xref: /dragonfly/sys/dev/crypto/ubsec/ubsec.c (revision 1d1731fa)
1 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.12 2003/06/04 17:56:59 sam Exp $ */
2 /* $DragonFly: src/sys/dev/crypto/ubsec/ubsec.c,v 1.3 2003/08/07 21:16:50 dillon Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Jason L. Wright
23  * 4. The name of the author may not be used to endorse or promote products
24  *    derived from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
27  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
30  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
34  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
35  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  *
38  * Effort sponsored in part by the Defense Advanced Research Projects
39  * Agency (DARPA) and Air Force Research Laboratory, Air Force
40  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
41  *
42  */
43 
44 /*
45  * uBsec 5[56]01, 58xx hardware crypto accelerator
46  */
47 
48 #include "opt_ubsec.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/errno.h>
54 #include <sys/malloc.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/endian.h>
59 
60 #include <vm/vm.h>
61 #include <vm/pmap.h>
62 
63 #include <machine/clock.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 #include <sys/bus.h>
67 #include <sys/rman.h>
68 
69 #include <crypto/sha1.h>
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/cryptosoft.h>
72 #include <sys/md5.h>
73 #include <sys/random.h>
74 
75 #include <bus/pci/pcivar.h>
76 #include <bus/pci/pcireg.h>
77 
78 /* grr, #defines for gratuitous incompatibility in queue.h */
79 #define	SIMPLEQ_HEAD		STAILQ_HEAD
80 #define	SIMPLEQ_ENTRY		STAILQ_ENTRY
81 #define	SIMPLEQ_INIT		STAILQ_INIT
82 #define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
83 #define	SIMPLEQ_EMPTY		STAILQ_EMPTY
84 #define	SIMPLEQ_FIRST		STAILQ_FIRST
85 #define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD_UNTIL
86 #define	SIMPLEQ_FOREACH		STAILQ_FOREACH
87 /* ditto for endian.h */
88 #define	letoh16(x)		le16toh(x)
89 #define	letoh32(x)		le32toh(x)
90 
91 #ifdef UBSEC_RNDTEST
92 #include "../rndtest/rndtest.h"
93 #endif
94 #include "ubsecreg.h"
95 #include "ubsecvar.h"
96 
97 /*
98  * Prototypes and count for the pci_device structure
99  */
100 static	int ubsec_probe(device_t);
101 static	int ubsec_attach(device_t);
102 static	int ubsec_detach(device_t);
103 static	int ubsec_suspend(device_t);
104 static	int ubsec_resume(device_t);
105 static	void ubsec_shutdown(device_t);
106 
107 static device_method_t ubsec_methods[] = {
108 	/* Device interface */
109 	DEVMETHOD(device_probe,		ubsec_probe),
110 	DEVMETHOD(device_attach,	ubsec_attach),
111 	DEVMETHOD(device_detach,	ubsec_detach),
112 	DEVMETHOD(device_suspend,	ubsec_suspend),
113 	DEVMETHOD(device_resume,	ubsec_resume),
114 	DEVMETHOD(device_shutdown,	ubsec_shutdown),
115 
116 	/* bus interface */
117 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
118 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
119 
120 	{ 0, 0 }
121 };
122 static driver_t ubsec_driver = {
123 	"ubsec",
124 	ubsec_methods,
125 	sizeof (struct ubsec_softc)
126 };
127 static devclass_t ubsec_devclass;
128 
129 DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
130 MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
131 #ifdef UBSEC_RNDTEST
132 MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
133 #endif
134 
135 static	void ubsec_intr(void *);
136 static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
137 static	int ubsec_freesession(void *, u_int64_t);
138 static	int ubsec_process(void *, struct cryptop *, int);
139 static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
140 static	void ubsec_feed(struct ubsec_softc *);
141 static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
142 static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
143 static	int ubsec_feed2(struct ubsec_softc *);
144 static	void ubsec_rng(void *);
145 static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
146 			     struct ubsec_dma_alloc *, int);
147 #define	ubsec_dma_sync(_dma, _flags) \
148 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
149 static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
150 static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
151 
152 static	void ubsec_reset_board(struct ubsec_softc *sc);
153 static	void ubsec_init_board(struct ubsec_softc *sc);
154 static	void ubsec_init_pciregs(device_t dev);
155 static	void ubsec_totalreset(struct ubsec_softc *sc);
156 
157 static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
158 
159 static	int ubsec_kprocess(void*, struct cryptkop *, int);
160 static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
161 static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
162 static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
163 static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
164 static	int ubsec_ksigbits(struct crparam *);
165 static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
166 static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
167 
168 SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
169 
170 #ifdef UBSEC_DEBUG
171 static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
172 static	void ubsec_dump_mcr(struct ubsec_mcr *);
173 static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
174 
175 static	int ubsec_debug = 0;
176 SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
177 	    0, "control debugging msgs");
178 #endif
179 
180 #define	READ_REG(sc,r) \
181 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
182 
183 #define WRITE_REG(sc,reg,val) \
184 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
185 
186 #define	SWAP32(x) (x) = htole32(ntohl((x)))
187 #define	HTOLE32(x) (x) = htole32(x)
188 
189 
190 struct ubsec_stats ubsecstats;
191 SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
192 	    ubsec_stats, "driver statistics");
193 
194 static int
195 ubsec_probe(device_t dev)
196 {
197 	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
198 	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
199 	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
200 		return (0);
201 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
202 	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
203 	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
204 		return (0);
205 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
206 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
207 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
208 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
209 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
210 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
211 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
212 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823
213 	     ))
214 		return (0);
215 	return (ENXIO);
216 }
217 
218 static const char*
219 ubsec_partname(struct ubsec_softc *sc)
220 {
221 	/* XXX sprintf numbers when not decoded */
222 	switch (pci_get_vendor(sc->sc_dev)) {
223 	case PCI_VENDOR_BROADCOM:
224 		switch (pci_get_device(sc->sc_dev)) {
225 		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
226 		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
227 		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
228 		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
229 		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
230 		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
231 		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
232 		}
233 		return "Broadcom unknown-part";
234 	case PCI_VENDOR_BLUESTEEL:
235 		switch (pci_get_device(sc->sc_dev)) {
236 		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
237 		}
238 		return "Bluesteel unknown-part";
239 	case PCI_VENDOR_SUN:
240 		switch (pci_get_device(sc->sc_dev)) {
241 		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
242 		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
243 		}
244 		return "Sun unknown-part";
245 	}
246 	return "Unknown-vendor unknown-part";
247 }
248 
249 static void
250 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
251 {
252 	u_int32_t *p = (u_int32_t *)buf;
253 	for (count /= sizeof (u_int32_t); count; count--)
254 		add_true_randomness(*p++);
255 }
256 
257 static int
258 ubsec_attach(device_t dev)
259 {
260 	struct ubsec_softc *sc = device_get_softc(dev);
261 	struct ubsec_dma *dmap;
262 	u_int32_t cmd, i;
263 	int rid;
264 
265 	KASSERT(sc != NULL, ("ubsec_attach: null software carrier!"));
266 	bzero(sc, sizeof (*sc));
267 	sc->sc_dev = dev;
268 
269 	SIMPLEQ_INIT(&sc->sc_queue);
270 	SIMPLEQ_INIT(&sc->sc_qchip);
271 	SIMPLEQ_INIT(&sc->sc_queue2);
272 	SIMPLEQ_INIT(&sc->sc_qchip2);
273 	SIMPLEQ_INIT(&sc->sc_q2free);
274 
275 	/* XXX handle power management */
276 
277 	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
278 
279 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
280 	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
281 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
282 
283 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
284 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
285 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
286 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
287 
288 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
289 	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
290 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
291 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
292 
293 	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
294 	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
295 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
296 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823)) ||
297 	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
298 	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
299 	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
300 		/* NB: the 5821/5822 defines some additional status bits */
301 		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
302 		    BS_STAT_MCR2_ALLEMPTY;
303 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
304 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
305 	}
306 
307 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
308 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
309 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
310 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
311 
312 	if (!(cmd & PCIM_CMD_MEMEN)) {
313 		device_printf(dev, "failed to enable memory mapping\n");
314 		goto bad;
315 	}
316 
317 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
318 		device_printf(dev, "failed to enable bus mastering\n");
319 		goto bad;
320 	}
321 
322 	/*
323 	 * Setup memory-mapping of PCI registers.
324 	 */
325 	rid = BS_BAR;
326 	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
327 				       0, ~0, 1, RF_ACTIVE);
328 	if (sc->sc_sr == NULL) {
329 		device_printf(dev, "cannot map register space\n");
330 		goto bad;
331 	}
332 	sc->sc_st = rman_get_bustag(sc->sc_sr);
333 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
334 
335 	/*
336 	 * Arrange interrupt line.
337 	 */
338 	rid = 0;
339 	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
340 					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
341 	if (sc->sc_irq == NULL) {
342 		device_printf(dev, "could not map interrupt\n");
343 		goto bad1;
344 	}
345 	/*
346 	 * NB: Network code assumes we are blocked with splimp()
347 	 *     so make sure the IRQ is mapped appropriately.
348 	 */
349 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET,
350 			   ubsec_intr, sc, &sc->sc_ih)) {
351 		device_printf(dev, "could not establish interrupt\n");
352 		goto bad2;
353 	}
354 
355 	sc->sc_cid = crypto_get_driverid(0);
356 	if (sc->sc_cid < 0) {
357 		device_printf(dev, "could not get crypto driver id\n");
358 		goto bad3;
359 	}
360 
361 	/*
362 	 * Setup DMA descriptor area.
