xref: /dragonfly/sys/dev/acpica/acpi_timer.c (revision 25a2db75)
1 /*-
2  * Copyright (c) 2000, 2001 Michael Smith
3  * Copyright (c) 2000 BSDi
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/acpica/acpi_timer.c,v 1.35 2004/07/22 05:42:14 njl Exp $
28  */
29 #include "opt_acpi.h"
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/sysctl.h>
35 #include <sys/systimer.h>
36 #include <sys/rman.h>
37 
38 #include <machine/lock.h>
39 #include <bus/pci/pcivar.h>
40 
41 #include "acpi.h"
42 #include "accommon.h"
43 #include "acpivar.h"
44 
45 /*
46  * A timecounter based on the free-running ACPI timer.
47  *
48  * Based on the i386-only mp_clock.c by <phk@FreeBSD.ORG>.
49  */
50 
51 /* Hooks for the ACPI CA debugging infrastructure */
52 #define _COMPONENT	ACPI_TIMER
53 ACPI_MODULE_NAME("TIMER")
54 
55 static device_t			acpi_timer_dev;
56 static struct resource		*acpi_timer_reg;
57 static bus_space_handle_t	acpi_timer_bsh;
58 static bus_space_tag_t		acpi_timer_bst;
59 static sysclock_t		acpi_counter_mask;
60 static sysclock_t		acpi_last_counter;
61 
62 #define ACPI_TIMER_FREQ		(14318182 / 4)
63 
64 static sysclock_t acpi_timer_get_timecount(void);
65 static sysclock_t acpi_timer_get_timecount24(void);
66 static sysclock_t acpi_timer_get_timecount_safe(void);
67 static void acpi_timer_construct(struct cputimer *timer, sysclock_t oldclock);
68 
69 static struct cputimer acpi_cputimer = {
70 	SLIST_ENTRY_INITIALIZER,
71 	"ACPI",
72 	CPUTIMER_PRI_ACPI,
73 	CPUTIMER_ACPI,
74 	acpi_timer_get_timecount_safe,
75 	cputimer_default_fromhz,
76 	cputimer_default_fromus,
77 	acpi_timer_construct,
78 	cputimer_default_destruct,
79 	ACPI_TIMER_FREQ,
80 	0, 0, 0
81 };
82 
83 static int	acpi_timer_identify(driver_t *driver, device_t parent);
84 static int	acpi_timer_probe(device_t dev);
85 static int	acpi_timer_attach(device_t dev);
86 static int	acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS);
87 
88 static int	acpi_timer_test(void);
89 
90 static device_method_t acpi_timer_methods[] = {
91     DEVMETHOD(device_identify,	acpi_timer_identify),
92     DEVMETHOD(device_probe,	acpi_timer_probe),
93     DEVMETHOD(device_attach,	acpi_timer_attach),
94 
95     DEVMETHOD_END
96 };
97 
98 static driver_t acpi_timer_driver = {
99     "acpi_timer",
100     acpi_timer_methods,
101     0,
102 };
103 
104 static devclass_t acpi_timer_devclass;
105 DRIVER_MODULE(acpi_timer, acpi, acpi_timer_driver, acpi_timer_devclass, NULL, NULL);
106 MODULE_DEPEND(acpi_timer, acpi, 1, 1, 1);
107 
108 static u_int
109 acpi_timer_read(void)
110 {
111     return (bus_space_read_4(acpi_timer_bst, acpi_timer_bsh, 0));
112 }
113 
114 /*
115  * Locate the ACPI timer using the FADT, set up and allocate the I/O resources
116  * we will be using.
117  */
118 static int
119 acpi_timer_identify(driver_t *driver, device_t parent)
120 {
121     device_t dev;
122     u_long rlen, rstart;
123     int rid, rtype;
124 
125     /*
126      * Just try once, do nothing if the 'acpi' bus is rescanned.
