xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision a68e0df0)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  * $DragonFly: src/sys/dev/disk/nata/ata-raid.c,v 1.11 2008/08/30 02:56:11 dillon Exp $
28  */
29 
30 #include "opt_ata.h"
31 
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/buf.h>
35 #include <sys/buf2.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/nata.h>
45 #include <sys/spinlock2.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 157, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_config *config);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     struct disk_info info;
137     cdev_t cdev;
138     char buffer[32];
139     int disk;
140 
141     spin_init(&rdp->lock);
142     ata_raid_config_changed(rdp, writeback);
143 
144     /* sanitize arrays total_size % (width * interleave) == 0 */
145     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
146 	rdp->type == AR_T_RAID5) {
147 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
148 			     (rdp->interleave * rdp->width);
149 	ksprintf(buffer, " (stripe %d KB)",
150 		(rdp->interleave * DEV_BSIZE) / 1024);
151     }
152     else
153 	buffer[0] = '\0';
154     /* XXX TGEN add devstats? */
155     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
156     cdev->si_drv1 = rdp;
157     cdev->si_iosize_max = 128 * DEV_BSIZE;
158     rdp->cdev = cdev;
159 
160     bzero(&info, sizeof(info));
161     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
162     info.d_media_blocks = rdp->total_sectors;
163 
164     info.d_secpertrack = rdp->sectors;		/* optional */
165     info.d_nheads = rdp->heads;
166     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
167     info.d_secpercyl = rdp->sectors * rdp->heads;
168 
169     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
170 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
171 	   ata_raid_format(rdp), ata_raid_type(rdp),
172 	   buffer, ata_raid_flags(rdp));
173 
174     if (testing || bootverbose)
175 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
176 	       rdp->lun, rdp->total_sectors,
177 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
178 
179     for (disk = 0; disk < rdp->total_disks; disk++) {
180 	kprintf("ar%d: disk%d ", rdp->lun, disk);
181 	if (rdp->disks[disk].dev) {
182 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
183 		/* status of this disk in the array */
184 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
185 		    kprintf("READY ");
186 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
187 		    kprintf("SPARE ");
188 		else
189 		    kprintf("FREE  ");
190 
191 		/* what type of disk is this in the array */
192 		switch (rdp->type) {
193 		case AR_T_RAID1:
194 		case AR_T_RAID01:
195 		    if (disk < rdp->width)
196 			kprintf("(master) ");
197 		    else
198 			kprintf("(mirror) ");
199 		}
200 
201 		/* which physical disk is used */
202 		kprintf("using %s at ata%d-%s\n",
203 		       device_get_nameunit(rdp->disks[disk].dev),
204 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
205 		       (((struct ata_device *)
206 			 device_get_softc(rdp->disks[disk].dev))->unit ==
207 			 ATA_MASTER) ? "master" : "slave");
208 	    }
209 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
210 		kprintf("DOWN\n");
211 	    else
212 		kprintf("INVALID no RAID config on this subdisk\n");
213 	}
214 	else
215 	    kprintf("DOWN no device found for this subdisk\n");
216     }
217 
218     disk_setdiskinfo(&rdp->disk, &info);
219 }
220 
221 /*
222  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
223  * to the dev_ops way, because it's just chained from the generic ata ioctl.
224  */
225 static int
226 ata_raid_ioctl(u_long cmd, caddr_t data)
227 {
228     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
229     int *lun = (int *)data;
230     int error = EOPNOTSUPP;
231 
232     switch (cmd) {
233     case IOCATARAIDSTATUS:
234 	error = ata_raid_status(config);
235 	break;
236 
237     case IOCATARAIDCREATE:
238 	error = ata_raid_create(config);
239 	break;
240 
241     case IOCATARAIDDELETE:
242 	error = ata_raid_delete(*lun);
243 	break;
244 
245     case IOCATARAIDADDSPARE:
246 	error = ata_raid_addspare(config);
247 	break;
248 
249     case IOCATARAIDREBUILD:
250 	error = ata_raid_rebuild(*lun);
251 	break;
252     }
253     return error;
254 }
255 
256 static int
257 ata_raid_flush(struct ar_softc *rdp, struct bio *bp)
258 {
259     struct ata_request *request;
260     device_t dev;
261     int disk, error;
262 
263     error = 0;
264     bp->bio_driver_info = NULL;
265 
266     for (disk = 0; disk < rdp->total_disks; disk++) {
267 	if ((dev = rdp->disks[disk].dev) != NULL)
268 	    bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info + 1);
269     }
270     for (disk = 0; disk < rdp->total_disks; disk++) {
271 	if ((dev = rdp->disks[disk].dev) == NULL)
272 	    continue;
273 	if (!(request = ata_raid_init_request(rdp, bp)))
274 	    return ENOMEM;
275 	request->dev = dev;
276 	request->u.ata.command = ATA_FLUSHCACHE;
277 	request->u.ata.lba = 0;
278 	request->u.ata.count = 0;
279 	request->u.ata.feature = 0;
280 	request->timeout = 1;
281 	request->retries = 0;
282 	request->flags |= ATA_R_ORDERED | ATA_R_DIRECT;
283 	ata_queue_request(request);
284     }
285     return 0;
286 }
287 
288 /*
289  * XXX TGEN there are a lot of offset -> block number conversions going on
290  * here, which is suboptimal.
291  */
292 static int
293 ata_raid_strategy(struct dev_strategy_args *ap)
294 {
295     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
296     struct bio *bp = ap->a_bio;
297     struct buf *bbp = bp->bio_buf;
298     struct ata_request *request;
299     caddr_t data;
300     u_int64_t blkno, lba, blk = 0;
301     int count, chunk, drv, par = 0, change = 0;
302 
303     if (bbp->b_cmd == BUF_CMD_FLUSH) {
304 	int error;
305 
306 	error = ata_raid_flush(rdp, bp);
307 	if (error != 0) {
308 		bbp->b_flags |= B_ERROR;
309 		bbp->b_error = error;
310 		biodone(bp);
311 	}
312 	return(0);
313     }
314 
315     if (!(rdp->status & AR_S_READY) ||
316 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
317 	bbp->b_flags |= B_ERROR;
318 	bbp->b_error = EIO;
319 	biodone(bp);
320 	return(0);
321     }
322 
323     bbp->b_resid = bbp->b_bcount;
324     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
325 	 /* bio_offset is byte granularity, convert */
326 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
327 	 data = bbp->b_data;
328 	 count > 0;
329 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
330 
331 	switch (rdp->type) {
332 	case AR_T_RAID1:
333 	    drv = 0;
334 	    lba = blkno;
335 	    chunk = count;
336 	    break;
337 
338 	case AR_T_JBOD:
339 	case AR_T_SPAN:
340 	    drv = 0;
341 	    lba = blkno;
342 	    while (lba >= rdp->disks[drv].sectors)
343 		lba -= rdp->disks[drv++].sectors;
344 	    chunk = min(rdp->disks[drv].sectors - lba, count);
345 	    break;
346 
347 	case AR_T_RAID0:
348 	case AR_T_RAID01:
349 	    chunk = blkno % rdp->interleave;
350 	    drv = (blkno / rdp->interleave) % rdp->width;
351 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
352 	    chunk = min(count, rdp->interleave - chunk);
353 	    break;
354 
355 	case AR_T_RAID5:
356 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
357 	    par = rdp->width - 1 -
358 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
359 	    if (drv >= par)
360 		drv++;
361 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
362 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
363 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
364 	    break;
365 
366 	default:
367 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
368 	    bbp->b_flags |= B_ERROR;
369 	    bbp->b_error = EIO;
370 	    biodone(bp);
371 	    return(0);
372 	}
373 
374 	/* offset on all but "first on HPTv2" */
375 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
376 	    lba += rdp->offset_sectors;
377 
378 	if (!(request = ata_raid_init_request(rdp, bp))) {
379 	    bbp->b_flags |= B_ERROR;
380 	    bbp->b_error = EIO;
381 	    biodone(bp);
382 	    return(0);
383 	}
384 	request->data = data;
385 	request->bytecount = chunk * DEV_BSIZE;
386 	request->u.ata.lba = lba;
387 	request->u.ata.count = request->bytecount / DEV_BSIZE;
388 
389 	switch (rdp->type) {
390 	case AR_T_JBOD:
391 	case AR_T_SPAN:
392 	case AR_T_RAID0:
393 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
394 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
395 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
396 		ata_raid_config_changed(rdp, 1);
397 		ata_free_request(request);
398 		bbp->b_flags |= B_ERROR;
399 		bbp->b_error = EIO;
400 		biodone(bp);
401 		return(0);
402 	    }
403 	    request->this = drv;
404 	    request->dev = rdp->disks[request->this].dev;
405 	    ata_raid_send_request(request);
406 	    break;
407 
408 	case AR_T_RAID1:
409 	case AR_T_RAID01:
410 	    if ((rdp->disks[drv].flags &
411 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
412 		!rdp->disks[drv].dev) {
413 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
414 		change = 1;
415 	    }
416 	    if ((rdp->disks[drv + rdp->width].flags &
417 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
418 		!rdp->disks[drv + rdp->width].dev) {
419 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
420 		change = 1;
421 	    }
422 	    if (change)
423 		ata_raid_config_changed(rdp, 1);
424 	    if (!(rdp->status & AR_S_READY)) {
425 		ata_free_request(request);
426 		bbp->b_flags |= B_ERROR;
427 		bbp->b_error = EIO;
428 		biodone(bp);
429 		return(0);
430 	    }
431 
432 	    if (rdp->status & AR_S_REBUILDING)
433 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
434 		      (rdp->interleave * (drv % rdp->width)) +
435 		      lba % rdp->interleave;;
436 
437 	    if (bbp->b_cmd == BUF_CMD_READ) {
438 		int src_online =
439 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
440 		int mir_online =
441 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
442 
443 		/* if mirror gone or close to last access on source */
444 		if (!mir_online ||
445 		    ((src_online) &&
446 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
447 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
448 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
449 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
450 		    rdp->toggle = 0;
451 		}
452 		/* if source gone or close to last access on mirror */
453 		else if (!src_online ||
454 			 ((mir_online) &&
455 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
456 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
457 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
458 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
459 		    drv += rdp->width;
460 		    rdp->toggle = 1;
461 		}
462 		/* not close to any previous access, toggle */
463 		else {
464 		    if (rdp->toggle)
465 			rdp->toggle = 0;
466 		    else {
467 			drv += rdp->width;
468 			rdp->toggle = 1;
469 		    }
470 		}
471 
472 		if ((rdp->status & AR_S_REBUILDING) &&
473 		    (blk <= rdp->rebuild_lba) &&
474 		    ((blk + chunk) > rdp->rebuild_lba)) {
475 		    struct ata_composite *composite;
476 		    struct ata_request *rebuild;
477 		    int this;
478 
479 		    /* figure out what part to rebuild */
480 		    if (drv < rdp->width)
481 			this = drv + rdp->width;
482 		    else
483 			this = drv - rdp->width;
484 
485 		    /* do we have a spare to rebuild on ? */
486 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
487 			if ((composite = ata_alloc_composite())) {
488 			    if ((rebuild = ata_alloc_request())) {
489 				rdp->rebuild_lba = blk + chunk;
490 				bcopy(request, rebuild,
491 				      sizeof(struct ata_request));
492 				rebuild->this = this;
493 				rebuild->dev = rdp->disks[this].dev;
494 				rebuild->flags &= ~ATA_R_READ;
495 				rebuild->flags |= ATA_R_WRITE;
496 				spin_init(&composite->lock);
497 				composite->residual = request->bytecount;
498 				composite->rd_needed |= (1 << drv);
499 				composite->wr_depend |= (1 << drv);
500 				composite->wr_needed |= (1 << this);
501 				composite->request[drv] = request;
502 				composite->request[this] = rebuild;
503 				request->composite = composite;
504 				rebuild->composite = composite;
505 				ata_raid_send_request(rebuild);
506 			    }
507 			    else {
508 				ata_free_composite(composite);
509 				kprintf("DOH! ata_alloc_request failed!\n");
510 			    }
511 			}
512 			else {
513 			    kprintf("DOH! ata_alloc_composite failed!\n");
514 			}
515 		    }
516 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
517 			/*
518 			 * if we got here we are a chunk of a RAID01 that
519 			 * does not need a rebuild, but we need to increment
520 			 * the rebuild_lba address to get the rebuild to
521 			 * move to the next chunk correctly
522 			 */
523 			rdp->rebuild_lba = blk + chunk;
524 		    }
525 		    else
526 			kprintf("DOH! we didn't find the rebuild part\n");
527 		}
528 	    }
529 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
530 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
531 		    ((rdp->status & AR_S_REBUILDING) &&
532 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
533 		     ((blk < rdp->rebuild_lba) ||
534 		      ((blk <= rdp->rebuild_lba) &&
535 		       ((blk + chunk) > rdp->rebuild_lba))))) {
536 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
537 			((rdp->status & AR_S_REBUILDING) &&
538 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
539 			 ((blk < rdp->rebuild_lba) ||
540 			  ((blk <= rdp->rebuild_lba) &&
541 			   ((blk + chunk) > rdp->rebuild_lba))))) {
542 			struct ata_request *mirror;
543 			struct ata_composite *composite;
544 			int this = drv + rdp->width;
545 
546 			if ((composite = ata_alloc_composite())) {
547 			    if ((mirror = ata_alloc_request())) {
548 				if ((blk <= rdp->rebuild_lba) &&
549 				    ((blk + chunk) > rdp->rebuild_lba))
550 				    rdp->rebuild_lba = blk + chunk;
551 				bcopy(request, mirror,
552 				      sizeof(struct ata_request));
553 				mirror->this = this;
554 				mirror->dev = rdp->disks[this].dev;
555 				spin_init(&composite->lock);
556 				composite->residual = request->bytecount;
557 				composite->wr_needed |= (1 << drv);
558 				composite->wr_needed |= (1 << this);
559 				composite->request[drv] = request;
560 				composite->request[this] = mirror;
561 				request->composite = composite;
562 				mirror->composite = composite;
563 				ata_raid_send_request(mirror);
564 				rdp->disks[this].last_lba =
565 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
566 				    chunk;
567 			    }
568 			    else {
569 				ata_free_composite(composite);
570 				kprintf("DOH! ata_alloc_request failed!\n");
571 			    }
572 			}
573 			else {
574 			    kprintf("DOH! ata_alloc_composite failed!\n");
575 			}
576 		    }
577 		    else
578 			drv += rdp->width;
579 		}
580 	    }
581 	    request->this = drv;
582 	    request->dev = rdp->disks[request->this].dev;
583 	    ata_raid_send_request(request);
584 	    rdp->disks[request->this].last_lba =
585 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
586 	    break;
587 
588 	case AR_T_RAID5:
589 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
590 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
591 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
592 		change = 1;
593 	    }
594 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
595 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
596 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
597 		change = 1;
598 	    }
599 	    if (change)
600 		ata_raid_config_changed(rdp, 1);
601 	    if (!(rdp->status & AR_S_READY)) {
602 		ata_free_request(request);
603 		bbp->b_flags |= B_ERROR;
604 		bbp->b_error = EIO;
605 		biodone(bp);
606 		return(0);
607 	    }
608 	    if (rdp->status & AR_S_DEGRADED) {
609 		/* do the XOR game if possible */
610 	    }
611 	    else {
612 		request->this = drv;
613 		request->dev = rdp->disks[request->this].dev;
614 		if (bbp->b_cmd == BUF_CMD_READ) {
615 		    ata_raid_send_request(request);
616 		}
617 		if (bbp->b_cmd == BUF_CMD_WRITE) {
618 		    ata_raid_send_request(request);
619 		    /* XXX TGEN no, I don't speak Danish either */
620 		    /*
621 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
622 		     * par kopi af request
623 		     * l�se orgdata fra drv
624 		     * skriv nydata til drv
625 		     * l�se parorgdata fra par
626 		     * skriv orgdata xor parorgdata xor nydata til par
627 		     */
628 		}
629 	    }
630 	    break;
631 
632 	default:
633 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
634 	}
635     }
636 
637     return(0);
638 }
639 
640 static void
641 ata_raid_done(struct ata_request *request)
642 {
643     struct ar_softc *rdp = request->driver;
644     struct ata_composite *composite = NULL;
645     struct bio *bp = request->bio;
646     struct buf *bbp = bp->bio_buf;
647     int i, mirror, finished = 0;
648 
649     if (bbp->b_cmd == BUF_CMD_FLUSH) {
650 	if (bbp->b_error == 0)
651 		bbp->b_error = request->result;
652 	ata_free_request(request);
653 	bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info - 1);
654 	if ((intptr_t)bp->bio_driver_info == 0) {
655 		if (bbp->b_error)
656 			bbp->b_flags |= B_ERROR;
657 		biodone(bp);
658 	}
659 	return;
660     }
661 
662     switch (rdp->type) {
663     case AR_T_JBOD:
664     case AR_T_SPAN:
665     case AR_T_RAID0:
666 	if (request->result) {
667 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
668 	    ata_raid_config_changed(rdp, 1);
669 	    bbp->b_error = request->result;
670 	    finished = 1;
671 	}
672 	else {
673 	    bbp->b_resid -= request->donecount;
674 	    if (!bbp->b_resid)
675 		finished = 1;
676 	}
677 	break;
678 
679     case AR_T_RAID1:
680     case AR_T_RAID01:
681 	if (request->this < rdp->width)
682 	    mirror = request->this + rdp->width;
683 	else
684 	    mirror = request->this - rdp->width;
685 	if (request->result) {
686 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
687 	    ata_raid_config_changed(rdp, 1);
688 	}
689 	if (rdp->status & AR_S_READY) {
690 	    u_int64_t blk = 0;
691 
692 	    if (rdp->status & AR_S_REBUILDING)
693 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
694 		      rdp->interleave + (rdp->interleave *
695 		      (request->this % rdp->width)) +
696 		      request->u.ata.lba % rdp->interleave;
697 
698 	    if (bbp->b_cmd == BUF_CMD_READ) {
699 
700 		/* is this a rebuild composite */
701 		if ((composite = request->composite)) {
702 		    spin_lock_wr(&composite->lock);
703 
704 		    /* handle the read part of a rebuild composite */
705 		    if (request->flags & ATA_R_READ) {
706 
707 			/* if read failed array is now broken */
708 			if (request->result) {
709 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
710 			    ata_raid_config_changed(rdp, 1);
711 			    bbp->b_error = request->result;
712 			    rdp->rebuild_lba = blk;
713 			    finished = 1;
714 			}
715 
716 			/* good data, update how far we've gotten */
717 			else {
718 			    bbp->b_resid -= request->donecount;
719 			    composite->residual -= request->donecount;
720 			    if (!composite->residual) {
721 				if (composite->wr_done & (1 << mirror))
722 				    finished = 1;
723 			    }
724 			}
725 		    }
726 
727 		    /* handle the write part of a rebuild composite */
728 		    else if (request->flags & ATA_R_WRITE) {
729 			if (composite->rd_done & (1 << mirror)) {
730 			    if (request->result) {
731 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
732 				rdp->rebuild_lba = blk;
733 			    }
734 			    if (!composite->residual)
735 				finished = 1;
736 			}
737 		    }
738 		    spin_unlock_wr(&composite->lock);
739 		}
740 
741 		/* if read failed retry on the mirror */
742 		else if (request->result) {
743 		    request->dev = rdp->disks[mirror].dev;
744 		    request->flags &= ~ATA_R_TIMEOUT;
745 		    ata_raid_send_request(request);
746 		    return;
747 		}
748 
749 		/* we have good data */
750 		else {
751 		    bbp->b_resid -= request->donecount;
752 		    if (!bbp->b_resid)
753 			finished = 1;
754 		}
755 	    }
756 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
757 		/* do we have a mirror or rebuild to deal with ? */
758 		if ((composite = request->composite)) {
759 		    spin_lock_wr(&composite->lock);
760 		    if (composite->wr_done & (1 << mirror)) {
761 			if (request->result) {
762 			    if (composite->request[mirror]->result) {
763 				kprintf("DOH! all disks failed and got here\n");
764 				bbp->b_error = EIO;
