
283 ffsl(long mask)
284 {
285 	return (mask == 0 ? mask : (int)bsfq((u_long)mask) + 1);
286 }
287 
288 #define	HAVE_INLINE_FLS
289 
290 static __inline int
291 fls(int mask)
292 {
293 	return (mask == 0 ? mask : (int)bsrl((u_int)mask) + 1);
294 }
295 
296 #define	HAVE_INLINE_FLSL
297 
298 static __inline int
299 flsl(long mask)
300 {
301 	return (mask == 0 ? mask : (int)bsrq((u_long)mask) + 1);
302 }
303 
304 #define	HAVE_INLINE_FLSLL
305 
306 static __inline int
307 flsll(long long mask)
308 {
309 	return (flsl((long)mask));
310 }
311 
312 #endif /* _KERNEL */
313 
314 static __inline void
315 halt(void)
316 {
317 	__asm __volatile("hlt");
318 }
319 
320 /*
321  * The following complications are to get around gcc not having a
322  * constraint letter for the range 0..255.  We still put "d" in the
323  * constraint because "i" isn't a valid constraint when the port
324  * isn't constant.  This only matters for -O0 because otherwise
325  * the non-working version gets optimized away.
326  *
327  * Use an expression-statement instead of a conditional expression
328  * because gcc-2.6.0 would promote the operands of the conditional
329  * and produce poor code for "if ((inb(var) & const1) == const2)".
330  *
331  * The unnecessary test `(port) < 0x10000' is to generate a warning if
332  * the `port' has type u_short or smaller.  Such types are pessimal.
333  * This actually only works for signed types.  The range check is
334  * careful to avoid generating warnings.
335  */
336 #define	inb(port) __extension__ ({					\
337 	u_char	_data;							\
338 	if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100	\
339 	    && (port) < 0x10000)					\
340 		_data = inbc(port);					\
341 	else								\
342 		_data = inbv(port);					\
343 	_data; })
344 
345 #define	outb(port, data) (						\
346 	__builtin_constant_p(port) && ((port) & 0xffff) < 0x100		\
347 	&& (port) < 0x10000						\
348 	? outbc(port, data) : outbv(port, data))
349 
350 static __inline u_char
351 inbc(u_int port)
352 {
353 	u_char	data;
354 
355 	__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
356 	return (data);
357 }
358 
359 static __inline void
360 outbc(u_int port, u_char data)
361 {
362 	__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
363 }
364 
365 static __inline u_char
366 inbv(u_int port)
367 {
368 	u_char	data;
369 	/*
370 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
371 	 * %edx, while gcc generates inferior code (movw instead of movl)
372 	 * if we tell it to load (u_short) port.
373 	 */
374 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
375 	return (data);
376 }
377 
378 static __inline u_int
379 inl(u_int port)
380 {
381 	u_int	data;
382 
383 	__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
384 	return (data);
385 }
386 
387 static __inline void
388 insb(u_int port, void *addr, size_t cnt)
389 {
390 	__asm __volatile("cld; rep; insb"
391 			 : "+D" (addr), "+c" (cnt)
392 			 : "d" (port)
393 			 : "memory");
394 }
395 
396 static __inline void
397 insw(u_int port, void *addr, size_t cnt)
398 {
399 	__asm __volatile("cld; rep; insw"
400 			 : "+D" (addr), "+c" (cnt)
401 			 : "d" (port)
402 			 : "memory");
403 }
404 
405 static __inline void
406 insl(u_int port, void *addr, size_t cnt)
407 {
408 	__asm __volatile("cld; rep; insl"
409 			 : "+D" (addr), "+c" (cnt)
410 			 : "d" (port)
411 			 : "memory");
412 }
413 
414 static __inline void
415 invd(void)
416 {
417 	__asm __volatile("invd");
418 }
419 
420 #if defined(_KERNEL)
421 
422 void smp_invltlb(void);
423 void smp_invltlb_intr(void);
424 
425 #ifndef _CPU_INVLPG_DEFINED
426 
427 /*
428  * Invalidate a particular VA on this cpu only
429  *
430  * TLB flush for an individual page (even if it has PG_G).
431  * Only works on 486+ CPUs (i386 does not have PG_G).
