xref: /dragonfly/sys/dev/acpica/acpi_timer.c (revision 4362c066)
1 /*-
2  * Copyright (c) 2000, 2001 Michael Smith
3  * Copyright (c) 2000 BSDi
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/acpica/acpi_timer.c,v 1.35 2004/07/22 05:42:14 njl Exp $
28  */
29 #include "opt_acpi.h"
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/sysctl.h>
35 #include <sys/systimer.h>
36 #include <sys/rman.h>
37 
38 #include <machine/lock.h>
39 #include <bus/pci/pcivar.h>
40 
41 #include "acpi.h"
42 #include "accommon.h"
43 #include "acpivar.h"
44 
45 /*
46  * A timecounter based on the free-running ACPI timer.
47  *
48  * Based on the i386-only mp_clock.c by <phk@FreeBSD.ORG>.
49  */
50 
51 /* Hooks for the ACPICA debugging infrastructure */
52 #define _COMPONENT	ACPI_TIMER
53 ACPI_MODULE_NAME("TIMER")
54 
55 static device_t			acpi_timer_dev;
56 static UINT32			acpi_timer_resolution;
57 static sysclock_t		acpi_last_counter;
58 
59 static sysclock_t acpi_timer_get_timecount(void);
60 static sysclock_t acpi_timer_get_timecount24(void);
61 static sysclock_t acpi_timer_get_timecount_safe(void);
62 static void acpi_timer_construct(struct cputimer *timer, sysclock_t oldclock);
63 
64 static struct cputimer acpi_cputimer = {
65 	.next		= SLIST_ENTRY_INITIALIZER,
66 	.name		= "ACPI",
67 	.pri		= CPUTIMER_PRI_ACPI,
68 	.type		= CPUTIMER_ACPI,
69 	.count		= acpi_timer_get_timecount_safe,
70 	.fromhz		= cputimer_default_fromhz,
71 	.fromus		= cputimer_default_fromus,
72 	.construct	= acpi_timer_construct,
73 	.destruct	= cputimer_default_destruct,
74 	.freq		= ACPI_PM_TIMER_FREQUENCY
75 };
76 
77 static int	acpi_timer_identify(driver_t *driver, device_t parent);
78 static int	acpi_timer_probe(device_t dev);
79 static int	acpi_timer_attach(device_t dev);
80 static int	acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS);
81 
82 static int	acpi_timer_test(void);
83 
84 static device_method_t acpi_timer_methods[] = {
85     DEVMETHOD(device_identify,	acpi_timer_identify),
86     DEVMETHOD(device_probe,	acpi_timer_probe),
87     DEVMETHOD(device_attach,	acpi_timer_attach),
88 
89     DEVMETHOD_END
90 };
91 
92 static driver_t acpi_timer_driver = {
93     "acpi_timer",
94     acpi_timer_methods,
95     0,
96 };
97 
98 static devclass_t acpi_timer_devclass;
99 DRIVER_MODULE(acpi_timer, acpi, acpi_timer_driver, acpi_timer_devclass, NULL, NULL);
100 MODULE_DEPEND(acpi_timer, acpi, 1, 1, 1);
101 
102 /*
103  * Locate the ACPI timer using the FADT, set up and allocate the I/O resources
104  * we will be using.
105  */
106 static int
107 acpi_timer_identify(driver_t *driver, device_t parent)
108 {
109     device_t dev;
110 
111     /*
112      * Just try once, do nothing if the 'acpi' bus is rescanned.