363 	 */
364 	if (bus_dma_tag_create(NULL,			/* parent */
365 			       1, 0,			/* alignment, bounds */
366 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
367 			       BUS_SPACE_MAXADDR,	/* highaddr */
368 			       NULL, NULL,		/* filter, filterarg */
369 			       0x3ffff,			/* maxsize */
370 			       UBS_MAX_SCATTER,		/* nsegments */
371 			       0xffff,			/* maxsegsize */
372 			       BUS_DMA_ALLOCNOW,	/* flags */
373 			       &sc->sc_dmat)) {
374 		device_printf(dev, "cannot allocate DMA tag\n");
375 		goto bad4;
376 	}
377 	SIMPLEQ_INIT(&sc->sc_freequeue);
378 	dmap = sc->sc_dmaa;
379 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
380 		struct ubsec_q *q;
381 
382 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
383 		    M_DEVBUF, M_NOWAIT);
384 		if (q == NULL) {
385 			device_printf(dev, "cannot allocate queue buffers\n");
386 			break;
387 		}
388 
389 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
390 		    &dmap->d_alloc, 0)) {
391 			device_printf(dev, "cannot allocate dma buffers\n");
392 			free(q, M_DEVBUF);
393 			break;
394 		}
395 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
396 
397 		q->q_dma = dmap;
398 		sc->sc_queuea[i] = q;
399 
400 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
401 	}
402 
403 	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
404 
405 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
406 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
407 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
408 	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
409 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
410 	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
411 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
412 	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
413 
414 	/*
415 	 * Reset Broadcom chip
416 	 */
417 	ubsec_reset_board(sc);
418 
419 	/*
420 	 * Init Broadcom specific PCI settings
421 	 */
422 	ubsec_init_pciregs(dev);
423 
424 	/*
425 	 * Init Broadcom chip
426 	 */
427 	ubsec_init_board(sc);
428 
429 #ifndef UBSEC_NO_RNG
430 	if (sc->sc_flags & UBS_FLAGS_RNG) {
431 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
432 #ifdef UBSEC_RNDTEST
433 		sc->sc_rndtest = rndtest_attach(dev);
434 		if (sc->sc_rndtest)
435 			sc->sc_harvest = rndtest_harvest;
436 		else
437 			sc->sc_harvest = default_harvest;
438 #else
439 		sc->sc_harvest = default_harvest;
440 #endif
441 
442 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
443 		    &sc->sc_rng.rng_q.q_mcr, 0))
444 			goto skip_rng;
445 
446 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
447 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
448 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
449 			goto skip_rng;
450 		}
451 
452 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
453 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
454 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
455 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
456 			goto skip_rng;
457 		}
458 
459 		if (hz >= 100)
460 			sc->sc_rnghz = hz / 100;
461 		else
462 			sc->sc_rnghz = 1;
463 		callout_init(&sc->sc_rngto);
464 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
465 skip_rng:
466 	;
467 	}
468 #endif /* UBSEC_NO_RNG */
469 
470 	if (sc->sc_flags & UBS_FLAGS_KEY) {
471 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
472 
473 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
474 			ubsec_kprocess, sc);
475 #if 0
476 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
477 			ubsec_kprocess, sc);
478 #endif
479 	}
480 	return (0);
481 bad4:
482 	crypto_unregister_all(sc->sc_cid);
483 bad3:
484 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
485 bad2:
486 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
487 bad1:
488 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
489 bad:
490 	return (ENXIO);
491 }
492 
493 /*
494  * Detach a device that successfully probed.
495  */
496 static int
497 ubsec_detach(device_t dev)
498 {
499 	struct ubsec_softc *sc = device_get_softc(dev);
500 	int s;
501 
502 	KASSERT(sc != NULL, ("ubsec_detach: null software carrier"));
503 
504 	/* XXX wait/abort active ops */
505 
506 	s = splimp();
507 
508 	callout_stop(&sc->sc_rngto);
509 
510 	crypto_unregister_all(sc->sc_cid);
511 
512 #ifdef UBSEC_RNDTEST
513 	if (sc->sc_rndtest)
514 		rndtest_detach(sc->sc_rndtest);
515 #endif
516 
517 	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
518 		struct ubsec_q *q;
519 
520 		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
521 		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
522 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
523 		free(q, M_DEVBUF);
524 	}
525 #ifndef UBSEC_NO_RNG
526 	if (sc->sc_flags & UBS_FLAGS_RNG) {
527 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
528 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
529 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
530 	}
531 #endif /* UBSEC_NO_RNG */
532 
533 	bus_generic_detach(dev);
534 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
535 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
536 
537 	bus_dma_tag_destroy(sc->sc_dmat);
538 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
539 
540 	splx(s);
541 
542 	return (0);
543 }
544 
545 /*
546  * Stop all chip i/o so that the kernel's probe routines don't
547  * get confused by errant DMAs when rebooting.
548  */
549 static void
550 ubsec_shutdown(device_t dev)
551 {
552 #ifdef notyet
553 	ubsec_stop(device_get_softc(dev));
554 #endif
555 }
556 
557 /*
558  * Device suspend routine.
559  */
560 static int
561 ubsec_suspend(device_t dev)
562 {
563 	struct ubsec_softc *sc = device_get_softc(dev);
564 
565 	KASSERT(sc != NULL, ("ubsec_suspend: null software carrier"));
566 #ifdef notyet
567 	/* XXX stop the device and save PCI settings */
568 #endif
569 	sc->sc_suspended = 1;
570 
571 	return (0);
572 }
573 
574 static int
575 ubsec_resume(device_t dev)
576 {
577 	struct ubsec_softc *sc = device_get_softc(dev);
578 
579 	KASSERT(sc != NULL, ("ubsec_resume: null software carrier"));
580 #ifdef notyet
581 	/* XXX retore PCI settings and start the device */
582 #endif
583 	sc->sc_suspended = 0;
584 	return (0);
585 }
586 
587 /*
588  * UBSEC Interrupt routine
589  */
590 static void
591 ubsec_intr(void *arg)
592 {
593 	struct ubsec_softc *sc = arg;
594 	volatile u_int32_t stat;
595 	struct ubsec_q *q;
596 	struct ubsec_dma *dmap;
597 	int npkts = 0, i;
598 
599 	stat = READ_REG(sc, BS_STAT);
600 	stat &= sc->sc_statmask;
601 	if (stat == 0) {
602 		return;
603 	}
604 
605 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
606 
607 	/*
608 	 * Check to see if we have any packets waiting for us
609 	 */
610 	if ((stat & BS_STAT_MCR1_DONE)) {
611 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
612 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
613 			dmap = q->q_dma;
614 
615 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
616 				break;
617 
618 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
619 
620 			npkts = q->q_nstacked_mcrs;
621 			sc->sc_nqchip -= 1+npkts;
622 			/*
623 			 * search for further sc_qchip ubsec_q's that share
624 			 * the same MCR, and complete them too, they must be
625 			 * at the top.
626 			 */
627 			for (i = 0; i < npkts; i++) {
628 				if(q->q_stacked_mcr[i]) {
629 					ubsec_callback(sc, q->q_stacked_mcr[i]);
630 				} else {
631 					break;
632 				}
633 			}
634 			ubsec_callback(sc, q);
635 		}
636 
637 		/*
638 		 * Don't send any more packet to chip if there has been
639 		 * a DMAERR.
640 		 */
641 		if (!(stat & BS_STAT_DMAERR))
642 			ubsec_feed(sc);
643 	}
644 
645 	/*
646 	 * Check to see if we have any key setups/rng's waiting for us
647 	 */
648 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
649 	    (stat & BS_STAT_MCR2_DONE)) {
650 		struct ubsec_q2 *q2;
651 		struct ubsec_mcr *mcr;
652 
653 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
654 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
655 
656 			ubsec_dma_sync(&q2->q_mcr,
657 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
658 
659 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
660 			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
661 				ubsec_dma_sync(&q2->q_mcr,
662 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
663 				break;
664 			}
665 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q2, q_next);
666 			ubsec_callback2(sc, q2);
667 			/*
668 			 * Don't send any more packet to chip if there has been
669 			 * a DMAERR.
670 			 */
671 			if (!(stat & BS_STAT_DMAERR))
672 				ubsec_feed2(sc);
673 		}
674 	}
675 
676 	/*
677 	 * Check to see if we got any DMA Error
678 	 */
679 	if (stat & BS_STAT_DMAERR) {
680 #ifdef UBSEC_DEBUG
681 		if (ubsec_debug) {
682 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
683 
684 			printf("dmaerr %s@%08x\n",
685 			    (a & BS_ERR_READ) ? "read" : "write",
686 			    a & BS_ERR_ADDR);
687 		}
688 #endif /* UBSEC_DEBUG */
689 		ubsecstats.hst_dmaerr++;
690 		ubsec_totalreset(sc);
691 		ubsec_feed(sc);
692 	}
693 
694 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
695 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
696 #ifdef UBSEC_DEBUG
697 		if (ubsec_debug)
698 			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
699 				sc->sc_needwakeup);
700 #endif /* UBSEC_DEBUG */
701 		sc->sc_needwakeup &= ~wakeup;
702 		crypto_unblock(sc->sc_cid, wakeup);
703 	}
704 }
705 
706 /*
707  * ubsec_feed() - aggregate and post requests to chip
708  */
709 static void
710 ubsec_feed(struct ubsec_softc *sc)
711 {
712 	struct ubsec_q *q, *q2;
713 	int npkts, i;
714 	void *v;
715 	u_int32_t stat;
716 
717 	/*
718 	 * Decide how many ops to combine in a single MCR.  We cannot
719 	 * aggregate more than UBS_MAX_AGGR because this is the number
720 	 * of slots defined in the data structure.  Note that
721 	 * aggregation only happens if ops are marked batch'able.
722 	 * Aggregating ops reduces the number of interrupts to the host
723 	 * but also (potentially) increases the latency for processing
724 	 * completed ops as we only get an interrupt when all aggregated
725 	 * ops have completed.
726 	 */
727 	if (sc->sc_nqueue == 0)
728 		return;
729 	if (sc->sc_nqueue > 1) {
730 		npkts = 0;
731 		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
732 			npkts++;
733 			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
734 				break;
735 		}
736 	} else
737 		npkts = 1;
738 	/*
739 	 * Check device status before going any further.