432  */
433 static __inline void
434 cpu_invlpg(void *addr)
435 {
436 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
437 }
438 
439 #endif
440 
441 #if defined(_KERNEL)
442 struct smp_invlpg_range_cpusync_arg {
443 	vm_offset_t sva;
444 	vm_offset_t eva;
445 };
446 
447 void
448 smp_invlpg_range_cpusync(void *arg);
449 
450 static __inline void
451 smp_invlpg_range(cpumask_t mask, vm_offset_t sva, vm_offset_t eva)
452 {
453 	struct smp_invlpg_range_cpusync_arg arg;
454 
455 	arg.sva = sva;
456 	arg.eva = eva;
457 	lwkt_cpusync_simple(mask, smp_invlpg_range_cpusync, &arg);
458 }
459 #endif
460 
461 static __inline void
462 cpu_nop(void)
463 {
464 	__asm __volatile("rep; nop");
465 }
466 
467 #endif	/* _KERNEL */
468 
469 static __inline u_short
470 inw(u_int port)
471 {
472 	u_short	data;
473 
474 	__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
475 	return (data);
476 }
477 
478 static __inline u_int
479 loadandclear(volatile u_int *addr)
480 {
481 	u_int   result;
482 
483 	__asm __volatile("xorl %0,%0; xchgl %1,%0"
484 			: "=&r" (result) : "m" (*addr));
485 	return (result);
486 }
487 
488 static __inline void
489 outbv(u_int port, u_char data)
490 {
491 	u_char	al;
492 	/*
493 	 * Use an unnecessary assignment to help gcc's register allocator.
494 	 * This make a large difference for gcc-1.40 and a tiny difference
495 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
496 	 * best results.  gcc-2.6.0 can't handle this.
497 	 */
498 	al = data;
499 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
500 }
501 
502 static __inline void
503 outl(u_int port, u_int data)
504 {
505 	/*
506 	 * outl() and outw() aren't used much so we haven't looked at
507 	 * possible micro-optimizations such as the unnecessary
508 	 * assignment for them.
509 	 */
510 	__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
511 }
512 
513 static __inline void
514 outsb(u_int port, const void *addr, size_t cnt)
515 {
516 	__asm __volatile("cld; rep; outsb"
517 			 : "+S" (addr), "+c" (cnt)
518 			 : "d" (port));
519 }
520 
521 static __inline void
522 outsw(u_int port, const void *addr, size_t cnt)
523 {
524 	__asm __volatile("cld; rep; outsw"
525 			 : "+S" (addr), "+c" (cnt)
526 			 : "d" (port));
527 }
528 
529 static __inline void
530 outsl(u_int port, const void *addr, size_t cnt)
531 {
532 	__asm __volatile("cld; rep; outsl"
533 			 : "+S" (addr), "+c" (cnt)
534 			 : "d" (port));
535 }
536 
537 static __inline void
538 outw(u_int port, u_short data)
539 {
540 	__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
541 }
542 
543 static __inline void
544 ia32_pause(void)
545 {
546 	__asm __volatile("pause");
547 }
548 
549 static __inline u_long
550 read_rflags(void)
551 {
552 	u_long	rf;
553 
554 	__asm __volatile("pushfq; popq %0" : "=r" (rf));
555 	return (rf);
556 }
557 
558 static __inline u_int64_t
559 rdmsr(u_int msr)
560 {
561 	u_int32_t low, high;
562 
563 	__asm __volatile("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
564 	return (low | ((u_int64_t)high << 32));
565 }
566 
567 static __inline u_int64_t
568 rdpmc(u_int pmc)
569 {
570 	u_int32_t low, high;
571 
572 	__asm __volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (pmc));
573 	return (low | ((u_int64_t)high << 32));
574 }
575 
576 #define _RDTSC_SUPPORTED_
577 
578 static __inline u_int64_t
579 rdtsc(void)
580 {
581 	u_int32_t low, high;
582 
583 	__asm __volatile("rdtsc" : "=a" (low), "=d" (high));
584 	return (low | ((u_int64_t)high << 32));
585 }
586 
587 #ifdef _KERNEL
588 #include <machine/cputypes.h>
