xref: /dragonfly/sys/dev/disk/mpt/mpt.c (revision 38c2ea22)
1 /*-
2  * Generic routines for LSI Fusion adapters.
3  * FreeBSD Version.
4  *
5  * Copyright (c) 2000, 2001 by Greg Ansley
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice immediately at the beginning of the file, without modification,
12  *    this list of conditions, and the following disclaimer.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 /*-
29  * Copyright (c) 2002, 2006 by Matthew Jacob
30  * All rights reserved.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions are
34  * met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38  *    substantially similar to the "NO WARRANTY" disclaimer below
39  *    ("Disclaimer") and any redistribution must be conditioned upon including
40  *    a substantially similar Disclaimer requirement for further binary
41  *    redistribution.
42  * 3. Neither the names of the above listed copyright holders nor the names
43  *    of any contributors may be used to endorse or promote products derived
44  *    from this software without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57  *
58  * Support from Chris Ellsworth in order to make SAS adapters work
59  * is gratefully acknowledged.
60  *
61  *
62  * Support from LSI-Logic has also gone a great deal toward making this a
63  * workable subsystem and is gratefully acknowledged.
64  */
65 /*-
66  * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67  * Copyright (c) 2005, WHEEL Sp. z o.o.
68  * Copyright (c) 2004, 2005 Justin T. Gibbs
69  * All rights reserved.
70  *
71  * Redistribution and use in source and binary forms, with or without
72  * modification, are permitted provided that the following conditions are
73  * met:
74  * 1. Redistributions of source code must retain the above copyright
75  *    notice, this list of conditions and the following disclaimer.
76  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77  *    substantially similar to the "NO WARRANTY" disclaimer below
78  *    ("Disclaimer") and any redistribution must be conditioned upon including
79  *    a substantially similar Disclaimer requirement for further binary
80  *    redistribution.
81  * 3. Neither the names of the above listed copyright holders nor the names
82  *    of any contributors may be used to endorse or promote products derived
83  *    from this software without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96  *
97  * $FreeBSD: src/sys/dev/mpt/mpt.c,v 1.61 2012/02/11 12:03:44 marius Exp $
98  */
99 
100 #include <dev/disk/mpt/mpt.h>
101 #include <dev/disk/mpt/mpt_cam.h> /* XXX For static handler registration */
102 #include <dev/disk/mpt/mpt_raid.h> /* XXX For static handler registration */
103 
104 #include <dev/disk/mpt/mpilib/mpi.h>
105 #include <dev/disk/mpt/mpilib/mpi_ioc.h>
106 #include <dev/disk/mpt/mpilib/mpi_fc.h>
107 #include <dev/disk/mpt/mpilib/mpi_targ.h>
108 
109 #include <sys/sysctl.h>
110 
111 #define MPT_MAX_TRYS 3
112 #define MPT_MAX_WAIT 300000
113 
114 static int maxwait_ack = 0;
115 static int maxwait_int = 0;
116 static int maxwait_state = 0;
117 
118 static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
119 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
120 
121 static mpt_reply_handler_t mpt_default_reply_handler;
122 static mpt_reply_handler_t mpt_config_reply_handler;
123 static mpt_reply_handler_t mpt_handshake_reply_handler;
124 static mpt_reply_handler_t mpt_event_reply_handler;
125 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
126 			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
127 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
128 static int mpt_soft_reset(struct mpt_softc *mpt);
129 static void mpt_hard_reset(struct mpt_softc *mpt);
130 static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
131 static void mpt_dma_buf_free(struct mpt_softc *mpt);
132 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
133 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
134 
135 /************************* Personality Module Support *************************/
136 /*
137  * We include one extra entry that is guaranteed to be NULL
138  * to simplify our itterator.
139  */
140 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
141 static __inline struct mpt_personality*
142 	mpt_pers_find(struct mpt_softc *, u_int);
143 static __inline struct mpt_personality*
144 	mpt_pers_find_reverse(struct mpt_softc *, u_int);
145 
146 static __inline struct mpt_personality *
147 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
148 {
149 	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
150 		("mpt_pers_find: starting position out of range"));
151 
152 	while (start_at < MPT_MAX_PERSONALITIES
153 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
154 		start_at++;
155 	}
156 	return (mpt_personalities[start_at]);
157 }
158 
159 /*
160  * Used infrequently, so no need to optimize like a forward
161  * traversal where we use the MAX+1 is guaranteed to be NULL
162  * trick.
163  */
164 static __inline struct mpt_personality *
165 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
166 {
167 	while (start_at < MPT_MAX_PERSONALITIES
168 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
169 		start_at--;
170 	}
171 	if (start_at < MPT_MAX_PERSONALITIES)
172 		return (mpt_personalities[start_at]);
173 	return (NULL);
174 }
175 
176 #define MPT_PERS_FOREACH(mpt, pers)				\
177 	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
178 	     pers != NULL;					\
179 	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
180 
181 #define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
182 	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
183 	     pers != NULL;						\
184 	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
185 
186 static mpt_load_handler_t      mpt_stdload;
187 static mpt_probe_handler_t     mpt_stdprobe;
188 static mpt_attach_handler_t    mpt_stdattach;
189 static mpt_enable_handler_t    mpt_stdenable;
190 static mpt_ready_handler_t     mpt_stdready;
191 static mpt_event_handler_t     mpt_stdevent;
192 static mpt_reset_handler_t     mpt_stdreset;
193 static mpt_shutdown_handler_t  mpt_stdshutdown;
194 static mpt_detach_handler_t    mpt_stddetach;
195 static mpt_unload_handler_t    mpt_stdunload;
196 static struct mpt_personality mpt_default_personality =
197 {
198 	.load		= mpt_stdload,
199 	.probe		= mpt_stdprobe,
200 	.attach		= mpt_stdattach,
201 	.enable		= mpt_stdenable,
202 	.ready		= mpt_stdready,
203 	.event		= mpt_stdevent,
204 	.reset		= mpt_stdreset,
205 	.shutdown	= mpt_stdshutdown,
206 	.detach		= mpt_stddetach,
207 	.unload		= mpt_stdunload
208 };
209 
210 static mpt_load_handler_t      mpt_core_load;
211 static mpt_attach_handler_t    mpt_core_attach;
212 static mpt_enable_handler_t    mpt_core_enable;
213 static mpt_reset_handler_t     mpt_core_ioc_reset;
214 static mpt_event_handler_t     mpt_core_event;
215 static mpt_shutdown_handler_t  mpt_core_shutdown;
216 static mpt_shutdown_handler_t  mpt_core_detach;
217 static mpt_unload_handler_t    mpt_core_unload;
218 static struct mpt_personality mpt_core_personality =
219 {
220 	.name		= "mpt_core",
221 	.load		= mpt_core_load,
222 //	.attach		= mpt_core_attach,
223 //	.enable		= mpt_core_enable,
224 	.event		= mpt_core_event,
225 	.reset		= mpt_core_ioc_reset,
226 	.shutdown	= mpt_core_shutdown,
227 	.detach		= mpt_core_detach,
228 	.unload		= mpt_core_unload,
229 };
230 
231 /*
232  * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
233  * ordering information.  We want the core to always register FIRST.
234  * other modules are set to SI_ORDER_SECOND.
235  */
236 static moduledata_t mpt_core_mod = {
237 	"mpt_core", mpt_modevent, &mpt_core_personality
238 };
239 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
240 MODULE_VERSION(mpt_core, 1);
241 
242 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
243 
244 int
245 mpt_modevent(module_t mod, int type, void *data)
246 {
247 	struct mpt_personality *pers;
248 	int error;
249 
250 	pers = (struct mpt_personality *)data;
251 
252 	error = 0;
253 	switch (type) {
254 	case MOD_LOAD:
255 	{
256 		mpt_load_handler_t **def_handler;
257 		mpt_load_handler_t **pers_handler;
258 		int i;
259 
260 		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
261 			if (mpt_personalities[i] == NULL)
262 				break;
263 		}
264 		if (i >= MPT_MAX_PERSONALITIES) {
265 			error = ENOMEM;
266 			break;
267 		}
268 		pers->id = i;
269 		mpt_personalities[i] = pers;
270 
271 		/* Install standard/noop handlers for any NULL entries. */
272 		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
273 		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
274 		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
275 			if (*pers_handler == NULL)
276 				*pers_handler = *def_handler;
277 			pers_handler++;
278 			def_handler++;
279 		}
280 
281 		error = (pers->load(pers));
282 		if (error != 0)
283 			mpt_personalities[i] = NULL;
284 		break;
285 	}
286 	case MOD_SHUTDOWN:
287 		break;
288 #if __FreeBSD_version >= 500000
289 	case MOD_QUIESCE:
290 		break;
291 #endif
292 	case MOD_UNLOAD:
293 		error = pers->unload(pers);
294 		mpt_personalities[pers->id] = NULL;
295 		break;
296 	default:
297 		error = EINVAL;
298 		break;
299 	}
300 	return (error);
301 }
302 
303 static int
304 mpt_stdload(struct mpt_personality *pers)
305 {
306 
307 	/* Load is always successful. */
308 	return (0);
309 }
310 
311 static int
312 mpt_stdprobe(struct mpt_softc *mpt)
313 {
314 
315 	/* Probe is always successful. */
316 	return (0);
317 }
318 
319 static int
320 mpt_stdattach(struct mpt_softc *mpt)
321 {
322 
323 	/* Attach is always successful. */
324 	return (0);
325 }
326 
327 static int
328 mpt_stdenable(struct mpt_softc *mpt)
329 {
330 
331 	/* Enable is always successful. */
332 	return (0);
333 }
334 
335 static void
336 mpt_stdready(struct mpt_softc *mpt)
337 {
338 
339 }
340 
341 static int
342 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
343 {
344 
345 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
346 	/* Event was not for us. */
347 	return (0);
348 }
349 
350 static void
351 mpt_stdreset(struct mpt_softc *mpt, int type)
352 {
353 
354 }
355 
356 static void
357 mpt_stdshutdown(struct mpt_softc *mpt)
358 {
359 
360 }
361 
362 static void
363 mpt_stddetach(struct mpt_softc *mpt)
364 {
365 
366 }
367 
368 static int
369 mpt_stdunload(struct mpt_personality *pers)
370 {
371 
372 	/* Unload is always successful. */
373 	return (0);
374 }
375 
376 /*
377  * Post driver attachment, we may want to perform some global actions.
378  * Here is the hook to do so.
379  */
380 
381 static void
382 mpt_postattach(void *unused)
383 {
384 	struct mpt_softc *mpt;
385 	struct mpt_personality *pers;
386 
387 	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
388 		MPT_PERS_FOREACH(mpt, pers)
389 			pers->ready(mpt);
390 	}
391 }
392 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
393 
394 /******************************* Bus DMA Support ******************************/
395 void
396 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
397 {
398 	struct mpt_map_info *map_info;
399 
400 	map_info = (struct mpt_map_info *)arg;
401 	map_info->error = error;
402 	map_info->phys = segs->ds_addr;
403 }
404 
405 /**************************** Reply/Event Handling ****************************/
406 int
407 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
408 		     mpt_handler_t handler, uint32_t *phandler_id)
409 {
410 
411 	switch (type) {
412 	case MPT_HANDLER_REPLY:
413 	{
414 		u_int cbi;
415 		u_int free_cbi;
416 
417 		if (phandler_id == NULL)
418 			return (EINVAL);
419 
420 		free_cbi = MPT_HANDLER_ID_NONE;
421 		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
422 			/*
423 			 * If the same handler is registered multiple
424 			 * times, don't error out.  Just return the
425 			 * index of the original registration.
