xref: /dragonfly/sys/dev/disk/isp/isp_pci.c (revision 6bd457ed)
1 /* $FreeBSD: src/sys/dev/isp/isp_pci.c,v 1.78.2.4 2002/10/11 18:50:53 mjacob Exp $ */
2 /* $DragonFly: src/sys/dev/disk/isp/isp_pci.c,v 1.7 2005/06/06 22:51:54 corecode Exp $ */
3 /*
4  * PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
5  * FreeBSD Version.
6  *
7  * Copyright (c) 1997, 1998, 1999, 2000, 2001 by Matthew Jacob
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice immediately at the beginning of the file, without modification,
14  *    this list of conditions, and the following disclaimer.
15  * 2. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/module.h>
35 #include <sys/bus.h>
36 
37 #include <bus/pci/pcireg.h>
38 #include <bus/pci/pcivar.h>
39 
40 #include <machine/bus_memio.h>
41 #include <machine/bus_pio.h>
42 #include <machine/bus.h>
43 #include <machine/resource.h>
44 #include <sys/rman.h>
45 #include <sys/malloc.h>
46 
47 #include "isp_freebsd.h"
48 
49 static u_int16_t isp_pci_rd_reg(struct ispsoftc *, int);
50 static void isp_pci_wr_reg(struct ispsoftc *, int, u_int16_t);
51 static u_int16_t isp_pci_rd_reg_1080(struct ispsoftc *, int);
52 static void isp_pci_wr_reg_1080(struct ispsoftc *, int, u_int16_t);
53 static int
54 isp_pci_rd_isr(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
55 static int
56 isp_pci_rd_isr_2300(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
57 static int isp_pci_mbxdma(struct ispsoftc *);
58 static int
59 isp_pci_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, u_int16_t *, u_int16_t);
60 static void
61 isp_pci_dmateardown(struct ispsoftc *, XS_T *, u_int16_t);
62 
63 static void isp_pci_reset1(struct ispsoftc *);
64 static void isp_pci_dumpregs(struct ispsoftc *, const char *);
65 
66 static struct ispmdvec mdvec = {
67 	isp_pci_rd_isr,
68 	isp_pci_rd_reg,
69 	isp_pci_wr_reg,
70 	isp_pci_mbxdma,
71 	isp_pci_dmasetup,
72 	isp_pci_dmateardown,
73 	NULL,
74 	isp_pci_reset1,
75 	isp_pci_dumpregs,
76 	NULL,
77 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
78 };
79 
80 static struct ispmdvec mdvec_1080 = {
81 	isp_pci_rd_isr,
82 	isp_pci_rd_reg_1080,
83 	isp_pci_wr_reg_1080,
84 	isp_pci_mbxdma,
85 	isp_pci_dmasetup,
86 	isp_pci_dmateardown,
87 	NULL,
88 	isp_pci_reset1,
89 	isp_pci_dumpregs,
90 	NULL,
91 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
92 };
93 
94 static struct ispmdvec mdvec_12160 = {
95 	isp_pci_rd_isr,
96 	isp_pci_rd_reg_1080,
97 	isp_pci_wr_reg_1080,
98 	isp_pci_mbxdma,
99 	isp_pci_dmasetup,
100 	isp_pci_dmateardown,
101 	NULL,
102 	isp_pci_reset1,
103 	isp_pci_dumpregs,
104 	NULL,
105 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
106 };
107 
108 static struct ispmdvec mdvec_2100 = {
109 	isp_pci_rd_isr,
110 	isp_pci_rd_reg,
111 	isp_pci_wr_reg,
112 	isp_pci_mbxdma,
113 	isp_pci_dmasetup,
114 	isp_pci_dmateardown,
115 	NULL,
116 	isp_pci_reset1,
117 	isp_pci_dumpregs
118 };
119 
120 static struct ispmdvec mdvec_2200 = {
121 	isp_pci_rd_isr,
122 	isp_pci_rd_reg,
123 	isp_pci_wr_reg,
124 	isp_pci_mbxdma,
125 	isp_pci_dmasetup,
126 	isp_pci_dmateardown,
127 	NULL,
128 	isp_pci_reset1,
129 	isp_pci_dumpregs
130 };
131 
132 static struct ispmdvec mdvec_2300 = {
133 	isp_pci_rd_isr_2300,
134 	isp_pci_rd_reg,
135 	isp_pci_wr_reg,
136 	isp_pci_mbxdma,
137 	isp_pci_dmasetup,
138 	isp_pci_dmateardown,
139 	NULL,
140 	isp_pci_reset1,
141 	isp_pci_dumpregs
142 };
143 
144 #ifndef	PCIM_CMD_INVEN
145 #define	PCIM_CMD_INVEN			0x10
146 #endif
147 #ifndef	PCIM_CMD_BUSMASTEREN
148 #define	PCIM_CMD_BUSMASTEREN		0x0004
149 #endif
150 #ifndef	PCIM_CMD_PERRESPEN
151 #define	PCIM_CMD_PERRESPEN		0x0040
152 #endif
153 #ifndef	PCIM_CMD_SEREN
154 #define	PCIM_CMD_SEREN			0x0100
155 #endif
156 
157 #ifndef	PCIR_COMMAND
158 #define	PCIR_COMMAND			0x04
159 #endif
160 
161 #ifndef	PCIR_CACHELNSZ
162 #define	PCIR_CACHELNSZ			0x0c
163 #endif
164 
165 #ifndef	PCIR_LATTIMER
166 #define	PCIR_LATTIMER			0x0d
167 #endif
168 
169 #ifndef	PCIR_ROMADDR
170 #define	PCIR_ROMADDR			0x30
171 #endif
172 
173 #ifndef	PCI_VENDOR_QLOGIC
174 #define	PCI_VENDOR_QLOGIC		0x1077
175 #endif
176 
177 #ifndef	PCI_PRODUCT_QLOGIC_ISP1020
178 #define	PCI_PRODUCT_QLOGIC_ISP1020	0x1020
179 #endif
180 
181 #ifndef	PCI_PRODUCT_QLOGIC_ISP1080
182 #define	PCI_PRODUCT_QLOGIC_ISP1080	0x1080
183 #endif
184 
185 #ifndef	PCI_PRODUCT_QLOGIC_ISP10160
186 #define	PCI_PRODUCT_QLOGIC_ISP10160	0x1016
187 #endif
188 
189 #ifndef	PCI_PRODUCT_QLOGIC_ISP12160
190 #define	PCI_PRODUCT_QLOGIC_ISP12160	0x1216
191 #endif
192 
193 #ifndef	PCI_PRODUCT_QLOGIC_ISP1240
194 #define	PCI_PRODUCT_QLOGIC_ISP1240	0x1240
195 #endif
196 
197 #ifndef	PCI_PRODUCT_QLOGIC_ISP1280
198 #define	PCI_PRODUCT_QLOGIC_ISP1280	0x1280
199 #endif
200 
201 #ifndef	PCI_PRODUCT_QLOGIC_ISP2100
202 #define	PCI_PRODUCT_QLOGIC_ISP2100	0x2100
203 #endif
204 
205 #ifndef	PCI_PRODUCT_QLOGIC_ISP2200
206 #define	PCI_PRODUCT_QLOGIC_ISP2200	0x2200
207 #endif
208 
209 #ifndef	PCI_PRODUCT_QLOGIC_ISP2300
210 #define	PCI_PRODUCT_QLOGIC_ISP2300	0x2300
211 #endif
212 
213 #ifndef	PCI_PRODUCT_QLOGIC_ISP2312
214 #define	PCI_PRODUCT_QLOGIC_ISP2312	0x2312
215 #endif
216 
217 #define	PCI_QLOGIC_ISP1020	\
218 	((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
219 
220 #define	PCI_QLOGIC_ISP1080	\
221 	((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
222 
223 #define	PCI_QLOGIC_ISP10160	\
224 	((PCI_PRODUCT_QLOGIC_ISP10160 << 16) | PCI_VENDOR_QLOGIC)
225 
226 #define	PCI_QLOGIC_ISP12160	\
227 	((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
228 
229 #define	PCI_QLOGIC_ISP1240	\
230 	((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
231 
232 #define	PCI_QLOGIC_ISP1280	\
233 	((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
234 
235 #define	PCI_QLOGIC_ISP2100	\
236 	((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
237 
238 #define	PCI_QLOGIC_ISP2200	\
239 	((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
240 
241 #define	PCI_QLOGIC_ISP2300	\
242 	((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC)
243 
244 #define	PCI_QLOGIC_ISP2312	\
245 	((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC)
246 
247 /*
248  * Odd case for some AMI raid cards... We need to *not* attach to this.
