xref: /dragonfly/sys/dev/disk/mpt/mpt.c (revision 2020c8fe)
1 /*-
2  * Generic routines for LSI Fusion adapters.
3  * FreeBSD Version.
4  *
5  * Copyright (c) 2000, 2001 by Greg Ansley
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice immediately at the beginning of the file, without modification,
12  *    this list of conditions, and the following disclaimer.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 /*-
29  * Copyright (c) 2002, 2006 by Matthew Jacob
30  * All rights reserved.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions are
34  * met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38  *    substantially similar to the "NO WARRANTY" disclaimer below
39  *    ("Disclaimer") and any redistribution must be conditioned upon including
40  *    a substantially similar Disclaimer requirement for further binary
41  *    redistribution.
42  * 3. Neither the names of the above listed copyright holders nor the names
43  *    of any contributors may be used to endorse or promote products derived
44  *    from this software without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57  *
58  * Support from Chris Ellsworth in order to make SAS adapters work
59  * is gratefully acknowledged.
60  *
61  *
62  * Support from LSI-Logic has also gone a great deal toward making this a
63  * workable subsystem and is gratefully acknowledged.
64  */
65 /*-
66  * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67  * Copyright (c) 2005, WHEEL Sp. z o.o.
68  * Copyright (c) 2004, 2005 Justin T. Gibbs
69  * All rights reserved.
70  *
71  * Redistribution and use in source and binary forms, with or without
72  * modification, are permitted provided that the following conditions are
73  * met:
74  * 1. Redistributions of source code must retain the above copyright
75  *    notice, this list of conditions and the following disclaimer.
76  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77  *    substantially similar to the "NO WARRANTY" disclaimer below
78  *    ("Disclaimer") and any redistribution must be conditioned upon including
79  *    a substantially similar Disclaimer requirement for further binary
80  *    redistribution.
81  * 3. Neither the names of the above listed copyright holders nor the names
82  *    of any contributors may be used to endorse or promote products derived
83  *    from this software without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96  *
97  * $FreeBSD: src/sys/dev/mpt/mpt.c,v 1.57 2011/04/22 09:59:16 marius Exp $
98  */
99 
100 #include <dev/disk/mpt/mpt.h>
101 #include <dev/disk/mpt/mpt_cam.h> /* XXX For static handler registration */
102 #include <dev/disk/mpt/mpt_raid.h> /* XXX For static handler registration */
103 
104 #include <dev/disk/mpt/mpilib/mpi.h>
105 #include <dev/disk/mpt/mpilib/mpi_ioc.h>
106 #include <dev/disk/mpt/mpilib/mpi_fc.h>
107 #include <dev/disk/mpt/mpilib/mpi_targ.h>
108 
109 #include <sys/sysctl.h>
110 
111 #define MPT_MAX_TRYS 3
112 #define MPT_MAX_WAIT 300000
113 
114 static int maxwait_ack = 0;
115 static int maxwait_int = 0;
116 static int maxwait_state = 0;
117 
118 static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
119 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
120 
121 static mpt_reply_handler_t mpt_default_reply_handler;
122 static mpt_reply_handler_t mpt_config_reply_handler;
123 static mpt_reply_handler_t mpt_handshake_reply_handler;
124 static mpt_reply_handler_t mpt_event_reply_handler;
125 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
126 			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
127 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
128 static int mpt_soft_reset(struct mpt_softc *mpt);
129 static void mpt_hard_reset(struct mpt_softc *mpt);
130 static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
131 static void mpt_dma_buf_free(struct mpt_softc *mpt);
132 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
133 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
134 
135 /************************* Personality Module Support *************************/
136 /*
137  * We include one extra entry that is guaranteed to be NULL
138  * to simplify our itterator.
139  */
140 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
141 static __inline struct mpt_personality*
142 	mpt_pers_find(struct mpt_softc *, u_int);
143 static __inline struct mpt_personality*
144 	mpt_pers_find_reverse(struct mpt_softc *, u_int);
145 
146 static __inline struct mpt_personality *
147 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
148 {
149 	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
150 		("mpt_pers_find: starting position out of range\n"));
151 
152 	while (start_at < MPT_MAX_PERSONALITIES
153 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
154 		start_at++;
155 	}
156 	return (mpt_personalities[start_at]);
157 }
158 
159 /*
160  * Used infrequently, so no need to optimize like a forward
161  * traversal where we use the MAX+1 is guaranteed to be NULL
162  * trick.
163  */
164 static __inline struct mpt_personality *
165 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
166 {
167 	while (start_at < MPT_MAX_PERSONALITIES
168 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
169 		start_at--;
170 	}
171 	if (start_at < MPT_MAX_PERSONALITIES)
172 		return (mpt_personalities[start_at]);
173 	return (NULL);
174 }
175 
176 #define MPT_PERS_FOREACH(mpt, pers)				\
177 	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
178 	     pers != NULL;					\
179 	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
180 
181 #define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
182 	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
183 	     pers != NULL;						\
184 	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
185 
186 static mpt_load_handler_t      mpt_stdload;
187 static mpt_probe_handler_t     mpt_stdprobe;
188 static mpt_attach_handler_t    mpt_stdattach;
189 static mpt_enable_handler_t    mpt_stdenable;
190 static mpt_ready_handler_t     mpt_stdready;
191 static mpt_event_handler_t     mpt_stdevent;
192 static mpt_reset_handler_t     mpt_stdreset;
193 static mpt_shutdown_handler_t  mpt_stdshutdown;
194 static mpt_detach_handler_t    mpt_stddetach;
195 static mpt_unload_handler_t    mpt_stdunload;
196 static struct mpt_personality mpt_default_personality =
197 {
198 	.load		= mpt_stdload,
199 	.probe		= mpt_stdprobe,
200 	.attach		= mpt_stdattach,
201 	.enable		= mpt_stdenable,
202 	.ready		= mpt_stdready,
203 	.event		= mpt_stdevent,
204 	.reset		= mpt_stdreset,
205 	.shutdown	= mpt_stdshutdown,
206 	.detach		= mpt_stddetach,
207 	.unload		= mpt_stdunload
208 };
209 
210 static mpt_load_handler_t      mpt_core_load;
211 static mpt_attach_handler_t    mpt_core_attach;
212 static mpt_enable_handler_t    mpt_core_enable;
213 static mpt_reset_handler_t     mpt_core_ioc_reset;
214 static mpt_event_handler_t     mpt_core_event;
215 static mpt_shutdown_handler_t  mpt_core_shutdown;
216 static mpt_shutdown_handler_t  mpt_core_detach;
217 static mpt_unload_handler_t    mpt_core_unload;
218 static struct mpt_personality mpt_core_personality =
219 {
220 	.name		= "mpt_core",
221 	.load		= mpt_core_load,
222 //	.attach		= mpt_core_attach,
223 //	.enable		= mpt_core_enable,
224 	.event		= mpt_core_event,
225 	.reset		= mpt_core_ioc_reset,
226 	.shutdown	= mpt_core_shutdown,
227 	.detach		= mpt_core_detach,
228 	.unload		= mpt_core_unload,
229 };
230 
231 /*
232  * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
233  * ordering information.  We want the core to always register FIRST.
234  * other modules are set to SI_ORDER_SECOND.
235  */
236 static moduledata_t mpt_core_mod = {
237 	"mpt_core", mpt_modevent, &mpt_core_personality
238 };
239 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
240 MODULE_VERSION(mpt_core, 1);
241 
242 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
243 
244 int
245 mpt_modevent(module_t mod, int type, void *data)
246 {
247 	struct mpt_personality *pers;
248 	int error;
249 
250 	pers = (struct mpt_personality *)data;
251 
252 	error = 0;
253 	switch (type) {
254 	case MOD_LOAD:
255 	{
256 		mpt_load_handler_t **def_handler;
257 		mpt_load_handler_t **pers_handler;
258 		int i;
259 
260 		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
261 			if (mpt_personalities[i] == NULL)
262 				break;
263 		}
264 		if (i >= MPT_MAX_PERSONALITIES) {
265 			error = ENOMEM;
266 			break;
267 		}
268 		pers->id = i;
269 		mpt_personalities[i] = pers;
270 
271 		/* Install standard/noop handlers for any NULL entries. */
272 		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
273 		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
274 		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
275 			if (*pers_handler == NULL)
276 				*pers_handler = *def_handler;
277 			pers_handler++;
278 			def_handler++;
279 		}
280 
281 		error = (pers->load(pers));
282 		if (error != 0)
283 			mpt_personalities[i] = NULL;
284 		break;
285 	}
286 	case MOD_SHUTDOWN:
287 		break;
288 #if __FreeBSD_version >= 500000
289 	case MOD_QUIESCE:
290 		break;
291 #endif
292 	case MOD_UNLOAD:
293 		error = pers->unload(pers);
294 		mpt_personalities[pers->id] = NULL;
295 		break;
296 	default:
297 		error = EINVAL;
298 		break;
299 	}
300 	return (error);
301 }
302 
303 int
304 mpt_stdload(struct mpt_personality *pers)
305 {
306 	/* Load is always successful. */
307 	return (0);
308 }
309 
310 int
311 mpt_stdprobe(struct mpt_softc *mpt)
312 {
313 	/* Probe is always successful. */
314 	return (0);
315 }
316 
317 int
318 mpt_stdattach(struct mpt_softc *mpt)
319 {
320 	/* Attach is always successful. */
321 	return (0);
322 }
323 
324 int
325 mpt_stdenable(struct mpt_softc *mpt)
326 {
327 	/* Enable is always successful. */
328 	return (0);
329 }
330 
331 void
332 mpt_stdready(struct mpt_softc *mpt)
333 {
334 }
335 
336 
337 int
338 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
339 {
340 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
341 	/* Event was not for us. */
342 	return (0);
343 }
344 
345 void
346 mpt_stdreset(struct mpt_softc *mpt, int type)
347 {
348 }
349 
350 void
351 mpt_stdshutdown(struct mpt_softc *mpt)
352 {
353 }
354 
355 void
356 mpt_stddetach(struct mpt_softc *mpt)
357 {
358 }
359 
360 int
361 mpt_stdunload(struct mpt_personality *pers)
362 {
363 	/* Unload is always successful. */
364 	return (0);
365 }
366 
367 /*
368  * Post driver attachment, we may want to perform some global actions.
369  * Here is the hook to do so.
370  */
371 
372 static void
373 mpt_postattach(void *unused)
374 {
375 	struct mpt_softc *mpt;
376 	struct mpt_personality *pers;
377 
378 	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
379 		MPT_PERS_FOREACH(mpt, pers)
380 			pers->ready(mpt);
381 	}
382 }
383 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
384 
385 
386 /******************************* Bus DMA Support ******************************/
387 void
388 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
389 {
390 	struct mpt_map_info *map_info;
391 
392 	map_info = (struct mpt_map_info *)arg;
393 	map_info->error = error;
394 	map_info->phys = segs->ds_addr;
395 }
396 
397 /**************************** Reply/Event Handling ****************************/
398 int
399 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
400 		     mpt_handler_t handler, uint32_t *phandler_id)
401 {
402 
403 	switch (type) {
404 	case MPT_HANDLER_REPLY:
405 	{
406 		u_int cbi;
407 		u_int free_cbi;
408 
409 		if (phandler_id == NULL)
410 			return (EINVAL);
411 
412 		free_cbi = MPT_HANDLER_ID_NONE;
413 		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
414 			/*
415 			 * If the same handler is registered multiple
416 			 * times, don't error out.  Just return the
417 			 * index of the original registration.