765 			    }
766 			    if (rdp->status & AR_S_REBUILDING) {
767 				rdp->rebuild_lba = blk;
768 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
769 			    }
770 			    bbp->b_resid -=
771 				composite->request[mirror]->donecount;
772 			    composite->residual -=
773 				composite->request[mirror]->donecount;
774 			}
775 			else {
776 			    bbp->b_resid -= request->donecount;
777 			    composite->residual -= request->donecount;
778 			}
779 			if (!composite->residual)
780 			    finished = 1;
781 		    }
782 		    spin_unlock_wr(&composite->lock);
783 		}
784 		/* no mirror we are done */
785 		else {
786 		    bbp->b_resid -= request->donecount;
787 		    if (!bbp->b_resid)
788 			finished = 1;
789 		}
790 	    }
791 	}
792 	else {
793 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
794 	    bbp->b_error = request->result;
795 	    biodone(bp);
796 	}
797 	break;
798 
799     case AR_T_RAID5:
800 	if (request->result) {
801 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
802 	    ata_raid_config_changed(rdp, 1);
803 	    if (rdp->status & AR_S_READY) {
804 		if (bbp->b_cmd == BUF_CMD_READ) {
805 		    /* do the XOR game to recover data */
806 		}
807 		if (bbp->b_cmd == BUF_CMD_WRITE) {
808 		    /* if the parity failed we're OK sortof */
809 		    /* otherwise wee need to do the XOR long dance */
810 		}
811 		finished = 1;
812 	    }
813 	    else {
814 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
815 		bbp->b_error = request->result;
816 		biodone(bp);
817 	    }
818 	}
819 	else {
820 	    /* did we have an XOR game going ?? */
821 	    bbp->b_resid -= request->donecount;
822 	    if (!bbp->b_resid)
823 		finished = 1;
824 	}
825 	break;
826 
827     default:
828 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
829     }
830 
831     if (finished) {
832 	if ((rdp->status & AR_S_REBUILDING) &&
833 	    rdp->rebuild_lba >= rdp->total_sectors) {
834 	    int disk;
835 
836 	    for (disk = 0; disk < rdp->total_disks; disk++) {
837 		if ((rdp->disks[disk].flags &
838 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
839 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
840 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
841 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
842 		}
843 	    }
844 	    rdp->status &= ~AR_S_REBUILDING;
845 	    ata_raid_config_changed(rdp, 1);
846 	}
847 	if (!bbp->b_resid)
848 	    biodone(bp);
849     }
850 
851     if (composite) {
852 	if (finished) {
853 	    /* we are done with this composite, free all resources */
854 	    for (i = 0; i < 32; i++) {
855 		if (composite->rd_needed & (1 << i) ||
856 		    composite->wr_needed & (1 << i)) {
857 		    ata_free_request(composite->request[i]);
858 		}
859 	    }
860 	    spin_uninit(&composite->lock);
861 	    ata_free_composite(composite);
862 	}
863     }
864     else
865 	ata_free_request(request);
866 }
867 
868 static int
869 ata_raid_dump(struct dev_dump_args *ap)
870 {
871 	struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
872 	struct buf dbuf;
873 	int error = 0;
874 	int disk;
875 
876 	if (ap->a_length == 0) {
877 		/* flush subdisk buffers to media */
878 		for (disk = 0, error = 0; disk < rdp->total_disks; disk++) {
879 			if (rdp->disks[disk].dev) {
880 				error |= ata_controlcmd(rdp->disks[disk].dev,
881 						ATA_FLUSHCACHE, 0, 0, 0);
882 			}
883 		}
884 		return (error ? EIO : 0);
885 	}
886 
887 	bzero(&dbuf, sizeof(struct buf));
888 	BUF_LOCKINIT(&dbuf);
889 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
890 	initbufbio(&dbuf);
891 	/* bio_offset is byte granularity, convert block granularity a_blkno */
892 	dbuf.b_bio1.bio_offset = ap->a_offset;
893 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
894 	dbuf.b_bio1.bio_flags |= BIO_SYNC;
895 	dbuf.b_bio1.bio_done = biodone_sync;
896 	dbuf.b_bcount = ap->a_length;
897 	dbuf.b_data = ap->a_virtual;
898 	dbuf.b_cmd = BUF_CMD_WRITE;
899 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
900 	/* wait for completion, unlock the buffer, check status */
901 	if (biowait(&dbuf.b_bio1, "dumpw")) {
902 	    BUF_UNLOCK(&dbuf);
903 	    return(dbuf.b_error ? dbuf.b_error : EIO);
904 	}
905 	BUF_UNLOCK(&dbuf);
906 
907 	return 0;
908 }
909 
910 static void
911 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
912 {
913     int disk, count, status;
914 
915     spin_lock_wr(&rdp->lock);
916     /* set default all working mode */
917     status = rdp->status;
918     rdp->status &= ~AR_S_DEGRADED;
919     rdp->status |= AR_S_READY;
920 
921     /* make sure all lost drives are accounted for */
922     for (disk = 0; disk < rdp->total_disks; disk++) {
923 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
924 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
925     }
926 
927     /* depending on RAID type figure out our health status */
928     switch (rdp->type) {
929     case AR_T_JBOD:
930     case AR_T_SPAN:
931     case AR_T_RAID0:
932 	for (disk = 0; disk < rdp->total_disks; disk++)
933 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
934 		rdp->status &= ~AR_S_READY;
935 	break;
936 
937     case AR_T_RAID1:
938     case AR_T_RAID01:
939 	for (disk = 0; disk < rdp->width; disk++) {
940 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
941 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
942 		rdp->status &= ~AR_S_READY;
943 	    }
944 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
945 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
946 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
947 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
948 		rdp->status |= AR_S_DEGRADED;
949 	    }
950 	}
951 	break;
952 
953     case AR_T_RAID5:
954 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
955 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
956 		count++;
957 	}
958 	if (count) {
959 	    if (count > 1)
960 		rdp->status &= ~AR_S_READY;
961 	    else
962 		rdp->status |= AR_S_DEGRADED;
963 	}
964 	break;
965     default:
966 	rdp->status &= ~AR_S_READY;
967     }
968 
969     /*
970      * Note that when the array breaks so comes up broken we
971      * force a write of the array config to the remaining
972      * drives so that the generation will be incremented past
973      * those of the missing or failed drives (in all cases).
974      */
975     if (rdp->status != status) {
976 	if (!(rdp->status & AR_S_READY)) {
977 	    kprintf("ar%d: FAILURE - %s array broken\n",
978 		   rdp->lun, ata_raid_type(rdp));
979 	    writeback = 1;
980 	}
981 	else if (rdp->status & AR_S_DEGRADED) {
982 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
983 		kprintf("ar%d: WARNING - mirror", rdp->lun);
984 	    else
985 		kprintf("ar%d: WARNING - parity", rdp->lun);
986 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
987 		   ata_raid_type(rdp));
988 	    writeback = 1;
989 	}
990     }
991     spin_unlock_wr(&rdp->lock);
992     if (writeback)
993 	ata_raid_write_metadata(rdp);
994 
995 }
996 
997 static int
998 ata_raid_status(struct ata_ioc_raid_config *config)
999 {
1000     struct ar_softc *rdp;
1001     int i;
1002 
1003     if (!(rdp = ata_raid_arrays[config->lun]))
1004 	return ENXIO;
1005 
1006     config->type = rdp->type;
1007     config->total_disks = rdp->total_disks;
1008     for (i = 0; i < rdp->total_disks; i++ ) {
1009 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
1010 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
1011 	else
1012 	    config->disks[i] = -1;
1013     }
1014     config->interleave = rdp->interleave;
1015     config->status = rdp->status;
1016     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
1017     return 0;
1018 }
1019 
1020 static int
1021 ata_raid_create(struct ata_ioc_raid_config *config)
1022 {
1023     struct ar_softc *rdp;
1024     device_t subdisk;
1025     int array, disk;
1026     int ctlr = 0, disk_size = 0, total_disks = 0;
1027 
1028     for (array = 0; array < MAX_ARRAYS; array++) {
1029 	if (!ata_raid_arrays[array])
1030 	    break;
1031     }
1032     if (array >= MAX_ARRAYS)
1033 	return ENOSPC;
1034 
1035     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
1036 	M_WAITOK | M_ZERO);
1037 
1038     for (disk = 0; disk < config->total_disks; disk++) {
1039 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1040 					   config->disks[disk]))) {
1041 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1042 
1043 	    /* is device already assigned to another array ? */
1044 	    if (ars->raid[rdp->volume]) {
1045 		config->disks[disk] = -1;
1046 		kfree(rdp, M_AR);
1047 		return EBUSY;
1048 	    }
1049 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1050 
1051 	    switch (pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev))) {
1052 	    case ATA_HIGHPOINT_ID:
1053 		/*
1054 		 * we need some way to decide if it should be v2 or v3
1055 		 * for now just use v2 since the v3 BIOS knows how to
1056 		 * handle that as well.
1057 		 */
1058 		ctlr = AR_F_HPTV2_RAID;
1059 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1060 		break;
1061 
1062 	    case ATA_INTEL_ID:
1063 		ctlr = AR_F_INTEL_RAID;
1064 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1065 		break;
1066 
1067 	    case ATA_ITE_ID:
1068 		ctlr = AR_F_ITE_RAID;
1069 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1070 		break;
1071 
1072 	    case ATA_JMICRON_ID:
1073 		ctlr = AR_F_JMICRON_RAID;
1074 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1075 		break;
1076 
1077 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1078 	    case ATA_PROMISE_ID:
1079 		ctlr = AR_F_PROMISE_RAID;
1080 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1081 		break;
1082 
1083 	    case ATA_SIS_ID:
1084 		ctlr = AR_F_SIS_RAID;
1085 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1086 		break;
1087 
1088 	    case ATA_ATI_ID:
1089 	    case ATA_VIA_ID:
1090 		ctlr = AR_F_VIA_RAID;
1091 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1092 		break;
1093 
1094 	    default:
1095 		/* XXX SOS
1096 		 * right, so here we are, we have an ATA chip and we want
1097 		 * to create a RAID and store the metadata.
1098 		 * we need to find a way to tell what kind of metadata this
1099 		 * hardware's BIOS might be using (good ideas are welcomed)
1100 		 * for now we just use our own native FreeBSD format.
1101 		 * the only way to get support for the BIOS format is to
1102 		 * setup the RAID from there, in that case we pickup the
1103 		 * metadata format from the disks (if we support it).
1104 		 */
1105 		kprintf("WARNING!! - not able to determine metadata format\n"
1106 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1107 		       "If that is not what you want, use the BIOS to "
1108 		       "create the array\n");
1109 		ctlr = AR_F_FREEBSD_RAID;
1110 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1111 		break;
1112 	    }
1113 
1114 	    /* we need all disks to be of the same format */
1115 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1116 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1117 		kfree(rdp, M_AR);
1118 		return EXDEV;
1119 	    }
1120 	    else
1121 		rdp->format = ctlr;
1122 
1123 	    /* use the smallest disk of the lots size */
1124 	    /* gigabyte boundry ??? XXX SOS */
1125 	    if (disk_size)
1126 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1127 	    else
1128 		disk_size = rdp->disks[disk].sectors;
1129 	    rdp->disks[disk].flags =
1130 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1131 
1132 	    total_disks++;
1133 	}
1134 	else {
1135 	    config->disks[disk] = -1;
1136 	    kfree(rdp, M_AR);
1137 	    return ENXIO;
1138 	}
1139     }
1140 
1141     if (total_disks != config->total_disks) {
1142 	kfree(rdp, M_AR);
1143 	return ENODEV;
1144     }
1145 
1146     switch (config->type) {
1147     case AR_T_JBOD:
1148     case AR_T_SPAN:
1149     case AR_T_RAID0:
1150 	break;
1151 
1152     case AR_T_RAID1:
1153 	if (total_disks != 2) {
1154 	    kfree(rdp, M_AR);
1155 	    return EPERM;
1156 	}
1157 	break;
1158 
1159     case AR_T_RAID01:
1160 	if (total_disks % 2 != 0) {
1161 	    kfree(rdp, M_AR);
1162 	    return EPERM;
1163 	}
1164 	break;
1165 
1166     case AR_T_RAID5:
1167 	if (total_disks < 3) {
1168 	    kfree(rdp, M_AR);
1169 	    return EPERM;
1170 	}
1171 	break;
1172 
1173     default:
1174 	kfree(rdp, M_AR);
1175 	return EOPNOTSUPP;
1176     }
1177     rdp->type = config->type;
1178     rdp->lun = array;
1179     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1180 	rdp->type == AR_T_RAID5) {
1181 	int bit = 0;
1182 
1183 	while (config->interleave >>= 1)
1184 	    bit++;
1185 	rdp->interleave = 1 << bit;
1186     }
1187     rdp->offset_sectors = 0;
1188 
1189     /* values that depend on metadata format */
1190     switch (rdp->format) {
1191     case AR_F_ADAPTEC_RAID:
1192 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1193 	break;
1194 
1195     case AR_F_HPTV2_RAID:
1196 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1197 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1198 	break;
1199 
1200     case AR_F_HPTV3_RAID:
1201 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1202 	break;
1203 
1204     case AR_F_INTEL_RAID:
1205 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1206 	break;
1207 
1208     case AR_F_ITE_RAID:
1209 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1210 	break;
1211 
1212     case AR_F_JMICRON_RAID:
1213 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1214 	break;
1215 
1216     case AR_F_LSIV2_RAID:
1217 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1218 	break;
1219 
1220     case AR_F_LSIV3_RAID:
1221 	rdp->interleave = min(max(2, rdp->interleave), 256);
1222 	break;
1223 
1224     case AR_F_PROMISE_RAID:
1225 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1226 	break;
1227 
1228     case AR_F_SII_RAID:
1229 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1230 	break;
1231 
1232     case AR_F_SIS_RAID:
1233 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1234 	break;
1235 
1236     case AR_F_VIA_RAID:
1237 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1238 	break;
1239     }
1240 
1241     rdp->total_disks = total_disks;
1242     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1243     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1244     rdp->heads = 255;
1245     rdp->sectors = 63;
1246     rdp->cylinders = rdp->total_sectors / (255 * 63);
1247     rdp->rebuild_lba = 0;
1248     rdp->status |= AR_S_READY;
1249 
1250     /* we are committed to this array, grap the subdisks */
1251     for (disk = 0; disk < config->total_disks; disk++) {
1252 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1253 					   config->disks[disk]))) {
1254 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1255 
1256 	    ars->raid[rdp->volume] = rdp;
1257 	    ars->disk_number[rdp->volume] = disk;
1258 	}
1259     }
1260     ata_raid_attach(rdp, 1);
1261     ata_raid_arrays[array] = rdp;
1262     config->lun = array;
1263     return 0;
1264 }
1265 
1266 static int
1267 ata_raid_delete(int array)
1268 {
1269     struct ar_softc *rdp;
1270     device_t subdisk;
1271     int disk;
1272 
1273     if (!(rdp = ata_raid_arrays[array]))
1274 	return ENXIO;
1275 
1276     rdp->status &= ~AR_S_READY;
1277     disk_destroy(&rdp->disk);
1278 
1279     for (disk = 0; disk < rdp->total_disks; disk++) {
1280 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1281 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1282 		     device_get_unit(rdp->disks[disk].dev)))) {
1283 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1284 
1285 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1286 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1287 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1288 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1289 		ars->raid[rdp->volume] = NULL;
1290 		ars->disk_number[rdp->volume] = -1;
1291 	    }
1292 	    rdp->disks[disk].flags = 0;
1293 	}
1294     }
1295     ata_raid_wipe_metadata(rdp);
1296     ata_raid_arrays[array] = NULL;
1297     kfree(rdp, M_AR);
1298     return 0;
1299 }
1300 
1301 static int
1302 ata_raid_addspare(struct ata_ioc_raid_config *config)
1303 {
1304     struct ar_softc *rdp;
1305     device_t subdisk;
1306     int disk;
1307 
1308     if (!(rdp = ata_raid_arrays[config->lun]))
1309 	return ENXIO;
1310     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1311 	return ENXIO;
1312     if (rdp->status & AR_S_REBUILDING)
1313 	return EBUSY;
1314     switch (rdp->type) {
1315     case AR_T_RAID1:
1316     case AR_T_RAID01:
1317     case AR_T_RAID5:
1318 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1319 
1320 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1321 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1322 		continue;
1323 
1324 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1325 					       config->disks[0] ))) {
1326 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1327 
1328 		if (ars->raid[rdp->volume])
1329 		    return EBUSY;
1330 
1331 		/* XXX SOS validate size etc etc */
1332 		ars->raid[rdp->volume] = rdp;
1333 		ars->disk_number[rdp->volume] = disk;
1334 		rdp->disks[disk].dev = device_get_parent(subdisk);
1335 		rdp->disks[disk].flags =
1336 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1337 
1338 		device_printf(rdp->disks[disk].dev,
1339 			      "inserted into ar%d disk%d as spare\n",
1340 			      rdp->lun, disk);
1341 		ata_raid_config_changed(rdp, 1);
1342 		return 0;
1343 	    }
1344 	}
1345 	return ENXIO;
1346 
1347     default:
1348 	return EPERM;
1349     }
1350 }
1351 
1352 static int
1353 ata_raid_rebuild(int array)
1354 {
1355     struct ar_softc *rdp;
1356     int disk, count;
1357 
1358     if (!(rdp = ata_raid_arrays[array]))
1359 	return ENXIO;
1360     /* XXX SOS we should lock the rdp softc here */
1361     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1362 	return ENXIO;
1363     if (rdp->status & AR_S_REBUILDING)
1364 	return EBUSY;
1365 
1366     switch (rdp->type) {
1367     case AR_T_RAID1:
1368     case AR_T_RAID01:
1369     case AR_T_RAID5:
1370 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1371 	    if (((rdp->disks[disk].flags &
1372 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1373 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1374 		rdp->disks[disk].dev) {
1375 		count++;
1376 	    }
1377 	}
1378 
1379 	if (count) {
1380 	    rdp->rebuild_lba = 0;
1381 	    rdp->status |= AR_S_REBUILDING;
1382 	    return 0;
1383 	}
1384 	return EIO;
1385 
1386     default:
1387 	return EPERM;
1388     }
1389 }
1390 
1391 static int
1392 ata_raid_read_metadata(device_t subdisk)
1393 {
1394     devclass_t pci_devclass = devclass_find("pci");
1395     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1396 
1397     /* prioritize vendor native metadata layout if possible */
1398     if (devclass == pci_devclass) {
1399 	switch (pci_get_vendor(GRANDPARENT(device_get_parent(subdisk)))) {
1400 	case ATA_HIGHPOINT_ID:
1401 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1402 		return 0;
1403 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1404 		return 0;
1405 	    break;
1406 
1407 	case ATA_INTEL_ID:
1408 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1409 		return 0;
1410 	    break;
1411 
1412 	case ATA_ITE_ID:
1413 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1414 		return 0;
1415 	    break;
1416 
1417 	case ATA_JMICRON_ID:
1418 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1419 		return 0;
1420 	    break;
1421 
1422 	case ATA_NVIDIA_ID:
1423 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1424 		return 0;
1425 	    break;
1426 
1427 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1428 	case ATA_PROMISE_ID:
1429 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1430 		return 0;
1431 	    break;
1432 
1433 	case ATA_ATI_ID:
1434 	case ATA_SILICON_IMAGE_ID:
1435 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1436 		return 0;
1437 	    break;
1438 
1439 	case ATA_SIS_ID:
1440 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1441 		return 0;
1442 	    break;
1443 
1444 	case ATA_VIA_ID:
1445 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1446 		return 0;
1447 	    break;
1448 	}
1449     }
1450 
1451     /* handle controllers that have multiple layout possibilities */
1452     /* NOTE: the order of these are not insignificant */
1453 
1454     /* Adaptec HostRAID */
1455     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1456 	return 0;
1457 
1458     /* LSILogic v3 and v2 */