740 	 */
741 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
742 		if (stat & BS_STAT_DMAERR) {
743 			ubsec_totalreset(sc);
744 			ubsecstats.hst_dmaerr++;
745 		} else
746 			ubsecstats.hst_mcr1full++;
747 		return;
748 	}
749 	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
750 		ubsecstats.hst_maxqueue = sc->sc_nqueue;
751 	if (npkts > UBS_MAX_AGGR)
752 		npkts = UBS_MAX_AGGR;
753 	if (npkts < 2)				/* special case 1 op */
754 		goto feed1;
755 
756 	ubsecstats.hst_totbatch += npkts-1;
757 #ifdef UBSEC_DEBUG
758 	if (ubsec_debug)
759 		printf("merging %d records\n", npkts);
760 #endif /* UBSEC_DEBUG */
761 
762 	q = SIMPLEQ_FIRST(&sc->sc_queue);
763 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
764 	--sc->sc_nqueue;
765 
766 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
767 	if (q->q_dst_map != NULL)
768 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
769 
770 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
771 
772 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
773 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
774 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
775 		    BUS_DMASYNC_PREWRITE);
776 		if (q2->q_dst_map != NULL)
777 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
778 			    BUS_DMASYNC_PREREAD);
779 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q2, q_next);
780 		--sc->sc_nqueue;
781 
782 		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
783 		    sizeof(struct ubsec_mcr_add));
784 		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
785 		q->q_stacked_mcr[i] = q2;
786 	}
787 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
788 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
789 	sc->sc_nqchip += npkts;
790 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
791 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
792 	ubsec_dma_sync(&q->q_dma->d_alloc,
793 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
794 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
795 	    offsetof(struct ubsec_dmachunk, d_mcr));
796 	return;
797 
798 feed1:
799 	q = SIMPLEQ_FIRST(&sc->sc_queue);
800 
801 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
802 	if (q->q_dst_map != NULL)
803 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
804 	ubsec_dma_sync(&q->q_dma->d_alloc,
805 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
806 
807 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
808 	    offsetof(struct ubsec_dmachunk, d_mcr));
809 #ifdef UBSEC_DEBUG
810 	if (ubsec_debug)
811 		printf("feed1: q->chip %p %08x stat %08x\n",
812 		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
813 		      stat);
814 #endif /* UBSEC_DEBUG */
815 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
816 	--sc->sc_nqueue;
817 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
818 	sc->sc_nqchip++;
819 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
820 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
821 	return;
822 }
823 
824 /*
825  * Allocate a new 'session' and return an encoded session id.  'sidp'
826  * contains our registration id, and should contain an encoded session
827  * id on successful allocation.
828  */
829 static int
830 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
831 {
832 	struct cryptoini *c, *encini = NULL, *macini = NULL;
833 	struct ubsec_softc *sc = arg;
834 	struct ubsec_session *ses = NULL;
835 	MD5_CTX md5ctx;
836 	SHA1_CTX sha1ctx;
837 	int i, sesn;
838 
839 	KASSERT(sc != NULL, ("ubsec_newsession: null softc"));
840 	if (sidp == NULL || cri == NULL || sc == NULL)
841 		return (EINVAL);
842 
843 	for (c = cri; c != NULL; c = c->cri_next) {
844 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
845 		    c->cri_alg == CRYPTO_SHA1_HMAC) {
846 			if (macini)
847 				return (EINVAL);
848 			macini = c;
849 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
850 		    c->cri_alg == CRYPTO_3DES_CBC) {
851 			if (encini)
852 				return (EINVAL);
853 			encini = c;
854 		} else
855 			return (EINVAL);
856 	}
857 	if (encini == NULL && macini == NULL)
858 		return (EINVAL);
859 
860 	if (sc->sc_sessions == NULL) {
861 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
862 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
863 		if (ses == NULL)
864 			return (ENOMEM);
865 		sesn = 0;
866 		sc->sc_nsessions = 1;
867 	} else {
868 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
869 			if (sc->sc_sessions[sesn].ses_used == 0) {
870 				ses = &sc->sc_sessions[sesn];
871 				break;
872 			}
873 		}
874 
875 		if (ses == NULL) {
876 			sesn = sc->sc_nsessions;
877 			ses = (struct ubsec_session *)malloc((sesn + 1) *
878 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
879 			if (ses == NULL)
880 				return (ENOMEM);
881 			bcopy(sc->sc_sessions, ses, sesn *
882 			    sizeof(struct ubsec_session));
883 			bzero(sc->sc_sessions, sesn *
884 			    sizeof(struct ubsec_session));
885 			free(sc->sc_sessions, M_DEVBUF);
886 			sc->sc_sessions = ses;
887 			ses = &sc->sc_sessions[sesn];
888 			sc->sc_nsessions++;
889 		}
890 	}
891 
892 	bzero(ses, sizeof(struct ubsec_session));
893 	ses->ses_used = 1;
894 	if (encini) {
895 		/* get an IV, network byte order */
896 		/* XXX may read fewer than requested */
897 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
898 
899 		/* Go ahead and compute key in ubsec's byte order */
900 		if (encini->cri_alg == CRYPTO_DES_CBC) {
901 			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
902 			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
903 			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
904 		} else
905 			bcopy(encini->cri_key, ses->ses_deskey, 24);
906 
907 		SWAP32(ses->ses_deskey[0]);
908 		SWAP32(ses->ses_deskey[1]);
909 		SWAP32(ses->ses_deskey[2]);
910 		SWAP32(ses->ses_deskey[3]);
911 		SWAP32(ses->ses_deskey[4]);
912 		SWAP32(ses->ses_deskey[5]);
913 	}
914 
915 	if (macini) {
916 		for (i = 0; i < macini->cri_klen / 8; i++)
917 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
918 
919 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
920 			MD5Init(&md5ctx);
921 			MD5Update(&md5ctx, macini->cri_key,
922 			    macini->cri_klen / 8);
923 			MD5Update(&md5ctx, hmac_ipad_buffer,
924 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
925 			bcopy(md5ctx.state, ses->ses_hminner,
926 			    sizeof(md5ctx.state));
927 		} else {
928 			SHA1Init(&sha1ctx);
929 			SHA1Update(&sha1ctx, macini->cri_key,
930 			    macini->cri_klen / 8);
931 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
932 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
933 			bcopy(sha1ctx.h.b32, ses->ses_hminner,
934 			    sizeof(sha1ctx.h.b32));
935 		}
936 
937 		for (i = 0; i < macini->cri_klen / 8; i++)
938 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
939 
940 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
941 			MD5Init(&md5ctx);
942 			MD5Update(&md5ctx, macini->cri_key,
943 			    macini->cri_klen / 8);
944 			MD5Update(&md5ctx, hmac_opad_buffer,
945 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
946 			bcopy(md5ctx.state, ses->ses_hmouter,
947 			    sizeof(md5ctx.state));
948 		} else {
949 			SHA1Init(&sha1ctx);
950 			SHA1Update(&sha1ctx, macini->cri_key,
951 			    macini->cri_klen / 8);
952 			SHA1Update(&sha1ctx, hmac_opad_buffer,
953 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
954 			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
955 			    sizeof(sha1ctx.h.b32));
956 		}
957 
958 		for (i = 0; i < macini->cri_klen / 8; i++)
959 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
960 	}
961 
962 	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
963 	return (0);
964 }
965 
966 /*
967  * Deallocate a session.