418 			 */
419 			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
420 				*phandler_id = MPT_CBI_TO_HID(cbi);
421 				return (0);
422 			}
423 
424 			/*
425 			 * Fill from the front in the hope that
426 			 * all registered handlers consume only a
427 			 * single cache line.
428 			 *
429 			 * We don't break on the first empty slot so
430 			 * that the full table is checked to see if
431 			 * this handler was previously registered.
432 			 */
433 			if (free_cbi == MPT_HANDLER_ID_NONE &&
434 			    (mpt_reply_handlers[cbi]
435 			  == mpt_default_reply_handler))
436 				free_cbi = cbi;
437 		}
438 		if (free_cbi == MPT_HANDLER_ID_NONE) {
439 			return (ENOMEM);
440 		}
441 		mpt_reply_handlers[free_cbi] = handler.reply_handler;
442 		*phandler_id = MPT_CBI_TO_HID(free_cbi);
443 		break;
444 	}
445 	default:
446 		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
447 		return (EINVAL);
448 	}
449 	return (0);
450 }
451 
452 int
453 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
454 		       mpt_handler_t handler, uint32_t handler_id)
455 {
456 
457 	switch (type) {
458 	case MPT_HANDLER_REPLY:
459 	{
460 		u_int cbi;
461 
462 		cbi = MPT_CBI(handler_id);
463 		if (cbi >= MPT_NUM_REPLY_HANDLERS
464 		 || mpt_reply_handlers[cbi] != handler.reply_handler)
465 			return (ENOENT);
466 		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
467 		break;
468 	}
469 	default:
470 		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
471 		return (EINVAL);
472 	}
473 	return (0);
474 }
475 
476 static int
477 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
478 	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
479 {
480 	mpt_prt(mpt,
481 	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
482 	    req, req->serno, reply_desc, reply_frame);
483 
484 	if (reply_frame != NULL)
485 		mpt_dump_reply_frame(mpt, reply_frame);
486 
487 	mpt_prt(mpt, "Reply Frame Ignored\n");
488 
489 	return (/*free_reply*/TRUE);
490 }
491 
492 static int
493 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
494  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
495 {
496 	if (req != NULL) {
497 
498 		if (reply_frame != NULL) {
499 			MSG_CONFIG *cfgp;
500 			MSG_CONFIG_REPLY *reply;
501 
502 			cfgp = (MSG_CONFIG *)req->req_vbuf;
503 			reply = (MSG_CONFIG_REPLY *)reply_frame;
504 			req->IOCStatus = le16toh(reply_frame->IOCStatus);
505 			bcopy(&reply->Header, &cfgp->Header,
506 			      sizeof(cfgp->Header));
507 			cfgp->ExtPageLength = reply->ExtPageLength;
508 			cfgp->ExtPageType = reply->ExtPageType;
509 		}
510 		req->state &= ~REQ_STATE_QUEUED;
511 		req->state |= REQ_STATE_DONE;
512 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
513 		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
514 			wakeup(req);
515 		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
516 			/*
517 			 * Whew- we can free this request (late completion)
518 			 */
519 			mpt_free_request(mpt, req);
520 		}
521 	}
522 
523 	return (TRUE);
524 }
525 
526 static int
527 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
528  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
529 {
530 	/* Nothing to be done. */
531 	return (TRUE);
532 }
533 
534 static int
535 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
536     uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
537 {
538 	int free_reply;
539 
540 	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
541 	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
542 
543 	free_reply = TRUE;
544 	switch (reply_frame->Function) {
545 	case MPI_FUNCTION_EVENT_NOTIFICATION:
546 	{
547 		MSG_EVENT_NOTIFY_REPLY *msg;
548 		struct mpt_personality *pers;
549 		u_int handled;
550 
551 		handled = 0;
552 		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
553 		msg->EventDataLength = le16toh(msg->EventDataLength);
554 		msg->IOCStatus = le16toh(msg->IOCStatus);
555 		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
556 		msg->Event = le32toh(msg->Event);
557 		MPT_PERS_FOREACH(mpt, pers)
558 			handled += pers->event(mpt, req, msg);
559 
560 		if (handled == 0 && mpt->mpt_pers_mask == 0) {
561 			mpt_lprt(mpt, MPT_PRT_INFO,
562 				"No Handlers For Any Event Notify Frames. "
563 				"Event %#x (ACK %sequired).\n",
564 				msg->Event, msg->AckRequired? "r" : "not r");
565 		} else if (handled == 0) {
566 			mpt_lprt(mpt,
567 				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
568 				"Unhandled Event Notify Frame. Event %#x "
569 				"(ACK %sequired).\n",
570 				msg->Event, msg->AckRequired? "r" : "not r");
571 		}
572 
573 		if (msg->AckRequired) {
574 			request_t *ack_req;
575 			uint32_t context;
576 
577 			context = req->index | MPT_REPLY_HANDLER_EVENTS;
578 			ack_req = mpt_get_request(mpt, FALSE);
579 			if (ack_req == NULL) {
580 				struct mpt_evtf_record *evtf;
581 
582 				evtf = (struct mpt_evtf_record *)reply_frame;
583 				evtf->context = context;
584 				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
585 				free_reply = FALSE;
586 				break;
587 			}
588 			mpt_send_event_ack(mpt, ack_req, msg, context);
589 			/*
590 			 * Don't check for CONTINUATION_REPLY here
591 			 */
592 			return (free_reply);
593 		}
594 		break;
595 	}
596 	case MPI_FUNCTION_PORT_ENABLE:
597 		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
598 		break;
599 	case MPI_FUNCTION_EVENT_ACK:
600 		break;
601 	default:
602 		mpt_prt(mpt, "unknown event function: %x\n",
603 			reply_frame->Function);
604 		break;
605 	}
606 
607 	/*
608 	 * I'm not sure that this continuation stuff works as it should.
609 	 *
610 	 * I've had FC async events occur that free the frame up because
611 	 * the continuation bit isn't set, and then additional async events
612 	 * then occur using the same context. As you might imagine, this
613 	 * leads to Very Bad Thing.
614 	 *
615 	 *  Let's just be safe for now and not free them up until we figure
616 	 * out what's actually happening here.
617 	 */
618 #if	0
619 	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
620 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
621 		mpt_free_request(mpt, req);
622 		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
623 		    reply_frame->Function, req, req->serno);
624 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
625 			MSG_EVENT_NOTIFY_REPLY *msg =
626 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
627 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
628 			    msg->Event, msg->AckRequired);
629 		}
630 	} else {
631 		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
632 		    reply_frame->Function, req, req->serno);
633 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
634 			MSG_EVENT_NOTIFY_REPLY *msg =
635 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
636 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
637 			    msg->Event, msg->AckRequired);
638 		}
639 		mpt_prtc(mpt, "\n");
640 	}
641 #endif
642 	return (free_reply);
643 }
644 
645 /*
646  * Process an asynchronous event from the IOC.
647  */
648 static int
649 mpt_core_event(struct mpt_softc *mpt, request_t *req,
650 	       MSG_EVENT_NOTIFY_REPLY *msg)
651 {
652 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
653                  msg->Event & 0xFF);
654 	switch(msg->Event & 0xFF) {
655 	case MPI_EVENT_NONE:
656 		break;
657 	case MPI_EVENT_LOG_DATA:
658 	{
659 		int i;
660 
661 		/* Some error occurred that LSI wants logged */
662 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
663 			msg->IOCLogInfo);
664 		mpt_prt(mpt, "\tEvtLogData: Event Data:");
665 		for (i = 0; i < msg->EventDataLength; i++)
666 			mpt_prtc(mpt, "  %08x", msg->Data[i]);
667 		mpt_prtc(mpt, "\n");
668 		break;
669 	}
670 	case MPI_EVENT_EVENT_CHANGE:
671 		/*
672 		 * This is just an acknowledgement
673 		 * of our mpt_send_event_request.
674 		 */
675 		break;
676 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
677 		break;
678 	default:
679 		return (0);
680 		break;
681 	}
682 	return (1);
683 }
684 
685 static void
686 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
687 		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
688 {
689 	MSG_EVENT_ACK *ackp;
690 
691 	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
692 	memset(ackp, 0, sizeof (*ackp));
693 	ackp->Function = MPI_FUNCTION_EVENT_ACK;
694 	ackp->Event = htole32(msg->Event);
695 	ackp->EventContext = htole32(msg->EventContext);
696 	ackp->MsgContext = htole32(context);
697 	mpt_check_doorbell(mpt);
698 	mpt_send_cmd(mpt, ack_req);
699 }
700 
701 /***************************** Interrupt Handling *****************************/
702 void
703 mpt_intr(void *arg)
704 {
705 	struct mpt_softc *mpt;
706 	uint32_t reply_desc;
707 	int ntrips = 0;
708 
709 	mpt = (struct mpt_softc *)arg;
710 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
711 	MPT_LOCK_ASSERT(mpt);
712 
713 	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
714 		request_t	  *req;
715 		MSG_DEFAULT_REPLY *reply_frame;
716 		uint32_t	   reply_baddr;
717 		uint32_t           ctxt_idx;
718 		u_int		   cb_index;
719 		u_int		   req_index;
720 		u_int		   offset;
721 		int		   free_rf;
722 
723 		req = NULL;
724 		reply_frame = NULL;
725 		reply_baddr = 0;
726 		offset = 0;
727 		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
728 			/*
729 			 * Ensure that the reply frame is coherent.
730 			 */
731 			reply_baddr = MPT_REPLY_BADDR(reply_desc);
732 			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
733 			bus_dmamap_sync_range(mpt->reply_dmat,
734 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
735 			    BUS_DMASYNC_POSTREAD);
736 			reply_frame = MPT_REPLY_OTOV(mpt, offset);
737 			ctxt_idx = le32toh(reply_frame->MsgContext);
738 		} else {
739 			uint32_t type;
740 
741 			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
742 			ctxt_idx = reply_desc;
743 			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
744 				    reply_desc);
745 
746 			switch (type) {
747 			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
748 				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
749 				break;
750 			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
751 				ctxt_idx = GET_IO_INDEX(reply_desc);
752 				if (mpt->tgt_cmd_ptrs == NULL) {
753 					mpt_prt(mpt,
754 					    "mpt_intr: no target cmd ptrs\n");
755 					reply_desc = MPT_REPLY_EMPTY;
756 					break;
757 				}
758 				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
759 					mpt_prt(mpt,
760 					    "mpt_intr: bad tgt cmd ctxt %u\n",
761 					    ctxt_idx);
762 					reply_desc = MPT_REPLY_EMPTY;
763 					ntrips = 1000;
764 					break;
765 				}
766 				req = mpt->tgt_cmd_ptrs[ctxt_idx];
767 				if (req == NULL) {
768 					mpt_prt(mpt, "no request backpointer "
769 					    "at index %u", ctxt_idx);
770 					reply_desc = MPT_REPLY_EMPTY;
771 					ntrips = 1000;
772 					break;
773 				}
774 				/*
775 				 * Reformulate ctxt_idx to be just as if
776 				 * it were another type of context reply
777 				 * so the code below will find the request
778 				 * via indexing into the pool.