426 			 */
427 			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
428 				*phandler_id = MPT_CBI_TO_HID(cbi);
429 				return (0);
430 			}
431 
432 			/*
433 			 * Fill from the front in the hope that
434 			 * all registered handlers consume only a
435 			 * single cache line.
436 			 *
437 			 * We don't break on the first empty slot so
438 			 * that the full table is checked to see if
439 			 * this handler was previously registered.
440 			 */
441 			if (free_cbi == MPT_HANDLER_ID_NONE &&
442 			    (mpt_reply_handlers[cbi]
443 			  == mpt_default_reply_handler))
444 				free_cbi = cbi;
445 		}
446 		if (free_cbi == MPT_HANDLER_ID_NONE) {
447 			return (ENOMEM);
448 		}
449 		mpt_reply_handlers[free_cbi] = handler.reply_handler;
450 		*phandler_id = MPT_CBI_TO_HID(free_cbi);
451 		break;
452 	}
453 	default:
454 		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
455 		return (EINVAL);
456 	}
457 	return (0);
458 }
459 
460 int
461 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
462 		       mpt_handler_t handler, uint32_t handler_id)
463 {
464 
465 	switch (type) {
466 	case MPT_HANDLER_REPLY:
467 	{
468 		u_int cbi;
469 
470 		cbi = MPT_CBI(handler_id);
471 		if (cbi >= MPT_NUM_REPLY_HANDLERS
472 		 || mpt_reply_handlers[cbi] != handler.reply_handler)
473 			return (ENOENT);
474 		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
475 		break;
476 	}
477 	default:
478 		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
479 		return (EINVAL);
480 	}
481 	return (0);
482 }
483 
484 static int
485 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
486 	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
487 {
488 
489 	mpt_prt(mpt,
490 	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
491 	    req, req->serno, reply_desc, reply_frame);
492 
493 	if (reply_frame != NULL)
494 		mpt_dump_reply_frame(mpt, reply_frame);
495 
496 	mpt_prt(mpt, "Reply Frame Ignored\n");
497 
498 	return (/*free_reply*/TRUE);
499 }
500 
501 static int
502 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
503  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
504 {
505 
506 	if (req != NULL) {
507 		if (reply_frame != NULL) {
508 			MSG_CONFIG *cfgp;
509 			MSG_CONFIG_REPLY *reply;
510 
511 			cfgp = (MSG_CONFIG *)req->req_vbuf;
512 			reply = (MSG_CONFIG_REPLY *)reply_frame;
513 			req->IOCStatus = le16toh(reply_frame->IOCStatus);
514 			bcopy(&reply->Header, &cfgp->Header,
515 			      sizeof(cfgp->Header));
516 			cfgp->ExtPageLength = reply->ExtPageLength;
517 			cfgp->ExtPageType = reply->ExtPageType;
518 		}
519 		req->state &= ~REQ_STATE_QUEUED;
520 		req->state |= REQ_STATE_DONE;
521 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
522 		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
523 			wakeup(req);
524 		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
525 			/*
526 			 * Whew- we can free this request (late completion)
527 			 */
528 			mpt_free_request(mpt, req);
529 		}
530 	}
531 
532 	return (TRUE);
533 }
534 
535 static int
536 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
537  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
538 {
539 
540 	/* Nothing to be done. */
541 	return (TRUE);
542 }
543 
544 static int
545 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
546     uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
547 {
548 	int free_reply;
549 
550 	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
551 	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
552 
553 	free_reply = TRUE;
554 	switch (reply_frame->Function) {
555 	case MPI_FUNCTION_EVENT_NOTIFICATION:
556 	{
557 		MSG_EVENT_NOTIFY_REPLY *msg;
558 		struct mpt_personality *pers;
559 		u_int handled;
560 
561 		handled = 0;
562 		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
563 		msg->EventDataLength = le16toh(msg->EventDataLength);
564 		msg->IOCStatus = le16toh(msg->IOCStatus);
565 		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
566 		msg->Event = le32toh(msg->Event);
567 		MPT_PERS_FOREACH(mpt, pers)
568 			handled += pers->event(mpt, req, msg);
569 
570 		if (handled == 0 && mpt->mpt_pers_mask == 0) {
571 			mpt_lprt(mpt, MPT_PRT_INFO,
572 				"No Handlers For Any Event Notify Frames. "
573 				"Event %#x (ACK %sequired).\n",
574 				msg->Event, msg->AckRequired? "r" : "not r");
575 		} else if (handled == 0) {
576 			mpt_lprt(mpt,
577 				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
578 				"Unhandled Event Notify Frame. Event %#x "
579 				"(ACK %sequired).\n",
580 				msg->Event, msg->AckRequired? "r" : "not r");
581 		}
582 
583 		if (msg->AckRequired) {
584 			request_t *ack_req;
585 			uint32_t context;
586 
587 			context = req->index | MPT_REPLY_HANDLER_EVENTS;
588 			ack_req = mpt_get_request(mpt, FALSE);
589 			if (ack_req == NULL) {
590 				struct mpt_evtf_record *evtf;
591 
592 				evtf = (struct mpt_evtf_record *)reply_frame;
593 				evtf->context = context;
594 				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
595 				free_reply = FALSE;
596 				break;
597 			}
598 			mpt_send_event_ack(mpt, ack_req, msg, context);
599 			/*
600 			 * Don't check for CONTINUATION_REPLY here
601 			 */
602 			return (free_reply);
603 		}
604 		break;
605 	}
606 	case MPI_FUNCTION_PORT_ENABLE:
607 		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
608 		break;
609 	case MPI_FUNCTION_EVENT_ACK:
610 		break;
611 	default:
612 		mpt_prt(mpt, "unknown event function: %x\n",
613 			reply_frame->Function);
614 		break;
615 	}
616 
617 	/*
618 	 * I'm not sure that this continuation stuff works as it should.
619 	 *
620 	 * I've had FC async events occur that free the frame up because
621 	 * the continuation bit isn't set, and then additional async events
622 	 * then occur using the same context. As you might imagine, this
623 	 * leads to Very Bad Thing.
624 	 *
625 	 *  Let's just be safe for now and not free them up until we figure
626 	 * out what's actually happening here.
627 	 */
628 #if	0
629 	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
630 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
631 		mpt_free_request(mpt, req);
632 		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
633 		    reply_frame->Function, req, req->serno);
634 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
635 			MSG_EVENT_NOTIFY_REPLY *msg =
636 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
637 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
638 			    msg->Event, msg->AckRequired);
639 		}
640 	} else {
641 		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
642 		    reply_frame->Function, req, req->serno);
643 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
644 			MSG_EVENT_NOTIFY_REPLY *msg =
645 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
646 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
647 			    msg->Event, msg->AckRequired);
648 		}
649 		mpt_prtc(mpt, "\n");
650 	}
651 #endif
652 	return (free_reply);
653 }
654 
655 /*
656  * Process an asynchronous event from the IOC.
657  */
658 static int
659 mpt_core_event(struct mpt_softc *mpt, request_t *req,
660 	       MSG_EVENT_NOTIFY_REPLY *msg)
661 {
662 
663 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
664                  msg->Event & 0xFF);
665 	switch(msg->Event & 0xFF) {
666 	case MPI_EVENT_NONE:
667 		break;
668 	case MPI_EVENT_LOG_DATA:
669 	{
670 		int i;
671 
672 		/* Some error occurred that LSI wants logged */
673 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
674 			msg->IOCLogInfo);
675 		mpt_prt(mpt, "\tEvtLogData: Event Data:");
676 		for (i = 0; i < msg->EventDataLength; i++)
677 			mpt_prtc(mpt, "  %08x", msg->Data[i]);
678 		mpt_prtc(mpt, "\n");
679 		break;
680 	}
681 	case MPI_EVENT_EVENT_CHANGE:
682 		/*
683 		 * This is just an acknowledgement
684 		 * of our mpt_send_event_request.
685 		 */
686 		break;
687 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
688 		break;
689 	default:
690 		return (0);
691 		break;
692 	}
693 	return (1);
694 }
695 
696 static void
697 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
698 		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
699 {
700 	MSG_EVENT_ACK *ackp;
701 
702 	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
703 	memset(ackp, 0, sizeof (*ackp));
704 	ackp->Function = MPI_FUNCTION_EVENT_ACK;
705 	ackp->Event = htole32(msg->Event);
706 	ackp->EventContext = htole32(msg->EventContext);
707 	ackp->MsgContext = htole32(context);
708 	mpt_check_doorbell(mpt);
709 	mpt_send_cmd(mpt, ack_req);
710 }
711 
712 /***************************** Interrupt Handling *****************************/
713 void
714 mpt_intr(void *arg)
715 {
716 	struct mpt_softc *mpt;
717 	uint32_t reply_desc;
718 	int ntrips = 0;
719 
720 	mpt = (struct mpt_softc *)arg;
721 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
722 	MPT_LOCK_ASSERT(mpt);
723 
724 	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
725 		request_t	  *req;
726 		MSG_DEFAULT_REPLY *reply_frame;
727 		uint32_t	   reply_baddr;
728 		uint32_t           ctxt_idx;
729 		u_int		   cb_index;
730 		u_int		   req_index;
731 		u_int		   offset;
732 		int		   free_rf;
733 
734 		req = NULL;
735 		reply_frame = NULL;
736 		reply_baddr = 0;
737 		offset = 0;
738 		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
739 			/*
740 			 * Ensure that the reply frame is coherent.
741 			 */
742 			reply_baddr = MPT_REPLY_BADDR(reply_desc);
743 			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
744 			bus_dmamap_sync_range(mpt->reply_dmat,
745 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
746 			    BUS_DMASYNC_POSTREAD);
747 			reply_frame = MPT_REPLY_OTOV(mpt, offset);
748 			ctxt_idx = le32toh(reply_frame->MsgContext);
749 		} else {
750 			uint32_t type;
751 
752 			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
753 			ctxt_idx = reply_desc;
754 			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
755 				    reply_desc);
756 
757 			switch (type) {
758 			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
759 				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
760 				break;
761 			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
762 				ctxt_idx = GET_IO_INDEX(reply_desc);
763 				if (mpt->tgt_cmd_ptrs == NULL) {
764 					mpt_prt(mpt,
765 					    "mpt_intr: no target cmd ptrs\n");
766 					reply_desc = MPT_REPLY_EMPTY;
767 					break;
768 				}
769 				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
770 					mpt_prt(mpt,
771 					    "mpt_intr: bad tgt cmd ctxt %u\n",
772 					    ctxt_idx);
773 					reply_desc = MPT_REPLY_EMPTY;
774 					ntrips = 1000;
775 					break;
776 				}
777 				req = mpt->tgt_cmd_ptrs[ctxt_idx];
778 				if (req == NULL) {
779 					mpt_prt(mpt, "no request backpointer "
780 					    "at index %u", ctxt_idx);
781 					reply_desc = MPT_REPLY_EMPTY;
782 					ntrips = 1000;
783 					break;
784 				}
785 				/*
786 				 * Reformulate ctxt_idx to be just as if
787 				 * it were another type of context reply
788 				 * so the code below will find the request
789 				 * via indexing into the pool.
