xref: /dragonfly/sys/dev/crypto/ubsec/ubsec.c (revision a68e0df0)
1 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.12 2003/06/04 17:56:59 sam Exp $ */
2 /* $DragonFly: src/sys/dev/crypto/ubsec/ubsec.c,v 1.13 2006/12/22 23:26:15 swildner Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Jason L. Wright
23  * 4. The name of the author may not be used to endorse or promote products
24  *    derived from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
27  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
30  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
34  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
35  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  *
38  * Effort sponsored in part by the Defense Advanced Research Projects
39  * Agency (DARPA) and Air Force Research Laboratory, Air Force
40  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
41  *
42  */
43 
44 /*
45  * uBsec 5[56]01, 58xx hardware crypto accelerator
46  */
47 
48 #include "opt_ubsec.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/errno.h>
54 #include <sys/malloc.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/endian.h>
59 #include <sys/bus.h>
60 #include <sys/rman.h>
61 #include <sys/md5.h>
62 #include <sys/random.h>
63 #include <sys/thread2.h>
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 
68 #include <machine/clock.h>
69 
70 #include <crypto/sha1.h>
71 #include <opencrypto/cryptodev.h>
72 #include <opencrypto/cryptosoft.h>
73 
74 #include "cryptodev_if.h"
75 
76 #include <bus/pci/pcivar.h>
77 #include <bus/pci/pcireg.h>
78 
79 /* grr, #defines for gratuitous incompatibility in queue.h */
80 #define	SIMPLEQ_HEAD		STAILQ_HEAD
81 #define	SIMPLEQ_ENTRY		STAILQ_ENTRY
82 #define	SIMPLEQ_INIT		STAILQ_INIT
83 #define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
84 #define	SIMPLEQ_EMPTY		STAILQ_EMPTY
85 #define	SIMPLEQ_FIRST		STAILQ_FIRST
86 #define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD
87 #define	SIMPLEQ_FOREACH		STAILQ_FOREACH
88 /* ditto for endian.h */
89 #define	letoh16(x)		le16toh(x)
90 #define	letoh32(x)		le32toh(x)
91 
92 #ifdef UBSEC_RNDTEST
93 #include "../rndtest/rndtest.h"
94 #endif
95 #include "ubsecreg.h"
96 #include "ubsecvar.h"
97 
98 /*
99  * Prototypes and count for the pci_device structure
100  */
101 static	int ubsec_probe(device_t);
102 static	int ubsec_attach(device_t);
103 static	int ubsec_detach(device_t);
104 static	int ubsec_suspend(device_t);
105 static	int ubsec_resume(device_t);
106 static	void ubsec_shutdown(device_t);
107 static	void ubsec_intr(void *);
108 static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
109 static	int ubsec_freesession(void *, u_int64_t);
110 static	int ubsec_process(void *, struct cryptop *, int);
111 static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
112 static	void ubsec_feed(struct ubsec_softc *);
113 static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
114 static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
115 static	int ubsec_feed2(struct ubsec_softc *);
116 static	void ubsec_rng(void *);
117 static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
118 			     struct ubsec_dma_alloc *, int);
119 #define	ubsec_dma_sync(_dma, _flags) \
120 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
121 static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
122 static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
123 
124 static	void ubsec_reset_board(struct ubsec_softc *sc);
125 static	void ubsec_init_board(struct ubsec_softc *sc);
126 static	void ubsec_init_pciregs(device_t dev);
127 static	void ubsec_totalreset(struct ubsec_softc *sc);
128 
129 static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
130 
131 static	int ubsec_kprocess(void*, struct cryptkop *, int);
132 static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
133 static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
134 static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
135 static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
136 static	int ubsec_ksigbits(struct crparam *);
137 static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
138 static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
139 
140 
141 static device_method_t ubsec_methods[] = {
142 	/* Device interface */
143 	DEVMETHOD(device_probe,		ubsec_probe),
144 	DEVMETHOD(device_attach,	ubsec_attach),
145 	DEVMETHOD(device_detach,	ubsec_detach),
146 	DEVMETHOD(device_suspend,	ubsec_suspend),
147 	DEVMETHOD(device_resume,	ubsec_resume),
148 	DEVMETHOD(device_shutdown,	ubsec_shutdown),
149 
150 	/* bus interface */
151 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
152 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
153 
154 	/* crypto device methods */
155 	DEVMETHOD(cryptodev_newsession,	ubsec_newsession),
156 	DEVMETHOD(cryptodev_freesession,ubsec_freesession),
157 	DEVMETHOD(cryptodev_process,	ubsec_process),
158 	DEVMETHOD(cryptodev_kprocess,	ubsec_kprocess),
159 
160 	{ 0, 0 }
161 };
162 static driver_t ubsec_driver = {
163 	"ubsec",
164 	ubsec_methods,
165 	sizeof (struct ubsec_softc)
166 };
167 static devclass_t ubsec_devclass;
168 
169 DECLARE_DUMMY_MODULE(ubsec);
170 DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
171 MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
172 #ifdef UBSEC_RNDTEST
173 MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
174 #endif
175 
176 SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
177 
178 #ifdef UBSEC_DEBUG
179 static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
180 static	void ubsec_dump_mcr(struct ubsec_mcr *);
181 static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
182 
183 static	int ubsec_debug = 0;
184 SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
185 	    0, "control debugging msgs");
186 #endif
187 
188 #define	READ_REG(sc,r) \
189 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
190 
191 #define WRITE_REG(sc,reg,val) \
192 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
193 
194 #define	SWAP32(x) (x) = htole32(ntohl((x)))
195 #define	HTOLE32(x) (x) = htole32(x)
196 
197 
198 struct ubsec_stats ubsecstats;
199 SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
200 	    ubsec_stats, "driver statistics");
201 
202 static int
203 ubsec_probe(device_t dev)
204 {
205 	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
206 	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
207 	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
208 		return (0);
209 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
210 	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
211 	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
212 		return (0);
213 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
214 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
215 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
216 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
217 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
218 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
219 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
220 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823
221 	     ))
222 		return (0);
223 	return (ENXIO);
224 }
225 
226 static const char*
227 ubsec_partname(struct ubsec_softc *sc)
228 {
229 	/* XXX sprintf numbers when not decoded */
230 	switch (pci_get_vendor(sc->sc_dev)) {
231 	case PCI_VENDOR_BROADCOM:
232 		switch (pci_get_device(sc->sc_dev)) {
233 		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
234 		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
235 		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
236 		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
237 		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
238 		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
239 		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
240 		}
241 		return "Broadcom unknown-part";
242 	case PCI_VENDOR_BLUESTEEL:
243 		switch (pci_get_device(sc->sc_dev)) {
244 		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
245 		}
246 		return "Bluesteel unknown-part";
247 	case PCI_VENDOR_SUN:
248 		switch (pci_get_device(sc->sc_dev)) {
249 		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
250 		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
251 		}
252 		return "Sun unknown-part";
253 	}
254 	return "Unknown-vendor unknown-part";
255 }
256 
257 static void
258 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
259 {
260 	u_int32_t *p = (u_int32_t *)buf;
261 	for (count /= sizeof (u_int32_t); count; count--)
262 		add_true_randomness(*p++);
263 }
264 
265 static int
266 ubsec_attach(device_t dev)
267 {
268 	struct ubsec_softc *sc = device_get_softc(dev);
269 	struct ubsec_dma *dmap;
270 	u_int32_t cmd, i;
271 	int rid;
272 
273 	KASSERT(sc != NULL, ("ubsec_attach: null software carrier!"));
274 	bzero(sc, sizeof (*sc));
275 	sc->sc_dev = dev;
276 
277 	SIMPLEQ_INIT(&sc->sc_queue);
278 	SIMPLEQ_INIT(&sc->sc_qchip);
279 	SIMPLEQ_INIT(&sc->sc_queue2);
280 	SIMPLEQ_INIT(&sc->sc_qchip2);
281 	SIMPLEQ_INIT(&sc->sc_q2free);
282 
283 	/* XXX handle power management */
284 
285 	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
286 
287 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
288 	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
289 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
290 
291 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
292 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
293 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
294 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
295 
296 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
297 	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
298 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
299 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
300 
301 	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
302 	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
303 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
304 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823)) ||
305 	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
306 	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
307 	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
308 		/* NB: the 5821/5822 defines some additional status bits */
309 		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
310 		    BS_STAT_MCR2_ALLEMPTY;
311 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
312 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
313 	}
314 
315 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
316 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
317 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
318 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
319 
320 	if (!(cmd & PCIM_CMD_MEMEN)) {
321 		device_printf(dev, "failed to enable memory mapping\n");
322 		goto bad;
323 	}
324 
325 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
326 		device_printf(dev, "failed to enable bus mastering\n");
327 		goto bad;
328 	}
329 
330 	/*
331 	 * Setup memory-mapping of PCI registers.
332 	 */
333 	rid = BS_BAR;
334 	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
335 				       0, ~0, 1, RF_ACTIVE);
336 	if (sc->sc_sr == NULL) {
337 		device_printf(dev, "cannot map register space\n");
338 		goto bad;
339 	}
340 	sc->sc_st = rman_get_bustag(sc->sc_sr);
341 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
342 
343 	/*
344 	 * Arrange interrupt line.
345 	 */
346 	rid = 0;
347 	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
348 					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
349 	if (sc->sc_irq == NULL) {
350 		device_printf(dev, "could not map interrupt\n");
351 		goto bad1;
352 	}
353 	/*
354 	 * NB: Network code assumes we are blocked with splimp()
355 	 *     so make sure the IRQ is mapped appropriately.
356 	 */
357 	if (bus_setup_intr(dev, sc->sc_irq, 0,
358 			   ubsec_intr, sc,
359 			   &sc->sc_ih, NULL)) {
360 		device_printf(dev, "could not establish interrupt\n");
361 		goto bad2;
362 	}
363 
364 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
365 	if (sc->sc_cid < 0) {
366 		device_printf(dev, "could not get crypto driver id\n");
367 		goto bad3;
368 	}
369 
370 	/*
371 	 * Setup DMA descriptor area.
