1 /* 2 * CAM SCSI interface for the the Advanced Systems Inc. 3 * Second Generation SCSI controllers. 4 * 5 * Product specific probe and attach routines can be found in: 6 * 7 * adw_pci.c ABP[3]940UW, ABP950UW, ABP3940U2W 8 * 9 * Copyright (c) 1998, 1999, 2000 Justin Gibbs. 10 * All rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions, and the following disclaimer, 17 * without modification. 18 * 2. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 25 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * $FreeBSD: src/sys/dev/advansys/adwcam.c,v 1.7.2.2 2001/03/05 13:08:55 obrien Exp $ 34 * $DragonFly: src/sys/dev/disk/advansys/adwcam.c,v 1.19 2008/05/18 20:30:20 pavalos Exp $ 35 */ 36 /* 37 * Ported from: 38 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters 39 * 40 * Copyright (c) 1995-1998 Advanced System Products, Inc. 41 * All Rights Reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that redistributions of source 45 * code retain the above copyright notice and this comment without 46 * modification. 47 */ 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/kernel.h> 52 #include <sys/malloc.h> 53 #include <sys/bus.h> 54 #include <sys/thread2.h> 55 56 #include <machine/clock.h> 57 58 #include <sys/rman.h> 59 60 #include <bus/cam/cam.h> 61 #include <bus/cam/cam_ccb.h> 62 #include <bus/cam/cam_sim.h> 63 #include <bus/cam/cam_xpt_sim.h> 64 #include <bus/cam/cam_debug.h> 65 66 #include <bus/cam/scsi/scsi_message.h> 67 68 #include "adwvar.h" 69 70 /* Definitions for our use of the SIM private CCB area */ 71 #define ccb_acb_ptr spriv_ptr0 72 #define ccb_adw_ptr spriv_ptr1 73 74 u_long adw_unit; 75 76 static __inline cam_status adwccbstatus(union ccb*); 77 static __inline struct acb* adwgetacb(struct adw_softc *adw); 78 static __inline void adwfreeacb(struct adw_softc *adw, 79 struct acb *acb); 80 81 static void adwmapmem(void *arg, bus_dma_segment_t *segs, 82 int nseg, int error); 83 static struct sg_map_node* 84 adwallocsgmap(struct adw_softc *adw); 85 static int adwallocacbs(struct adw_softc *adw); 86 87 static void adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs, 88 int nseg, int error); 89 static void adw_action(struct cam_sim *sim, union ccb *ccb); 90 static void adw_poll(struct cam_sim *sim); 91 static void adw_async(void *callback_arg, u_int32_t code, 92 struct cam_path *path, void *arg); 93 static void adwprocesserror(struct adw_softc *adw, struct acb *acb); 94 static void adwtimeout(void *arg); 95 static void adw_handle_device_reset(struct adw_softc *adw, 96 u_int target); 97 static void adw_handle_bus_reset(struct adw_softc *adw, 98 int initiated); 99 100 static __inline cam_status 101 adwccbstatus(union ccb* ccb) 102 { 103 return (ccb->ccb_h.status & CAM_STATUS_MASK); 104 } 105 106 static __inline struct acb* 107 adwgetacb(struct adw_softc *adw) 108 { 109 struct acb* acb; 110 111 crit_enter(); 112 if ((acb = SLIST_FIRST(&adw->free_acb_list)) != NULL) { 113 SLIST_REMOVE_HEAD(&adw->free_acb_list, links); 114 } else if (adw->num_acbs < adw->max_acbs) { 115 adwallocacbs(adw); 116 acb = SLIST_FIRST(&adw->free_acb_list); 117 if (acb == NULL) 118 kprintf("%s: Can't malloc ACB\n", adw_name(adw)); 119 else { 120 SLIST_REMOVE_HEAD(&adw->free_acb_list, links); 121 } 122 } 123 crit_exit(); 124 125 return (acb); 126 } 127 128 static __inline void 129 adwfreeacb(struct adw_softc *adw, struct acb *acb) 130 { 131 crit_enter(); 132 if ((acb->state & ACB_ACTIVE) != 0) 133 LIST_REMOVE(&acb->ccb->ccb_h, sim_links.le); 134 if ((acb->state & ACB_RELEASE_SIMQ) != 0) 135 acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 136 else if ((adw->state & ADW_RESOURCE_SHORTAGE) != 0 137 && (acb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) { 138 acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 139 adw->state &= ~ADW_RESOURCE_SHORTAGE; 140 } 141 acb->state = ACB_FREE; 142 SLIST_INSERT_HEAD(&adw->free_acb_list, acb, links); 143 crit_exit(); 144 } 145 146 static void 147 adwmapmem(void *arg, bus_dma_segment_t *segs, int nseg, int error) 148 { 149 bus_addr_t *busaddrp; 150 151 busaddrp = (bus_addr_t *)arg; 152 *busaddrp = segs->ds_addr; 153 } 154 155 static struct sg_map_node * 156 adwallocsgmap(struct adw_softc *adw) 157 { 158 struct sg_map_node *sg_map; 159 160 sg_map = kmalloc(sizeof(*sg_map), M_DEVBUF, M_INTWAIT); 161 162 /* Allocate S/G space for the next batch of ACBS */ 163 if (bus_dmamem_alloc(adw->sg_dmat, (void **)&sg_map->sg_vaddr, 164 BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) { 165 kfree(sg_map, M_DEVBUF); 166 return (NULL); 167 } 168 169 SLIST_INSERT_HEAD(&adw->sg_maps, sg_map, links); 170 171 bus_dmamap_load(adw->sg_dmat, sg_map->sg_dmamap, sg_map->sg_vaddr, 172 PAGE_SIZE, adwmapmem, &sg_map->sg_physaddr, /*flags*/0); 173 174 bzero(sg_map->sg_vaddr, PAGE_SIZE); 175 return (sg_map); 176 } 177 178 /* 179 * Allocate another chunk of CCB's. Return count of entries added. 180 * Assumed to be called under crit_enter(). 