790 				 */
791 				ctxt_idx =
792 				    req->index | mpt->scsi_tgt_handler_id;
793 				req = NULL;
794 				break;
795 			case MPI_CONTEXT_REPLY_TYPE_LAN:
796 				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
797 				    reply_desc);
798 				reply_desc = MPT_REPLY_EMPTY;
799 				break;
800 			default:
801 				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
802 				reply_desc = MPT_REPLY_EMPTY;
803 				break;
804 			}
805 			if (reply_desc == MPT_REPLY_EMPTY) {
806 				if (ntrips++ > 1000) {
807 					break;
808 				}
809 				continue;
810 			}
811 		}
812 
813 		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
814 		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
815 		if (req_index < MPT_MAX_REQUESTS(mpt)) {
816 			req = &mpt->request_pool[req_index];
817 		} else {
818 			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
819 			    " 0x%x)\n", req_index, reply_desc);
820 		}
821 
822 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
823 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
824 		free_rf = mpt_reply_handlers[cb_index](mpt, req,
825 		    reply_desc, reply_frame);
826 
827 		if (reply_frame != NULL && free_rf) {
828 			bus_dmamap_sync_range(mpt->reply_dmat,
829 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
830 			    BUS_DMASYNC_PREREAD);
831 			mpt_free_reply(mpt, reply_baddr);
832 		}
833 
834 		/*
835 		 * If we got ourselves disabled, don't get stuck in a loop
836 		 */
837 		if (mpt->disabled) {
838 			mpt_disable_ints(mpt);
839 			break;
840 		}
841 		if (ntrips++ > 1000) {
842 			break;
843 		}
844 	}
845 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
846 }
847 
848 /******************************* Error Recovery *******************************/
849 void
850 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
851 			    u_int iocstatus)
852 {
853 	MSG_DEFAULT_REPLY  ioc_status_frame;
854 	request_t	  *req;
855 
856 	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
857 	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
858 	ioc_status_frame.IOCStatus = iocstatus;
859 	while((req = TAILQ_FIRST(chain)) != NULL) {
860 		MSG_REQUEST_HEADER *msg_hdr;
861 		u_int		    cb_index;
862 
863 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
864 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
865 		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
866 		ioc_status_frame.Function = msg_hdr->Function;
867 		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
868 		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
869 		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
870 		    &ioc_status_frame);
871 		if (mpt_req_on_pending_list(mpt, req) != 0)
872 			TAILQ_REMOVE(chain, req, links);
873 	}
874 }
875 
876 /********************************* Diagnostics ********************************/
877 /*
878  * Perform a diagnostic dump of a reply frame.
879  */
880 void
881 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
882 {
883 
884 	mpt_prt(mpt, "Address Reply:\n");
885 	mpt_print_reply(reply_frame);
886 }
887 
888 /******************************* Doorbell Access ******************************/
889 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
890 static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
891 
892 static __inline uint32_t
893 mpt_rd_db(struct mpt_softc *mpt)
894 {
895 
896 	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
897 }
898 
899 static __inline uint32_t
900 mpt_rd_intr(struct mpt_softc *mpt)
901 {
902 
903 	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
904 }
905 
906 /* Busy wait for a door bell to be read by IOC */
907 static int
908 mpt_wait_db_ack(struct mpt_softc *mpt)
909 {
910 	int i;
911 
912 	for (i=0; i < MPT_MAX_WAIT; i++) {
913 		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
914 			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
915 			return (MPT_OK);
916 		}
917 		DELAY(200);
918 	}
919 	return (MPT_FAIL);
920 }
921 
922 /* Busy wait for a door bell interrupt */
923 static int
924 mpt_wait_db_int(struct mpt_softc *mpt)
925 {
926 	int i;
927 
928 	for (i = 0; i < MPT_MAX_WAIT; i++) {
929 		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
930 			maxwait_int = i > maxwait_int ? i : maxwait_int;
931 			return MPT_OK;
932 		}
933 		DELAY(100);
934 	}
935 	return (MPT_FAIL);
936 }
937 
938 /* Wait for IOC to transition to a give state */
939 void
940 mpt_check_doorbell(struct mpt_softc *mpt)
941 {
942 	uint32_t db = mpt_rd_db(mpt);
943 
944 	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
945 		mpt_prt(mpt, "Device not running\n");
946 		mpt_print_db(db);
947 	}
948 }
949 
950 /* Wait for IOC to transition to a give state */
951 static int
952 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
953 {
954 	int i;
955 
956 	for (i = 0; i < MPT_MAX_WAIT; i++) {
957 		uint32_t db = mpt_rd_db(mpt);
958 		if (MPT_STATE(db) == state) {
959 			maxwait_state = i > maxwait_state ? i : maxwait_state;
960 			return (MPT_OK);
961 		}
962 		DELAY(100);
963 	}
964 	return (MPT_FAIL);
965 }
966 
967 
968 /************************* Intialization/Configuration ************************/
969 static int mpt_download_fw(struct mpt_softc *mpt);
970 
971 /* Issue the reset COMMAND to the IOC */
972 static int
973 mpt_soft_reset(struct mpt_softc *mpt)
974 {
975 
976 	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
977 
978 	/* Have to use hard reset if we are not in Running state */
979 	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
980 		mpt_prt(mpt, "soft reset failed: device not running\n");
981 		return (MPT_FAIL);
982 	}
983 
984 	/* If door bell is in use we don't have a chance of getting
985 	 * a word in since the IOC probably crashed in message
986 	 * processing. So don't waste our time.
987 	 */
988 	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
989 		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
990 		return (MPT_FAIL);
991 	}
992 
993 	/* Send the reset request to the IOC */
994 	mpt_write(mpt, MPT_OFFSET_DOORBELL,
995 	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
996 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
997 		mpt_prt(mpt, "soft reset failed: ack timeout\n");
998 		return (MPT_FAIL);
999 	}
1000 
1001 	/* Wait for the IOC to reload and come out of reset state */
1002 	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1003 		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1004 		return (MPT_FAIL);
1005 	}
1006 
1007 	return MPT_OK;
1008 }
1009 
1010 static int
1011 mpt_enable_diag_mode(struct mpt_softc *mpt)
1012 {
1013 	int try;
1014 
1015 	try = 20;
1016 	while (--try) {
1017 
1018 		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1019 			break;
1020 
1021 		/* Enable diagnostic registers */
1022 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1023 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1024 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1025 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1026 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1027 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1028 
1029 		DELAY(100000);
1030 	}
1031 	if (try == 0)
1032 		return (EIO);
1033 	return (0);
1034 }
1035 
1036 static void
1037 mpt_disable_diag_mode(struct mpt_softc *mpt)
1038 {
1039 
1040 	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1041 }
1042 
1043 /* This is a magic diagnostic reset that resets all the ARM
1044  * processors in the chip.
1045  */
1046 static void
1047 mpt_hard_reset(struct mpt_softc *mpt)
1048 {
1049 	int error;
1050 	int wait;
1051 	uint32_t diagreg;
1052 
1053 	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1054 
1055 	if (mpt->is_1078) {
1056 		mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1057 		DELAY(1000);
1058 		return;
1059 	}
1060 
1061 	error = mpt_enable_diag_mode(mpt);
1062 	if (error) {
1063 		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1064 		mpt_prt(mpt, "Trying to reset anyway.\n");
1065 	}
1066 
1067 	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1068 
1069 	/*
1070 	 * This appears to be a workaround required for some
1071 	 * firmware or hardware revs.
1072 	 */
1073 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1074 	DELAY(1000);
1075 
1076 	/* Diag. port is now active so we can now hit the reset bit */
1077 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1078 
1079         /*
1080          * Ensure that the reset has finished.  We delay 1ms
1081          * prior to reading the register to make sure the chip
1082          * has sufficiently completed its reset to handle register
1083          * accesses.
1084          */
1085 	wait = 5000;
1086 	do {
1087 		DELAY(1000);
1088 		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1089 	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1090 
1091 	if (wait == 0) {
1092 		mpt_prt(mpt, "WARNING - Failed hard reset! "
1093 			"Trying to initialize anyway.\n");
1094 	}
1095 
1096 	/*
1097 	 * If we have firmware to download, it must be loaded before
1098 	 * the controller will become operational.  Do so now.
1099 	 */
1100 	if (mpt->fw_image != NULL) {
1101 
1102 		error = mpt_download_fw(mpt);
1103 
1104 		if (error) {
1105 			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1106 			mpt_prt(mpt, "Trying to initialize anyway.\n");
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * Reseting the controller should have disabled write
1112 	 * access to the diagnostic registers, but disable
1113 	 * manually to be sure.
1114 	 */
1115 	mpt_disable_diag_mode(mpt);
1116 }
1117 
1118 static void
1119 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1120 {
1121 
1122 	/*
1123 	 * Complete all pending requests with a status
1124 	 * appropriate for an IOC reset.
1125 	 */
1126 	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1127 				   MPI_IOCSTATUS_INVALID_STATE);
1128 }
1129 
1130 /*
1131  * Reset the IOC when needed. Try software command first then if needed
1132  * poke at the magic diagnostic reset. Note that a hard reset resets
1133  * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1134  * fouls up the PCI configuration registers.
1135  */
1136 int
1137 mpt_reset(struct mpt_softc *mpt, int reinit)
1138 {
1139 	struct	mpt_personality *pers;
1140 	int	ret;
1141 	int	retry_cnt = 0;
1142 
1143 	/*
1144 	 * Try a soft reset. If that fails, get out the big hammer.
1145 	 */
1146  again:
1147 	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1148 		int	cnt;
1149 		for (cnt = 0; cnt < 5; cnt++) {
1150 			/* Failed; do a hard reset */
1151 			mpt_hard_reset(mpt);
1152 
1153 			/*
1154 			 * Wait for the IOC to reload
1155 			 * and come out of reset state
1156 			 */
1157 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1158 			if (ret == MPT_OK) {
1159 				break;
1160 			}
1161 			/*
1162 			 * Okay- try to check again...
1163 			 */
1164 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1165 			if (ret == MPT_OK) {
1166 				break;
1167 			}
1168 			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1169 			    retry_cnt, cnt);
1170 		}
1171 	}
1172 
1173 	if (retry_cnt == 0) {
1174 		/*
1175 		 * Invoke reset handlers.  We bump the reset count so
1176 		 * that mpt_wait_req() understands that regardless of
1177 		 * the specified wait condition, it should stop its wait.
1178 		 */
1179 		mpt->reset_cnt++;
1180 		MPT_PERS_FOREACH(mpt, pers)
1181 			pers->reset(mpt, ret);
1182 	}
1183 
1184 	if (reinit) {
1185 		ret = mpt_enable_ioc(mpt, 1);
1186 		if (ret == MPT_OK) {
1187 			mpt_enable_ints(mpt);
1188 		}
1189 	}
1190 	if (ret != MPT_OK && retry_cnt++ < 2) {
1191 		goto again;
1192 	}
1193 	return ret;
1194 }
1195 
1196 /* Return a command buffer to the free queue */
1197 void
1198 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1199 {
1200 	request_t *nxt;
1201 	struct mpt_evtf_record *record;
1202 	uint32_t offset, reply_baddr;
1203 
1204 	if (req == NULL || req != &mpt->request_pool[req->index]) {
1205 		panic("mpt_free_request: bad req ptr");
1206 	}
1207 	if ((nxt = req->chain) != NULL) {
1208 		req->chain = NULL;
1209 		mpt_free_request(mpt, nxt);	/* NB: recursion */
1210 	}
1211 	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1212 	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1213 	MPT_LOCK_ASSERT(mpt);
1214 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1215 	    ("mpt_free_request: req %p:%u func %x already on freelist",
1216 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1217 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1218 	    ("mpt_free_request: req %p:%u func %x on pending list",
1219 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1220 #ifdef	INVARIANTS
1221 	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1222 #endif
1223 
1224 	req->ccb = NULL;
1225 	if (LIST_EMPTY(&mpt->ack_frames)) {
1226 		/*
1227 		 * Insert free ones at the tail
1228 		 */
1229 		req->serno = 0;
1230 		req->state = REQ_STATE_FREE;
1231 #ifdef	INVARIANTS
1232 		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1233 #endif
1234 		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1235 		if (mpt->getreqwaiter != 0) {
1236 			mpt->getreqwaiter = 0;
1237 			wakeup(&mpt->request_free_list);
1238 		}
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * Process an ack frame deferred due to resource shortage.
