1 /*- 2 * Copyright (c) 2000, 2001 Michael Smith 3 * Copyright (c) 2000 BSDi 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * $FreeBSD: src/sys/dev/acpica/acpi_timer.c,v 1.35 2004/07/22 05:42:14 njl Exp $ 28 */ 29 #include "opt_acpi.h" 30 #include <sys/param.h> 31 #include <sys/bus.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/sysctl.h> 35 #include <sys/systimer.h> 36 #include <sys/rman.h> 37 38 #include <machine/lock.h> 39 #include <bus/pci/pcivar.h> 40 41 #include "acpi.h" 42 #include "accommon.h" 43 #include "acpivar.h" 44 45 /* 46 * A timecounter based on the free-running ACPI timer. 47 * 48 * Based on the i386-only mp_clock.c by <phk@FreeBSD.ORG>. 49 */ 50 51 /* Hooks for the ACPI CA debugging infrastructure */ 52 #define _COMPONENT ACPI_TIMER 53 ACPI_MODULE_NAME("TIMER") 54 55 static device_t acpi_timer_dev; 56 static struct resource *acpi_timer_reg; 57 static bus_space_handle_t acpi_timer_bsh; 58 static bus_space_tag_t acpi_timer_bst; 59 static sysclock_t acpi_counter_mask; 60 static sysclock_t acpi_last_counter; 61 62 #define ACPI_TIMER_FREQ (14318182 / 4) 63 64 static sysclock_t acpi_timer_get_timecount(void); 65 static sysclock_t acpi_timer_get_timecount24(void); 66 static sysclock_t acpi_timer_get_timecount_safe(void); 67 static void acpi_timer_construct(struct cputimer *timer, sysclock_t oldclock); 68 69 static struct cputimer acpi_cputimer = { 70 SLIST_ENTRY_INITIALIZER, 71 "ACPI", 72 CPUTIMER_PRI_ACPI, 73 CPUTIMER_ACPI, 74 acpi_timer_get_timecount_safe, 75 cputimer_default_fromhz, 76 cputimer_default_fromus, 77 acpi_timer_construct, 78 cputimer_default_destruct, 79 ACPI_TIMER_FREQ, 80 0, 0, 0 81 }; 82 83 static int acpi_timer_identify(driver_t *driver, device_t parent); 84 static int acpi_timer_probe(device_t dev); 85 static int acpi_timer_attach(device_t dev); 86 static int acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS); 87 88 static int acpi_timer_test(void); 89 90 static device_method_t acpi_timer_methods[] = { 91 DEVMETHOD(device_identify, acpi_timer_identify), 92 DEVMETHOD(device_probe, acpi_timer_probe), 93 DEVMETHOD(device_attach, acpi_timer_attach), 94 95 DEVMETHOD_END 96 }; 97 98 static driver_t acpi_timer_driver = { 99 "acpi_timer", 100 acpi_timer_methods, 101 0, 102 }; 103 104 static devclass_t acpi_timer_devclass; 105 DRIVER_MODULE(acpi_timer, acpi, acpi_timer_driver, acpi_timer_devclass, NULL, NULL); 106 MODULE_DEPEND(acpi_timer, acpi, 1, 1, 1); 107 108 static u_int 109 acpi_timer_read(void) 110 { 111 return (bus_space_read_4(acpi_timer_bst, acpi_timer_bsh, 0)); 112 } 113 114 /* 115 * Locate the ACPI timer using the FADT, set up and allocate the I/O resources 116 * we will be using. 117 */ 118 static int 119 acpi_timer_identify(driver_t *driver, device_t parent) 120 { 121 device_t dev; 122 u_long rlen, rstart; 123 int rid, rtype; 124 125 /* 126 * Just try once, do nothing if the 'acpi' bus is rescanned. 127 */ 128 if (device_get_state(parent) == DS_ATTACHED) 129 return (0); 130 131 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 132 133 if (acpi_disabled("timer") || acpi_timer_dev) 134 return (ENXIO); 135 136 if ((dev = BUS_ADD_CHILD(parent, parent, 0, "acpi_timer", 0)) == NULL) { 137 device_printf(parent, "could not add acpi_timer0\n"); 138 return (ENXIO); 139 } 140 acpi_timer_dev = dev; 141 142 switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) { 143 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 144 rtype = SYS_RES_MEMORY; 145 break; 146 case ACPI_ADR_SPACE_SYSTEM_IO: 147 rtype = SYS_RES_IOPORT; 148 break; 149 default: 150 return (ENXIO); 151 } 152 rid = 0; 153 rlen = AcpiGbl_FADT.PmTimerLength; 154 rstart = AcpiGbl_FADT.XPmTimerBlock.Address; 155 if (bus_set_resource(dev, rtype, rid, rstart, rlen, -1)) { 156 device_printf(dev, "couldn't set resource (%s 0x%lx+0x%lx)\n", 157 (rtype == SYS_RES_IOPORT) ? "port" : "mem", rstart, rlen); 158 return (ENXIO); 159 } 160 return (0); 161 } 162 