xref: /dragonfly/sys/dev/agp/agp.c (revision b71f52a9)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$FreeBSD: src/sys/dev/agp/agp.c,v 1.58 2007/11/12 21:51:36 jhb Exp $
27  *	$DragonFly: src/sys/dev/agp/agp.c,v 1.30 2008/01/07 01:34:58 corecode Exp $
28  */
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/device.h>
35 #include <sys/conf.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/bus.h>
39 #include <sys/agpio.h>
40 #include <sys/lock.h>
41 #include <sys/proc.h>
42 #include <sys/rman.h>
43 
44 #include <bus/pci/pcivar.h>
45 #include <bus/pci/pcireg.h>
46 #include "agppriv.h"
47 #include "agpvar.h"
48 #include "agpreg.h"
49 
50 #include <vm/vm.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_pageout.h>
54 #include <vm/pmap.h>
55 
56 #include <machine/md_var.h>
57 
58 MODULE_VERSION(agp, 1);
59 
60 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
61 
62 #define CDEV_MAJOR	148
63 				/* agp_drv.c */
64 static d_open_t agp_open;
65 static d_close_t agp_close;
66 static d_ioctl_t agp_ioctl;
67 static d_mmap_t agp_mmap;
68 
69 static struct dev_ops agp_ops = {
70 	{ "agp", CDEV_MAJOR, D_TTY },
71 	.d_open =	agp_open,
72 	.d_close =	agp_close,
73 	.d_ioctl =	agp_ioctl,
74 	.d_mmap =	agp_mmap,
75 };
76 
77 static devclass_t agp_devclass;
78 #define KDEV2DEV(kdev)	devclass_get_device(agp_devclass, minor(kdev))
79 
80 /* Helper functions for implementing chipset mini drivers. */
81 
82 void
83 agp_flush_cache(void)
84 {
85 #if defined(__i386__) || defined(__amd64__)
86 	wbinvd();
87 #endif
88 }
89 
90 u_int8_t
91 agp_find_caps(device_t dev)
92 {
93 	int capreg;
94 
95 	if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0)
96 		capreg = 0;
97 	return (capreg);
98 }
99 
100 /*
101  * Find an AGP display device (if any).
102  */
103 static device_t
104 agp_find_display(void)
105 {
106 	devclass_t pci = devclass_find("pci");
107 	device_t bus, dev = 0;
108 	device_t *kids;
109 	int busnum, numkids, i;
110 
111 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
112 		bus = devclass_get_device(pci, busnum);
113 		if (!bus)
114 			continue;
115 		device_get_children(bus, &kids, &numkids);
116 		for (i = 0; i < numkids; i++) {
117 			dev = kids[i];
118 			if (pci_get_class(dev) == PCIC_DISPLAY
119 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
120 				if (agp_find_caps(dev)) {
121 					kfree(kids, M_TEMP);
122 					return dev;
123 				}
124 
125 		}
126 		kfree(kids, M_TEMP);
127 	}
128 
129 	return 0;
130 }
131 
132 struct agp_gatt *
133 agp_alloc_gatt(device_t dev)
134 {
135 	u_int32_t apsize = AGP_GET_APERTURE(dev);
136 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
137 	struct agp_gatt *gatt;
138 
139 	if (bootverbose)
140 		device_printf(dev,
141 			      "allocating GATT for aperture of size %dM\n",
142 			      apsize / (1024*1024));
143 
144 	if (entries == 0) {
145 		device_printf(dev, "bad aperture size\n");
146 		return NULL;
147 	}
148 
149 	gatt = kmalloc(sizeof(struct agp_gatt), M_AGP, M_INTWAIT);
150 	gatt->ag_entries = entries;
151 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP,
152 					M_WAITOK|M_ZERO, 0, ~0, PAGE_SIZE, 0);
153 	if (!gatt->ag_virtual) {
154 		if (bootverbose)
155 			device_printf(dev, "contiguous allocation failed\n");
156 		kfree(gatt, M_AGP);
157 		return 0;
158 	}
159 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
160 	agp_flush_cache();
161 
162 	return gatt;
163 }
164 
165 void
166 agp_free_gatt(struct agp_gatt *gatt)
167 {
168 	contigfree(gatt->ag_virtual,
169 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
170 	kfree(gatt, M_AGP);
171 }
172 
173 static u_int agp_max[][2] = {
174 	{0,	0},
175 	{32,	4},
176 	{64,	28},
177 	{128,	96},
178 	{256,	204},
179 	{512,	440},
180 	{1024,	942},
181 	{2048,	1920},
182 	{4096,	3932}
183 };
184 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
185 
186 /**
187  * Sets the PCI resource which represents the AGP aperture.