1459     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1460 	return 0;
1461     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1462 	return 0;
1463 
1464     /* if none of the above matched, try FreeBSD native format */
1465     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1466 }
1467 
1468 static int
1469 ata_raid_write_metadata(struct ar_softc *rdp)
1470 {
1471     switch (rdp->format) {
1472     case AR_F_FREEBSD_RAID:
1473     case AR_F_PROMISE_RAID:
1474 	return ata_raid_promise_write_meta(rdp);
1475 
1476     case AR_F_HPTV3_RAID:
1477     case AR_F_HPTV2_RAID:
1478 	/*
1479 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1480 	 * this is handy since we cannot know what version BIOS is on there
1481 	 */
1482 	return ata_raid_hptv2_write_meta(rdp);
1483 
1484     case AR_F_INTEL_RAID:
1485 	return ata_raid_intel_write_meta(rdp);
1486 
1487     case AR_F_JMICRON_RAID:
1488 	return ata_raid_jmicron_write_meta(rdp);
1489 
1490     case AR_F_SIS_RAID:
1491 	return ata_raid_sis_write_meta(rdp);
1492 
1493     case AR_F_VIA_RAID:
1494 	return ata_raid_via_write_meta(rdp);
1495 #if 0
1496     case AR_F_HPTV3_RAID:
1497 	return ata_raid_hptv3_write_meta(rdp);
1498 
1499     case AR_F_ADAPTEC_RAID:
1500 	return ata_raid_adaptec_write_meta(rdp);
1501 
1502     case AR_F_ITE_RAID:
1503 	return ata_raid_ite_write_meta(rdp);
1504 
1505     case AR_F_LSIV2_RAID:
1506 	return ata_raid_lsiv2_write_meta(rdp);
1507 
1508     case AR_F_LSIV3_RAID:
1509 	return ata_raid_lsiv3_write_meta(rdp);
1510 
1511     case AR_F_NVIDIA_RAID:
1512 	return ata_raid_nvidia_write_meta(rdp);
1513 
1514     case AR_F_SII_RAID:
1515 	return ata_raid_sii_write_meta(rdp);
1516 
1517 #endif
1518     default:
1519 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1520 	       rdp->lun, ata_raid_format(rdp));
1521     }
1522     return -1;
1523 }
1524 
1525 static int
1526 ata_raid_wipe_metadata(struct ar_softc *rdp)
1527 {
1528     int disk, error = 0;
1529     u_int64_t lba;
1530     u_int32_t size;
1531     u_int8_t *meta;
1532 
1533     for (disk = 0; disk < rdp->total_disks; disk++) {
1534 	if (rdp->disks[disk].dev) {
1535 	    switch (rdp->format) {
1536 	    case AR_F_ADAPTEC_RAID:
1537 		lba = ADP_LBA(rdp->disks[disk].dev);
1538 		size = sizeof(struct adaptec_raid_conf);
1539 		break;
1540 
1541 	    case AR_F_HPTV2_RAID:
1542 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1543 		size = sizeof(struct hptv2_raid_conf);
1544 		break;
1545 
1546 	    case AR_F_HPTV3_RAID:
1547 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1548 		size = sizeof(struct hptv3_raid_conf);
1549 		break;
1550 
1551 	    case AR_F_INTEL_RAID:
1552 		lba = INTEL_LBA(rdp->disks[disk].dev);
1553 		size = 3 * 512;         /* XXX SOS */
1554 		break;
1555 
1556 	    case AR_F_ITE_RAID:
1557 		lba = ITE_LBA(rdp->disks[disk].dev);
1558 		size = sizeof(struct ite_raid_conf);
1559 		break;
1560 
1561 	    case AR_F_JMICRON_RAID:
1562 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1563 		size = sizeof(struct jmicron_raid_conf);
1564 		break;
1565 
1566 	    case AR_F_LSIV2_RAID:
1567 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1568 		size = sizeof(struct lsiv2_raid_conf);
1569 		break;
1570 
1571 	    case AR_F_LSIV3_RAID:
1572 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1573 		size = sizeof(struct lsiv3_raid_conf);
1574 		break;
1575 
1576 	    case AR_F_NVIDIA_RAID:
1577 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1578 		size = sizeof(struct nvidia_raid_conf);
1579 		break;
1580 
1581 	    case AR_F_FREEBSD_RAID:
1582 	    case AR_F_PROMISE_RAID:
1583 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1584 		size = sizeof(struct promise_raid_conf);
1585 		break;
1586 
1587 	    case AR_F_SII_RAID:
1588 		lba = SII_LBA(rdp->disks[disk].dev);
1589 		size = sizeof(struct sii_raid_conf);
1590 		break;
1591 
1592 	    case AR_F_SIS_RAID:
1593 		lba = SIS_LBA(rdp->disks[disk].dev);
1594 		size = sizeof(struct sis_raid_conf);
1595 		break;
1596 
1597 	    case AR_F_VIA_RAID:
1598 		lba = VIA_LBA(rdp->disks[disk].dev);
1599 		size = sizeof(struct via_raid_conf);
1600 		break;
1601 
1602 	    default:
1603 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1604 		       rdp->lun, ata_raid_format(rdp));
1605 		return ENXIO;
1606 	    }
1607 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1608 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1609 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1610 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1611 		error = EIO;
1612 	    }
1613 	    kfree(meta, M_AR);
1614 	}
1615     }
1616     return error;
1617 }
1618 
1619 /* Adaptec HostRAID Metadata */
1620 static int
1621 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1622 {
1623     struct ata_raid_subdisk *ars = device_get_softc(dev);
1624     device_t parent = device_get_parent(dev);
1625     struct adaptec_raid_conf *meta;
1626     struct ar_softc *raid;
1627     int array, disk, retval = 0;
1628 
1629     meta = (struct adaptec_raid_conf *)
1630 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1631 
1632     if (ata_raid_rw(parent, ADP_LBA(parent),
1633 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1634 	if (testing || bootverbose)
1635 	    device_printf(parent, "Adaptec read metadata failed\n");
1636 	goto adaptec_out;
1637     }
1638 
1639     /* check if this is a Adaptec RAID struct */
1640     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1641 	if (testing || bootverbose)
1642 	    device_printf(parent, "Adaptec check1 failed\n");
1643 	goto adaptec_out;
1644     }
1645 
1646     if (testing || bootverbose)
1647 	ata_raid_adaptec_print_meta(meta);
1648 
1649     /* now convert Adaptec metadata into our generic form */
1650     for (array = 0; array < MAX_ARRAYS; array++) {
1651 	if (!raidp[array]) {
1652 	    raidp[array] =
1653 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1654 					  M_WAITOK | M_ZERO);
1655 	}
1656 	raid = raidp[array];
1657 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1658 	    continue;
1659 
1660 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1661 	    continue;
1662 
1663 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1664 	    switch (meta->configs[0].type) {
1665 	    case ADP_T_RAID0:
1666 		raid->magic_0 = meta->configs[0].magic_0;
1667 		raid->type = AR_T_RAID0;
1668 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1669 		raid->width = be16toh(meta->configs[0].total_disks);
1670 		break;
1671 
1672 	    case ADP_T_RAID1:
1673 		raid->magic_0 = meta->configs[0].magic_0;
1674 		raid->type = AR_T_RAID1;
1675 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1676 		break;
1677 
1678 	    default:
1679 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1680 			      meta->configs[0].type);
1681 		kfree(raidp[array], M_AR);
1682 		raidp[array] = NULL;
1683 		goto adaptec_out;
1684 	    }
1685 
1686 	    raid->format = AR_F_ADAPTEC_RAID;
1687 	    raid->generation = be32toh(meta->generation);
1688 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1689 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1690 	    raid->heads = 255;
1691 	    raid->sectors = 63;
1692 	    raid->cylinders = raid->total_sectors / (63 * 255);
1693 	    raid->offset_sectors = 0;
1694 	    raid->rebuild_lba = 0;
1695 	    raid->lun = array;
1696 	    strncpy(raid->name, meta->configs[0].name,
1697 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1698 
1699 	    /* clear out any old info */
1700 	    if (raid->generation) {
1701 		for (disk = 0; disk < raid->total_disks; disk++) {
1702 		    raid->disks[disk].dev = NULL;
1703 		    raid->disks[disk].flags = 0;
1704 		}
1705 	    }
1706 	}
1707 	if (be32toh(meta->generation) >= raid->generation) {
1708 	    struct ata_device *atadev = device_get_softc(parent);
1709 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1710 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1711 			      ATA_DEV(atadev->unit);
1712 
1713 	    raid->disks[disk_number].dev = parent;
1714 	    raid->disks[disk_number].sectors =
1715 		be32toh(meta->configs[disk_number + 1].sectors);
1716 	    raid->disks[disk_number].flags =
1717 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1718 	    ars->raid[raid->volume] = raid;
1719 	    ars->disk_number[raid->volume] = disk_number;
1720 	    retval = 1;
1721 	}
1722 	break;
1723     }
1724 
1725 adaptec_out:
1726     kfree(meta, M_AR);
1727     return retval;
1728 }
1729 
1730 /* Highpoint V2 RocketRAID Metadata */
1731 static int
1732 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1733 {
1734     struct ata_raid_subdisk *ars = device_get_softc(dev);
1735     device_t parent = device_get_parent(dev);
1736     struct hptv2_raid_conf *meta;
1737     struct ar_softc *raid = NULL;
1738     int array, disk_number = 0, retval = 0;
1739 
1740     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1741 	M_AR, M_WAITOK | M_ZERO);
1742 
1743     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1744 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1745 	if (testing || bootverbose)
1746 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1747 	goto hptv2_out;
1748     }
1749 
1750     /* check if this is a HighPoint v2 RAID struct */
1751     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1752 	if (testing || bootverbose)
1753 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1754 	goto hptv2_out;
1755     }
1756 
1757     /* is this disk defined, or an old leftover/spare ? */
1758     if (!meta->magic_0) {
1759 	if (testing || bootverbose)
1760 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1761 	goto hptv2_out;
1762     }
1763 
1764     if (testing || bootverbose)
1765 	ata_raid_hptv2_print_meta(meta);
1766 
1767     /* now convert HighPoint (v2) metadata into our generic form */
1768     for (array = 0; array < MAX_ARRAYS; array++) {
1769 	if (!raidp[array]) {
1770 	    raidp[array] =
1771 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1772 					  M_WAITOK | M_ZERO);
1773 	}
1774 	raid = raidp[array];
1775 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1776 	    continue;
1777 
1778 	switch (meta->type) {
1779 	case HPTV2_T_RAID0:
1780 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1781 		(HPTV2_O_RAID0|HPTV2_O_OK))
1782 		goto highpoint_raid1;
1783 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1784 		goto highpoint_raid01;
1785 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1786 		continue;
1787 	    raid->magic_0 = meta->magic_0;
1788 	    raid->type = AR_T_RAID0;
1789 	    raid->interleave = 1 << meta->stripe_shift;
1790 	    disk_number = meta->disk_number;
1791 	    if (!(meta->order & HPTV2_O_OK))
1792 		meta->magic = 0;        /* mark bad */
1793 	    break;
1794 
1795 	case HPTV2_T_RAID1:
1796 highpoint_raid1:
1797 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1798 		continue;
1799 	    raid->magic_0 = meta->magic_0;
1800 	    raid->type = AR_T_RAID1;
1801 	    disk_number = (meta->disk_number > 0);
1802 	    break;
1803 
1804 	case HPTV2_T_RAID01_RAID0:
1805 highpoint_raid01:
1806 	    if (meta->order & HPTV2_O_RAID0) {
1807 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1808 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1809 		    continue;
1810 		raid->magic_0 = meta->magic_0;
1811 		raid->magic_1 = meta->magic_1;
1812 		raid->type = AR_T_RAID01;
1813 		raid->interleave = 1 << meta->stripe_shift;
1814 		disk_number = meta->disk_number;
1815 	    }
1816 	    else {
1817 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1818 		    continue;
1819 		raid->magic_1 = meta->magic_1;
1820 		raid->type = AR_T_RAID01;
1821 		raid->interleave = 1 << meta->stripe_shift;
1822 		disk_number = meta->disk_number + meta->array_width;
1823 		if (!(meta->order & HPTV2_O_RAID1))
1824 		    meta->magic = 0;    /* mark bad */
1825 	    }
1826 	    break;
1827 
1828 	case HPTV2_T_SPAN:
1829 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1830 		continue;
1831 	    raid->magic_0 = meta->magic_0;
1832 	    raid->type = AR_T_SPAN;
1833 	    disk_number = meta->disk_number;
1834 	    break;
1835 
1836 	default:
1837 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1838 			  meta->type);
1839 	    kfree(raidp[array], M_AR);
1840 	    raidp[array] = NULL;
1841 	    goto hptv2_out;
1842 	}
1843 
1844 	raid->format |= AR_F_HPTV2_RAID;
1845 	raid->disks[disk_number].dev = parent;
1846 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1847 	raid->lun = array;
1848 	strncpy(raid->name, meta->name_1,
1849 		min(sizeof(raid->name), sizeof(meta->name_1)));
1850 	if (meta->magic == HPTV2_MAGIC_OK) {
1851 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1852 	    raid->width = meta->array_width;
1853 	    raid->total_sectors = meta->total_sectors;
1854 	    raid->heads = 255;
1855 	    raid->sectors = 63;
1856 	    raid->cylinders = raid->total_sectors / (63 * 255);
1857 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1858 	    raid->rebuild_lba = meta->rebuild_lba;
1859 	    raid->disks[disk_number].sectors =
1860 		raid->total_sectors / raid->width;
1861 	}
1862 	else
1863 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1864 
1865 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1866 	    raid->total_disks = raid->width;
1867 	if (disk_number >= raid->total_disks)
1868 	    raid->total_disks = disk_number + 1;
1869 	ars->raid[raid->volume] = raid;
1870 	ars->disk_number[raid->volume] = disk_number;
1871 	retval = 1;
1872 	break;
1873     }
1874 
1875 hptv2_out:
1876     kfree(meta, M_AR);
1877     return retval;
1878 }
1879 
1880 static int
1881 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1882 {
1883     struct hptv2_raid_conf *meta;
1884     struct timeval timestamp;
1885     int disk, error = 0;
1886 
1887     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1888 	M_AR, M_WAITOK | M_ZERO);
1889 
1890     microtime(&timestamp);
1891     rdp->magic_0 = timestamp.tv_sec + 2;
1892     rdp->magic_1 = timestamp.tv_sec;
1893 
1894     for (disk = 0; disk < rdp->total_disks; disk++) {
1895 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1896 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1897 	    meta->magic = HPTV2_MAGIC_OK;
1898 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1899 	    meta->magic_0 = rdp->magic_0;
1900 	    if (strlen(rdp->name))
1901 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1902 	    else
1903 		strcpy(meta->name_1, "FreeBSD");
1904 	}
1905 	meta->disk_number = disk;
1906 
1907 	switch (rdp->type) {
1908 	case AR_T_RAID0:
1909 	    meta->type = HPTV2_T_RAID0;
1910 	    strcpy(meta->name_2, "RAID 0");
1911 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1912 		meta->order = HPTV2_O_OK;
1913 	    break;
1914 
1915 	case AR_T_RAID1:
1916 	    meta->type = HPTV2_T_RAID0;
1917 	    strcpy(meta->name_2, "RAID 1");
1918 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1919 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1920 	    break;
1921 
1922 	case AR_T_RAID01:
1923 	    meta->type = HPTV2_T_RAID01_RAID0;
1924 	    strcpy(meta->name_2, "RAID 0+1");
1925 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1926 		if (disk < rdp->width) {
1927 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1928 		    meta->magic_0 = rdp->magic_0 - 1;
1929 		}
1930 		else {
1931 		    meta->order = HPTV2_O_RAID1;
1932 		    meta->disk_number -= rdp->width;
1933 		}
1934 	    }
1935 	    else
1936 		meta->magic_0 = rdp->magic_0 - 1;
1937 	    meta->magic_1 = rdp->magic_1;
1938 	    break;
1939 
1940 	case AR_T_SPAN:
1941 	    meta->type = HPTV2_T_SPAN;
1942 	    strcpy(meta->name_2, "SPAN");
1943 	    break;
1944 	default:
1945 	    kfree(meta, M_AR);
1946 	    return ENODEV;
1947 	}
1948 
1949 	meta->array_width = rdp->width;
1950 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1951 	meta->total_sectors = rdp->total_sectors;
1952 	meta->rebuild_lba = rdp->rebuild_lba;
1953 	if (testing || bootverbose)
1954 	    ata_raid_hptv2_print_meta(meta);
1955 	if (rdp->disks[disk].dev) {
1956 	    if (ata_raid_rw(rdp->disks[disk].dev,
1957 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1958 			    sizeof(struct promise_raid_conf),
1959 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1960 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1961 		error = EIO;
1962 	    }
1963 	}
1964     }
1965     kfree(meta, M_AR);
1966     return error;
1967 }
1968 
1969 /* Highpoint V3 RocketRAID Metadata */
1970 static int
1971 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1972 {
1973     struct ata_raid_subdisk *ars = device_get_softc(dev);
1974     device_t parent = device_get_parent(dev);
1975     struct hptv3_raid_conf *meta;
1976     struct ar_softc *raid = NULL;
1977     int array, disk_number, retval = 0;
1978 
1979     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1980 	M_AR, M_WAITOK | M_ZERO);
1981 
1982     if (ata_raid_rw(parent, HPTV3_LBA(parent),
1983 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
1984 	if (testing || bootverbose)
1985 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
1986 	goto hptv3_out;
1987     }
1988 
1989     /* check if this is a HighPoint v3 RAID struct */
1990     if (meta->magic != HPTV3_MAGIC) {
1991 	if (testing || bootverbose)
1992 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
1993 	goto hptv3_out;
1994     }
1995 
1996     /* check if there are any config_entries */
1997     if (meta->config_entries < 1) {
1998 	if (testing || bootverbose)
1999 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
2000 	goto hptv3_out;
2001     }
2002 
2003     if (testing || bootverbose)
2004 	ata_raid_hptv3_print_meta(meta);
2005 
2006     /* now convert HighPoint (v3) metadata into our generic form */
2007     for (array = 0; array < MAX_ARRAYS; array++) {
2008 	if (!raidp[array]) {
2009 	    raidp[array] =
2010 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2011 					  M_WAITOK | M_ZERO);
2012 	}
2013 	raid = raidp[array];
2014 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
2015 	    continue;
2016 
2017 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
2018 	    continue;
2019 
2020 	switch (meta->configs[0].type) {
2021 	case HPTV3_T_RAID0:
2022 	    raid->type = AR_T_RAID0;
2023 	    raid->width = meta->configs[0].total_disks;
2024 	    disk_number = meta->configs[0].disk_number;
2025 	    break;
2026 
2027 	case HPTV3_T_RAID1:
2028 	    raid->type = AR_T_RAID1;
2029 	    raid->width = meta->configs[0].total_disks / 2;
2030 	    disk_number = meta->configs[0].disk_number;
2031 	    break;
2032 
2033 	case HPTV3_T_RAID5:
2034 	    raid->type = AR_T_RAID5;
2035 	    raid->width = meta->configs[0].total_disks;
2036 	    disk_number = meta->configs[0].disk_number;
2037 	    break;
2038 
2039 	case HPTV3_T_SPAN:
2040 	    raid->type = AR_T_SPAN;
2041 	    raid->width = meta->configs[0].total_disks;
2042 	    disk_number = meta->configs[0].disk_number;
2043 	    break;
2044 
2045 	default:
2046 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2047 			  meta->configs[0].type);
2048 	    kfree(raidp[array], M_AR);
2049 	    raidp[array] = NULL;
2050 	    goto hptv3_out;
2051 	}
2052 	if (meta->config_entries == 2) {
2053 	    switch (meta->configs[1].type) {
2054 	    case HPTV3_T_RAID1:
2055 		if (raid->type == AR_T_RAID0) {
2056 		    raid->type = AR_T_RAID01;
2057 		    disk_number = meta->configs[1].disk_number +
2058 				  (meta->configs[0].disk_number << 1);
2059 		    break;
2060 		}
2061 	    default:
2062 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2063 			      meta->configs[1].type);
2064 		kfree(raidp[array], M_AR);
2065 		raidp[array] = NULL;
2066 		goto hptv3_out;
2067 	    }
2068 	}
2069 
2070 	raid->magic_0 = meta->magic_0;
2071 	raid->format = AR_F_HPTV3_RAID;
2072 	raid->generation = meta->timestamp;
2073 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2074 	raid->total_disks = meta->configs[0].total_disks +
2075 	    meta->configs[1].total_disks;
2076 	raid->total_sectors = meta->configs[0].total_sectors +
2077 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2078 	raid->heads = 255;
2079 	raid->sectors = 63;
2080 	raid->cylinders = raid->total_sectors / (63 * 255);
2081 	raid->offset_sectors = 0;
2082 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2083 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2084 	raid->lun = array;
2085 	strncpy(raid->name, meta->name,
2086 		min(sizeof(raid->name), sizeof(meta->name)));
2087 	raid->disks[disk_number].sectors = raid->total_sectors /
2088 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2089 	raid->disks[disk_number].dev = parent;