181 */ 182 static int 183 adwallocacbs(struct adw_softc *adw) 184 { 185 struct acb *next_acb; 186 struct sg_map_node *sg_map; 187 bus_addr_t busaddr; 188 struct adw_sg_block *blocks; 189 int newcount; 190 int i; 191 192 next_acb = &adw->acbs[adw->num_acbs]; 193 sg_map = adwallocsgmap(adw); 194 195 if (sg_map == NULL) 196 return (0); 197 198 blocks = sg_map->sg_vaddr; 199 busaddr = sg_map->sg_physaddr; 200 201 newcount = (PAGE_SIZE / (ADW_SG_BLOCKCNT * sizeof(*blocks))); 202 for (i = 0; adw->num_acbs < adw->max_acbs && i < newcount; i++) { 203 int error; 204 205 error = bus_dmamap_create(adw->buffer_dmat, /*flags*/0, 206 &next_acb->dmamap); 207 if (error != 0) 208 break; 209 next_acb->queue.scsi_req_baddr = acbvtob(adw, next_acb); 210 next_acb->queue.scsi_req_bo = acbvtobo(adw, next_acb); 211 next_acb->queue.sense_baddr = 212 acbvtob(adw, next_acb) + offsetof(struct acb, sense_data); 213 next_acb->sg_blocks = blocks; 214 next_acb->sg_busaddr = busaddr; 215 next_acb->state = ACB_FREE; 216 SLIST_INSERT_HEAD(&adw->free_acb_list, next_acb, links); 217 blocks += ADW_SG_BLOCKCNT; 218 busaddr += ADW_SG_BLOCKCNT * sizeof(*blocks); 219 next_acb++; 220 adw->num_acbs++; 221 } 222 return (i); 223 } 224 225 static void 226 adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) 227 { 228 struct acb *acb; 229 union ccb *ccb; 230 struct adw_softc *adw; 231 232 acb = (struct acb *)arg; 233 ccb = acb->ccb; 234 adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr; 235 236 if (error != 0) { 237 if (error != EFBIG) 238 kprintf("%s: Unexpected error 0x%x returned from " 239 "bus_dmamap_load\n", adw_name(adw), error); 240 if (ccb->ccb_h.status == CAM_REQ_INPROG) { 241 xpt_freeze_devq(ccb->ccb_h.path, /*count*/1); 242 ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN; 243 } 244 adwfreeacb(adw, acb); 245 xpt_done(ccb); 246 return; 247 } 248 249 if (nseg != 0) { 250 bus_dmasync_op_t op; 251 252 acb->queue.data_addr = dm_segs[0].ds_addr; 253 acb->queue.data_cnt = ccb->csio.dxfer_len; 254 if (nseg > 1) { 255 struct adw_sg_block *sg_block; 256 struct adw_sg_elm *sg; 257 bus_addr_t sg_busaddr; 258 u_int sg_index; 259 bus_dma_segment_t *end_seg; 260 261 end_seg = dm_segs + nseg; 262 263 sg_busaddr = acb->sg_busaddr; 264 sg_index = 0; 265 /* Copy the segments into our SG list */ 266 for (sg_block = acb->sg_blocks;; sg_block++) { 267 u_int i; 268 269 sg = sg_block->sg_list; 270 for (i = 0; i < ADW_NO_OF_SG_PER_BLOCK; i++) { 271 if (dm_segs >= end_seg) 272 break; 273 274 sg->sg_addr = dm_segs->ds_addr; 275 sg->sg_count = dm_segs->ds_len; 276 sg++; 277 dm_segs++; 278 } 279 sg_block->sg_cnt = i; 280 sg_index += i; 281 if (dm_segs == end_seg) { 282 sg_block->sg_busaddr_next = 0; 283 break; 284 } else { 285 sg_busaddr += 286 sizeof(struct adw_sg_block); 287 sg_block->sg_busaddr_next = sg_busaddr; 288 } 289 } 290 acb->queue.sg_real_addr = acb->sg_busaddr; 291 } else { 292 acb->queue.sg_real_addr = 0; 293 } 294 295 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) 296 op = BUS_DMASYNC_PREREAD; 297 else 298 op = BUS_DMASYNC_PREWRITE; 299 300 bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op); 301 302 } else { 303 acb->queue.data_addr = 0; 304 acb->queue.data_cnt = 0; 305 acb->queue.sg_real_addr = 0; 306 } 307 308 crit_enter(); 309 310 /* 311 * Last time we need to check if this CCB needs to 312 * be aborted. 313 */ 314 if (ccb->ccb_h.status != CAM_REQ_INPROG) { 315 if (nseg != 0) 316 bus_dmamap_unload(adw->buffer_dmat, acb->dmamap); 317 adwfreeacb(adw, acb); 318 xpt_done(ccb); 319 crit_exit(); 320 return; 321 } 322 323 acb->state |= ACB_ACTIVE; 324 ccb->ccb_h.status |= CAM_SIM_QUEUED; 325 LIST_INSERT_HEAD(&adw->pending_ccbs, &ccb->ccb_h, sim_links.le); 326 callout_reset(&ccb->ccb_h.timeout_ch, (ccb->ccb_h.timeout * hz) / 1000, 327 adwtimeout, acb); 328 329 adw_send_acb(adw, acb, acbvtob(adw, acb)); 330 331 crit_exit(); 332 } 333 334 static void 335 adw_action(struct cam_sim *sim, union ccb *ccb) 336 { 337 struct adw_softc *adw; 338 339 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adw_action\n")); 340 341 adw = (struct adw_softc *)cam_sim_softc(sim); 342 343 switch (ccb->ccb_h.func_code) { 344 /* Common cases first */ 345 case XPT_SCSI_IO: /* Execute the requested I/O operation */ 346 { 347 struct ccb_scsiio *csio; 348 struct ccb_hdr *ccbh; 349 struct acb *acb; 350 351 csio = &ccb->csio; 352 ccbh = &ccb->ccb_h; 353 354 /* Max supported CDB length is 12 bytes */ 355 if (csio->cdb_len > 12) { 356 ccb->ccb_h.status = CAM_REQ_INVALID; 357 xpt_done(ccb); 358 return; 359 } 360 361 if ((acb = adwgetacb(adw)) == NULL) { 362 crit_enter(); 363 adw->state |= ADW_RESOURCE_SHORTAGE; 364 crit_exit(); 365 xpt_freeze_simq(sim, /*count*/1); 366 ccb->ccb_h.status = CAM_REQUEUE_REQ; 367 xpt_done(ccb); 368 return; 369 } 370 371 /* Link acb and ccb so we can find one from the other */ 372 acb->ccb = ccb; 373 ccb->ccb_h.ccb_acb_ptr = acb; 374 ccb->ccb_h.ccb_adw_ptr = adw; 375 376 acb->queue.cntl = 0; 377 acb->queue.target_cmd = 0; 378 acb->queue.target_id = ccb->ccb_h.target_id; 379 acb->queue.target_lun = ccb->ccb_h.target_lun; 380 381 acb->queue.mflag = 0; 382 acb->queue.sense_len = 383 MIN(csio->sense_len, sizeof(acb->sense_data)); 384 acb->queue.cdb_len = csio->cdb_len; 385 if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) { 386 switch (csio->tag_action) { 387 case MSG_SIMPLE_Q_TAG: 388 acb->queue.scsi_cntl = ADW_QSC_SIMPLE_Q_TAG; 389 break; 390 case MSG_HEAD_OF_Q_TAG: 391 acb->queue.scsi_cntl = ADW_QSC_HEAD_OF_Q_TAG; 392 break; 393 case MSG_ORDERED_Q_TAG: 394 acb->queue.scsi_cntl = ADW_QSC_ORDERED_Q_TAG; 