372 	 */
373 	if (bus_dma_tag_create(NULL,			/* parent */
374 			       1, 0,			/* alignment, bounds */
375 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
376 			       BUS_SPACE_MAXADDR,	/* highaddr */
377 			       NULL, NULL,		/* filter, filterarg */
378 			       0x3ffff,			/* maxsize */
379 			       UBS_MAX_SCATTER,		/* nsegments */
380 			       0xffff,			/* maxsegsize */
381 			       BUS_DMA_ALLOCNOW,	/* flags */
382 			       &sc->sc_dmat)) {
383 		device_printf(dev, "cannot allocate DMA tag\n");
384 		goto bad4;
385 	}
386 	SIMPLEQ_INIT(&sc->sc_freequeue);
387 	dmap = sc->sc_dmaa;
388 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
389 		struct ubsec_q *q;
390 
391 		q = kmalloc(sizeof(struct ubsec_q), M_DEVBUF, M_WAITOK);
392 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
393 		    &dmap->d_alloc, 0)) {
394 			device_printf(dev, "cannot allocate dma buffers\n");
395 			kfree(q, M_DEVBUF);
396 			break;
397 		}
398 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
399 
400 		q->q_dma = dmap;
401 		sc->sc_queuea[i] = q;
402 
403 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
404 	}
405 
406 	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
407 
408 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
409 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
410 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
411 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
412 
413 	/*
414 	 * Reset Broadcom chip
415 	 */
416 	ubsec_reset_board(sc);
417 
418 	/*
419 	 * Init Broadcom specific PCI settings
420 	 */
421 	ubsec_init_pciregs(dev);
422 
423 	/*
424 	 * Init Broadcom chip
425 	 */
426 	ubsec_init_board(sc);
427 
428 #ifndef UBSEC_NO_RNG
429 	if (sc->sc_flags & UBS_FLAGS_RNG) {
430 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
431 #ifdef UBSEC_RNDTEST
432 		sc->sc_rndtest = rndtest_attach(dev);
433 		if (sc->sc_rndtest)
434 			sc->sc_harvest = rndtest_harvest;
435 		else
436 			sc->sc_harvest = default_harvest;
437 #else
438 		sc->sc_harvest = default_harvest;
439 #endif
440 
441 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
442 		    &sc->sc_rng.rng_q.q_mcr, 0))
443 			goto skip_rng;
444 
445 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
446 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
447 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
448 			goto skip_rng;
449 		}
450 
451 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
452 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
453 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
454 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
455 			goto skip_rng;
456 		}
457 
458 		if (hz >= 100)
459 			sc->sc_rnghz = hz / 100;
460 		else
461 			sc->sc_rnghz = 1;
462 		callout_init(&sc->sc_rngto);
463 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
464 skip_rng:
465 	;
466 	}
467 #endif /* UBSEC_NO_RNG */
468 
469 	if (sc->sc_flags & UBS_FLAGS_KEY) {
470 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
471 
472 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
473 #if 0
474 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
475 #endif
476 	}
477 	return (0);
478 bad4:
479 	crypto_unregister_all(sc->sc_cid);
480 bad3:
481 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
482 bad2:
483 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
484 bad1:
485 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
486 bad:
487 	return (ENXIO);
488 }
489 
490 /*
491  * Detach a device that successfully probed.
492  */
493 static int
494 ubsec_detach(device_t dev)
495 {
496 	struct ubsec_softc *sc = device_get_softc(dev);
497 
498 	KASSERT(sc != NULL, ("ubsec_detach: null software carrier"));
499 
500 	/* XXX wait/abort active ops */
501 
502 	crit_enter();
503 
504 	callout_stop(&sc->sc_rngto);
505 
506 	crypto_unregister_all(sc->sc_cid);
507 
508 #ifdef UBSEC_RNDTEST
509 	if (sc->sc_rndtest)
510 		rndtest_detach(sc->sc_rndtest);
511 #endif
512 
513 	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
514 		struct ubsec_q *q;
515 
516 		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
517 		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
518 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
519 		kfree(q, M_DEVBUF);
520 	}
521 #ifndef UBSEC_NO_RNG
522 	if (sc->sc_flags & UBS_FLAGS_RNG) {
523 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
524 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
525 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
526 	}
527 #endif /* UBSEC_NO_RNG */
528 
529 	bus_generic_detach(dev);
530 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
531 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
532 
533 	bus_dma_tag_destroy(sc->sc_dmat);
534 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
535 
536 	crit_exit();
537 
538 	return (0);
539 }
540 
541 /*
542  * Stop all chip i/o so that the kernel's probe routines don't
543  * get confused by errant DMAs when rebooting.
544  */
545 static void
546 ubsec_shutdown(device_t dev)
547 {
548 #ifdef notyet
549 	ubsec_stop(device_get_softc(dev));
550 #endif
551 }
552 
553 /*
554  * Device suspend routine.
555  */
556 static int
557 ubsec_suspend(device_t dev)
558 {
559 	struct ubsec_softc *sc = device_get_softc(dev);
560 
561 	KASSERT(sc != NULL, ("ubsec_suspend: null software carrier"));
562 #ifdef notyet
563 	/* XXX stop the device and save PCI settings */
564 #endif
565 	sc->sc_suspended = 1;
566 
567 	return (0);
568 }
569 
570 static int
571 ubsec_resume(device_t dev)
572 {
573 	struct ubsec_softc *sc = device_get_softc(dev);
574 
575 	KASSERT(sc != NULL, ("ubsec_resume: null software carrier"));
576 #ifdef notyet
577 	/* XXX retore PCI settings and start the device */
578 #endif
579 	sc->sc_suspended = 0;
580 	return (0);
581 }
582 
583 /*
584  * UBSEC Interrupt routine
585  */
586 static void
587 ubsec_intr(void *arg)
588 {
589 	struct ubsec_softc *sc = arg;
590 	volatile u_int32_t stat;
591 	struct ubsec_q *q;
592 	struct ubsec_dma *dmap;
593 	int npkts = 0, i;
594 
595 	stat = READ_REG(sc, BS_STAT);
596 	stat &= sc->sc_statmask;
597 	if (stat == 0) {
598 		return;
599 	}
600 
601 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
602 
603 	/*
604 	 * Check to see if we have any packets waiting for us
605 	 */
606 	if ((stat & BS_STAT_MCR1_DONE)) {
607 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
608 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
609 			dmap = q->q_dma;
610 
611 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
612 				break;
613 
614 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
615 
616 			npkts = q->q_nstacked_mcrs;
617 			sc->sc_nqchip -= 1+npkts;
618 			/*
619 			 * search for further sc_qchip ubsec_q's that share
620 			 * the same MCR, and complete them too, they must be
621 			 * at the top.
622 			 */
623 			for (i = 0; i < npkts; i++) {
624 				if(q->q_stacked_mcr[i]) {
625 					ubsec_callback(sc, q->q_stacked_mcr[i]);
626 				} else {
627 					break;
628 				}
629 			}
630 			ubsec_callback(sc, q);
631 		}
632 
633 		/*
634 		 * Don't send any more packet to chip if there has been
635 		 * a DMAERR.
636 		 */
637 		if (!(stat & BS_STAT_DMAERR))
638 			ubsec_feed(sc);
639 	}
640 
641 	/*
642 	 * Check to see if we have any key setups/rng's waiting for us
643 	 */
644 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
645 	    (stat & BS_STAT_MCR2_DONE)) {
646 		struct ubsec_q2 *q2;
647 		struct ubsec_mcr *mcr;
648 
649 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
650 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
651 
652 			ubsec_dma_sync(&q2->q_mcr,
653 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
654 
655 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
656 			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
657 				ubsec_dma_sync(&q2->q_mcr,
658 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
659 				break;
660 			}
661 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next);
662 			ubsec_callback2(sc, q2);
663 			/*
664 			 * Don't send any more packet to chip if there has been
665 			 * a DMAERR.
666 			 */
667 			if (!(stat & BS_STAT_DMAERR))
668 				ubsec_feed2(sc);
669 		}
670 	}
671 
672 	/*
673 	 * Check to see if we got any DMA Error
674 	 */
675 	if (stat & BS_STAT_DMAERR) {
676 #ifdef UBSEC_DEBUG
677 		if (ubsec_debug) {
678 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
679 
680 			kprintf("dmaerr %s@%08x\n",
681 			    (a & BS_ERR_READ) ? "read" : "write",
682 			    a & BS_ERR_ADDR);
683 		}
684 #endif /* UBSEC_DEBUG */
685 		ubsecstats.hst_dmaerr++;
686 		ubsec_totalreset(sc);
687 		ubsec_feed(sc);
688 	}
689 
690 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
691 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
692 #ifdef UBSEC_DEBUG
693 		if (ubsec_debug)
694 			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
695 				sc->sc_needwakeup);
696 #endif /* UBSEC_DEBUG */
697 		sc->sc_needwakeup &= ~wakeup;
698 		crypto_unblock(sc->sc_cid, wakeup);
699 	}
700 }
701 
702 /*
703  * ubsec_feed() - aggregate and post requests to chip
704  */
705 static void
706 ubsec_feed(struct ubsec_softc *sc)
707 {
708 	struct ubsec_q *q, *q2;
709 	int npkts, i;
710 	void *v;
711 	u_int32_t stat;
712 
713 	/*
714 	 * Decide how many ops to combine in a single MCR.  We cannot
715 	 * aggregate more than UBS_MAX_AGGR because this is the number
716 	 * of slots defined in the data structure.  Note that
717 	 * aggregation only happens if ops are marked batch'able.
718 	 * Aggregating ops reduces the number of interrupts to the host
719 	 * but also (potentially) increases the latency for processing
720 	 * completed ops as we only get an interrupt when all aggregated
721 	 * ops have completed.
722 	 */
723 	if (sc->sc_nqueue == 0)
724 		return;
725 	if (sc->sc_nqueue > 1) {
726 		npkts = 0;
727 		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
728 			npkts++;
729 			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
730 				break;
731 		}
732 	} else
733 		npkts = 1;
734 	/*
735 	 * Check device status before going any further.