188  *
189  * If not called, the default AGP aperture resource of AGP_APBASE will
190  * be used.  Must be called before agp_generic_attach().
191  */
192 void
193 agp_set_aperture_resource(device_t dev, int rid)
194 {
195 	struct agp_softc *sc = device_get_softc(dev);
196 
197 	sc->as_aperture_rid = rid;
198 }
199 
200 int
201 agp_generic_attach(device_t dev)
202 {
203 	struct agp_softc *sc = device_get_softc(dev);
204 	int i;
205 	u_int memsize;
206 
207 	/*
208 	 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE
209 	 * because the kernel doesn't need to map it.
210 	 */
211 	if (sc->as_aperture_rid == 0)
212 		sc->as_aperture_rid = AGP_APBASE;
213 
214 	sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
215 	    &sc->as_aperture_rid, RF_SHAREABLE);
216 	if (!sc->as_aperture)
217 		return ENOMEM;
218 
219 	/*
220 	 * Work out an upper bound for agp memory allocation. This
221 	 * uses a heurisitc table from the Linux driver.
222 	 */
223 	memsize = ptoa(Maxmem) >> 20;
224 	for (i = 0; i < agp_max_size; i++) {
225 		if (memsize <= agp_max[i][0])
226 			break;
227 	}
228 	if (i == agp_max_size) i = agp_max_size - 1;
229 	sc->as_maxmem = agp_max[i][1] << 20U;
230 
231 	/*
232 	 * The lock is used to prevent re-entry to
233 	 * agp_generic_bind_memory() since that function can sleep.
234 	 */
235 	lockinit(&sc->as_lock, "agplk", 0, 0);
236 
237 	/*
238 	 * Initialise stuff for the userland device.
239 	 */
240 	agp_devclass = devclass_find("agp");
241 	TAILQ_INIT(&sc->as_memory);
242 	sc->as_nextid = 1;
243 
244 	dev_ops_add(&agp_ops, -1, device_get_unit(dev));
245 	make_dev(&agp_ops, device_get_unit(dev), UID_ROOT, GID_WHEEL,
246 		  0600, "agpgart");
247 
248 	return 0;
249 }
250 
251 void
252 agp_free_cdev(device_t dev)
253 {
254 	dev_ops_remove(&agp_ops, -1, device_get_unit(dev));
255 }
256 
257 void
258 agp_free_res(device_t dev)
259 {
260 	struct agp_softc *sc = device_get_softc(dev);
261 
262 	bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid,
263 			     sc->as_aperture);
264 	agp_flush_cache();
265 }
266 
267 int
268 agp_generic_detach(device_t dev)
269 {
270 	agp_free_cdev(dev);
271 	agp_free_res(dev);
272 	return 0;
273 }
274 
275 /**
276  * Default AGP aperture size detection which simply returns the size of
277  * the aperture's PCI resource.
278  */
279 int
280 agp_generic_get_aperture(device_t dev)
281 {
282 	struct agp_softc *sc = device_get_softc(dev);
283 
284 	return rman_get_size(sc->as_aperture);
285 }
286 
287 /**
288  * Default AGP aperture size setting function, which simply doesn't allow
289  * changes to resource size.
290  */
291 int
292 agp_generic_set_aperture(device_t dev, u_int32_t aperture)
293 {
294 	u_int32_t current_aperture;
295 
296 	current_aperture = AGP_GET_APERTURE(dev);
297 	if (current_aperture != aperture)
298 		return EINVAL;
299 	else
300 		return 0;
301 }
302 
303 /*
304  * This does the enable logic for v3, with the same topology
305  * restrictions as in place for v2 -- one bus, one device on the bus.