968  */
969 static int
970 ubsec_freesession(void *arg, u_int64_t tid)
971 {
972 	struct ubsec_softc *sc = arg;
973 	int session;
974 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
975 
976 	KASSERT(sc != NULL, ("ubsec_freesession: null softc"));
977 	if (sc == NULL)
978 		return (EINVAL);
979 
980 	session = UBSEC_SESSION(sid);
981 	if (session >= sc->sc_nsessions)
982 		return (EINVAL);
983 
984 	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
985 	return (0);
986 }
987 
988 static void
989 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
990 {
991 	struct ubsec_operand *op = arg;
992 
993 	KASSERT(nsegs <= UBS_MAX_SCATTER,
994 		("Too many DMA segments returned when mapping operand"));
995 #ifdef UBSEC_DEBUG
996 	if (ubsec_debug)
997 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
998 			(u_int) mapsize, nsegs);
999 #endif
1000 	op->mapsize = mapsize;
1001 	op->nsegs = nsegs;
1002 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1003 }
1004 
1005 static int
1006 ubsec_process(void *arg, struct cryptop *crp, int hint)
1007 {
1008 	struct ubsec_q *q = NULL;
1009 	int err = 0, i, j, s, nicealign;
1010 	struct ubsec_softc *sc = arg;
1011 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1012 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1013 	int sskip, dskip, stheend, dtheend;
1014 	int16_t coffset;
1015 	struct ubsec_session *ses;
1016 	struct ubsec_pktctx ctx;
1017 	struct ubsec_dma *dmap = NULL;
1018 
1019 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1020 		ubsecstats.hst_invalid++;
1021 		return (EINVAL);
1022 	}
1023 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1024 		ubsecstats.hst_badsession++;
1025 		return (EINVAL);
1026 	}
1027 
1028 	s = splimp();
1029 
1030 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1031 		ubsecstats.hst_queuefull++;
1032 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1033 		splx(s);
1034 		return (ERESTART);
1035 	}
1036 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1037 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
1038 	splx(s);
1039 
1040 	dmap = q->q_dma; /* Save dma pointer */
1041 	bzero(q, sizeof(struct ubsec_q));
1042 	bzero(&ctx, sizeof(ctx));
1043 
1044 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1045 	q->q_dma = dmap;
1046 	ses = &sc->sc_sessions[q->q_sesn];
1047 
1048 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1049 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1050 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1051 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1052 		q->q_src_io = (struct uio *)crp->crp_buf;
1053 		q->q_dst_io = (struct uio *)crp->crp_buf;
1054 	} else {
1055 		ubsecstats.hst_badflags++;
1056 		err = EINVAL;
1057 		goto errout;	/* XXX we don't handle contiguous blocks! */
1058 	}
1059 
1060 	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1061 
1062 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1063 	dmap->d_dma->d_mcr.mcr_flags = 0;
1064 	q->q_crp = crp;
1065 
1066 	crd1 = crp->crp_desc;
1067 	if (crd1 == NULL) {
1068 		ubsecstats.hst_nodesc++;
1069 		err = EINVAL;
1070 		goto errout;
1071 	}
1072 	crd2 = crd1->crd_next;
1073 
1074 	if (crd2 == NULL) {
1075 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1076 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1077 			maccrd = crd1;
1078 			enccrd = NULL;
1079 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1080 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1081 			maccrd = NULL;
1082 			enccrd = crd1;
1083 		} else {
1084 			ubsecstats.hst_badalg++;
1085 			err = EINVAL;
1086 			goto errout;
1087 		}
1088 	} else {
1089 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1090 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1091 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1092 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1093 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1094 			maccrd = crd1;
1095 			enccrd = crd2;
1096 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1097 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1098 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1099 			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1100 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1101 			enccrd = crd1;
1102 			maccrd = crd2;
1103 		} else {
1104 			/*
1105 			 * We cannot order the ubsec as requested
1106 			 */
1107 			ubsecstats.hst_badalg++;
1108 			err = EINVAL;
1109 			goto errout;
1110 		}
1111 	}
1112 
1113 	if (enccrd) {
1114 		encoffset = enccrd->crd_skip;
1115 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1116 
1117 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1118 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1119 
1120 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1121 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1122 			else {
1123 				ctx.pc_iv[0] = ses->ses_iv[0];
1124 				ctx.pc_iv[1] = ses->ses_iv[1];
1125 			}
1126 
1127 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1128 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1129 					m_copyback(q->q_src_m,
1130 					    enccrd->crd_inject,
1131 					    8, (caddr_t)ctx.pc_iv);
1132 				else if (crp->crp_flags & CRYPTO_F_IOV)
1133 					cuio_copyback(q->q_src_io,
1134 					    enccrd->crd_inject,
1135 					    8, (caddr_t)ctx.pc_iv);
1136 			}
1137 		} else {
1138 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1139 
1140 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1141 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1142 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1143 				m_copydata(q->q_src_m, enccrd->crd_inject,
1144 				    8, (caddr_t)ctx.pc_iv);
1145 			else if (crp->crp_flags & CRYPTO_F_IOV)
1146 				cuio_copydata(q->q_src_io,
1147 				    enccrd->crd_inject, 8,
1148 				    (caddr_t)ctx.pc_iv);
1149 		}
1150 
1151 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1152 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1153 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1154 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1155 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1156 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1157 		SWAP32(ctx.pc_iv[0]);
1158 		SWAP32(ctx.pc_iv[1]);
1159 	}
1160 
1161 	if (maccrd) {
1162 		macoffset = maccrd->crd_skip;
1163 
1164 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1165 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1166 		else
1167 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1168 
1169 		for (i = 0; i < 5; i++) {
1170 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1171 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1172 
1173 			HTOLE32(ctx.pc_hminner[i]);
1174 			HTOLE32(ctx.pc_hmouter[i]);
1175 		}
1176 	}
1177 
1178 	if (enccrd && maccrd) {
1179 		/*
1180 		 * ubsec cannot handle packets where the end of encryption
1181 		 * and authentication are not the same, or where the
1182 		 * encrypted part begins before the authenticated part.
1183 		 */
1184 		if ((encoffset + enccrd->crd_len) !=
1185 		    (macoffset + maccrd->crd_len)) {
1186 			ubsecstats.hst_lenmismatch++;
1187 			err = EINVAL;
1188 			goto errout;
1189 		}
1190 		if (enccrd->crd_skip < maccrd->crd_skip) {
1191 			ubsecstats.hst_skipmismatch++;
1192 			err = EINVAL;
1193 			goto errout;
1194 		}
1195 		sskip = maccrd->crd_skip;
1196 		cpskip = dskip = enccrd->crd_skip;
1197 		stheend = maccrd->crd_len;
1198 		dtheend = enccrd->crd_len;
1199 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1200 		cpoffset = cpskip + dtheend;
1201 #ifdef UBSEC_DEBUG
1202 		if (ubsec_debug) {
1203 			printf("mac: skip %d, len %d, inject %d\n",
1204 			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1205 			printf("enc: skip %d, len %d, inject %d\n",
1206 			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1207 			printf("src: skip %d, len %d\n", sskip, stheend);
1208 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1209 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1210 			    coffset, stheend, cpskip, cpoffset);
1211 		}
1212 #endif
1213 	} else {
1214 		cpskip = dskip = sskip = macoffset + encoffset;
1215 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1216 		cpoffset = cpskip + dtheend;
1217 		coffset = 0;
1218 	}
1219 	ctx.pc_offset = htole16(coffset >> 2);
1220 
1221 	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1222 		ubsecstats.hst_nomap++;
1223 		err = ENOMEM;
1224 		goto errout;
1225 	}
1226 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1227 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1228 		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1229 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1230 			q->q_src_map = NULL;
1231 			ubsecstats.hst_noload++;
1232 			err = ENOMEM;
1233 			goto errout;
1234 		}
1235 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1236 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1237 		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1238 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1239 			q->q_src_map = NULL;
1240 			ubsecstats.hst_noload++;
1241 			err = ENOMEM;
1242 			goto errout;
1243 		}
1244 	}
1245 	nicealign = ubsec_dmamap_aligned(&q->q_src);
1246 
1247 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1248 
1249 #ifdef UBSEC_DEBUG
1250 	if (ubsec_debug)
1251 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1252 #endif
1253 	for (i = j = 0; i < q->q_src_nsegs; i++) {
1254 		struct ubsec_pktbuf *pb;
1255 		bus_size_t packl = q->q_src_segs[i].ds_len;
1256 		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1257 
1258 		if (sskip >= packl) {
1259 			sskip -= packl;
1260 			continue;
1261 		}
1262 
1263 		packl -= sskip;
1264 		packp += sskip;
1265 		sskip = 0;
1266 
1267 		if (packl > 0xfffc) {
1268 			err = EIO;
1269 			goto errout;
1270 		}
1271 
1272 		if (j == 0)
1273 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1274 		else
1275 			pb = &dmap->d_dma->d_sbuf[j - 1];
1276 
1277 		pb->pb_addr = htole32(packp);
1278 
1279 		if (stheend) {
1280 			if (packl > stheend) {
1281 				pb->pb_len = htole32(stheend);
1282 				stheend = 0;
1283 			} else {
1284 				pb->pb_len = htole32(packl);
1285 				stheend -= packl;
1286 			}
1287 		} else
1288 			pb->pb_len = htole32(packl);
1289 
1290 		if ((i + 1) == q->q_src_nsegs)
1291 			pb->pb_next = 0;
1292 		else
1293 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1294 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1295 		j++;
1296 	}
1297 
1298 	if (enccrd == NULL && maccrd != NULL) {
1299 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1300 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1301 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1302 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1303 #ifdef UBSEC_DEBUG
1304 		if (ubsec_debug)
1305 			printf("opkt: %x %x %x\n",
1306 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1307 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1308 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1309 #endif
1310 	} else {
1311 		if (crp->crp_flags & CRYPTO_F_IOV) {
1312 			if (!nicealign) {
1313 				ubsecstats.hst_iovmisaligned++;
1314 				err = EINVAL;
1315 				goto errout;
1316 			}
1317 			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1318 			     &q->q_dst_map)) {
1319 				ubsecstats.hst_nomap++;
1320 				err = ENOMEM;
1321 				goto errout;
1322 			}
1323 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1324 			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1325 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1326 				q->q_dst_map = NULL;
1327 				ubsecstats.hst_noload++;
1328 				err = ENOMEM;
1329 				goto errout;
1330 			}
1331 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1332 			if (nicealign) {
1333 				q->q_dst = q->q_src;
1334 			} else {
1335 				int totlen, len;
1336 				struct mbuf *m, *top, **mp;
1337 
1338 				ubsecstats.hst_unaligned++;
1339 				totlen = q->q_src_mapsize;
1340 				if (q->q_src_m->m_flags & M_PKTHDR) {
1341 					len = MHLEN;
1342 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1343 					if (m && !m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)) {
1344 						m_free(m);
1345 						m = NULL;
1346 					}
1347 				} else {
1348 					len = MLEN;
1349 					MGET(m, M_DONTWAIT, MT_DATA);
1350 				}
1351 				if (m == NULL) {
1352 					ubsecstats.hst_nombuf++;
1353 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1354 					goto errout;
1355 				}
1356 				if (totlen >= MINCLSIZE) {
1357 					MCLGET(m, M_DONTWAIT);
1358 					if ((m->m_flags & M_EXT) == 0) {
1359 						m_free(m);
1360 						ubsecstats.hst_nomcl++;
1361 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1362 						goto errout;
1363 					}
1364 					len = MCLBYTES;
1365 				}
1366 				m->m_len = len;
1367 				top = NULL;
1368 				mp = &top;
1369 
1370 				while (totlen > 0) {
1371 					if (top) {
1372 						MGET(m, M_DONTWAIT, MT_DATA);
1373 						if (m == NULL) {
1374 							m_freem(top);
1375 							ubsecstats.hst_nombuf++;
1376 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1377 							goto errout;
1378 						}
1379 						len = MLEN;
1380 					}
1381 					if (top && totlen >= MINCLSIZE) {
1382 						MCLGET(m, M_DONTWAIT);
1383 						if ((m->m_flags & M_EXT) == 0) {
1384 							*mp = m;
1385 							m_freem(top);
1386 							ubsecstats.hst_nomcl++;
1387 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1388 							goto errout;