736 	 */
737 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
738 		if (stat & BS_STAT_DMAERR) {
739 			ubsec_totalreset(sc);
740 			ubsecstats.hst_dmaerr++;
741 		} else
742 			ubsecstats.hst_mcr1full++;
743 		return;
744 	}
745 	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
746 		ubsecstats.hst_maxqueue = sc->sc_nqueue;
747 	if (npkts > UBS_MAX_AGGR)
748 		npkts = UBS_MAX_AGGR;
749 	if (npkts < 2)				/* special case 1 op */
750 		goto feed1;
751 
752 	ubsecstats.hst_totbatch += npkts-1;
753 #ifdef UBSEC_DEBUG
754 	if (ubsec_debug)
755 		kprintf("merging %d records\n", npkts);
756 #endif /* UBSEC_DEBUG */
757 
758 	q = SIMPLEQ_FIRST(&sc->sc_queue);
759 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
760 	--sc->sc_nqueue;
761 
762 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
763 	if (q->q_dst_map != NULL)
764 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
765 
766 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
767 
768 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
769 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
770 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
771 		    BUS_DMASYNC_PREWRITE);
772 		if (q2->q_dst_map != NULL)
773 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
774 			    BUS_DMASYNC_PREREAD);
775 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
776 		--sc->sc_nqueue;
777 
778 		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
779 		    sizeof(struct ubsec_mcr_add));
780 		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
781 		q->q_stacked_mcr[i] = q2;
782 	}
783 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
784 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
785 	sc->sc_nqchip += npkts;
786 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
787 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
788 	ubsec_dma_sync(&q->q_dma->d_alloc,
789 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
790 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
791 	    offsetof(struct ubsec_dmachunk, d_mcr));
792 	return;
793 
794 feed1:
795 	q = SIMPLEQ_FIRST(&sc->sc_queue);
796 
797 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
798 	if (q->q_dst_map != NULL)
799 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
800 	ubsec_dma_sync(&q->q_dma->d_alloc,
801 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
802 
803 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
804 	    offsetof(struct ubsec_dmachunk, d_mcr));
805 #ifdef UBSEC_DEBUG
806 	if (ubsec_debug)
807 		kprintf("feed1: q->chip %p %08x stat %08x\n",
808 		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
809 		      stat);
810 #endif /* UBSEC_DEBUG */
811 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
812 	--sc->sc_nqueue;
813 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
814 	sc->sc_nqchip++;
815 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
816 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
817 	return;
818 }
819 
820 static void
821 ubsec_setup_enckey(struct ubsec_session *ses, int algo, caddr_t key)
822 {
823 
824 	/* Go ahead and compute key in ubsec's byte order */
825 	if (algo == CRYPTO_DES_CBC) {
826 		bcopy(key, &ses->ses_deskey[0], 8);
827 		bcopy(key, &ses->ses_deskey[2], 8);
828 		bcopy(key, &ses->ses_deskey[4], 8);
829 	} else
830 		bcopy(key, ses->ses_deskey, 24);
831 
832 	SWAP32(ses->ses_deskey[0]);
833 	SWAP32(ses->ses_deskey[1]);
834 	SWAP32(ses->ses_deskey[2]);
835 	SWAP32(ses->ses_deskey[3]);
836 	SWAP32(ses->ses_deskey[4]);
837 	SWAP32(ses->ses_deskey[5]);
838 }
839 
840 static void
841 ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
842 {
843 	MD5_CTX md5ctx;
844 	SHA1_CTX sha1ctx;
845 	int i;
846 
847 	for (i = 0; i < klen; i++)
848 		key[i] ^= HMAC_IPAD_VAL;
849 
850 	if (algo == CRYPTO_MD5_HMAC) {
851 		MD5Init(&md5ctx);
852 		MD5Update(&md5ctx, key, klen);
853 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
854 		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
855 	} else {
856 		SHA1Init(&sha1ctx);
857 		SHA1Update(&sha1ctx, key, klen);
858 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
859 		    SHA1_HMAC_BLOCK_LEN - klen);
860 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
861 	}
862 
863 	for (i = 0; i < klen; i++)
864 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
865 
866 	if (algo == CRYPTO_MD5_HMAC) {
867 		MD5Init(&md5ctx);
868 		MD5Update(&md5ctx, key, klen);
869 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
870 		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
871 	} else {
872 		SHA1Init(&sha1ctx);
873 		SHA1Update(&sha1ctx, key, klen);
874 		SHA1Update(&sha1ctx, hmac_opad_buffer,
875 		    SHA1_HMAC_BLOCK_LEN - klen);
876 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
877 	}
878 
879 	for (i = 0; i < klen; i++)
880 		key[i] ^= HMAC_OPAD_VAL;
881 }
882 
883 /*
884  * Allocate a new 'session' and return an encoded session id.  'sidp'
885  * contains our registration id, and should contain an encoded session
886  * id on successful allocation.
887  */
888 static int
889 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
890 {
891 	struct cryptoini *c, *encini = NULL, *macini = NULL;
892 	struct ubsec_softc *sc = arg;
893 	struct ubsec_session *ses = NULL;
894 	int sesn;
895 #if 0
896 	MD5_CTX md5ctx;
897 	SHA1_CTX sha1ctx;
898 	int i;
899 #endif
900 
901 	KASSERT(sc != NULL, ("ubsec_newsession: null softc"));
902 	if (sidp == NULL || cri == NULL || sc == NULL)
903 		return (EINVAL);
904 
905 	for (c = cri; c != NULL; c = c->cri_next) {
906 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
907 		    c->cri_alg == CRYPTO_SHA1_HMAC) {
908 			if (macini)
909 				return (EINVAL);
910 			macini = c;
911 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
912 		    c->cri_alg == CRYPTO_3DES_CBC) {
913 			if (encini)
914 				return (EINVAL);
915 			encini = c;
916 		} else
917 			return (EINVAL);
918 	}
919 	if (encini == NULL && macini == NULL)
920 		return (EINVAL);
921 
922 	if (sc->sc_sessions == NULL) {
923 		ses = sc->sc_sessions = kmalloc(sizeof(struct ubsec_session),
924 						M_DEVBUF, M_INTWAIT);
925 		sesn = 0;
926 		sc->sc_nsessions = 1;
927 	} else {
928 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
929 			if (sc->sc_sessions[sesn].ses_used == 0) {
930 				ses = &sc->sc_sessions[sesn];
931 				break;
932 			}
933 		}
934 
935 		if (ses == NULL) {
936 			sesn = sc->sc_nsessions;
937 			ses = kmalloc((sesn + 1) * sizeof(struct ubsec_session),
938 					M_DEVBUF, M_INTWAIT);
939 			bcopy(sc->sc_sessions, ses, sesn *
940 			    sizeof(struct ubsec_session));
941 			bzero(sc->sc_sessions, sesn *
942 			    sizeof(struct ubsec_session));
943 			kfree(sc->sc_sessions, M_DEVBUF);
944 			sc->sc_sessions = ses;
945 			ses = &sc->sc_sessions[sesn];
946 			sc->sc_nsessions++;
947 		}
948 	}
949 
950 	bzero(ses, sizeof(struct ubsec_session));
951 	ses->ses_used = 1;
952 	if (encini) {
953 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
954 		if (encini->cri_key != NULL) {
955 			ubsec_setup_enckey(ses, encini->cri_alg,
956 			    encini->cri_key);
957 		}
958 #if 0
959 		/* get an IV, network byte order */
960 		/* XXX may read fewer than requested */
961 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
962 
963 		/* Go ahead and compute key in ubsec's byte order */
964 		if (encini->cri_alg == CRYPTO_DES_CBC) {
965 			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
966 			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
967 			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
968 		} else
969 			bcopy(encini->cri_key, ses->ses_deskey, 24);
970 
971 		SWAP32(ses->ses_deskey[0]);
972 		SWAP32(ses->ses_deskey[1]);
973 		SWAP32(ses->ses_deskey[2]);
974 		SWAP32(ses->ses_deskey[3]);
975 		SWAP32(ses->ses_deskey[4]);
976 		SWAP32(ses->ses_deskey[5]);
977 #endif
978 	}
979 
980 	if (macini) {
981 		ses->ses_mlen = macini->cri_mlen;
982 		if (ses->ses_mlen == 0) {
983 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
984 				ses->ses_mlen = MD5_HASH_LEN;
985 			else
986 				ses->ses_mlen = SHA1_HASH_LEN;
987 		}
988 
989 		if (macini->cri_key != NULL) {
990 			ubsec_setup_mackey(ses, macini->cri_alg,
991 			    macini->cri_key, macini->cri_klen/8);
992 		}
993 #if 0
994 		for (i = 0; i < macini->cri_klen / 8; i++)
995 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
996 
997 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
998 			MD5Init(&md5ctx);
999 			MD5Update(&md5ctx, macini->cri_key,
1000 			    macini->cri_klen / 8);
1001 			MD5Update(&md5ctx, hmac_ipad_buffer,
1002 			    MD5_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1003 			bcopy(md5ctx.state, ses->ses_hminner,
1004 			    sizeof(md5ctx.state));
1005 		} else {
1006 			SHA1Init(&sha1ctx);
1007 			SHA1Update(&sha1ctx, macini->cri_key,
1008 			    macini->cri_klen / 8);
1009 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
1010 			    SHA1_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1011 			bcopy(sha1ctx.h.b32, ses->ses_hminner,
1012 			    sizeof(sha1ctx.h.b32));
1013 		}
1014 
1015 		for (i = 0; i < macini->cri_klen / 8; i++)
1016 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1017 
1018 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
1019 			MD5Init(&md5ctx);
1020 			MD5Update(&md5ctx, macini->cri_key,
1021 			    macini->cri_klen / 8);
1022 			MD5Update(&md5ctx, hmac_opad_buffer,
1023 			    MD5_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1024 			bcopy(md5ctx.state, ses->ses_hmouter,
1025 			    sizeof(md5ctx.state));
1026 		} else {
1027 			SHA1Init(&sha1ctx);
1028 			SHA1Update(&sha1ctx, macini->cri_key,
1029 			    macini->cri_klen / 8);
1030 			SHA1Update(&sha1ctx, hmac_opad_buffer,
1031 			    SHA1_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1032 			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
1033 			    sizeof(sha1ctx.h.b32));
1034 		}
1035 
1036 		for (i = 0; i < macini->cri_klen / 8; i++)
1037 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
1038 #endif
1039 	}
1040 
1041 	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
1042 	return (0);
1043 }
1044 
1045 /*
1046  * Deallocate a session.