306  */
307 static int
308 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
309 {
310 	u_int32_t tstatus, mstatus;
311 	u_int32_t command;
312 	int rq, sba, fw, rate, arqsz, cal;
313 
314 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
315 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
316 
317 	/* Set RQ to the min of mode, tstatus and mstatus */
318 	rq = AGP_MODE_GET_RQ(mode);
319 	if (AGP_MODE_GET_RQ(tstatus) < rq)
320 		rq = AGP_MODE_GET_RQ(tstatus);
321 	if (AGP_MODE_GET_RQ(mstatus) < rq)
322 		rq = AGP_MODE_GET_RQ(mstatus);
323 
324 	/*
325 	 * ARQSZ - Set the value to the maximum one.
326 	 * Don't allow the mode register to override values.
327 	 */
328 	arqsz = AGP_MODE_GET_ARQSZ(mode);
329 	if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
330 		rq = AGP_MODE_GET_ARQSZ(tstatus);
331 	if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
332 		rq = AGP_MODE_GET_ARQSZ(mstatus);
333 
334 	/* Calibration cycle - don't allow override by mode register */
335 	cal = AGP_MODE_GET_CAL(tstatus);
336 	if (AGP_MODE_GET_CAL(mstatus) < cal)
337 		cal = AGP_MODE_GET_CAL(mstatus);
338 
339 	/* SBA must be supported for AGP v3. */
340 	sba = 1;
341 
342 	/* Set FW if all three support it. */
343 	fw = (AGP_MODE_GET_FW(tstatus)
344 	       & AGP_MODE_GET_FW(mstatus)
345 	       & AGP_MODE_GET_FW(mode));
346 
347 	/* Figure out the max rate */
348 	rate = (AGP_MODE_GET_RATE(tstatus)
349 		& AGP_MODE_GET_RATE(mstatus)
350 		& AGP_MODE_GET_RATE(mode));
351 	if (rate & AGP_MODE_V3_RATE_8x)
352 		rate = AGP_MODE_V3_RATE_8x;
353 	else
354 		rate = AGP_MODE_V3_RATE_4x;
355 	if (bootverbose)
356 		device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
357 
358 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
359 
360 	/* Construct the new mode word and tell the hardware */
361 	command = 0;
362 	command = AGP_MODE_SET_RQ(0, rq);
363 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
364 	command = AGP_MODE_SET_CAL(command, cal);
365 	command = AGP_MODE_SET_SBA(command, sba);
366 	command = AGP_MODE_SET_FW(command, fw);
367 	command = AGP_MODE_SET_RATE(command, rate);
368 	command = AGP_MODE_SET_MODE_3(command, 1);
369 	command = AGP_MODE_SET_AGP(command, 1);
370 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
371 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
372 
373 	return 0;
374 }
375 
376 static int
377 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
378 {
379 	u_int32_t tstatus, mstatus;
380 	u_int32_t command;
381 	int rq, sba, fw, rate;
382 
383 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
384 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
385 
386 	/* Set RQ to the min of mode, tstatus and mstatus */
387 	rq = AGP_MODE_GET_RQ(mode);
388 	if (AGP_MODE_GET_RQ(tstatus) < rq)
389 		rq = AGP_MODE_GET_RQ(tstatus);
390 	if (AGP_MODE_GET_RQ(mstatus) < rq)
391 		rq = AGP_MODE_GET_RQ(mstatus);
392 
393 	/* Set SBA if all three can deal with SBA */
394 	sba = (AGP_MODE_GET_SBA(tstatus)
395 	       & AGP_MODE_GET_SBA(mstatus)
396 	       & AGP_MODE_GET_SBA(mode));
397 
398 	/* Similar for FW */
399 	fw = (AGP_MODE_GET_FW(tstatus)
400 	       & AGP_MODE_GET_FW(mstatus)
401 	       & AGP_MODE_GET_FW(mode));
402 
403 	/* Figure out the max rate */
404 	rate = (AGP_MODE_GET_RATE(tstatus)
405 		& AGP_MODE_GET_RATE(mstatus)
406 		& AGP_MODE_GET_RATE(mode));
407 	if (rate & AGP_MODE_V2_RATE_4x)
408 		rate = AGP_MODE_V2_RATE_4x;
409 	else if (rate & AGP_MODE_V2_RATE_2x)
410 		rate = AGP_MODE_V2_RATE_2x;
411 	else
412 		rate = AGP_MODE_V2_RATE_1x;
413 	if (bootverbose)