2090 	raid->disks[disk_number].flags =
2091 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2092 	ars->raid[raid->volume] = raid;
2093 	ars->disk_number[raid->volume] = disk_number;
2094 	retval = 1;
2095 	break;
2096     }
2097 
2098 hptv3_out:
2099     kfree(meta, M_AR);
2100     return retval;
2101 }
2102 
2103 /* Intel MatrixRAID Metadata */
2104 static int
2105 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2106 {
2107     struct ata_raid_subdisk *ars = device_get_softc(dev);
2108     device_t parent = device_get_parent(dev);
2109     struct intel_raid_conf *meta;
2110     struct intel_raid_mapping *map;
2111     struct ar_softc *raid = NULL;
2112     u_int32_t checksum, *ptr;
2113     int array, count, disk, volume = 1, retval = 0;
2114     char *tmp;
2115 
2116     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2117 
2118     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2119 	if (testing || bootverbose)
2120 	    device_printf(parent, "Intel read metadata failed\n");
2121 	goto intel_out;
2122     }
2123     tmp = (char *)meta;
2124     bcopy(tmp, tmp+1024, 512);
2125     bcopy(tmp+512, tmp, 1024);
2126     bzero(tmp+1024, 512);
2127 
2128     /* check if this is a Intel RAID struct */
2129     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2130 	if (testing || bootverbose)
2131 	    device_printf(parent, "Intel check1 failed\n");
2132 	goto intel_out;
2133     }
2134 
2135     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2136 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2137 	checksum += *ptr++;
2138     }
2139     checksum -= meta->checksum;
2140     if (checksum != meta->checksum) {
2141 	if (testing || bootverbose)
2142 	    device_printf(parent, "Intel check2 failed\n");
2143 	goto intel_out;
2144     }
2145 
2146     if (testing || bootverbose)
2147 	ata_raid_intel_print_meta(meta);
2148 
2149     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2150 
2151     /* now convert Intel metadata into our generic form */
2152     for (array = 0; array < MAX_ARRAYS; array++) {
2153 	if (!raidp[array]) {
2154 	    raidp[array] =
2155 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2156 					  M_WAITOK | M_ZERO);
2157 	}
2158 	raid = raidp[array];
2159 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2160 	    continue;
2161 
2162 	if ((raid->format & AR_F_INTEL_RAID) &&
2163 	    (raid->magic_0 != meta->config_id))
2164 	    continue;
2165 
2166 	/*
2167 	 * update our knowledge about the array config based on generation
2168 	 * NOTE: there can be multiple volumes on a disk set
2169 	 */
2170 	if (!meta->generation || meta->generation > raid->generation) {
2171 	    switch (map->type) {
2172 	    case INTEL_T_RAID0:
2173 		raid->type = AR_T_RAID0;
2174 		raid->width = map->total_disks;
2175 		break;
2176 
2177 	    case INTEL_T_RAID1:
2178 		if (map->total_disks == 4)
2179 		    raid->type = AR_T_RAID01;
2180 		else
2181 		    raid->type = AR_T_RAID1;
2182 		raid->width = map->total_disks / 2;
2183 		break;
2184 
2185 	    case INTEL_T_RAID5:
2186 		raid->type = AR_T_RAID5;
2187 		raid->width = map->total_disks;
2188 		break;
2189 
2190 	    default:
2191 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2192 			      map->type);
2193 		kfree(raidp[array], M_AR);
2194 		raidp[array] = NULL;
2195 		goto intel_out;
2196 	    }
2197 
2198 	    switch (map->status) {
2199 	    case INTEL_S_READY:
2200 		raid->status = AR_S_READY;
2201 		break;
2202 	    case INTEL_S_DEGRADED:
2203 		raid->status |= AR_S_DEGRADED;
2204 		break;
2205 	    case INTEL_S_DISABLED:
2206 	    case INTEL_S_FAILURE:
2207 		raid->status = 0;
2208 	    }
2209 
2210 	    raid->magic_0 = meta->config_id;
2211 	    raid->format = AR_F_INTEL_RAID;
2212 	    raid->generation = meta->generation;
2213 	    raid->interleave = map->stripe_sectors;
2214 	    raid->total_disks = map->total_disks;
2215 	    raid->total_sectors = map->total_sectors;
2216 	    raid->heads = 255;
2217 	    raid->sectors = 63;
2218 	    raid->cylinders = raid->total_sectors / (63 * 255);
2219 	    raid->offset_sectors = map->offset;
2220 	    raid->rebuild_lba = 0;
2221 	    raid->lun = array;
2222 	    raid->volume = volume - 1;
2223 	    strncpy(raid->name, map->name,
2224 		    min(sizeof(raid->name), sizeof(map->name)));
2225 
2226 	    /* clear out any old info */
2227 	    for (disk = 0; disk < raid->total_disks; disk++) {
2228 		raid->disks[disk].dev = NULL;
2229 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2230 		      raid->disks[disk].serial,
2231 		      sizeof(raid->disks[disk].serial));
2232 		raid->disks[disk].sectors =
2233 		    meta->disk[map->disk_idx[disk]].sectors;
2234 		raid->disks[disk].flags = 0;
2235 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2236 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2237 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2238 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2239 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2240 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2241 		    raid->disks[disk].flags |= AR_DF_SPARE;
2242 		}
2243 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2244 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2245 	    }
2246 	}
2247 	if (meta->generation >= raid->generation) {
2248 	    for (disk = 0; disk < raid->total_disks; disk++) {
2249 		struct ata_device *atadev = device_get_softc(parent);
2250 
2251 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2252 		    sizeof(raid->disks[disk].serial))) {
2253 		    raid->disks[disk].dev = parent;
2254 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2255 		    ars->raid[raid->volume] = raid;
2256 		    ars->disk_number[raid->volume] = disk;
2257 		    retval = 1;
2258 		}
2259 	    }
2260 	}
2261 	else
2262 	    goto intel_out;
2263 
2264 	if (retval) {
2265 	    if (volume < meta->total_volumes) {
2266 		map = (struct intel_raid_mapping *)
2267 		      &map->disk_idx[map->total_disks];
2268 		volume++;
2269 		retval = 0;
2270 		continue;
2271 	    }
2272 	    break;
2273 	}
2274 	else {
2275 	    kfree(raidp[array], M_AR);
2276 	    raidp[array] = NULL;
2277 	    if (volume == 2)
2278 		retval = 1;
2279 	}
2280     }
2281 
2282 intel_out:
2283     kfree(meta, M_AR);
2284     return retval;
2285 }
2286 
2287 static int
2288 ata_raid_intel_write_meta(struct ar_softc *rdp)
2289 {
2290     struct intel_raid_conf *meta;
2291     struct intel_raid_mapping *map;
2292     struct timeval timestamp;
2293     u_int32_t checksum, *ptr;
2294     int count, disk, error = 0;
2295     char *tmp;
2296 
2297     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2298 
2299     rdp->generation++;
2300 
2301     /* Generate a new config_id if none exists */
2302     if (!rdp->magic_0) {
2303 	microtime(&timestamp);
2304 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2305     }
2306 
2307     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2308     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2309     meta->config_id = rdp->magic_0;
2310     meta->generation = rdp->generation;
2311     meta->total_disks = rdp->total_disks;
2312     meta->total_volumes = 1;                                    /* XXX SOS */
2313     for (disk = 0; disk < rdp->total_disks; disk++) {
2314 	if (rdp->disks[disk].dev) {
2315 	    struct ata_channel *ch =
2316 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2317 	    struct ata_device *atadev =
2318 		device_get_softc(rdp->disks[disk].dev);
2319 
2320 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2321 		  sizeof(rdp->disks[disk].serial));
2322 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2323 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2324 	}
2325 	else
2326 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2327 	meta->disk[disk].flags = 0;
2328 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2329 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2330 	else {
2331 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2332 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2333 	    else
2334 		meta->disk[disk].flags |= INTEL_F_DOWN;
2335 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2336 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2337 	}
2338     }
2339     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2340 
2341     bcopy(rdp->name, map->name, sizeof(rdp->name));
2342     map->total_sectors = rdp->total_sectors;
2343     map->state = 12;                                            /* XXX SOS */
2344     map->offset = rdp->offset_sectors;
2345     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2346     map->stripe_sectors =  rdp->interleave;
2347     map->disk_sectors = rdp->total_sectors / rdp->width;
2348     map->status = INTEL_S_READY;                                /* XXX SOS */
2349     switch (rdp->type) {
2350     case AR_T_RAID0:
2351 	map->type = INTEL_T_RAID0;
2352 	break;
2353     case AR_T_RAID1:
2354 	map->type = INTEL_T_RAID1;
2355 	break;
2356     case AR_T_RAID01:
2357 	map->type = INTEL_T_RAID1;
2358 	break;
2359     case AR_T_RAID5:
2360 	map->type = INTEL_T_RAID5;
2361 	break;
2362     default:
2363 	kfree(meta, M_AR);
2364 	return ENODEV;
2365     }
2366     map->total_disks = rdp->total_disks;
2367     map->magic[0] = 0x02;
2368     map->magic[1] = 0xff;
2369     map->magic[2] = 0x01;
2370     for (disk = 0; disk < rdp->total_disks; disk++)
2371 	map->disk_idx[disk] = disk;
2372 
2373     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2374     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2375 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2376 	checksum += *ptr++;
2377     }
2378     meta->checksum = checksum;
2379 
2380     if (testing || bootverbose)
2381 	ata_raid_intel_print_meta(meta);
2382 
2383     tmp = (char *)meta;
2384     bcopy(tmp, tmp+1024, 512);
2385     bcopy(tmp+512, tmp, 1024);
2386     bzero(tmp+1024, 512);
2387 
2388     for (disk = 0; disk < rdp->total_disks; disk++) {
2389 	if (rdp->disks[disk].dev) {
2390 	    if (ata_raid_rw(rdp->disks[disk].dev,
2391 			    INTEL_LBA(rdp->disks[disk].dev),
2392 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2393 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2394 		error = EIO;
2395 	    }
2396 	}
2397     }
2398     kfree(meta, M_AR);
2399     return error;
2400 }
2401 
2402 
2403 /* Integrated Technology Express Metadata */
2404 static int
2405 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2406 {
2407     struct ata_raid_subdisk *ars = device_get_softc(dev);
2408     device_t parent = device_get_parent(dev);
2409     struct ite_raid_conf *meta;
2410     struct ar_softc *raid = NULL;
2411     int array, disk_number, count, retval = 0;
2412     u_int16_t *ptr;
2413 
2414     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2415 	M_WAITOK | M_ZERO);
2416 
2417     if (ata_raid_rw(parent, ITE_LBA(parent),
2418 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2419 	if (testing || bootverbose)
2420 	    device_printf(parent, "ITE read metadata failed\n");
2421 	goto ite_out;
2422     }
2423 
2424     /* check if this is a ITE RAID struct */
2425     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2426 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2427 	ptr[count] = be16toh(ptr[count]);
2428 
2429     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2430 	if (testing || bootverbose)
2431 	    device_printf(parent, "ITE check1 failed\n");
2432 	goto ite_out;
2433     }
2434 
2435     if (testing || bootverbose)
2436 	ata_raid_ite_print_meta(meta);
2437 
2438     /* now convert ITE metadata into our generic form */
2439     for (array = 0; array < MAX_ARRAYS; array++) {
2440 	if ((raid = raidp[array])) {
2441 	    if (raid->format != AR_F_ITE_RAID)
2442 		continue;
2443 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2444 		continue;
2445 	}
2446 
2447 	/* if we dont have a disks timestamp the RAID is invalidated */
2448 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2449 	    goto ite_out;
2450 
2451 	if (!raid) {
2452 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2453 						     M_AR, M_WAITOK | M_ZERO);
2454 	}
2455 
2456 	switch (meta->type) {
2457 	case ITE_T_RAID0:
2458 	    raid->type = AR_T_RAID0;
2459 	    raid->width = meta->array_width;
2460 	    raid->total_disks = meta->array_width;
2461 	    disk_number = meta->disk_number;
2462 	    break;
2463 
2464 	case ITE_T_RAID1:
2465 	    raid->type = AR_T_RAID1;
2466 	    raid->width = 1;
2467 	    raid->total_disks = 2;
2468 	    disk_number = meta->disk_number;
2469 	    break;
2470 
2471 	case ITE_T_RAID01:
2472 	    raid->type = AR_T_RAID01;
2473 	    raid->width = meta->array_width;
2474 	    raid->total_disks = 4;
2475 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2476 			  ((meta->disk_number & 0x01) << 1);
2477 	    break;
2478 
2479 	case ITE_T_SPAN:
2480 	    raid->type = AR_T_SPAN;
2481 	    raid->width = 1;
2482 	    raid->total_disks = meta->array_width;
2483 	    disk_number = meta->disk_number;
2484 	    break;
2485 
2486 	default:
2487 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2488 	    kfree(raidp[array], M_AR);
2489 	    raidp[array] = NULL;
2490 	    goto ite_out;
2491 	}
2492 
2493 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2494 	raid->format = AR_F_ITE_RAID;
2495 	raid->generation = 0;
2496 	raid->interleave = meta->stripe_sectors;
2497 	raid->total_sectors = meta->total_sectors;
2498 	raid->heads = 255;
2499 	raid->sectors = 63;
2500 	raid->cylinders = raid->total_sectors / (63 * 255);
2501 	raid->offset_sectors = 0;
2502 	raid->rebuild_lba = 0;
2503 	raid->lun = array;
2504 
2505 	raid->disks[disk_number].dev = parent;
2506 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2507 	raid->disks[disk_number].flags =
2508 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2509 	ars->raid[raid->volume] = raid;
2510 	ars->disk_number[raid->volume] = disk_number;
2511 	retval = 1;
2512 	break;
2513     }
2514 ite_out:
2515     kfree(meta, M_AR);
2516     return retval;
2517 }
2518 
2519 /* JMicron Technology Corp Metadata */
2520 static int
2521 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2522 {
2523     struct ata_raid_subdisk *ars = device_get_softc(dev);
2524     device_t parent = device_get_parent(dev);
2525     struct jmicron_raid_conf *meta;
2526     struct ar_softc *raid = NULL;
2527     u_int16_t checksum, *ptr;
2528     u_int64_t disk_size;
2529     int count, array, disk, total_disks, retval = 0;
2530 
2531     meta = (struct jmicron_raid_conf *)
2532 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2533 
2534     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2535 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2536 	if (testing || bootverbose)
2537 	    device_printf(parent,
2538 			  "JMicron read metadata failed\n");
2539     }
2540 
2541     /* check for JMicron signature */
2542     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2543 	if (testing || bootverbose)
2544 	    device_printf(parent, "JMicron check1 failed\n");
2545 	goto jmicron_out;
2546     }
2547 
2548     /* calculate checksum and compare for valid */
2549     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2550 	checksum += *ptr++;
2551     if (checksum) {
2552 	if (testing || bootverbose)
2553 	    device_printf(parent, "JMicron check2 failed\n");
2554 	goto jmicron_out;
2555     }
2556 
2557     if (testing || bootverbose)
2558 	ata_raid_jmicron_print_meta(meta);
2559 
2560     /* now convert JMicron meta into our generic form */
2561     for (array = 0; array < MAX_ARRAYS; array++) {
2562 jmicron_next:
2563 	if (!raidp[array]) {
2564 	    raidp[array] =
2565 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2566 					  M_WAITOK | M_ZERO);
2567 	}
2568 	raid = raidp[array];
2569 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2570 	    continue;
2571 
2572 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2573 	    if (meta->disks[disk]) {
2574 		if (raid->format == AR_F_JMICRON_RAID) {
2575 		    if (bcmp(&meta->disks[disk],
2576 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2577 			array++;
2578 			goto jmicron_next;
2579 		    }
2580 		}
2581 		else
2582 		    bcopy(&meta->disks[disk],
2583 			  raid->disks[disk].serial, sizeof(u_int32_t));
2584 		total_disks++;
2585 	    }
2586 	}
2587 	/* handle spares XXX SOS */
2588 
2589 	switch (meta->type) {
2590 	case JM_T_RAID0:
2591 	    raid->type = AR_T_RAID0;
2592 	    raid->width = total_disks;
2593 	    break;
2594 
2595 	case JM_T_RAID1:
2596 	    raid->type = AR_T_RAID1;
2597 	    raid->width = 1;
2598 	    break;
2599 
2600 	case JM_T_RAID01:
2601 	    raid->type = AR_T_RAID01;
2602 	    raid->width = total_disks / 2;
2603 	    break;
2604 
2605 	case JM_T_RAID5:
2606 	    raid->type = AR_T_RAID5;
2607 	    raid->width = total_disks;
2608 	    break;
2609 
2610 	case JM_T_JBOD:
2611 	    raid->type = AR_T_SPAN;
2612 	    raid->width = 1;
2613 	    break;
2614 
2615 	default:
2616 	    device_printf(parent,
2617 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2618 	    kfree(raidp[array], M_AR);
2619 	    raidp[array] = NULL;
2620 	    goto jmicron_out;
2621 	}
2622 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2623 	raid->format = AR_F_JMICRON_RAID;
2624 	strncpy(raid->name, meta->name, sizeof(meta->name));
2625 	raid->generation = 0;
2626 	raid->interleave = 2 << meta->stripe_shift;
2627 	raid->total_disks = total_disks;
2628 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2629 	raid->heads = 255;
2630 	raid->sectors = 63;
2631 	raid->cylinders = raid->total_sectors / (63 * 255);
2632 	raid->offset_sectors = meta->offset * 16;
2633 	raid->rebuild_lba = 0;
2634 	raid->lun = array;
2635 
2636 	for (disk = 0; disk < raid->total_disks; disk++) {
2637 	    if (meta->disks[disk] == meta->disk_id) {
2638 		raid->disks[disk].dev = parent;
2639 		raid->disks[disk].sectors = disk_size;
2640 		raid->disks[disk].flags =
2641 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2642 		ars->raid[raid->volume] = raid;
2643 		ars->disk_number[raid->volume] = disk;
2644 		retval = 1;
2645 		break;
2646 	    }
2647 	}
2648 	break;
2649     }
2650 jmicron_out:
2651     kfree(meta, M_AR);
2652     return retval;
2653 }
2654 
2655 static int
2656 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2657 {
2658     struct jmicron_raid_conf *meta;
2659     u_int64_t disk_sectors;
2660     int disk, error = 0;
2661 
2662     meta = (struct jmicron_raid_conf *)
2663 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2664 
2665     rdp->generation++;
2666     switch (rdp->type) {
2667     case AR_T_JBOD:
2668 	meta->type = JM_T_JBOD;
2669 	break;
2670 
2671     case AR_T_RAID0:
2672 	meta->type = JM_T_RAID0;
2673 	break;
2674 
2675     case AR_T_RAID1:
2676 	meta->type = JM_T_RAID1;
2677 	break;
2678 
2679     case AR_T_RAID5:
2680 	meta->type = JM_T_RAID5;
2681 	break;
2682 
2683     case AR_T_RAID01:
2684 	meta->type = JM_T_RAID01;
2685 	break;
2686 
2687     default:
2688 	kfree(meta, M_AR);
2689 	return ENODEV;
2690     }
2691     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2692     meta->version = JMICRON_VERSION;
2693     meta->offset = rdp->offset_sectors / 16;
2694     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2695     meta->disk_sectors_low = disk_sectors & 0xffff;
2696     meta->disk_sectors_high = disk_sectors >> 16;
2697     strncpy(meta->name, rdp->name, sizeof(meta->name));
2698     meta->stripe_shift = ffs(rdp->interleave) - 2;
2699 
2700     for (disk = 0; disk < rdp->total_disks; disk++) {
2701 	if (rdp->disks[disk].serial[0])
2702 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2703 	else
2704 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2705     }
2706 
2707     for (disk = 0; disk < rdp->total_disks; disk++) {
2708 	if (rdp->disks[disk].dev) {
2709 	    u_int16_t checksum = 0, *ptr;
2710 	    int count;
2711 
2712 	    meta->disk_id = meta->disks[disk];
2713 	    meta->checksum = 0;
2714 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2715 		checksum += *ptr++;
2716 	    meta->checksum -= checksum;
2717 
2718 	    if (testing || bootverbose)
2719 		ata_raid_jmicron_print_meta(meta);
2720 
2721 	    if (ata_raid_rw(rdp->disks[disk].dev,
2722 			    JMICRON_LBA(rdp->disks[disk].dev),
2723 			    meta, sizeof(struct jmicron_raid_conf),
2724 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2725 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2726 		error = EIO;
2727 	    }
2728 	}
2729     }
2730     /* handle spares XXX SOS */