127      */
128     if (device_get_state(parent) == DS_ATTACHED)
129 	return (0);
130 
131     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
132 
133     if (acpi_disabled("timer") || acpi_timer_dev)
134 	return (ENXIO);
135 
136     if ((dev = BUS_ADD_CHILD(parent, parent, 0, "acpi_timer", 0)) == NULL) {
137 	device_printf(parent, "could not add acpi_timer0\n");
138 	return (ENXIO);
139     }
140     acpi_timer_dev = dev;
141 
142     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
143     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
144 	rtype = SYS_RES_MEMORY;
145 	break;
146     case ACPI_ADR_SPACE_SYSTEM_IO:
147 	rtype = SYS_RES_IOPORT;
148 	break;
149     default:
150 	return (ENXIO);
151     }
152     rid = 0;
153     rlen = AcpiGbl_FADT.PmTimerLength;
154     rstart = AcpiGbl_FADT.XPmTimerBlock.Address;
155     if (bus_set_resource(dev, rtype, rid, rstart, rlen, -1)) {
156 	device_printf(dev, "couldn't set resource (%s 0x%lx+0x%lx)\n",
157 	    (rtype == SYS_RES_IOPORT) ? "port" : "mem", rstart, rlen);
158 	return (ENXIO);
159     }
160     return (0);
161 }
162 
163 static int
164 acpi_timer_probe(device_t dev)
165 {
166     char desc[40];
167     int i, j, rid, rtype;
168 
169     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
170 
171     if (dev != acpi_timer_dev)
172 	return (ENXIO);
173 
174     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
175     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
176 	rtype = SYS_RES_MEMORY;
177 	break;
178     case ACPI_ADR_SPACE_SYSTEM_IO:
179 	rtype = SYS_RES_IOPORT;
180 	break;
181     default:
182 	return (ENXIO);
183     }
184     rid = 0;
185     acpi_timer_reg = bus_alloc_resource_any(dev, rtype, &rid, RF_ACTIVE);
186     if (acpi_timer_reg == NULL) {
187 	device_printf(dev, "couldn't allocate resource (%s 0x%lx)\n",
188 	    (rtype == SYS_RES_IOPORT) ? "port" : "mem",
189 	    (u_long)AcpiGbl_FADT.XPmTimerBlock.Address);
190 	return (ENXIO);
191     }
192     acpi_timer_bsh = rman_get_bushandle(acpi_timer_reg);
193     acpi_timer_bst = rman_get_bustag(acpi_timer_reg);
194     if ((AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) != 0)
195 	acpi_counter_mask = 0xffffffff;
196     else
197 	acpi_counter_mask = 0x00ffffff;
198 
199     /*
200      * If all tests of the counter succeed, use the ACPI-fast method.  If
201      * at least one failed, default to using the safe routine, which reads
202      * the timer multiple times to get a consistent value before returning.
203      */
204     j = 0;
205     for (i = 0; i < 10; i++)
206 	j += acpi_timer_test();
207     if (j == 10) {
208 	if (acpi_counter_mask == 0xffffffff) {
209 	    acpi_cputimer.name = "ACPI-fast";
210 	    acpi_cputimer.count = acpi_timer_get_timecount;
211 	} else {
212 	    acpi_cputimer.name = "ACPI-fast24";
213 	    acpi_cputimer.count = acpi_timer_get_timecount24;
214 	}
215     } else {
216 	if (acpi_counter_mask == 0xffffffff)
217 		acpi_cputimer.name = "ACPI-safe";
218 	else
219 		acpi_cputimer.name = "ACPI-safe24";
220 	acpi_cputimer.count = acpi_timer_get_timecount_safe;
221     }
222 
223     ksprintf(desc, "%d-bit timer at 3.579545MHz",
224 	    (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) ? 32 : 24);
225     device_set_desc_copy(dev, desc);
226 
227     cputimer_register(&acpi_cputimer);
228     cputimer_select(&acpi_cputimer, 0);
229     /* Release the resource, we'll allocate it again during attach. */
230     bus_release_resource(dev, rtype, rid, acpi_timer_reg);
231     return (0);
232 }
233 
234 static int
235 acpi_timer_attach(device_t dev)
236 {
237     int rid, rtype;
238 
239     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
240 
241     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
242     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
243 	rtype = SYS_RES_MEMORY;
244 	break;
245     case ACPI_ADR_SPACE_SYSTEM_IO:
246 	rtype = SYS_RES_IOPORT;
247 	break;
248     default:
249 	return (ENXIO);
250     }
251     rid = 0;
252     acpi_timer_reg = bus_alloc_resource_any(dev, rtype, &rid, RF_ACTIVE);
253     if (acpi_timer_reg == NULL)
254 	return (ENXIO);
255     acpi_timer_bsh = rman_get_bushandle(acpi_timer_reg);
256     acpi_timer_bst = rman_get_bustag(acpi_timer_reg);
257     return (0);
258 }
259 
260 /*
261  * Construct the timer.  Adjust the base so the system clock does not
262  * jump weirdly.
263  */
264 static void
265 acpi_timer_construct(struct cputimer *timer, sysclock_t oldclock)
266 {
267     timer->base = 0;
268     timer->base = oldclock - acpi_timer_get_timecount_safe();
269 }
270 
271 /*
272  * Fetch current time value from reliable hardware.
273  *
274  * The cputimer interface requires a 32 bit return value.  If the ACPI timer
275  * is only 24 bits then we have to keep track of the upper 8 bits on our
276  * own.
277  *
278  * XXX we could probably get away with using a per-cpu field for this and
279  * just use interrupt disablement instead of clock_lock.