414 		device_printf(dev, "Setting AGP v2 mode %d\n", rate);
415 
416 	/* Construct the new mode word and tell the hardware */
417 	command = 0;
418 	command = AGP_MODE_SET_RQ(0, rq);
419 	command = AGP_MODE_SET_SBA(command, sba);
420 	command = AGP_MODE_SET_FW(command, fw);
421 	command = AGP_MODE_SET_RATE(command, rate);
422 	command = AGP_MODE_SET_AGP(command, 1);
423 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
424 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
425 
426 	return 0;
427 }
428 
429 int
430 agp_generic_enable(device_t dev, u_int32_t mode)
431 {
432 	device_t mdev = agp_find_display();
433 	u_int32_t tstatus, mstatus;
434 
435 	if (!mdev) {
436 		AGP_DPF("can't find display\n");
437 		return ENXIO;
438 	}
439 
440 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
441 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
442 
443 	/*
444 	 * Check display and bridge for AGP v3 support.  AGP v3 allows
445 	 * more variety in topology than v2, e.g. multiple AGP devices
446 	 * attached to one bridge, or multiple AGP bridges in one
447 	 * system.  This doesn't attempt to address those situations,
448 	 * but should work fine for a classic single AGP slot system
449 	 * with AGP v3.
450 	 */
451 	if (AGP_MODE_GET_MODE_3(mode) &&
452 	    AGP_MODE_GET_MODE_3(tstatus) &&
453 	    AGP_MODE_GET_MODE_3(mstatus))
454 		return (agp_v3_enable(dev, mdev, mode));
455 	else
456 		return (agp_v2_enable(dev, mdev, mode));
457 }
458 
459 struct agp_memory *
460 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
461 {
462 	struct agp_softc *sc = device_get_softc(dev);
463 	struct agp_memory *mem;
464 
465 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
466 		return 0;
467 
468 	if (sc->as_allocated + size > sc->as_maxmem)
469 		return 0;
470 
471 	if (type != 0) {
472 		kprintf("agp_generic_alloc_memory: unsupported type %d\n",
473 			type);
474 		return 0;
475 	}
476 
477 	mem = kmalloc(sizeof *mem, M_AGP, M_INTWAIT);
478 	mem->am_id = sc->as_nextid++;
479 	mem->am_size = size;
480 	mem->am_type = 0;
481 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
482 	mem->am_physical = 0;
483 	mem->am_offset = 0;
484 	mem->am_is_bound = 0;
485 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
486 	sc->as_allocated += size;
487 
488 	return mem;
489 }
490 
491 int
492 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
493 {
494 	struct agp_softc *sc = device_get_softc(dev);
495 
496 	if (mem->am_is_bound)
497 		return EBUSY;
498 
499 	sc->as_allocated -= mem->am_size;
500 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
501 	vm_object_deallocate(mem->am_obj);
502 	kfree(mem, M_AGP);
503 	return 0;
504 }
505 
506 int
507 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
508 			vm_offset_t offset)
509 {
510 	struct agp_softc *sc = device_get_softc(dev);
511 	vm_offset_t i, j, k;
512 	vm_page_t m;
513 	int error;
514 
515 	lockmgr(&sc->as_lock, LK_EXCLUSIVE);
516 
517 	if (mem->am_is_bound) {
518 		device_printf(dev, "memory already bound\n");
519 		lockmgr(&sc->as_lock, LK_RELEASE);
520 		return EINVAL;
521 	}
522 
523 	if (offset < 0
524 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
525 	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
526 		device_printf(dev, "binding memory at bad offset %#x,%#x,%#x\n",
527 			      (int) offset, (int)mem->am_size,
528 			      (int)AGP_GET_APERTURE(dev));
529 		kprintf("Check BIOS's aperature size vs X\n");
530 		lockmgr(&sc->as_lock, LK_RELEASE);
531 		return EINVAL;
532 	}
533 
534 	/*
535 	 * Bind the individual pages and flush the chipset's
536 	 * TLB.