163 static int 164 acpi_timer_probe(device_t dev) 165 { 166 char desc[40]; 167 int i, j, rid, rtype; 168 169 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 170 171 if (dev != acpi_timer_dev) 172 return (ENXIO); 173 174 switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) { 175 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 176 rtype = SYS_RES_MEMORY; 177 break; 178 case ACPI_ADR_SPACE_SYSTEM_IO: 179 rtype = SYS_RES_IOPORT; 180 break; 181 default: 182 return (ENXIO); 183 } 184 rid = 0; 185 acpi_timer_reg = bus_alloc_resource_any(dev, rtype, &rid, RF_ACTIVE); 186 if (acpi_timer_reg == NULL) { 187 device_printf(dev, "couldn't allocate resource (%s 0x%lx)\n", 188 (rtype == SYS_RES_IOPORT) ? "port" : "mem", 189 (u_long)AcpiGbl_FADT.XPmTimerBlock.Address); 190 return (ENXIO); 191 } 192 acpi_timer_bsh = rman_get_bushandle(acpi_timer_reg); 193 acpi_timer_bst = rman_get_bustag(acpi_timer_reg); 194 if ((AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) != 0) 195 acpi_counter_mask = 0xffffffff; 196 else 197 acpi_counter_mask = 0x00ffffff; 198 199 /* 200 * If all tests of the counter succeed, use the ACPI-fast method. If 201 * at least one failed, default to using the safe routine, which reads 202 * the timer multiple times to get a consistent value before returning. 203 */ 204 j = 0; 205 for (i = 0; i < 10; i++) 206 j += acpi_timer_test(); 207 if (j == 10) { 208 if (acpi_counter_mask == 0xffffffff) { 209 acpi_cputimer.name = "ACPI-fast"; 210 acpi_cputimer.count = acpi_timer_get_timecount; 211 } else { 212 acpi_cputimer.name = "ACPI-fast24"; 213 acpi_cputimer.count = acpi_timer_get_timecount24; 214 } 215 } else { 216 if (acpi_counter_mask == 0xffffffff) 217 acpi_cputimer.name = "ACPI-safe"; 218 else 219 acpi_cputimer.name = "ACPI-safe24"; 220 acpi_cputimer.count = acpi_timer_get_timecount_safe; 221 } 222 223 ksprintf(desc, "%d-bit timer at 3.579545MHz", 224 (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) ? 32 : 24); 225 device_set_desc_copy(dev, desc); 226 227 cputimer_register(&acpi_cputimer); 228 cputimer_select(&acpi_cputimer, 0); 229 /* Release the resource, we'll allocate it again during attach. */ 230 bus_release_resource(dev, rtype, rid, acpi_timer_reg); 231 return (0); 232 } 233 234 static int 235 acpi_timer_attach(device_t dev) 236 { 237 int rid, rtype; 238 239 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 240 241 switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) { 242 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 243 rtype = SYS_RES_MEMORY; 244 break; 245 case ACPI_ADR_SPACE_SYSTEM_IO: 246 rtype = SYS_RES_IOPORT; 247 break; 248 default: 249 return (ENXIO); 250 } 251 rid = 0; 252 acpi_timer_reg = bus_alloc_resource_any(dev, rtype, &rid, RF_ACTIVE); 253 if (acpi_timer_reg == NULL) 254 return (ENXIO); 255 acpi_timer_bsh = rman_get_bushandle(acpi_timer_reg); 256 acpi_timer_bst = rman_get_bustag(acpi_timer_reg); 257 return (0); 258 } 259 260 /* 261 * Construct the timer. Adjust the base so the system clock does not 262 * jump weirdly. 263 */ 264 static void 265 acpi_timer_construct(struct cputimer *timer, sysclock_t oldclock) 266 { 267 timer->base = 0; 268 timer->base = oldclock - acpi_timer_get_timecount_safe(); 269 } 270 271 /* 272 * Fetch current time value from reliable hardware. 273 * 274 * The cputimer interface requires a 32 bit return value. If the ACPI timer 275 * is only 24 bits then we have to keep track of the upper 8 bits on our 276 * own. 277 * 278 * XXX we could probably get away with using a per-cpu field for this and 279 * just use interrupt disablement instead of clock_lock. 280 */ 281 static sysclock_t 282 acpi_timer_get_timecount24(void) 283 { 284 sysclock_t counter; 285 286 clock_lock(); 287 counter = acpi_timer_read(); 288 if (counter < acpi_last_counter) 289 acpi_cputimer.base += 0x01000000; 290 acpi_last_counter = counter; 291 counter += acpi_cputimer.base; 292 clock_unlock(); 293 return (counter); 294 } 295 296 static sysclock_t 297 acpi_timer_get_timecount(void) 298 { 299 return (acpi_timer_read() + acpi_cputimer.base); 300 } 301 302 /* 303 * Fetch current time value from hardware that may not correctly 304 * latch the counter. We need to read until we have three monotonic 305 * samples and then use the middle one, otherwise we are not protected 306 * against the fact that the bits can be wrong in two directions. If 307 * we only cared about monosity, two reads would be enough. 