1389 						}
1390 						len = MCLBYTES;
1391 					}
1392 					m->m_len = len = min(totlen, len);
1393 					totlen -= len;
1394 					*mp = m;
1395 					mp = &m->m_next;
1396 				}
1397 				q->q_dst_m = top;
1398 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1399 				    cpskip, cpoffset);
1400 				if (bus_dmamap_create(sc->sc_dmat,
1401 				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1402 					ubsecstats.hst_nomap++;
1403 					err = ENOMEM;
1404 					goto errout;
1405 				}
1406 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1407 				    q->q_dst_map, q->q_dst_m,
1408 				    ubsec_op_cb, &q->q_dst,
1409 				    BUS_DMA_NOWAIT) != 0) {
1410 					bus_dmamap_destroy(sc->sc_dmat,
1411 					q->q_dst_map);
1412 					q->q_dst_map = NULL;
1413 					ubsecstats.hst_noload++;
1414 					err = ENOMEM;
1415 					goto errout;
1416 				}
1417 			}
1418 		} else {
1419 			ubsecstats.hst_badflags++;
1420 			err = EINVAL;
1421 			goto errout;
1422 		}
1423 
1424 #ifdef UBSEC_DEBUG
1425 		if (ubsec_debug)
1426 			printf("dst skip: %d\n", dskip);
1427 #endif
1428 		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1429 			struct ubsec_pktbuf *pb;
1430 			bus_size_t packl = q->q_dst_segs[i].ds_len;
1431 			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1432 
1433 			if (dskip >= packl) {
1434 				dskip -= packl;
1435 				continue;
1436 			}
1437 
1438 			packl -= dskip;
1439 			packp += dskip;
1440 			dskip = 0;
1441 
1442 			if (packl > 0xfffc) {
1443 				err = EIO;
1444 				goto errout;
1445 			}
1446 
1447 			if (j == 0)
1448 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1449 			else
1450 				pb = &dmap->d_dma->d_dbuf[j - 1];
1451 
1452 			pb->pb_addr = htole32(packp);
1453 
1454 			if (dtheend) {
1455 				if (packl > dtheend) {
1456 					pb->pb_len = htole32(dtheend);
1457 					dtheend = 0;
1458 				} else {
1459 					pb->pb_len = htole32(packl);
1460 					dtheend -= packl;
1461 				}
1462 			} else
1463 				pb->pb_len = htole32(packl);
1464 
1465 			if ((i + 1) == q->q_dst_nsegs) {
1466 				if (maccrd)
1467 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1468 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1469 				else
1470 					pb->pb_next = 0;
1471 			} else
1472 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1473 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1474 			j++;
1475 		}
1476 	}
1477 
1478 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1479 	    offsetof(struct ubsec_dmachunk, d_ctx));
1480 
1481 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1482 		struct ubsec_pktctx_long *ctxl;
1483 
1484 		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1485 		    offsetof(struct ubsec_dmachunk, d_ctx));
1486 
1487 		/* transform small context into long context */
1488 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1489 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1490 		ctxl->pc_flags = ctx.pc_flags;
1491 		ctxl->pc_offset = ctx.pc_offset;
1492 		for (i = 0; i < 6; i++)
1493 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1494 		for (i = 0; i < 5; i++)
1495 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1496 		for (i = 0; i < 5; i++)
1497 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1498 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1499 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1500 	} else
1501 		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1502 		    offsetof(struct ubsec_dmachunk, d_ctx),
1503 		    sizeof(struct ubsec_pktctx));
1504 
1505 	s = splimp();
1506 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1507 	sc->sc_nqueue++;
1508 	ubsecstats.hst_ipackets++;
1509 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1510 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1511 		ubsec_feed(sc);
1512 	splx(s);
1513 	return (0);
1514 
1515 errout:
1516 	if (q != NULL) {
1517 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1518 			m_freem(q->q_dst_m);
1519 
1520 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1521 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1522 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1523 		}
1524 		if (q->q_src_map != NULL) {
1525 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1526 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1527 		}
1528 
1529 		s = splimp();
1530 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1531 		splx(s);
1532 	}
1533 	if (err != ERESTART) {
1534 		crp->crp_etype = err;
1535 		crypto_done(crp);
1536 	} else {
1537 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1538 	}
1539 	return (err);
1540 }
1541 
1542 static void
1543 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1544 {
1545 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1546 	struct cryptodesc *crd;
1547 	struct ubsec_dma *dmap = q->q_dma;
1548 
1549 	ubsecstats.hst_opackets++;
1550 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1551 
1552 	ubsec_dma_sync(&dmap->d_alloc,
1553 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1554 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1555 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1556 		    BUS_DMASYNC_POSTREAD);
1557 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1558 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1559 	}
1560 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1561 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1562 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1563 
1564 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1565 		m_freem(q->q_src_m);
1566 		crp->crp_buf = (caddr_t)q->q_dst_m;
1567 	}
1568 	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1569 
1570 	/* copy out IV for future use */
1571 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1572 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1573 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1574 			    crd->crd_alg != CRYPTO_3DES_CBC)
1575 				continue;
1576 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1577 				m_copydata((struct mbuf *)crp->crp_buf,
1578 				    crd->crd_skip + crd->crd_len - 8, 8,
1579 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1580 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1581 				cuio_copydata((struct uio *)crp->crp_buf,
1582 				    crd->crd_skip + crd->crd_len - 8, 8,
1583 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1584 			}
1585 			break;
1586 		}
1587 	}
1588 
1589 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1590 		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1591 		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1592 			continue;
1593 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1594 			m_copyback((struct mbuf *)crp->crp_buf,
1595 			    crd->crd_inject, 12,
1596 			    (caddr_t)dmap->d_dma->d_macbuf);
1597 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1598 			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1599 			    crp->crp_mac, 12);
1600 		break;
1601 	}
1602 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1603 	crypto_done(crp);
1604 }
1605 
1606 static void
1607 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1608 {
1609 	int i, j, dlen, slen;
1610 	caddr_t dptr, sptr;
1611 
1612 	j = 0;
1613 	sptr = srcm->m_data;
1614 	slen = srcm->m_len;
1615 	dptr = dstm->m_data;
1616 	dlen = dstm->m_len;
1617 
1618 	while (1) {
1619 		for (i = 0; i < min(slen, dlen); i++) {
1620 			if (j < hoffset || j >= toffset)
1621 				*dptr++ = *sptr++;
1622 			slen--;
1623 			dlen--;
1624 			j++;
1625 		}
1626 		if (slen == 0) {
1627 			srcm = srcm->m_next;
1628 			if (srcm == NULL)
1629 				return;
1630 			sptr = srcm->m_data;
1631 			slen = srcm->m_len;
1632 		}
1633 		if (dlen == 0) {
1634 			dstm = dstm->m_next;
1635 			if (dstm == NULL)
1636 				return;
1637 			dptr = dstm->m_data;
1638 			dlen = dstm->m_len;
1639 		}
1640 	}
1641 }
1642 
1643 /*
1644  * feed the key generator, must be called at splimp() or higher.
1645  */
1646 static int
1647 ubsec_feed2(struct ubsec_softc *sc)
1648 {
1649 	struct ubsec_q2 *q;
1650 
1651 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1652 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1653 			break;
1654 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1655 
1656 		ubsec_dma_sync(&q->q_mcr,
1657 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1658 		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1659 
1660 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1661 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q, q_next);
1662 		--sc->sc_nqueue2;
1663 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1664 	}
1665 	return (0);
1666 }
1667 
1668 /*
1669  * Callback for handling random numbers
1670  */
1671 static void
1672 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1673 {
1674 	struct cryptkop *krp;
1675 	struct ubsec_ctx_keyop *ctx;
1676 
1677 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1678 	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1679 
1680 	switch (q->q_type) {
1681 #ifndef UBSEC_NO_RNG
1682 	case UBS_CTXOP_RNGBYPASS: {
1683 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1684 
1685 		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1686 		(*sc->sc_harvest)(sc->sc_rndtest,
1687 			rng->rng_buf.dma_vaddr,
1688 			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1689 		rng->rng_used = 0;
1690 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1691 		break;
1692 	}
1693 #endif
1694 	case UBS_CTXOP_MODEXP: {
1695 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1696 		u_int rlen, clen;
1697 
1698 		krp = me->me_krp;
1699 		rlen = (me->me_modbits + 7) / 8;
1700 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1701 
1702 		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1703 		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1704 		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1705 		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1706 
1707 		if (clen < rlen)
1708 			krp->krp_status = E2BIG;
1709 		else {
1710 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1711 				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1712 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1713 					+ 7) / 8);
1714 				bcopy(me->me_C.dma_vaddr,
1715 				    krp->krp_param[krp->krp_iparams].crp_p,
1716 				    (me->me_modbits + 7) / 8);
1717 			} else
1718 				ubsec_kshift_l(me->me_shiftbits,
1719 				    me->me_C.dma_vaddr, me->me_normbits,
1720 				    krp->krp_param[krp->krp_iparams].crp_p,
1721 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1722 		}
1723 
1724 		crypto_kdone(krp);
1725 
1726 		/* bzero all potentially sensitive data */
1727 		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1728 		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1729 		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1730 		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1731 
1732 		/* Can't free here, so put us on the free list. */
1733 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1734 		break;
1735 	}
1736 	case UBS_CTXOP_RSAPRIV: {
1737 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1738 		u_int len;
1739 
1740 		krp = rp->rpr_krp;
1741 		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1742 		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1743 
1744 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1745 		bcopy(rp->rpr_msgout.dma_vaddr,
1746 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1747 
1748 		crypto_kdone(krp);
1749 
1750 		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1751 		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1752 		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1753 
1754 		/* Can't free here, so put us on the free list. */
1755 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1756 		break;
1757 	}
1758 	default:
1759 		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1760 		    letoh16(ctx->ctx_op));
1761 		break;
1762 	}
1763 }
1764 
1765 #ifndef UBSEC_NO_RNG
1766 static void
1767 ubsec_rng(void *vsc)
1768 {
1769 	struct ubsec_softc *sc = vsc;
1770 	struct ubsec_q2_rng *rng = &sc->sc_rng;
1771 	struct ubsec_mcr *mcr;
1772 	struct ubsec_ctx_rngbypass *ctx;
1773 	int s;
1774 
1775 	s = splimp();
1776 	if (rng->rng_used) {
1777 		splx(s);
1778 		return;
1779 	}
1780 	sc->sc_nqueue2++;
1781 	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1782 		goto out;
1783 
1784 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1785 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1786 
1787 	mcr->mcr_pkts = htole16(1);
1788 	mcr->mcr_flags = 0;
1789 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1790 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1791 	mcr->mcr_ipktbuf.pb_len = 0;
1792 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1793 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1794 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1795 	    UBS_PKTBUF_LEN);
1796 	mcr->mcr_opktbuf.pb_next = 0;
1797 
1798 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1799 	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1800 	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1801 
1802 	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1803 
1804 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1805 	rng->rng_used = 1;
1806 	ubsec_feed2(sc);
1807 	ubsecstats.hst_rng++;
1808 	splx(s);
1809 
1810 	return;
1811 
1812 out:
1813 	/*
1814 	 * Something weird happened, generate our own call back.