395 break; 396 default: 397 acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG; 398 break; 399 } 400 } else 401 acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG; 402 403 if ((ccb->ccb_h.flags & CAM_DIS_DISCONNECT) != 0) 404 acb->queue.scsi_cntl |= ADW_QSC_NO_DISC; 405 406 acb->queue.done_status = 0; 407 acb->queue.scsi_status = 0; 408 acb->queue.host_status = 0; 409 acb->queue.sg_wk_ix = 0; 410 if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) { 411 if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) { 412 bcopy(csio->cdb_io.cdb_ptr, 413 acb->queue.cdb, csio->cdb_len); 414 } else { 415 /* I guess I could map it in... */ 416 ccb->ccb_h.status = CAM_REQ_INVALID; 417 adwfreeacb(adw, acb); 418 xpt_done(ccb); 419 return; 420 } 421 } else { 422 bcopy(csio->cdb_io.cdb_bytes, 423 acb->queue.cdb, csio->cdb_len); 424 } 425 426 /* 427 * If we have any data to send with this command, 428 * map it into bus space. 429 */ 430 if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) { 431 if ((ccbh->flags & CAM_SCATTER_VALID) == 0) { 432 /* 433 * We've been given a pointer 434 * to a single buffer. 435 */ 436 if ((ccbh->flags & CAM_DATA_PHYS) == 0) { 437 int error; 438 439 crit_enter(); 440 error = 441 bus_dmamap_load(adw->buffer_dmat, 442 acb->dmamap, 443 csio->data_ptr, 444 csio->dxfer_len, 445 adwexecuteacb, 446 acb, /*flags*/0); 447 if (error == EINPROGRESS) { 448 /* 449 * So as to maintain ordering, 450 * freeze the controller queue 451 * until our mapping is 452 * returned. 453 */ 454 xpt_freeze_simq(sim, 1); 455 acb->state |= CAM_RELEASE_SIMQ; 456 } 457 crit_exit(); 458 } else { 459 struct bus_dma_segment seg; 460 461 /* Pointer to physical buffer */ 462 seg.ds_addr = 463 (bus_addr_t)csio->data_ptr; 464 seg.ds_len = csio->dxfer_len; 465 adwexecuteacb(acb, &seg, 1, 0); 466 } 467 } else { 468 struct bus_dma_segment *segs; 469 470 if ((ccbh->flags & CAM_DATA_PHYS) != 0) 471 panic("adw_action - Physical " 472 "segment pointers " 473 "unsupported"); 474 475 if ((ccbh->flags&CAM_SG_LIST_PHYS)==0) 476 panic("adw_action - Virtual " 477 "segment addresses " 478 "unsupported"); 479 480 /* Just use the segments provided */ 481 segs = (struct bus_dma_segment *)csio->data_ptr; 482 adwexecuteacb(acb, segs, csio->sglist_cnt, 483 (csio->sglist_cnt < ADW_SGSIZE) 484 ? 0 : EFBIG); 485 } 486 } else { 487 adwexecuteacb(acb, NULL, 0, 0); 488 } 489 break; 490 } 491 case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ 492 { 493 adw_idle_cmd_status_t status; 494 495 status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET, 496 ccb->ccb_h.target_id); 497 if (status == ADW_IDLE_CMD_SUCCESS) { 498 ccb->ccb_h.status = CAM_REQ_CMP; 499 if (bootverbose) { 500 xpt_print_path(ccb->ccb_h.path); 501 kprintf("BDR Delivered\n"); 502 } 503 } else 504 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 505 xpt_done(ccb); 506 break; 507 } 508 case XPT_ABORT: /* Abort the specified CCB */ 509 /* XXX Implement */ 510 ccb->ccb_h.status = CAM_REQ_INVALID; 511 xpt_done(ccb); 512 break; 513 case XPT_SET_TRAN_SETTINGS: 514 { 515 struct ccb_trans_settings_scsi *scsi; 516 struct ccb_trans_settings_spi *spi; 517 struct ccb_trans_settings *cts; 518 u_int target_mask; 519 520 cts = &ccb->cts; 521 target_mask = 0x01 << ccb->ccb_h.target_id; 522 523 crit_enter(); 524 scsi = &cts->proto_specific.scsi; 525 spi = &cts->xport_specific.spi; 526 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 527 u_int sdtrdone; 528 529 sdtrdone = adw_lram_read_16(adw, ADW_MC_SDTR_DONE); 530 if ((spi->valid & CTS_SPI_VALID_DISC) != 0) { 531 u_int discenb; 532 533 discenb = 534 adw_lram_read_16(adw, ADW_MC_DISC_ENABLE); 535 536 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 537 discenb |= target_mask; 538 else 539 discenb &= ~target_mask; 540 541 adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, 542 discenb); 543 } 544 545 if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 546 547 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 548 adw->tagenb |= target_mask; 549 else 550 adw->tagenb &= ~target_mask; 551 } 552 553 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) { 554 u_int wdtrenb_orig; 555 u_int wdtrenb; 556 u_int wdtrdone; 557 558 wdtrenb_orig = 559 adw_lram_read_16(adw, ADW_MC_WDTR_ABLE); 560 wdtrenb = wdtrenb_orig; 561 wdtrdone = adw_lram_read_16(adw, 562 ADW_MC_WDTR_DONE); 563 switch (spi->bus_width) { 564 case MSG_EXT_WDTR_BUS_32_BIT: 565 case MSG_EXT_WDTR_BUS_16_BIT: 566 wdtrenb |= target_mask; 567 break; 568 case MSG_EXT_WDTR_BUS_8_BIT: 569 default: 570 wdtrenb &= ~target_mask; 571 break; 572 } 573 if (wdtrenb != wdtrenb_orig) { 574 adw_lram_write_16(adw, 575 ADW_MC_WDTR_ABLE, 576 wdtrenb); 577 wdtrdone &= ~target_mask; 578 adw_lram_write_16(adw, 579 ADW_MC_WDTR_DONE, 580 wdtrdone); 581 /* Wide negotiation forces async */ 582 sdtrdone &= ~target_mask; 583 adw_lram_write_16(adw, 584 ADW_MC_SDTR_DONE, 585 sdtrdone); 586 } 587 } 588 589 if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 590 || ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) { 591 u_int sdtr_orig; 592 u_int sdtr; 593 u_int sdtrable_orig; 594 u_int sdtrable; 595 596 sdtr = adw_get_chip_sdtr(adw, 597 ccb->ccb_h.target_id); 598 sdtr_orig = sdtr; 599 sdtrable = adw_lram_read_16(adw, 600 ADW_MC_SDTR_ABLE); 601 