779 				 */
780 				ctxt_idx =
781 				    req->index | mpt->scsi_tgt_handler_id;
782 				req = NULL;
783 				break;
784 			case MPI_CONTEXT_REPLY_TYPE_LAN:
785 				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
786 				    reply_desc);
787 				reply_desc = MPT_REPLY_EMPTY;
788 				break;
789 			default:
790 				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
791 				reply_desc = MPT_REPLY_EMPTY;
792 				break;
793 			}
794 			if (reply_desc == MPT_REPLY_EMPTY) {
795 				if (ntrips++ > 1000) {
796 					break;
797 				}
798 				continue;
799 			}
800 		}
801 
802 		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
803 		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
804 		if (req_index < MPT_MAX_REQUESTS(mpt)) {
805 			req = &mpt->request_pool[req_index];
806 		} else {
807 			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
808 			    " 0x%x)\n", req_index, reply_desc);
809 		}
810 
811 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
812 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
813 		free_rf = mpt_reply_handlers[cb_index](mpt, req,
814 		    reply_desc, reply_frame);
815 
816 		if (reply_frame != NULL && free_rf) {
817 			bus_dmamap_sync_range(mpt->reply_dmat,
818 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
819 			    BUS_DMASYNC_PREREAD);
820 			mpt_free_reply(mpt, reply_baddr);
821 		}
822 
823 		/*
824 		 * If we got ourselves disabled, don't get stuck in a loop
825 		 */
826 		if (mpt->disabled) {
827 			mpt_disable_ints(mpt);
828 			break;
829 		}
830 		if (ntrips++ > 1000) {
831 			break;
832 		}
833 	}
834 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
835 }
836 
837 /******************************* Error Recovery *******************************/
838 void
839 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
840 			    u_int iocstatus)
841 {
842 	MSG_DEFAULT_REPLY  ioc_status_frame;
843 	request_t	  *req;
844 
845 	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
846 	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
847 	ioc_status_frame.IOCStatus = iocstatus;
848 	while((req = TAILQ_FIRST(chain)) != NULL) {
849 		MSG_REQUEST_HEADER *msg_hdr;
850 		u_int		    cb_index;
851 
852 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
853 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
854 		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
855 		ioc_status_frame.Function = msg_hdr->Function;
856 		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
857 		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
858 		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
859 		    &ioc_status_frame);
860 		if (mpt_req_on_pending_list(mpt, req) != 0)
861 			TAILQ_REMOVE(chain, req, links);
862 	}
863 }
864 
865 /********************************* Diagnostics ********************************/
866 /*
867  * Perform a diagnostic dump of a reply frame.
868  */
869 void
870 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
871 {
872 	mpt_prt(mpt, "Address Reply:\n");
873 	mpt_print_reply(reply_frame);
874 }
875 
876 /******************************* Doorbell Access ******************************/
877 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
878 static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
879 
880 static __inline uint32_t
881 mpt_rd_db(struct mpt_softc *mpt)
882 {
883 	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
884 }
885 
886 static __inline uint32_t
887 mpt_rd_intr(struct mpt_softc *mpt)
888 {
889 	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
890 }
891 
892 /* Busy wait for a door bell to be read by IOC */
893 static int
894 mpt_wait_db_ack(struct mpt_softc *mpt)
895 {
896 	int i;
897 	for (i=0; i < MPT_MAX_WAIT; i++) {
898 		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
899 			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
900 			return (MPT_OK);
901 		}
902 		DELAY(200);
903 	}
904 	return (MPT_FAIL);
905 }
906 
907 /* Busy wait for a door bell interrupt */
908 static int
909 mpt_wait_db_int(struct mpt_softc *mpt)
910 {
911 	int i;
912 	for (i = 0; i < MPT_MAX_WAIT; i++) {
913 		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
914 			maxwait_int = i > maxwait_int ? i : maxwait_int;
915 			return MPT_OK;
916 		}
917 		DELAY(100);
918 	}
919 	return (MPT_FAIL);
920 }
921 
922 /* Wait for IOC to transition to a give state */
923 void
924 mpt_check_doorbell(struct mpt_softc *mpt)
925 {
926 	uint32_t db = mpt_rd_db(mpt);
927 	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
928 		mpt_prt(mpt, "Device not running\n");
929 		mpt_print_db(db);
930 	}
931 }
932 
933 /* Wait for IOC to transition to a give state */
934 static int
935 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
936 {
937 	int i;
938 
939 	for (i = 0; i < MPT_MAX_WAIT; i++) {
940 		uint32_t db = mpt_rd_db(mpt);
941 		if (MPT_STATE(db) == state) {
942 			maxwait_state = i > maxwait_state ? i : maxwait_state;
943 			return (MPT_OK);
944 		}
945 		DELAY(100);
946 	}
947 	return (MPT_FAIL);
948 }
949 
950 
951 /************************* Intialization/Configuration ************************/
952 static int mpt_download_fw(struct mpt_softc *mpt);
953 
954 /* Issue the reset COMMAND to the IOC */
955 static int
956 mpt_soft_reset(struct mpt_softc *mpt)
957 {
958 	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
959 
960 	/* Have to use hard reset if we are not in Running state */
961 	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
962 		mpt_prt(mpt, "soft reset failed: device not running\n");
963 		return (MPT_FAIL);
964 	}
965 
966 	/* If door bell is in use we don't have a chance of getting
967 	 * a word in since the IOC probably crashed in message
968 	 * processing. So don't waste our time.
969 	 */
970 	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
971 		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
972 		return (MPT_FAIL);
973 	}
974 
975 	/* Send the reset request to the IOC */
976 	mpt_write(mpt, MPT_OFFSET_DOORBELL,
977 	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
978 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
979 		mpt_prt(mpt, "soft reset failed: ack timeout\n");
980 		return (MPT_FAIL);
981 	}
982 
983 	/* Wait for the IOC to reload and come out of reset state */
984 	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
985 		mpt_prt(mpt, "soft reset failed: device did not restart\n");
986 		return (MPT_FAIL);
987 	}
988 
989 	return MPT_OK;
990 }
991 
992 static int
993 mpt_enable_diag_mode(struct mpt_softc *mpt)
994 {
995 	int try;
996 
997 	try = 20;
998 	while (--try) {
999 
1000 		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1001 			break;
1002 
1003 		/* Enable diagnostic registers */
1004 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1005 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1006 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1007 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1008 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1009 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1010 
1011 		DELAY(100000);
1012 	}
1013 	if (try == 0)
1014 		return (EIO);
1015 	return (0);
1016 }
1017 
1018 static void
1019 mpt_disable_diag_mode(struct mpt_softc *mpt)
1020 {
1021 	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1022 }
1023 
1024 /* This is a magic diagnostic reset that resets all the ARM
1025  * processors in the chip.
1026  */
1027 static void
1028 mpt_hard_reset(struct mpt_softc *mpt)
1029 {
1030 	int error;
1031 	int wait;
1032 	uint32_t diagreg;
1033 
1034 	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1035 
1036 	error = mpt_enable_diag_mode(mpt);
1037 	if (error) {
1038 		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1039 		mpt_prt(mpt, "Trying to reset anyway.\n");
1040 	}
1041 
1042 	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1043 
1044 	/*
1045 	 * This appears to be a workaround required for some
1046 	 * firmware or hardware revs.
1047 	 */
1048 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1049 	DELAY(1000);
1050 
1051 	/* Diag. port is now active so we can now hit the reset bit */
1052 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1053 
1054         /*
1055          * Ensure that the reset has finished.  We delay 1ms
1056          * prior to reading the register to make sure the chip
1057          * has sufficiently completed its reset to handle register
1058          * accesses.
1059          */
1060 	wait = 5000;
1061 	do {
1062 		DELAY(1000);
1063 		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1064 	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1065 
1066 	if (wait == 0) {
1067 		mpt_prt(mpt, "WARNING - Failed hard reset! "
1068 			"Trying to initialize anyway.\n");
1069 	}
1070 
1071 	/*
1072 	 * If we have firmware to download, it must be loaded before
1073 	 * the controller will become operational.  Do so now.
1074 	 */
1075 	if (mpt->fw_image != NULL) {
1076 
1077 		error = mpt_download_fw(mpt);
1078 
1079 		if (error) {
1080 			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1081 			mpt_prt(mpt, "Trying to initialize anyway.\n");
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * Reseting the controller should have disabled write
1087 	 * access to the diagnostic registers, but disable
1088 	 * manually to be sure.
1089 	 */
1090 	mpt_disable_diag_mode(mpt);
1091 }
1092 
1093 static void
1094 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1095 {
1096 	/*
1097 	 * Complete all pending requests with a status
1098 	 * appropriate for an IOC reset.
1099 	 */
1100 	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1101 				   MPI_IOCSTATUS_INVALID_STATE);
1102 }
1103 
1104 
1105 /*
1106  * Reset the IOC when needed. Try software command first then if needed
1107  * poke at the magic diagnostic reset. Note that a hard reset resets
1108  * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1109  * fouls up the PCI configuration registers.
1110  */
1111 int
1112 mpt_reset(struct mpt_softc *mpt, int reinit)
1113 {
1114 	struct	mpt_personality *pers;
1115 	int	ret;
1116 	int	retry_cnt = 0;
1117 
1118 	/*
1119 	 * Try a soft reset. If that fails, get out the big hammer.
1120 	 */
1121  again:
1122 	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1123 		int	cnt;
1124 		for (cnt = 0; cnt < 5; cnt++) {
1125 			/* Failed; do a hard reset */
1126 			mpt_hard_reset(mpt);
1127 
1128 			/*
1129 			 * Wait for the IOC to reload
1130 			 * and come out of reset state
1131 			 */
1132 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1133 			if (ret == MPT_OK) {
1134 				break;
1135 			}
1136 			/*
1137 			 * Okay- try to check again...
1138 			 */
1139 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1140 			if (ret == MPT_OK) {
1141 				break;
1142 			}
1143 			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1144 			    retry_cnt, cnt);
1145 		}
1146 	}
1147 
1148 	if (retry_cnt == 0) {
1149 		/*
1150 		 * Invoke reset handlers.  We bump the reset count so
1151 		 * that mpt_wait_req() understands that regardless of
1152 		 * the specified wait condition, it should stop its wait.
1153 		 */
1154 		mpt->reset_cnt++;
1155 		MPT_PERS_FOREACH(mpt, pers)
1156 			pers->reset(mpt, ret);
1157 	}
1158 
1159 	if (reinit) {
1160 		ret = mpt_enable_ioc(mpt, 1);
1161 		if (ret == MPT_OK) {
1162 			mpt_enable_ints(mpt);
1163 		}
1164 	}
1165 	if (ret != MPT_OK && retry_cnt++ < 2) {
1166 		goto again;
1167 	}
1168 	return ret;
1169 }
1170 
1171 /* Return a command buffer to the free queue */
1172 void
1173 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1174 {
1175 	request_t *nxt;
1176 	struct mpt_evtf_record *record;
1177 	uint32_t offset, reply_baddr;
1178 
1179 	if (req == NULL || req != &mpt->request_pool[req->index]) {
1180 		panic("mpt_free_request bad req ptr\n");
1181 		return;
1182 	}
1183 	if ((nxt = req->chain) != NULL) {
1184 		req->chain = NULL;
1185 		mpt_free_request(mpt, nxt);	/* NB: recursion */
1186 	}
1187 	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1188 	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1189 	MPT_LOCK_ASSERT(mpt);
1190 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1191 	    ("mpt_free_request: req %p:%u func %x already on freelist",
1192 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1193 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1194 	    ("mpt_free_request: req %p:%u func %x on pending list",
1195 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1196 #ifdef	INVARIANTS
1197 	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1198 #endif
1199 
1200 	req->ccb = NULL;
1201 	if (LIST_EMPTY(&mpt->ack_frames)) {
1202 		/*
1203 		 * Insert free ones at the tail
1204 		 */
1205 		req->serno = 0;
1206 		req->state = REQ_STATE_FREE;
1207 #ifdef	INVARIANTS
1208 		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1209 #endif
1210 		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1211 		if (mpt->getreqwaiter != 0) {
1212 			mpt->getreqwaiter = 0;
1213 			wakeup(&mpt->request_free_list);
1214 		}
1215 		return;
1216 	}
1217 
1218 	/*
1219 	 * Process an ack frame deferred due to resource shortage.