249  */
250 #define	AMI_RAID_SUBVENDOR_ID	0x101e
251 
252 #define	IO_MAP_REG	0x10
253 #define	MEM_MAP_REG	0x14
254 
255 #define	PCI_DFLT_LTNCY	0x40
256 #define	PCI_DFLT_LNSZ	0x10
257 
258 static int isp_pci_probe (device_t);
259 static int isp_pci_attach (device_t);
260 
261 
262 struct isp_pcisoftc {
263 	struct ispsoftc			pci_isp;
264 	device_t			pci_dev;
265 	struct resource *		pci_reg;
266 	bus_space_tag_t			pci_st;
267 	bus_space_handle_t		pci_sh;
268 	void *				ih;
269 	int16_t				pci_poff[_NREG_BLKS];
270 	bus_dma_tag_t			dmat;
271 	bus_dmamap_t			*dmaps;
272 };
273 ispfwfunc *isp_get_firmware_p = NULL;
274 
275 static device_method_t isp_pci_methods[] = {
276 	/* Device interface */
277 	DEVMETHOD(device_probe,		isp_pci_probe),
278 	DEVMETHOD(device_attach,	isp_pci_attach),
279 	{ 0, 0 }
280 };
281 static void isp_pci_intr(void *);
282 
283 static driver_t isp_pci_driver = {
284 	"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
285 };
286 static devclass_t isp_devclass;
287 DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0);
288 MODULE_VERSION(isp, 1);
289 
290 static int
291 isp_pci_probe(device_t dev)
292 {
293         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
294 	case PCI_QLOGIC_ISP1020:
295 		device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
296 		break;
297 	case PCI_QLOGIC_ISP1080:
298 		device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
299 		break;
300 	case PCI_QLOGIC_ISP1240:
301 		device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
302 		break;
303 	case PCI_QLOGIC_ISP1280:
304 		device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
305 		break;
306 	case PCI_QLOGIC_ISP10160:
307 		device_set_desc(dev, "Qlogic ISP 10160 PCI SCSI Adapter");
308 		break;
309 	case PCI_QLOGIC_ISP12160:
310 		if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
311 			return (ENXIO);
312 		}
313 		device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
314 		break;
315 	case PCI_QLOGIC_ISP2100:
316 		device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
317 		break;
318 	case PCI_QLOGIC_ISP2200:
319 		device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
320 		break;
321 	case PCI_QLOGIC_ISP2300:
322 		device_set_desc(dev, "Qlogic ISP 2300 PCI FC-AL Adapter");
323 		break;
324 	case PCI_QLOGIC_ISP2312:
325 		device_set_desc(dev, "Qlogic ISP 2312 PCI FC-AL Adapter");
326 		break;
327 	default:
328 		return (ENXIO);
329 	}
330 	if (device_get_unit(dev) == 0 && bootverbose) {
331 		printf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
332 		    "Core Version %d.%d\n",
333 		    ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
334 		    ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
335 	}
336 	/*
337 	 * XXXX: Here is where we might load the f/w module
338 	 * XXXX: (or increase a reference count to it).
339 	 */
340 	return (0);
341 }
342 
343 static int
344 isp_pci_attach(device_t dev)
345 {
346 	struct resource *regs, *irq;
347 	int unit, bitmap, rtp, rgd, iqd, m1, m2, isp_debug;
348 	u_int32_t data, cmd, linesz, psize, basetype;
349 	struct isp_pcisoftc *pcs;
350 	struct ispsoftc *isp = NULL;
351 	struct ispmdvec *mdvp;
352 	quad_t wwn;
353 	bus_size_t lim;
354 
355 	/*
356 	 * Figure out if we're supposed to skip this one.
357 	 */
358 	unit = device_get_unit(dev);
359 	if (getenv_int("isp_disable", &bitmap)) {
360 		if (bitmap & (1 << unit)) {
361 			device_printf(dev, "not configuring\n");
362 			/*
363 			 * But return '0' to preserve HBA numbering.
364 			 */
365 			return (0);
366 		}
367 	}
368 
369 	pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_WAITOK | M_ZERO);
370 
371 	/*
372 	 * Figure out which we should try first - memory mapping or i/o mapping?
373 	 */
374 	m1 = PCIM_CMD_PORTEN;
375 	m2 = PCIM_CMD_MEMEN;
376 	bitmap = 0;
377 	if (getenv_int("isp_mem_map", &bitmap)) {
378 		if (bitmap & (1 << unit)) {
379 			m1 = PCIM_CMD_MEMEN;
380 			m2 = PCIM_CMD_PORTEN;
381 		}
382 	}
383 	bitmap = 0;
384 	if (getenv_int("isp_io_map", &bitmap)) {
385 		if (bitmap & (1 << unit)) {
386 			m1 = PCIM_CMD_PORTEN;
387 			m2 = PCIM_CMD_MEMEN;
388 		}
389 	}
390 
391 	linesz = PCI_DFLT_LNSZ;
392 	irq = regs = NULL;
393 	rgd = rtp = iqd = 0;
394 
395 	cmd = pci_read_config(dev, PCIR_COMMAND, 1);
396 	if (cmd & m1) {
397 		rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
398 		rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
399 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
400 	}
401 	if (regs == NULL && (cmd & m2)) {
402 		rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
403 		rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
404 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
405 	}
406 	if (regs == NULL) {
407 		device_printf(dev, "unable to map any ports\n");
408 		goto bad;
409 	}
410 	if (bootverbose)
411 		device_printf(dev, "using %s space register mapping\n",
412 		    (rgd == IO_MAP_REG)? "I/O" : "Memory");
413 	pcs->pci_dev = dev;
414 	pcs->pci_reg = regs;
415 	pcs->pci_st = rman_get_bustag(regs);
416 	pcs->pci_sh = rman_get_bushandle(regs);
417 
418 	pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
419 	pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
420 	pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
421 	pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
422 	pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
423 	mdvp = &mdvec;
424 	basetype = ISP_HA_SCSI_UNKNOWN;
425 	psize = sizeof (sdparam);
426 	lim = BUS_SPACE_MAXSIZE_32BIT;
427 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) {
428 		mdvp = &mdvec;
429 		basetype = ISP_HA_SCSI_UNKNOWN;
430 		psize = sizeof (sdparam);
431 		lim = BUS_SPACE_MAXSIZE_24BIT;
432 	}
433 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) {
434 		mdvp = &mdvec_1080;
435 		basetype = ISP_HA_SCSI_1080;
436 		psize = sizeof (sdparam);
437 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
438 		    ISP1080_DMA_REGS_OFF;
439 	}
440 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) {
441 		mdvp = &mdvec_1080;
442 		basetype = ISP_HA_SCSI_1240;
443 		psize = 2 * sizeof (sdparam);
444 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
445 		    ISP1080_DMA_REGS_OFF;
446 	}
447 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) {
448 		mdvp = &mdvec_1080;
449 		basetype = ISP_HA_SCSI_1280;
450 		psize = 2 * sizeof (sdparam);
451 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
452 		    ISP1080_DMA_REGS_OFF;
453 	}
454 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP10160) {
455 		mdvp = &mdvec_12160;
456 		basetype = ISP_HA_SCSI_10160;
457 		psize = sizeof (sdparam);
458 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
459 		    ISP1080_DMA_REGS_OFF;
460 	}
461 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) {
462 		mdvp = &mdvec_12160;
463 		basetype = ISP_HA_SCSI_12160;
464 		psize = 2 * sizeof (sdparam);
465 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
466 		    ISP1080_DMA_REGS_OFF;
467 	}
468 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) {
469 		mdvp = &mdvec_2100;
470 		basetype = ISP_HA_FC_2100;
471 		psize = sizeof (fcparam);
472 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
473 		    PCI_MBOX_REGS2100_OFF;
474 		if (pci_get_revid(dev) < 3) {
475 			/*
476 			 * XXX: Need to get the actual revision
477 			 * XXX: number of the 2100 FB. At any rate,
478 			 * XXX: lower cache line size for early revision
479 			 * XXX; boards.