589 #include <machine/md_var.h>
590 
591 static __inline u_int64_t
592 rdtsc_ordered(void)
593 {
594 	if (cpu_vendor_id == CPU_VENDOR_INTEL)
595 		cpu_lfence();
596 	else
597 		cpu_mfence();
598 	return rdtsc();
599 }
600 #endif
601 
602 static __inline void
603 wbinvd(void)
604 {
605 	__asm __volatile("wbinvd");
606 }
607 
608 #if defined(_KERNEL)
609 void cpu_wbinvd_on_all_cpus_callback(void *arg);
610 
611 static __inline void
612 cpu_wbinvd_on_all_cpus(void)
613 {
614 	lwkt_cpusync_simple(smp_active_mask, cpu_wbinvd_on_all_cpus_callback, NULL);
615 }
616 #endif
617 
618 static __inline void
619 write_rflags(u_long rf)
620 {
621 	__asm __volatile("pushq %0;  popfq" : : "r" (rf));
622 }
623 
624 static __inline void
625 wrmsr(u_int msr, u_int64_t newval)
626 {
627 	u_int32_t low, high;
628 
629 	low = newval;
630 	high = newval >> 32;
631 	__asm __volatile("wrmsr" : : "a" (low), "d" (high), "c" (msr));
632 }
633 
634 static __inline void
635 xsetbv(u_int ecx, u_int eax, u_int edx)
636 {
637 	__asm __volatile(".byte 0x0f,0x01,0xd1"
638 	    :
639 	    : "a" (eax), "c" (ecx), "d" (edx));
640 }
641 
642 static __inline void
643 load_cr0(u_long data)
644 {
645 
646 	__asm __volatile("movq %0,%%cr0" : : "r" (data));
647 }
648 
649 static __inline u_long
650 rcr0(void)
651 {
652 	u_long	data;
653 
654 	__asm __volatile("movq %%cr0,%0" : "=r" (data));
655 	return (data);
656 }
657 
658 static __inline u_long
659 rcr2(void)
660 {
661 	u_long	data;
662 
663 	__asm __volatile("movq %%cr2,%0" : "=r" (data));
664 	return (data);
665 }
666 
667 static __inline void
668 load_cr3(u_long data)
669 {
670 
671 	__asm __volatile("movq %0,%%cr3" : : "r" (data) : "memory");
672 }
673 
674 static __inline u_long
675 rcr3(void)
676 {
677 	u_long	data;
678 
679 	__asm __volatile("movq %%cr3,%0" : "=r" (data));
680 	return (data);
681 }
682 
683 static __inline void
684 load_cr4(u_long data)
685 {
686 	__asm __volatile("movq %0,%%cr4" : : "r" (data));
687 }
688 
689 static __inline u_long
690 rcr4(void)
691 {
692 	u_long	data;
693 
694 	__asm __volatile("movq %%cr4,%0" : "=r" (data));
695 	return (data);
696 }
697 
698 #ifndef _CPU_INVLTLB_DEFINED
699 
700 /*
701  * Invalidate the TLB on this cpu only
702  */
703 static __inline void
704 cpu_invltlb(void)
705 {
706 	load_cr3(rcr3());
707 #if defined(SWTCH_OPTIM_STATS)
708 	++tlb_flush_count;
709 #endif
710 }
711 
712 #endif
713 
714 static __inline u_short
715 rfs(void)
716 {
717 	u_short sel;
718 	__asm __volatile("movw %%fs,%0" : "=rm" (sel));
719 	return (sel);
720 }
721 
722 static __inline u_short
723 rgs(void)
724 {
725 	u_short sel;
726 	__asm __volatile("movw %%gs,%0" : "=rm" (sel));
727 	return (sel);
728 }
729 
730 static __inline void
731 load_ds(u_short sel)
732 {
733 	__asm __volatile("movw %0,%%ds" : : "rm" (sel));
734 }
735 
736 static __inline void
737 load_es(u_short sel)
738 {
739 	__asm __volatile("movw %0,%%es" : : "rm" (sel));
740 }
741 
742 #ifdef _KERNEL
743 /* This is defined in <machine/specialreg.h> but is too painful to get to */
744 #ifndef	MSR_FSBASE
745 #define	MSR_FSBASE	0xc0000100
746 #endif
747 static __inline void
748 load_fs(u_short sel)
749 {
750 	/* Preserve the fsbase value across the selector load */
751 	__asm __volatile("rdmsr; movw %0,%%fs; wrmsr"
752             : : "rm" (sel), "c" (MSR_FSBASE) : "eax", "edx");
753 }
754 
755 #ifndef	MSR_GSBASE
756 #define	MSR_GSBASE	0xc0000101
757 #endif
758 static __inline void
759 load_gs(u_short sel)
760 {
761 	/*
762 	 * Preserve the gsbase value across the selector load.