537 	 */
538 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
539 		/*
540 		 * Find a page from the object and wire it
541 		 * down. This page will be mapped using one or more
542 		 * entries in the GATT (assuming that PAGE_SIZE >=
543 		 * AGP_PAGE_SIZE. If this is the first call to bind,
544 		 * the pages will be allocated and zeroed.
545 		 */
546 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
547 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
548 		if ((m->flags & PG_ZERO) == 0)
549 			vm_page_zero_fill(m);
550 		AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
551 		vm_page_wire(m);
552 
553 		/*
554 		 * Install entries in the GATT, making sure that if
555 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
556 		 * aligned to PAGE_SIZE, we don't modify too many GATT
557 		 * entries.
558 		 */
559 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
560 		     j += AGP_PAGE_SIZE) {
561 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
562 			AGP_DPF("binding offset %#x to pa %#x\n",
563 				offset + i + j, pa);
564 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
565 			if (error) {
566 				/*
567 				 * Bail out. Reverse all the mappings
568 				 * and unwire the pages.
569 				 */
570 				vm_page_wakeup(m);
571 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
572 					AGP_UNBIND_PAGE(dev, offset + k);
573 				for (k = 0; k <= i; k += PAGE_SIZE) {
574 					m = vm_page_lookup(mem->am_obj,
575 							   OFF_TO_IDX(k));
576 					vm_page_unwire(m, 0);
577 				}
578 				lockmgr(&sc->as_lock, LK_RELEASE);
579 				return error;
580 			}
581 		}
582 		vm_page_wakeup(m);
583 	}
584 
585 	/*
586 	 * Flush the cpu cache since we are providing a new mapping
587 	 * for these pages.
588 	 */
589 	agp_flush_cache();
590 
591 	/*
592 	 * Make sure the chipset gets the new mappings.
593 	 */
594 	AGP_FLUSH_TLB(dev);
595 
596 	mem->am_offset = offset;
597 	mem->am_is_bound = 1;
598 
599 	lockmgr(&sc->as_lock, LK_RELEASE);
600 
601 	return 0;
602 }
603 
604 int
605 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
606 {
607 	struct agp_softc *sc = device_get_softc(dev);
608 	vm_page_t m;
609 	int i;
610 
611 	lockmgr(&sc->as_lock, LK_EXCLUSIVE);
612 
613 	if (!mem->am_is_bound) {
614 		device_printf(dev, "memory is not bound\n");
615 		lockmgr(&sc->as_lock, LK_RELEASE);
616 		return EINVAL;
617 	}
618 
619 
620 	/*
621 	 * Unbind the individual pages and flush the chipset's
622 	 * TLB. Unwire the pages so they can be swapped.