2731 
2732     kfree(meta, M_AR);
2733     return error;
2734 }
2735 
2736 /* LSILogic V2 MegaRAID Metadata */
2737 static int
2738 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2739 {
2740     struct ata_raid_subdisk *ars = device_get_softc(dev);
2741     device_t parent = device_get_parent(dev);
2742     struct lsiv2_raid_conf *meta;
2743     struct ar_softc *raid = NULL;
2744     int array, retval = 0;
2745 
2746     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2747 	M_AR, M_WAITOK | M_ZERO);
2748 
2749     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2750 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2751 	if (testing || bootverbose)
2752 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2753 	goto lsiv2_out;
2754     }
2755 
2756     /* check if this is a LSI RAID struct */
2757     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2758 	if (testing || bootverbose)
2759 	    device_printf(parent, "LSI (v2) check1 failed\n");
2760 	goto lsiv2_out;
2761     }
2762 
2763     if (testing || bootverbose)
2764 	ata_raid_lsiv2_print_meta(meta);
2765 
2766     /* now convert LSI (v2) config meta into our generic form */
2767     for (array = 0; array < MAX_ARRAYS; array++) {
2768 	int raid_entry, conf_entry;
2769 
2770 	if (!raidp[array + meta->raid_number]) {
2771 	    raidp[array + meta->raid_number] =
2772 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2773 					  M_WAITOK | M_ZERO);
2774 	}
2775 	raid = raidp[array + meta->raid_number];
2776 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2777 	    continue;
2778 
2779 	if (raid->magic_0 &&
2780 	    ((raid->magic_0 != meta->timestamp) ||
2781 	     (raid->magic_1 != meta->raid_number)))
2782 	    continue;
2783 
2784 	array += meta->raid_number;
2785 
2786 	raid_entry = meta->raid_number;
2787 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2788 		     meta->disk_number - 1;
2789 
2790 	switch (meta->configs[raid_entry].raid.type) {
2791 	case LSIV2_T_RAID0:
2792 	    raid->magic_0 = meta->timestamp;
2793 	    raid->magic_1 = meta->raid_number;
2794 	    raid->type = AR_T_RAID0;
2795 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2796 	    raid->width = meta->configs[raid_entry].raid.array_width;
2797 	    break;
2798 
2799 	case LSIV2_T_RAID1:
2800 	    raid->magic_0 = meta->timestamp;
2801 	    raid->magic_1 = meta->raid_number;
2802 	    raid->type = AR_T_RAID1;
2803 	    raid->width = meta->configs[raid_entry].raid.array_width;
2804 	    break;
2805 
2806 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2807 	    raid->magic_0 = meta->timestamp;
2808 	    raid->magic_1 = meta->raid_number;
2809 	    raid->type = AR_T_RAID01;
2810 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2811 	    raid->width = meta->configs[raid_entry].raid.array_width;
2812 	    break;
2813 
2814 	default:
2815 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2816 			  meta->configs[raid_entry].raid.type);
2817 	    kfree(raidp[array], M_AR);
2818 	    raidp[array] = NULL;
2819 	    goto lsiv2_out;
2820 	}
2821 
2822 	raid->format = AR_F_LSIV2_RAID;
2823 	raid->generation = 0;
2824 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2825 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2826 	raid->heads = 255;
2827 	raid->sectors = 63;
2828 	raid->cylinders = raid->total_sectors / (63 * 255);
2829 	raid->offset_sectors = 0;
2830 	raid->rebuild_lba = 0;
2831 	raid->lun = array;
2832 
2833 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2834 	    raid->disks[meta->disk_number].dev = parent;
2835 	    raid->disks[meta->disk_number].sectors =
2836 		meta->configs[conf_entry].disk.disk_sectors;
2837 	    raid->disks[meta->disk_number].flags =
2838 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2839 	    ars->raid[raid->volume] = raid;
2840 	    ars->disk_number[raid->volume] = meta->disk_number;
2841 	    retval = 1;
2842 	}
2843 	else
2844 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2845 
2846 	break;
2847     }
2848 
2849 lsiv2_out:
2850     kfree(meta, M_AR);
2851     return retval;
2852 }
2853 
2854 /* LSILogic V3 MegaRAID Metadata */
2855 static int
2856 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2857 {
2858     struct ata_raid_subdisk *ars = device_get_softc(dev);
2859     device_t parent = device_get_parent(dev);
2860     struct lsiv3_raid_conf *meta;
2861     struct ar_softc *raid = NULL;
2862     u_int8_t checksum, *ptr;
2863     int array, entry, count, disk_number, retval = 0;
2864 
2865     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2866 	M_AR, M_WAITOK | M_ZERO);
2867 
2868     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2869 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2870 	if (testing || bootverbose)
2871 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2872 	goto lsiv3_out;
2873     }
2874 
2875     /* check if this is a LSI RAID struct */
2876     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2877 	if (testing || bootverbose)
2878 	    device_printf(parent, "LSI (v3) check1 failed\n");
2879 	goto lsiv3_out;
2880     }
2881 
2882     /* check if the checksum is OK */
2883     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2884 	checksum += *ptr++;
2885     if (checksum) {
2886 	if (testing || bootverbose)
2887 	    device_printf(parent, "LSI (v3) check2 failed\n");
2888 	goto lsiv3_out;
2889     }
2890 
2891     if (testing || bootverbose)
2892 	ata_raid_lsiv3_print_meta(meta);
2893 
2894     /* now convert LSI (v3) config meta into our generic form */
2895     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2896 	if (!raidp[array]) {
2897 	    raidp[array] =
2898 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2899 					  M_WAITOK | M_ZERO);
2900 	}
2901 	raid = raidp[array];
2902 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2903 	    array++;
2904 	    continue;
2905 	}
2906 
2907 	if ((raid->format == AR_F_LSIV3_RAID) &&
2908 	    (raid->magic_0 != meta->timestamp)) {
2909 	    array++;
2910 	    continue;
2911 	}
2912 
2913 	switch (meta->raid[entry].total_disks) {
2914 	case 0:
2915 	    entry++;
2916 	    continue;
2917 	case 1:
2918 	    if (meta->raid[entry].device == meta->device) {
2919 		disk_number = 0;
2920 		break;
2921 	    }
2922 	    if (raid->format)
2923 		array++;
2924 	    entry++;
2925 	    continue;
2926 	case 2:
2927 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2928 	    break;
2929 	default:
2930 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2931 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2932 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2933 	    break;
2934 	}
2935 
2936 	switch (meta->raid[entry].type) {
2937 	case LSIV3_T_RAID0:
2938 	    raid->type = AR_T_RAID0;
2939 	    raid->width = meta->raid[entry].total_disks;
2940 	    break;
2941 
2942 	case LSIV3_T_RAID1:
2943 	    raid->type = AR_T_RAID1;
2944 	    raid->width = meta->raid[entry].array_width;
2945 	    break;
2946 
2947 	default:
2948 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2949 			  meta->raid[entry].type);
2950 	    kfree(raidp[array], M_AR);
2951 	    raidp[array] = NULL;
2952 	    entry++;
2953 	    continue;
2954 	}
2955 
2956 	raid->magic_0 = meta->timestamp;
2957 	raid->format = AR_F_LSIV3_RAID;
2958 	raid->generation = 0;
2959 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2960 	raid->total_disks = meta->raid[entry].total_disks;
2961 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2962 	raid->heads = 255;
2963 	raid->sectors = 63;
2964 	raid->cylinders = raid->total_sectors / (63 * 255);
2965 	raid->offset_sectors = meta->raid[entry].offset;
2966 	raid->rebuild_lba = 0;
2967 	raid->lun = array;
2968 
2969 	raid->disks[disk_number].dev = parent;
2970 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2971 	raid->disks[disk_number].flags =
2972 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2973 	ars->raid[raid->volume] = raid;
2974 	ars->disk_number[raid->volume] = disk_number;
2975 	retval = 1;
2976 	entry++;
2977 	array++;
2978     }
2979 
2980 lsiv3_out:
2981     kfree(meta, M_AR);
2982     return retval;
2983 }
2984 
2985 /* nVidia MediaShield Metadata */
2986 static int
2987 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
2988 {
2989     struct ata_raid_subdisk *ars = device_get_softc(dev);
2990     device_t parent = device_get_parent(dev);
2991     struct nvidia_raid_conf *meta;
2992     struct ar_softc *raid = NULL;
2993     u_int32_t checksum, *ptr;
2994     int array, count, retval = 0;
2995 
2996     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
2997 	M_AR, M_WAITOK | M_ZERO);
2998 
2999     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3000 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3001 	if (testing || bootverbose)
3002 	    device_printf(parent, "nVidia read metadata failed\n");
3003 	goto nvidia_out;
3004     }
3005 
3006     /* check if this is a nVidia RAID struct */
3007     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3008 	if (testing || bootverbose)
3009 	    device_printf(parent, "nVidia check1 failed\n");
3010 	goto nvidia_out;
3011     }
3012 
3013     /* check if the checksum is OK */
3014     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3015 	 count < meta->config_size; count++)
3016 	checksum += *ptr++;
3017     if (checksum) {
3018 	if (testing || bootverbose)
3019 	    device_printf(parent, "nVidia check2 failed\n");
3020 	goto nvidia_out;
3021     }
3022 
3023     if (testing || bootverbose)
3024 	ata_raid_nvidia_print_meta(meta);
3025 
3026     /* now convert nVidia meta into our generic form */
3027     for (array = 0; array < MAX_ARRAYS; array++) {
3028 	if (!raidp[array]) {
3029 	    raidp[array] =
3030 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3031 					  M_WAITOK | M_ZERO);
3032 	}
3033 	raid = raidp[array];
3034 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3035 	    continue;
3036 
3037 	if (raid->format == AR_F_NVIDIA_RAID &&
3038 	    ((raid->magic_0 != meta->magic_1) ||
3039 	     (raid->magic_1 != meta->magic_2))) {
3040 	    continue;
3041 	}
3042 
3043 	switch (meta->type) {
3044 	case NV_T_SPAN:
3045 	    raid->type = AR_T_SPAN;
3046 	    break;
3047 
3048 	case NV_T_RAID0:
3049 	    raid->type = AR_T_RAID0;
3050 	    break;
3051 
3052 	case NV_T_RAID1:
3053 	    raid->type = AR_T_RAID1;
3054 	    break;
3055 
3056 	case NV_T_RAID5:
3057 	    raid->type = AR_T_RAID5;
3058 	    break;
3059 
3060 	case NV_T_RAID01:
3061 	    raid->type = AR_T_RAID01;
3062 	    break;
3063 
3064 	default:
3065 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3066 			  meta->type);
3067 	    kfree(raidp[array], M_AR);
3068 	    raidp[array] = NULL;
3069 	    goto nvidia_out;
3070 	}
3071 	raid->magic_0 = meta->magic_1;
3072 	raid->magic_1 = meta->magic_2;
3073 	raid->format = AR_F_NVIDIA_RAID;
3074 	raid->generation = 0;
3075 	raid->interleave = meta->stripe_sectors;
3076 	raid->width = meta->array_width;
3077 	raid->total_disks = meta->total_disks;
3078 	raid->total_sectors = meta->total_sectors;
3079 	raid->heads = 255;
3080 	raid->sectors = 63;
3081 	raid->cylinders = raid->total_sectors / (63 * 255);
3082 	raid->offset_sectors = 0;
3083 	raid->rebuild_lba = meta->rebuild_lba;
3084 	raid->lun = array;
3085 	raid->status = AR_S_READY;
3086 	if (meta->status & NV_S_DEGRADED)
3087 	    raid->status |= AR_S_DEGRADED;
3088 
3089 	raid->disks[meta->disk_number].dev = parent;
3090 	raid->disks[meta->disk_number].sectors =
3091 	    raid->total_sectors / raid->width;
3092 	raid->disks[meta->disk_number].flags =
3093 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3094 	ars->raid[raid->volume] = raid;
3095 	ars->disk_number[raid->volume] = meta->disk_number;
3096 	retval = 1;
3097 	break;
3098     }
3099 
3100 nvidia_out:
3101     kfree(meta, M_AR);
3102     return retval;
3103 }
3104 
3105 /* Promise FastTrak Metadata */
3106 static int
3107 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3108 {
3109     struct ata_raid_subdisk *ars = device_get_softc(dev);
3110     device_t parent = device_get_parent(dev);
3111     struct promise_raid_conf *meta;
3112     struct ar_softc *raid;
3113     u_int32_t checksum, *ptr;
3114     int array, count, disk, disksum = 0, retval = 0;
3115 
3116     meta = (struct promise_raid_conf *)
3117 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3118 
3119     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3120 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3121 	if (testing || bootverbose)
3122 	    device_printf(parent, "%s read metadata failed\n",
3123 			  native ? "FreeBSD" : "Promise");
3124 	goto promise_out;
3125     }
3126 
3127     /* check the signature */
3128     if (native) {
3129 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3130 	    if (testing || bootverbose)
3131 		device_printf(parent, "FreeBSD check1 failed\n");
3132 	    goto promise_out;
3133 	}
3134     }
3135     else {
3136 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3137 	    if (testing || bootverbose)
3138 		device_printf(parent, "Promise check1 failed\n");
3139 	    goto promise_out;
3140 	}
3141     }
3142 
3143     /* check if the checksum is OK */
3144     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3145 	checksum += *ptr++;
3146     if (checksum != *ptr) {
3147 	if (testing || bootverbose)
3148 	    device_printf(parent, "%s check2 failed\n",
3149 			  native ? "FreeBSD" : "Promise");
3150 	goto promise_out;
3151     }
3152 
3153     /* check on disk integrity status */
3154     if (meta->raid.integrity != PR_I_VALID) {
3155 	if (testing || bootverbose)
3156 	    device_printf(parent, "%s check3 failed\n",
3157 			  native ? "FreeBSD" : "Promise");
3158 	goto promise_out;
3159     }
3160 
3161     if (testing || bootverbose)
3162 	ata_raid_promise_print_meta(meta);
3163 
3164     /* now convert Promise metadata into our generic form */
3165     for (array = 0; array < MAX_ARRAYS; array++) {
3166 	if (!raidp[array]) {
3167 	    raidp[array] =
3168 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3169 					  M_WAITOK | M_ZERO);
3170 	}
3171 	raid = raidp[array];
3172 	if (raid->format &&
3173 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3174 	    continue;
3175 
3176 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3177 	    !(meta->raid.magic_1 == (raid->magic_1)))
3178 	    continue;
3179 
3180 	/* update our knowledge about the array config based on generation */
3181 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3182 	    switch (meta->raid.type) {
3183 	    case PR_T_SPAN:
3184 		raid->type = AR_T_SPAN;
3185 		break;
3186 
3187 	    case PR_T_JBOD:
3188 		raid->type = AR_T_JBOD;
3189 		break;
3190 
3191 	    case PR_T_RAID0:
3192 		raid->type = AR_T_RAID0;
3193 		break;
3194 
3195 	    case PR_T_RAID1:
3196 		raid->type = AR_T_RAID1;
3197 		if (meta->raid.array_width > 1)
3198 		    raid->type = AR_T_RAID01;
3199 		break;
3200 
3201 	    case PR_T_RAID5:
3202 		raid->type = AR_T_RAID5;
3203 		break;
3204 
3205 	    default:
3206 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3207 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3208 		kfree(raidp[array], M_AR);
3209 		raidp[array] = NULL;
3210 		goto promise_out;
3211 	    }
3212 	    raid->magic_1 = meta->raid.magic_1;
3213 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3214 	    raid->generation = meta->raid.generation;
3215 	    raid->interleave = 1 << meta->raid.stripe_shift;
3216 	    raid->width = meta->raid.array_width;
3217 	    raid->total_disks = meta->raid.total_disks;
3218 	    raid->heads = meta->raid.heads + 1;
3219 	    raid->sectors = meta->raid.sectors;
3220 	    raid->cylinders = meta->raid.cylinders + 1;
3221 	    raid->total_sectors = meta->raid.total_sectors;
3222 	    raid->offset_sectors = 0;
3223 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3224 	    raid->lun = array;
3225 	    if ((meta->raid.status &
3226 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3227 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3228 		raid->status |= AR_S_READY;
3229 		if (meta->raid.status & PR_S_DEGRADED)
3230 		    raid->status |= AR_S_DEGRADED;
3231 	    }
3232 	    else
3233 		raid->status &= ~AR_S_READY;
3234 
3235 	    /* convert disk flags to our internal types */
3236 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3237 		raid->disks[disk].dev = NULL;
3238 		raid->disks[disk].flags = 0;
3239 		*((u_int64_t *)(raid->disks[disk].serial)) =
3240 		    meta->raid.disk[disk].magic_0;
3241 		disksum += meta->raid.disk[disk].flags;
3242 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3243 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3244 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3245 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3246 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3247 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3248 		    raid->disks[disk].flags |= AR_DF_SPARE;
3249 		}
3250 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3251 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3252 	    }
3253 	    if (!disksum) {
3254 		device_printf(parent, "%s subdisks has no flags\n",
3255 			      native ? "FreeBSD" : "Promise");
3256 		kfree(raidp[array], M_AR);
3257 		raidp[array] = NULL;
3258 		goto promise_out;
3259 	    }
3260 	}
3261 	if (meta->raid.generation >= raid->generation) {
3262 	    int disk_number = meta->raid.disk_number;
3263 
3264 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3265 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3266 		raid->disks[disk_number].dev = parent;
3267 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3268 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3269 		if ((raid->disks[disk_number].flags &
3270 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3271 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3272 		    ars->raid[raid->volume] = raid;
3273 		    ars->disk_number[raid->volume] = disk_number;
3274 		    retval = 1;
3275 		}
3276 	    }
3277 	}
3278 	break;
3279     }
3280 
3281 promise_out:
3282     kfree(meta, M_AR);
3283     return retval;
3284 }
3285 
3286 static int
3287 ata_raid_promise_write_meta(struct ar_softc *rdp)
3288 {
3289     struct promise_raid_conf *meta;
3290     struct timeval timestamp;
3291     u_int32_t *ckptr;
3292     int count, disk, drive, error = 0;
3293 
3294     meta = (struct promise_raid_conf *)
3295 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3296 
3297     rdp->generation++;
3298     microtime(&timestamp);
3299 
3300     for (disk = 0; disk < rdp->total_disks; disk++) {
3301 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3302 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3303 	meta->dummy_0 = 0x00020000;
3304 	meta->raid.disk_number = disk;
3305 
3306 	if (rdp->disks[disk].dev) {
3307 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3308 	    struct ata_channel *ch =
3309 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3310 
3311 	    meta->raid.channel = ch->unit;
3312 	    meta->raid.device = ATA_DEV(atadev->unit);
3313 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3314 	    meta->raid.disk_offset = rdp->offset_sectors;
3315 	}
3316 	else {
3317 	    meta->raid.channel = 0;
3318 	    meta->raid.device = 0;
3319 	    meta->raid.disk_sectors = 0;
3320 	    meta->raid.disk_offset = 0;
3321 	}
3322 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3323 	meta->magic_1 = timestamp.tv_sec >> 16;
3324 	meta->magic_2 = timestamp.tv_sec;
3325 	meta->raid.integrity = PR_I_VALID;
3326 	meta->raid.magic_0 = meta->magic_0;
3327 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3328 	meta->raid.generation = rdp->generation;
3329 
3330 	if (rdp->status & AR_S_READY) {
3331 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3332 	    meta->raid.status =
3333 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3334 	    if (rdp->status & AR_S_DEGRADED)
3335 		meta->raid.status |= PR_S_DEGRADED;
3336 	    else
3337 		meta->raid.status |= PR_S_FUNCTIONAL;
3338 	}
3339 	else {
3340 	    meta->raid.flags = PR_F_DOWN;
3341 	    meta->raid.status = 0;
3342 	}
3343 
3344 	switch (rdp->type) {
3345 	case AR_T_RAID0:
3346 	    meta->raid.type = PR_T_RAID0;
3347 	    break;
3348 	case AR_T_RAID1:
3349 	    meta->raid.type = PR_T_RAID1;
3350 	    break;
3351 	case AR_T_RAID01:
3352 	    meta->raid.type = PR_T_RAID1;
3353 	    break;
3354 	case AR_T_RAID5:
3355 	    meta->raid.type = PR_T_RAID5;
3356 	    break;
3357 	case AR_T_SPAN:
3358 	    meta->raid.type = PR_T_SPAN;
3359 	    break;
3360 	case AR_T_JBOD:
3361 	    meta->raid.type = PR_T_JBOD;
3362 	    break;
3363 	default:
3364 	    kfree(meta, M_AR);
3365 	    return ENODEV;
3366 	}
3367 
3368 	meta->raid.total_disks = rdp->total_disks;
3369 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3370 	meta->raid.array_width = rdp->width;
3371 	meta->raid.array_number = rdp->lun;
3372 	meta->raid.total_sectors = rdp->total_sectors;
3373 	meta->raid.cylinders = rdp->cylinders - 1;
3374 	meta->raid.heads = rdp->heads - 1;
3375 	meta->raid.sectors = rdp->sectors;
3376 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3377 
3378 	bzero(&meta->raid.disk, 8 * 12);
3379 	for (drive = 0; drive < rdp->total_disks; drive++) {
3380 	    meta->raid.disk[drive].flags = 0;
3381 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3382 		meta->raid.disk[drive].flags |= PR_F_VALID;
3383 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3384 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3385 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3386 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3387 	    else
3388 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3389 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3390 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3391 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3392 	    meta->raid.disk[drive].dummy_0 = 0x0;
3393 	    if (rdp->disks[drive].dev) {
3394 		struct ata_channel *ch =
3395 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3396 		struct ata_device *atadev =
3397 		    device_get_softc(rdp->disks[drive].dev);
3398 
3399 		meta->raid.disk[drive].channel = ch->unit;
3400 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3401 	    }
3402 	    meta->raid.disk[drive].magic_0 =
3403 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3404 	}
3405 
3406 	if (rdp->disks[disk].dev) {
3407 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3408 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3409 		if (rdp->format == AR_F_FREEBSD_RAID)
3410 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3411 		else
3412 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3413 	    }
3414 	    else
3415 		bzero(meta->promise_id, sizeof(meta->promise_id));
3416 	    meta->checksum = 0;
3417 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3418 		meta->checksum += *ckptr++;
3419 	    if (testing || bootverbose)
3420 		ata_raid_promise_print_meta(meta);
3421 	    if (ata_raid_rw(rdp->disks[disk].dev,
3422 			    PROMISE_LBA(rdp->disks[disk].dev),
3423 			    meta, sizeof(struct promise_raid_conf),
3424 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3425 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3426 		error = EIO;
3427 	    }
3428 	}
3429     }
3430     kfree(meta, M_AR);
3431     return error;
3432 }
3433 
3434 /* Silicon Image Medley Metadata */
3435 static int
3436 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3437 {
3438     struct ata_raid_subdisk *ars = device_get_softc(dev);
3439     device_t parent = device_get_parent(dev);
3440     struct sii_raid_conf *meta;
3441     struct ar_softc *raid = NULL;
3442     u_int16_t checksum, *ptr;
3443     int array, count, disk, retval = 0;
3444 
3445     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3446 	M_WAITOK | M_ZERO);
3447 
3448     if (ata_raid_rw(parent, SII_LBA(parent),
3449 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3450 	if (testing || bootverbose)
3451 	    device_printf(parent, "Silicon Image read metadata failed\n");
3452 	goto sii_out;
3453     }
3454 
3455     /* check if this is a Silicon Image (Medley) RAID struct */
3456     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3457 	checksum += *ptr++;
3458     if (checksum) {
3459 	if (testing || bootverbose)
3460 	    device_printf(parent, "Silicon Image check1 failed\n");
3461 	goto sii_out;
3462     }
3463 
3464     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3465 	checksum += *ptr++;
3466     if (checksum != meta->checksum_1) {
3467 	if (testing || bootverbose)
3468 	    device_printf(parent, "Silicon Image check2 failed\n");
3469 	goto sii_out;
3470     }
3471 
3472     /* check verison */
3473     if (meta->version_major != 0x0002 ||
3474 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3475 	if (testing || bootverbose)
3476 	    device_printf(parent, "Silicon Image check3 failed\n");
3477 	goto sii_out;
3478     }
3479 
3480     if (testing || bootverbose)
3481 	ata_raid_sii_print_meta(meta);
3482 
3483     /* now convert Silicon Image meta into our generic form */
3484     for (array = 0; array < MAX_ARRAYS; array++) {
3485 	if (!raidp[array]) {
3486 	    raidp[array] =
3487 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3488 					  M_WAITOK | M_ZERO);
3489 	}
3490 	raid = raidp[array];
3491 	if (raid->format && (raid->format != AR_F_SII_RAID))
3492 	    continue;
3493 
3494 	if (raid->format == AR_F_SII_RAID &&
3495 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3496 	    continue;
3497 	}
3498 
3499 	/* update our knowledge about the array config based on generation */
3500 	if (!meta->generation || meta->generation > raid->generation) {
3501 	    switch (meta->type) {
3502 	    case SII_T_RAID0:
3503 		raid->type = AR_T_RAID0;
3504 		break;
3505 
3506 	    case SII_T_RAID1:
3507 		raid->type = AR_T_RAID1;
3508 		break;
3509 
3510 	    case SII_T_RAID01:
3511 		raid->type = AR_T_RAID01;
3512 		break;
3513 
3514 	    case SII_T_SPARE:
3515 		device_printf(parent, "Silicon Image SPARE disk\n");
3516 		kfree(raidp[array], M_AR);
3517 		raidp[array] = NULL;
3518 		goto sii_out;
3519 
3520 	    default:
3521 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3522 			      meta->type);
3523 		kfree(raidp[array], M_AR);
3524 		raidp[array] = NULL;
3525 		goto sii_out;
3526 	    }
3527 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3528 	    raid->format = AR_F_SII_RAID;
3529 	    raid->generation = meta->generation;
3530 	    raid->interleave = meta->stripe_sectors;
3531 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3532 	    raid->total_disks =
3533 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3534 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3535 	    raid->total_sectors = meta->total_sectors;
3536 	    raid->heads = 255;
3537 	    raid->sectors = 63;
3538 	    raid->cylinders = raid->total_sectors / (63 * 255);
3539 	    raid->offset_sectors = 0;
3540 	    raid->rebuild_lba = meta->rebuild_lba;
3541 	    raid->lun = array;
3542 	    strncpy(raid->name, meta->name,
3543 		    min(sizeof(raid->name), sizeof(meta->name)));
3544 
3545 	    /* clear out any old info */
3546 	    if (raid->generation) {
3547 		for (disk = 0; disk < raid->total_disks; disk++) {
3548 		    raid->disks[disk].dev = NULL;
3549 		    raid->disks[disk].flags = 0;
3550 		}
3551 	    }
3552 	}
3553 	if (meta->generation >= raid->generation) {
3554 	    /* XXX SOS add check for the right physical disk by serial# */
3555 	    if (meta->status & SII_S_READY) {
3556 		int disk_number = (raid->type == AR_T_RAID01) ?
3557 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3558 		    meta->disk_number;
3559 
3560 		raid->disks[disk_number].dev = parent;
3561 		raid->disks[disk_number].sectors =
3562 		    raid->total_sectors / raid->width;
3563 		raid->disks[disk_number].flags =
3564 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3565 		ars->raid[raid->volume] = raid;
3566 		ars->disk_number[raid->volume] = disk_number;
3567 		retval = 1;
3568 	    }
3569 	}
3570 	break;
3571     }
3572 
3573 sii_out:
3574     kfree(meta, M_AR);
3575     return retval;
3576 }
3577 
3578 /* Silicon Integrated Systems Metadata */
3579 static int
3580 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3581 {
3582     struct ata_raid_subdisk *ars = device_get_softc(dev);
3583     device_t parent = device_get_parent(dev);
3584     struct sis_raid_conf *meta;
3585     struct ar_softc *raid = NULL;
3586     int array, disk_number, drive, retval = 0;
3587 
3588     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3589 	M_WAITOK | M_ZERO);
3590 
3591     if (ata_raid_rw(parent, SIS_LBA(parent),
3592 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3593 	if (testing || bootverbose)
3594 	    device_printf(parent,
3595 			  "Silicon Integrated Systems read metadata failed\n");
3596     }
3597 
3598     /* check for SiS magic */
3599     if (meta->magic != SIS_MAGIC) {
3600 	if (testing || bootverbose)
3601 	    device_printf(parent,
3602 			  "Silicon Integrated Systems check1 failed\n");
3603 	goto sis_out;
3604     }
3605 
3606     if (testing || bootverbose)
3607 	ata_raid_sis_print_meta(meta);
3608 
3609     /* now convert SiS meta into our generic form */
3610     for (array = 0; array < MAX_ARRAYS; array++) {
3611 	if (!raidp[array]) {
3612 	    raidp[array] =
3613 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3614 					  M_WAITOK | M_ZERO);
3615 	}
3616 
3617 	raid = raidp[array];
3618 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3619 	    continue;
3620 
3621 	if ((raid->format == AR_F_SIS_RAID) &&
3622 	    ((raid->magic_0 != meta->controller_pci_id) ||
3623 	     (raid->magic_1 != meta->timestamp))) {
3624 	    continue;
3625 	}
3626 
3627 	switch (meta->type_total_disks & SIS_T_MASK) {
3628 	case SIS_T_JBOD:
3629 	    raid->type = AR_T_JBOD;
3630 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3631 	    raid->total_sectors += SIS_LBA(parent);
3632 	    break;
3633 
3634 	case SIS_T_RAID0:
3635 	    raid->type = AR_T_RAID0;
3636 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3637 	    if (!raid->total_sectors ||
3638 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3639 		raid->total_sectors = raid->width * SIS_LBA(parent);
3640 	    break;
3641 
3642 	case SIS_T_RAID1:
3643 	    raid->type = AR_T_RAID1;
3644 	    raid->width = 1;
3645 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3646 		raid->total_sectors = SIS_LBA(parent);
3647 	    break;
3648 
3649 	default:
3650 	    device_printf(parent, "Silicon Integrated Systems "
3651 			  "unknown RAID type 0x%08x\n", meta->magic);
3652 	    kfree(raidp[array], M_AR);
3653 	    raidp[array] = NULL;
3654 	    goto sis_out;
3655 	}
3656 	raid->magic_0 = meta->controller_pci_id;
3657 	raid->magic_1 = meta->timestamp;
3658 	raid->format = AR_F_SIS_RAID;
3659 	raid->generation = 0;
3660 	raid->interleave = meta->stripe_sectors;
3661 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3662 	raid->heads = 255;
3663 	raid->sectors = 63;
3664 	raid->cylinders = raid->total_sectors / (63 * 255);
3665 	raid->offset_sectors = 0;
3666 	raid->rebuild_lba = 0;
3667 	raid->lun = array;
3668 	/* XXX SOS if total_disks > 2 this doesn't float */
3669 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3670 	    disk_number = 0;
3671 	else
3672 	    disk_number = 1;
3673 
3674 	for (drive = 0; drive < raid->total_disks; drive++) {
3675 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3676 	    if (drive == disk_number) {
3677 		raid->disks[disk_number].dev = parent;
3678 		raid->disks[disk_number].flags =
3679 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3680 		ars->raid[raid->volume] = raid;
3681 		ars->disk_number[raid->volume] = disk_number;
3682 	    }
3683 	}
3684 	retval = 1;
3685 	break;
3686     }
3687 
3688 sis_out:
3689     kfree(meta, M_AR);
3690     return retval;
3691 }
3692 
3693 static int
3694 ata_raid_sis_write_meta(struct ar_softc *rdp)
3695 {
3696     struct sis_raid_conf *meta;
3697     struct timeval timestamp;
3698     int disk, error = 0;
3699 
3700     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3701 	M_WAITOK | M_ZERO);
3702 
3703     rdp->generation++;
3704     microtime(&timestamp);
3705 
3706     meta->magic = SIS_MAGIC;
3707     /* XXX SOS if total_disks > 2 this doesn't float */
3708     for (disk = 0; disk < rdp->total_disks; disk++) {
3709 	if (rdp->disks[disk].dev) {
3710 	    struct ata_channel *ch =
3711 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3712 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3713 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3714 
3715 	    meta->disks |= disk_number << ((1 - disk) << 2);
3716 	}
3717     }
3718     switch (rdp->type) {
3719     case AR_T_JBOD:
3720 	meta->type_total_disks = SIS_T_JBOD;
3721 	break;
3722 
3723     case AR_T_RAID0:
3724 	meta->type_total_disks = SIS_T_RAID0;
3725 	break;
3726 
3727     case AR_T_RAID1:
3728 	meta->type_total_disks = SIS_T_RAID1;
3729 	break;
3730 
3731     default:
3732 	kfree(meta, M_AR);
3733 	return ENODEV;
3734     }
3735     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3736     meta->stripe_sectors = rdp->interleave;
3737     meta->timestamp = timestamp.tv_sec;
3738 
3739     for (disk = 0; disk < rdp->total_disks; disk++) {
3740 	if (rdp->disks[disk].dev) {
3741 	    struct ata_channel *ch =
3742 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3743 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3744 
3745 	    meta->controller_pci_id =
3746 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3747 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3748 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3749 
3750 	    /* XXX SOS if total_disks > 2 this may not float */
3751 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3752 
3753 	    if (testing || bootverbose)
3754 		ata_raid_sis_print_meta(meta);
3755 
3756 	    if (ata_raid_rw(rdp->disks[disk].dev,
3757 			    SIS_LBA(rdp->disks[disk].dev),
3758 			    meta, sizeof(struct sis_raid_conf),
3759 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3760 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3761 		error = EIO;
3762 	    }
3763 	}
3764     }
3765     kfree(meta, M_AR);
3766     return error;
3767 }
3768 
3769 /* VIA Tech V-RAID Metadata */
3770 static int
3771 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3772 {
3773     struct ata_raid_subdisk *ars = device_get_softc(dev);
3774     device_t parent = device_get_parent(dev);
3775     struct via_raid_conf *meta;
3776     struct ar_softc *raid = NULL;
3777     u_int8_t checksum, *ptr;
3778     int array, count, disk, retval = 0;
3779 
3780     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3781 	M_WAITOK | M_ZERO);
3782 
3783     if (ata_raid_rw(parent, VIA_LBA(parent),
3784 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3785 	if (testing || bootverbose)
3786 	    device_printf(parent, "VIA read metadata failed\n");
3787 	goto via_out;
3788     }
3789 
3790     /* check if this is a VIA RAID struct */
3791     if (meta->magic != VIA_MAGIC) {
3792 	if (testing || bootverbose)
3793 	    device_printf(parent, "VIA check1 failed\n");
3794 	goto via_out;
3795     }
3796 
3797     /* calculate checksum and compare for valid */
3798     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3799 	checksum += *ptr++;
3800     if (checksum != meta->checksum) {
3801 	if (testing || bootverbose)
3802 	    device_printf(parent, "VIA check2 failed\n");
3803 	goto via_out;
3804     }
3805 
3806     if (testing || bootverbose)
3807 	ata_raid_via_print_meta(meta);
3808 
3809     /* now convert VIA meta into our generic form */
3810     for (array = 0; array < MAX_ARRAYS; array++) {
3811 	if (!raidp[array]) {
3812 	    raidp[array] =
3813 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3814 					  M_WAITOK | M_ZERO);
3815 	}
3816 	raid = raidp[array];
3817 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3818 	    continue;
3819 
3820 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3821 	    continue;
3822 
3823 	switch (meta->type & VIA_T_MASK) {
3824 	case VIA_T_RAID0:
3825 	    raid->type = AR_T_RAID0;
3826 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3827 	    if (!raid->total_sectors ||
3828 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3829 		raid->total_sectors = raid->width * meta->disk_sectors;
3830 	    break;
3831 
3832 	case VIA_T_RAID1:
3833 	    raid->type = AR_T_RAID1;
3834 	    raid->width = 1;
3835 	    raid->total_sectors = meta->disk_sectors;
3836 	    break;
3837 
3838 	case VIA_T_RAID01:
3839 	    raid->type = AR_T_RAID01;
3840 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3841 	    if (!raid->total_sectors ||
3842 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3843 		raid->total_sectors = raid->width * meta->disk_sectors;
3844 	    break;
3845 
3846 	case VIA_T_RAID5:
3847 	    raid->type = AR_T_RAID5;
3848 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3849 	    if (!raid->total_sectors ||
3850 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3851 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3852 	    break;
3853 
3854 	case VIA_T_SPAN:
3855 	    raid->type = AR_T_SPAN;
3856 	    raid->width = 1;
3857 	    raid->total_sectors += meta->disk_sectors;
3858 	    break;
3859 
3860 	default:
3861 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3862 	    kfree(raidp[array], M_AR);
3863 	    raidp[array] = NULL;
3864 	    goto via_out;
3865 	}
3866 	raid->magic_0 = meta->disks[0];
3867 	raid->format = AR_F_VIA_RAID;
3868 	raid->generation = 0;
3869 	raid->interleave =
3870 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3871 	for (count = 0, disk = 0; disk < 8; disk++)
3872 	    if (meta->disks[disk])
3873 		count++;
3874 	raid->total_disks = count;
3875 	raid->heads = 255;
3876 	raid->sectors = 63;
3877 	raid->cylinders = raid->total_sectors / (63 * 255);
3878 	raid->offset_sectors = 0;
3879 	raid->rebuild_lba = 0;
3880 	raid->lun = array;
3881 
3882 	for (disk = 0; disk < raid->total_disks; disk++) {
3883 	    if (meta->disks[disk] == meta->disk_id) {
3884 		raid->disks[disk].dev = parent;
3885 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3886 		      sizeof(u_int32_t));
3887 		raid->disks[disk].sectors = meta->disk_sectors;
3888 		raid->disks[disk].flags =
3889 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3890 		ars->raid[raid->volume] = raid;
3891 		ars->disk_number[raid->volume] = disk;
3892 		retval = 1;
3893 		break;
3894 	    }
3895 	}
3896 	break;
3897     }
3898 
3899 via_out:
3900     kfree(meta, M_AR);
3901     return retval;
3902 }
3903 
3904 static int
3905 ata_raid_via_write_meta(struct ar_softc *rdp)
3906 {
3907     struct via_raid_conf *meta;
3908     int disk, error = 0;
3909 
3910     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3911 	M_WAITOK | M_ZERO);
3912 
3913     rdp->generation++;
3914 
3915     meta->magic = VIA_MAGIC;
3916     meta->dummy_0 = 0x02;
3917     switch (rdp->type) {
3918     case AR_T_SPAN:
3919 	meta->type = VIA_T_SPAN;
3920 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3921 	break;
3922 
3923     case AR_T_RAID0:
3924 	meta->type = VIA_T_RAID0;
3925 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3926 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3927 	break;
3928 
3929     case AR_T_RAID1:
3930 	meta->type = VIA_T_RAID1;
3931 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3932 	break;
3933 
3934     case AR_T_RAID5:
3935 	meta->type = VIA_T_RAID5;
3936 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3937 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3938 	break;
3939 
3940     case AR_T_RAID01:
3941 	meta->type = VIA_T_RAID01;
3942 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3943 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3944 	break;
3945 
3946     default:
3947 	kfree(meta, M_AR);
3948 	return ENODEV;
3949     }
3950     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3951     meta->disk_sectors =
3952 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3953     for (disk = 0; disk < rdp->total_disks; disk++)
3954 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3955 
3956     for (disk = 0; disk < rdp->total_disks; disk++) {
3957 	if (rdp->disks[disk].dev) {
3958 	    u_int8_t *ptr;
3959 	    int count;
3960 
3961 	    meta->disk_index = disk * sizeof(u_int32_t);
3962 	    if (rdp->type == AR_T_RAID01)
3963 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3964 				   (meta->disk_index & ~0x08);
3965 	    meta->disk_id = meta->disks[disk];
3966 	    meta->checksum = 0;
3967 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3968 		meta->checksum += *ptr++;
3969 
3970 	    if (testing || bootverbose)
3971 		ata_raid_via_print_meta(meta);
3972 
3973 	    if (ata_raid_rw(rdp->disks[disk].dev,
3974 			    VIA_LBA(rdp->disks[disk].dev),
3975 			    meta, sizeof(struct via_raid_conf),
3976 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3977 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3978 		error = EIO;
3979 	    }
3980 	}
3981     }
3982     kfree(meta, M_AR);