1244 	 */
1245 	record = LIST_FIRST(&mpt->ack_frames);
1246 	LIST_REMOVE(record, links);
1247 	req->state = REQ_STATE_ALLOCATED;
1248 	mpt_assign_serno(mpt, req);
1249 	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1250 	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1251 	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1252 	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1253 	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1254 	mpt_free_reply(mpt, reply_baddr);
1255 }
1256 
1257 /* Get a command buffer from the free queue */
1258 request_t *
1259 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1260 {
1261 	request_t *req;
1262 
1263 retry:
1264 	MPT_LOCK_ASSERT(mpt);
1265 	req = TAILQ_FIRST(&mpt->request_free_list);
1266 	if (req != NULL) {
1267 		KASSERT(req == &mpt->request_pool[req->index],
1268 		    ("mpt_get_request: corrupted request free list"));
1269 		KASSERT(req->state == REQ_STATE_FREE,
1270 		    ("req %p:%u not free on free list %x index %d function %x",
1271 		    req, req->serno, req->state, req->index,
1272 		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1273 		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1274 		req->state = REQ_STATE_ALLOCATED;
1275 		req->chain = NULL;
1276 		mpt_assign_serno(mpt, req);
1277 	} else if (sleep_ok != 0) {
1278 		mpt->getreqwaiter = 1;
1279 		mpt_sleep(mpt, &mpt->request_free_list, 0, "mptgreq", 0);
1280 		goto retry;
1281 	}
1282 	return (req);
1283 }
1284 
1285 /* Pass the command to the IOC */
1286 void
1287 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1288 {
1289 
1290 	if (mpt->verbose > MPT_PRT_DEBUG2) {
1291 		mpt_dump_request(mpt, req);
1292 	}
1293 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1294 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1295 	req->state |= REQ_STATE_QUEUED;
1296 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1297 	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1298 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1299 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1300 	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1301 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1302 	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1303 	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1304 }
1305 
1306 /*
1307  * Wait for a request to complete.
1308  *
1309  * Inputs:
1310  *	mpt		softc of controller executing request
1311  *	req		request to wait for
1312  *	sleep_ok	nonzero implies may sleep in this context
1313  *	time_ms		timeout in ms.  0 implies no timeout.
1314  *
1315  * Return Values:
1316  *	0		Request completed
1317  *	non-0		Timeout fired before request completion.
1318  */
1319 int
1320 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1321 	     mpt_req_state_t state, mpt_req_state_t mask,
1322 	     int sleep_ok, int time_ms)
1323 {
1324 	int   error;
1325 	int   timeout;
1326 	u_int saved_cnt;
1327 
1328 	/*
1329 	 * timeout is in ms.  0 indicates infinite wait.
1330 	 * Convert to ticks or 500us units depending on
1331 	 * our sleep mode.
1332 	 */
1333 	if (sleep_ok != 0) {
1334 		timeout = (time_ms * hz) / 1000;
1335 	} else {
1336 		timeout = time_ms * 2;
1337 	}
1338 	req->state |= REQ_STATE_NEED_WAKEUP;
1339 	mask &= ~REQ_STATE_NEED_WAKEUP;
1340 	saved_cnt = mpt->reset_cnt;
1341 	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1342 		if (sleep_ok != 0) {
1343 			error = mpt_sleep(mpt, req, 0, "mptreq", timeout);
1344 			if (error == EWOULDBLOCK) {
1345 				timeout = 0;
1346 				break;
1347 			}
1348 		} else {
1349 			if (time_ms != 0 && --timeout == 0) {
1350 				break;
1351 			}
1352 			DELAY(500);
1353 			mpt_intr(mpt);
1354 		}
1355 	}
1356 	req->state &= ~REQ_STATE_NEED_WAKEUP;
1357 	if (mpt->reset_cnt != saved_cnt) {
1358 		return (EIO);
1359 	}
1360 	if (time_ms && timeout <= 0) {
1361 		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1362 		req->state |= REQ_STATE_TIMEDOUT;
1363 		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1364 		return (ETIMEDOUT);
1365 	}
1366 	return (0);
1367 }
1368 
1369 /*
1370  * Send a command to the IOC via the handshake register.
1371  *
1372  * Only done at initialization time and for certain unusual
1373  * commands such as device/bus reset as specified by LSI.
1374  */
1375 int
1376 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1377 {
1378 	int i;
1379 	uint32_t data, *data32;
1380 
1381 	/* Check condition of the IOC */
1382 	data = mpt_rd_db(mpt);
1383 	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1384 	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1385 	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1386 	 || MPT_DB_IS_IN_USE(data)) {
1387 		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1388 		mpt_print_db(data);
1389 		return (EBUSY);
1390 	}
1391 
1392 	/* We move things in 32 bit chunks */
1393 	len = (len + 3) >> 2;
1394 	data32 = cmd;
1395 
1396 	/* Clear any left over pending doorbell interrupts */
1397 	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1398 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1399 
1400 	/*
1401 	 * Tell the handshake reg. we are going to send a command
1402          * and how long it is going to be.
1403 	 */
1404 	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1405 	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1406 	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1407 
1408 	/* Wait for the chip to notice */
1409 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1410 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1411 		return (ETIMEDOUT);
1412 	}
1413 
1414 	/* Clear the interrupt */
1415 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1416 
1417 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1418 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1419 		return (ETIMEDOUT);
1420 	}
1421 
1422 	/* Send the command */
1423 	for (i = 0; i < len; i++) {
1424 		mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1425 		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1426 			mpt_prt(mpt,
1427 			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1428 			return (ETIMEDOUT);
1429 		}
1430 	}
1431 	return MPT_OK;
1432 }
1433 
1434 /* Get the response from the handshake register */
1435 int
1436 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1437 {
1438 	int left, reply_left;
1439 	u_int16_t *data16;
1440 	uint32_t data;
1441 	MSG_DEFAULT_REPLY *hdr;
1442 
1443 	/* We move things out in 16 bit chunks */
1444 	reply_len >>= 1;
1445 	data16 = (u_int16_t *)reply;
1446 
1447 	hdr = (MSG_DEFAULT_REPLY *)reply;
1448 
1449 	/* Get first word */
1450 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1451 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1452 		return ETIMEDOUT;
1453 	}
1454 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1455 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1456 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1457 
1458 	/* Get Second Word */
1459 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1460 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1461 		return ETIMEDOUT;
1462 	}
1463 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1464 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1465 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1466 
1467 	/*
1468 	 * With the second word, we can now look at the length.
1469 	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1470 	 */
1471 	if ((reply_len >> 1) != hdr->MsgLength &&
1472 	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1473 		mpt_prt(mpt, "reply length does not match message length: "
1474 			"got %x; expected %zx for function %x\n",
1475 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1476 	}
1477 
1478 	/* Get rest of the reply; but don't overflow the provided buffer */
1479 	left = (hdr->MsgLength << 1) - 2;
1480 	reply_left =  reply_len - 2;
1481 	while (left--) {
1482 		u_int16_t datum;
1483 
1484 		if (mpt_wait_db_int(mpt) != MPT_OK) {
1485 			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1486 			return ETIMEDOUT;
1487 		}
1488 		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1489 		datum = le16toh(data & MPT_DB_DATA_MASK);
1490 
1491 		if (reply_left-- > 0)
1492 			*data16++ = datum;
1493 
1494 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1495 	}
1496 
1497 	/* One more wait & clear at the end */
1498 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1499 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1500 		return ETIMEDOUT;
1501 	}
1502 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1503 
1504 	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1505 		if (mpt->verbose >= MPT_PRT_TRACE)
1506 			mpt_print_reply(hdr);
1507 		return (MPT_FAIL | hdr->IOCStatus);
1508 	}
1509 
1510 	return (0);
1511 }
1512 
1513 static int
1514 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1515 {
1516 	MSG_IOC_FACTS f_req;
1517 	int error;
1518 
1519 	memset(&f_req, 0, sizeof f_req);
1520 	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1521 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1522 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1523 	if (error) {
1524 		return(error);
1525 	}
1526 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1527 	return (error);
1528 }
1529 
1530 static int
1531 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1532 {
1533 	MSG_PORT_FACTS f_req;
1534 	int error;
1535 
1536 	memset(&f_req, 0, sizeof f_req);
1537 	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1538 	f_req.PortNumber = port;
1539 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1540 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1541 	if (error) {
1542 		return(error);
1543 	}
1544 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1545 	return (error);
1546 }
1547 
1548 /*
1549  * Send the initialization request. This is where we specify how many
1550  * SCSI busses and how many devices per bus we wish to emulate.
1551  * This is also the command that specifies the max size of the reply
1552  * frames from the IOC that we will be allocating.
1553  */
1554 static int
1555 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1556 {
1557 	int error = 0;
1558 	MSG_IOC_INIT init;
1559 	MSG_IOC_INIT_REPLY reply;
1560 
1561 	memset(&init, 0, sizeof init);
1562 	init.WhoInit = who;
1563 	init.Function = MPI_FUNCTION_IOC_INIT;
1564 	init.MaxDevices = 0;	/* at least 256 devices per bus */
1565 	init.MaxBuses = 16;	/* at least 16 busses */
1566 
1567 	init.MsgVersion = htole16(MPI_VERSION);
1568 	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1569 	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1570 	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1571 
1572 	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1573 		return(error);
1574 	}
1575 
1576 	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1577 	return (error);
1578 }
1579 
1580 
1581 /*
1582  * Utiltity routine to read configuration headers and pages
1583  */
1584 int
1585 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1586 		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1587 {
1588 	MSG_CONFIG *cfgp;
1589 	SGE_SIMPLE32 *se;
1590 
1591 	cfgp = req->req_vbuf;
1592 	memset(cfgp, 0, sizeof *cfgp);
1593 	cfgp->Action = params->Action;
1594 	cfgp->Function = MPI_FUNCTION_CONFIG;
1595 	cfgp->Header.PageVersion = params->PageVersion;
1596 	cfgp->Header.PageNumber = params->PageNumber;
1597 	cfgp->PageAddress = htole32(params->PageAddress);
1598 	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1599 	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1600 		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1601 		cfgp->Header.PageLength = 0;
1602 		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1603 		cfgp->ExtPageType = params->ExtPageType;
1604 	} else {
1605 		cfgp->Header.PageType = params->PageType;
1606 		cfgp->Header.PageLength = params->PageLength;
1607 	}
1608 	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1609 	se->Address = htole32(addr);
1610 	MPI_pSGE_SET_LENGTH(se, len);
1611 	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1612 	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1613 	    MPI_SGE_FLAGS_END_OF_LIST |
1614 	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1615 	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1616 	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1617 	se->FlagsLength = htole32(se->FlagsLength);
1618 	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1619 
1620 	mpt_check_doorbell(mpt);
1621 	mpt_send_cmd(mpt, req);
1622 	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1623 			     sleep_ok, timeout_ms));
1624 }
1625 
1626 int
1627 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1628 		       uint32_t PageAddress, int ExtPageType,
1629 		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1630 		       int sleep_ok, int timeout_ms)
1631 {
1632 	request_t  *req;
1633 	cfgparms_t params;
1634 	MSG_CONFIG_REPLY *cfgp;
1635 	int	    error;
1636 
1637 	req = mpt_get_request(mpt, sleep_ok);
1638 	if (req == NULL) {
1639 		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1640 		return (ENOMEM);
1641 	}
1642 
1643 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1644 	params.PageVersion = PageVersion;
1645 	params.PageLength = 0;
1646 	params.PageNumber = PageNumber;
1647 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1648 	params.PageAddress = PageAddress;
1649 	params.ExtPageType = ExtPageType;
1650 	params.ExtPageLength = 0;
1651 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1652 				  sleep_ok, timeout_ms);
1653 	if (error != 0) {
1654 		/*
1655 		 * Leave the request. Without resetting the chip, it's
1656 		 * still owned by it and we'll just get into trouble
1657 		 * freeing it now. Mark it as abandoned so that if it
1658 		 * shows up later it can be freed.