1220 	 */
1221 	record = LIST_FIRST(&mpt->ack_frames);
1222 	LIST_REMOVE(record, links);
1223 	req->state = REQ_STATE_ALLOCATED;
1224 	mpt_assign_serno(mpt, req);
1225 	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1226 	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1227 	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1228 	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1229 	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1230 	mpt_free_reply(mpt, reply_baddr);
1231 }
1232 
1233 /* Get a command buffer from the free queue */
1234 request_t *
1235 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1236 {
1237 	request_t *req;
1238 
1239 retry:
1240 	MPT_LOCK_ASSERT(mpt);
1241 	req = TAILQ_FIRST(&mpt->request_free_list);
1242 	if (req != NULL) {
1243 		KASSERT(req == &mpt->request_pool[req->index],
1244 		    ("mpt_get_request: corrupted request free list\n"));
1245 		KASSERT(req->state == REQ_STATE_FREE,
1246 		    ("req %p:%u not free on free list %x index %d function %x",
1247 		    req, req->serno, req->state, req->index,
1248 		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1249 		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1250 		req->state = REQ_STATE_ALLOCATED;
1251 		req->chain = NULL;
1252 		mpt_assign_serno(mpt, req);
1253 	} else if (sleep_ok != 0) {
1254 		mpt->getreqwaiter = 1;
1255 		mpt_sleep(mpt, &mpt->request_free_list, 0, "mptgreq", 0);
1256 		goto retry;
1257 	}
1258 	return (req);
1259 }
1260 
1261 /* Pass the command to the IOC */
1262 void
1263 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1264 {
1265 	if (mpt->verbose > MPT_PRT_DEBUG2) {
1266 		mpt_dump_request(mpt, req);
1267 	}
1268 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1269 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1270 	req->state |= REQ_STATE_QUEUED;
1271 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1272 	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1273 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1274 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1275 	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1276 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1277 	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1278 	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1279 }
1280 
1281 /*
1282  * Wait for a request to complete.
1283  *
1284  * Inputs:
1285  *	mpt		softc of controller executing request
1286  *	req		request to wait for
1287  *	sleep_ok	nonzero implies may sleep in this context
1288  *	time_ms		timeout in ms.  0 implies no timeout.
1289  *
1290  * Return Values:
1291  *	0		Request completed
1292  *	non-0		Timeout fired before request completion.
1293  */
1294 int
1295 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1296 	     mpt_req_state_t state, mpt_req_state_t mask,
1297 	     int sleep_ok, int time_ms)
1298 {
1299 	int   error;
1300 	int   timeout;
1301 	u_int saved_cnt;
1302 
1303 	/*
1304 	 * timeout is in ms.  0 indicates infinite wait.
1305 	 * Convert to ticks or 500us units depending on
1306 	 * our sleep mode.
1307 	 */
1308 	if (sleep_ok != 0) {
1309 		timeout = (time_ms * hz) / 1000;
1310 	} else {
1311 		timeout = time_ms * 2;
1312 	}
1313 	req->state |= REQ_STATE_NEED_WAKEUP;
1314 	mask &= ~REQ_STATE_NEED_WAKEUP;
1315 	saved_cnt = mpt->reset_cnt;
1316 	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1317 		if (sleep_ok != 0) {
1318 			error = mpt_sleep(mpt, req, 0, "mptreq", timeout);
1319 			if (error == EWOULDBLOCK) {
1320 				timeout = 0;
1321 				break;
1322 			}
1323 		} else {
1324 			if (time_ms != 0 && --timeout == 0) {
1325 				break;
1326 			}
1327 			DELAY(500);
1328 			mpt_intr(mpt);
1329 		}
1330 	}
1331 	req->state &= ~REQ_STATE_NEED_WAKEUP;
1332 	if (mpt->reset_cnt != saved_cnt) {
1333 		return (EIO);
1334 	}
1335 	if (time_ms && timeout <= 0) {
1336 		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1337 		req->state |= REQ_STATE_TIMEDOUT;
1338 		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1339 		return (ETIMEDOUT);
1340 	}
1341 	return (0);
1342 }
1343 
1344 /*
1345  * Send a command to the IOC via the handshake register.
1346  *
1347  * Only done at initialization time and for certain unusual
1348  * commands such as device/bus reset as specified by LSI.
1349  */
1350 int
1351 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1352 {
1353 	int i;
1354 	uint32_t data, *data32;
1355 
1356 	/* Check condition of the IOC */
1357 	data = mpt_rd_db(mpt);
1358 	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1359 	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1360 	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1361 	 || MPT_DB_IS_IN_USE(data)) {
1362 		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1363 		mpt_print_db(data);
1364 		return (EBUSY);
1365 	}
1366 
1367 	/* We move things in 32 bit chunks */
1368 	len = (len + 3) >> 2;
1369 	data32 = cmd;
1370 
1371 	/* Clear any left over pending doorbell interrupts */
1372 	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1373 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1374 
1375 	/*
1376 	 * Tell the handshake reg. we are going to send a command
1377          * and how long it is going to be.
1378 	 */
1379 	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1380 	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1381 	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1382 
1383 	/* Wait for the chip to notice */
1384 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1385 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1386 		return (ETIMEDOUT);
1387 	}
1388 
1389 	/* Clear the interrupt */
1390 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1391 
1392 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1393 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1394 		return (ETIMEDOUT);
1395 	}
1396 
1397 	/* Send the command */
1398 	for (i = 0; i < len; i++) {
1399 		mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1400 		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1401 			mpt_prt(mpt,
1402 			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1403 			return (ETIMEDOUT);
1404 		}
1405 	}
1406 	return MPT_OK;
1407 }
1408 
1409 /* Get the response from the handshake register */
1410 int
1411 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1412 {
1413 	int left, reply_left;
1414 	u_int16_t *data16;
1415 	uint32_t data;
1416 	MSG_DEFAULT_REPLY *hdr;
1417 
1418 	/* We move things out in 16 bit chunks */
1419 	reply_len >>= 1;
1420 	data16 = (u_int16_t *)reply;
1421 
1422 	hdr = (MSG_DEFAULT_REPLY *)reply;
1423 
1424 	/* Get first word */
1425 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1426 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1427 		return ETIMEDOUT;
1428 	}
1429 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1430 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1431 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1432 
1433 	/* Get Second Word */
1434 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1435 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1436 		return ETIMEDOUT;
1437 	}
1438 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1439 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1440 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1441 
1442 	/*
1443 	 * With the second word, we can now look at the length.
1444 	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1445 	 */
1446 	if ((reply_len >> 1) != hdr->MsgLength &&
1447 	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1448 		mpt_prt(mpt, "reply length does not match message length: "
1449 			"got %x; expected %zx for function %x\n",
1450 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1451 	}
1452 
1453 	/* Get rest of the reply; but don't overflow the provided buffer */
1454 	left = (hdr->MsgLength << 1) - 2;
1455 	reply_left =  reply_len - 2;
1456 	while (left--) {
1457 		u_int16_t datum;
1458 
1459 		if (mpt_wait_db_int(mpt) != MPT_OK) {
1460 			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1461 			return ETIMEDOUT;
1462 		}
1463 		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1464 		datum = le16toh(data & MPT_DB_DATA_MASK);
1465 
1466 		if (reply_left-- > 0)
1467 			*data16++ = datum;
1468 
1469 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1470 	}
1471 
1472 	/* One more wait & clear at the end */
1473 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1474 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1475 		return ETIMEDOUT;
1476 	}
1477 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1478 
1479 	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1480 		if (mpt->verbose >= MPT_PRT_TRACE)
1481 			mpt_print_reply(hdr);
1482 		return (MPT_FAIL | hdr->IOCStatus);
1483 	}
1484 
1485 	return (0);
1486 }
1487 
1488 static int
1489 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1490 {
1491 	MSG_IOC_FACTS f_req;
1492 	int error;
1493 
1494 	memset(&f_req, 0, sizeof f_req);
1495 	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1496 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1497 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1498 	if (error) {
1499 		return(error);
1500 	}
1501 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1502 	return (error);
1503 }
1504 
1505 static int
1506 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1507 {
1508 	MSG_PORT_FACTS f_req;
1509 	int error;
1510 
1511 	memset(&f_req, 0, sizeof f_req);
1512 	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1513 	f_req.PortNumber = port;
1514 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1515 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1516 	if (error) {
1517 		return(error);
1518 	}
1519 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1520 	return (error);
1521 }
1522 
1523 /*
1524  * Send the initialization request. This is where we specify how many
1525  * SCSI busses and how many devices per bus we wish to emulate.
1526  * This is also the command that specifies the max size of the reply
1527  * frames from the IOC that we will be allocating.
1528  */
1529 static int
1530 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1531 {
1532 	int error = 0;
1533 	MSG_IOC_INIT init;
1534 	MSG_IOC_INIT_REPLY reply;
1535 
1536 	memset(&init, 0, sizeof init);
1537 	init.WhoInit = who;
1538 	init.Function = MPI_FUNCTION_IOC_INIT;
1539 	init.MaxDevices = 0;	/* at least 256 devices per bus */
1540 	init.MaxBuses = 16;	/* at least 16 busses */
1541 
1542 	init.MsgVersion = htole16(MPI_VERSION);
1543 	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1544 	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1545 	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1546 
1547 	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1548 		return(error);
1549 	}
1550 
1551 	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1552 	return (error);
1553 }
1554 
1555 
1556 /*
1557  * Utiltity routine to read configuration headers and pages
1558  */
1559 int
1560 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1561 		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1562 {
1563 	MSG_CONFIG *cfgp;
1564 	SGE_SIMPLE32 *se;
1565 
1566 	cfgp = req->req_vbuf;
1567 	memset(cfgp, 0, sizeof *cfgp);
1568 	cfgp->Action = params->Action;
1569 	cfgp->Function = MPI_FUNCTION_CONFIG;
1570 	cfgp->Header.PageVersion = params->PageVersion;
1571 	cfgp->Header.PageNumber = params->PageNumber;
1572 	cfgp->PageAddress = htole32(params->PageAddress);
1573 	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1574 	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1575 		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1576 		cfgp->Header.PageLength = 0;
1577 		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1578 		cfgp->ExtPageType = params->ExtPageType;
1579 	} else {
1580 		cfgp->Header.PageType = params->PageType;
1581 		cfgp->Header.PageLength = params->PageLength;
1582 	}
1583 	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1584 	se->Address = htole32(addr);
1585 	MPI_pSGE_SET_LENGTH(se, len);
1586 	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1587 	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1588 	    MPI_SGE_FLAGS_END_OF_LIST |
1589 	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1590 	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1591 	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1592 	se->FlagsLength = htole32(se->FlagsLength);
1593 	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1594 
1595 	mpt_check_doorbell(mpt);
1596 	mpt_send_cmd(mpt, req);
1597 	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1598 			     sleep_ok, timeout_ms));
1599 }
1600 
1601 int
1602 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1603 		       uint32_t PageAddress, int ExtPageType,
1604 		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1605 		       int sleep_ok, int timeout_ms)
1606 {
1607 	request_t  *req;
1608 	cfgparms_t params;
1609 	MSG_CONFIG_REPLY *cfgp;
1610 	int	    error;
1611 
1612 	req = mpt_get_request(mpt, sleep_ok);
1613 	if (req == NULL) {
1614 		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1615 		return (ENOMEM);
1616 	}
1617 
1618 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1619 	params.PageVersion = PageVersion;
1620 	params.PageLength = 0;
1621 	params.PageNumber = PageNumber;
1622 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1623 	params.PageAddress = PageAddress;
1624 	params.ExtPageType = ExtPageType;
1625 	params.ExtPageLength = 0;
1626 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1627 				  sleep_ok, timeout_ms);
1628 	if (error != 0) {
1629 		/*
1630 		 * Leave the request. Without resetting the chip, it's
1631 		 * still owned by it and we'll just get into trouble
1632 		 * freeing it now. Mark it as abandoned so that if it
1633 		 * shows up later it can be freed.