1815 	 */
1816 	sc->sc_nqueue2--;
1817 	splx(s);
1818 	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1819 }
1820 #endif /* UBSEC_NO_RNG */
1821 
1822 static void
1823 ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1824 {
1825 	bus_addr_t *paddr = (bus_addr_t*) arg;
1826 	*paddr = segs->ds_addr;
1827 }
1828 
1829 static int
1830 ubsec_dma_malloc(
1831 	struct ubsec_softc *sc,
1832 	bus_size_t size,
1833 	struct ubsec_dma_alloc *dma,
1834 	int mapflags
1835 )
1836 {
1837 	int r;
1838 
1839 	/* XXX could specify sc_dmat as parent but that just adds overhead */
1840 	r = bus_dma_tag_create(NULL,			/* parent */
1841 			       1, 0,			/* alignment, bounds */
1842 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1843 			       BUS_SPACE_MAXADDR,	/* highaddr */
1844 			       NULL, NULL,		/* filter, filterarg */
1845 			       size,			/* maxsize */
1846 			       1,			/* nsegments */
1847 			       size,			/* maxsegsize */
1848 			       BUS_DMA_ALLOCNOW,	/* flags */
1849 			       &dma->dma_tag);
1850 	if (r != 0) {
1851 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1852 			"bus_dma_tag_create failed; error %u\n", r);
1853 		goto fail_0;
1854 	}
1855 
1856 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1857 	if (r != 0) {
1858 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1859 			"bus_dmamap_create failed; error %u\n", r);
1860 		goto fail_1;
1861 	}
1862 
1863 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1864 			     BUS_DMA_NOWAIT, &dma->dma_map);
1865 	if (r != 0) {
1866 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1867 			"bus_dmammem_alloc failed; size %u, error %u\n",
1868 			size, r);
1869 		goto fail_2;
1870 	}
1871 
1872 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1873 		            size,
1874 			    ubsec_dmamap_cb,
1875 			    &dma->dma_paddr,
1876 			    mapflags | BUS_DMA_NOWAIT);
1877 	if (r != 0) {
1878 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1879 			"bus_dmamap_load failed; error %u\n", r);
1880 		goto fail_3;
1881 	}
1882 
1883 	dma->dma_size = size;
1884 	return (0);
1885 
1886 fail_3:
1887 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1888 fail_2:
1889 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1890 fail_1:
1891 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1892 	bus_dma_tag_destroy(dma->dma_tag);
1893 fail_0:
1894 	dma->dma_map = NULL;
1895 	dma->dma_tag = NULL;
1896 	return (r);
1897 }
1898 
1899 static void
1900 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1901 {
1902 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1903 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1904 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1905 	bus_dma_tag_destroy(dma->dma_tag);
1906 }
1907 
1908 /*
1909  * Resets the board.  Values in the regesters are left as is
1910  * from the reset (i.e. initial values are assigned elsewhere).
1911  */
1912 static void
1913 ubsec_reset_board(struct ubsec_softc *sc)
1914 {
1915     volatile u_int32_t ctrl;
1916 
1917     ctrl = READ_REG(sc, BS_CTRL);
1918     ctrl |= BS_CTRL_RESET;
1919     WRITE_REG(sc, BS_CTRL, ctrl);
1920 
1921     /*
1922      * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1923      */
1924     DELAY(10);
1925 }
1926 
1927 /*
1928  * Init Broadcom registers
1929  */
1930 static void
1931 ubsec_init_board(struct ubsec_softc *sc)
1932 {
1933 	u_int32_t ctrl;
1934 
1935 	ctrl = READ_REG(sc, BS_CTRL);
1936 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1937 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1938 
1939 	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1940 		ctrl |= BS_CTRL_MCR2INT;
1941 	else
1942 		ctrl &= ~BS_CTRL_MCR2INT;
1943 
1944 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1945 		ctrl &= ~BS_CTRL_SWNORM;
1946 
1947 	WRITE_REG(sc, BS_CTRL, ctrl);
1948 }
1949 
1950 /*
1951  * Init Broadcom PCI registers
1952  */
1953 static void
1954 ubsec_init_pciregs(device_t dev)
1955 {
1956 #if 0
1957 	u_int32_t misc;
1958 
1959 	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1960 	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1961 	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1962 	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1963 	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1964 	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1965 #endif
1966 
1967 	/*
1968 	 * This will set the cache line size to 1, this will
1969 	 * force the BCM58xx chip just to do burst read/writes.
1970 	 * Cache line read/writes are to slow
1971 	 */
1972 	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1973 }
1974 
1975 /*
1976  * Clean up after a chip crash.
1977  * It is assumed that the caller in splimp()
1978  */
1979 static void
1980 ubsec_cleanchip(struct ubsec_softc *sc)
1981 {
1982 	struct ubsec_q *q;
1983 
1984 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1985 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1986 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
1987 		ubsec_free_q(sc, q);
1988 	}
1989 	sc->sc_nqchip = 0;
1990 }
1991 
1992 /*
1993  * free a ubsec_q
1994  * It is assumed that the caller is within spimp()
1995  */
1996 static int
1997 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1998 {
1999 	struct ubsec_q *q2;
2000 	struct cryptop *crp;
2001 	int npkts;
2002 	int i;
2003 
2004 	npkts = q->q_nstacked_mcrs;
2005 
2006 	for (i = 0; i < npkts; i++) {
2007 		if(q->q_stacked_mcr[i]) {
2008 			q2 = q->q_stacked_mcr[i];
2009 
2010 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2011 				m_freem(q2->q_dst_m);
2012 
2013 			crp = (struct cryptop *)q2->q_crp;
2014 
2015 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2016 
2017 			crp->crp_etype = EFAULT;
2018 			crypto_done(crp);
2019 		} else {
2020 			break;
2021 		}
2022 	}
2023 
2024 	/*
2025 	 * Free header MCR
2026 	 */
2027 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2028 		m_freem(q->q_dst_m);
2029 
2030 	crp = (struct cryptop *)q->q_crp;
2031 
2032 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2033 
2034 	crp->crp_etype = EFAULT;
2035 	crypto_done(crp);
2036 	return(0);
2037 }
2038 
2039 /*
2040  * Routine to reset the chip and clean up.
2041  * It is assumed that the caller is in splimp()
2042  */
2043 static void
2044 ubsec_totalreset(struct ubsec_softc *sc)
2045 {
2046 	ubsec_reset_board(sc);
2047 	ubsec_init_board(sc);
2048 	ubsec_cleanchip(sc);
2049 }
2050 
2051 static int
2052 ubsec_dmamap_aligned(struct ubsec_operand *op)
2053 {
2054 	int i;
2055 
2056 	for (i = 0; i < op->nsegs; i++) {
2057 		if (op->segs[i].ds_addr & 3)
2058 			return (0);
2059 		if ((i != (op->nsegs - 1)) &&
2060 		    (op->segs[i].ds_len & 3))
2061 			return (0);
2062 	}
2063 	return (1);
2064 }
2065 
2066 static void
2067 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2068 {
2069 	switch (q->q_type) {
2070 	case UBS_CTXOP_MODEXP: {
2071 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2072 
2073 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2074 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2075 		ubsec_dma_free(sc, &me->me_M);
2076 		ubsec_dma_free(sc, &me->me_E);
2077 		ubsec_dma_free(sc, &me->me_C);
2078 		ubsec_dma_free(sc, &me->me_epb);
2079 		free(me, M_DEVBUF);
2080 		break;
2081 	}
2082 	case UBS_CTXOP_RSAPRIV: {
2083 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2084 
2085 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2086 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2087 		ubsec_dma_free(sc, &rp->rpr_msgin);
2088 		ubsec_dma_free(sc, &rp->rpr_msgout);
2089 		free(rp, M_DEVBUF);
2090 		break;
2091 	}
2092 	default:
2093 		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2094 		break;
2095 	}
2096 }
2097 
2098 static int
2099 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2100 {
2101 	struct ubsec_softc *sc = arg;
2102 	int r;
2103 
2104 	if (krp == NULL || krp->krp_callback == NULL)
2105 		return (EINVAL);
2106 
2107 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2108 		struct ubsec_q2 *q;
2109 
2110 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2111 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q, q_next);
2112 		ubsec_kfree(sc, q);
2113 	}
2114 
2115 	switch (krp->krp_op) {
2116 	case CRK_MOD_EXP:
2117 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2118 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2119 		else
2120 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2121 		break;
2122 	case CRK_MOD_EXP_CRT:
2123 		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2124 	default:
2125 		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2126 		    krp->krp_op);
2127 		krp->krp_status = EOPNOTSUPP;
2128 		crypto_kdone(krp);
2129 		return (0);
2130 	}
2131 	return (0);			/* silence compiler */
2132 }
2133 
2134 /*
2135  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2136  */
2137 static int
2138 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2139 {
2140 	struct ubsec_q2_modexp *me;
2141 	struct ubsec_mcr *mcr;
2142 	struct ubsec_ctx_modexp *ctx;
2143 	struct ubsec_pktbuf *epb;
2144 	int s, err = 0;
2145 	u_int nbits, normbits, mbits, shiftbits, ebits;
2146 
2147 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2148 	if (me == NULL) {
2149 		err = ENOMEM;
2150 		goto errout;
2151 	}
2152 	bzero(me, sizeof *me);
2153 	me->me_krp = krp;
2154 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2155 
2156 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2157 	if (nbits <= 512)
2158 		normbits = 512;
2159 	else if (nbits <= 768)
2160 		normbits = 768;
2161 	else if (nbits <= 1024)
2162 		normbits = 1024;
2163 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2164 		normbits = 1536;
2165 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2166 		normbits = 2048;
2167 	else {
2168 		err = E2BIG;
2169 		goto errout;
2170 	}
2171 
2172 	shiftbits = normbits - nbits;
2173 
2174 	me->me_modbits = nbits;