280  */
281 static sysclock_t
282 acpi_timer_get_timecount24(void)
283 {
284     sysclock_t counter;
285 
286     clock_lock();
287     counter = acpi_timer_read();
288     if (counter < acpi_last_counter)
289 	acpi_cputimer.base += 0x01000000;
290     acpi_last_counter = counter;
291     counter += acpi_cputimer.base;
292     clock_unlock();
293     return (counter);
294 }
295 
296 static sysclock_t
297 acpi_timer_get_timecount(void)
298 {
299     return (acpi_timer_read() + acpi_cputimer.base);
300 }
301 
302 /*
303  * Fetch current time value from hardware that may not correctly
304  * latch the counter.  We need to read until we have three monotonic
305  * samples and then use the middle one, otherwise we are not protected
306  * against the fact that the bits can be wrong in two directions.  If
307  * we only cared about monosity, two reads would be enough.
308  */
309 static sysclock_t
310 acpi_timer_get_timecount_safe(void)
311 {
312     u_int u1, u2, u3;
313 
314     if (acpi_counter_mask != 0xffffffff)
315 	clock_lock();
316 
317     u2 = acpi_timer_read();
318     u3 = acpi_timer_read();
319     do {
320 	u1 = u2;
321 	u2 = u3;
322 	u3 = acpi_timer_read();
323     } while (u1 > u2 || u2 > u3);
324 
325     if (acpi_counter_mask != 0xffffffff) {
326 	if (u2 < acpi_last_counter)
327 	    acpi_cputimer.base += 0x01000000;
328 	acpi_last_counter = u2;
329 	clock_unlock();
330     }
331     return (u2 + acpi_cputimer.base);
332 }
333 
334 /*
335  * Timecounter freqency adjustment interface.
336  */
337 static int
338 acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS)
339 {
340     int error;
341     u_int freq;
342 
343     if (acpi_cputimer.freq == 0)
344 	return (EOPNOTSUPP);
345     freq = acpi_cputimer.freq;
346     error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
347     if (error == 0 && req->newptr != NULL)
348 	cputimer_set_frequency(&acpi_cputimer, freq);
349 
350     return (error);
351 }
352 
353 SYSCTL_PROC(_machdep, OID_AUTO, acpi_timer_freq, CTLTYPE_INT | CTLFLAG_RW,
354     0, sizeof(u_int), acpi_timer_sysctl_freq, "I", "ACPI timer frequency");
355 
356 /*
357  * Some ACPI timers are known or believed to suffer from implementation
358  * problems which can lead to erroneous values being read.  This function
359  * tests for consistent results from the timer and returns 1 if it believes
360  * the timer is consistent, otherwise it returns 0.
361  *
362  * It appears the cause is that the counter is not latched to the PCI bus
363  * clock when read:
364  *
365  * ] 20. ACPI Timer Errata
366  * ]
367  * ]   Problem: The power management timer may return improper result when
368  * ]   read. Although the timer value settles properly after incrementing,
369  * ]   while incrementing there is a 3nS window every 69.8nS where the
370  * ]   timer value is indeterminate (a 4.2% chance that the data will be
371  * ]   incorrect when read). As a result, the ACPI free running count up
372  * ]   timer specification is violated due to erroneous reads.  Implication:
373  * ]   System hangs due to the "inaccuracy" of the timer when used by
374  * ]   software for time critical events and delays.
375  * ]
376  * ] Workaround: Read the register twice and compare.
377  * ] Status: This will not be fixed in the PIIX4 or PIIX4E, it is fixed
378  * ] in the PIIX4M.
379  */
380 
381 static int
382 acpi_timer_test(void)
383 {
384     uint32_t	last, this;
385     int		min, max, n, delta;
386     register_t	s;
387 
388     min = 10000000;
389     max = 0;
390 
391     /* Test the timer with interrupts disabled to get accurate results. */
392 #if defined(__i386__)
393     s = read_eflags();
394 #elif defined(__x86_64__)
395     s = read_rflags();
396 #else
397 #error "no read_eflags"
398 #endif
399     cpu_disable_intr();
400     last = acpi_timer_read();
401     for (n = 0; n < 2000; n++) {
402 	this = acpi_timer_read();
403 	delta = acpi_TimerDelta(this, last);
404 	if (delta > max)
405 	    max = delta;
406 	else if (delta < min)
407 	    min = delta;
408 	last = this;
409     }
410 #if defined(__i386__)
411     write_eflags(s);
412 #elif defined(__x86_64__)
413     write_rflags(s);
414 #else
415 #error "no read_eflags"
416 #endif
417 
418     if (max - min > 2)
419 	n = 0;
420     else if (min < 0 || max == 0)
421 	n = 0;
422     else
423 	n = 1;
424     if (bootverbose) {
425 	kprintf("ACPI timer looks %s min = %d, max = %d, width = %d\n",
426 		n ? "GOOD" : "BAD ",
427 		min, max, max - min);
428     }
429 
430     return (n);
431 }
432 
433