480 			 */
481 			linesz = 1;
482 		}
483 	}
484 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) {
485 		mdvp = &mdvec_2200;
486 		basetype = ISP_HA_FC_2200;
487 		psize = sizeof (fcparam);
488 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
489 		    PCI_MBOX_REGS2100_OFF;
490 	}
491 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2300) {
492 		mdvp = &mdvec_2300;
493 		basetype = ISP_HA_FC_2300;
494 		psize = sizeof (fcparam);
495 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
496 		    PCI_MBOX_REGS2300_OFF;
497 	}
498 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2312) {
499 		mdvp = &mdvec_2300;
500 		basetype = ISP_HA_FC_2312;
501 		psize = sizeof (fcparam);
502 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
503 		    PCI_MBOX_REGS2300_OFF;
504 	}
505 	isp = &pcs->pci_isp;
506 	isp->isp_param = malloc(psize, M_DEVBUF, M_WAITOK | M_ZERO);
507 	isp->isp_mdvec = mdvp;
508 	isp->isp_type = basetype;
509 	isp->isp_revision = pci_get_revid(dev);
510 #ifdef	ISP_TARGET_MODE
511 	isp->isp_role = ISP_ROLE_BOTH;
512 #else
513 	isp->isp_role = ISP_DEFAULT_ROLES;
514 #endif
515 	isp->isp_dev = dev;
516 
517 
518 	/*
519 	 * Try and find firmware for this device.
520 	 */
521 
522 	if (isp_get_firmware_p) {
523 		int device = (int) pci_get_device(dev);
524 #ifdef	ISP_TARGET_MODE
525 		(*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw);
526 #else
527 		(*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw);
528 #endif
529 	}
530 
531 	/*
532 	 * Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER
533 	 * are set.
534 	 */
535 	cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN |
536 		PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
537 	if (IS_2300(isp)) {	/* per QLogic errata */
538 		cmd &= ~PCIM_CMD_INVEN;
539 	}
540 	if (IS_23XX(isp)) {
541 		/*
542 		 * Can't tell if ROM will hang on 'ABOUT FIRMWARE' command.
543 		 */
544 		isp->isp_touched = 1;
545 
546 	}
547 	pci_write_config(dev, PCIR_COMMAND, cmd, 1);
548 
549 	/*
550 	 * Make sure the Cache Line Size register is set sensibly.
551 	 */
552 	data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
553 	if (data != linesz) {
554 		data = PCI_DFLT_LNSZ;
555 		isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data);
556 		pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
557 	}
558 
559 	/*
560 	 * Make sure the Latency Timer is sane.
561 	 */
562 	data = pci_read_config(dev, PCIR_LATTIMER, 1);
563 	if (data < PCI_DFLT_LTNCY) {
564 		data = PCI_DFLT_LTNCY;
565 		isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data);
566 		pci_write_config(dev, PCIR_LATTIMER, data, 1);
567 	}
568 
569 	/*
570 	 * Make sure we've disabled the ROM.
571 	 */
572 	data = pci_read_config(dev, PCIR_ROMADDR, 4);
573 	data &= ~1;
574 	pci_write_config(dev, PCIR_ROMADDR, data, 4);
575 
576 	iqd = 0;
577 	irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0,
578 	    1, RF_ACTIVE | RF_SHAREABLE);
579 	if (irq == NULL) {
580 		device_printf(dev, "could not allocate interrupt\n");
581 		goto bad;
582 	}
583 
584 	if (getenv_int("isp_no_fwload", &bitmap)) {
585 		if (bitmap & (1 << unit))
586 			isp->isp_confopts |= ISP_CFG_NORELOAD;
587 	}
588 	if (getenv_int("isp_fwload", &bitmap)) {
589 		if (bitmap & (1 << unit))
590 			isp->isp_confopts &= ~ISP_CFG_NORELOAD;
591 	}
592 	if (getenv_int("isp_no_nvram", &bitmap)) {
593 		if (bitmap & (1 << unit))
594 			isp->isp_confopts |= ISP_CFG_NONVRAM;
595 	}
596 	if (getenv_int("isp_nvram", &bitmap)) {
597 		if (bitmap & (1 << unit))
598 			isp->isp_confopts &= ~ISP_CFG_NONVRAM;
599 	}
600 	if (getenv_int("isp_fcduplex", &bitmap)) {
601 		if (bitmap & (1 << unit))
602 			isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
603 	}
604 	if (getenv_int("isp_no_fcduplex", &bitmap)) {
605 		if (bitmap & (1 << unit))
606 			isp->isp_confopts &= ~ISP_CFG_FULL_DUPLEX;
607 	}
608 	if (getenv_int("isp_nport", &bitmap)) {
609 		if (bitmap & (1 << unit))
610 			isp->isp_confopts |= ISP_CFG_NPORT;
611 	}
612 
613 	/*
614 	 * Because the resource_*_value functions can neither return
615 	 * 64 bit integer values, nor can they be directly coerced
616 	 * to interpret the right hand side of the assignment as
617 	 * you want them to interpret it, we have to force WWN
618 	 * hint replacement to specify WWN strings with a leading
619 	 * 'w' (e..g w50000000aaaa0001). Sigh.
620 	 */
621 	if (getenv_quad("isp_portwwn", &wwn)) {
622 		isp->isp_osinfo.default_port_wwn = wwn;
623 		isp->isp_confopts |= ISP_CFG_OWNWWPN;
624 	}
625 	if (isp->isp_osinfo.default_port_wwn == 0) {
626 		isp->isp_osinfo.default_port_wwn = 0x400000007F000009ull;
627 	}
628 
629 	if (getenv_quad("isp_nodewwn", &wwn)) {
630 		isp->isp_osinfo.default_node_wwn = wwn;
631 		isp->isp_confopts |= ISP_CFG_OWNWWNN;
632 	}
633 	if (isp->isp_osinfo.default_node_wwn == 0) {
634 		isp->isp_osinfo.default_node_wwn = 0x400000007F000009ull;
635 	}
636 
637 	isp_debug = 0;
638 	(void) getenv_int("isp_debug", &isp_debug);
639 	if (bus_setup_intr(dev, irq, INTR_TYPE_CAM, isp_pci_intr,
640 	    isp, &pcs->ih, NULL)) {
641 		device_printf(dev, "could not setup interrupt\n");
642 		goto bad;
643 	}
644 
645 #ifdef	ISP_FW_CRASH_DUMP
646 	bitmap = 0;
647 	if (getenv_int("isp_fw_dump_enable", &bitmap)) {
648 		if (bitmap & (1 << unit) {
649 			size_t amt = 0;
650 			if (IS_2200(isp)) {
651 				amt = QLA2200_RISC_IMAGE_DUMP_SIZE;
652 			} else if (IS_23XX(isp)) {
653 				amt = QLA2300_RISC_IMAGE_DUMP_SIZE;
654 			}
655 			if (amt) {
656 				FCPARAM(isp)->isp_dump_data =
657 				    malloc(amt, M_DEVBUF, M_WAITOK);
658 				bzero(FCPARAM(isp)->isp_dump_data, amt);
659 			} else {
660 				device_printf(dev,
661 				    "f/w crash dumps not supported for card\n");
662 			}
663 		}
664 	}
665 #endif
666 
667 	if (IS_2312(isp)) {
668 		isp->isp_port = pci_get_function(dev);
669 	}
670 
671 	/*
672 	 * Set up logging levels.
673 	 */
674 	if (isp_debug) {
675 		isp->isp_dblev = isp_debug;
676 	} else {
677 		isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
678 	}
679 	if (bootverbose)
680 		isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
681 
682 	/*
683 	 * Make sure we're in reset state.
684 	 */
685 	ISP_LOCK(isp);
686 	isp_reset(isp);
687 
688 	if (isp->isp_state != ISP_RESETSTATE) {
689 		ISP_UNLOCK(isp);
690 		goto bad;
691 	}
692 	isp_init(isp);
693 	if (isp->isp_state != ISP_INITSTATE) {
694 		/* If we're a Fibre Channel Card, we allow deferred attach */
695 		if (IS_SCSI(isp)) {
696 			isp_uninit(isp);
697 			ISP_UNLOCK(isp);
698 			goto bad;
699 		}
700 	}
701 	isp_attach(isp);
702 	if (isp->isp_state != ISP_RUNSTATE) {
703 		/* If we're a Fibre Channel Card, we allow deferred attach */
704 		if (IS_SCSI(isp)) {
705 			isp_uninit(isp);
706 			ISP_UNLOCK(isp);
707 			goto bad;
708 		}
709 	}
710 	/*
711 	 * XXXX: Here is where we might unload the f/w module
712 	 * XXXX: (or decrease the reference count to it).