1634 		 */
1635 		mpt_prt(mpt, "read_extcfg_header timed out\n");
1636 		return (ETIMEDOUT);
1637 	}
1638 
1639         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1640 	case MPI_IOCSTATUS_SUCCESS:
1641 		cfgp = req->req_vbuf;
1642 		rslt->PageVersion = cfgp->Header.PageVersion;
1643 		rslt->PageNumber = cfgp->Header.PageNumber;
1644 		rslt->PageType = cfgp->Header.PageType;
1645 		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1646 		rslt->ExtPageType = cfgp->ExtPageType;
1647 		error = 0;
1648 		break;
1649 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1650 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1651 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1652 		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1653 		error = EINVAL;
1654 		break;
1655 	default:
1656 		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1657 			req->IOCStatus);
1658 		error = EIO;
1659 		break;
1660 	}
1661 	mpt_free_request(mpt, req);
1662 	return (error);
1663 }
1664 
1665 int
1666 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1667 		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1668 		     int sleep_ok, int timeout_ms)
1669 {
1670 	request_t    *req;
1671 	cfgparms_t    params;
1672 	int	      error;
1673 
1674 	req = mpt_get_request(mpt, sleep_ok);
1675 	if (req == NULL) {
1676 		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1677 		return (-1);
1678 	}
1679 
1680 	params.Action = Action;
1681 	params.PageVersion = hdr->PageVersion;
1682 	params.PageLength = 0;
1683 	params.PageNumber = hdr->PageNumber;
1684 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1685 	params.PageAddress = PageAddress;
1686 	params.ExtPageType = hdr->ExtPageType;
1687 	params.ExtPageLength = hdr->ExtPageLength;
1688 	error = mpt_issue_cfg_req(mpt, req, &params,
1689 				  req->req_pbuf + MPT_RQSL(mpt),
1690 				  len, sleep_ok, timeout_ms);
1691 	if (error != 0) {
1692 		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1693 		return (-1);
1694 	}
1695 
1696 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1697 		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1698 			req->IOCStatus);
1699 		mpt_free_request(mpt, req);
1700 		return (-1);
1701 	}
1702 	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1703 	mpt_free_request(mpt, req);
1704 	return (0);
1705 }
1706 
1707 int
1708 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1709 		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1710 		    int sleep_ok, int timeout_ms)
1711 {
1712 	request_t  *req;
1713 	cfgparms_t params;
1714 	MSG_CONFIG *cfgp;
1715 	int	    error;
1716 
1717 	req = mpt_get_request(mpt, sleep_ok);
1718 	if (req == NULL) {
1719 		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1720 		return (ENOMEM);
1721 	}
1722 
1723 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1724 	params.PageVersion = 0;
1725 	params.PageLength = 0;
1726 	params.PageNumber = PageNumber;
1727 	params.PageType = PageType;
1728 	params.PageAddress = PageAddress;
1729 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1730 				  sleep_ok, timeout_ms);
1731 	if (error != 0) {
1732 		/*
1733 		 * Leave the request. Without resetting the chip, it's
1734 		 * still owned by it and we'll just get into trouble
1735 		 * freeing it now. Mark it as abandoned so that if it
1736 		 * shows up later it can be freed.
1737 		 */
1738 		mpt_prt(mpt, "read_cfg_header timed out\n");
1739 		return (ETIMEDOUT);
1740 	}
1741 
1742         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1743 	case MPI_IOCSTATUS_SUCCESS:
1744 		cfgp = req->req_vbuf;
1745 		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1746 		error = 0;
1747 		break;
1748 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1749 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1750 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1751 		    PageType, PageNumber, PageAddress);
1752 		error = EINVAL;
1753 		break;
1754 	default:
1755 		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1756 			req->IOCStatus);
1757 		error = EIO;
1758 		break;
1759 	}
1760 	mpt_free_request(mpt, req);
1761 	return (error);
1762 }
1763 
1764 int
1765 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1766 		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1767 		  int timeout_ms)
1768 {
1769 	request_t    *req;
1770 	cfgparms_t    params;
1771 	int	      error;
1772 
1773 	req = mpt_get_request(mpt, sleep_ok);
1774 	if (req == NULL) {
1775 		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1776 		return (-1);
1777 	}
1778 
1779 	params.Action = Action;
1780 	params.PageVersion = hdr->PageVersion;
1781 	params.PageLength = hdr->PageLength;
1782 	params.PageNumber = hdr->PageNumber;
1783 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1784 	params.PageAddress = PageAddress;
1785 	error = mpt_issue_cfg_req(mpt, req, &params,
1786 				  req->req_pbuf + MPT_RQSL(mpt),
1787 				  len, sleep_ok, timeout_ms);
1788 	if (error != 0) {
1789 		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1790 		return (-1);
1791 	}
1792 
1793 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1794 		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1795 			req->IOCStatus);
1796 		mpt_free_request(mpt, req);
1797 		return (-1);
1798 	}
1799 	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1800 	mpt_free_request(mpt, req);
1801 	return (0);
1802 }
1803 
1804 int
1805 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1806 		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1807 		   int timeout_ms)
1808 {
1809 	request_t    *req;
1810 	cfgparms_t    params;
1811 	u_int	      hdr_attr;
1812 	int	      error;
1813 
1814 	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1815 	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1816 	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1817 		mpt_prt(mpt, "page type 0x%x not changeable\n",
1818 			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1819 		return (-1);
1820 	}
1821 
1822 #if	0
1823 	/*
1824 	 * We shouldn't mask off other bits here.
1825 	 */
1826 	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1827 #endif
1828 
1829 	req = mpt_get_request(mpt, sleep_ok);
1830 	if (req == NULL)
1831 		return (-1);
1832 
1833 	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1834 
1835 	/*
1836 	 * There isn't any point in restoring stripped out attributes
1837 	 * if you then mask them going down to issue the request.
1838 	 */
1839 
1840 	params.Action = Action;
1841 	params.PageVersion = hdr->PageVersion;
1842 	params.PageLength = hdr->PageLength;
1843 	params.PageNumber = hdr->PageNumber;
1844 	params.PageAddress = PageAddress;
1845 #if	0
1846 	/* Restore stripped out attributes */
1847 	hdr->PageType |= hdr_attr;
1848 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1849 #else
1850 	params.PageType = hdr->PageType;
1851 #endif
1852 	error = mpt_issue_cfg_req(mpt, req, &params,
1853 				  req->req_pbuf + MPT_RQSL(mpt),
1854 				  len, sleep_ok, timeout_ms);
1855 	if (error != 0) {
1856 		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1857 		return (-1);
1858 	}
1859 
1860         if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1861 		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1862 			req->IOCStatus);
1863 		mpt_free_request(mpt, req);
1864 		return (-1);
1865 	}
1866 	mpt_free_request(mpt, req);
1867 	return (0);
1868 }
1869 
1870 /*
1871  * Read IOC configuration information
1872  */
1873 static int
1874 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1875 {
1876 	CONFIG_PAGE_HEADER hdr;
1877 	struct mpt_raid_volume *mpt_raid;
1878 	int rv;
1879 	int i;
1880 	size_t len;
1881 
1882 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1883 		2, 0, &hdr, FALSE, 5000);
1884 	/*
1885 	 * If it's an invalid page, so what? Not a supported function....
1886 	 */
1887 	if (rv == EINVAL) {
1888 		return (0);
1889 	}
1890 	if (rv) {
1891 		return (rv);
1892 	}
1893 
1894 	mpt_lprt(mpt, MPT_PRT_DEBUG,
1895 	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1896 	    hdr.PageVersion, hdr.PageLength << 2,
1897 	    hdr.PageNumber, hdr.PageType);
1898 
1899 	len = hdr.PageLength * sizeof(uint32_t);
1900 	mpt->ioc_page2 = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1901 	if (mpt->ioc_page2 == NULL) {
1902 		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1903 		mpt_raid_free_mem(mpt);
1904 		return (ENOMEM);
1905 	}
1906 	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1907 	rv = mpt_read_cur_cfg_page(mpt, 0,
1908 	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1909 	if (rv) {
1910 		mpt_prt(mpt, "failed to read IOC Page 2\n");
1911 		mpt_raid_free_mem(mpt);
1912 		return (EIO);
1913 	}
1914 	mpt2host_config_page_ioc2(mpt->ioc_page2);
1915 
1916 	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1917 		uint32_t mask;
1918 
1919 		mpt_prt(mpt, "Capabilities: (");
1920 		for (mask = 1; mask != 0; mask <<= 1) {
1921 			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1922 				continue;
1923 			}
1924 			switch (mask) {
1925 			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1926 				mpt_prtc(mpt, " RAID-0");
1927 				break;
1928 			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1929 				mpt_prtc(mpt, " RAID-1E");
1930 				break;
1931 			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1932 				mpt_prtc(mpt, " RAID-1");
1933 				break;
1934 			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1935 				mpt_prtc(mpt, " SES");
1936 				break;
1937 			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1938 				mpt_prtc(mpt, " SAFTE");
1939 				break;
1940 			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1941 				mpt_prtc(mpt, " Multi-Channel-Arrays");
1942 			default:
1943 				break;
1944 			}
1945 		}
1946 		mpt_prtc(mpt, " )\n");
1947 		if ((mpt->ioc_page2->CapabilitiesFlags
1948 		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1949 		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1950 		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1951 			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1952 				mpt->ioc_page2->NumActiveVolumes,
1953 				mpt->ioc_page2->NumActiveVolumes != 1
1954 			      ? "s " : " ",
1955 				mpt->ioc_page2->MaxVolumes);
1956 			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1957 				mpt->ioc_page2->NumActivePhysDisks,
1958 				mpt->ioc_page2->NumActivePhysDisks != 1
1959 			      ? "s " : " ",
1960 				mpt->ioc_page2->MaxPhysDisks);
1961 		}
1962 	}
1963 
1964 	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1965 	mpt->raid_volumes = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1966 	if (mpt->raid_volumes == NULL) {
1967 		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1968 		mpt_raid_free_mem(mpt);
1969 		return (ENOMEM);
1970 	}
1971 
1972 	/*
1973 	 * Copy critical data out of ioc_page2 so that we can
1974 	 * safely refresh the page without windows of unreliable
1975 	 * data.