3983     return error;
3984 }
3985 
3986 static struct ata_request *
3987 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
3988 {
3989     struct ata_request *request;
3990 
3991     if (!(request = ata_alloc_request())) {
3992 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
3993 	return NULL;
3994     }
3995     request->timeout = ATA_DEFAULT_TIMEOUT;
3996     request->retries = 2;
3997     request->callback = ata_raid_done;
3998     request->driver = rdp;
3999     request->bio = bio;
4000     switch (request->bio->bio_buf->b_cmd) {
4001     case BUF_CMD_READ:
4002 	request->flags = ATA_R_READ;
4003 	break;
4004     case BUF_CMD_WRITE:
4005 	request->flags = ATA_R_WRITE;
4006 	break;
4007     case BUF_CMD_FLUSH:
4008 	request->flags = ATA_R_CONTROL;
4009 	break;
4010     default:
4011 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4012 	ata_free_request(request);
4013 #if 0
4014 	bio->bio_buf->b_flags |= B_ERROR;
4015 	bio->bio_buf->b_error = EIO;
4016 	biodone(bio);
4017 #endif /* 0 */
4018 	return(NULL);
4019     }
4020     return request;
4021 }
4022 
4023 static int
4024 ata_raid_send_request(struct ata_request *request)
4025 {
4026     struct ata_device *atadev = device_get_softc(request->dev);
4027 
4028     request->transfersize = min(request->bytecount, atadev->max_iosize);
4029     if (request->flags & ATA_R_READ) {
4030 	if (atadev->mode >= ATA_DMA) {
4031 	    request->flags |= ATA_R_DMA;
4032 	    request->u.ata.command = ATA_READ_DMA;
4033 	}
4034 	else if (atadev->max_iosize > DEV_BSIZE)
4035 	    request->u.ata.command = ATA_READ_MUL;
4036 	else
4037 	    request->u.ata.command = ATA_READ;
4038     }
4039     else if (request->flags & ATA_R_WRITE) {
4040 	if (atadev->mode >= ATA_DMA) {
4041 	    request->flags |= ATA_R_DMA;
4042 	    request->u.ata.command = ATA_WRITE_DMA;
4043 	}
4044 	else if (atadev->max_iosize > DEV_BSIZE)
4045 	    request->u.ata.command = ATA_WRITE_MUL;
4046 	else
4047 	    request->u.ata.command = ATA_WRITE;
4048     }
4049     else {
4050 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4051 	ata_free_request(request);
4052 	return EIO;
4053     }
4054     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4055     ata_queue_request(request);
4056     return 0;
4057 }
4058 
4059 static int
4060 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4061 {
4062     struct ata_device *atadev = device_get_softc(dev);
4063     struct ata_request *request;
4064     int error;
4065 
4066     if (bcount % DEV_BSIZE) {
4067 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4068 	return ENOMEM;
4069     }
4070 
4071     if (!(request = ata_alloc_request())) {
4072 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4073 	return ENOMEM;
4074     }
4075 
4076     /* setup request */
4077     request->dev = dev;
4078     request->timeout = 10;
4079     request->retries = 0;
4080     request->data = data;
4081     request->bytecount = bcount;
4082     request->transfersize = DEV_BSIZE;
4083     request->u.ata.lba = lba;
4084     request->u.ata.count = request->bytecount / DEV_BSIZE;
4085     request->flags = flags;
4086 
4087     if (flags & ATA_R_READ) {
4088 	if (atadev->mode >= ATA_DMA) {
4089 	    request->u.ata.command = ATA_READ_DMA;
4090 	    request->flags |= ATA_R_DMA;
4091 	}
4092 	else
4093 	    request->u.ata.command = ATA_READ;
4094 	ata_queue_request(request);
4095     }
4096     else if (flags & ATA_R_WRITE) {
4097 	if (atadev->mode >= ATA_DMA) {
4098 	    request->u.ata.command = ATA_WRITE_DMA;
4099 	    request->flags |= ATA_R_DMA;
4100 	}
4101 	else
4102 	    request->u.ata.command = ATA_WRITE;
4103 	ata_queue_request(request);
4104     }
4105     else {
4106 	device_printf(dev, "FAILURE - unknown IO operation\n");
4107 	request->result = EIO;
4108     }
4109     error = request->result;
4110     ata_free_request(request);
4111     return error;
4112 }
4113 
4114 /*
4115  * module handeling
4116  */
4117 static int
4118 ata_raid_subdisk_probe(device_t dev)
4119 {
4120     device_quiet(dev);
4121     return 0;
4122 }
4123 
4124 static int
4125 ata_raid_subdisk_attach(device_t dev)
4126 {
4127     struct ata_raid_subdisk *ars = device_get_softc(dev);
4128     int volume;
4129 
4130     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4131 	ars->raid[volume] = NULL;
4132 	ars->disk_number[volume] = -1;
4133     }
4134     ata_raid_read_metadata(dev);
4135     return 0;
4136 }
4137 
4138 static int
4139 ata_raid_subdisk_detach(device_t dev)
4140 {
4141     struct ata_raid_subdisk *ars = device_get_softc(dev);
4142     int volume;
4143 
4144     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4145 	if (ars->raid[volume]) {
4146 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4147 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4148 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4149 	    ata_raid_config_changed(ars->raid[volume], 1);
4150 	    ars->raid[volume] = NULL;
4151 	    ars->disk_number[volume] = -1;
4152 	}
4153     }
4154     return 0;
4155 }
4156 
4157 static device_method_t ata_raid_sub_methods[] = {
4158     /* device interface */
4159     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4160     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4161     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4162     { 0, 0 }
4163 };
4164 
4165 static driver_t ata_raid_sub_driver = {
4166     "subdisk",
4167     ata_raid_sub_methods,
4168     sizeof(struct ata_raid_subdisk)
4169 };
4170 
4171 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4172 
4173 static int
4174 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4175 {
4176     int i;
4177 
4178     switch (what) {
4179     case MOD_LOAD:
4180 	if (testing || bootverbose)
4181 	    kprintf("ATA PseudoRAID loaded\n");
4182 #if 0
4183 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4184 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4185 				M_AR, M_WAITOK | M_ZERO);
4186 #endif
4187 	/* attach found PseudoRAID arrays */
4188 	for (i = 0; i < MAX_ARRAYS; i++) {
4189 	    struct ar_softc *rdp = ata_raid_arrays[i];
4190 
4191 	    if (!rdp || !rdp->format)
4192 		continue;
4193 	    if (testing || bootverbose)
4194 		ata_raid_print_meta(rdp);
4195 	    ata_raid_attach(rdp, 0);
4196 	}
4197 	ata_raid_ioctl_func = ata_raid_ioctl;
4198 	return 0;
4199 
4200     case MOD_UNLOAD:
4201 	/* detach found PseudoRAID arrays */
4202 	for (i = 0; i < MAX_ARRAYS; i++) {
4203 	    struct ar_softc *rdp = ata_raid_arrays[i];
4204 
4205 	    if (!rdp || !rdp->status)
4206 		continue;
4207 	    disk_destroy(&rdp->disk);
4208 	}
4209 	if (testing || bootverbose)
4210 	    kprintf("ATA PseudoRAID unloaded\n");
4211 #if 0
4212 	kfree(ata_raid_arrays, M_AR);
4213 #endif
4214 	ata_raid_ioctl_func = NULL;
4215 	return 0;
4216 
4217     default:
4218 	return EOPNOTSUPP;
4219     }
4220 }
4221 
4222 static moduledata_t ata_raid_moduledata =
4223     { "ataraid", ata_raid_module_event_handler, NULL };
4224 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4225 MODULE_VERSION(ataraid, 1);
4226 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4227 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4228 
4229 static char *
4230 ata_raid_format(struct ar_softc *rdp)
4231 {
4232     switch (rdp->format) {
4233     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4234     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4235     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4236     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4237     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4238     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4239     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4240     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4241     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4242     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4243     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4244     case AR_F_SII_RAID:         return "Silicon Image Medley";
4245     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4246     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4247     default:                    return "UNKNOWN";
4248     }
4249 }
4250 
4251 static char *
4252 ata_raid_type(struct ar_softc *rdp)
4253 {
4254     switch (rdp->type) {
4255     case AR_T_JBOD:     return "JBOD";
4256     case AR_T_SPAN:     return "SPAN";
4257     case AR_T_RAID0:    return "RAID0";
4258     case AR_T_RAID1:    return "RAID1";
4259     case AR_T_RAID3:    return "RAID3";
4260     case AR_T_RAID4:    return "RAID4";
4261     case AR_T_RAID5:    return "RAID5";
4262     case AR_T_RAID01:   return "RAID0+1";
4263     default:            return "UNKNOWN";
4264     }
4265 }
4266 
4267 static char *
4268 ata_raid_flags(struct ar_softc *rdp)
4269 {
4270     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4271     case AR_S_READY:                                    return "READY";
4272     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4273     case AR_S_READY | AR_S_REBUILDING:
4274     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4275     default:                                            return "BROKEN";
4276     }
4277 }
4278 
4279 /* debugging gunk */
4280 static void
4281 ata_raid_print_meta(struct ar_softc *raid)
4282 {
4283     int i;
4284 
4285     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4286     kprintf("=================================================\n");
4287     kprintf("format              %s\n", ata_raid_format(raid));
4288     kprintf("type                %s\n", ata_raid_type(raid));
4289     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4290 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4291     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4292     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4293     kprintf("generation          %u\n", raid->generation);
4294     kprintf("total_sectors       %ju\n", raid->total_sectors);
4295     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4296     kprintf("heads               %u\n", raid->heads);
4297     kprintf("sectors             %u\n", raid->sectors);
4298     kprintf("cylinders           %u\n", raid->cylinders);
4299     kprintf("width               %u\n", raid->width);
4300     kprintf("interleave          %u\n", raid->interleave);
4301     kprintf("total_disks         %u\n", raid->total_disks);
4302     for (i = 0; i < raid->total_disks; i++) {
4303 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4304 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4305 	if (raid->disks[i].dev) {
4306 	    kprintf("        ");
4307 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4308 			  raid->disks[i].sectors);
4309 	}
4310     }
4311     kprintf("=================================================\n");
4312 }
4313 
4314 static char *
4315 ata_raid_adaptec_type(int type)
4316 {
4317     static char buffer[16];
4318 
4319     switch (type) {
4320     case ADP_T_RAID0:   return "RAID0";
4321     case ADP_T_RAID1:   return "RAID1";
4322     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4323 			return buffer;
4324     }
4325 }
4326 
4327 static void
4328 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4329 {
4330     int i;
4331 
4332     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4333     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4334     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4335     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4336     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4337     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4338     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4339     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4340     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4341     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4342     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4343     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4344 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4345 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4346     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4347 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4348 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4349 
4350     for (i = 0; i < be16toh(meta->total_configs); i++) {
4351 	kprintf("    %d   total_disks  %u\n", i,
4352 	       be16toh(meta->configs[i].disk_number));
4353 	kprintf("    %d   generation   %u\n", i,
4354 	       be16toh(meta->configs[i].generation));
4355 	kprintf("    %d   magic_0      0x%08x\n", i,
4356 	       be32toh(meta->configs[i].magic_0));
4357 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4358 	kprintf("    %d   type         %s\n", i,
4359 	       ata_raid_adaptec_type(meta->configs[i].type));
4360 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4361 	kprintf("    %d   flags        %d\n", i,
4362 	       be32toh(meta->configs[i].flags));
4363 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4364 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4365 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4366 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4367 	kprintf("    %d   disk_number  %u\n", i,
4368 	       be32toh(meta->configs[i].disk_number));
4369 	kprintf("    %d   dummy_6      0x%08x\n", i,
4370 	       be32toh(meta->configs[i].dummy_6));
4371 	kprintf("    %d   sectors      %u\n", i,
4372 	       be32toh(meta->configs[i].sectors));
4373 	kprintf("    %d   stripe_shift %u\n", i,
4374 	       be16toh(meta->configs[i].stripe_shift));
4375 	kprintf("    %d   dummy_7      0x%08x\n", i,
4376 	       be32toh(meta->configs[i].dummy_7));
4377 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4378 	       be32toh(meta->configs[i].dummy_8[0]),
4379 	       be32toh(meta->configs[i].dummy_8[1]),
4380 	       be32toh(meta->configs[i].dummy_8[2]),
4381 	       be32toh(meta->configs[i].dummy_8[3]));
4382 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4383     }
4384     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4385     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4386     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4387     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4388     kprintf("=================================================\n");
4389 }
4390 
4391 static char *
4392 ata_raid_hptv2_type(int type)
4393 {
4394     static char buffer[16];
4395 
4396     switch (type) {
4397     case HPTV2_T_RAID0:         return "RAID0";
4398     case HPTV2_T_RAID1:         return "RAID1";
4399     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4400     case HPTV2_T_SPAN:          return "SPAN";
4401     case HPTV2_T_RAID_3:        return "RAID3";
4402     case HPTV2_T_RAID_5:        return "RAID5";
4403     case HPTV2_T_JBOD:          return "JBOD";
4404     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4405     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4406 			return buffer;
4407     }
4408 }
4409 
4410 static void
4411 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4412 {
4413     int i;
4414 
4415     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4416     kprintf("magic               0x%08x\n", meta->magic);
4417     kprintf("magic_0             0x%08x\n", meta->magic_0);
4418     kprintf("magic_1             0x%08x\n", meta->magic_1);
4419     kprintf("order               0x%08x\n", meta->order);
4420     kprintf("array_width         %u\n", meta->array_width);
4421     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4422     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4423     kprintf("disk_number         %u\n", meta->disk_number);
4424     kprintf("total_sectors       %u\n", meta->total_sectors);
4425     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4426     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4427     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4428     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4429     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4430     kprintf("log_index           0x%02x\n", meta->error_log_index);
4431     if (meta->error_log_entries) {
4432 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4433 	for (i = meta->error_log_index;
4434 	     i < meta->error_log_index + meta->error_log_entries; i++)
4435 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4436 		   meta->errorlog[i%32].timestamp,
4437 		   meta->errorlog[i%32].reason,
4438 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4439 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4440     }
4441     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4442     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4443     kprintf("name_1              <%.15s>\n", meta->name_1);
4444     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4445     kprintf("name_2              <%.15s>\n", meta->name_2);
4446     kprintf("=================================================\n");
4447 }
4448 
4449 static char *
4450 ata_raid_hptv3_type(int type)
4451 {
4452     static char buffer[16];
4453 
4454     switch (type) {
4455     case HPTV3_T_SPARE: return "SPARE";
4456     case HPTV3_T_JBOD:  return "JBOD";
4457     case HPTV3_T_SPAN:  return "SPAN";
4458     case HPTV3_T_RAID0: return "RAID0";
4459     case HPTV3_T_RAID1: return "RAID1";
4460     case HPTV3_T_RAID3: return "RAID3";
4461     case HPTV3_T_RAID5: return "RAID5";
4462     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4463 			return buffer;
4464     }
4465 }
4466 
4467 static void
4468 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4469 {
4470     int i;
4471 
4472     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4473     kprintf("magic               0x%08x\n", meta->magic);
4474     kprintf("magic_0             0x%08x\n", meta->magic_0);
4475     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4476     kprintf("mode                0x%02x\n", meta->mode);
4477     kprintf("user_mode           0x%02x\n", meta->user_mode);
4478     kprintf("config_entries      0x%02x\n", meta->config_entries);
4479     for (i = 0; i < meta->config_entries; i++) {
4480 	kprintf("config %d:\n", i);
4481 	kprintf("    total_sectors       %ju\n",
4482 	       meta->configs[0].total_sectors +
4483 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4484 	kprintf("    type                %s\n",
4485 	       ata_raid_hptv3_type(meta->configs[i].type));
4486 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4487 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4488 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4489 	kprintf("    status              %b\n", meta->configs[i].status,
4490 	       "\20\2RAID5\1NEED_REBUILD\n");
4491 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4492 	kprintf("    rebuild_lba         %ju\n",
4493 	       meta->configs_high[0].rebuild_lba +
4494 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4495     }
4496     kprintf("name                <%.16s>\n", meta->name);
4497     kprintf("timestamp           0x%08x\n", meta->timestamp);
4498     kprintf("description         <%.16s>\n", meta->description);
4499     kprintf("creator             <%.16s>\n", meta->creator);
4500     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4501     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4502     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4503     kprintf("flags               %b\n", meta->flags,
4504 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4505     kprintf("=================================================\n");
4506 }
4507 
4508 static char *
4509 ata_raid_intel_type(int type)
4510 {
4511     static char buffer[16];
4512 
4513     switch (type) {
4514     case INTEL_T_RAID0: return "RAID0";
4515     case INTEL_T_RAID1: return "RAID1";
4516     case INTEL_T_RAID5: return "RAID5";
4517     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4518 			return buffer;
4519     }
4520 }
4521 
4522 static void
4523 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4524 {
4525     struct intel_raid_mapping *map;
4526     int i, j;
4527 
4528     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4529     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4530     kprintf("version             <%.6s>\n", meta->version);
4531     kprintf("checksum            0x%08x\n", meta->checksum);
4532     kprintf("config_size         0x%08x\n", meta->config_size);
4533     kprintf("config_id           0x%08x\n", meta->config_id);