713 	 */
714 	ISP_UNLOCK(isp);
715 	return (0);
716 
717 bad:
718 
719 	if (pcs && pcs->ih) {
720 		(void) bus_teardown_intr(dev, irq, pcs->ih);
721 	}
722 
723 	if (irq) {
724 		(void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq);
725 	}
726 
727 
728 	if (regs) {
729 		(void) bus_release_resource(dev, rtp, rgd, regs);
730 	}
731 
732 	if (pcs) {
733 		if (pcs->pci_isp.isp_param)
734 			free(pcs->pci_isp.isp_param, M_DEVBUF);
735 		free(pcs, M_DEVBUF);
736 	}
737 
738 	/*
739 	 * XXXX: Here is where we might unload the f/w module
740 	 * XXXX: (or decrease the reference count to it).
741 	 */
742 	return (ENXIO);
743 }
744 
745 static void
746 isp_pci_intr(void *arg)
747 {
748 	struct ispsoftc *isp = arg;
749 	u_int16_t isr, sema, mbox;
750 
751 	ISP_LOCK(isp);
752 	isp->isp_intcnt++;
753 	if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) {
754 		isp->isp_intbogus++;
755 	} else {
756 		int iok = isp->isp_osinfo.intsok;
757 		isp->isp_osinfo.intsok = 0;
758 		isp_intr(isp, isr, sema, mbox);
759 		isp->isp_osinfo.intsok = iok;
760 	}
761 	ISP_UNLOCK(isp);
762 }
763 
764 
765 #define	IspVirt2Off(a, x)	\
766 	(((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \
767 	_BLK_REG_SHFT] + ((x) & 0xff))
768 
769 #define	BXR2(pcs, off)		\
770 	bus_space_read_2(pcs->pci_st, pcs->pci_sh, off)
771 #define	BXW2(pcs, off, v)	\
772 	bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v)
773 
774 
775 static INLINE int
776 isp_pci_rd_debounced(struct ispsoftc *isp, int off, u_int16_t *rp)
777 {
778 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
779 	u_int16_t val0, val1;
780 	int i = 0;
781 
782 	do {
783 		val0 = BXR2(pcs, IspVirt2Off(isp, off));
784 		val1 = BXR2(pcs, IspVirt2Off(isp, off));
785 	} while (val0 != val1 && ++i < 1000);
786 	if (val0 != val1) {
787 		return (1);
788 	}
789 	*rp = val0;
790 	return (0);
791 }
792 
793 static int
794 isp_pci_rd_isr(struct ispsoftc *isp, u_int16_t *isrp,
795     u_int16_t *semap, u_int16_t *mbp)
796 {
797 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
798 	u_int16_t isr, sema;
799 
800 	if (IS_2100(isp)) {
801 		if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) {
802 		    return (0);
803 		}
804 		if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) {
805 		    return (0);
806 		}
807 	} else {
808 		isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR));
809 		sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA));
810 	}
811 	isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema);
812 	isr &= INT_PENDING_MASK(isp);
813 	sema &= BIU_SEMA_LOCK;
814 	if (isr == 0 && sema == 0) {
815 		return (0);
816 	}
817 	*isrp = isr;
818 	if ((*semap = sema) != 0) {
819 		if (IS_2100(isp)) {
820 			if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) {
821 				return (0);
822 			}
823 		} else {
824 			*mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0));
825 		}
826 	}
827 	return (1);
828 }
829 
830 static int
831 isp_pci_rd_isr_2300(struct ispsoftc *isp, u_int16_t *isrp,
832     u_int16_t *semap, u_int16_t *mbox0p)
833 {
834 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
835 	u_int32_t r2hisr;
836 
837 	if (!(BXR2(pcs, IspVirt2Off(isp, BIU_ISR) & BIU2100_ISR_RISC_INT))) {
838 		*isrp = 0;
839 		return (0);
840 	}
841 	r2hisr = bus_space_read_4(pcs->pci_st, pcs->pci_sh,
842 	    IspVirt2Off(pcs, BIU_R2HSTSLO));
843 	isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr);
844 	if ((r2hisr & BIU_R2HST_INTR) == 0) {
845 		*isrp = 0;
846 		return (0);
847 	}
848 	switch (r2hisr & BIU_R2HST_ISTAT_MASK) {
849 	case ISPR2HST_ROM_MBX_OK:
850 	case ISPR2HST_ROM_MBX_FAIL:
851 	case ISPR2HST_MBX_OK:
852 	case ISPR2HST_MBX_FAIL:
853 	case ISPR2HST_ASYNC_EVENT:
854 		*isrp = r2hisr & 0xffff;
855 		*mbox0p = (r2hisr >> 16);
856 		*semap = 1;
857 		return (1);
858 	case ISPR2HST_RIO_16:
859 		*isrp = r2hisr & 0xffff;
860 		*mbox0p = ASYNC_RIO1;
861 		*semap = 1;
862 		return (1);
863 	case ISPR2HST_FPOST:
864 		*isrp = r2hisr & 0xffff;
865 		*mbox0p = ASYNC_CMD_CMPLT;
866 		*semap = 1;
867 		return (1);
868 	case ISPR2HST_FPOST_CTIO:
869 		*isrp = r2hisr & 0xffff;
870 		*mbox0p = ASYNC_CTIO_DONE;
871 		*semap = 1;
872 		return (1);
873 	case ISPR2HST_RSPQ_UPDATE:
874 		*isrp = r2hisr & 0xffff;
875 		*mbox0p = 0;
876 		*semap = 0;
877 		return (1);
878 	default:
879 		return (0);
880 	}
881 }
882 
883 static u_int16_t
884 isp_pci_rd_reg(struct ispsoftc *isp, int regoff)
885 {
886 	u_int16_t rv;
887 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
888 	int oldconf = 0;
889 
890 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
891 		/*
892 		 * We will assume that someone has paused the RISC processor.
893 		 */
894 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
895 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
896 		    oldconf | BIU_PCI_CONF1_SXP);
897 	}
898 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
899 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
900 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
901 	}
902 	return (rv);
903 }
904 
905 static void
906 isp_pci_wr_reg(struct ispsoftc *isp, int regoff, u_int16_t val)
907 {
908 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
909 	int oldconf = 0;
910 
911 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
912 		/*
913 		 * We will assume that someone has paused the RISC processor.
914 		 */
915 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
916 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
917 		    oldconf | BIU_PCI_CONF1_SXP);
918 	}
919 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
920 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
921 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
922 	}
923 }
924 
925 static u_int16_t
926 isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff)
927 {
928 	u_int16_t rv, oc = 0;
929 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
930 
931 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
932 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
933 		u_int16_t tc;
934 		/*
935 		 * We will assume that someone has paused the RISC processor.
936 		 */
937 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
938 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
939 		if (regoff & SXP_BANK1_SELECT)
940 			tc |= BIU_PCI1080_CONF1_SXP1;
941 		else
942 			tc |= BIU_PCI1080_CONF1_SXP0;
943 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
944 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
945 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
946 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
947 		    oc | BIU_PCI1080_CONF1_DMA);
948 	}
949 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
950 	if (oc) {
951 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
952 	}
953 	return (rv);
954 }
955 
956 static void
957 isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, u_int16_t val)
958 {
959 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
960 	int oc = 0;
961 
962 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
963 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
964 		u_int16_t tc;
965 		/*
966 		 * We will assume that someone has paused the RISC processor.