1047  */
1048 static int
1049 ubsec_freesession(void *arg, u_int64_t tid)
1050 {
1051 	struct ubsec_softc *sc = arg;
1052 	int session;
1053 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1054 
1055 	KASSERT(sc != NULL, ("ubsec_freesession: null softc"));
1056 	if (sc == NULL)
1057 		return (EINVAL);
1058 
1059 	session = UBSEC_SESSION(sid);
1060 	if (session >= sc->sc_nsessions)
1061 		return (EINVAL);
1062 
1063 	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
1064 	return (0);
1065 }
1066 
1067 static void
1068 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1069 {
1070 	struct ubsec_operand *op = arg;
1071 
1072 	KASSERT(nsegs <= UBS_MAX_SCATTER,
1073 		("Too many DMA segments returned when mapping operand"));
1074 #ifdef UBSEC_DEBUG
1075 	if (ubsec_debug)
1076 		kprintf("ubsec_op_cb: mapsize %u nsegs %d\n",
1077 			(u_int) mapsize, nsegs);
1078 #endif
1079 	op->mapsize = mapsize;
1080 	op->nsegs = nsegs;
1081 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1082 }
1083 
1084 static int
1085 ubsec_process(void *arg, struct cryptop *crp, int hint)
1086 {
1087 	struct ubsec_q *q = NULL;
1088 	int err = 0, i, j, nicealign;
1089 	struct ubsec_softc *sc = arg;
1090 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1091 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1092 	int sskip, dskip, stheend, dtheend;
1093 	int16_t coffset;
1094 	struct ubsec_session *ses;
1095 	struct ubsec_pktctx ctx;
1096 	struct ubsec_dma *dmap = NULL;
1097 
1098 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1099 		ubsecstats.hst_invalid++;
1100 		return (EINVAL);
1101 	}
1102 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1103 		ubsecstats.hst_badsession++;
1104 		return (EINVAL);
1105 	}
1106 
1107 	crit_enter();
1108 
1109 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1110 		ubsecstats.hst_queuefull++;
1111 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1112 		crit_exit();
1113 		return (ERESTART);
1114 	}
1115 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1116 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
1117 	crit_exit();
1118 
1119 	dmap = q->q_dma; /* Save dma pointer */
1120 	bzero(q, sizeof(struct ubsec_q));
1121 	bzero(&ctx, sizeof(ctx));
1122 
1123 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1124 	q->q_dma = dmap;
1125 	ses = &sc->sc_sessions[q->q_sesn];
1126 
1127 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1128 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1129 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1130 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1131 		q->q_src_io = (struct uio *)crp->crp_buf;
1132 		q->q_dst_io = (struct uio *)crp->crp_buf;
1133 	} else {
1134 		ubsecstats.hst_badflags++;
1135 		err = EINVAL;
1136 		goto errout;	/* XXX we don't handle contiguous blocks! */
1137 	}
1138 
1139 	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1140 
1141 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1142 	dmap->d_dma->d_mcr.mcr_flags = 0;
1143 	q->q_crp = crp;
1144 
1145 	crd1 = crp->crp_desc;
1146 	if (crd1 == NULL) {
1147 		ubsecstats.hst_nodesc++;
1148 		err = EINVAL;
1149 		goto errout;
1150 	}
1151 	crd2 = crd1->crd_next;
1152 
1153 	if (crd2 == NULL) {
1154 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1155 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1156 			maccrd = crd1;
1157 			enccrd = NULL;
1158 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1159 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1160 			maccrd = NULL;
1161 			enccrd = crd1;
1162 		} else {
1163 			ubsecstats.hst_badalg++;
1164 			err = EINVAL;
1165 			goto errout;
1166 		}
1167 	} else {
1168 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1169 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1170 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1171 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1172 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1173 			maccrd = crd1;
1174 			enccrd = crd2;
1175 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1176 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1177 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1178 			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1179 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1180 			enccrd = crd1;
1181 			maccrd = crd2;
1182 		} else {
1183 			/*
1184 			 * We cannot order the ubsec as requested
1185 			 */
1186 			ubsecstats.hst_badalg++;
1187 			err = EINVAL;
1188 			goto errout;
1189 		}
1190 	}
1191 
1192 	if (enccrd) {
1193 		encoffset = enccrd->crd_skip;
1194 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1195 
1196 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1197 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1198 
1199 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1200 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1201 			else {
1202 				ctx.pc_iv[0] = ses->ses_iv[0];
1203 				ctx.pc_iv[1] = ses->ses_iv[1];
1204 			}
1205 
1206 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1207 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1208 					m_copyback(q->q_src_m,
1209 					    enccrd->crd_inject,
1210 					    8, (caddr_t)ctx.pc_iv);
1211 				else if (crp->crp_flags & CRYPTO_F_IOV)
1212 					cuio_copyback(q->q_src_io,
1213 					    enccrd->crd_inject,
1214 					    8, (caddr_t)ctx.pc_iv);
1215 			}
1216 		} else {
1217 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1218 
1219 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1220 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1221 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1222 				m_copydata(q->q_src_m, enccrd->crd_inject,
1223 				    8, (caddr_t)ctx.pc_iv);
1224 			else if (crp->crp_flags & CRYPTO_F_IOV)
1225 				cuio_copydata(q->q_src_io,
1226 				    enccrd->crd_inject, 8,
1227 				    (caddr_t)ctx.pc_iv);
1228 		}
1229 
1230 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1231 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1232 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1233 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1234 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1235 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1236 		SWAP32(ctx.pc_iv[0]);
1237 		SWAP32(ctx.pc_iv[1]);
1238 	}
1239 
1240 	if (maccrd) {
1241 		macoffset = maccrd->crd_skip;
1242 
1243 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1244 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1245 		else
1246 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1247 
1248 		for (i = 0; i < 5; i++) {
1249 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1250 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1251 
1252 			HTOLE32(ctx.pc_hminner[i]);
1253 			HTOLE32(ctx.pc_hmouter[i]);
1254 		}
1255 	}
1256 
1257 	if (enccrd && maccrd) {
1258 		/*
1259 		 * ubsec cannot handle packets where the end of encryption
1260 		 * and authentication are not the same, or where the
1261 		 * encrypted part begins before the authenticated part.
1262 		 */
1263 		if ((encoffset + enccrd->crd_len) !=
1264 		    (macoffset + maccrd->crd_len)) {
1265 			ubsecstats.hst_lenmismatch++;
1266 			err = EINVAL;
1267 			goto errout;
1268 		}
1269 		if (enccrd->crd_skip < maccrd->crd_skip) {
1270 			ubsecstats.hst_skipmismatch++;
1271 			err = EINVAL;
1272 			goto errout;
1273 		}
1274 		sskip = maccrd->crd_skip;
1275 		cpskip = dskip = enccrd->crd_skip;
1276 		stheend = maccrd->crd_len;
1277 		dtheend = enccrd->crd_len;
1278 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1279 		cpoffset = cpskip + dtheend;
1280 #ifdef UBSEC_DEBUG
1281 		if (ubsec_debug) {
1282 			kprintf("mac: skip %d, len %d, inject %d\n",
1283 			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1284 			kprintf("enc: skip %d, len %d, inject %d\n",
1285 			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1286 			kprintf("src: skip %d, len %d\n", sskip, stheend);
1287 			kprintf("dst: skip %d, len %d\n", dskip, dtheend);
1288 			kprintf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1289 			    coffset, stheend, cpskip, cpoffset);
1290 		}
1291 #endif
1292 	} else {
1293 		cpskip = dskip = sskip = macoffset + encoffset;
1294 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1295 		cpoffset = cpskip + dtheend;
1296 		coffset = 0;
1297 	}
1298 	ctx.pc_offset = htole16(coffset >> 2);
1299 
1300 	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1301 		ubsecstats.hst_nomap++;
1302 		err = ENOMEM;
1303 		goto errout;
1304 	}
1305 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1306 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1307 		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1308 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1309 			q->q_src_map = NULL;
1310 			ubsecstats.hst_noload++;
1311 			err = ENOMEM;
1312 			goto errout;
1313 		}
1314 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1315 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1316 		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1317 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1318 			q->q_src_map = NULL;
1319 			ubsecstats.hst_noload++;
1320 			err = ENOMEM;
1321 			goto errout;
1322 		}
1323 	}
1324 	nicealign = ubsec_dmamap_aligned(&q->q_src);
1325 
1326 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1327 
1328 #ifdef UBSEC_DEBUG
1329 	if (ubsec_debug)
1330 		kprintf("src skip: %d nicealign: %u\n", sskip, nicealign);
1331 #endif
1332 	for (i = j = 0; i < q->q_src_nsegs; i++) {
1333 		struct ubsec_pktbuf *pb;
1334 		bus_size_t packl = q->q_src_segs[i].ds_len;
1335 		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1336 
1337 		if (sskip >= packl) {
1338 			sskip -= packl;
1339 			continue;
1340 		}
1341 
1342 		packl -= sskip;
1343 		packp += sskip;
1344 		sskip = 0;
1345 
1346 		if (packl > 0xfffc) {
1347 			err = EIO;
1348 			goto errout;
1349 		}
1350 
1351 		if (j == 0)
1352 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1353 		else
1354 			pb = &dmap->d_dma->d_sbuf[j - 1];
1355 
1356 		pb->pb_addr = htole32(packp);
1357 
1358 		if (stheend) {
1359 			if (packl > stheend) {
1360 				pb->pb_len = htole32(stheend);
1361 				stheend = 0;
1362 			} else {
1363 				pb->pb_len = htole32(packl);
1364 				stheend -= packl;
1365 			}
1366 		} else
1367 			pb->pb_len = htole32(packl);
1368 
1369 		if ((i + 1) == q->q_src_nsegs)
1370 			pb->pb_next = 0;
1371 		else
1372 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1373 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1374 		j++;
1375 	}
1376 
1377 	if (enccrd == NULL && maccrd != NULL) {
1378 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1379 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1380 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1381 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1382 #ifdef UBSEC_DEBUG
1383 		if (ubsec_debug)
1384 			kprintf("opkt: %x %x %x\n",
1385 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1386 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1387 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1388 #endif
1389 	} else {
1390 		if (crp->crp_flags & CRYPTO_F_IOV) {
1391 			if (!nicealign) {
1392 				ubsecstats.hst_iovmisaligned++;
1393 				err = EINVAL;
1394 				goto errout;
1395 			}
1396 			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1397 			     &q->q_dst_map)) {
1398 				ubsecstats.hst_nomap++;
1399 				err = ENOMEM;
1400 				goto errout;
1401 			}
1402 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1403 			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1404 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1405 				q->q_dst_map = NULL;
1406 				ubsecstats.hst_noload++;
1407 				err = ENOMEM;
1408 				goto errout;
1409 			}
1410 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1411 			if (nicealign) {
1412 				q->q_dst = q->q_src;
1413 			} else {
1414 				int totlen, len;
1415 				struct mbuf *m, *top, **mp;
1416 
1417 				ubsecstats.hst_unaligned++;
1418 				totlen = q->q_src_mapsize;
1419 				if (q->q_src_m->m_flags & M_PKTHDR) {
1420 					len = MHLEN;
1421 					MGETHDR(m, MB_DONTWAIT, MT_DATA);
1422 					if (m && !m_dup_pkthdr(m, q->q_src_m, MB_DONTWAIT)) {
1423 						m_free(m);
1424 						m = NULL;
1425 					}
1426 				} else {
1427 					len = MLEN;
1428 					MGET(m, MB_DONTWAIT, MT_DATA);
1429 				}
1430 				if (m == NULL) {
1431 					ubsecstats.hst_nombuf++;
1432 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1433 					goto errout;
1434 				}
1435 				if (totlen >= MINCLSIZE) {
1436 					MCLGET(m, MB_DONTWAIT);
1437 					if ((m->m_flags & M_EXT) == 0) {
1438 						m_free(m);
1439 						ubsecstats.hst_nomcl++;
1440 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1441 						goto errout;
1442 					}
1443 					len = MCLBYTES;
1444 				}
1445 				m->m_len = len;
1446 				top = NULL;
1447 				mp = &top;
1448 
1449 				while (totlen > 0) {
1450 					if (top) {
1451 						MGET(m, MB_DONTWAIT, MT_DATA);
1452 						if (m == NULL) {
1453 							m_freem(top);
1454 							ubsecstats.hst_nombuf++;
1455 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1456 							goto errout;
1457 						}
1458 						len = MLEN;
1459 					}
1460 					if (top && totlen >= MINCLSIZE) {
1461 						MCLGET(m, MB_DONTWAIT);
1462 						if ((m->m_flags & M_EXT) == 0) {
1463 							*mp = m;
1464 							m_freem(top);
1465 							ubsecstats.hst_nomcl++;
1466 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1467 							goto errout;
1468 						}
1469 						len = MCLBYTES;
1470 					}
1471 					m->m_len = len = min(totlen, len);