sdtrable_orig = sdtrable; 602 603 if ((spi->valid 604 & CTS_SPI_VALID_SYNC_RATE) != 0) { 605 606 sdtr = 607 adw_find_sdtr(adw, 608 spi->sync_period); 609 } 610 611 if ((spi->valid 612 & CTS_SPI_VALID_SYNC_OFFSET) != 0) { 613 if (spi->sync_offset == 0) 614 sdtr = ADW_MC_SDTR_ASYNC; 615 } 616 617 if (sdtr == ADW_MC_SDTR_ASYNC) 618 sdtrable &= ~target_mask; 619 else 620 sdtrable |= target_mask; 621 if (sdtr != sdtr_orig 622 || sdtrable != sdtrable_orig) { 623 adw_set_chip_sdtr(adw, 624 ccb->ccb_h.target_id, 625 sdtr); 626 sdtrdone &= ~target_mask; 627 adw_lram_write_16(adw, ADW_MC_SDTR_ABLE, 628 sdtrable); 629 adw_lram_write_16(adw, ADW_MC_SDTR_DONE, 630 sdtrdone); 631 632 } 633 } 634 } 635 crit_exit(); 636 ccb->ccb_h.status = CAM_REQ_CMP; 637 xpt_done(ccb); 638 break; 639 } 640 case XPT_GET_TRAN_SETTINGS: 641 /* Get default/user set transfer settings for the target */ 642 { 643 struct ccb_trans_settings_scsi *scsi; 644 struct ccb_trans_settings_spi *spi; 645 struct ccb_trans_settings *cts; 646 u_int target_mask; 647 648 cts = &ccb->cts; 649 target_mask = 0x01 << ccb->ccb_h.target_id; 650 cts->protocol = PROTO_SCSI; 651 cts->protocol_version = SCSI_REV_2; 652 cts->transport = XPORT_SPI; 653 cts->transport_version = 2; 654 655 scsi = &cts->proto_specific.scsi; 656 spi = &cts->xport_specific.spi; 657 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 658 u_int mc_sdtr; 659 660 spi->flags = 0; 661 if ((adw->user_discenb & target_mask) != 0) 662 spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 663 664 if ((adw->user_tagenb & target_mask) != 0) 665 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 666 667 if ((adw->user_wdtr & target_mask) != 0) 668 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 669 else 670 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 671 672 mc_sdtr = adw_get_user_sdtr(adw, ccb->ccb_h.target_id); 673 spi->sync_period = adw_find_period(adw, mc_sdtr); 674 if (spi->sync_period != 0) 675 spi->sync_offset = 15; /* XXX ??? */ 676 else 677 spi->sync_offset = 0; 678 679 680 } else { 681 u_int targ_tinfo; 682 683 spi->flags = 0; 684 if ((adw_lram_read_16(adw, ADW_MC_DISC_ENABLE) 685 & target_mask) != 0) 686 spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 687 688 if ((adw->tagenb & target_mask) != 0) 689 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 690 691 targ_tinfo = 692 adw_lram_read_16(adw, 693 ADW_MC_DEVICE_HSHK_CFG_TABLE 694 + (2 * ccb->ccb_h.target_id)); 695 696 if ((targ_tinfo & ADW_HSHK_CFG_WIDE_XFR) != 0) 697 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 698 else 699 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 700 701 spi->sync_period = 702 adw_hshk_cfg_period_factor(targ_tinfo); 703 704 spi->sync_offset = targ_tinfo & ADW_HSHK_CFG_OFFSET; 705 if (spi->sync_period == 0) 706 spi->sync_offset = 0; 707 708 if (spi->sync_offset == 0) 709 spi->sync_period = 0; 710 } 711 712 spi->valid = CTS_SPI_VALID_SYNC_RATE 713 | CTS_SPI_VALID_SYNC_OFFSET 714 | CTS_SPI_VALID_BUS_WIDTH 715 | CTS_SPI_VALID_DISC; 716 scsi->valid = CTS_SCSI_VALID_TQ; 717 ccb->ccb_h.status = CAM_REQ_CMP; 718 xpt_done(ccb); 719 break; 720 } 721 case XPT_CALC_GEOMETRY: 722 { 723 struct ccb_calc_geometry *ccg; 724 u_int32_t size_mb; 725 u_int32_t secs_per_cylinder; 726 int extended; 727 728 /* 729 * XXX Use Adaptec translation until I find out how to 730 * get this information from the card. 731 */ 732 ccg = &ccb->ccg; 733 size_mb = ccg->volume_size 734 / ((1024L * 1024L) / ccg->block_size); 735 extended = 1; 736 737 if (size_mb > 1024 && extended) { 738 ccg->heads = 255; 739 ccg->secs_per_track = 63; 740 } else { 741 ccg->heads = 64; 742 ccg->secs_per_track = 32; 743 } 744 secs_per_cylinder = ccg->heads * ccg->secs_per_track; 745 ccg->cylinders = ccg->volume_size / secs_per_cylinder; 746 ccb->ccb_h.status = CAM_REQ_CMP; 747 xpt_done(ccb); 748 break; 749 } 750 case XPT_RESET_BUS: /* Reset the specified SCSI bus */ 751 { 752 int failure; 753 754 failure = adw_reset_bus(adw); 755 if (failure != 0) { 756 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 757 } else { 758 if (bootverbose) { 759 xpt_print_path(adw->path); 760 kprintf("Bus Reset Delivered\n"); 761 } 762 ccb->ccb_h.status = CAM_REQ_CMP; 763 } 764 xpt_done(ccb); 765 break; 766 } 767 case XPT_TERM_IO: /* Terminate the I/O process */ 768 /* XXX Implement */ 769 ccb->ccb_h.status = CAM_REQ_INVALID; 770 xpt_done(ccb); 771 break; 772 case XPT_PATH_INQ: /* Path routing inquiry */ 773 { 774 struct ccb_pathinq *cpi = &ccb->cpi; 775 776 cpi->version_num = 1; 777 cpi->hba_inquiry = PI_WIDE_16|PI_SDTR_ABLE|PI_TAG_ABLE; 778 cpi->target_sprt = 0; 779 cpi->hba_misc = 0; 780 cpi->hba_eng_cnt = 0; 781 cpi->max_target = ADW_MAX_TID; 782 cpi->max_lun = ADW_MAX_LUN; 783 cpi->initiator_id = adw->initiator_id; 784 cpi->bus_id = cam_sim_bus(sim); 785 cpi->base_transfer_speed = 3300; 786 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 787 strncpy(cpi->hba_vid, "AdvanSys", HBA_IDLEN); 788 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 789 cpi->unit_number = cam_sim_unit(sim); 790 cpi->transport = XPORT_SPI; 791 cpi->transport_version = 2; 792 cpi->protocol = PROTO_SCSI; 793 cpi->protocol_version = SCSI_REV_2; 794 cpi->ccb_h.status = CAM_REQ_CMP; 795 xpt_done(ccb); 796 break; 797 } 798 default: 