113      */
114     if (device_get_state(parent) == DS_ATTACHED)
115 	return (0);
116 
117     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
118 
119     if (acpi_disabled("timer") || (acpi_quirks & ACPI_Q_TIMER) ||
120 	acpi_timer_dev)
121 	return (ENXIO);
122 
123     if ((dev = BUS_ADD_CHILD(parent, parent, 0, "acpi_timer", 0)) == NULL) {
124 	device_printf(parent, "could not add acpi_timer0\n");
125 	return (ENXIO);
126     }
127     acpi_timer_dev = dev;
128 
129     return (0);
130 }
131 
132 static int
133 acpi_timer_probe(device_t dev)
134 {
135     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
136 
137     if (dev != acpi_timer_dev)
138 	return (ENXIO);
139 
140     if (ACPI_FAILURE(AcpiGetTimerResolution(&acpi_timer_resolution)))
141 	return (ENXIO);
142 
143     return (0);
144 }
145 
146 static int
147 acpi_timer_attach(device_t dev)
148 {
149     char desc[40];
150     int i, j;
151 
152     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
153 
154     /*
155      * If all tests of the counter succeed, use the ACPI-fast method.  If
156      * at least one failed, default to using the safe routine, which reads
157      * the timer multiple times to get a consistent value before returning.
158      */
159     j = 0;
160     for (i = 0; i < 10; i++)
161 	j += acpi_timer_test();
162     if (j == 10) {
163 	if (acpi_timer_resolution == 32) {
164 	    acpi_cputimer.name = "ACPI-fast";
165 	    acpi_cputimer.count = acpi_timer_get_timecount;
166 	} else {
167 	    acpi_cputimer.name = "ACPI-fast24";
168 	    acpi_cputimer.count = acpi_timer_get_timecount24;
169 	}
170     } else {
171 	if (acpi_timer_resolution == 32)
172 	    acpi_cputimer.name = "ACPI-safe";
173 	else
174 	    acpi_cputimer.name = "ACPI-safe24";
175 	acpi_cputimer.count = acpi_timer_get_timecount_safe;
176     }
177 
178     ksprintf(desc, "%u-bit timer at 3.579545MHz", acpi_timer_resolution);
179     device_set_desc_copy(dev, desc);
180 
181     cputimer_register(&acpi_cputimer);
182     cputimer_select(&acpi_cputimer, 0);
183 
184     return (0);
185 }
186 
187 /*
188  * Construct the timer.  Adjust the base so the system clock does not
189  * jump weirdly.
190  */
191 static void
192 acpi_timer_construct(struct cputimer *timer, sysclock_t oldclock)
193 {
194     timer->base = 0;
195     timer->base = oldclock - acpi_timer_get_timecount_safe();
196 }
197 
198 /*
199  * Fetch current time value from reliable hardware.
200  *
201  * The cputimer interface requires a 32 bit return value.  If the ACPI timer
202  * is only 24 bits then we have to keep track of the upper 8 bits on our
203  * own.
204  *
205  * XXX we could probably get away with using a per-cpu field for this and
206  * just use interrupt disablement instead of clock_lock.
207  */
208 static sysclock_t
209 acpi_timer_get_timecount24(void)
210 {
211     sysclock_t counter;
212 
213     clock_lock();
214     AcpiGetTimer(&counter);
215     if (counter < acpi_last_counter)
216 	acpi_cputimer.base += 0x01000000;
217     acpi_last_counter = counter;
218     counter += acpi_cputimer.base;
219     clock_unlock();
220     return (counter);
221 }
222 
223 static sysclock_t
224 acpi_timer_get_timecount(void)
225 {
226     sysclock_t counter;
227 
228     AcpiGetTimer(&counter);
229     return (counter + acpi_cputimer.base);
230 }
231 
232 /*
233  * Fetch current time value from hardware that may not correctly
234  * latch the counter.  We need to read until we have three monotonic
235  * samples and then use the middle one, otherwise we are not protected
236  * against the fact that the bits can be wrong in two directions.  If
237  * we only cared about monosity, two reads would be enough.