1472 					totlen -= len;
1473 					*mp = m;
1474 					mp = &m->m_next;
1475 				}
1476 				q->q_dst_m = top;
1477 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1478 				    cpskip, cpoffset);
1479 				if (bus_dmamap_create(sc->sc_dmat,
1480 				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1481 					ubsecstats.hst_nomap++;
1482 					err = ENOMEM;
1483 					goto errout;
1484 				}
1485 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1486 				    q->q_dst_map, q->q_dst_m,
1487 				    ubsec_op_cb, &q->q_dst,
1488 				    BUS_DMA_NOWAIT) != 0) {
1489 					bus_dmamap_destroy(sc->sc_dmat,
1490 					q->q_dst_map);
1491 					q->q_dst_map = NULL;
1492 					ubsecstats.hst_noload++;
1493 					err = ENOMEM;
1494 					goto errout;
1495 				}
1496 			}
1497 		} else {
1498 			ubsecstats.hst_badflags++;
1499 			err = EINVAL;
1500 			goto errout;
1501 		}
1502 
1503 #ifdef UBSEC_DEBUG
1504 		if (ubsec_debug)
1505 			kprintf("dst skip: %d\n", dskip);
1506 #endif
1507 		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1508 			struct ubsec_pktbuf *pb;
1509 			bus_size_t packl = q->q_dst_segs[i].ds_len;
1510 			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1511 
1512 			if (dskip >= packl) {
1513 				dskip -= packl;
1514 				continue;
1515 			}
1516 
1517 			packl -= dskip;
1518 			packp += dskip;
1519 			dskip = 0;
1520 
1521 			if (packl > 0xfffc) {
1522 				err = EIO;
1523 				goto errout;
1524 			}
1525 
1526 			if (j == 0)
1527 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1528 			else
1529 				pb = &dmap->d_dma->d_dbuf[j - 1];
1530 
1531 			pb->pb_addr = htole32(packp);
1532 
1533 			if (dtheend) {
1534 				if (packl > dtheend) {
1535 					pb->pb_len = htole32(dtheend);
1536 					dtheend = 0;
1537 				} else {
1538 					pb->pb_len = htole32(packl);
1539 					dtheend -= packl;
1540 				}
1541 			} else
1542 				pb->pb_len = htole32(packl);
1543 
1544 			if ((i + 1) == q->q_dst_nsegs) {
1545 				if (maccrd)
1546 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1547 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1548 				else
1549 					pb->pb_next = 0;
1550 			} else
1551 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1552 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1553 			j++;
1554 		}
1555 	}
1556 
1557 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1558 	    offsetof(struct ubsec_dmachunk, d_ctx));
1559 
1560 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1561 		struct ubsec_pktctx_long *ctxl;
1562 
1563 		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1564 		    offsetof(struct ubsec_dmachunk, d_ctx));
1565 
1566 		/* transform small context into long context */
1567 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1568 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1569 		ctxl->pc_flags = ctx.pc_flags;
1570 		ctxl->pc_offset = ctx.pc_offset;
1571 		for (i = 0; i < 6; i++)
1572 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1573 		for (i = 0; i < 5; i++)
1574 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1575 		for (i = 0; i < 5; i++)
1576 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1577 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1578 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1579 	} else
1580 		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1581 		    offsetof(struct ubsec_dmachunk, d_ctx),
1582 		    sizeof(struct ubsec_pktctx));
1583 
1584 	crit_enter();
1585 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1586 	sc->sc_nqueue++;
1587 	ubsecstats.hst_ipackets++;
1588 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1589 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1590 		ubsec_feed(sc);
1591 	crit_exit();
1592 	return (0);
1593 
1594 errout:
1595 	if (q != NULL) {
1596 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1597 			m_freem(q->q_dst_m);
1598 
1599 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1600 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1601 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1602 		}
1603 		if (q->q_src_map != NULL) {
1604 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1605 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1606 		}
1607 
1608 		crit_enter();
1609 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1610 		crit_exit();
1611 	}
1612 	if (err != ERESTART) {
1613 		crp->crp_etype = err;
1614 		crypto_done(crp);
1615 	} else {
1616 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1617 	}
1618 	return (err);
1619 }
1620 
1621 static void
1622 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1623 {
1624 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1625 	struct cryptodesc *crd;
1626 	struct ubsec_dma *dmap = q->q_dma;
1627 
1628 	ubsecstats.hst_opackets++;
1629 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1630 
1631 	ubsec_dma_sync(&dmap->d_alloc,
1632 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1633 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1634 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1635 		    BUS_DMASYNC_POSTREAD);
1636 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1637 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1638 	}
1639 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1640 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1641 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1642 
1643 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1644 		m_freem(q->q_src_m);
1645 		crp->crp_buf = (caddr_t)q->q_dst_m;
1646 	}
1647 	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1648 
1649 	/* copy out IV for future use */
1650 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1651 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1652 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1653 			    crd->crd_alg != CRYPTO_3DES_CBC)
1654 				continue;
1655 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1656 				m_copydata((struct mbuf *)crp->crp_buf,
1657 				    crd->crd_skip + crd->crd_len - 8, 8,
1658 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1659 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1660 				cuio_copydata((struct uio *)crp->crp_buf,
1661 				    crd->crd_skip + crd->crd_len - 8, 8,
1662 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1663 			}
1664 			break;
1665 		}
1666 	}
1667 
1668 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1669 		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1670 		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1671 			continue;
1672 		crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
1673 		    sc->sc_sessions[q->q_sesn].ses_mlen,
1674 		    (caddr_t)dmap->d_dma->d_macbuf);
1675 #if 0
1676 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1677 			m_copyback((struct mbuf *)crp->crp_buf,
1678 			    crd->crd_inject, 12,
1679 			    (caddr_t)dmap->d_dma->d_macbuf);
1680 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1681 			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1682 			    crp->crp_mac, 12);
1683 		break;
1684 #endif
1685 	}
1686 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1687 	crypto_done(crp);
1688 }
1689 
1690 static void
1691 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1692 {
1693 	int i, j, dlen, slen;
1694 	caddr_t dptr, sptr;
1695 
1696 	j = 0;
1697 	sptr = srcm->m_data;
1698 	slen = srcm->m_len;
1699 	dptr = dstm->m_data;
1700 	dlen = dstm->m_len;
1701 
1702 	while (1) {
1703 		for (i = 0; i < min(slen, dlen); i++) {
1704 			if (j < hoffset || j >= toffset)
1705 				*dptr++ = *sptr++;
1706 			slen--;
1707 			dlen--;
1708 			j++;
1709 		}
1710 		if (slen == 0) {
1711 			srcm = srcm->m_next;
1712 			if (srcm == NULL)
1713 				return;
1714 			sptr = srcm->m_data;
1715 			slen = srcm->m_len;
1716 		}
1717 		if (dlen == 0) {
1718 			dstm = dstm->m_next;
1719 			if (dstm == NULL)
1720 				return;
1721 			dptr = dstm->m_data;
1722 			dlen = dstm->m_len;
1723 		}
1724 	}
1725 }
1726 
1727 /*
1728  * feed the key generator, must be called at splimp() or higher.
1729  */
1730 static int
1731 ubsec_feed2(struct ubsec_softc *sc)
1732 {
1733 	struct ubsec_q2 *q;
1734 
1735 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1736 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1737 			break;
1738 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1739 
1740 		ubsec_dma_sync(&q->q_mcr,
1741 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1742 		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1743 
1744 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1745 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next);
1746 		--sc->sc_nqueue2;
1747 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1748 	}
1749 	return (0);
1750 }
1751 
1752 /*
1753  * Callback for handling random numbers
1754  */
1755 static void
1756 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1757 {
1758 	struct cryptkop *krp;
1759 	struct ubsec_ctx_keyop *ctx;
1760 
1761 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1762 	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1763 
1764 	switch (q->q_type) {
1765 #ifndef UBSEC_NO_RNG
1766 	case UBS_CTXOP_RNGBYPASS: {
1767 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1768 
1769 		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1770 		(*sc->sc_harvest)(sc->sc_rndtest,
1771 			rng->rng_buf.dma_vaddr,
1772 			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1773 		rng->rng_used = 0;
1774 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1775 		break;
1776 	}
1777 #endif
1778 	case UBS_CTXOP_MODEXP: {
1779 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1780 		u_int rlen, clen;
1781 
1782 		krp = me->me_krp;
1783 		rlen = (me->me_modbits + 7) / 8;
1784 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1785 
1786 		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1787 		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1788 		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1789 		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1790 
1791 		if (clen < rlen)
1792 			krp->krp_status = E2BIG;
1793 		else {
1794 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1795 				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1796 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1797 					+ 7) / 8);
1798 				bcopy(me->me_C.dma_vaddr,
1799 				    krp->krp_param[krp->krp_iparams].crp_p,
1800 				    (me->me_modbits + 7) / 8);
1801 			} else
1802 				ubsec_kshift_l(me->me_shiftbits,
1803 				    me->me_C.dma_vaddr, me->me_normbits,
1804 				    krp->krp_param[krp->krp_iparams].crp_p,
1805 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1806 		}
1807 
1808 		crypto_kdone(krp);
1809 
1810 		/* bzero all potentially sensitive data */
1811 		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1812 		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1813 		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1814 		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1815 
1816 		/* Can't free here, so put us on the free list. */
1817 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1818 		break;
1819 	}
1820 	case UBS_CTXOP_RSAPRIV: {
1821 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1822 		u_int len;
1823 
1824 		krp = rp->rpr_krp;
1825 		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1826 		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1827 
1828 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1829 		bcopy(rp->rpr_msgout.dma_vaddr,
1830 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1831 
1832 		crypto_kdone(krp);
1833 
1834 		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1835 		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1836 		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1837 
1838 		/* Can't free here, so put us on the free list. */
1839 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1840 		break;
1841 	}
1842 	default:
1843 		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1844 		    letoh16(ctx->ctx_op));
1845 		break;
1846 	}
1847 }
1848 
1849 #ifndef UBSEC_NO_RNG
1850 static void
1851 ubsec_rng(void *vsc)
1852 {
1853 	struct ubsec_softc *sc = vsc;
1854 	struct ubsec_q2_rng *rng = &sc->sc_rng;
1855 	struct ubsec_mcr *mcr;
1856 	struct ubsec_ctx_rngbypass *ctx;
1857 
1858 	crit_enter();
1859 	if (rng->rng_used) {
1860 		crit_exit();
1861 		return;
1862 	}
1863 	sc->sc_nqueue2++;
1864 	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1865 		goto out;
1866 
1867 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1868 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1869 
1870 	mcr->mcr_pkts = htole16(1);
1871 	mcr->mcr_flags = 0;
1872 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1873 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1874 	mcr->mcr_ipktbuf.pb_len = 0;
1875 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1876 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1877 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1878 	    UBS_PKTBUF_LEN);
1879 	mcr->mcr_opktbuf.pb_next = 0;
1880 
1881 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1882 	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1883 	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1884 
1885 	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1886 
1887 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1888 	rng->rng_used = 1;
1889 	ubsec_feed2(sc);
1890 	ubsecstats.hst_rng++;
1891 	crit_exit();
1892 
1893 	return;
1894 
1895 out:
1896 	/*
1897 	 * Something weird happened, generate our own call back.