967 		 */
968 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
969 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
970 		if (regoff & SXP_BANK1_SELECT)
971 			tc |= BIU_PCI1080_CONF1_SXP1;
972 		else
973 			tc |= BIU_PCI1080_CONF1_SXP0;
974 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
975 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
976 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
977 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
978 		    oc | BIU_PCI1080_CONF1_DMA);
979 	}
980 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
981 	if (oc) {
982 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
983 	}
984 }
985 
986 
987 struct imush {
988 	struct ispsoftc *isp;
989 	int error;
990 };
991 
992 static void imc(void *, bus_dma_segment_t *, int, int);
993 
994 static void
995 imc(void *arg, bus_dma_segment_t *segs, int nseg, int error)
996 {
997 	struct imush *imushp = (struct imush *) arg;
998 	if (error) {
999 		imushp->error = error;
1000 	} else {
1001 		struct ispsoftc *isp =imushp->isp;
1002 		bus_addr_t addr = segs->ds_addr;
1003 
1004 		isp->isp_rquest_dma = addr;
1005 		addr += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1006 		isp->isp_result_dma = addr;
1007 		if (IS_FC(isp)) {
1008 			addr += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1009 			FCPARAM(isp)->isp_scdma = addr;
1010 		}
1011 	}
1012 }
1013 
1014 /*
1015  * Should be BUS_SPACE_MAXSIZE, but MAXPHYS is larger than BUS_SPACE_MAXSIZE
1016  */
1017 #define ISP_NSEGS ((MAXPHYS / PAGE_SIZE) + 1)
1018 
1019 static int
1020 isp_pci_mbxdma(struct ispsoftc *isp)
1021 {
1022 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1023 	caddr_t base;
1024 	u_int32_t len;
1025 	int i, error, ns;
1026 	bus_size_t alim, slim;
1027 	struct imush im;
1028 
1029 	/*
1030 	 * Already been here? If so, leave...
1031 	 */
1032 	if (isp->isp_rquest) {
1033 		return (0);
1034 	}
1035 
1036 #ifdef	ISP_DAC_SUPPORTED
1037 	alim = BUS_SPACE_UNRESTRICTED;
1038 #else
1039 	alim = BUS_SPACE_MAXADDR_32BIT;
1040 #endif
1041 	if (IS_ULTRA2(isp) || IS_FC(isp) || IS_1240(isp)) {
1042 		slim = BUS_SPACE_MAXADDR_32BIT;
1043 	} else {
1044 		slim = BUS_SPACE_MAXADDR_24BIT;
1045 	}
1046 
1047 	ISP_UNLOCK(isp);
1048 	if (bus_dma_tag_create(NULL, 1, slim+1, alim, alim,
1049 	    NULL, NULL, BUS_SPACE_MAXSIZE, ISP_NSEGS, slim, 0, &pcs->dmat)) {
1050 		isp_prt(isp, ISP_LOGERR, "could not create master dma tag");
1051 		ISP_LOCK(isp);
1052 		return(1);
1053 	}
1054 
1055 
1056 	len = sizeof (XS_T **) * isp->isp_maxcmds;
1057 	isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
1058 	if (isp->isp_xflist == NULL) {
1059 		isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array");
1060 		ISP_LOCK(isp);
1061 		return (1);
1062 	}
1063 	len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
1064 	pcs->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF,  M_WAITOK);
1065 	if (pcs->dmaps == NULL) {
1066 		isp_prt(isp, ISP_LOGERR, "can't alloc dma map storage");
1067 		free(isp->isp_xflist, M_DEVBUF);
1068 		ISP_LOCK(isp);
1069 		return (1);
1070 	}
1071 
1072 	/*
1073 	 * Allocate and map the request, result queues, plus FC scratch area.
1074 	 */
1075 	len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1076 	len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1077 	if (IS_FC(isp)) {
1078 		len += ISP2100_SCRLEN;
1079 	}
1080 
1081 	ns = (len / PAGE_SIZE) + 1;
1082 	if (bus_dma_tag_create(pcs->dmat, QENTRY_LEN, slim+1, alim, alim,
1083 	    NULL, NULL, len, ns, slim, 0, &isp->isp_cdmat)) {
1084 		isp_prt(isp, ISP_LOGERR,
1085 		    "cannot create a dma tag for control spaces");
1086 		free(pcs->dmaps, M_DEVBUF);
1087 		free(isp->isp_xflist, M_DEVBUF);
1088 		ISP_LOCK(isp);
1089 		return (1);
1090 	}
1091 
1092 	if (bus_dmamem_alloc(isp->isp_cdmat, (void **)&base, BUS_DMA_NOWAIT,
1093 	    &isp->isp_cdmap) != 0) {
1094 		isp_prt(isp, ISP_LOGERR,
1095 		    "cannot allocate %d bytes of CCB memory", len);
1096 		bus_dma_tag_destroy(isp->isp_cdmat);
1097 		free(isp->isp_xflist, M_DEVBUF);
1098 		free(pcs->dmaps, M_DEVBUF);
1099 		ISP_LOCK(isp);
1100 		return (1);
1101 	}
1102 
1103 	for (i = 0; i < isp->isp_maxcmds; i++) {
1104 		error = bus_dmamap_create(pcs->dmat, 0, &pcs->dmaps[i]);
1105 		if (error) {
1106 			isp_prt(isp, ISP_LOGERR,
1107 			    "error %d creating per-cmd DMA maps", error);
1108 			while (--i >= 0) {
1109 				bus_dmamap_destroy(pcs->dmat, pcs->dmaps[i]);
1110 			}
1111 			goto bad;
1112 		}
1113 	}
1114 
1115 	im.isp = isp;
1116 	im.error = 0;
1117 	bus_dmamap_load(isp->isp_cdmat, isp->isp_cdmap, base, len, imc, &im, 0);
1118 	if (im.error) {
1119 		isp_prt(isp, ISP_LOGERR,
1120 		    "error %d loading dma map for control areas", im.error);
1121 		goto bad;
1122 	}
1123 
1124 	isp->isp_rquest = base;
1125 	base += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1126 	isp->isp_result = base;
1127 	if (IS_FC(isp)) {
1128 		base += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1129 		FCPARAM(isp)->isp_scratch = base;
1130 	}
1131 	ISP_LOCK(isp);
1132 	return (0);
1133 
1134 bad:
1135 	bus_dmamem_free(isp->isp_cdmat, base, isp->isp_cdmap);
1136 	bus_dma_tag_destroy(isp->isp_cdmat);
1137 	free(isp->isp_xflist, M_DEVBUF);
1138 	free(pcs->dmaps, M_DEVBUF);
1139 	ISP_LOCK(isp);
1140 	isp->isp_rquest = NULL;
1141 	return (1);
1142 }
1143 
1144 typedef struct {
1145 	struct ispsoftc *isp;
1146 	void *cmd_token;
1147 	void *rq;
1148 	u_int16_t *nxtip;
1149 	u_int16_t optr;
1150 	u_int error;
1151 } mush_t;
1152 
1153 #define	MUSHERR_NOQENTRIES	-2
1154 
1155 #ifdef	ISP_TARGET_MODE
1156 /*
1157  * We need to handle DMA for target mode differently from initiator mode.
1158  *
1159  * DMA mapping and construction and submission of CTIO Request Entries
1160  * and rendevous for completion are very tightly coupled because we start
1161  * out by knowing (per platform) how much data we have to move, but we
1162  * don't know, up front, how many DMA mapping segments will have to be used
1163  * cover that data, so we don't know how many CTIO Request Entries we
1164  * will end up using. Further, for performance reasons we may want to
1165  * (on the last CTIO for Fibre Channel), send status too (if all went well).
1166  *
1167  * The standard vector still goes through isp_pci_dmasetup, but the callback
1168  * for the DMA mapping routines comes here instead with the whole transfer
1169  * mapped and a pointer to a partially filled in already allocated request
1170  * queue entry. We finish the job.