623 	 */
624 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
625 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
626 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
627 		m = vm_page_lookup(mem->am_obj, atop(i));
628 		vm_page_unwire(m, 0);
629 	}
630 
631 	agp_flush_cache();
632 	AGP_FLUSH_TLB(dev);
633 
634 	mem->am_offset = 0;
635 	mem->am_is_bound = 0;
636 
637 	lockmgr(&sc->as_lock, LK_RELEASE);
638 
639 	return 0;
640 }
641 
642 /* Helper functions for implementing user/kernel api */
643 
644 static int
645 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
646 {
647 	struct agp_softc *sc = device_get_softc(dev);
648 
649 	if (sc->as_state != AGP_ACQUIRE_FREE)
650 		return EBUSY;
651 	sc->as_state = state;
652 
653 	return 0;
654 }
655 
656 static int
657 agp_release_helper(device_t dev, enum agp_acquire_state state)
658 {
659 	struct agp_softc *sc = device_get_softc(dev);
660 
661 	if (sc->as_state == AGP_ACQUIRE_FREE)
662 		return 0;
663 
664 	if (sc->as_state != state)
665 		return EBUSY;
666 
667 	sc->as_state = AGP_ACQUIRE_FREE;
668 	return 0;
669 }
670 
671 static struct agp_memory *
672 agp_find_memory(device_t dev, int id)
673 {
674 	struct agp_softc *sc = device_get_softc(dev);
675 	struct agp_memory *mem;
676 
677 	AGP_DPF("searching for memory block %d\n", id);
678 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
679 		AGP_DPF("considering memory block %d\n", mem->am_id);
680 		if (mem->am_id == id)
681 			return mem;
682 	}
683 	return 0;
684 }
685 
686 /* Implementation of the userland ioctl api */
687 
688 static int
689 agp_info_user(device_t dev, agp_info *info)
690 {
691 	struct agp_softc *sc = device_get_softc(dev);
692 
693 	bzero(info, sizeof *info);
694 	info->bridge_id = pci_get_devid(dev);
695 	info->agp_mode =
696 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
697 	info->aper_base = rman_get_start(sc->as_aperture);
698 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
699 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
700 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
701 
702 	return 0;
703 }
704 
705 static int
706 agp_setup_user(device_t dev, agp_setup *setup)
707 {
708 	return AGP_ENABLE(dev, setup->agp_mode);
709 }
710 
711 static int
712 agp_allocate_user(device_t dev, agp_allocate *alloc)
713 {
714 	struct agp_memory *mem;
715 
716 	mem = AGP_ALLOC_MEMORY(dev,
717 			       alloc->type,
718 			       alloc->pg_count << AGP_PAGE_SHIFT);
719 	if (mem) {
720 		alloc->key = mem->am_id;
721 		alloc->physical = mem->am_physical;
722 		return 0;
723 	} else {
724 		return ENOMEM;
725 	}
726 }
727 
728 static int
729 agp_deallocate_user(device_t dev, int id)
730 {
731 	struct agp_memory *mem = agp_find_memory(dev, id);
732 
733 	if (mem) {
734 		AGP_FREE_MEMORY(dev, mem);
735 		return 0;
736 	} else {
737 		return ENOENT;
738 	}
739 }
740 
741 static int
742 agp_bind_user(device_t dev, agp_bind *bind)
743 {
744 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
745 
746 	if (!mem)
747 		return ENOENT;
748 
749 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
750 }
751 
752 static int
753 agp_unbind_user(device_t dev, agp_unbind *unbind)
754 {
755 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
756 
757 	if (!mem)
758 		return ENOENT;
759 
760 	return AGP_UNBIND_MEMORY(dev, mem);
761 }
762 
763 static int
764 agp_open(struct dev_open_args *ap)
765 {
766 	cdev_t kdev = ap->a_head.a_dev;
767 	device_t dev = KDEV2DEV(kdev);
768 	struct agp_softc *sc = device_get_softc(dev);
769 
770 	if (!sc->as_isopen) {
771 		sc->as_isopen = 1;
772 		device_busy(dev);
773 	}
774 
775 	return 0;
776 }
777 
778 static int
779 agp_close(struct dev_close_args *ap)
780 {
781 	cdev_t kdev = ap->a_head.a_dev;
782 	device_t dev = KDEV2DEV(kdev);
783 	struct agp_softc *sc = device_get_softc(dev);
784 	struct agp_memory *mem;
785 
786 	/*
787 	 * Clear the GATT and force release on last close
788 	 */
789 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