1898 	 */
1899 	sc->sc_nqueue2--;
1900 	crit_exit();
1901 	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1902 }
1903 #endif /* UBSEC_NO_RNG */
1904 
1905 static void
1906 ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1907 {
1908 	bus_addr_t *paddr = (bus_addr_t*) arg;
1909 	*paddr = segs->ds_addr;
1910 }
1911 
1912 static int
1913 ubsec_dma_malloc(
1914 	struct ubsec_softc *sc,
1915 	bus_size_t size,
1916 	struct ubsec_dma_alloc *dma,
1917 	int mapflags
1918 )
1919 {
1920 	int r;
1921 
1922 	/* XXX could specify sc_dmat as parent but that just adds overhead */
1923 	r = bus_dma_tag_create(NULL,			/* parent */
1924 			       1, 0,			/* alignment, bounds */
1925 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1926 			       BUS_SPACE_MAXADDR,	/* highaddr */
1927 			       NULL, NULL,		/* filter, filterarg */
1928 			       size,			/* maxsize */
1929 			       1,			/* nsegments */
1930 			       size,			/* maxsegsize */
1931 			       BUS_DMA_ALLOCNOW,	/* flags */
1932 			       &dma->dma_tag);
1933 	if (r != 0) {
1934 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1935 			"bus_dma_tag_create failed; error %u\n", r);
1936 		goto fail_0;
1937 	}
1938 
1939 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1940 	if (r != 0) {
1941 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1942 			"bus_dmamap_create failed; error %u\n", r);
1943 		goto fail_1;
1944 	}
1945 
1946 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1947 			     BUS_DMA_NOWAIT, &dma->dma_map);
1948 	if (r != 0) {
1949 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1950 			"bus_dmammem_alloc failed; size %ju, error %u\n",
1951 			(intmax_t)size, r);
1952 		goto fail_2;
1953 	}
1954 
1955 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1956 		            size,
1957 			    ubsec_dmamap_cb,
1958 			    &dma->dma_paddr,
1959 			    mapflags | BUS_DMA_NOWAIT);
1960 	if (r != 0) {
1961 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1962 			"bus_dmamap_load failed; error %u\n", r);
1963 		goto fail_3;
1964 	}
1965 
1966 	dma->dma_size = size;
1967 	return (0);
1968 
1969 fail_3:
1970 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1971 fail_2:
1972 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1973 fail_1:
1974 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1975 	bus_dma_tag_destroy(dma->dma_tag);
1976 fail_0:
1977 	dma->dma_map = NULL;
1978 	dma->dma_tag = NULL;
1979 	return (r);
1980 }
1981 
1982 static void
1983 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1984 {
1985 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1986 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1987 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1988 	bus_dma_tag_destroy(dma->dma_tag);
1989 }
1990 
1991 /*
1992  * Resets the board.  Values in the regesters are left as is
1993  * from the reset (i.e. initial values are assigned elsewhere).
1994  */
1995 static void
1996 ubsec_reset_board(struct ubsec_softc *sc)
1997 {
1998     volatile u_int32_t ctrl;
1999 
2000     ctrl = READ_REG(sc, BS_CTRL);
2001     ctrl |= BS_CTRL_RESET;
2002     WRITE_REG(sc, BS_CTRL, ctrl);
2003 
2004     /*
2005      * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2006      */
2007     DELAY(10);
2008 }
2009 
2010 /*
2011  * Init Broadcom registers
2012  */
2013 static void
2014 ubsec_init_board(struct ubsec_softc *sc)
2015 {
2016 	u_int32_t ctrl;
2017 
2018 	ctrl = READ_REG(sc, BS_CTRL);
2019 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2020 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2021 
2022 	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
2023 		ctrl |= BS_CTRL_MCR2INT;
2024 	else
2025 		ctrl &= ~BS_CTRL_MCR2INT;
2026 
2027 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
2028 		ctrl &= ~BS_CTRL_SWNORM;
2029 
2030 	WRITE_REG(sc, BS_CTRL, ctrl);
2031 }
2032 
2033 /*
2034  * Init Broadcom PCI registers
2035  */
2036 static void
2037 ubsec_init_pciregs(device_t dev)
2038 {
2039 #if 0
2040 	u_int32_t misc;
2041 
2042 	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
2043 	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
2044 	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
2045 	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
2046 	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
2047 	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
2048 #endif
2049 
2050 	/*
2051 	 * This will set the cache line size to 1, this will
2052 	 * force the BCM58xx chip just to do burst read/writes.
2053 	 * Cache line read/writes are to slow
2054 	 */
2055 	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
2056 }
2057 
2058 /*
2059  * Clean up after a chip crash.
2060  * It is assumed that the caller in splimp()
2061  */
2062 static void
2063 ubsec_cleanchip(struct ubsec_softc *sc)
2064 {
2065 	struct ubsec_q *q;
2066 
2067 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2068 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2069 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
2070 		ubsec_free_q(sc, q);
2071 	}
2072 	sc->sc_nqchip = 0;
2073 }
2074 
2075 /*
2076  * free a ubsec_q
2077  * It is assumed that the caller is within spimp()
2078  */
2079 static int
2080 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2081 {
2082 	struct ubsec_q *q2;
2083 	struct cryptop *crp;
2084 	int npkts;
2085 	int i;
2086 
2087 	npkts = q->q_nstacked_mcrs;
2088 
2089 	for (i = 0; i < npkts; i++) {
2090 		if(q->q_stacked_mcr[i]) {
2091 			q2 = q->q_stacked_mcr[i];
2092 
2093 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2094 				m_freem(q2->q_dst_m);
2095 
2096 			crp = (struct cryptop *)q2->q_crp;
2097 
2098 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2099 
2100 			crp->crp_etype = EFAULT;
2101 			crypto_done(crp);
2102 		} else {
2103 			break;
2104 		}
2105 	}
2106 
2107 	/*
2108 	 * Free header MCR
2109 	 */
2110 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2111 		m_freem(q->q_dst_m);
2112 
2113 	crp = (struct cryptop *)q->q_crp;
2114 
2115 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2116 
2117 	crp->crp_etype = EFAULT;
2118 	crypto_done(crp);
2119 	return(0);
2120 }
2121 
2122 /*
2123  * Routine to reset the chip and clean up.