4534     kprintf("generation          0x%08x\n", meta->generation);
4535     kprintf("total_disks         %u\n", meta->total_disks);
4536     kprintf("total_volumes       %u\n", meta->total_volumes);
4537     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4538     for (i = 0; i < meta->total_disks; i++ ) {
4539 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4540 	       meta->disk[i].serial, meta->disk[i].sectors,
4541 	       meta->disk[i].id, meta->disk[i].flags);
4542     }
4543     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4544     for (j = 0; j < meta->total_volumes; j++) {
4545 	kprintf("name                %.16s\n", map->name);
4546 	kprintf("total_sectors       %ju\n", map->total_sectors);
4547 	kprintf("state               %u\n", map->state);
4548 	kprintf("reserved            %u\n", map->reserved);
4549 	kprintf("offset              %u\n", map->offset);
4550 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4551 	kprintf("stripe_count        %u\n", map->stripe_count);
4552 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4553 	kprintf("status              %u\n", map->status);
4554 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4555 	kprintf("total_disks         %u\n", map->total_disks);
4556 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4557 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4558 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4559 	for (i = 0; i < map->total_disks; i++ ) {
4560 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4561 	}
4562 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4563     }
4564     kprintf("=================================================\n");
4565 }
4566 
4567 static char *
4568 ata_raid_ite_type(int type)
4569 {
4570     static char buffer[16];
4571 
4572     switch (type) {
4573     case ITE_T_RAID0:   return "RAID0";
4574     case ITE_T_RAID1:   return "RAID1";
4575     case ITE_T_RAID01:  return "RAID0+1";
4576     case ITE_T_SPAN:    return "SPAN";
4577     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4578 			return buffer;
4579     }
4580 }
4581 
4582 static void
4583 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4584 {
4585     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4586     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4587     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4588 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4589 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4590 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4591     kprintf("total_sectors       %jd\n", meta->total_sectors);
4592     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4593     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4594     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4595 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4596 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4597 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4598     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4599     kprintf("array_width         %u\n", meta->array_width);
4600     kprintf("disk_number         %u\n", meta->disk_number);
4601     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4602     kprintf("=================================================\n");
4603 }
4604 
4605 static char *
4606 ata_raid_jmicron_type(int type)
4607 {
4608     static char buffer[16];
4609 
4610     switch (type) {
4611     case JM_T_RAID0:	return "RAID0";
4612     case JM_T_RAID1:	return "RAID1";
4613     case JM_T_RAID01:	return "RAID0+1";
4614     case JM_T_JBOD:	return "JBOD";
4615     case JM_T_RAID5:	return "RAID5";
4616     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4617 			return buffer;
4618     }
4619 }
4620 
4621 static void
4622 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4623 {
4624     int i;
4625 
4626     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4627     kprintf("signature           %.2s\n", meta->signature);
4628     kprintf("version             0x%04x\n", meta->version);
4629     kprintf("checksum            0x%04x\n", meta->checksum);
4630     kprintf("disk_id             0x%08x\n", meta->disk_id);
4631     kprintf("offset              0x%08x\n", meta->offset);
4632     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4633     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4634     kprintf("name                %.16s\n", meta->name);
4635     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4636     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4637     kprintf("flags               0x%04x\n", meta->flags);
4638     kprintf("spare:\n");
4639     for (i=0; i < 2 && meta->spare[i]; i++)
4640 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4641     kprintf("disks:\n");
4642     for (i=0; i < 8 && meta->disks[i]; i++)
4643 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4644     kprintf("=================================================\n");
4645 }
4646 
4647 static char *
4648 ata_raid_lsiv2_type(int type)
4649 {
4650     static char buffer[16];
4651 
4652     switch (type) {
4653     case LSIV2_T_RAID0: return "RAID0";
4654     case LSIV2_T_RAID1: return "RAID1";
4655     case LSIV2_T_SPARE: return "SPARE";
4656     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4657 			return buffer;
4658     }
4659 }
4660 
4661 static void
4662 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4663 {
4664     int i;
4665 
4666     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4667     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4668     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4669     kprintf("flags               0x%02x\n", meta->flags);
4670     kprintf("version             0x%04x\n", meta->version);
4671     kprintf("config_entries      0x%02x\n", meta->config_entries);
4672     kprintf("raid_count          0x%02x\n", meta->raid_count);
4673     kprintf("total_disks         0x%02x\n", meta->total_disks);
4674     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4675     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4676     for (i = 0; i < meta->config_entries; i++) {
4677 	kprintf("    type             %s\n",
4678 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4679 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4680 	kprintf("    stripe_sectors   %u\n",
4681 	       meta->configs[i].raid.stripe_sectors);
4682 	kprintf("    array_width      %u\n",
4683 	       meta->configs[i].raid.array_width);
4684 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4685 	kprintf("    config_offset    %u\n",
4686 	       meta->configs[i].raid.config_offset);
4687 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4688 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4689 	kprintf("    total_sectors    %u\n",
4690 	       meta->configs[i].raid.total_sectors);
4691     }
4692     kprintf("disk_number         0x%02x\n", meta->disk_number);
4693     kprintf("raid_number         0x%02x\n", meta->raid_number);
4694     kprintf("timestamp           0x%08x\n", meta->timestamp);
4695     kprintf("=================================================\n");
4696 }
4697 
4698 static char *
4699 ata_raid_lsiv3_type(int type)
4700 {
4701     static char buffer[16];
4702 
4703     switch (type) {
4704     case LSIV3_T_RAID0: return "RAID0";
4705     case LSIV3_T_RAID1: return "RAID1";
4706     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4707 			return buffer;
4708     }
4709 }
4710 
4711 static void
4712 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4713 {
4714     int i;
4715 
4716     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4717     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4718     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4719     kprintf("version             0x%04x\n", meta->version);
4720     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4721     kprintf("RAID configs:\n");
4722     for (i = 0; i < 8; i++) {
4723 	if (meta->raid[i].total_disks) {
4724 	    kprintf("%02d  stripe_pages       %u\n", i,
4725 		   meta->raid[i].stripe_pages);
4726 	    kprintf("%02d  type               %s\n", i,
4727 		   ata_raid_lsiv3_type(meta->raid[i].type));
4728 	    kprintf("%02d  total_disks        %u\n", i,
4729 		   meta->raid[i].total_disks);
4730 	    kprintf("%02d  array_width        %u\n", i,
4731 		   meta->raid[i].array_width);
4732 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4733 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4734 	    kprintf("%02d  device             0x%02x\n", i,
4735 		   meta->raid[i].device);
4736 	}
4737     }
4738     kprintf("DISK configs:\n");
4739     for (i = 0; i < 6; i++) {
4740 	    if (meta->disk[i].disk_sectors) {
4741 	    kprintf("%02d  disk_sectors       %u\n", i,
4742 		   meta->disk[i].disk_sectors);
4743 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4744 	}
4745     }
4746     kprintf("device              0x%02x\n", meta->device);
4747     kprintf("timestamp           0x%08x\n", meta->timestamp);
4748     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4749     kprintf("=================================================\n");
4750 }
4751 
4752 static char *
4753 ata_raid_nvidia_type(int type)
4754 {
4755     static char buffer[16];
4756 
4757     switch (type) {
4758     case NV_T_SPAN:     return "SPAN";
4759     case NV_T_RAID0:    return "RAID0";
4760     case NV_T_RAID1:    return "RAID1";
4761     case NV_T_RAID3:    return "RAID3";
4762     case NV_T_RAID5:    return "RAID5";
4763     case NV_T_RAID01:   return "RAID0+1";
4764     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4765 			return buffer;
4766     }
4767 }
4768 
4769 static void
4770 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4771 {
4772     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4773     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4774     kprintf("config_size         %d\n", meta->config_size);
4775     kprintf("checksum            0x%08x\n", meta->checksum);
4776     kprintf("version             0x%04x\n", meta->version);
4777     kprintf("disk_number         %d\n", meta->disk_number);
4778     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4779     kprintf("total_sectors       %d\n", meta->total_sectors);
4780     kprintf("sectors_size        %d\n", meta->sector_size);
4781     kprintf("serial              %.16s\n", meta->serial);
4782     kprintf("revision            %.4s\n", meta->revision);
4783     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4784     kprintf("magic_0             0x%08x\n", meta->magic_0);
4785     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4786     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4787     kprintf("flags               0x%02x\n", meta->flags);
4788     kprintf("array_width         %d\n", meta->array_width);
4789     kprintf("total_disks         %d\n", meta->total_disks);
4790     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4791     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4792     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4793     kprintf("stripe_sectors      %d\n", meta->stripe_sectors);
4794     kprintf("stripe_bytes        %d\n", meta->stripe_bytes);
4795     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4796     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4797     kprintf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
4798     kprintf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
4799     kprintf("rebuild_lba         %d\n", meta->rebuild_lba);
4800     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4801     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4802     kprintf("status              0x%08x\n", meta->status);
4803     kprintf("=================================================\n");
4804 }
4805 
4806 static char *
4807 ata_raid_promise_type(int type)
4808 {
4809     static char buffer[16];
4810 
4811     switch (type) {
4812     case PR_T_RAID0:    return "RAID0";
4813     case PR_T_RAID1:    return "RAID1";
4814     case PR_T_RAID3:    return "RAID3";
4815     case PR_T_RAID5:    return "RAID5";
4816     case PR_T_SPAN:     return "SPAN";
4817     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4818 			return buffer;
4819     }
4820 }
4821 
4822 static void
4823 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4824 {
4825     int i;
4826 
4827     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4828     kprintf("promise_id          <%s>\n", meta->promise_id);
4829     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4830     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4831     kprintf("magic_1             0x%04x\n", meta->magic_1);
4832     kprintf("magic_2             0x%08x\n", meta->magic_2);
4833     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4834 		meta->raid.integrity, "\20\10VALID\n" );
4835     kprintf("flags               0x%02x %b\n",
4836 	   meta->raid.flags, meta->raid.flags,
4837 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4838 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4839     kprintf("disk_number         %d\n", meta->raid.disk_number);
4840     kprintf("channel             0x%02x\n", meta->raid.channel);
4841     kprintf("device              0x%02x\n", meta->raid.device);
4842     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4843     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4844     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4845     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4846     kprintf("generation          0x%04x\n", meta->raid.generation);
4847     kprintf("status              0x%02x %b\n",
4848 	    meta->raid.status, meta->raid.status,
4849 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4850     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4851     kprintf("total_disks         %u\n", meta->raid.total_disks);
4852     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4853     kprintf("array_width         %u\n", meta->raid.array_width);
4854     kprintf("array_number        %u\n", meta->raid.array_number);
4855     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4856     kprintf("cylinders           %u\n", meta->raid.cylinders);
4857     kprintf("heads               %u\n", meta->raid.heads);
4858     kprintf("sectors             %u\n", meta->raid.sectors);
4859     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4860     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4861     for (i = 0; i < 8; i++) {
4862 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4863 	       i, meta->raid.disk[i].flags,
4864 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4865 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4866 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4867 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4868     }
4869     kprintf("checksum            0x%08x\n", meta->checksum);
4870     kprintf("=================================================\n");
4871 }
4872 
4873 static char *
4874 ata_raid_sii_type(int type)
4875 {
4876     static char buffer[16];
4877 
4878     switch (type) {
4879     case SII_T_RAID0:   return "RAID0";
4880     case SII_T_RAID1:   return "RAID1";
4881     case SII_T_RAID01:  return "RAID0+1";
4882     case SII_T_SPARE:   return "SPARE";
4883     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4884 			return buffer;
4885     }
4886 }
4887 
4888 static void
4889 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4890 {
4891     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4892     kprintf("total_sectors       %ju\n", meta->total_sectors);
4893     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4894     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4895     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4896     kprintf("version_minor       0x%04x\n", meta->version_minor);
4897     kprintf("version_major       0x%04x\n", meta->version_major);
4898     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4899 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4900 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4901     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4902     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4903     kprintf("disk_number         %u\n", meta->disk_number);
4904     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4905     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4906     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4907     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4908     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4909     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4910     kprintf("generation          0x%08x\n", meta->generation);
4911     kprintf("status              0x%02x %b\n",
4912 	    meta->status, meta->status,
4913 	   "\20\1READY\n");
4914     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4915     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4916     kprintf("position            %02x\n", meta->position);
4917     kprintf("dummy_3             %04x\n", meta->dummy_3);
4918     kprintf("name                <%.16s>\n", meta->name);
4919     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4920     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4921     kprintf("=================================================\n");
4922 }
4923 
4924 static char *
4925 ata_raid_sis_type(int type)
4926 {
4927     static char buffer[16];
4928 
4929     switch (type) {
4930     case SIS_T_JBOD:    return "JBOD";
4931     case SIS_T_RAID0:   return "RAID0";
4932     case SIS_T_RAID1:   return "RAID1";
4933     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4934 			return buffer;
4935     }
4936 }
4937 
4938 static void
4939 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4940 {
4941     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4942     kprintf("magic               0x%04x\n", meta->magic);
4943     kprintf("disks               0x%02x\n", meta->disks);
4944     kprintf("type                %s\n",
4945 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4946     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4947     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4948     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4949     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4950     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4951     kprintf("timestamp           0x%08x\n", meta->timestamp);
4952     kprintf("model               %.40s\n", meta->model);
4953     kprintf("disk_number         %u\n", meta->disk_number);
4954     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4955 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4956     kprintf("=================================================\n");
4957 }
4958 
4959 static char *
4960 ata_raid_via_type(int type)
4961 {
4962     static char buffer[16];
4963 
4964     switch (type) {
4965     case VIA_T_RAID0:   return "RAID0";
4966     case VIA_T_RAID1:   return "RAID1";
4967     case VIA_T_RAID5:   return "RAID5";
4968     case VIA_T_RAID01:  return "RAID0+1";
4969     case VIA_T_SPAN:    return "SPAN";
4970     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4971 			return buffer;
4972     }
4973 }
4974 
4975 static void
4976 ata_raid_via_print_meta(struct via_raid_conf *meta)
4977 {
4978     int i;
4979 
4980     kprintf("*************** ATA VIA Metadata ****************\n");
4981     kprintf("magic               0x%02x\n", meta->magic);
4982     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4983     kprintf("type                %s\n",
4984 	   ata_raid_via_type(meta->type & VIA_T_MASK));
4985     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
4986     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
4987     kprintf("disk_index          0x%02x\n", meta->disk_index);
4988     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
4989     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
4990     kprintf(" stripe_sectors     %d\n",
4991 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
4992     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
4993     kprintf("disk_id             0x%08x\n", meta->disk_id);
4994     kprintf("DISK#   disk_id\n");
4995     for (i = 0; i < 8; i++) {
4996 	if (meta->disks[i])
4997 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
4998     }
4999     kprintf("checksum            0x%02x\n", meta->checksum);
5000     kprintf("=================================================\n");
5001 }
5002