1171  */
1172 static void tdma_mk(void *, bus_dma_segment_t *, int, int);
1173 static void tdma_mkfc(void *, bus_dma_segment_t *, int, int);
1174 
1175 #define	STATUS_WITH_DATA	1
1176 
1177 static void
1178 tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1179 {
1180 	mush_t *mp;
1181 	struct ccb_scsiio *csio;
1182 	struct ispsoftc *isp;
1183 	struct isp_pcisoftc *pcs;
1184 	bus_dmamap_t *dp;
1185 	ct_entry_t *cto, *qe;
1186 	u_int8_t scsi_status;
1187 	u_int16_t curi, nxti, handle;
1188 	u_int32_t sflags;
1189 	int32_t resid;
1190 	int nth_ctio, nctios, send_status;
1191 
1192 	mp = (mush_t *) arg;
1193 	if (error) {
1194 		mp->error = error;
1195 		return;
1196 	}
1197 
1198 	isp = mp->isp;
1199 	csio = mp->cmd_token;
1200 	cto = mp->rq;
1201 	curi = isp->isp_reqidx;
1202 	qe = (ct_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1203 
1204 	cto->ct_xfrlen = 0;
1205 	cto->ct_seg_count = 0;
1206 	cto->ct_header.rqs_entry_count = 1;
1207 	MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1208 
1209 	if (nseg == 0) {
1210 		cto->ct_header.rqs_seqno = 1;
1211 		isp_prt(isp, ISP_LOGTDEBUG1,
1212 		    "CTIO[%x] lun%d iid%d tag %x flgs %x sts %x ssts %x res %d",
1213 		    cto->ct_fwhandle, csio->ccb_h.target_lun, cto->ct_iid,
1214 		    cto->ct_tag_val, cto->ct_flags, cto->ct_status,
1215 		    cto->ct_scsi_status, cto->ct_resid);
1216 		ISP_TDQE(isp, "tdma_mk[no data]", curi, cto);
1217 		isp_put_ctio(isp, cto, qe);
1218 		return;
1219 	}
1220 
1221 	nctios = nseg / ISP_RQDSEG;
1222 	if (nseg % ISP_RQDSEG) {
1223 		nctios++;
1224 	}
1225 
1226 	/*
1227 	 * Save syshandle, and potentially any SCSI status, which we'll
1228 	 * reinsert on the last CTIO we're going to send.
1229 	 */
1230 
1231 	handle = cto->ct_syshandle;
1232 	cto->ct_syshandle = 0;
1233 	cto->ct_header.rqs_seqno = 0;
1234 	send_status = (cto->ct_flags & CT_SENDSTATUS) != 0;
1235 
1236 	if (send_status) {
1237 		sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR);
1238 		cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR);
1239 		/*
1240 		 * Preserve residual.
1241 		 */
1242 		resid = cto->ct_resid;
1243 
1244 		/*
1245 		 * Save actual SCSI status.
1246 		 */
1247 		scsi_status = cto->ct_scsi_status;
1248 
1249 #ifndef	STATUS_WITH_DATA
1250 		sflags |= CT_NO_DATA;
1251 		/*
1252 		 * We can't do a status at the same time as a data CTIO, so
1253 		 * we need to synthesize an extra CTIO at this level.
1254 		 */
1255 		nctios++;
1256 #endif
1257 	} else {
1258 		sflags = scsi_status = resid = 0;
1259 	}
1260 
1261 	cto->ct_resid = 0;
1262 	cto->ct_scsi_status = 0;
1263 
1264 	pcs = (struct isp_pcisoftc *)isp;
1265 	dp = &pcs->dmaps[isp_handle_index(handle)];
1266 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1267 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1268 	} else {
1269 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1270 	}
1271 
1272 	nxti = *mp->nxtip;
1273 
1274 	for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
1275 		int seglim;
1276 
1277 		seglim = nseg;
1278 		if (seglim) {
1279 			int seg;
1280 
1281 			if (seglim > ISP_RQDSEG)
1282 				seglim = ISP_RQDSEG;
1283 
1284 			for (seg = 0; seg < seglim; seg++, nseg--) {
1285 				/*
1286 				 * Unlike normal initiator commands, we don't
1287 				 * do any swizzling here.
1288 				 */
1289 				cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
1290 				cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
1291 				cto->ct_xfrlen += dm_segs->ds_len;
1292 				dm_segs++;
1293 			}
1294 			cto->ct_seg_count = seg;
1295 		} else {
1296 			/*
1297 			 * This case should only happen when we're sending an
1298 			 * extra CTIO with final status.
1299 			 */
1300 			if (send_status == 0) {
1301 				isp_prt(isp, ISP_LOGWARN,
1302 				    "tdma_mk ran out of segments");
1303 				mp->error = EINVAL;
1304 				return;
1305 			}
1306 		}
1307 
1308 		/*
1309 		 * At this point, the fields ct_lun, ct_iid, ct_tagval,
1310 		 * ct_tagtype, and ct_timeout have been carried over
1311 		 * unchanged from what our caller had set.
1312 		 *
1313 		 * The dataseg fields and the seg_count fields we just got
1314 		 * through setting. The data direction we've preserved all
1315 		 * along and only clear it if we're now sending status.
1316 		 */
1317 
1318 		if (nth_ctio == nctios - 1) {
1319 			/*
1320 			 * We're the last in a sequence of CTIOs, so mark
1321 			 * this CTIO and save the handle to the CCB such that
1322 			 * when this CTIO completes we can free dma resources
1323 			 * and do whatever else we need to do to finish the
1324 			 * rest of the command. We *don't* give this to the
1325 			 * firmware to work on- the caller will do that.
1326 			 */
1327 
1328 			cto->ct_syshandle = handle;
1329 			cto->ct_header.rqs_seqno = 1;
1330 
1331 			if (send_status) {
1332 				cto->ct_scsi_status = scsi_status;
1333 				cto->ct_flags |= sflags;
1334 				cto->ct_resid = resid;
1335 			}
1336 			if (send_status) {
1337 				isp_prt(isp, ISP_LOGTDEBUG1,
1338 				    "CTIO[%x] lun%d iid %d tag %x ct_flags %x "
1339 				    "scsi status %x resid %d",
1340 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1341 				    cto->ct_iid, cto->ct_tag_val, cto->ct_flags,
1342 				    cto->ct_scsi_status, cto->ct_resid);
1343 			} else {
1344 				isp_prt(isp, ISP_LOGTDEBUG1,
1345 				    "CTIO[%x] lun%d iid%d tag %x ct_flags 0x%x",
1346 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1347 				    cto->ct_iid, cto->ct_tag_val,
1348 				    cto->ct_flags);
1349 			}
1350 			isp_put_ctio(isp, cto, qe);
1351 			ISP_TDQE(isp, "last tdma_mk", curi, cto);
1352 			if (nctios > 1) {
1353 				MEMORYBARRIER(isp, SYNC_REQUEST,
1354 				    curi, QENTRY_LEN);
1355 			}
1356 		} else {
1357 			ct_entry_t *oqe = qe;
1358 
1359 			/*
1360 			 * Make sure syshandle fields are clean
1361 			 */
1362 			cto->ct_syshandle = 0;
1363 			cto->ct_header.rqs_seqno = 0;
1364 
1365 			isp_prt(isp, ISP_LOGTDEBUG1,
1366 			    "CTIO[%x] lun%d for ID%d ct_flags 0x%x",
1367 			    cto->ct_fwhandle, csio->ccb_h.target_lun,
1368 			    cto->ct_iid, cto->ct_flags);
1369 
1370 			/*
1371 			 * Get a new CTIO
1372 			 */
1373 			qe = (ct_entry_t *)
1374 			    ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1375 			nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
1376 			if (nxti == mp->optr) {
1377 				isp_prt(isp, ISP_LOGTDEBUG0,
1378 				    "Queue Overflow in tdma_mk");
1379 				mp->error = MUSHERR_NOQENTRIES;
1380 				return;
1381 			}
1382 
1383 			/*
1384 			 * Now that we're done with the old CTIO,
1385 			 * flush it out to the request queue.
1386 			 */
1387 			ISP_TDQE(isp, "dma_tgt_fc", curi, cto);
1388 			isp_put_ctio(isp, cto, oqe);
1389 			if (nth_ctio != 0) {
1390 				MEMORYBARRIER(isp, SYNC_REQUEST, curi,
1391 				    QENTRY_LEN);
1392 			}
1393 			curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
1394 
1395 			/*
1396 			 * Reset some fields in the CTIO so we can reuse
1397 			 * for the next one we'll flush to the request
1398 			 * queue.
1399 			 */
1400 			cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
1401 			cto->ct_header.rqs_entry_count = 1;
1402 			cto->ct_header.rqs_flags = 0;
1403 			cto->ct_status = 0;
1404 			cto->ct_scsi_status = 0;
1405 			cto->ct_xfrlen = 0;
1406 			cto->ct_resid = 0;
1407 			cto->ct_seg_count = 0;
1408 			MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1409 		}
1410 	}
1411 	*mp->nxtip = nxti;
1412 }
1413 
1414 /*
1415  * We don't have to do multiple CTIOs here. Instead, we can just do
1416  * continuation segments as needed. This greatly simplifies the code
1417  * improves performance.