2175 	me->me_shiftbits = shiftbits;
2176 	me->me_normbits = normbits;
2177 
2178 	/* Sanity check: result bits must be >= true modulus bits. */
2179 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2180 		err = ERANGE;
2181 		goto errout;
2182 	}
2183 
2184 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2185 	    &me->me_q.q_mcr, 0)) {
2186 		err = ENOMEM;
2187 		goto errout;
2188 	}
2189 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2190 
2191 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2192 	    &me->me_q.q_ctx, 0)) {
2193 		err = ENOMEM;
2194 		goto errout;
2195 	}
2196 
2197 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2198 	if (mbits > nbits) {
2199 		err = E2BIG;
2200 		goto errout;
2201 	}
2202 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2203 		err = ENOMEM;
2204 		goto errout;
2205 	}
2206 	ubsec_kshift_r(shiftbits,
2207 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2208 	    me->me_M.dma_vaddr, normbits);
2209 
2210 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2211 		err = ENOMEM;
2212 		goto errout;
2213 	}
2214 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2215 
2216 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2217 	if (ebits > nbits) {
2218 		err = E2BIG;
2219 		goto errout;
2220 	}
2221 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2222 		err = ENOMEM;
2223 		goto errout;
2224 	}
2225 	ubsec_kshift_r(shiftbits,
2226 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2227 	    me->me_E.dma_vaddr, normbits);
2228 
2229 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2230 	    &me->me_epb, 0)) {
2231 		err = ENOMEM;
2232 		goto errout;
2233 	}
2234 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2235 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2236 	epb->pb_next = 0;
2237 	epb->pb_len = htole32(normbits / 8);
2238 
2239 #ifdef UBSEC_DEBUG
2240 	if (ubsec_debug) {
2241 		printf("Epb ");
2242 		ubsec_dump_pb(epb);
2243 	}
2244 #endif
2245 
2246 	mcr->mcr_pkts = htole16(1);
2247 	mcr->mcr_flags = 0;
2248 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2249 	mcr->mcr_reserved = 0;
2250 	mcr->mcr_pktlen = 0;
2251 
2252 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2253 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2254 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2255 
2256 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2257 	mcr->mcr_opktbuf.pb_next = 0;
2258 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2259 
2260 #ifdef DIAGNOSTIC
2261 	/* Misaligned output buffer will hang the chip. */
2262 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2263 		panic("%s: modexp invalid addr 0x%x\n",
2264 		    device_get_nameunit(sc->sc_dev),
2265 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2266 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2267 		panic("%s: modexp invalid len 0x%x\n",
2268 		    device_get_nameunit(sc->sc_dev),
2269 		    letoh32(mcr->mcr_opktbuf.pb_len));
2270 #endif
2271 
2272 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2273 	bzero(ctx, sizeof(*ctx));
2274 	ubsec_kshift_r(shiftbits,
2275 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2276 	    ctx->me_N, normbits);
2277 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2278 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2279 	ctx->me_E_len = htole16(nbits);
2280 	ctx->me_N_len = htole16(nbits);
2281 
2282 #ifdef UBSEC_DEBUG
2283 	if (ubsec_debug) {
2284 		ubsec_dump_mcr(mcr);
2285 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2286 	}
2287 #endif
2288 
2289 	/*
2290 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2291 	 * everything else.
2292 	 */
2293 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2294 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2295 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2296 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2297 
2298 	/* Enqueue and we're done... */
2299 	s = splimp();
2300 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2301 	ubsec_feed2(sc);
2302 	ubsecstats.hst_modexp++;
2303 	splx(s);
2304 
2305 	return (0);
2306 
2307 errout:
2308 	if (me != NULL) {
2309 		if (me->me_q.q_mcr.dma_map != NULL)
2310 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2311 		if (me->me_q.q_ctx.dma_map != NULL) {
2312 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2313 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2314 		}
2315 		if (me->me_M.dma_map != NULL) {
2316 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2317 			ubsec_dma_free(sc, &me->me_M);
2318 		}
2319 		if (me->me_E.dma_map != NULL) {
2320 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2321 			ubsec_dma_free(sc, &me->me_E);
2322 		}
2323 		if (me->me_C.dma_map != NULL) {
2324 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2325 			ubsec_dma_free(sc, &me->me_C);
2326 		}
2327 		if (me->me_epb.dma_map != NULL)
2328 			ubsec_dma_free(sc, &me->me_epb);
2329 		free(me, M_DEVBUF);
2330 	}
2331 	krp->krp_status = err;
2332 	crypto_kdone(krp);
2333 	return (0);
2334 }
2335 
2336 /*
2337  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2338  */
2339 static int
2340 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2341 {
2342 	struct ubsec_q2_modexp *me;
2343 	struct ubsec_mcr *mcr;
2344 	struct ubsec_ctx_modexp *ctx;
2345 	struct ubsec_pktbuf *epb;
2346 	int s, err = 0;
2347 	u_int nbits, normbits, mbits, shiftbits, ebits;
2348 
2349 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2350 	if (me == NULL) {
2351 		err = ENOMEM;
2352 		goto errout;
2353 	}
2354 	bzero(me, sizeof *me);
2355 	me->me_krp = krp;
2356 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2357 
2358 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2359 	if (nbits <= 512)
2360 		normbits = 512;
2361 	else if (nbits <= 768)
2362 		normbits = 768;
2363 	else if (nbits <= 1024)
2364 		normbits = 1024;
2365 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2366 		normbits = 1536;
2367 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2368 		normbits = 2048;
2369 	else {
2370 		err = E2BIG;
2371 		goto errout;
2372 	}
2373 
2374 	shiftbits = normbits - nbits;
2375 
2376 	/* XXX ??? */
2377 	me->me_modbits = nbits;
2378 	me->me_shiftbits = shiftbits;
2379 	me->me_normbits = normbits;
2380 
2381 	/* Sanity check: result bits must be >= true modulus bits. */
2382 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2383 		err = ERANGE;
2384 		goto errout;
2385 	}
2386 
2387 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2388 	    &me->me_q.q_mcr, 0)) {
2389 		err = ENOMEM;
2390 		goto errout;
2391 	}
2392 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2393 
2394 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2395 	    &me->me_q.q_ctx, 0)) {
2396 		err = ENOMEM;
2397 		goto errout;
2398 	}
2399 
2400 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2401 	if (mbits > nbits) {
2402 		err = E2BIG;
2403 		goto errout;
2404 	}
2405 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2406 		err = ENOMEM;
2407 		goto errout;
2408 	}
2409 	bzero(me->me_M.dma_vaddr, normbits / 8);
2410 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2411 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2412 
2413 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2414 		err = ENOMEM;
2415 		goto errout;
2416 	}
2417 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2418 
2419 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2420 	if (ebits > nbits) {
2421 		err = E2BIG;
2422 		goto errout;
2423 	}
2424 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2425 		err = ENOMEM;
2426 		goto errout;
2427 	}
2428 	bzero(me->me_E.dma_vaddr, normbits / 8);
2429 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2430 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2431 
2432 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2433 	    &me->me_epb, 0)) {
2434 		err = ENOMEM;
2435 		goto errout;
2436 	}
2437 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2438 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2439 	epb->pb_next = 0;
2440 	epb->pb_len = htole32((ebits + 7) / 8);
2441 
2442 #ifdef UBSEC_DEBUG
2443 	if (ubsec_debug) {
2444 		printf("Epb ");
2445 		ubsec_dump_pb(epb);
2446 	}
2447 #endif
2448 
2449 	mcr->mcr_pkts = htole16(1);
2450 	mcr->mcr_flags = 0;
2451 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2452 	mcr->mcr_reserved = 0;
2453 	mcr->mcr_pktlen = 0;
2454 
2455 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2456 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2457 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2458 
2459 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2460 	mcr->mcr_opktbuf.pb_next = 0;
2461 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2462 
2463 #ifdef DIAGNOSTIC
2464 	/* Misaligned output buffer will hang the chip. */
2465 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2466 		panic("%s: modexp invalid addr 0x%x\n",
2467 		    device_get_nameunit(sc->sc_dev),
2468 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2469 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2470 		panic("%s: modexp invalid len 0x%x\n",
2471 		    device_get_nameunit(sc->sc_dev),
2472 		    letoh32(mcr->mcr_opktbuf.pb_len));
2473 #endif
2474 
2475 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2476 	bzero(ctx, sizeof(*ctx));
2477 	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2478 	    (nbits + 7) / 8);
2479 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2480 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2481 	ctx->me_E_len = htole16(ebits);
2482 	ctx->me_N_len = htole16(nbits);
2483 
2484 #ifdef UBSEC_DEBUG
2485 	if (ubsec_debug) {
2486 		ubsec_dump_mcr(mcr);
2487 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2488 	}
2489 #endif
2490 
2491 	/*
2492 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2493 	 * everything else.