2124  * It is assumed that the caller is in splimp()
2125  */
2126 static void
2127 ubsec_totalreset(struct ubsec_softc *sc)
2128 {
2129 	ubsec_reset_board(sc);
2130 	ubsec_init_board(sc);
2131 	ubsec_cleanchip(sc);
2132 }
2133 
2134 static int
2135 ubsec_dmamap_aligned(struct ubsec_operand *op)
2136 {
2137 	int i;
2138 
2139 	for (i = 0; i < op->nsegs; i++) {
2140 		if (op->segs[i].ds_addr & 3)
2141 			return (0);
2142 		if ((i != (op->nsegs - 1)) &&
2143 		    (op->segs[i].ds_len & 3))
2144 			return (0);
2145 	}
2146 	return (1);
2147 }
2148 
2149 static void
2150 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2151 {
2152 	switch (q->q_type) {
2153 	case UBS_CTXOP_MODEXP: {
2154 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2155 
2156 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2157 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2158 		ubsec_dma_free(sc, &me->me_M);
2159 		ubsec_dma_free(sc, &me->me_E);
2160 		ubsec_dma_free(sc, &me->me_C);
2161 		ubsec_dma_free(sc, &me->me_epb);
2162 		kfree(me, M_DEVBUF);
2163 		break;
2164 	}
2165 	case UBS_CTXOP_RSAPRIV: {
2166 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2167 
2168 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2169 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2170 		ubsec_dma_free(sc, &rp->rpr_msgin);
2171 		ubsec_dma_free(sc, &rp->rpr_msgout);
2172 		kfree(rp, M_DEVBUF);
2173 		break;
2174 	}
2175 	default:
2176 		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2177 		break;
2178 	}
2179 }
2180 
2181 static int
2182 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2183 {
2184 	struct ubsec_softc *sc = arg;
2185 	int r;
2186 
2187 	if (krp == NULL || krp->krp_callback == NULL)
2188 		return (EINVAL);
2189 
2190 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2191 		struct ubsec_q2 *q;
2192 
2193 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2194 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q_next);
2195 		ubsec_kfree(sc, q);
2196 	}
2197 
2198 	switch (krp->krp_op) {
2199 	case CRK_MOD_EXP:
2200 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2201 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2202 		else
2203 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2204 		break;
2205 	case CRK_MOD_EXP_CRT:
2206 		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2207 	default:
2208 		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2209 		    krp->krp_op);
2210 		krp->krp_status = EOPNOTSUPP;
2211 		crypto_kdone(krp);
2212 		return (0);
2213 	}
2214 	return (0);			/* silence compiler */
2215 }
2216 
2217 /*
2218  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2219  */
2220 static int
2221 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2222 {
2223 	struct ubsec_q2_modexp *me;
2224 	struct ubsec_mcr *mcr;
2225 	struct ubsec_ctx_modexp *ctx;
2226 	struct ubsec_pktbuf *epb;
2227 	int err = 0;
2228 	u_int nbits, normbits, mbits, shiftbits, ebits;
2229 
2230 	me = kmalloc(sizeof *me, M_DEVBUF, M_INTWAIT | M_ZERO);
2231 	me->me_krp = krp;
2232 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2233 
2234 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2235 	if (nbits <= 512)
2236 		normbits = 512;
2237 	else if (nbits <= 768)
2238 		normbits = 768;
2239 	else if (nbits <= 1024)
2240 		normbits = 1024;
2241 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2242 		normbits = 1536;
2243 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2244 		normbits = 2048;
2245 	else {
2246 		err = E2BIG;
2247 		goto errout;
2248 	}
2249 
2250 	shiftbits = normbits - nbits;
2251 
2252 	me->me_modbits = nbits;
2253 	me->me_shiftbits = shiftbits;
2254 	me->me_normbits = normbits;
2255 
2256 	/* Sanity check: result bits must be >= true modulus bits. */
2257 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2258 		err = ERANGE;
2259 		goto errout;
2260 	}
2261 
2262 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2263 	    &me->me_q.q_mcr, 0)) {
2264 		err = ENOMEM;
2265 		goto errout;
2266 	}
2267 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2268 
2269 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2270 	    &me->me_q.q_ctx, 0)) {
2271 		err = ENOMEM;
2272 		goto errout;
2273 	}
2274 
2275 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2276 	if (mbits > nbits) {
2277 		err = E2BIG;
2278 		goto errout;
2279 	}
2280 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2281 		err = ENOMEM;
2282 		goto errout;
2283 	}
2284 	ubsec_kshift_r(shiftbits,
2285 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2286 	    me->me_M.dma_vaddr, normbits);
2287 
2288 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2289 		err = ENOMEM;
2290 		goto errout;
2291 	}
2292 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2293 
2294 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2295 	if (ebits > nbits) {
2296 		err = E2BIG;
2297 		goto errout;
2298 	}
2299 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2300 		err = ENOMEM;
2301 		goto errout;
2302 	}
2303 	ubsec_kshift_r(shiftbits,
2304 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2305 	    me->me_E.dma_vaddr, normbits);
2306 
2307 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2308 	    &me->me_epb, 0)) {
2309 		err = ENOMEM;
2310 		goto errout;
2311 	}
2312 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2313 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2314 	epb->pb_next = 0;
2315 	epb->pb_len = htole32(normbits / 8);
2316 
2317 #ifdef UBSEC_DEBUG
2318 	if (ubsec_debug) {
2319 		kprintf("Epb ");
2320 		ubsec_dump_pb(epb);
2321 	}
2322 #endif
2323 
2324 	mcr->mcr_pkts = htole16(1);
2325 	mcr->mcr_flags = 0;
2326 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2327 	mcr->mcr_reserved = 0;
2328 	mcr->mcr_pktlen = 0;
2329 
2330 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2331 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2332 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2333 
2334 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2335 	mcr->mcr_opktbuf.pb_next = 0;
2336 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2337 
2338 #ifdef DIAGNOSTIC
2339 	/* Misaligned output buffer will hang the chip. */
2340 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2341 		panic("%s: modexp invalid addr 0x%x\n",
2342 		    device_get_nameunit(sc->sc_dev),
2343 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2344 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2345 		panic("%s: modexp invalid len 0x%x\n",
2346 		    device_get_nameunit(sc->sc_dev),
2347 		    letoh32(mcr->mcr_opktbuf.pb_len));
2348 #endif
2349 
2350 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2351 	bzero(ctx, sizeof(*ctx));
2352 	ubsec_kshift_r(shiftbits,
2353 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2354 	    ctx->me_N, normbits);
2355 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2356 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2357 	ctx->me_E_len = htole16(nbits);
2358 	ctx->me_N_len = htole16(nbits);
2359 
2360 #ifdef UBSEC_DEBUG
2361 	if (ubsec_debug) {
2362 		ubsec_dump_mcr(mcr);
2363 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2364 	}
2365 #endif
2366 
2367 	/*
2368 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2369 	 * everything else.
2370 	 */
2371 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2372 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2373 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2374 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2375 
2376 	/* Enqueue and we're done... */
2377 	crit_enter();
2378 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2379 	ubsec_feed2(sc);
2380 	ubsecstats.hst_modexp++;
2381 	crit_exit();
2382 
2383 	return (0);
2384 
2385 errout:
2386 	if (me != NULL) {
2387 		if (me->me_q.q_mcr.dma_map != NULL)
2388 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2389 		if (me->me_q.q_ctx.dma_map != NULL) {
2390 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2391 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2392 		}
2393 		if (me->me_M.dma_map != NULL) {
2394 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2395 			ubsec_dma_free(sc, &me->me_M);
2396 		}
2397 		if (me->me_E.dma_map != NULL) {
2398 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2399 			ubsec_dma_free(sc, &me->me_E);
2400 		}
2401 		if (me->me_C.dma_map != NULL) {
2402 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2403 			ubsec_dma_free(sc, &me->me_C);
2404 		}
2405 		if (me->me_epb.dma_map != NULL)
2406 			ubsec_dma_free(sc, &me->me_epb);
2407 		kfree(me, M_DEVBUF);
2408 	}
2409 	krp->krp_status = err;
2410 	crypto_kdone(krp);
2411 	return (0);
2412 }
2413 
2414 /*
2415  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2416  */
2417 static int
2418 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2419 {
2420 	struct ubsec_q2_modexp *me;
2421 	struct ubsec_mcr *mcr;
2422 	struct ubsec_ctx_modexp *ctx;
2423 	struct ubsec_pktbuf *epb;
2424 	int err = 0;
2425 	u_int nbits, normbits, mbits, shiftbits, ebits;
2426 
2427 	me = kmalloc(sizeof *me, M_DEVBUF, M_INTWAIT | M_ZERO);
2428 	me->me_krp = krp;
2429 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2430 
2431 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2432 	if (nbits <= 512)
2433 		normbits = 512;
2434 	else if (nbits <= 768)
2435 		normbits = 768;
2436 	else if (nbits <= 1024)
2437 		normbits = 1024;
2438 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2439 		normbits = 1536;
2440 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2441 		normbits = 2048;
2442 	else {
2443 		err = E2BIG;
2444 		goto errout;
2445 	}
2446 
2447 	shiftbits = normbits - nbits;
2448 
2449 	/* XXX ??? */
2450 	me->me_modbits = nbits;
2451 	me->me_shiftbits = shiftbits;
2452 	me->me_normbits = normbits;
2453 
2454 	/* Sanity check: result bits must be >= true modulus bits. */
2455 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2456 		err = ERANGE;
2457 		goto errout;
2458 	}
2459 
2460 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2461 	    &me->me_q.q_mcr, 0)) {
2462 		err = ENOMEM;
2463 		goto errout;
2464 	}
2465 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2466 
2467 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2468 	    &me->me_q.q_ctx, 0)) {
2469 		err = ENOMEM;
2470 		goto errout;
2471 	}
2472 
2473 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2474 	if (mbits > nbits) {
2475 		err = E2BIG;
2476 		goto errout;
2477 	}
2478 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2479 		err = ENOMEM;
2480 		goto errout;
2481 	}
2482 	bzero(me->me_M.dma_vaddr, normbits / 8);
2483 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2484 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2485 
2486 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2487 		err = ENOMEM;
2488 		goto errout;
2489 	}
2490 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2491 
2492 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2493 	if (ebits > nbits) {
2494 		err = E2BIG;
2495 		goto errout;
2496 	}
2497 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2498 		err = ENOMEM;
2499 		goto errout;
2500 	}
2501 	bzero(me->me_E.dma_vaddr, normbits / 8);
2502 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2503 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2504 
2505 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2506 	    &me->me_epb, 0)) {
2507 		err = ENOMEM;
2508 		goto errout;
2509 	}
2510 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2511 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2512 	epb->pb_next = 0;
2513 	epb->pb_len = htole32((ebits + 7) / 8);
2514 
2515 #ifdef UBSEC_DEBUG
2516 	if (ubsec_debug) {
2517 		kprintf("Epb ");
2518 		ubsec_dump_pb(epb);
2519 	}
2520 #endif
2521 
2522 	mcr->mcr_pkts = htole16(1);
2523 	mcr->mcr_flags = 0;
2524 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2525 	mcr->mcr_reserved = 0;
2526 	mcr->mcr_pktlen = 0;
2527 
2528 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2529 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2530 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2531 
2532 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2533 	mcr->mcr_opktbuf.pb_next = 0;
2534 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2535 
2536 #ifdef DIAGNOSTIC
2537 	/* Misaligned output buffer will hang the chip. */
2538 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2539 		panic("%s: modexp invalid addr 0x%x\n",
2540 		    device_get_nameunit(sc->sc_dev),
2541 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2542 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2543 		panic("%s: modexp invalid len 0x%x\n",
2544 		    device_get_nameunit(sc->sc_dev),
2545 		    letoh32(mcr->mcr_opktbuf.pb_len));
2546 #endif
2547 
2548 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2549 	bzero(ctx, sizeof(*ctx));
2550 	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2551 	    (nbits + 7) / 8);
2552 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2553 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2554 	ctx->me_E_len = htole16(ebits);
2555 	ctx->me_N_len = htole16(nbits);
2556 
2557 #ifdef UBSEC_DEBUG
2558 	if (ubsec_debug) {
2559 		ubsec_dump_mcr(mcr);
2560 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2561 	}
2562 #endif
2563 
2564 	/*
2565 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2566 	 * everything else.