799 ccb->ccb_h.status = CAM_REQ_INVALID; 800 xpt_done(ccb); 801 break; 802 } 803 } 804 805 static void 806 adw_poll(struct cam_sim *sim) 807 { 808 adw_intr(cam_sim_softc(sim)); 809 } 810 811 static void 812 adw_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) 813 { 814 } 815 816 struct adw_softc * 817 adw_alloc(device_t dev, struct resource *regs, int regs_type, int regs_id) 818 { 819 struct adw_softc *adw; 820 int i; 821 822 /* 823 * Allocate a storage area for us 824 */ 825 adw = kmalloc(sizeof(struct adw_softc), M_DEVBUF, M_INTWAIT | M_ZERO); 826 LIST_INIT(&adw->pending_ccbs); 827 SLIST_INIT(&adw->sg_maps); 828 adw->device = dev; 829 adw->unit = device_get_unit(dev); 830 adw->regs_res_type = regs_type; 831 adw->regs_res_id = regs_id; 832 adw->regs = regs; 833 adw->tag = rman_get_bustag(regs); 834 adw->bsh = rman_get_bushandle(regs); 835 KKASSERT(adw->unit >= 0 && adw->unit < 100); 836 i = adw->unit / 10; 837 adw->name = kmalloc(sizeof("adw") + i + 1, M_DEVBUF, M_INTWAIT); 838 ksprintf(adw->name, "adw%d", adw->unit); 839 return(adw); 840 } 841 842 void 843 adw_free(struct adw_softc *adw) 844 { 845 switch (adw->init_level) { 846 case 9: 847 { 848 struct sg_map_node *sg_map; 849 850 while ((sg_map = SLIST_FIRST(&adw->sg_maps)) != NULL) { 851 SLIST_REMOVE_HEAD(&adw->sg_maps, links); 852 bus_dmamap_unload(adw->sg_dmat, 853 sg_map->sg_dmamap); 854 bus_dmamem_free(adw->sg_dmat, sg_map->sg_vaddr, 855 sg_map->sg_dmamap); 856 kfree(sg_map, M_DEVBUF); 857 } 858 bus_dma_tag_destroy(adw->sg_dmat); 859 } 860 case 8: 861 bus_dmamap_unload(adw->acb_dmat, adw->acb_dmamap); 862 case 7: 863 bus_dmamem_free(adw->acb_dmat, adw->acbs, 864 adw->acb_dmamap); 865 bus_dmamap_destroy(adw->acb_dmat, adw->acb_dmamap); 866 case 6: 867 bus_dma_tag_destroy(adw->acb_dmat); 868 case 5: 869 bus_dmamap_unload(adw->carrier_dmat, adw->carrier_dmamap); 870 case 4: 871 bus_dmamem_free(adw->carrier_dmat, adw->carriers, 872 adw->carrier_dmamap); 873 bus_dmamap_destroy(adw->carrier_dmat, adw->carrier_dmamap); 874 case 3: 875 bus_dma_tag_destroy(adw->carrier_dmat); 876 case 2: 877 bus_dma_tag_destroy(adw->buffer_dmat); 878 case 1: 879 bus_dma_tag_destroy(adw->parent_dmat); 880 case 0: 881 break; 882 } 883 kfree(adw->name, M_DEVBUF); 884 kfree(adw, M_DEVBUF); 885 } 886 887 int 888 adw_init(struct adw_softc *adw) 889 { 890 struct adw_eeprom eep_config; 891 u_int tid; 892 u_int i; 893 u_int16_t checksum; 894 u_int16_t scsicfg1; 895 896 checksum = adw_eeprom_read(adw, &eep_config); 897 bcopy(eep_config.serial_number, adw->serial_number, 898 sizeof(adw->serial_number)); 899 if (checksum != eep_config.checksum) { 900 u_int16_t serial_number[3]; 901 902 adw->flags |= ADW_EEPROM_FAILED; 903 kprintf("%s: EEPROM checksum failed. Restoring Defaults\n", 904 adw_name(adw)); 905 906 /* 907 * Restore the default EEPROM settings. 908 * Assume the 6 byte board serial number that was read 909 * from EEPROM is correct even if the EEPROM checksum 910 * failed. 911 */ 912 bcopy(adw->default_eeprom, &eep_config, sizeof(eep_config)); 913 bcopy(adw->serial_number, eep_config.serial_number, 914 sizeof(serial_number)); 915 adw_eeprom_write(adw, &eep_config); 916 } 917 918 /* Pull eeprom information into our softc. */ 919 adw->bios_ctrl = eep_config.bios_ctrl; 920 adw->user_wdtr = eep_config.wdtr_able; 921 for (tid = 0; tid < ADW_MAX_TID; tid++) { 922 u_int mc_sdtr; 923 u_int16_t tid_mask; 924 925 tid_mask = 0x1 << tid; 926 if ((adw->features & ADW_ULTRA) != 0) { 927 /* 928 * Ultra chips store sdtr and ultraenb 929 * bits in their seeprom, so we must 930 * construct valid mc_sdtr entries for 931 * indirectly. 932 */ 933 if (eep_config.sync1.sync_enable & tid_mask) { 934 if (eep_config.sync2.ultra_enable & tid_mask) 935 mc_sdtr = ADW_MC_SDTR_20; 936 else 937 mc_sdtr = ADW_MC_SDTR_10; 938 } else 939 mc_sdtr = ADW_MC_SDTR_ASYNC; 940 } else { 941 switch (ADW_TARGET_GROUP(tid)) { 942 case 3: 943 mc_sdtr = eep_config.sync4.sdtr4; 944 break; 945 case 2: 946 mc_sdtr = eep_config.sync3.sdtr3; 947 break; 948 case 1: 949 mc_sdtr = eep_config.sync2.sdtr2; 950 break; 951 default: /* Shut up compiler */ 952 case 0: 953 mc_sdtr = eep_config.sync1.sdtr1; 954 break; 955 } 956 mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid); 957 mc_sdtr &= 0xFF; 958 } 959 adw_set_user_sdtr(adw, tid, mc_sdtr); 960 } 961 adw->user_tagenb = eep_config.tagqng_able; 962 adw->user_discenb = eep_config.disc_enable; 963 adw->max_acbs = eep_config.max_host_qng; 964 adw->initiator_id = (eep_config.adapter_scsi_id & ADW_MAX_TID); 965 966 /* 967 * Sanity check the number of host openings. 968 */ 969 if (adw->max_acbs > ADW_DEF_MAX_HOST_QNG) 970 adw->max_acbs = ADW_DEF_MAX_HOST_QNG; 971 else if (adw->max_acbs < ADW_DEF_MIN_HOST_QNG) { 972 /* If the value is zero, assume it is uninitialized. */ 973 if (adw->max_acbs == 0) 974 adw->max_acbs = ADW_DEF_MAX_HOST_QNG; 975 else 976 adw->max_acbs = ADW_DEF_MIN_HOST_QNG; 977 } 978 979 scsicfg1 = 0; 980 if ((adw->features & ADW_ULTRA2) != 0) { 981 switch (eep_config.termination_lvd) { 982 default: 983 kprintf("%s: Invalid EEPROM LVD Termination Settings.