1976 	 */
1977 	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
1978 
1979 	len = sizeof(*mpt->raid_volumes->config_page) +
1980 	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
1981 	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
1982 		mpt_raid = &mpt->raid_volumes[i];
1983 		mpt_raid->config_page =
1984 		    kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1985 		if (mpt_raid->config_page == NULL) {
1986 			mpt_prt(mpt, "Could not allocate RAID page data\n");
1987 			mpt_raid_free_mem(mpt);
1988 			return (ENOMEM);
1989 		}
1990 	}
1991 	mpt->raid_page0_len = len;
1992 
1993 	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
1994 	mpt->raid_disks = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1995 	if (mpt->raid_disks == NULL) {
1996 		mpt_prt(mpt, "Could not allocate RAID disk data\n");
1997 		mpt_raid_free_mem(mpt);
1998 		return (ENOMEM);
1999 	}
2000 	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2001 
2002 	/*
2003 	 * Load page 3.
2004 	 */
2005 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2006 	    3, 0, &hdr, FALSE, 5000);
2007 	if (rv) {
2008 		mpt_raid_free_mem(mpt);
2009 		return (EIO);
2010 	}
2011 
2012 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2013 	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2014 
2015 	len = hdr.PageLength * sizeof(uint32_t);
2016 	mpt->ioc_page3 = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2017 	if (mpt->ioc_page3 == NULL) {
2018 		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2019 		mpt_raid_free_mem(mpt);
2020 		return (ENOMEM);
2021 	}
2022 	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2023 	rv = mpt_read_cur_cfg_page(mpt, 0,
2024 	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2025 	if (rv) {
2026 		mpt_raid_free_mem(mpt);
2027 		return (EIO);
2028 	}
2029 	mpt2host_config_page_ioc3(mpt->ioc_page3);
2030 	mpt_raid_wakeup(mpt);
2031 	return (0);
2032 }
2033 
2034 /*
2035  * Enable IOC port
2036  */
2037 static int
2038 mpt_send_port_enable(struct mpt_softc *mpt, int port)
2039 {
2040 	request_t	*req;
2041 	MSG_PORT_ENABLE *enable_req;
2042 	int		 error;
2043 
2044 	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2045 	if (req == NULL)
2046 		return (-1);
2047 
2048 	enable_req = req->req_vbuf;
2049 	memset(enable_req, 0,  MPT_RQSL(mpt));
2050 
2051 	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2052 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2053 	enable_req->PortNumber = port;
2054 
2055 	mpt_check_doorbell(mpt);
2056 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2057 
2058 	mpt_send_cmd(mpt, req);
2059 	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2060 	    FALSE, (mpt->is_sas || mpt->is_fc)? 30000 : 3000);
2061 	if (error != 0) {
2062 		mpt_prt(mpt, "port %d enable timed out\n", port);
2063 		return (-1);
2064 	}
2065 	mpt_free_request(mpt, req);
2066 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2067 	return (0);
2068 }
2069 
2070 /*
2071  * Enable/Disable asynchronous event reporting.
2072  */
2073 static int
2074 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2075 {
2076 	request_t *req;
2077 	MSG_EVENT_NOTIFY *enable_req;
2078 
2079 	req = mpt_get_request(mpt, FALSE);
2080 	if (req == NULL) {
2081 		return (ENOMEM);
2082 	}
2083 	enable_req = req->req_vbuf;
2084 	memset(enable_req, 0, sizeof *enable_req);
2085 
2086 	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2087 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2088 	enable_req->Switch     = onoff;
2089 
2090 	mpt_check_doorbell(mpt);
2091 	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2092 	    onoff ? "en" : "dis");
2093 	/*
2094 	 * Send the command off, but don't wait for it.
2095 	 */
2096 	mpt_send_cmd(mpt, req);
2097 	return (0);
2098 }
2099 
2100 /*
2101  * Un-mask the interrupts on the chip.
2102  */
2103 void
2104 mpt_enable_ints(struct mpt_softc *mpt)
2105 {
2106 	/* Unmask every thing except door bell int */
2107 	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2108 }
2109 
2110 /*
2111  * Mask the interrupts on the chip.
2112  */
2113 void
2114 mpt_disable_ints(struct mpt_softc *mpt)
2115 {
2116 	/* Mask all interrupts */
2117 	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2118 	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2119 }
2120 
2121 static void
2122 mpt_sysctl_attach(struct mpt_softc *mpt)
2123 {
2124 	SYSCTL_ADD_UINT(&mpt->mpt_sysctl_ctx,
2125 		       SYSCTL_CHILDREN(mpt->mpt_sysctl_tree), OID_AUTO,
2126 		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2127 		       "Debugging/Verbose level");
2128 	SYSCTL_ADD_UINT(&mpt->mpt_sysctl_ctx,
2129 		       SYSCTL_CHILDREN(mpt->mpt_sysctl_tree), OID_AUTO,
2130 		       "role", CTLFLAG_RD, &mpt->role, 0,
2131 		       "HBA role");
2132 #ifdef	MPT_TEST_MULTIPATH
2133 	SYSCTL_ADD_INT(&mpt->mpt_sysctl_ctx,
2134 		       SYSCTL_CHILDREN(mpt->mpt_sysctl_tree), OID_AUTO,
2135 		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2136 		       "Next Target to Fail");
2137 #endif
2138 }
2139 
2140 int
2141 mpt_attach(struct mpt_softc *mpt)
2142 {
2143 	struct mpt_personality *pers;
2144 	int i;
2145 	int error;
2146 
2147 	mpt_core_attach(mpt);
2148 	mpt_core_enable(mpt);
2149 
2150 	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2151 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2152 		pers = mpt_personalities[i];
2153 		if (pers == NULL) {
2154 			continue;
2155 		}
2156 		if (pers->probe(mpt) == 0) {
2157 			error = pers->attach(mpt);
2158 			if (error != 0) {
2159 				mpt_detach(mpt);
2160 				return (error);
2161 			}
2162 			mpt->mpt_pers_mask |= (0x1 << pers->id);
2163 			pers->use_count++;
2164 		}
2165 	}
2166 
2167 	/*
2168 	 * Now that we've attached everything, do the enable function
2169 	 * for all of the personalities. This allows the personalities
2170 	 * to do setups that are appropriate for them prior to enabling
2171 	 * any ports.
2172 	 */
2173 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2174 		pers = mpt_personalities[i];
2175 		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2176 			error = pers->enable(mpt);
2177 			if (error != 0) {
2178 				mpt_prt(mpt, "personality %s attached but would"
2179 				    " not enable (%d)\n", pers->name, error);
2180 				mpt_detach(mpt);
2181 				return (error);
2182 			}
2183 		}
2184 	}
2185 	return (0);
2186 }
2187 
2188 int
2189 mpt_shutdown(struct mpt_softc *mpt)
2190 {
2191 	struct mpt_personality *pers;
2192 
2193 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2194 		pers->shutdown(mpt);
2195 	}
2196 	return (0);
2197 }
2198 
2199 int
2200 mpt_detach(struct mpt_softc *mpt)
2201 {
2202 	struct mpt_personality *pers;
2203 
2204 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2205 		pers->detach(mpt);
2206 		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2207 		pers->use_count--;
2208 	}
2209 	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2210 	return (0);
2211 }
2212 
2213 int
2214 mpt_core_load(struct mpt_personality *pers)
2215 {
2216 	int i;
2217 
2218 	/*
2219 	 * Setup core handlers and insert the default handler
2220 	 * into all "empty slots".
2221 	 */
2222 	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2223 		mpt_reply_handlers[i] = mpt_default_reply_handler;
2224 	}
2225 
2226 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2227 	    mpt_event_reply_handler;
2228 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2229 	    mpt_config_reply_handler;
2230 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2231 	    mpt_handshake_reply_handler;
2232 	return (0);
2233 }
2234 
2235 /*
2236  * Initialize per-instance driver data and perform
2237  * initial controller configuration.
2238  */
2239 int
2240 mpt_core_attach(struct mpt_softc *mpt)
2241 {
2242         int val, error;
2243 
2244 	LIST_INIT(&mpt->ack_frames);
2245 	/* Put all request buffers on the free list */
2246 	TAILQ_INIT(&mpt->request_pending_list);
2247 	TAILQ_INIT(&mpt->request_free_list);
2248 	TAILQ_INIT(&mpt->request_timeout_list);
2249 	for (val = 0; val < MPT_MAX_LUNS; val++) {
2250 		STAILQ_INIT(&mpt->trt[val].atios);
2251 		STAILQ_INIT(&mpt->trt[val].inots);
2252 	}
2253 	STAILQ_INIT(&mpt->trt_wildcard.atios);
2254 	STAILQ_INIT(&mpt->trt_wildcard.inots);
2255 #ifdef	MPT_TEST_MULTIPATH
2256 	mpt->failure_id = -1;
2257 #endif
2258 	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2259 	sysctl_ctx_init(&mpt->mpt_sysctl_ctx);
2260 	mpt->mpt_sysctl_tree = SYSCTL_ADD_NODE(&mpt->mpt_sysctl_ctx,
2261 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
2262 	    device_get_nameunit(mpt->dev), CTLFLAG_RD, 0, "");
2263 	if (mpt->mpt_sysctl_tree == NULL) {
2264 		device_printf(mpt->dev, "can't add sysctl node\n");
2265 		return (EINVAL);
2266 	}
2267 	mpt_sysctl_attach(mpt);
2268 	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2269 	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2270 
2271 	MPT_LOCK(mpt);
2272 	error = mpt_configure_ioc(mpt, 0, 0);
2273 	MPT_UNLOCK(mpt);
2274 
2275 	return (error);
2276 }
2277 
2278 int
2279 mpt_core_enable(struct mpt_softc *mpt)
2280 {
2281 	/*
2282 	 * We enter with the IOC enabled, but async events
2283 	 * not enabled, ports not enabled and interrupts
2284 	 * not enabled.
2285 	 */
2286 	MPT_LOCK(mpt);
2287 
2288 	/*
2289 	 * Enable asynchronous event reporting- all personalities
2290 	 * have attached so that they should be able to now field
2291 	 * async events.
2292 	 */
2293 	mpt_send_event_request(mpt, 1);
2294 
2295 	/*
2296 	 * Catch any pending interrupts
2297 	 *
2298 	 * This seems to be crucial- otherwise
2299 	 * the portenable below times out.
2300 	 */
2301 	mpt_intr(mpt);
2302 
2303 	/*
2304 	 * Enable Interrupts
2305 	 */
2306 	mpt_enable_ints(mpt);
2307 
2308 	/*
2309 	 * Catch any pending interrupts
2310 	 *
2311 	 * This seems to be crucial- otherwise
2312 	 * the portenable below times out.
2313 	 */
2314 	mpt_intr(mpt);
2315 
2316 	/*
2317 	 * Enable the port.