2567 	 */
2568 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2569 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2570 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2571 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2572 
2573 	/* Enqueue and we're done... */
2574 	crit_enter();
2575 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2576 	ubsec_feed2(sc);
2577 	crit_exit();
2578 
2579 	return (0);
2580 
2581 errout:
2582 	if (me != NULL) {
2583 		if (me->me_q.q_mcr.dma_map != NULL)
2584 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2585 		if (me->me_q.q_ctx.dma_map != NULL) {
2586 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2587 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2588 		}
2589 		if (me->me_M.dma_map != NULL) {
2590 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2591 			ubsec_dma_free(sc, &me->me_M);
2592 		}
2593 		if (me->me_E.dma_map != NULL) {
2594 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2595 			ubsec_dma_free(sc, &me->me_E);
2596 		}
2597 		if (me->me_C.dma_map != NULL) {
2598 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2599 			ubsec_dma_free(sc, &me->me_C);
2600 		}
2601 		if (me->me_epb.dma_map != NULL)
2602 			ubsec_dma_free(sc, &me->me_epb);
2603 		kfree(me, M_DEVBUF);
2604 	}
2605 	krp->krp_status = err;
2606 	crypto_kdone(krp);
2607 	return (0);
2608 }
2609 
2610 static int
2611 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2612 {
2613 	struct ubsec_q2_rsapriv *rp = NULL;
2614 	struct ubsec_mcr *mcr;
2615 	struct ubsec_ctx_rsapriv *ctx;
2616 	int err = 0;
2617 	u_int padlen, msglen;
2618 
2619 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2620 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2621 	if (msglen > padlen)
2622 		padlen = msglen;
2623 
2624 	if (padlen <= 256)
2625 		padlen = 256;
2626 	else if (padlen <= 384)
2627 		padlen = 384;
2628 	else if (padlen <= 512)
2629 		padlen = 512;
2630 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2631 		padlen = 768;
2632 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2633 		padlen = 1024;
2634 	else {
2635 		err = E2BIG;
2636 		goto errout;
2637 	}
2638 
2639 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2640 		err = E2BIG;
2641 		goto errout;
2642 	}
2643 
2644 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2645 		err = E2BIG;
2646 		goto errout;
2647 	}
2648 
2649 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2650 		err = E2BIG;
2651 		goto errout;
2652 	}
2653 
2654 	rp = kmalloc(sizeof *rp, M_DEVBUF, M_INTWAIT | M_ZERO);
2655 	rp->rpr_krp = krp;
2656 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2657 
2658 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2659 	    &rp->rpr_q.q_mcr, 0)) {
2660 		err = ENOMEM;
2661 		goto errout;
2662 	}
2663 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2664 
2665 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2666 	    &rp->rpr_q.q_ctx, 0)) {
2667 		err = ENOMEM;
2668 		goto errout;
2669 	}
2670 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2671 	bzero(ctx, sizeof *ctx);
2672 
2673 	/* Copy in p */
2674 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2675 	    &ctx->rpr_buf[0 * (padlen / 8)],
2676 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2677 
2678 	/* Copy in q */
2679 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2680 	    &ctx->rpr_buf[1 * (padlen / 8)],
2681 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2682 
2683 	/* Copy in dp */
2684 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2685 	    &ctx->rpr_buf[2 * (padlen / 8)],
2686 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2687 
2688 	/* Copy in dq */
2689 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2690 	    &ctx->rpr_buf[3 * (padlen / 8)],
2691 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2692 
2693 	/* Copy in pinv */
2694 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2695 	    &ctx->rpr_buf[4 * (padlen / 8)],
2696 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2697 
2698 	msglen = padlen * 2;
2699 
2700 	/* Copy in input message (aligned buffer/length). */
2701 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2702 		/* Is this likely? */
2703 		err = E2BIG;
2704 		goto errout;
2705 	}
2706 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2707 		err = ENOMEM;
2708 		goto errout;
2709 	}
2710 	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2711 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2712 	    rp->rpr_msgin.dma_vaddr,
2713 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2714 
2715 	/* Prepare space for output message (aligned buffer/length). */
2716 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2717 		/* Is this likely? */
2718 		err = E2BIG;
2719 		goto errout;
2720 	}
2721 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2722 		err = ENOMEM;
2723 		goto errout;
2724 	}
2725 	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2726 
2727 	mcr->mcr_pkts = htole16(1);
2728 	mcr->mcr_flags = 0;
2729 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2730 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2731 	mcr->mcr_ipktbuf.pb_next = 0;
2732 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2733 	mcr->mcr_reserved = 0;
2734 	mcr->mcr_pktlen = htole16(msglen);
2735 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2736 	mcr->mcr_opktbuf.pb_next = 0;
2737 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2738 
2739 #ifdef DIAGNOSTIC
2740 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2741 		panic("%s: rsapriv: invalid msgin %x(0x%x)",
2742 		    device_get_nameunit(sc->sc_dev),
2743 		    rp->rpr_msgin.dma_paddr, rp->rpr_msgin.dma_size);
2744 	}
2745 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2746 		panic("%s: rsapriv: invalid msgout %x(0x%x)",
2747 		    device_get_nameunit(sc->sc_dev),
2748 		    rp->rpr_msgout.dma_paddr, rp->rpr_msgout.dma_size);
2749 	}
2750 #endif
2751 
2752 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2753 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2754 	ctx->rpr_q_len = htole16(padlen);
2755 	ctx->rpr_p_len = htole16(padlen);
2756 
2757 	/*
2758 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2759 	 * everything else.
2760 	 */
2761 	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2762 	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2763 
2764 	/* Enqueue and we're done... */
2765 	crit_enter();
2766 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2767 	ubsec_feed2(sc);
2768 	ubsecstats.hst_modexpcrt++;
2769 	crit_exit();
2770 	return (0);
2771 
2772 errout:
2773 	if (rp != NULL) {
2774 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2775 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2776 		if (rp->rpr_msgin.dma_map != NULL) {
2777 			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2778 			ubsec_dma_free(sc, &rp->rpr_msgin);
2779 		}
2780 		if (rp->rpr_msgout.dma_map != NULL) {
2781 			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2782 			ubsec_dma_free(sc, &rp->rpr_msgout);
2783 		}
2784 		kfree(rp, M_DEVBUF);
2785 	}
2786 	krp->krp_status = err;
2787 	crypto_kdone(krp);
2788 	return (0);
2789 }
2790 
2791 #ifdef UBSEC_DEBUG
2792 static void
2793 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2794 {
2795 	kprintf("addr 0x%x (0x%x) next 0x%x\n",
2796 	    pb->pb_addr, pb->pb_len, pb->pb_next);
2797 }
2798 
2799 static void
2800 ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2801 {
2802 	kprintf("CTX (0x%x):\n", c->ctx_len);
2803 	switch (letoh16(c->ctx_op)) {
2804 	case UBS_CTXOP_RNGBYPASS:
2805 	case UBS_CTXOP_RNGSHA1:
2806 		break;
2807 	case UBS_CTXOP_MODEXP:
2808 	{
2809 		struct ubsec_ctx_modexp *cx = (void *)c;
2810 		int i, len;
2811 
2812 		kprintf(" Elen %u, Nlen %u\n",
2813 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2814 		len = (cx->me_N_len + 7)/8;
2815 		for (i = 0; i < len; i++)
2816 			kprintf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2817 		kprintf("\n");
2818 		break;
2819 	}
2820 	default:
2821 		kprintf("unknown context: %x\n", c->ctx_op);
2822 	}
2823 	kprintf("END CTX\n");
2824 }
2825 
2826 static void
2827 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2828 {
2829 	volatile struct ubsec_mcr_add *ma;
2830 	int i;
2831 
2832 	kprintf("MCR:\n");
2833 	kprintf(" pkts: %u, flags 0x%x\n",
2834 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2835 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2836 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2837 		kprintf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2838 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2839 		    letoh16(ma->mcr_reserved));
2840 		kprintf(" %d: ipkt ", i);
2841 		ubsec_dump_pb(&ma->mcr_ipktbuf);
2842 		kprintf(" %d: opkt ", i);
2843 		ubsec_dump_pb(&ma->mcr_opktbuf);
2844 		ma++;
2845 	}
2846 	kprintf("END MCR\n");
2847 }
2848 #endif /* UBSEC_DEBUG */
2849 
2850 /*
2851  * Return the number of significant bits of a big number.
2852  */
2853 static int
2854 ubsec_ksigbits(struct crparam *cr)
2855 {
2856 	u_int plen = (cr->crp_nbits + 7) / 8;
2857 	int i, sig = plen * 8;
2858 	u_int8_t c, *p = cr->crp_p;
2859 
2860 	for (i = plen - 1; i >= 0; i--) {
2861 		c = p[i];
2862 		if (c != 0) {
2863 			while ((c & 0x80) == 0) {
2864 				sig--;
2865 				c <<= 1;
2866 			}
2867 			break;
2868 		}
2869 		sig -= 8;
2870 	}
2871 	return (sig);
2872 }
2873 
2874 static void
2875 ubsec_kshift_r(
2876 	u_int shiftbits,
2877 	u_int8_t *src, u_int srcbits,
2878 	u_int8_t *dst, u_int dstbits)
2879 {
2880 	u_int slen, dlen;
2881 	int i, si, di, n;
2882 
2883 	slen = (srcbits + 7) / 8;
2884 	dlen = (dstbits + 7) / 8;
2885 
2886 	for (i = 0; i < slen; i++)
2887 		dst[i] = src[i];
2888 	for (i = 0; i < dlen - slen; i++)
2889 		dst[slen + i] = 0;
2890 
2891 	n = shiftbits / 8;
2892 	if (n != 0) {
2893 		si = dlen - n - 1;
2894 		di = dlen - 1;
2895 		while (si >= 0)
2896 			dst[di--] = dst[si--];
2897 		while (di >= 0)
2898 			dst[di--] = 0;
2899 	}
2900 
2901 	n = shiftbits % 8;
2902 	if (n != 0) {
2903 		for (i = dlen - 1; i > 0; i--)
2904 			dst[i] = (dst[i] << n) |
2905 			    (dst[i - 1] >> (8 - n));
2906 		dst[0] = dst[0] << n;
2907 	}
2908 }
2909 
2910 static void
2911 ubsec_kshift_l(
2912 	u_int shiftbits,
2913 	u_int8_t *src, u_int srcbits,
2914 	u_int8_t *dst, u_int dstbits)
2915 {
2916 	int slen, dlen, i, n;
2917 
2918 	slen = (srcbits + 7) / 8;
2919 	dlen = (dstbits + 7) / 8;
2920 
2921 	n = shiftbits / 8;
2922 	for (i = 0; i < slen; i++)
2923 		dst[i] = src[i + n];
2924 	for (i = 0; i < dlen - slen; i++)
2925 		dst[slen + i] = 0;
2926 
2927 	n = shiftbits % 8;
2928 	if (n != 0) {
2929 		for (i = 0; i < (dlen - 1); i++)
2930 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2931 		dst[dlen - 1] = dst[dlen - 1] >> n;
2932 	}
2933 }
2934