308 */ 309 static sysclock_t 310 acpi_timer_get_timecount_safe(void) 311 { 312 u_int u1, u2, u3; 313 314 if (acpi_counter_mask != 0xffffffff) 315 clock_lock(); 316 317 u2 = acpi_timer_read(); 318 u3 = acpi_timer_read(); 319 do { 320 u1 = u2; 321 u2 = u3; 322 u3 = acpi_timer_read(); 323 } while (u1 > u2 || u2 > u3); 324 325 if (acpi_counter_mask != 0xffffffff) { 326 if (u2 < acpi_last_counter) 327 acpi_cputimer.base += 0x01000000; 328 acpi_last_counter = u2; 329 clock_unlock(); 330 } 331 return (u2 + acpi_cputimer.base); 332 } 333 334 /* 335 * Timecounter freqency adjustment interface. 336 */ 337 static int 338 acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS) 339 { 340 int error; 341 u_int freq; 342 343 if (acpi_cputimer.freq == 0) 344 return (EOPNOTSUPP); 345 freq = acpi_cputimer.freq; 346 error = sysctl_handle_int(oidp, &freq, sizeof(freq), req); 347 if (error == 0 && req->newptr != NULL) 348 cputimer_set_frequency(&acpi_cputimer, freq); 349 350 return (error); 351 } 352 353 SYSCTL_PROC(_machdep, OID_AUTO, acpi_timer_freq, CTLTYPE_INT | CTLFLAG_RW, 354 0, sizeof(u_int), acpi_timer_sysctl_freq, "I", "ACPI timer frequency"); 355 356 /* 357 * Some ACPI timers are known or believed to suffer from implementation 358 * problems which can lead to erroneous values being read. This function 359 * tests for consistent results from the timer and returns 1 if it believes 360 * the timer is consistent, otherwise it returns 0. 361 * 362 * It appears the cause is that the counter is not latched to the PCI bus 363 * clock when read: 364 * 365 * ] 20. ACPI Timer Errata 366 * ] 367 * ] Problem: The power management timer may return improper result when 368 * ] read. Although the timer value settles properly after incrementing, 369 * ] while incrementing there is a 3nS window every 69.8nS where the 370 * ] timer value is indeterminate (a 4.2% chance that the data will be 371 * ] incorrect when read). As a result, the ACPI free running count up 372 * ] timer specification is violated due to erroneous reads. Implication: 373 * ] System hangs due to the "inaccuracy" of the timer when used by 374 * ] software for time critical events and delays. 375 * ] 376 * ] Workaround: Read the register twice and compare. 377 * ] Status: This will not be fixed in the PIIX4 or PIIX4E, it is fixed 378 * ] in the PIIX4M. 379 */ 380 381 static int 382 acpi_timer_test(void) 383 { 384 uint32_t last, this; 385 int min, max, n, delta; 386 register_t s; 387 388 min = 10000000; 389 max = 0; 390 391 /* Test the timer with interrupts disabled to get accurate results. */ 392 #if defined(__i386__) 393 s = read_eflags(); 394 #elif defined(__x86_64__) 395 s = read_rflags(); 396 #else 397 #error "no read_eflags" 398 #endif 399 cpu_disable_intr(); 400 last = acpi_timer_read(); 401 for (n = 0; n < 2000; n++) { 402 this = acpi_timer_read(); 403 delta = acpi_TimerDelta(this, last); 404 if (delta > max) 405 max = delta; 406 else if (delta < min) 407 min = delta; 408 last = this; 409 } 410 #if defined(__i386__) 411 write_eflags(s); 412 #elif defined(__x86_64__) 413 write_rflags(s); 414 #else 415 #error "no read_eflags" 416 #endif 417 418 if (max - min > 2) 419 n = 0; 420 else if (min < 0 || max == 0) 421 n = 0; 422 else 423 n = 1; 424 if (bootverbose) { 425 kprintf("ACPI timer looks %s min = %d, max = %d, width = %d\n", 426 n ? "GOOD" : "BAD ", 427 min, max, max - min); 428 } 429 430 return (n); 431 } 432 433