763 	 * Note that we have to disable interrupts because the gsbase
764 	 * being trashed happens to be the kernel gsbase at the time.
765 	 */
766 	__asm __volatile("pushfq; cli; rdmsr; movw %0,%%gs; wrmsr; popfq"
767             : : "rm" (sel), "c" (MSR_GSBASE) : "eax", "edx");
768 }
769 #else
770 /* Usable by userland */
771 static __inline void
772 load_fs(u_short sel)
773 {
774 	__asm __volatile("movw %0,%%fs" : : "rm" (sel));
775 }
776 
777 static __inline void
778 load_gs(u_short sel)
779 {
780 	__asm __volatile("movw %0,%%gs" : : "rm" (sel));
781 }
782 #endif
783 
784 /* void lidt(struct region_descriptor *addr); */
785 static __inline void
786 lidt(struct region_descriptor *addr)
787 {
788 	__asm __volatile("lidt (%0)" : : "r" (addr));
789 }
790 
791 /* void lldt(u_short sel); */
792 static __inline void
793 lldt(u_short sel)
794 {
795 	__asm __volatile("lldt %0" : : "r" (sel));
796 }
797 
798 /* void ltr(u_short sel); */
799 static __inline void
800 ltr(u_short sel)
801 {
802 	__asm __volatile("ltr %0" : : "r" (sel));
803 }
804 
805 static __inline u_int64_t
806 rdr0(void)
807 {
808 	u_int64_t data;
809 	__asm __volatile("movq %%dr0,%0" : "=r" (data));
810 	return (data);
811 }
812 
813 static __inline void
814 load_dr0(u_int64_t dr0)
815 {
816 	__asm __volatile("movq %0,%%dr0" : : "r" (dr0));
817 }
818 
819 static __inline u_int64_t
820 rdr1(void)
821 {
822 	u_int64_t data;
823 	__asm __volatile("movq %%dr1,%0" : "=r" (data));
824 	return (data);
825 }
826 
827 static __inline void
828 load_dr1(u_int64_t dr1)
829 {
830 	__asm __volatile("movq %0,%%dr1" : : "r" (dr1));
831 }
832 
833 static __inline u_int64_t
834 rdr2(void)
835 {
836 	u_int64_t data;
837 	__asm __volatile("movq %%dr2,%0" : "=r" (data));
838 	return (data);
839 }
840 
841 static __inline void
842 load_dr2(u_int64_t dr2)
843 {
844 	__asm __volatile("movq %0,%%dr2" : : "r" (dr2));
845 }
846 
847 static __inline u_int64_t
848 rdr3(void)
849 {
850 	u_int64_t data;
851 	__asm __volatile("movq %%dr3,%0" : "=r" (data));
852 	return (data);
853 }
854 
855 static __inline void
856 load_dr3(u_int64_t dr3)
857 {
858 	__asm __volatile("movq %0,%%dr3" : : "r" (dr3));
859 }
860 
861 static __inline u_int64_t
862 rdr4(void)
863 {
864 	u_int64_t data;
865 	__asm __volatile("movq %%dr4,%0" : "=r" (data));
866 	return (data);
867 }
868 
869 static __inline void
870 load_dr4(u_int64_t dr4)
871 {
872 	__asm __volatile("movq %0,%%dr4" : : "r" (dr4));
873 }
874 
875 static __inline u_int64_t
876 rdr5(void)
877 {
878 	u_int64_t data;
879 	__asm __volatile("movq %%dr5,%0" : "=r" (data));
880 	return (data);
881 }
882 
883 static __inline void
884 load_dr5(u_int64_t dr5)
885 {
886 	__asm __volatile("movq %0,%%dr5" : : "r" (dr5));
887 }
888 
889 static __inline u_int64_t
890 rdr6(void)
891 {
892 	u_int64_t data;
893 	__asm __volatile("movq %%dr6,%0" : "=r" (data));
894 	return (data);
895 }
896 
897 static __inline void
898 load_dr6(u_int64_t dr6)
899 {
900 	__asm __volatile("movq %0,%%dr6" : : "r" (dr6));