\n", 984 adw_name(adw)); 985 kprintf("%s: Reverting to Automatic LVD Termination\n", 986 adw_name(adw)); 987 /* FALLTHROUGH */ 988 case ADW_EEPROM_TERM_AUTO: 989 break; 990 case ADW_EEPROM_TERM_BOTH_ON: 991 scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_LO; 992 /* FALLTHROUGH */ 993 case ADW_EEPROM_TERM_HIGH_ON: 994 scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_HI; 995 /* FALLTHROUGH */ 996 case ADW_EEPROM_TERM_OFF: 997 scsicfg1 |= ADW2_SCSI_CFG1_DIS_TERM_DRV; 998 break; 999 } 1000 } 1001 1002 switch (eep_config.termination_se) { 1003 default: 1004 kprintf("%s: Invalid SE EEPROM Termination Settings.\n", 1005 adw_name(adw)); 1006 kprintf("%s: Reverting to Automatic SE Termination\n", 1007 adw_name(adw)); 1008 /* FALLTHROUGH */ 1009 case ADW_EEPROM_TERM_AUTO: 1010 break; 1011 case ADW_EEPROM_TERM_BOTH_ON: 1012 scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L; 1013 /* FALLTHROUGH */ 1014 case ADW_EEPROM_TERM_HIGH_ON: 1015 scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H; 1016 /* FALLTHROUGH */ 1017 case ADW_EEPROM_TERM_OFF: 1018 scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_MANUAL; 1019 break; 1020 } 1021 kprintf("%s: SCSI ID %d, ", adw_name(adw), adw->initiator_id); 1022 1023 /* DMA tag for mapping buffers into device visible space. */ 1024 if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0, 1025 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, 1026 /*highaddr*/BUS_SPACE_MAXADDR, 1027 /*filter*/NULL, /*filterarg*/NULL, 1028 /*maxsize*/MAXBSIZE, /*nsegments*/ADW_SGSIZE, 1029 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, 1030 /*flags*/BUS_DMA_ALLOCNOW, 1031 &adw->buffer_dmat) != 0) { 1032 return (ENOMEM); 1033 } 1034 1035 adw->init_level++; 1036 1037 /* DMA tag for our ccb carrier structures */ 1038 if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/0x10, 1039 /*boundary*/0, 1040 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, 1041 /*highaddr*/BUS_SPACE_MAXADDR, 1042 /*filter*/NULL, /*filterarg*/NULL, 1043 (adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1) 1044 * sizeof(struct adw_carrier), 1045 /*nsegments*/1, 1046 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, 1047 /*flags*/0, &adw->carrier_dmat) != 0) { 1048 return (ENOMEM); 1049 } 1050 1051 adw->init_level++; 1052 1053 /* Allocation for our ccb carrier structures */ 1054 if (bus_dmamem_alloc(adw->carrier_dmat, (void **)&adw->carriers, 1055 BUS_DMA_NOWAIT, &adw->carrier_dmamap) != 0) { 1056 return (ENOMEM); 1057 } 1058 1059 adw->init_level++; 1060 1061 /* And permanently map them */ 1062 bus_dmamap_load(adw->carrier_dmat, adw->carrier_dmamap, 1063 adw->carriers, 1064 (adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1) 1065 * sizeof(struct adw_carrier), 1066 adwmapmem, &adw->carrier_busbase, /*flags*/0); 1067 1068 /* Clear them out. */ 1069 bzero(adw->carriers, (adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1) 1070 * sizeof(struct adw_carrier)); 1071 1072 /* Setup our free carrier list */ 1073 adw->free_carriers = adw->carriers; 1074 for (i = 0; i < adw->max_acbs + ADW_NUM_CARRIER_QUEUES; i++) { 1075 adw->carriers[i].carr_offset = 1076 carriervtobo(adw, &adw->carriers[i]); 1077 adw->carriers[i].carr_ba = 1078 carriervtob(adw, &adw->carriers[i]); 1079 adw->carriers[i].areq_ba = 0; 1080 adw->carriers[i].next_ba = 1081 carriervtobo(adw, &adw->carriers[i+1]); 1082 } 1083 /* Terminal carrier. Never leaves the freelist */ 1084 adw->carriers[i].carr_offset = 1085 carriervtobo(adw, &adw->carriers[i]); 1086 adw->carriers[i].carr_ba = 1087 carriervtob(adw, &adw->carriers[i]); 1088 adw->carriers[i].areq_ba = 0; 1089 adw->carriers[i].next_ba = ~0; 1090 1091 adw->init_level++; 1092 1093 /* DMA tag for our acb structures */ 1094 if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0, 1095 /*lowaddr*/BUS_SPACE_MAXADDR, 1096 /*highaddr*/BUS_SPACE_MAXADDR, 1097 /*filter*/NULL, /*filterarg*/NULL, 1098 adw->max_acbs * sizeof(struct acb), 1099 /*nsegments*/1, 1100 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, 1101 /*flags*/0, &adw->acb_dmat) != 0) { 1102 return (ENOMEM); 1103 } 1104 1105 adw->init_level++; 1106 1107 /* Allocation for our ccbs */ 1108 if (bus_dmamem_alloc(adw->acb_dmat, (void **)&adw->acbs, 1109 BUS_DMA_NOWAIT, &adw->acb_dmamap) != 0) 1110 return (ENOMEM); 1111 1112 adw->init_level++; 1113 1114 /* And permanently map them */ 1115 bus_dmamap_load(adw->acb_dmat, adw->acb_dmamap, 1116 adw->acbs, 1117 adw->max_acbs * sizeof(struct acb), 1118 adwmapmem, &adw->acb_busbase, /*flags*/0); 1119 1120 /* Clear them out. */ 1121 bzero(adw->acbs, adw->max_acbs * sizeof(struct acb)); 1122 1123 /* DMA tag for our S/G structures. We allocate in page sized chunks */ 1124 if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0, 1125 /*lowaddr*/BUS_SPACE_MAXADDR, 1126 /*highaddr*/BUS_SPACE_MAXADDR, 1127 /*filter*/NULL, /*filterarg*/NULL, 1128 PAGE_SIZE, /*nsegments*/1, 1129 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, 1130 /*flags*/0, &adw->sg_dmat) != 0) { 1131 return (ENOMEM); 1132 } 1133 1134 adw->init_level++; 1135 1136 /* Allocate our first batch of ccbs */ 1137 if (adwallocacbs(adw) == 0) 1138 return (ENOMEM); 1139 1140 if (adw_init_chip(adw, scsicfg1) != 0) 1141 return (ENXIO); 1142 1143 kprintf("Queue Depth %d\n", adw->max_acbs); 1144 1145 return (0); 1146 } 1147 1148 /* 1149 * Attach all the sub-devices we can find 1150 */ 1151 int 1152 adw_attach(struct adw_softc *adw) 1153 { 1154 struct ccb_setasync csa; 1155 int error; 1156 1157 error = 0; 1158 crit_enter(); 1159 /* Hook up our interrupt handler */ 1160 if ((error = bus_setup_intr(adw->device, adw->irq, 0, 1161 adw_intr, adw, &adw->ih, NULL)) != 0) { 1162 device_printf(adw->device, "bus_setup_intr() failed: %d\n", 1163 error); 1164 goto fail; 1165 } 1166 1167 /* Start the Risc processor now that we are fully configured. */ 1168 adw_outw(adw, ADW_RISC_CSR, ADW_RISC_CSR_RUN); 1169 1170 /* 1171 * Construct our SIM entry. 