1659 		 */
1660 		mpt_prt(mpt, "read_extcfg_header timed out\n");
1661 		return (ETIMEDOUT);
1662 	}
1663 
1664         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1665 	case MPI_IOCSTATUS_SUCCESS:
1666 		cfgp = req->req_vbuf;
1667 		rslt->PageVersion = cfgp->Header.PageVersion;
1668 		rslt->PageNumber = cfgp->Header.PageNumber;
1669 		rslt->PageType = cfgp->Header.PageType;
1670 		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1671 		rslt->ExtPageType = cfgp->ExtPageType;
1672 		error = 0;
1673 		break;
1674 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1675 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1676 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1677 		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1678 		error = EINVAL;
1679 		break;
1680 	default:
1681 		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1682 			req->IOCStatus);
1683 		error = EIO;
1684 		break;
1685 	}
1686 	mpt_free_request(mpt, req);
1687 	return (error);
1688 }
1689 
1690 int
1691 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1692 		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1693 		     int sleep_ok, int timeout_ms)
1694 {
1695 	request_t    *req;
1696 	cfgparms_t    params;
1697 	int	      error;
1698 
1699 	req = mpt_get_request(mpt, sleep_ok);
1700 	if (req == NULL) {
1701 		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1702 		return (-1);
1703 	}
1704 
1705 	params.Action = Action;
1706 	params.PageVersion = hdr->PageVersion;
1707 	params.PageLength = 0;
1708 	params.PageNumber = hdr->PageNumber;
1709 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1710 	params.PageAddress = PageAddress;
1711 	params.ExtPageType = hdr->ExtPageType;
1712 	params.ExtPageLength = hdr->ExtPageLength;
1713 	error = mpt_issue_cfg_req(mpt, req, &params,
1714 				  req->req_pbuf + MPT_RQSL(mpt),
1715 				  len, sleep_ok, timeout_ms);
1716 	if (error != 0) {
1717 		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1718 		return (-1);
1719 	}
1720 
1721 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1722 		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1723 			req->IOCStatus);
1724 		mpt_free_request(mpt, req);
1725 		return (-1);
1726 	}
1727 	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1728 	mpt_free_request(mpt, req);
1729 	return (0);
1730 }
1731 
1732 int
1733 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1734 		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1735 		    int sleep_ok, int timeout_ms)
1736 {
1737 	request_t  *req;
1738 	cfgparms_t params;
1739 	MSG_CONFIG *cfgp;
1740 	int	    error;
1741 
1742 	req = mpt_get_request(mpt, sleep_ok);
1743 	if (req == NULL) {
1744 		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1745 		return (ENOMEM);
1746 	}
1747 
1748 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1749 	params.PageVersion = 0;
1750 	params.PageLength = 0;
1751 	params.PageNumber = PageNumber;
1752 	params.PageType = PageType;
1753 	params.PageAddress = PageAddress;
1754 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1755 				  sleep_ok, timeout_ms);
1756 	if (error != 0) {
1757 		/*
1758 		 * Leave the request. Without resetting the chip, it's
1759 		 * still owned by it and we'll just get into trouble
1760 		 * freeing it now. Mark it as abandoned so that if it
1761 		 * shows up later it can be freed.
1762 		 */
1763 		mpt_prt(mpt, "read_cfg_header timed out\n");
1764 		return (ETIMEDOUT);
1765 	}
1766 
1767         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1768 	case MPI_IOCSTATUS_SUCCESS:
1769 		cfgp = req->req_vbuf;
1770 		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1771 		error = 0;
1772 		break;
1773 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1774 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1775 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1776 		    PageType, PageNumber, PageAddress);
1777 		error = EINVAL;
1778 		break;
1779 	default:
1780 		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1781 			req->IOCStatus);
1782 		error = EIO;
1783 		break;
1784 	}
1785 	mpt_free_request(mpt, req);
1786 	return (error);
1787 }
1788 
1789 int
1790 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1791 		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1792 		  int timeout_ms)
1793 {
1794 	request_t    *req;
1795 	cfgparms_t    params;
1796 	int	      error;
1797 
1798 	req = mpt_get_request(mpt, sleep_ok);
1799 	if (req == NULL) {
1800 		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1801 		return (-1);
1802 	}
1803 
1804 	params.Action = Action;
1805 	params.PageVersion = hdr->PageVersion;
1806 	params.PageLength = hdr->PageLength;
1807 	params.PageNumber = hdr->PageNumber;
1808 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1809 	params.PageAddress = PageAddress;
1810 	error = mpt_issue_cfg_req(mpt, req, &params,
1811 				  req->req_pbuf + MPT_RQSL(mpt),
1812 				  len, sleep_ok, timeout_ms);
1813 	if (error != 0) {
1814 		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1815 		return (-1);
1816 	}
1817 
1818 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1819 		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1820 			req->IOCStatus);
1821 		mpt_free_request(mpt, req);
1822 		return (-1);
1823 	}
1824 	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1825 	mpt_free_request(mpt, req);
1826 	return (0);
1827 }
1828 
1829 int
1830 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1831 		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1832 		   int timeout_ms)
1833 {
1834 	request_t    *req;
1835 	cfgparms_t    params;
1836 	u_int	      hdr_attr;
1837 	int	      error;
1838 
1839 	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1840 	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1841 	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1842 		mpt_prt(mpt, "page type 0x%x not changeable\n",
1843 			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1844 		return (-1);
1845 	}
1846 
1847 #if	0
1848 	/*
1849 	 * We shouldn't mask off other bits here.
1850 	 */
1851 	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1852 #endif
1853 
1854 	req = mpt_get_request(mpt, sleep_ok);
1855 	if (req == NULL)
1856 		return (-1);
1857 
1858 	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1859 
1860 	/*
1861 	 * There isn't any point in restoring stripped out attributes
1862 	 * if you then mask them going down to issue the request.
1863 	 */
1864 
1865 	params.Action = Action;
1866 	params.PageVersion = hdr->PageVersion;
1867 	params.PageLength = hdr->PageLength;
1868 	params.PageNumber = hdr->PageNumber;
1869 	params.PageAddress = PageAddress;
1870 #if	0
1871 	/* Restore stripped out attributes */
1872 	hdr->PageType |= hdr_attr;
1873 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1874 #else
1875 	params.PageType = hdr->PageType;
1876 #endif
1877 	error = mpt_issue_cfg_req(mpt, req, &params,
1878 				  req->req_pbuf + MPT_RQSL(mpt),
1879 				  len, sleep_ok, timeout_ms);
1880 	if (error != 0) {
1881 		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1882 		return (-1);
1883 	}
1884 
1885         if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1886 		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1887 			req->IOCStatus);
1888 		mpt_free_request(mpt, req);
1889 		return (-1);
1890 	}
1891 	mpt_free_request(mpt, req);
1892 	return (0);
1893 }
1894 
1895 /*
1896  * Read IOC configuration information
1897  */
1898 static int
1899 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1900 {
1901 	CONFIG_PAGE_HEADER hdr;
1902 	struct mpt_raid_volume *mpt_raid;
1903 	int rv;
1904 	int i;
1905 	size_t len;
1906 
1907 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1908 		2, 0, &hdr, FALSE, 5000);
1909 	/*
1910 	 * If it's an invalid page, so what? Not a supported function....
1911 	 */
1912 	if (rv == EINVAL) {
1913 		return (0);
1914 	}
1915 	if (rv) {
1916 		return (rv);
1917 	}
1918 
1919 	mpt_lprt(mpt, MPT_PRT_DEBUG,
1920 	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1921 	    hdr.PageVersion, hdr.PageLength << 2,
1922 	    hdr.PageNumber, hdr.PageType);
1923 
1924 	len = hdr.PageLength * sizeof(uint32_t);
1925 	mpt->ioc_page2 = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1926 	if (mpt->ioc_page2 == NULL) {
1927 		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1928 		mpt_raid_free_mem(mpt);
1929 		return (ENOMEM);
1930 	}
1931 	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1932 	rv = mpt_read_cur_cfg_page(mpt, 0,
1933 	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1934 	if (rv) {
1935 		mpt_prt(mpt, "failed to read IOC Page 2\n");
1936 		mpt_raid_free_mem(mpt);
1937 		return (EIO);
1938 	}
1939 	mpt2host_config_page_ioc2(mpt->ioc_page2);
1940 
1941 	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1942 		uint32_t mask;
1943 
1944 		mpt_prt(mpt, "Capabilities: (");
1945 		for (mask = 1; mask != 0; mask <<= 1) {
1946 			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1947 				continue;
1948 			}
1949 			switch (mask) {
1950 			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1951 				mpt_prtc(mpt, " RAID-0");
1952 				break;
1953 			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1954 				mpt_prtc(mpt, " RAID-1E");
1955 				break;
1956 			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1957 				mpt_prtc(mpt, " RAID-1");
1958 				break;
1959 			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1960 				mpt_prtc(mpt, " SES");
1961 				break;
1962 			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1963 				mpt_prtc(mpt, " SAFTE");
1964 				break;
1965 			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1966 				mpt_prtc(mpt, " Multi-Channel-Arrays");
1967 			default:
1968 				break;
1969 			}
1970 		}
1971 		mpt_prtc(mpt, " )\n");
1972 		if ((mpt->ioc_page2->CapabilitiesFlags
1973 		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1974 		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1975 		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1976 			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1977 				mpt->ioc_page2->NumActiveVolumes,
1978 				mpt->ioc_page2->NumActiveVolumes != 1
1979 			      ? "s " : " ",
1980 				mpt->ioc_page2->MaxVolumes);
1981 			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1982 				mpt->ioc_page2->NumActivePhysDisks,
1983 				mpt->ioc_page2->NumActivePhysDisks != 1
1984 			      ? "s " : " ",
1985 				mpt->ioc_page2->MaxPhysDisks);
1986 		}
1987 	}
1988 
1989 	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1990 	mpt->raid_volumes = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1991 	if (mpt->raid_volumes == NULL) {
1992 		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1993 		mpt_raid_free_mem(mpt);
1994 		return (ENOMEM);
1995 	}
1996 
1997 	/*
1998 	 * Copy critical data out of ioc_page2 so that we can
1999 	 * safely refresh the page without windows of unreliable
2000 	 * data.