901 }
902 
903 static __inline u_int64_t
904 rdr7(void)
905 {
906 	u_int64_t data;
907 	__asm __volatile("movq %%dr7,%0" : "=r" (data));
908 	return (data);
909 }
910 
911 static __inline void
912 load_dr7(u_int64_t dr7)
913 {
914 	__asm __volatile("movq %0,%%dr7" : : "r" (dr7));
915 }
916 
917 static __inline register_t
918 intr_disable(void)
919 {
920 	register_t rflags;
921 
922 	rflags = read_rflags();
923 	cpu_disable_intr();
924 	return (rflags);
925 }
926 
927 static __inline void
928 intr_restore(register_t rflags)
929 {
930 	write_rflags(rflags);
931 }
932 
933 #else /* !__GNUC__ */
934 
935 int	breakpoint(void);
936 void	cpu_pause(void);
937 u_int	bsfl(u_int mask);
938 u_int	bsrl(u_int mask);
939 void	cpu_disable_intr(void);
940 void	cpu_enable_intr(void);
941 void	cpu_invlpg(u_long addr);
942 void	cpu_invlpg_range(u_long start, u_long end);
943 void	do_cpuid(u_int ax, u_int *p);
944 void	halt(void);
945 u_char	inb(u_int port);
946 u_int	inl(u_int port);
947 void	insb(u_int port, void *addr, size_t cnt);
948 void	insl(u_int port, void *addr, size_t cnt);
949 void	insw(u_int port, void *addr, size_t cnt);
950 void	invd(void);
951 void	invlpg_range(u_int start, u_int end);
952 void	cpu_invltlb(void);
953 u_short	inw(u_int port);
954 void	load_cr0(u_int cr0);
955 void	load_cr3(u_int cr3);
956 void	load_cr4(u_int cr4);
957 void	load_fs(u_int sel);
958 void	load_gs(u_int sel);
959 struct region_descriptor;
960 void	lidt(struct region_descriptor *addr);
961 void	lldt(u_short sel);
962 void	ltr(u_short sel);
963 void	outb(u_int port, u_char data);
964 void	outl(u_int port, u_int data);
965 void	outsb(u_int port, void *addr, size_t cnt);
966 void	outsl(u_int port, void *addr, size_t cnt);
967 void	outsw(u_int port, void *addr, size_t cnt);
968 void	outw(u_int port, u_short data);
969 void	ia32_pause(void);
970 u_int	rcr0(void);
971 u_int	rcr2(void);
972 u_int	rcr3(void);
973 u_int	rcr4(void);
974 u_short	rfs(void);
975 u_short	rgs(void);
976 u_int64_t rdmsr(u_int msr);
977 u_int64_t rdpmc(u_int pmc);
978 u_int64_t rdtsc(void);
979 u_int	read_rflags(void);
980 void	wbinvd(void);
981 void	write_rflags(u_int rf);
982 void	wrmsr(u_int msr, u_int64_t newval);
983 u_int64_t	rdr0(void);
984 void	load_dr0(u_int64_t dr0);
985 u_int64_t	rdr1(void);
986 void	load_dr1(u_int64_t dr1);
987 u_int64_t	rdr2(void);
988 void	load_dr2(u_int64_t dr2);
989 u_int64_t	rdr3(void);
990 void	load_dr3(u_int64_t dr3);
991 u_int64_t	rdr4(void);
992 void	load_dr4(u_int64_t dr4);
993 u_int64_t	rdr5(void);
994 void	load_dr5(u_int64_t dr5);
995 u_int64_t	rdr6(void);
996 void	load_dr6(u_int64_t dr6);
997 u_int64_t	rdr7(void);
998 void	load_dr7(u_int64_t dr7);
999 register_t	intr_disable(void);
1000 void	intr_restore(register_t rf);
1001 
1002 #endif	/* __GNUC__ */
1003 
1004 int	rdmsr_safe(u_int msr, uint64_t *val);
1005 int wrmsr_safe(u_int msr, uint64_t newval);
1006 void	reset_dbregs(void);
1007 
1008 __END_DECLS
1009 
1010 #endif /* !_CPU_CPUFUNC_H_ */
1011