1418  */
1419 
1420 static void
1421 tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1422 {
1423 	mush_t *mp;
1424 	struct ccb_scsiio *csio;
1425 	struct ispsoftc *isp;
1426 	ct2_entry_t *cto, *qe;
1427 	u_int16_t curi, nxti;
1428 	int segcnt;
1429 
1430 	mp = (mush_t *) arg;
1431 	if (error) {
1432 		mp->error = error;
1433 		return;
1434 	}
1435 
1436 	isp = mp->isp;
1437 	csio = mp->cmd_token;
1438 	cto = mp->rq;
1439 
1440 	curi = isp->isp_reqidx;
1441 	qe = (ct2_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1442 
1443 	if (nseg == 0) {
1444 		if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) {
1445 			isp_prt(isp, ISP_LOGWARN,
1446 			    "dma2_tgt_fc, a status CTIO2 without MODE1 "
1447 			    "set (0x%x)", cto->ct_flags);
1448 			mp->error = EINVAL;
1449 			return;
1450 		}
1451 		/*
1452 		 * We preserve ct_lun, ct_iid, ct_rxid. We set the data
1453 		 * flags to NO DATA and clear relative offset flags.
1454 		 * We preserve the ct_resid and the response area.
1455 		 */
1456 		cto->ct_header.rqs_seqno = 1;
1457 		cto->ct_seg_count = 0;
1458 		cto->ct_reloff = 0;
1459 		isp_prt(isp, ISP_LOGTDEBUG1,
1460 		    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts "
1461 		    "0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun,
1462 		    cto->ct_iid, cto->ct_flags, cto->ct_status,
1463 		    cto->rsp.m1.ct_scsi_status, cto->ct_resid);
1464 		isp_put_ctio2(isp, cto, qe);
1465 		ISP_TDQE(isp, "dma2_tgt_fc[no data]", curi, qe);
1466 		return;
1467 	}
1468 
1469 	if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) {
1470 		isp_prt(isp, ISP_LOGERR,
1471 		    "dma2_tgt_fc, a data CTIO2 without MODE0 set "
1472 		    "(0x%x)", cto->ct_flags);
1473 		mp->error = EINVAL;
1474 		return;
1475 	}
1476 
1477 
1478 	nxti = *mp->nxtip;
1479 
1480 	/*
1481 	 * Set up the CTIO2 data segments.
1482 	 */
1483 	for (segcnt = 0; cto->ct_seg_count < ISP_RQDSEG_T2 && segcnt < nseg;
1484 	    cto->ct_seg_count++, segcnt++) {
1485 		cto->rsp.m0.ct_dataseg[cto->ct_seg_count].ds_base =
1486 		    dm_segs[segcnt].ds_addr;
1487 		cto->rsp.m0.ct_dataseg[cto->ct_seg_count].ds_count =
1488 		    dm_segs[segcnt].ds_len;
1489 		cto->rsp.m0.ct_xfrlen += dm_segs[segcnt].ds_len;
1490 		isp_prt(isp, ISP_LOGTDEBUG1, "isp_send_ctio2: ent0[%d]0x%x:%d",
1491 		    cto->ct_seg_count, dm_segs[segcnt].ds_addr,
1492 		    dm_segs[segcnt].ds_len);
1493 	}
1494 
1495 	while (segcnt < nseg) {
1496 		u_int16_t curip;
1497 		int seg;
1498 		ispcontreq_t local, *crq = &local, *qep;
1499 
1500 		qep = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1501 		curip = nxti;
1502 		nxti = ISP_NXT_QENTRY(curip, RQUEST_QUEUE_LEN(isp));
1503 		if (nxti == mp->optr) {
1504 			ISP_UNLOCK(isp);
1505 			isp_prt(isp, ISP_LOGTDEBUG0,
1506 			    "tdma_mkfc: request queue overflow");
1507 			mp->error = MUSHERR_NOQENTRIES;
1508 			return;
1509 		}
1510 		cto->ct_header.rqs_entry_count++;
1511 		MEMZERO((void *)crq, sizeof (*crq));
1512 		crq->req_header.rqs_entry_count = 1;
1513 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1514 		for (seg = 0; segcnt < nseg && seg < ISP_CDSEG;
1515 		    segcnt++, seg++) {
1516 			crq->req_dataseg[seg].ds_base = dm_segs[segcnt].ds_addr;
1517 			crq->req_dataseg[seg].ds_count = dm_segs[segcnt].ds_len;
1518 			isp_prt(isp, ISP_LOGTDEBUG1,
1519 			    "isp_send_ctio2: ent%d[%d]%x:%u",
1520 			    cto->ct_header.rqs_entry_count-1, seg,
1521 			    dm_segs[segcnt].ds_addr, dm_segs[segcnt].ds_len);
1522 			cto->rsp.m0.ct_xfrlen += dm_segs[segcnt].ds_len;
1523 			cto->ct_seg_count++;
1524 		}
1525 		MEMORYBARRIER(isp, SYNC_REQUEST, curip, QENTRY_LEN);
1526 		isp_put_cont_req(isp, crq, qep);
1527 		ISP_TDQE(isp, "cont entry", curi, qep);
1528 	}
1529 
1530 	/*
1531 	 * No do final twiddling for the CTIO itself.
1532 	 */
1533 	cto->ct_header.rqs_seqno = 1;
1534 	isp_prt(isp, ISP_LOGTDEBUG1,
1535 	    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts 0x%x resid %d",
1536 	    cto->ct_rxid, csio->ccb_h.target_lun, (int) cto->ct_iid,
1537 	    cto->ct_flags, cto->ct_status, cto->rsp.m1.ct_scsi_status,
1538 	    cto->ct_resid);
1539 	isp_put_ctio2(isp, cto, qe);
1540 	ISP_TDQE(isp, "last dma2_tgt_fc", curi, qe);
1541 	*mp->nxtip = nxti;
1542 }
1543 #endif
1544 
1545 static void dma2(void *, bus_dma_segment_t *, int, int);
1546 
1547 static void
1548 dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1549 {
1550 	mush_t *mp;
1551 	struct ispsoftc *isp;
1552 	struct ccb_scsiio *csio;
1553 	struct isp_pcisoftc *pcs;
1554 	bus_dmamap_t *dp;
1555 	bus_dma_segment_t *eseg;
1556 	ispreq_t *rq;
1557 	int seglim, datalen;
1558 	u_int16_t nxti;
1559 
1560 	mp = (mush_t *) arg;
1561 	if (error) {
1562 		mp->error = error;
1563 		return;
1564 	}
1565 
1566 	if (nseg < 1) {
1567 		isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
1568 		mp->error = EFAULT;
1569 		return;
1570 	}
1571 	csio = mp->cmd_token;
1572 	isp = mp->isp;
1573 	rq = mp->rq;
1574 	pcs = (struct isp_pcisoftc *)mp->isp;
1575 	dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1576 	nxti = *mp->nxtip;
1577 
1578 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1579 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1580 	} else {
1581 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1582 	}
1583 
1584 	datalen = XS_XFRLEN(csio);
1585 
1586 	/*
1587 	 * We're passed an initial partially filled in entry that
1588 	 * has most fields filled in except for data transfer
1589 	 * related values.
1590 	 *
1591 	 * Our job is to fill in the initial request queue entry and
1592 	 * then to start allocating and filling in continuation entries
1593 	 * until we've covered the entire transfer.