2001 	 */
2002 	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
2003 
2004 	len = sizeof(*mpt->raid_volumes->config_page) +
2005 	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2006 	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2007 		mpt_raid = &mpt->raid_volumes[i];
2008 		mpt_raid->config_page =
2009 		    kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2010 		if (mpt_raid->config_page == NULL) {
2011 			mpt_prt(mpt, "Could not allocate RAID page data\n");
2012 			mpt_raid_free_mem(mpt);
2013 			return (ENOMEM);
2014 		}
2015 	}
2016 	mpt->raid_page0_len = len;
2017 
2018 	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2019 	mpt->raid_disks = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2020 	if (mpt->raid_disks == NULL) {
2021 		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2022 		mpt_raid_free_mem(mpt);
2023 		return (ENOMEM);
2024 	}
2025 	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2026 
2027 	/*
2028 	 * Load page 3.
2029 	 */
2030 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2031 	    3, 0, &hdr, FALSE, 5000);
2032 	if (rv) {
2033 		mpt_raid_free_mem(mpt);
2034 		return (EIO);
2035 	}
2036 
2037 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2038 	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2039 
2040 	len = hdr.PageLength * sizeof(uint32_t);
2041 	mpt->ioc_page3 = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2042 	if (mpt->ioc_page3 == NULL) {
2043 		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2044 		mpt_raid_free_mem(mpt);
2045 		return (ENOMEM);
2046 	}
2047 	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2048 	rv = mpt_read_cur_cfg_page(mpt, 0,
2049 	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2050 	if (rv) {
2051 		mpt_raid_free_mem(mpt);
2052 		return (EIO);
2053 	}
2054 	mpt2host_config_page_ioc3(mpt->ioc_page3);
2055 	mpt_raid_wakeup(mpt);
2056 	return (0);
2057 }
2058 
2059 /*
2060  * Enable IOC port
2061  */
2062 static int
2063 mpt_send_port_enable(struct mpt_softc *mpt, int port)
2064 {
2065 	request_t	*req;
2066 	MSG_PORT_ENABLE *enable_req;
2067 	int		 error;
2068 
2069 	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2070 	if (req == NULL)
2071 		return (-1);
2072 
2073 	enable_req = req->req_vbuf;
2074 	memset(enable_req, 0,  MPT_RQSL(mpt));
2075 
2076 	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2077 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2078 	enable_req->PortNumber = port;
2079 
2080 	mpt_check_doorbell(mpt);
2081 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2082 
2083 	mpt_send_cmd(mpt, req);
2084 	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2085 	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2086 	if (error != 0) {
2087 		mpt_prt(mpt, "port %d enable timed out\n", port);
2088 		return (-1);
2089 	}
2090 	mpt_free_request(mpt, req);
2091 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2092 	return (0);
2093 }
2094 
2095 /*
2096  * Enable/Disable asynchronous event reporting.
2097  */
2098 static int
2099 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2100 {
2101 	request_t *req;
2102 	MSG_EVENT_NOTIFY *enable_req;
2103 
2104 	req = mpt_get_request(mpt, FALSE);
2105 	if (req == NULL) {
2106 		return (ENOMEM);
2107 	}
2108 	enable_req = req->req_vbuf;
2109 	memset(enable_req, 0, sizeof *enable_req);
2110 
2111 	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2112 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2113 	enable_req->Switch     = onoff;
2114 
2115 	mpt_check_doorbell(mpt);
2116 	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2117 	    onoff ? "en" : "dis");
2118 	/*
2119 	 * Send the command off, but don't wait for it.
2120 	 */
2121 	mpt_send_cmd(mpt, req);
2122 	return (0);
2123 }
2124 
2125 /*
2126  * Un-mask the interrupts on the chip.
2127  */
2128 void
2129 mpt_enable_ints(struct mpt_softc *mpt)
2130 {
2131 
2132 	/* Unmask every thing except door bell int */
2133 	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2134 }
2135 
2136 /*
2137  * Mask the interrupts on the chip.
2138  */
2139 void
2140 mpt_disable_ints(struct mpt_softc *mpt)
2141 {
2142 
2143 	/* Mask all interrupts */
2144 	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2145 	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2146 }
2147 
2148 static void
2149 mpt_sysctl_attach(struct mpt_softc *mpt)
2150 {
2151 	SYSCTL_ADD_UINT(&mpt->mpt_sysctl_ctx,
2152 		       SYSCTL_CHILDREN(mpt->mpt_sysctl_tree), OID_AUTO,
2153 		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2154 		       "Debugging/Verbose level");
2155 	SYSCTL_ADD_UINT(&mpt->mpt_sysctl_ctx,
2156 		       SYSCTL_CHILDREN(mpt->mpt_sysctl_tree), OID_AUTO,
2157 		       "role", CTLFLAG_RD, &mpt->role, 0,
2158 		       "HBA role");
2159 #ifdef	MPT_TEST_MULTIPATH
2160 	SYSCTL_ADD_INT(&mpt->mpt_sysctl_ctx,
2161 		       SYSCTL_CHILDREN(mpt->mpt_sysctl_tree), OID_AUTO,
2162 		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2163 		       "Next Target to Fail");
2164 #endif
2165 }
2166 
2167 int
2168 mpt_attach(struct mpt_softc *mpt)
2169 {
2170 	struct mpt_personality *pers;
2171 	int i;
2172 	int error;
2173 
2174 	mpt_core_attach(mpt);
2175 	mpt_core_enable(mpt);
2176 
2177 	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2178 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2179 		pers = mpt_personalities[i];
2180 		if (pers == NULL) {
2181 			continue;
2182 		}
2183 		if (pers->probe(mpt) == 0) {
2184 			error = pers->attach(mpt);
2185 			if (error != 0) {
2186 				mpt_detach(mpt);
2187 				return (error);
2188 			}
2189 			mpt->mpt_pers_mask |= (0x1 << pers->id);
2190 			pers->use_count++;
2191 		}
2192 	}
2193 
2194 	/*
2195 	 * Now that we've attached everything, do the enable function
2196 	 * for all of the personalities. This allows the personalities
2197 	 * to do setups that are appropriate for them prior to enabling
2198 	 * any ports.
2199 	 */
2200 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2201 		pers = mpt_personalities[i];
2202 		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2203 			error = pers->enable(mpt);
2204 			if (error != 0) {
2205 				mpt_prt(mpt, "personality %s attached but would"
2206 				    " not enable (%d)\n", pers->name, error);
2207 				mpt_detach(mpt);
2208 				return (error);
2209 			}
2210 		}
2211 	}
2212 	return (0);
2213 }
2214 
2215 int
2216 mpt_shutdown(struct mpt_softc *mpt)
2217 {
2218 	struct mpt_personality *pers;
2219 
2220 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2221 		pers->shutdown(mpt);
2222 	}
2223 	return (0);
2224 }
2225 
2226 int
2227 mpt_detach(struct mpt_softc *mpt)
2228 {
2229 	struct mpt_personality *pers;
2230 
2231 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2232 		pers->detach(mpt);
2233 		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2234 		pers->use_count--;
2235 	}
2236 	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2237 	return (0);
2238 }
2239 
2240 static int
2241 mpt_core_load(struct mpt_personality *pers)
2242 {
2243 	int i;
2244 
2245 	/*
2246 	 * Setup core handlers and insert the default handler
2247 	 * into all "empty slots".
2248 	 */
2249 	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2250 		mpt_reply_handlers[i] = mpt_default_reply_handler;
2251 	}
2252 
2253 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2254 	    mpt_event_reply_handler;
2255 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2256 	    mpt_config_reply_handler;
2257 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2258 	    mpt_handshake_reply_handler;
2259 	return (0);
2260 }
2261 
2262 /*
2263  * Initialize per-instance driver data and perform
2264  * initial controller configuration.
2265  */
2266 static int
2267 mpt_core_attach(struct mpt_softc *mpt)
2268 {
2269         int val, error;
2270 
2271 	LIST_INIT(&mpt->ack_frames);
2272 	/* Put all request buffers on the free list */
2273 	TAILQ_INIT(&mpt->request_pending_list);
2274 	TAILQ_INIT(&mpt->request_free_list);
2275 	TAILQ_INIT(&mpt->request_timeout_list);
2276 	for (val = 0; val < MPT_MAX_LUNS; val++) {
2277 		STAILQ_INIT(&mpt->trt[val].atios);
2278 		STAILQ_INIT(&mpt->trt[val].inots);
2279 	}
2280 	STAILQ_INIT(&mpt->trt_wildcard.atios);
2281 	STAILQ_INIT(&mpt->trt_wildcard.inots);
2282 #ifdef	MPT_TEST_MULTIPATH
2283 	mpt->failure_id = -1;
2284 #endif
2285 	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2286 	sysctl_ctx_init(&mpt->mpt_sysctl_ctx);
2287 	mpt->mpt_sysctl_tree = SYSCTL_ADD_NODE(&mpt->mpt_sysctl_ctx,
2288 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
2289 	    device_get_nameunit(mpt->dev), CTLFLAG_RD, 0, "");
2290 	if (mpt->mpt_sysctl_tree == NULL) {
2291 		device_printf(mpt->dev, "can't add sysctl node\n");
2292 		return (EINVAL);
2293 	}
2294 	mpt_sysctl_attach(mpt);
2295 	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2296 	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2297 
2298 	MPT_LOCK(mpt);
2299 	error = mpt_configure_ioc(mpt, 0, 0);
2300 	MPT_UNLOCK(mpt);
2301 
2302 	return (error);
2303 }
2304 
2305 static int
2306 mpt_core_enable(struct mpt_softc *mpt)
2307 {
2308 
2309 	/*
2310 	 * We enter with the IOC enabled, but async events
2311 	 * not enabled, ports not enabled and interrupts
2312 	 * not enabled.
2313 	 */
2314 	MPT_LOCK(mpt);
2315 
2316 	/*
2317 	 * Enable asynchronous event reporting- all personalities
2318 	 * have attached so that they should be able to now field
2319 	 * async events.
2320 	 */
2321 	mpt_send_event_request(mpt, 1);
2322 
2323 	/*
2324 	 * Catch any pending interrupts
2325 	 *
2326 	 * This seems to be crucial- otherwise
2327 	 * the portenable below times out.
2328 	 */
2329 	mpt_intr(mpt);
2330 
2331 	/*
2332 	 * Enable Interrupts
2333 	 */
2334 	mpt_enable_ints(mpt);
2335 
2336 	/*
2337 	 * Catch any pending interrupts
2338 	 *
2339 	 * This seems to be crucial- otherwise
2340 	 * the portenable below times out.
2341 	 */
2342 	mpt_intr(mpt);
2343 
2344 	/*
2345 	 * Enable the port.