238  */
239 static sysclock_t
240 acpi_timer_get_timecount_safe(void)
241 {
242     u_int u1, u2, u3;
243 
244     if (acpi_timer_resolution != 32)
245 	clock_lock();
246 
247     AcpiGetTimer(&u2);
248     AcpiGetTimer(&u3);
249     do {
250 	u1 = u2;
251 	u2 = u3;
252 	AcpiGetTimer(&u3);
253     } while (u1 > u2 || u2 > u3);
254 
255     if (acpi_timer_resolution != 32) {
256 	if (u2 < acpi_last_counter)
257 	    acpi_cputimer.base += 0x01000000;
258 	acpi_last_counter = u2;
259 	clock_unlock();
260     }
261     return (u2 + acpi_cputimer.base);
262 }
263 
264 /*
265  * Timecounter freqency adjustment interface.
266  */
267 static int
268 acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS)
269 {
270     int error;
271     u_int freq;
272 
273     if (acpi_cputimer.freq == 0)
274 	return (EOPNOTSUPP);
275     freq = acpi_cputimer.freq;
276     error = sysctl_handle_int(oidp, &freq, 0, req);
277     if (error == 0 && req->newptr != NULL)
278 	cputimer_set_frequency(&acpi_cputimer, freq);
279 
280     return (error);
281 }
282 
283 SYSCTL_PROC(_machdep, OID_AUTO, acpi_timer_freq, CTLTYPE_INT | CTLFLAG_RW,
284     0, sizeof(u_int), acpi_timer_sysctl_freq, "I", "ACPI timer frequency");
285 
286 /*
287  * Some ACPI timers are known or believed to suffer from implementation
288  * problems which can lead to erroneous values being read.  This function
289  * tests for consistent results from the timer and returns 1 if it believes
290  * the timer is consistent, otherwise it returns 0.
291  *
292  * It appears the cause is that the counter is not latched to the PCI bus
293  * clock when read:
294  *
295  * ] 20. ACPI Timer Errata
296  * ]
297  * ]   Problem: The power management timer may return improper result when
298  * ]   read. Although the timer value settles properly after incrementing,
299  * ]   while incrementing there is a 3nS window every 69.8nS where the
300  * ]   timer value is indeterminate (a 4.2% chance that the data will be
301  * ]   incorrect when read). As a result, the ACPI free running count up
302  * ]   timer specification is violated due to erroneous reads.  Implication:
303  * ]   System hangs due to the "inaccuracy" of the timer when used by
304  * ]   software for time critical events and delays.
305  * ]
306  * ] Workaround: Read the register twice and compare.
307  * ] Status: This will not be fixed in the PIIX4 or PIIX4E, it is fixed
308  * ] in the PIIX4M.
309  */
310 
311 static int
312 acpi_timer_test(void)
313 {
314     uint32_t	last, this;
315     int		min, max, max2, n, delta;
316     register_t	s;
317 
318     min = INT32_MAX;
319     max = max2 = 0;
320 
321     /* Test the timer with interrupts disabled to get accurate results. */
322 #if defined(__x86_64__)
323     s = read_rflags();
324 #else
325 #error "no read_*flags"
326 #endif
327     cpu_disable_intr();
328     AcpiGetTimer(&last);
329     for (n = 0; n < 2000; n++) {
330 	AcpiGetTimer(&this);
331 	delta = acpi_TimerDelta(this, last);
332 	if (delta > max) {
333 	    max2 = max;
334 	    max = delta;
335 	} else if (delta > max2) {
336 	    max2 = delta;
337 	}
338 	if (delta < min)
339 	    min = delta;
340 	last = this;
341     }
342     /* cpu_enable_intr(); restored to original by write_rflags() */
343 #if defined(__x86_64__)
344     write_rflags(s);
345 #else
346 #error "no read_*flags"
347 #endif
348 
349     delta = max2 - min;
350     if ((max - min > 8 || delta > 3) && vmm_guest == VMM_GUEST_NONE)
351 	n = 0;
352     else if (min < 0 || max == 0 || max2 == 0)
353 	n = 0;
354     else
355 	n = 1;
356     if (bootverbose) {
357 	kprintf("ACPI timer looks %s min = %d, max = %d, width = %d\n",
358 		n ? "GOOD" : "BAD ",
359 		min, max, max - min);
360     }
361 
362     return (n);
363 }
364