2318 	 */
2319 	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2320 		mpt_prt(mpt, "failed to enable port 0\n");
2321 		MPT_UNLOCK(mpt);
2322 		return (ENXIO);
2323 	}
2324 	MPT_UNLOCK(mpt);
2325 	return (0);
2326 }
2327 
2328 void
2329 mpt_core_shutdown(struct mpt_softc *mpt)
2330 {
2331 	mpt_disable_ints(mpt);
2332 }
2333 
2334 void
2335 mpt_core_detach(struct mpt_softc *mpt)
2336 {
2337 	int val;
2338 
2339 	/*
2340 	 * XXX: FREE MEMORY
2341 	 */
2342 	mpt_disable_ints(mpt);
2343 
2344 	/* Make sure no request has pending timeouts. */
2345 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2346 		request_t *req = &mpt->request_pool[val];
2347 		callout_stop(&req->callout);
2348 	}
2349 
2350 	mpt_dma_buf_free(mpt);
2351 
2352 	if (mpt->mpt_sysctl_tree != NULL)
2353 		sysctl_ctx_free(&mpt->mpt_sysctl_ctx);
2354 }
2355 
2356 int
2357 mpt_core_unload(struct mpt_personality *pers)
2358 {
2359 	/* Unload is always successful. */
2360 	return (0);
2361 }
2362 
2363 #define FW_UPLOAD_REQ_SIZE				\
2364 	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2365        + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2366 
2367 static int
2368 mpt_upload_fw(struct mpt_softc *mpt)
2369 {
2370 	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2371 	MSG_FW_UPLOAD_REPLY fw_reply;
2372 	MSG_FW_UPLOAD *fw_req;
2373 	FW_UPLOAD_TCSGE *tsge;
2374 	SGE_SIMPLE32 *sge;
2375 	uint32_t flags;
2376 	int error;
2377 
2378 	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2379 	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2380 	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2381 	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2382 	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2383 	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2384 	tsge->DetailsLength = 12;
2385 	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2386 	tsge->ImageSize = htole32(mpt->fw_image_size);
2387 	sge = (SGE_SIMPLE32 *)(tsge + 1);
2388 	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2389 	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2390 	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2391 	flags <<= MPI_SGE_FLAGS_SHIFT;
2392 	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2393 	sge->Address = htole32(mpt->fw_phys);
2394 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2395 	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2396 	if (error)
2397 		return(error);
2398 	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2399 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2400 	return (error);
2401 }
2402 
2403 static void
2404 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2405 	       uint32_t *data, bus_size_t len)
2406 {
2407 	uint32_t *data_end;
2408 
2409 	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2410 	if (mpt->is_sas) {
2411 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2412 	}
2413 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2414 	while (data != data_end) {
2415 		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2416 		data++;
2417 	}
2418 	if (mpt->is_sas) {
2419 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2420 	}
2421 }
2422 
2423 static int
2424 mpt_download_fw(struct mpt_softc *mpt)
2425 {
2426 	MpiFwHeader_t *fw_hdr;
2427 	int error;
2428 	uint32_t ext_offset;
2429 	uint32_t data;
2430 
2431 	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2432 		mpt->fw_image_size);
2433 
2434 	error = mpt_enable_diag_mode(mpt);
2435 	if (error != 0) {
2436 		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2437 		return (EIO);
2438 	}
2439 
2440 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2441 		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2442 
2443 	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2444 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2445 	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2446 		       fw_hdr->ImageSize);
2447 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2448 
2449 	ext_offset = fw_hdr->NextImageHeaderOffset;
2450 	while (ext_offset != 0) {
2451 		MpiExtImageHeader_t *ext;
2452 
2453 		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2454 		ext_offset = ext->NextImageHeaderOffset;
2455 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2456 		    BUS_DMASYNC_PREWRITE);
2457 		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2458 			       ext->ImageSize);
2459 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2460 		    BUS_DMASYNC_POSTWRITE);
2461 	}
2462 
2463 	if (mpt->is_sas) {
2464 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2465 	}
2466 	/* Setup the address to jump to on reset. */
2467 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2468 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2469 
2470 	/*
2471 	 * The controller sets the "flash bad" status after attempting
2472 	 * to auto-boot from flash.  Clear the status so that the controller
2473 	 * will continue the boot process with our newly installed firmware.
2474 	 */
2475 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2476 	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2477 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2478 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2479 
2480 	if (mpt->is_sas) {
2481 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2482 	}
2483 
2484 	/*
2485 	 * Re-enable the processor and clear the boot halt flag.
2486 	 */
2487 	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2488 	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2489 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2490 
2491 	mpt_disable_diag_mode(mpt);
2492 	return (0);
2493 }
2494 
2495 static int
2496 mpt_dma_buf_alloc(struct mpt_softc *mpt)
2497 {
2498 	struct mpt_map_info mi;
2499 	uint8_t *vptr;
2500 	uint32_t pptr, end;
2501 	int i, error;
2502 
2503 	/* Create a child tag for data buffers */
2504 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2505 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2506 	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2507 	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2508 	    &mpt->buffer_dmat) != 0) {
2509 		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2510 		return (1);
2511 	}
2512 
2513 	/* Create a child tag for request buffers */
2514 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2515 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2516 	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2517 	    &mpt->request_dmat) != 0) {
2518 		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2519 		return (1);
2520 	}
2521 
2522 	/* Allocate some DMA accessible memory for requests */
2523 	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2524 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2525 		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2526 		    MPT_REQ_MEM_SIZE(mpt));
2527 		return (1);
2528 	}
2529 
2530 	mi.mpt = mpt;
2531 	mi.error = 0;
2532 
2533 	/* Load and lock it into "bus space" */
2534 	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2535 	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2536 
2537 	if (mi.error) {
2538 		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2539 		    mi.error);
2540 		return (1);
2541 	}
2542 	mpt->request_phys = mi.phys;
2543 
2544 	/*
2545 	 * Now create per-request dma maps
2546 	 */
2547 	i = 0;
2548 	pptr =  mpt->request_phys;
2549 	vptr =  mpt->request;
2550 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2551 	while(pptr < end) {
2552 		request_t *req = &mpt->request_pool[i];
2553 		req->index = i++;
2554 
2555 		/* Store location of Request Data */
2556 		req->req_pbuf = pptr;
2557 		req->req_vbuf = vptr;
2558 
2559 		pptr += MPT_REQUEST_AREA;
2560 		vptr += MPT_REQUEST_AREA;
2561 
2562 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2563 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2564 
2565 		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2566 		if (error) {
2567 			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2568 			    error);
2569 			return (1);
2570 		}
2571 	}
2572 
2573 	return (0);
2574 }
2575 
2576 static void
2577 mpt_dma_buf_free(struct mpt_softc *mpt)
2578 {
2579 	int i;
2580 	if (mpt->request_dmat == 0) {
2581 		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2582 		return;
2583 	}
2584 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2585 		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2586 	}
2587 	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2588 	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2589 	bus_dma_tag_destroy(mpt->request_dmat);
2590 	mpt->request_dmat = 0;
2591 	bus_dma_tag_destroy(mpt->buffer_dmat);
2592 }
2593 
2594 /*
2595  * Allocate/Initialize data structures for the controller.  Called
2596  * once at instance startup.
2597  */
2598 static int
2599 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2600 {
2601 	PTR_MSG_PORT_FACTS_REPLY pfp;
2602 	int error, port, val;
2603 	size_t len;
2604 
2605 	if (tn == MPT_MAX_TRYS) {
2606 		return (-1);
2607 	}
2608 
2609 	/*
2610 	 * No need to reset if the IOC is already in the READY state.
2611 	 *
2612 	 * Force reset if initialization failed previously.
2613 	 * Note that a hard_reset of the second channel of a '929
2614 	 * will stop operation of the first channel.  Hopefully, if the
2615 	 * first channel is ok, the second will not require a hard
2616 	 * reset.
2617 	 */
2618 	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2619 		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2620 			return (mpt_configure_ioc(mpt, tn++, 1));
2621 		}
2622 		needreset = 0;
2623 	}
2624 
2625 	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2626 		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2627 		return (mpt_configure_ioc(mpt, tn++, 1));
2628 	}
2629 	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2630 
2631 	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2632 	    mpt->ioc_facts.MsgVersion >> 8,
2633 	    mpt->ioc_facts.MsgVersion & 0xFF,
2634 	    mpt->ioc_facts.HeaderVersion >> 8,
2635 	    mpt->ioc_facts.HeaderVersion & 0xFF);
2636 
2637 	/*
2638 	 * Now that we know request frame size, we can calculate
2639 	 * the actual (reasonable) segment limit for read/write I/O.
2640 	 *
2641 	 * This limit is constrained by:
2642 	 *
2643 	 *  + The size of each area we allocate per command (and how
2644 	 *    many chain segments we can fit into it).
2645 	 *  + The total number of areas we've set up.
2646 	 *  + The actual chain depth the card will allow.
2647 	 *
2648 	 * The first area's segment count is limited by the I/O request
2649 	 * at the head of it. We cannot allocate realistically more
2650 	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2651 	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2652 	 *
2653 	 */
2654 	/* total number of request areas we (can) allocate */
2655 	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2656 
2657 	/* converted to the number of chain areas possible */
2658 	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2659 
2660 	/* limited by the number of chain areas the card will support */
2661 	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2662 		mpt_lprt(mpt, MPT_PRT_INFO,
2663 		    "chain depth limited to %u (from %u)\n",
2664 		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2665 		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2666 	}
2667 
2668 	/* converted to the number of simple sges in chain segments. */
2669 	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2670 
2671 	/*
2672 	 * Use this as the basis for reporting the maximum I/O size to CAM.
2673 	 */
2674 	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2675 
2676 	error = mpt_dma_buf_alloc(mpt);
2677 	if (error != 0) {
2678 		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2679 		return (EIO);
2680 	}
2681 
2682 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2683 		request_t *req = &mpt->request_pool[val];
2684 		req->state = REQ_STATE_ALLOCATED;
2685 		mpt_callout_init(mpt, &req->callout);
2686 		mpt_free_request(mpt, req);
2687 	}
2688 
2689 	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2690 		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2691 		 mpt->max_cam_seg_cnt);
2692 
2693 	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2694 	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2695 	mpt_lprt(mpt, MPT_PRT_INFO,
2696 	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2697 	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2698 	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2699 	    mpt->ioc_facts.RequestFrameSize << 2,
2700 	    mpt->ioc_facts.MaxChainDepth);
2701 	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2702 	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2703 	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2704 
2705 	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2706 	mpt->port_facts = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2707 	if (mpt->port_facts == NULL) {
2708 		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2709 		return (ENOMEM);
2710 	}
2711 
2712 
2713 	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2714 	    (mpt->fw_uploaded == 0)) {
2715 		struct mpt_map_info mi;
2716 
2717 		/*
2718 		 * In some configurations, the IOC's firmware is
2719 		 * stored in a shared piece of system NVRAM that
2720 		 * is only accessible via the BIOS.  In this
2721 		 * case, the firmware keeps a copy of firmware in
2722 		 * RAM until the OS driver retrieves it.  Once
2723 		 * retrieved, we are responsible for re-downloading
2724 		 * the firmware after any hard-reset.