2346 	 */
2347 	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2348 		mpt_prt(mpt, "failed to enable port 0\n");
2349 		MPT_UNLOCK(mpt);
2350 		return (ENXIO);
2351 	}
2352 	MPT_UNLOCK(mpt);
2353 	return (0);
2354 }
2355 
2356 static void
2357 mpt_core_shutdown(struct mpt_softc *mpt)
2358 {
2359 
2360 	mpt_disable_ints(mpt);
2361 }
2362 
2363 static void
2364 mpt_core_detach(struct mpt_softc *mpt)
2365 {
2366 	int val;
2367 
2368 	/*
2369 	 * XXX: FREE MEMORY
2370 	 */
2371 	mpt_disable_ints(mpt);
2372 
2373 	/* Make sure no request has pending timeouts. */
2374 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2375 		request_t *req = &mpt->request_pool[val];
2376 		callout_stop(&req->callout);
2377 	}
2378 
2379 	mpt_dma_buf_free(mpt);
2380 
2381 	if (mpt->mpt_sysctl_tree != NULL)
2382 		sysctl_ctx_free(&mpt->mpt_sysctl_ctx);
2383 }
2384 
2385 static int
2386 mpt_core_unload(struct mpt_personality *pers)
2387 {
2388 
2389 	/* Unload is always successful. */
2390 	return (0);
2391 }
2392 
2393 #define FW_UPLOAD_REQ_SIZE				\
2394 	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2395        + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2396 
2397 static int
2398 mpt_upload_fw(struct mpt_softc *mpt)
2399 {
2400 	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2401 	MSG_FW_UPLOAD_REPLY fw_reply;
2402 	MSG_FW_UPLOAD *fw_req;
2403 	FW_UPLOAD_TCSGE *tsge;
2404 	SGE_SIMPLE32 *sge;
2405 	uint32_t flags;
2406 	int error;
2407 
2408 	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2409 	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2410 	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2411 	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2412 	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2413 	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2414 	tsge->DetailsLength = 12;
2415 	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2416 	tsge->ImageSize = htole32(mpt->fw_image_size);
2417 	sge = (SGE_SIMPLE32 *)(tsge + 1);
2418 	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2419 	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2420 	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2421 	flags <<= MPI_SGE_FLAGS_SHIFT;
2422 	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2423 	sge->Address = htole32(mpt->fw_phys);
2424 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2425 	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2426 	if (error)
2427 		return(error);
2428 	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2429 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2430 	return (error);
2431 }
2432 
2433 static void
2434 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2435 	       uint32_t *data, bus_size_t len)
2436 {
2437 	uint32_t *data_end;
2438 
2439 	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2440 	if (mpt->is_sas) {
2441 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2442 	}
2443 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2444 	while (data != data_end) {
2445 		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2446 		data++;
2447 	}
2448 	if (mpt->is_sas) {
2449 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2450 	}
2451 }
2452 
2453 static int
2454 mpt_download_fw(struct mpt_softc *mpt)
2455 {
2456 	MpiFwHeader_t *fw_hdr;
2457 	int error;
2458 	uint32_t ext_offset;
2459 	uint32_t data;
2460 
2461 	if (mpt->pci_pio_reg == NULL) {
2462 		mpt_prt(mpt, "No PIO resource!\n");
2463 		return (ENXIO);
2464 	}
2465 
2466 	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2467 		mpt->fw_image_size);
2468 
2469 	error = mpt_enable_diag_mode(mpt);
2470 	if (error != 0) {
2471 		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2472 		return (EIO);
2473 	}
2474 
2475 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2476 		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2477 
2478 	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2479 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2480 	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2481 		       fw_hdr->ImageSize);
2482 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2483 
2484 	ext_offset = fw_hdr->NextImageHeaderOffset;
2485 	while (ext_offset != 0) {
2486 		MpiExtImageHeader_t *ext;
2487 
2488 		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2489 		ext_offset = ext->NextImageHeaderOffset;
2490 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2491 		    BUS_DMASYNC_PREWRITE);
2492 		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2493 			       ext->ImageSize);
2494 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2495 		    BUS_DMASYNC_POSTWRITE);
2496 	}
2497 
2498 	if (mpt->is_sas) {
2499 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2500 	}
2501 	/* Setup the address to jump to on reset. */
2502 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2503 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2504 
2505 	/*
2506 	 * The controller sets the "flash bad" status after attempting
2507 	 * to auto-boot from flash.  Clear the status so that the controller
2508 	 * will continue the boot process with our newly installed firmware.
2509 	 */
2510 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2511 	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2512 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2513 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2514 
2515 	if (mpt->is_sas) {
2516 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2517 	}
2518 
2519 	/*
2520 	 * Re-enable the processor and clear the boot halt flag.
2521 	 */
2522 	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2523 	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2524 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2525 
2526 	mpt_disable_diag_mode(mpt);
2527 	return (0);
2528 }
2529 
2530 static int
2531 mpt_dma_buf_alloc(struct mpt_softc *mpt)
2532 {
2533 	struct mpt_map_info mi;
2534 	uint8_t *vptr;
2535 	uint32_t pptr, end;
2536 	int i, error;
2537 
2538 	/* Create a child tag for data buffers */
2539 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2540 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2541 	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2542 	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2543 	    &mpt->buffer_dmat) != 0) {
2544 		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2545 		return (1);
2546 	}
2547 
2548 	/* Create a child tag for request buffers */
2549 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2550 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2551 	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2552 	    &mpt->request_dmat) != 0) {
2553 		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2554 		return (1);
2555 	}
2556 
2557 	/* Allocate some DMA accessible memory for requests */
2558 	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2559 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2560 		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2561 		    MPT_REQ_MEM_SIZE(mpt));
2562 		return (1);
2563 	}
2564 
2565 	mi.mpt = mpt;
2566 	mi.error = 0;
2567 
2568 	/* Load and lock it into "bus space" */
2569 	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2570 	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2571 
2572 	if (mi.error) {
2573 		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2574 		    mi.error);
2575 		return (1);
2576 	}
2577 	mpt->request_phys = mi.phys;
2578 
2579 	/*
2580 	 * Now create per-request dma maps
2581 	 */
2582 	i = 0;
2583 	pptr =  mpt->request_phys;
2584 	vptr =  mpt->request;
2585 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2586 	while(pptr < end) {
2587 		request_t *req = &mpt->request_pool[i];
2588 		req->index = i++;
2589 
2590 		/* Store location of Request Data */
2591 		req->req_pbuf = pptr;
2592 		req->req_vbuf = vptr;
2593 
2594 		pptr += MPT_REQUEST_AREA;
2595 		vptr += MPT_REQUEST_AREA;
2596 
2597 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2598 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2599 
2600 		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2601 		if (error) {
2602 			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2603 			    error);
2604 			return (1);
2605 		}
2606 	}
2607 
2608 	return (0);
2609 }
2610 
2611 static void
2612 mpt_dma_buf_free(struct mpt_softc *mpt)
2613 {
2614 	int i;
2615 
2616 	if (mpt->request_dmat == 0) {
2617 		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2618 		return;
2619 	}
2620 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2621 		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2622 	}
2623 	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2624 	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2625 	bus_dma_tag_destroy(mpt->request_dmat);
2626 	mpt->request_dmat = 0;
2627 	bus_dma_tag_destroy(mpt->buffer_dmat);
2628 }
2629 
2630 /*
2631  * Allocate/Initialize data structures for the controller.  Called
2632  * once at instance startup.
2633  */
2634 static int
2635 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2636 {
2637 	PTR_MSG_PORT_FACTS_REPLY pfp;
2638 	int error, port, val;
2639 	size_t len;
2640 
2641 	if (tn == MPT_MAX_TRYS) {
2642 		return (-1);
2643 	}
2644 
2645 	/*
2646 	 * No need to reset if the IOC is already in the READY state.
2647 	 *
2648 	 * Force reset if initialization failed previously.
2649 	 * Note that a hard_reset of the second channel of a '929
2650 	 * will stop operation of the first channel.  Hopefully, if the
2651 	 * first channel is ok, the second will not require a hard
2652 	 * reset.
2653 	 */
2654 	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2655 		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2656 			return (mpt_configure_ioc(mpt, tn++, 1));
2657 		}
2658 		needreset = 0;
2659 	}
2660 
2661 	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2662 		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2663 		return (mpt_configure_ioc(mpt, tn++, 1));
2664 	}
2665 	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2666 
2667 	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2668 	    mpt->ioc_facts.MsgVersion >> 8,
2669 	    mpt->ioc_facts.MsgVersion & 0xFF,
2670 	    mpt->ioc_facts.HeaderVersion >> 8,
2671 	    mpt->ioc_facts.HeaderVersion & 0xFF);
2672 
2673 	/*
2674 	 * Now that we know request frame size, we can calculate
2675 	 * the actual (reasonable) segment limit for read/write I/O.
2676 	 *
2677 	 * This limit is constrained by:
2678 	 *
2679 	 *  + The size of each area we allocate per command (and how
2680 	 *    many chain segments we can fit into it).
2681 	 *  + The total number of areas we've set up.
2682 	 *  + The actual chain depth the card will allow.
2683 	 *
2684 	 * The first area's segment count is limited by the I/O request
2685 	 * at the head of it. We cannot allocate realistically more
2686 	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2687 	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2688 	 *
2689 	 */
2690 	/* total number of request areas we (can) allocate */
2691 	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2692 
2693 	/* converted to the number of chain areas possible */
2694 	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2695 
2696 	/* limited by the number of chain areas the card will support */
2697 	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2698 		mpt_lprt(mpt, MPT_PRT_INFO,
2699 		    "chain depth limited to %u (from %u)\n",
2700 		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2701 		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2702 	}
2703 
2704 	/* converted to the number of simple sges in chain segments. */
2705 	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2706 
2707 	/*
2708 	 * Use this as the basis for reporting the maximum I/O size to CAM.
2709 	 */
2710 	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2711 
2712 	error = mpt_dma_buf_alloc(mpt);
2713 	if (error != 0) {
2714 		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2715 		return (EIO);
2716 	}
2717 
2718 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2719 		request_t *req = &mpt->request_pool[val];
2720 		req->state = REQ_STATE_ALLOCATED;
2721 		mpt_callout_init(mpt, &req->callout);
2722 		mpt_free_request(mpt, req);
2723 	}
2724 
2725 	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2726 		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2727 		 mpt->max_cam_seg_cnt);
2728 
2729 	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2730 	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2731 	mpt_lprt(mpt, MPT_PRT_INFO,
2732 	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2733 	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2734 	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2735 	    mpt->ioc_facts.RequestFrameSize << 2,
2736 	    mpt->ioc_facts.MaxChainDepth);
2737 	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2738 	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2739 	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2740 
2741 	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2742 	mpt->port_facts = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2743 	if (mpt->port_facts == NULL) {
2744 		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2745 		return (ENOMEM);
2746 	}
2747 
2748 
2749 	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2750 	    (mpt->fw_uploaded == 0)) {
2751 		struct mpt_map_info mi;
2752 
2753 		/*
2754 		 * In some configurations, the IOC's firmware is
2755 		 * stored in a shared piece of system NVRAM that
2756 		 * is only accessible via the BIOS.  In this
2757 		 * case, the firmware keeps a copy of firmware in
2758 		 * RAM until the OS driver retrieves it.  Once
2759 		 * retrieved, we are responsible for re-downloading
2760 		 * the firmware after any hard-reset.