2494 	 */
2495 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2496 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2497 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2498 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2499 
2500 	/* Enqueue and we're done... */
2501 	s = splimp();
2502 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2503 	ubsec_feed2(sc);
2504 	splx(s);
2505 
2506 	return (0);
2507 
2508 errout:
2509 	if (me != NULL) {
2510 		if (me->me_q.q_mcr.dma_map != NULL)
2511 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2512 		if (me->me_q.q_ctx.dma_map != NULL) {
2513 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2514 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2515 		}
2516 		if (me->me_M.dma_map != NULL) {
2517 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2518 			ubsec_dma_free(sc, &me->me_M);
2519 		}
2520 		if (me->me_E.dma_map != NULL) {
2521 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2522 			ubsec_dma_free(sc, &me->me_E);
2523 		}
2524 		if (me->me_C.dma_map != NULL) {
2525 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2526 			ubsec_dma_free(sc, &me->me_C);
2527 		}
2528 		if (me->me_epb.dma_map != NULL)
2529 			ubsec_dma_free(sc, &me->me_epb);
2530 		free(me, M_DEVBUF);
2531 	}
2532 	krp->krp_status = err;
2533 	crypto_kdone(krp);
2534 	return (0);
2535 }
2536 
2537 static int
2538 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2539 {
2540 	struct ubsec_q2_rsapriv *rp = NULL;
2541 	struct ubsec_mcr *mcr;
2542 	struct ubsec_ctx_rsapriv *ctx;
2543 	int s, err = 0;
2544 	u_int padlen, msglen;
2545 
2546 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2547 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2548 	if (msglen > padlen)
2549 		padlen = msglen;
2550 
2551 	if (padlen <= 256)
2552 		padlen = 256;
2553 	else if (padlen <= 384)
2554 		padlen = 384;
2555 	else if (padlen <= 512)
2556 		padlen = 512;
2557 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2558 		padlen = 768;
2559 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2560 		padlen = 1024;
2561 	else {
2562 		err = E2BIG;
2563 		goto errout;
2564 	}
2565 
2566 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2567 		err = E2BIG;
2568 		goto errout;
2569 	}
2570 
2571 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2572 		err = E2BIG;
2573 		goto errout;
2574 	}
2575 
2576 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2577 		err = E2BIG;
2578 		goto errout;
2579 	}
2580 
2581 	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2582 	if (rp == NULL)
2583 		return (ENOMEM);
2584 	bzero(rp, sizeof *rp);
2585 	rp->rpr_krp = krp;
2586 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2587 
2588 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2589 	    &rp->rpr_q.q_mcr, 0)) {
2590 		err = ENOMEM;
2591 		goto errout;
2592 	}
2593 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2594 
2595 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2596 	    &rp->rpr_q.q_ctx, 0)) {
2597 		err = ENOMEM;
2598 		goto errout;
2599 	}
2600 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2601 	bzero(ctx, sizeof *ctx);
2602 
2603 	/* Copy in p */
2604 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2605 	    &ctx->rpr_buf[0 * (padlen / 8)],
2606 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2607 
2608 	/* Copy in q */
2609 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2610 	    &ctx->rpr_buf[1 * (padlen / 8)],
2611 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2612 
2613 	/* Copy in dp */
2614 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2615 	    &ctx->rpr_buf[2 * (padlen / 8)],
2616 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2617 
2618 	/* Copy in dq */
2619 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2620 	    &ctx->rpr_buf[3 * (padlen / 8)],
2621 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2622 
2623 	/* Copy in pinv */
2624 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2625 	    &ctx->rpr_buf[4 * (padlen / 8)],
2626 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2627 
2628 	msglen = padlen * 2;
2629 
2630 	/* Copy in input message (aligned buffer/length). */
2631 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2632 		/* Is this likely? */
2633 		err = E2BIG;
2634 		goto errout;
2635 	}
2636 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2637 		err = ENOMEM;
2638 		goto errout;
2639 	}
2640 	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2641 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2642 	    rp->rpr_msgin.dma_vaddr,
2643 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2644 
2645 	/* Prepare space for output message (aligned buffer/length). */
2646 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2647 		/* Is this likely? */
2648 		err = E2BIG;
2649 		goto errout;
2650 	}
2651 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2652 		err = ENOMEM;
2653 		goto errout;
2654 	}
2655 	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2656 
2657 	mcr->mcr_pkts = htole16(1);
2658 	mcr->mcr_flags = 0;
2659 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2660 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2661 	mcr->mcr_ipktbuf.pb_next = 0;
2662 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2663 	mcr->mcr_reserved = 0;
2664 	mcr->mcr_pktlen = htole16(msglen);
2665 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2666 	mcr->mcr_opktbuf.pb_next = 0;
2667 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2668 
2669 #ifdef DIAGNOSTIC
2670 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2671 		panic("%s: rsapriv: invalid msgin %x(0x%x)",
2672 		    device_get_nameunit(sc->sc_dev),
2673 		    rp->rpr_msgin.dma_paddr, rp->rpr_msgin.dma_size);
2674 	}
2675 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2676 		panic("%s: rsapriv: invalid msgout %x(0x%x)",
2677 		    device_get_nameunit(sc->sc_dev),
2678 		    rp->rpr_msgout.dma_paddr, rp->rpr_msgout.dma_size);
2679 	}
2680 #endif
2681 
2682 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2683 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2684 	ctx->rpr_q_len = htole16(padlen);
2685 	ctx->rpr_p_len = htole16(padlen);
2686 
2687 	/*
2688 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2689 	 * everything else.
2690 	 */
2691 	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2692 	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2693 
2694 	/* Enqueue and we're done... */
2695 	s = splimp();
2696 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2697 	ubsec_feed2(sc);
2698 	ubsecstats.hst_modexpcrt++;
2699 	splx(s);
2700 	return (0);
2701 
2702 errout:
2703 	if (rp != NULL) {
2704 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2705 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2706 		if (rp->rpr_msgin.dma_map != NULL) {
2707 			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2708 			ubsec_dma_free(sc, &rp->rpr_msgin);
2709 		}
2710 		if (rp->rpr_msgout.dma_map != NULL) {
2711 			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2712 			ubsec_dma_free(sc, &rp->rpr_msgout);
2713 		}
2714 		free(rp, M_DEVBUF);
2715 	}
2716 	krp->krp_status = err;
2717 	crypto_kdone(krp);
2718 	return (0);
2719 }
2720 
2721 #ifdef UBSEC_DEBUG
2722 static void
2723 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2724 {
2725 	printf("addr 0x%x (0x%x) next 0x%x\n",
2726 	    pb->pb_addr, pb->pb_len, pb->pb_next);
2727 }
2728 
2729 static void
2730 ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2731 {
2732 	printf("CTX (0x%x):\n", c->ctx_len);
2733 	switch (letoh16(c->ctx_op)) {
2734 	case UBS_CTXOP_RNGBYPASS:
2735 	case UBS_CTXOP_RNGSHA1:
2736 		break;
2737 	case UBS_CTXOP_MODEXP:
2738 	{
2739 		struct ubsec_ctx_modexp *cx = (void *)c;
2740 		int i, len;
2741 
2742 		printf(" Elen %u, Nlen %u\n",
2743 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2744 		len = (cx->me_N_len + 7)/8;
2745 		for (i = 0; i < len; i++)
2746 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2747 		printf("\n");
2748 		break;
2749 	}
2750 	default:
2751 		printf("unknown context: %x\n", c->ctx_op);
2752 	}
2753 	printf("END CTX\n");
2754 }
2755 
2756 static void
2757 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2758 {
2759 	volatile struct ubsec_mcr_add *ma;
2760 	int i;
2761 
2762 	printf("MCR:\n");
2763 	printf(" pkts: %u, flags 0x%x\n",
2764 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2765 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2766 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2767 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2768 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2769 		    letoh16(ma->mcr_reserved));
2770 		printf(" %d: ipkt ", i);
2771 		ubsec_dump_pb(&ma->mcr_ipktbuf);
2772 		printf(" %d: opkt ", i);
2773 		ubsec_dump_pb(&ma->mcr_opktbuf);
2774 		ma++;
2775 	}
2776 	printf("END MCR\n");
2777 }
2778 #endif /* UBSEC_DEBUG */
2779 
2780 /*
2781  * Return the number of significant bits of a big number.
2782  */
2783 static int
2784 ubsec_ksigbits(struct crparam *cr)
2785 {
2786 	u_int plen = (cr->crp_nbits + 7) / 8;
2787 	int i, sig = plen * 8;
2788 	u_int8_t c, *p = cr->crp_p;
2789 
2790 	for (i = plen - 1; i >= 0; i--) {
2791 		c = p[i];
2792 		if (c != 0) {
2793 			while ((c & 0x80) == 0) {
2794 				sig--;
2795 				c <<= 1;
2796 			}
2797 			break;
2798 		}
2799 		sig -= 8;
2800 	}
2801 	return (sig);
2802 }
2803 
2804 static void
2805 ubsec_kshift_r(
2806 	u_int shiftbits,
2807 	u_int8_t *src, u_int srcbits,
2808 	u_int8_t *dst, u_int dstbits)
2809 {
2810 	u_int slen, dlen;
2811 	int i, si, di, n;
2812 
2813 	slen = (srcbits + 7) / 8;
2814 	dlen = (dstbits + 7) / 8;
2815 
2816 	for (i = 0; i < slen; i++)
2817 		dst[i] = src[i];
2818 	for (i = 0; i < dlen - slen; i++)
2819 		dst[slen + i] = 0;
2820 
2821 	n = shiftbits / 8;
2822 	if (n != 0) {
2823 		si = dlen - n - 1;
2824 		di = dlen - 1;
2825 		while (si >= 0)
2826 			dst[di--] = dst[si--];
2827 		while (di >= 0)
2828 			dst[di--] = 0;
2829 	}
2830 
2831 	n = shiftbits % 8;
2832 	if (n != 0) {
2833 		for (i = dlen - 1; i > 0; i--)
2834 			dst[i] = (dst[i] << n) |
2835 			    (dst[i - 1] >> (8 - n));
2836 		dst[0] = dst[0] << n;
2837 	}
2838 }
2839 
2840 static void
2841 ubsec_kshift_l(
2842 	u_int shiftbits,
2843 	u_int8_t *src, u_int srcbits,
2844 	u_int8_t *dst, u_int dstbits)
2845 {
2846 	int slen, dlen, i, n;
2847 
2848 	slen = (srcbits + 7) / 8;
2849 	dlen = (dstbits + 7) / 8;
2850 
2851 	n = shiftbits / 8;
2852 	for (i = 0; i < slen; i++)
2853 		dst[i] = src[i + n];
2854 	for (i = 0; i < dlen - slen; i++)
2855 		dst[slen + i] = 0;
2856 
2857 	n = shiftbits % 8;
2858 	if (n != 0) {
2859 		for (i = 0; i < (dlen - 1); i++)
2860 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2861 		dst[dlen - 1] = dst[dlen - 1] >> n;
2862 	}
2863 }
2864