1172 */ 1173 adw->sim = cam_sim_alloc(adw_action, adw_poll, "adw", adw, adw->unit, 1174 &sim_mplock, 1, adw->max_acbs, NULL); 1175 if (adw->sim == NULL) { 1176 error = ENOMEM; 1177 goto fail; 1178 } 1179 1180 /* 1181 * Register the bus. 1182 */ 1183 if (xpt_bus_register(adw->sim, 0) != CAM_SUCCESS) { 1184 cam_sim_free(adw->sim); 1185 error = ENOMEM; 1186 goto fail; 1187 } 1188 1189 if (xpt_create_path(&adw->path, /*periph*/NULL, cam_sim_path(adw->sim), 1190 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) 1191 == CAM_REQ_CMP) { 1192 xpt_setup_ccb(&csa.ccb_h, adw->path, /*priority*/5); 1193 csa.ccb_h.func_code = XPT_SASYNC_CB; 1194 csa.event_enable = AC_LOST_DEVICE; 1195 csa.callback = adw_async; 1196 csa.callback_arg = adw; 1197 xpt_action((union ccb *)&csa); 1198 } 1199 1200 fail: 1201 crit_exit(); 1202 return (error); 1203 } 1204 1205 void 1206 adw_intr(void *arg) 1207 { 1208 struct adw_softc *adw; 1209 u_int int_stat; 1210 1211 adw = (struct adw_softc *)arg; 1212 if ((adw_inw(adw, ADW_CTRL_REG) & ADW_CTRL_REG_HOST_INTR) == 0) 1213 return; 1214 1215 /* Reading the register clears the interrupt. */ 1216 int_stat = adw_inb(adw, ADW_INTR_STATUS_REG); 1217 1218 if ((int_stat & ADW_INTR_STATUS_INTRB) != 0) { 1219 u_int intrb_code; 1220 1221 /* Async Microcode Event */ 1222 intrb_code = adw_lram_read_8(adw, ADW_MC_INTRB_CODE); 1223 switch (intrb_code) { 1224 case ADW_ASYNC_CARRIER_READY_FAILURE: 1225 /* 1226 * The RISC missed our update of 1227 * the commandq. 1228 */ 1229 if (LIST_FIRST(&adw->pending_ccbs) != NULL) 1230 adw_tickle_risc(adw, ADW_TICKLE_A); 1231 break; 1232 case ADW_ASYNC_SCSI_BUS_RESET_DET: 1233 /* 1234 * The firmware detected a SCSI Bus reset. 1235 */ 1236 kprintf("Someone Reset the Bus\n"); 1237 adw_handle_bus_reset(adw, /*initiated*/FALSE); 1238 break; 1239 case ADW_ASYNC_RDMA_FAILURE: 1240 /* 1241 * Handle RDMA failure by resetting the 1242 * SCSI Bus and chip. 1243 */ 1244 #if XXX 1245 AdvResetChipAndSB(adv_dvc_varp); 1246 #endif 1247 break; 1248 1249 case ADW_ASYNC_HOST_SCSI_BUS_RESET: 1250 /* 1251 * Host generated SCSI bus reset occurred. 1252 */ 1253 adw_handle_bus_reset(adw, /*initiated*/TRUE); 1254 break; 1255 default: 1256 kprintf("adw_intr: unknown async code 0x%x\n", 1257 intrb_code); 1258 break; 1259 } 1260 } 1261 1262 /* 1263 * Run down the RequestQ. 1264 */ 1265 while ((adw->responseq->next_ba & ADW_RQ_DONE) != 0) { 1266 struct adw_carrier *free_carrier; 1267 struct acb *acb; 1268 union ccb *ccb; 1269 1270 #if 0 1271 kprintf("0x%x, 0x%x, 0x%x, 0x%x\n", 1272 adw->responseq->carr_offset, 1273 adw->responseq->carr_ba, 1274 adw->responseq->areq_ba, 1275 adw->responseq->next_ba); 1276 #endif 1277 /* 1278 * The firmware copies the adw_scsi_req_q.acb_baddr 1279 * field into the areq_ba field of the carrier. 1280 */ 1281 acb = acbbotov(adw, adw->responseq->areq_ba); 1282 1283 /* 1284 * The least significant four bits of the next_ba 1285 * field are used as flags. Mask them out and then 1286 * advance through the list. 1287 */ 1288 free_carrier = adw->responseq; 1289 adw->responseq = 1290 carrierbotov(adw, free_carrier->next_ba & ADW_NEXT_BA_MASK); 1291 free_carrier->next_ba = adw->free_carriers->carr_offset; 1292 adw->free_carriers = free_carrier; 1293 1294 /* Process CCB */ 1295 ccb = acb->ccb; 1296 callout_stop(&ccb->ccb_h.timeout_ch); 1297 if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { 1298 bus_dmasync_op_t op; 1299 1300 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) 1301 op = BUS_DMASYNC_POSTREAD; 1302 else 1303 op = BUS_DMASYNC_POSTWRITE; 1304 bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op); 1305 bus_dmamap_unload(adw->buffer_dmat, acb->dmamap); 1306 ccb->csio.resid = acb->queue.data_cnt; 1307 } else 1308 ccb->csio.resid = 0; 1309 1310 /* Common Cases inline... */ 1311 if (acb->queue.host_status == QHSTA_NO_ERROR 1312 && (acb->queue.done_status == QD_NO_ERROR 1313 || acb->queue.done_status == QD_WITH_ERROR)) { 1314 ccb->csio.scsi_status = acb->queue.scsi_status; 1315 ccb->ccb_h.status = 0; 1316 switch (ccb->csio.scsi_status) { 1317 case SCSI_STATUS_OK: 1318 ccb->ccb_h.status |= CAM_REQ_CMP; 1319 break; 1320 case SCSI_STATUS_CHECK_COND: 1321 case SCSI_STATUS_CMD_TERMINATED: 1322 bcopy(&acb->sense_data, &ccb->csio.sense_data, 1323 ccb->csio.sense_len); 1324 ccb->ccb_h.status |= CAM_AUTOSNS_VALID; 1325 ccb->csio.sense_resid = acb->queue.sense_len; 1326 /* FALLTHROUGH */ 1327 default: 1328 ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR 1329 | CAM_DEV_QFRZN; 1330 xpt_freeze_devq(ccb->ccb_h.path, /*count*/1); 1331 break; 1332 } 1333 adwfreeacb(adw, acb); 1334 xpt_done(ccb); 1335 } else { 1336 adwprocesserror(adw, acb); 1337 } 1338 } 1339 } 1340 1341 static void 1342 adwprocesserror(struct adw_softc *adw, struct acb *acb) 1343 { 