2725 		 */
2726 		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2727 		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2728 		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2729 		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2730 		    &mpt->fw_dmat);
2731 		if (error != 0) {
2732 			mpt_prt(mpt, "cannot create firmware dma tag\n");
2733 			return (ENOMEM);
2734 		}
2735 		error = bus_dmamem_alloc(mpt->fw_dmat,
2736 		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2737 		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2738 		if (error != 0) {
2739 			mpt_prt(mpt, "cannot allocate firmware memory\n");
2740 			bus_dma_tag_destroy(mpt->fw_dmat);
2741 			return (ENOMEM);
2742 		}
2743 		mi.mpt = mpt;
2744 		mi.error = 0;
2745 		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2746 		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2747 		mpt->fw_phys = mi.phys;
2748 
2749 		error = mpt_upload_fw(mpt);
2750 		if (error != 0) {
2751 			mpt_prt(mpt, "firmware upload failed.\n");
2752 			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2753 			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2754 			    mpt->fw_dmap);
2755 			bus_dma_tag_destroy(mpt->fw_dmat);
2756 			mpt->fw_image = NULL;
2757 			return (EIO);
2758 		}
2759 		mpt->fw_uploaded = 1;
2760 	}
2761 
2762 	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2763 		pfp = &mpt->port_facts[port];
2764 		error = mpt_get_portfacts(mpt, 0, pfp);
2765 		if (error != MPT_OK) {
2766 			mpt_prt(mpt,
2767 			    "mpt_get_portfacts on port %d failed\n", port);
2768 			kfree(mpt->port_facts, M_DEVBUF);
2769 			mpt->port_facts = NULL;
2770 			return (mpt_configure_ioc(mpt, tn++, 1));
2771 		}
2772 		mpt2host_portfacts_reply(pfp);
2773 
2774 		if (port > 0) {
2775 			error = MPT_PRT_INFO;
2776 		} else {
2777 			error = MPT_PRT_DEBUG;
2778 		}
2779 		mpt_lprt(mpt, error,
2780 		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2781 		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2782 		    pfp->MaxDevices);
2783 
2784 	}
2785 
2786 	/*
2787 	 * XXX: Not yet supporting more than port 0
2788 	 */
2789 	pfp = &mpt->port_facts[0];
2790 	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2791 		mpt->is_fc = 1;
2792 		mpt->is_sas = 0;
2793 		mpt->is_spi = 0;
2794 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2795 		mpt->is_fc = 0;
2796 		mpt->is_sas = 1;
2797 		mpt->is_spi = 0;
2798 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2799 		mpt->is_fc = 0;
2800 		mpt->is_sas = 0;
2801 		mpt->is_spi = 1;
2802 		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2803 			mpt->mpt_ini_id = pfp->PortSCSIID;
2804 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2805 		mpt_prt(mpt, "iSCSI not supported yet\n");
2806 		return (ENXIO);
2807 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2808 		mpt_prt(mpt, "Inactive Port\n");
2809 		return (ENXIO);
2810 	} else {
2811 		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2812 		return (ENXIO);
2813 	}
2814 
2815 	/*
2816 	 * Set our role with what this port supports.
2817 	 *
2818 	 * Note this might be changed later in different modules
2819 	 * if this is different from what is wanted.
2820 	 */
2821 	mpt->role = MPT_ROLE_NONE;
2822 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2823 		mpt->role |= MPT_ROLE_INITIATOR;
2824 	}
2825 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2826 		mpt->role |= MPT_ROLE_TARGET;
2827 	}
2828 
2829 	/*
2830 	 * Enable the IOC
2831 	 */
2832 	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2833 		mpt_prt(mpt, "unable to initialize IOC\n");
2834 		return (ENXIO);
2835 	}
2836 
2837 	/*
2838 	 * Read IOC configuration information.
2839 	 *
2840 	 * We need this to determine whether or not we have certain
2841 	 * settings for Integrated Mirroring (e.g.).
2842 	 */
2843 	mpt_read_config_info_ioc(mpt);
2844 
2845 	return (0);
2846 }
2847 
2848 static int
2849 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2850 {
2851 	uint32_t pptr;
2852 	int val;
2853 
2854 	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2855 		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2856 		return (EIO);
2857 	}
2858 
2859 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2860 
2861 	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2862 		mpt_prt(mpt, "IOC failed to go to run state\n");
2863 		return (ENXIO);
2864 	}
2865 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2866 
2867 	/*
2868 	 * Give it reply buffers
2869 	 *
2870 	 * Do *not* exceed global credits.
2871 	 */
2872 	for (val = 0, pptr = mpt->reply_phys;
2873 	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2874 	     pptr += MPT_REPLY_SIZE) {
2875 		mpt_free_reply(mpt, pptr);
2876 		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2877 			break;
2878 	}
2879 
2880 
2881 	/*
2882 	 * Enable the port if asked. This is only done if we're resetting
2883 	 * the IOC after initial startup.
2884 	 */
2885 	if (portenable) {
2886 		/*
2887 		 * Enable asynchronous event reporting
2888 		 */
2889 		mpt_send_event_request(mpt, 1);
2890 
2891 		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2892 			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2893 			return (ENXIO);
2894 		}
2895 	}
2896 	return (MPT_OK);
2897 }
2898 
2899 /*
2900  * Endian Conversion Functions- only used on Big Endian machines
2901  */
2902 #if	_BYTE_ORDER == _BIG_ENDIAN
2903 void
2904 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2905 {
2906 
2907 	MPT_2_HOST32(sge, FlagsLength);
2908 	MPT_2_HOST32(sge, u.Address64.Low);
2909 	MPT_2_HOST32(sge, u.Address64.High);
2910 }
2911 
2912 void
2913 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2914 {
2915 
2916 	MPT_2_HOST16(rp, MsgVersion);
2917 	MPT_2_HOST16(rp, HeaderVersion);
2918 	MPT_2_HOST32(rp, MsgContext);
2919 	MPT_2_HOST16(rp, IOCExceptions);
2920 	MPT_2_HOST16(rp, IOCStatus);
2921 	MPT_2_HOST32(rp, IOCLogInfo);
2922 	MPT_2_HOST16(rp, ReplyQueueDepth);
2923 	MPT_2_HOST16(rp, RequestFrameSize);
2924 	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2925 	MPT_2_HOST16(rp, ProductID);
2926 	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2927 	MPT_2_HOST16(rp, GlobalCredits);
2928 	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2929 	MPT_2_HOST16(rp, CurReplyFrameSize);
2930 	MPT_2_HOST32(rp, FWImageSize);
2931 	MPT_2_HOST32(rp, IOCCapabilities);
2932 	MPT_2_HOST32(rp, FWVersion.Word);
2933 	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2934 	MPT_2_HOST16(rp, Reserved2);
2935 	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2936 	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2937 }
2938 
2939 void
2940 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2941 {
2942 
2943 	MPT_2_HOST16(pfp, Reserved);
2944 	MPT_2_HOST16(pfp, Reserved1);
2945 	MPT_2_HOST32(pfp, MsgContext);
2946 	MPT_2_HOST16(pfp, Reserved2);
2947 	MPT_2_HOST16(pfp, IOCStatus);
2948 	MPT_2_HOST32(pfp, IOCLogInfo);
2949 	MPT_2_HOST16(pfp, MaxDevices);
2950 	MPT_2_HOST16(pfp, PortSCSIID);
2951 	MPT_2_HOST16(pfp, ProtocolFlags);
2952 	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2953 	MPT_2_HOST16(pfp, MaxPersistentIDs);
2954 	MPT_2_HOST16(pfp, MaxLanBuckets);
2955 	MPT_2_HOST16(pfp, Reserved4);
2956 	MPT_2_HOST32(pfp, Reserved5);
2957 }
2958 
2959 void
2960 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2961 {
2962 	int i;
2963 
2964 	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2965 	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2966 		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2967 	}
2968 }
2969 
2970 void
2971 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2972 {
2973 
2974 	MPT_2_HOST16(ioc3, Reserved2);
2975 }
2976 
2977 void
2978 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
2979 {
2980 
2981 	MPT_2_HOST32(sp0, Capabilities);
2982 	MPT_2_HOST32(sp0, PhysicalInterface);
2983 }
2984 
2985 void
2986 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
2987 {
2988 
2989 	MPT_2_HOST32(sp1, Configuration);
2990 	MPT_2_HOST32(sp1, OnBusTimerValue);
2991 	MPT_2_HOST16(sp1, IDConfig);
2992 }
2993 
2994 void
2995 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
2996 {
2997 
2998 	HOST_2_MPT32(sp1, Configuration);
2999 	HOST_2_MPT32(sp1, OnBusTimerValue);
3000 	HOST_2_MPT16(sp1, IDConfig);
3001 }
3002 
3003 void
3004 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3005 {
3006 	int i;
3007 
3008 	MPT_2_HOST32(sp2, PortFlags);
3009 	MPT_2_HOST32(sp2, PortSettings);
3010 	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3011 	    sizeof(*sp2->DeviceSettings); i++) {
3012 		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3013 	}
3014 }
3015 
3016 void
3017 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3018 {
3019 
3020 	MPT_2_HOST32(sd0, NegotiatedParameters);
3021 	MPT_2_HOST32(sd0, Information);
3022 }
3023 
3024 void
3025 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3026 {
3027 
3028 	MPT_2_HOST32(sd1, RequestedParameters);
3029 	MPT_2_HOST32(sd1, Reserved);
3030 	MPT_2_HOST32(sd1, Configuration);
3031 }
3032 
3033 void
3034 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3035 {
3036 
3037 	HOST_2_MPT32(sd1, RequestedParameters);
3038 	HOST_2_MPT32(sd1, Reserved);
3039 	HOST_2_MPT32(sd1, Configuration);
3040 }
3041 
3042 void
3043 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3044 {
3045 
3046 	MPT_2_HOST32(fp0, Flags);
3047 	MPT_2_HOST32(fp0, PortIdentifier);
3048 	MPT_2_HOST32(fp0, WWNN.Low);
3049 	MPT_2_HOST32(fp0, WWNN.High);
3050 	MPT_2_HOST32(fp0, WWPN.Low);
3051 	MPT_2_HOST32(fp0, WWPN.High);
3052 	MPT_2_HOST32(fp0, SupportedServiceClass);
3053 	MPT_2_HOST32(fp0, SupportedSpeeds);
3054 	MPT_2_HOST32(fp0, CurrentSpeed);
3055 	MPT_2_HOST32(fp0, MaxFrameSize);
3056 	MPT_2_HOST32(fp0, FabricWWNN.Low);
3057 	MPT_2_HOST32(fp0, FabricWWNN.High);
3058 	MPT_2_HOST32(fp0, FabricWWPN.Low);
3059 	MPT_2_HOST32(fp0, FabricWWPN.High);
3060 	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3061 	MPT_2_HOST32(fp0, MaxInitiators);
3062 }
3063 
3064 void
3065 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3066 {
3067 
3068 	MPT_2_HOST32(fp1, Flags);
3069 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3070 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3071 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3072 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3073 }
3074 
3075 void
3076 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3077 {
3078 
3079 	HOST_2_MPT32(fp1, Flags);
3080 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3081 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3082 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3083 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3084 }
3085 
3086 void
3087 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3088 {
3089 	int i;
3090 
3091 	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3092 	MPT_2_HOST16(volp, VolumeSettings.Settings);
3093 	MPT_2_HOST32(volp, MaxLBA);
3094 	MPT_2_HOST32(volp, MaxLBAHigh);
3095 	MPT_2_HOST32(volp, StripeSize);
3096 	MPT_2_HOST32(volp, Reserved2);
3097 	MPT_2_HOST32(volp, Reserved3);
3098 	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3099 		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3100 	}
3101 }
3102 
3103 void
3104 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3105 {
3106 
3107 	MPT_2_HOST32(rpd0, Reserved1);
3108 	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3109 	MPT_2_HOST32(rpd0, MaxLBA);
3110 	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3111 	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3112 	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3113 }
3114 
3115 void
3116 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3117 {
3118 
3119 	MPT_2_HOST16(vi, TotalBlocks.High);
3120 	MPT_2_HOST16(vi, TotalBlocks.Low);
3121 	MPT_2_HOST16(vi, BlocksRemaining.High);
3122 	MPT_2_HOST16(vi, BlocksRemaining.Low);
3123 }
3124 #endif
3125