2761 		 */
2762 		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2763 		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2764 		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2765 		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2766 		    &mpt->fw_dmat);
2767 		if (error != 0) {
2768 			mpt_prt(mpt, "cannot create firmware dma tag\n");
2769 			return (ENOMEM);
2770 		}
2771 		error = bus_dmamem_alloc(mpt->fw_dmat,
2772 		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2773 		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2774 		if (error != 0) {
2775 			mpt_prt(mpt, "cannot allocate firmware memory\n");
2776 			bus_dma_tag_destroy(mpt->fw_dmat);
2777 			return (ENOMEM);
2778 		}
2779 		mi.mpt = mpt;
2780 		mi.error = 0;
2781 		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2782 		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2783 		mpt->fw_phys = mi.phys;
2784 
2785 		error = mpt_upload_fw(mpt);
2786 		if (error != 0) {
2787 			mpt_prt(mpt, "firmware upload failed.\n");
2788 			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2789 			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2790 			    mpt->fw_dmap);
2791 			bus_dma_tag_destroy(mpt->fw_dmat);
2792 			mpt->fw_image = NULL;
2793 			return (EIO);
2794 		}
2795 		mpt->fw_uploaded = 1;
2796 	}
2797 
2798 	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2799 		pfp = &mpt->port_facts[port];
2800 		error = mpt_get_portfacts(mpt, 0, pfp);
2801 		if (error != MPT_OK) {
2802 			mpt_prt(mpt,
2803 			    "mpt_get_portfacts on port %d failed\n", port);
2804 			kfree(mpt->port_facts, M_DEVBUF);
2805 			mpt->port_facts = NULL;
2806 			return (mpt_configure_ioc(mpt, tn++, 1));
2807 		}
2808 		mpt2host_portfacts_reply(pfp);
2809 
2810 		if (port > 0) {
2811 			error = MPT_PRT_INFO;
2812 		} else {
2813 			error = MPT_PRT_DEBUG;
2814 		}
2815 		mpt_lprt(mpt, error,
2816 		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2817 		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2818 		    pfp->MaxDevices);
2819 
2820 	}
2821 
2822 	/*
2823 	 * XXX: Not yet supporting more than port 0
2824 	 */
2825 	pfp = &mpt->port_facts[0];
2826 	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2827 		mpt->is_fc = 1;
2828 		mpt->is_sas = 0;
2829 		mpt->is_spi = 0;
2830 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2831 		mpt->is_fc = 0;
2832 		mpt->is_sas = 1;
2833 		mpt->is_spi = 0;
2834 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2835 		mpt->is_fc = 0;
2836 		mpt->is_sas = 0;
2837 		mpt->is_spi = 1;
2838 		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2839 			mpt->mpt_ini_id = pfp->PortSCSIID;
2840 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2841 		mpt_prt(mpt, "iSCSI not supported yet\n");
2842 		return (ENXIO);
2843 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2844 		mpt_prt(mpt, "Inactive Port\n");
2845 		return (ENXIO);
2846 	} else {
2847 		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2848 		return (ENXIO);
2849 	}
2850 
2851 	/*
2852 	 * Set our role with what this port supports.
2853 	 *
2854 	 * Note this might be changed later in different modules
2855 	 * if this is different from what is wanted.
2856 	 */
2857 	mpt->role = MPT_ROLE_NONE;
2858 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2859 		mpt->role |= MPT_ROLE_INITIATOR;
2860 	}
2861 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2862 		mpt->role |= MPT_ROLE_TARGET;
2863 	}
2864 
2865 	/*
2866 	 * Enable the IOC
2867 	 */
2868 	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2869 		mpt_prt(mpt, "unable to initialize IOC\n");
2870 		return (ENXIO);
2871 	}
2872 
2873 	/*
2874 	 * Read IOC configuration information.
2875 	 *
2876 	 * We need this to determine whether or not we have certain
2877 	 * settings for Integrated Mirroring (e.g.).
2878 	 */
2879 	mpt_read_config_info_ioc(mpt);
2880 
2881 	return (0);
2882 }
2883 
2884 static int
2885 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2886 {
2887 	uint32_t pptr;
2888 	int val;
2889 
2890 	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2891 		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2892 		return (EIO);
2893 	}
2894 
2895 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2896 
2897 	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2898 		mpt_prt(mpt, "IOC failed to go to run state\n");
2899 		return (ENXIO);
2900 	}
2901 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2902 
2903 	/*
2904 	 * Give it reply buffers
2905 	 *
2906 	 * Do *not* exceed global credits.
2907 	 */
2908 	for (val = 0, pptr = mpt->reply_phys;
2909 	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2910 	     pptr += MPT_REPLY_SIZE) {
2911 		mpt_free_reply(mpt, pptr);
2912 		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2913 			break;
2914 	}
2915 
2916 
2917 	/*
2918 	 * Enable the port if asked. This is only done if we're resetting
2919 	 * the IOC after initial startup.
2920 	 */
2921 	if (portenable) {
2922 		/*
2923 		 * Enable asynchronous event reporting
2924 		 */
2925 		mpt_send_event_request(mpt, 1);
2926 
2927 		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2928 			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2929 			return (ENXIO);
2930 		}
2931 	}
2932 	return (MPT_OK);
2933 }
2934 
2935 /*
2936  * Endian Conversion Functions- only used on Big Endian machines
2937  */
2938 #if	_BYTE_ORDER == _BIG_ENDIAN
2939 void
2940 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2941 {
2942 
2943 	MPT_2_HOST32(sge, FlagsLength);
2944 	MPT_2_HOST32(sge, u.Address64.Low);
2945 	MPT_2_HOST32(sge, u.Address64.High);
2946 }
2947 
2948 void
2949 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2950 {
2951 
2952 	MPT_2_HOST16(rp, MsgVersion);
2953 	MPT_2_HOST16(rp, HeaderVersion);
2954 	MPT_2_HOST32(rp, MsgContext);
2955 	MPT_2_HOST16(rp, IOCExceptions);
2956 	MPT_2_HOST16(rp, IOCStatus);
2957 	MPT_2_HOST32(rp, IOCLogInfo);
2958 	MPT_2_HOST16(rp, ReplyQueueDepth);
2959 	MPT_2_HOST16(rp, RequestFrameSize);
2960 	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2961 	MPT_2_HOST16(rp, ProductID);
2962 	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2963 	MPT_2_HOST16(rp, GlobalCredits);
2964 	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2965 	MPT_2_HOST16(rp, CurReplyFrameSize);
2966 	MPT_2_HOST32(rp, FWImageSize);
2967 	MPT_2_HOST32(rp, IOCCapabilities);
2968 	MPT_2_HOST32(rp, FWVersion.Word);
2969 	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2970 	MPT_2_HOST16(rp, Reserved2);
2971 	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2972 	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2973 }
2974 
2975 void
2976 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2977 {
2978 
2979 	MPT_2_HOST16(pfp, Reserved);
2980 	MPT_2_HOST16(pfp, Reserved1);
2981 	MPT_2_HOST32(pfp, MsgContext);
2982 	MPT_2_HOST16(pfp, Reserved2);
2983 	MPT_2_HOST16(pfp, IOCStatus);
2984 	MPT_2_HOST32(pfp, IOCLogInfo);
2985 	MPT_2_HOST16(pfp, MaxDevices);
2986 	MPT_2_HOST16(pfp, PortSCSIID);
2987 	MPT_2_HOST16(pfp, ProtocolFlags);
2988 	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2989 	MPT_2_HOST16(pfp, MaxPersistentIDs);
2990 	MPT_2_HOST16(pfp, MaxLanBuckets);
2991 	MPT_2_HOST16(pfp, Reserved4);
2992 	MPT_2_HOST32(pfp, Reserved5);
2993 }
2994 
2995 void
2996 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2997 {
2998 	int i;
2999 
3000 	MPT_2_HOST32(ioc2, CapabilitiesFlags);
3001 	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
3002 		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
3003 	}
3004 }
3005 
3006 void
3007 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
3008 {
3009 
3010 	MPT_2_HOST16(ioc3, Reserved2);
3011 }
3012 
3013 void
3014 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3015 {
3016 
3017 	MPT_2_HOST32(sp0, Capabilities);
3018 	MPT_2_HOST32(sp0, PhysicalInterface);
3019 }
3020 
3021 void
3022 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3023 {
3024 
3025 	MPT_2_HOST32(sp1, Configuration);
3026 	MPT_2_HOST32(sp1, OnBusTimerValue);
3027 	MPT_2_HOST16(sp1, IDConfig);
3028 }
3029 
3030 void
3031 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3032 {
3033 
3034 	HOST_2_MPT32(sp1, Configuration);
3035 	HOST_2_MPT32(sp1, OnBusTimerValue);
3036 	HOST_2_MPT16(sp1, IDConfig);
3037 }
3038 
3039 void
3040 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3041 {
3042 	int i;
3043 
3044 	MPT_2_HOST32(sp2, PortFlags);
3045 	MPT_2_HOST32(sp2, PortSettings);
3046 	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3047 	    sizeof(*sp2->DeviceSettings); i++) {
3048 		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3049 	}
3050 }
3051 
3052 void
3053 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3054 {
3055 
3056 	MPT_2_HOST32(sd0, NegotiatedParameters);
3057 	MPT_2_HOST32(sd0, Information);
3058 }
3059 
3060 void
3061 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3062 {
3063 
3064 	MPT_2_HOST32(sd1, RequestedParameters);
3065 	MPT_2_HOST32(sd1, Reserved);
3066 	MPT_2_HOST32(sd1, Configuration);
3067 }
3068 
3069 void
3070 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3071 {
3072 
3073 	HOST_2_MPT32(sd1, RequestedParameters);
3074 	HOST_2_MPT32(sd1, Reserved);
3075 	HOST_2_MPT32(sd1, Configuration);
3076 }
3077 
3078 void
3079 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3080 {
3081 
3082 	MPT_2_HOST32(fp0, Flags);
3083 	MPT_2_HOST32(fp0, PortIdentifier);
3084 	MPT_2_HOST32(fp0, WWNN.Low);
3085 	MPT_2_HOST32(fp0, WWNN.High);
3086 	MPT_2_HOST32(fp0, WWPN.Low);
3087 	MPT_2_HOST32(fp0, WWPN.High);
3088 	MPT_2_HOST32(fp0, SupportedServiceClass);
3089 	MPT_2_HOST32(fp0, SupportedSpeeds);
3090 	MPT_2_HOST32(fp0, CurrentSpeed);
3091 	MPT_2_HOST32(fp0, MaxFrameSize);
3092 	MPT_2_HOST32(fp0, FabricWWNN.Low);
3093 	MPT_2_HOST32(fp0, FabricWWNN.High);
3094 	MPT_2_HOST32(fp0, FabricWWPN.Low);
3095 	MPT_2_HOST32(fp0, FabricWWPN.High);
3096 	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3097 	MPT_2_HOST32(fp0, MaxInitiators);
3098 }
3099 
3100 void
3101 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3102 {
3103 
3104 	MPT_2_HOST32(fp1, Flags);
3105 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3106 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3107 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3108 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3109 }
3110 
3111 void
3112 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3113 {
3114 
3115 	HOST_2_MPT32(fp1, Flags);
3116 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3117 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3118 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3119 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3120 }
3121 
3122 void
3123 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3124 {
3125 	int i;
3126 
3127 	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3128 	MPT_2_HOST16(volp, VolumeSettings.Settings);
3129 	MPT_2_HOST32(volp, MaxLBA);
3130 	MPT_2_HOST32(volp, MaxLBAHigh);
3131 	MPT_2_HOST32(volp, StripeSize);
3132 	MPT_2_HOST32(volp, Reserved2);
3133 	MPT_2_HOST32(volp, Reserved3);
3134 	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3135 		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3136 	}
3137 }
3138 
3139 void
3140 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3141 {
3142 
3143 	MPT_2_HOST32(rpd0, Reserved1);
3144 	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3145 	MPT_2_HOST32(rpd0, MaxLBA);
3146 	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3147 	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3148 	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3149 }
3150 
3151 void
3152 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3153 {
3154 
3155 	MPT_2_HOST16(vi, TotalBlocks.High);
3156 	MPT_2_HOST16(vi, TotalBlocks.Low);
3157 	MPT_2_HOST16(vi, BlocksRemaining.High);
3158 	MPT_2_HOST16(vi, BlocksRemaining.Low);
3159 }
3160 #endif
3161