1344 union ccb *ccb; 1345 1346 ccb = acb->ccb; 1347 if (acb->queue.done_status == QD_ABORTED_BY_HOST) { 1348 ccb->ccb_h.status = CAM_REQ_ABORTED; 1349 } else { 1350 1351 switch (acb->queue.host_status) { 1352 case QHSTA_M_SEL_TIMEOUT: 1353 ccb->ccb_h.status = CAM_SEL_TIMEOUT; 1354 break; 1355 case QHSTA_M_SXFR_OFF_UFLW: 1356 case QHSTA_M_SXFR_OFF_OFLW: 1357 case QHSTA_M_DATA_OVER_RUN: 1358 ccb->ccb_h.status = CAM_DATA_RUN_ERR; 1359 break; 1360 case QHSTA_M_SXFR_DESELECTED: 1361 case QHSTA_M_UNEXPECTED_BUS_FREE: 1362 ccb->ccb_h.status = CAM_UNEXP_BUSFREE; 1363 break; 1364 case QHSTA_M_SCSI_BUS_RESET: 1365 case QHSTA_M_SCSI_BUS_RESET_UNSOL: 1366 ccb->ccb_h.status = CAM_SCSI_BUS_RESET; 1367 break; 1368 case QHSTA_M_BUS_DEVICE_RESET: 1369 ccb->ccb_h.status = CAM_BDR_SENT; 1370 break; 1371 case QHSTA_M_QUEUE_ABORTED: 1372 /* BDR or Bus Reset */ 1373 kprintf("Saw Queue Aborted\n"); 1374 ccb->ccb_h.status = adw->last_reset; 1375 break; 1376 case QHSTA_M_SXFR_SDMA_ERR: 1377 case QHSTA_M_SXFR_SXFR_PERR: 1378 case QHSTA_M_RDMA_PERR: 1379 ccb->ccb_h.status = CAM_UNCOR_PARITY; 1380 break; 1381 case QHSTA_M_WTM_TIMEOUT: 1382 case QHSTA_M_SXFR_WD_TMO: 1383 { 1384 /* The SCSI bus hung in a phase */ 1385 xpt_print_path(adw->path); 1386 kprintf("Watch Dog timer expired. Reseting bus\n"); 1387 adw_reset_bus(adw); 1388 break; 1389 } 1390 case QHSTA_M_SXFR_XFR_PH_ERR: 1391 ccb->ccb_h.status = CAM_SEQUENCE_FAIL; 1392 break; 1393 case QHSTA_M_SXFR_UNKNOWN_ERROR: 1394 break; 1395 case QHSTA_M_BAD_CMPL_STATUS_IN: 1396 /* No command complete after a status message */ 1397 ccb->ccb_h.status = CAM_SEQUENCE_FAIL; 1398 break; 1399 case QHSTA_M_AUTO_REQ_SENSE_FAIL: 1400 ccb->ccb_h.status = CAM_AUTOSENSE_FAIL; 1401 break; 1402 case QHSTA_M_INVALID_DEVICE: 1403 ccb->ccb_h.status = CAM_PATH_INVALID; 1404 break; 1405 case QHSTA_M_NO_AUTO_REQ_SENSE: 1406 /* 1407 * User didn't request sense, but we got a 1408 * check condition. 1409 */ 1410 ccb->csio.scsi_status = acb->queue.scsi_status; 1411 ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR; 1412 break; 1413 default: 1414 panic("%s: Unhandled Host status error %x", 1415 adw_name(adw), acb->queue.host_status); 1416 /* NOTREACHED */ 1417 } 1418 } 1419 if ((acb->state & ACB_RECOVERY_ACB) != 0) { 1420 if (ccb->ccb_h.status == CAM_SCSI_BUS_RESET 1421 || ccb->ccb_h.status == CAM_BDR_SENT) 1422 ccb->ccb_h.status = CAM_CMD_TIMEOUT; 1423 } 1424 if (ccb->ccb_h.status != CAM_REQ_CMP) { 1425 xpt_freeze_devq(ccb->ccb_h.path, /*count*/1); 1426 ccb->ccb_h.status |= CAM_DEV_QFRZN; 1427 } 1428 adwfreeacb(adw, acb); 1429 xpt_done(ccb); 1430 } 1431 1432 static void 1433 adwtimeout(void *arg) 1434 { 1435 struct acb *acb; 1436 union ccb *ccb; 1437 struct adw_softc *adw; 1438 adw_idle_cmd_status_t status; 1439 int target_id; 1440 1441 acb = (struct acb *)arg; 1442 ccb = acb->ccb; 1443 adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr; 1444 xpt_print_path(ccb->ccb_h.path); 1445 kprintf("ACB %p - timed out\n", (void *)acb); 1446 1447 crit_enter(); 1448 1449 if ((acb->state & ACB_ACTIVE) == 0) { 1450 xpt_print_path(ccb->ccb_h.path); 1451 kprintf("ACB %p - timed out CCB already completed\n", 1452 (void *)acb); 1453 crit_exit(); 1454 return; 1455 } 1456 1457 acb->state |= ACB_RECOVERY_ACB; 1458 target_id = ccb->ccb_h.target_id; 1459 1460 /* Attempt a BDR first */ 1461 status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET, 1462 ccb->ccb_h.target_id); 1463 crit_exit(); 1464 if (status == ADW_IDLE_CMD_SUCCESS) { 1465 kprintf("%s: BDR Delivered. No longer in timeout\n", 1466 adw_name(adw)); 1467 adw_handle_device_reset(adw, target_id); 1468 } else { 1469 adw_reset_bus(adw); 1470 xpt_print_path(adw->path); 1471 kprintf("Bus Reset Delivered. No longer in timeout\n"); 1472 } 1473 } 1474 1475 static void 1476 adw_handle_device_reset(struct adw_softc *adw, u_int target) 1477 { 1478 struct cam_path *path; 1479 cam_status error; 1480 1481 error = xpt_create_path(&path, /*periph*/NULL, cam_sim_path(adw->sim), 1482 target, CAM_LUN_WILDCARD); 1483 1484 if (error == CAM_REQ_CMP) { 1485 xpt_async(AC_SENT_BDR, path, NULL); 1486 xpt_free_path(path); 1487 } 1488 adw->last_reset = CAM_BDR_SENT; 1489 } 1490 1491 static void 1492 adw_handle_bus_reset(struct adw_softc *adw, int initiated) 1493 { 1494 if (initiated) { 1495 /* 1496 * The microcode currently sets the SCSI Bus Reset signal 1497 * while handling the AscSendIdleCmd() IDLE_CMD_SCSI_RESET 1498 * command above. But the SCSI Bus Reset Hold Time in the 1499 * microcode is not deterministic (it may in fact be for less 1500 * than the SCSI Spec. minimum of 25 us). Therefore on return 1501 * the Adv Library sets the SCSI Bus Reset signal for 1502 * ADW_SCSI_RESET_HOLD_TIME_US, which is defined to be greater 1503 * than 25 us. 1504 */ 1505 u_int scsi_ctrl; 1506 1507 scsi_ctrl = adw_inw(adw, ADW_SCSI_CTRL) & ~ADW_SCSI_CTRL_RSTOUT; 1508 adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl | ADW_SCSI_CTRL_RSTOUT); 1509 DELAY(ADW_SCSI_RESET_HOLD_TIME_US); 1510 adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl); 1511 1512 /* 1513 * We will perform the async notification when the 1514 * SCSI Reset interrupt occurs. 1515 */ 1516 } else 1517 xpt_async(AC_BUS_RESET, adw->path, NULL); 1518 adw->last_reset = CAM_SCSI_BUS_RESET; 1519 } 1520