790 		if (mem->am_is_bound)
791 			AGP_UNBIND_MEMORY(dev, mem);
792 		AGP_FREE_MEMORY(dev, mem);
793 	}
794 	if (sc->as_state == AGP_ACQUIRE_USER)
795 		agp_release_helper(dev, AGP_ACQUIRE_USER);
796 	sc->as_isopen = 0;
797 	device_unbusy(dev);
798 
799 	return 0;
800 }
801 
802 static int
803 agp_ioctl(struct dev_ioctl_args *ap)
804 {
805 	cdev_t kdev = ap->a_head.a_dev;
806 	device_t dev = KDEV2DEV(kdev);
807 
808 	switch (ap->a_cmd) {
809 	case AGPIOC_INFO:
810 		return agp_info_user(dev, (agp_info *)ap->a_data);
811 
812 	case AGPIOC_ACQUIRE:
813 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
814 
815 	case AGPIOC_RELEASE:
816 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
817 
818 	case AGPIOC_SETUP:
819 		return agp_setup_user(dev, (agp_setup *)ap->a_data);
820 
821 	case AGPIOC_ALLOCATE:
822 		return agp_allocate_user(dev, (agp_allocate *)ap->a_data);
823 
824 	case AGPIOC_DEALLOCATE:
825 		return agp_deallocate_user(dev, *(int *)ap->a_data);
826 
827 	case AGPIOC_BIND:
828 		return agp_bind_user(dev, (agp_bind *)ap->a_data);
829 
830 	case AGPIOC_UNBIND:
831 		return agp_unbind_user(dev, (agp_unbind *)ap->a_data);
832 
833 	}
834 
835 	return EINVAL;
836 }
837 
838 static int
839 agp_mmap(struct dev_mmap_args *ap)
840 {
841 	cdev_t kdev = ap->a_head.a_dev;
842 	device_t dev = KDEV2DEV(kdev);
843 	struct agp_softc *sc = device_get_softc(dev);
844 
845 	if (ap->a_offset > AGP_GET_APERTURE(dev))
846 		return EINVAL;
847 	ap->a_result = atop(rman_get_start(sc->as_aperture) + ap->a_offset);
848 	return 0;
849 }
850 
851 /* Implementation of the kernel api */
852 
853 device_t
854 agp_find_device(void)
855 {
856 	device_t *children, child;
857 	int i, count;
858 
859 	if (!agp_devclass)
860 		return NULL;
861 	if (devclass_get_devices(agp_devclass, &children, &count) != 0)
862 		return NULL;
863 	child = NULL;
864 	for (i = 0; i < count; i++) {
865 		if (device_is_attached(children[i])) {
866 			child = children[i];
867 			break;
868 		}
869 	}
870 	kfree(children, M_TEMP);
871 	return child;
872 }
873 
874 enum agp_acquire_state
875 agp_state(device_t dev)
876 {
877 	struct agp_softc *sc = device_get_softc(dev);
878 	return sc->as_state;
879 }
880 
881 void
882 agp_get_info(device_t dev, struct agp_info *info)
883 {
884 	struct agp_softc *sc = device_get_softc(dev);
885 
886 	info->ai_mode =
887 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
888 	info->ai_aperture_base = rman_get_start(sc->as_aperture);
889 	info->ai_aperture_size = rman_get_size(sc->as_aperture);
890 	info->ai_memory_allowed = sc->as_maxmem;
891 	info->ai_memory_used = sc->as_allocated;
892 }
893 
894 int
895 agp_acquire(device_t dev)
896 {
897 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
898 }
899 
900 int
901 agp_release(device_t dev)
902 {
903 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
904 }
905 
906 int
907 agp_enable(device_t dev, u_int32_t mode)
908 {
909 	return AGP_ENABLE(dev, mode);
910 }
911 
912 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
913 {
914 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
915 }
916 
917 void agp_free_memory(device_t dev, void *handle)
918 {
919 	struct agp_memory *mem = (struct agp_memory *) handle;
920 	AGP_FREE_MEMORY(dev, mem);
921 }
922 
923 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
924 {
925 	struct agp_memory *mem = (struct agp_memory *) handle;
926 	return AGP_BIND_MEMORY(dev, mem, offset);
927 }
928 
929 int agp_unbind_memory(device_t dev, void *handle)
930 {
931 	struct agp_memory *mem = (struct agp_memory *) handle;
932 	return AGP_UNBIND_MEMORY(dev, mem);
933 }
934 
935 void agp_memory_info(device_t dev, void *handle, struct
936 		     agp_memory_info *mi)
937 {
938 	struct agp_memory *mem = (struct agp_memory *) handle;
939 
940 	mi->ami_size = mem->am_size;
941 	mi->ami_physical = mem->am_physical;
942 	mi->ami_offset = mem->am_offset;
943 	mi->ami_is_bound = mem->am_is_bound;
944 }
945