1594 	 */
1595 
1596 	if (IS_FC(isp)) {
1597 		seglim = ISP_RQDSEG_T2;
1598 		((ispreqt2_t *)rq)->req_totalcnt = datalen;
1599 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1600 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
1601 		} else {
1602 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
1603 		}
1604 	} else {
1605 		if (csio->cdb_len > 12) {
1606 			seglim = 0;
1607 		} else {
1608 			seglim = ISP_RQDSEG;
1609 		}
1610 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1611 			rq->req_flags |= REQFLAG_DATA_IN;
1612 		} else {
1613 			rq->req_flags |= REQFLAG_DATA_OUT;
1614 		}
1615 	}
1616 
1617 	eseg = dm_segs + nseg;
1618 
1619 	while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
1620 		if (IS_FC(isp)) {
1621 			ispreqt2_t *rq2 = (ispreqt2_t *)rq;
1622 			rq2->req_dataseg[rq2->req_seg_count].ds_base =
1623 			    dm_segs->ds_addr;
1624 			rq2->req_dataseg[rq2->req_seg_count].ds_count =
1625 			    dm_segs->ds_len;
1626 		} else {
1627 			rq->req_dataseg[rq->req_seg_count].ds_base =
1628 				dm_segs->ds_addr;
1629 			rq->req_dataseg[rq->req_seg_count].ds_count =
1630 				dm_segs->ds_len;
1631 		}
1632 		datalen -= dm_segs->ds_len;
1633 		rq->req_seg_count++;
1634 		dm_segs++;
1635 	}
1636 
1637 	while (datalen > 0 && dm_segs != eseg) {
1638 		u_int16_t onxti;
1639 		ispcontreq_t local, *crq = &local, *cqe;
1640 
1641 		cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1642 		onxti = nxti;
1643 		nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp));
1644 		if (nxti == mp->optr) {
1645 			isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++");
1646 			mp->error = MUSHERR_NOQENTRIES;
1647 			return;
1648 		}
1649 		rq->req_header.rqs_entry_count++;
1650 		MEMZERO((void *)crq, sizeof (*crq));
1651 		crq->req_header.rqs_entry_count = 1;
1652 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1653 
1654 		seglim = 0;
1655 		while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
1656 			crq->req_dataseg[seglim].ds_base =
1657 			    dm_segs->ds_addr;
1658 			crq->req_dataseg[seglim].ds_count =
1659 			    dm_segs->ds_len;
1660 			rq->req_seg_count++;
1661 			dm_segs++;
1662 			seglim++;
1663 			datalen -= dm_segs->ds_len;
1664 		}
1665 		isp_put_cont_req(isp, crq, cqe);
1666 		MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN);
1667 	}
1668 	*mp->nxtip = nxti;
1669 }
1670 
1671 static int
1672 isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
1673 	u_int16_t *nxtip, u_int16_t optr)
1674 {
1675 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1676 	ispreq_t *qep;
1677 	bus_dmamap_t *dp = NULL;
1678 	mush_t mush, *mp;
1679 	void (*eptr)(void *, bus_dma_segment_t *, int, int);
1680 
1681 	qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, isp->isp_reqidx);
1682 #ifdef	ISP_TARGET_MODE
1683 	if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
1684 		if (IS_FC(isp)) {
1685 			eptr = tdma_mkfc;
1686 		} else {
1687 			eptr = tdma_mk;
1688 		}
1689 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1690 		    (csio->dxfer_len == 0)) {
1691 			mp = &mush;
1692 			mp->isp = isp;
1693 			mp->cmd_token = csio;
1694 			mp->rq = rq;	/* really a ct_entry_t or ct2_entry_t */
1695 			mp->nxtip = nxtip;
1696 			mp->optr = optr;
1697 			mp->error = 0;
1698 			(*eptr)(mp, NULL, 0, 0);
1699 			goto mbxsync;
1700 		}
1701 	} else
1702 #endif
1703 	eptr = dma2;
1704 
1705 
1706 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1707 	    (csio->dxfer_len == 0)) {
1708 		rq->req_seg_count = 1;
1709 		goto mbxsync;
1710 	}
1711 
1712 	/*
1713 	 * Do a virtual grapevine step to collect info for
1714 	 * the callback dma allocation that we have to use...
1715 	 */
1716 	mp = &mush;
1717 	mp->isp = isp;
1718 	mp->cmd_token = csio;
1719 	mp->rq = rq;
1720 	mp->nxtip = nxtip;
1721 	mp->optr = optr;
1722 	mp->error = 0;
1723 
1724 	if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
1725 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
1726 			int error;
1727 			dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1728 			crit_enter();
1729 			error = bus_dmamap_load(pcs->dmat, *dp,
1730 			    csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
1731 			if (error == EINPROGRESS) {
1732 				bus_dmamap_unload(pcs->dmat, *dp);
1733 				mp->error = EINVAL;
1734 				isp_prt(isp, ISP_LOGERR,
1735 				    "deferred dma allocation not supported");
1736 			} else if (error && mp->error == 0) {
1737 #ifdef	DIAGNOSTIC
1738 				isp_prt(isp, ISP_LOGERR,
1739 				    "error %d in dma mapping code", error);
1740 #endif
1741 				mp->error = error;
1742 			}
1743 			crit_exit();
1744 		} else {
1745 			/* Pointer to physical buffer */
1746 			struct bus_dma_segment seg;
1747 			seg.ds_addr = (bus_addr_t)csio->data_ptr;
1748 			seg.ds_len = csio->dxfer_len;
1749 			(*eptr)(mp, &seg, 1, 0);
1750 		}
1751 	} else {
1752 		struct bus_dma_segment *segs;
1753 
1754 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
1755 			isp_prt(isp, ISP_LOGERR,
1756 			    "Physical segment pointers unsupported");
1757 			mp->error = EINVAL;
1758 		} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
1759 			isp_prt(isp, ISP_LOGERR,
1760 			    "Virtual segment addresses unsupported");
1761 			mp->error = EINVAL;
1762 		} else {
1763 			/* Just use the segments provided */
1764 			segs = (struct bus_dma_segment *) csio->data_ptr;
1765 			(*eptr)(mp, segs, csio->sglist_cnt, 0);
1766 		}
1767 	}
1768 	if (mp->error) {
1769 		int retval = CMD_COMPLETE;
1770 		if (mp->error == MUSHERR_NOQENTRIES) {
1771 			retval = CMD_EAGAIN;
1772 		} else if (mp->error == EFBIG) {
1773 			XS_SETERR(csio, CAM_REQ_TOO_BIG);
1774 		} else if (mp->error == EINVAL) {
1775 			XS_SETERR(csio, CAM_REQ_INVALID);
1776 		} else {
1777 			XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
1778 		}
1779 		return (retval);
1780 	}
1781 mbxsync:
1782 	switch (rq->req_header.rqs_entry_type) {
1783 	case RQSTYPE_REQUEST:
1784 		isp_put_request(isp, rq, qep);
1785 		break;
1786 	case RQSTYPE_CMDONLY:
1787 		isp_put_extended_request(isp, (ispextreq_t *)rq,
1788 		    (ispextreq_t *)qep);
1789 		break;
1790 	case RQSTYPE_T2RQS:
1791 		isp_put_request_t2(isp, (ispreqt2_t *) rq, (ispreqt2_t *) qep);
1792 		break;
1793 	}
1794 	return (CMD_QUEUED);
1795 }
1796 
1797 static void
1798 isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle)
1799 {
1800 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1801 	bus_dmamap_t *dp = &pcs->dmaps[isp_handle_index(handle)];
1802 	if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1803 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTREAD);
1804 	} else {
1805 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTWRITE);
1806 	}
1807 	bus_dmamap_unload(pcs->dmat, *dp);
1808 }
1809 
1810 
1811 static void
1812 isp_pci_reset1(struct ispsoftc *isp)
1813 {
1814 	/* Make sure the BIOS is disabled */
1815 	isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
1816 	/* and enable interrupts */
1817 	ENABLE_INTS(isp);
1818 }
1819 
1820 static void
1821 isp_pci_dumpregs(struct ispsoftc *isp, const char *msg)
1822 {
1823 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1824 	if (msg)
1825 		printf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg);
1826 	else
1827 		printf("%s:\n", device_get_nameunit(isp->isp_dev));
1828 	if (IS_SCSI(isp))
1829 		printf("    biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
1830 	else
1831 		printf("    biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
1832 	printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
1833 	    ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
1834 	printf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
1835 
1836 
1837 	if (IS_SCSI(isp)) {
1838 		ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
1839 		printf("    cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
1840 			ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
1841 			ISP_READ(isp, CDMA_FIFO_STS));
1842 		printf("    ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
1843 			ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
1844 			ISP_READ(isp, DDMA_FIFO_STS));
1845 		printf("    sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
1846 			ISP_READ(isp, SXP_INTERRUPT),
1847 			ISP_READ(isp, SXP_GROSS_ERR),
1848 			ISP_READ(isp, SXP_PINS_CTRL));
1849 		ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
1850 	}
1851 	printf("    mbox regs: %x %x %x %x %x\n",
1852 	    ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
1853 	    ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
1854 	    ISP_READ(isp, OUTMAILBOX4));
1855 	printf("    PCI Status Command/Status=%x\n",
1856 	    pci_read_config(pcs->pci_dev, PCIR_COMMAND, 1));
1857 }
1858