xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision b4f25088)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  */
28 
29 #include "opt_ata.h"
30 
31 #include <sys/param.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/buf2.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/disk.h>
39 #include <sys/endian.h>
40 #include <sys/libkern.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/nata.h>
44 #include <sys/spinlock2.h>
45 #include <sys/systm.h>
46 
47 #include <vm/pmap.h>
48 
49 #include <machine/md_var.h>
50 
51 #include <bus/pci/pcivar.h>
52 
53 #include "ata-all.h"
54 #include "ata-disk.h"
55 #include "ata-raid.h"
56 #include "ata-pci.h"
57 #include "ata_if.h"
58 
59 
60 /* device structure */
61 static	d_strategy_t	ata_raid_strategy;
62 static	d_dump_t	ata_raid_dump;
63 static struct dev_ops ar_ops = {
64 	{ "ar", 0, D_DISK },
65 	.d_open =	nullopen,
66 	.d_close =	nullclose,
67 	.d_read =	physread,
68 	.d_write =	physwrite,
69 	.d_strategy =	ata_raid_strategy,
70 	.d_dump =	ata_raid_dump,
71 };
72 
73 /* prototypes */
74 static void ata_raid_done(struct ata_request *request);
75 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
76 static int ata_raid_status(struct ata_ioc_raid_config *config);
77 static int ata_raid_create(struct ata_ioc_raid_config *config);
78 static int ata_raid_delete(int array);
79 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
80 static int ata_raid_rebuild(int array);
81 static int ata_raid_read_metadata(device_t subdisk);
82 static int ata_raid_write_metadata(struct ar_softc *rdp);
83 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
84 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
85 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
87 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
88 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
90 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
91 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
93 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
94 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
97 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
98 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
99 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
101 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
102 static int ata_raid_via_write_meta(struct ar_softc *rdp);
103 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
104 static int ata_raid_send_request(struct ata_request *request);
105 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
106 static char * ata_raid_format(struct ar_softc *rdp);
107 static char * ata_raid_type(struct ar_softc *rdp);
108 static char * ata_raid_flags(struct ar_softc *rdp);
109 
110 /* debugging only */
111 static void ata_raid_print_meta(struct ar_softc *meta);
112 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
113 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
114 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
115 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
116 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
117 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
118 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
119 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
120 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
121 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
122 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
123 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
124 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
125 
126 /* internal vars */
127 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
128 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
129 static devclass_t ata_raid_sub_devclass;
130 static int testing = 0;
131 
132 static void
133 ata_raid_attach(struct ar_softc *rdp, int writeback)
134 {
135     struct disk_info info;
136     cdev_t cdev;
137     char buffer[32];
138     int disk;
139 
140     spin_init(&rdp->lock);
141     ata_raid_config_changed(rdp, writeback);
142 
143     /* sanitize arrays total_size % (width * interleave) == 0 */
144     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
145 	rdp->type == AR_T_RAID5) {
146 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
147 			     (rdp->interleave * rdp->width);
148 	ksprintf(buffer, " (stripe %d KB)",
149 		(rdp->interleave * DEV_BSIZE) / 1024);
150     }
151     else
152 	buffer[0] = '\0';
153     /* XXX TGEN add devstats? */
154     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
155     cdev->si_drv1 = rdp;
156     cdev->si_iosize_max = 128 * DEV_BSIZE;
157     rdp->cdev = cdev;
158 
159     bzero(&info, sizeof(info));
160     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
161     info.d_media_blocks = rdp->total_sectors;
162 
163     info.d_secpertrack = rdp->sectors;		/* optional */
164     info.d_nheads = rdp->heads;
165     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
166     info.d_secpercyl = rdp->sectors * rdp->heads;
167 
168     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
169 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
170 	   ata_raid_format(rdp), ata_raid_type(rdp),
171 	   buffer, ata_raid_flags(rdp));
172 
173     if (testing || bootverbose)
174 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
175 	       rdp->lun, rdp->total_sectors,
176 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
177 
178     for (disk = 0; disk < rdp->total_disks; disk++) {
179 	kprintf("ar%d: disk%d ", rdp->lun, disk);
180 	if (rdp->disks[disk].dev) {
181 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
182 		/* status of this disk in the array */
183 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
184 		    kprintf("READY ");
185 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
186 		    kprintf("SPARE ");
187 		else
188 		    kprintf("FREE  ");
189 
190 		/* what type of disk is this in the array */
191 		switch (rdp->type) {
192 		case AR_T_RAID1:
193 		case AR_T_RAID01:
194 		    if (disk < rdp->width)
195 			kprintf("(master) ");
196 		    else
197 			kprintf("(mirror) ");
198 		}
199 
200 		/* which physical disk is used */
201 		kprintf("using %s at ata%d-%s\n",
202 		       device_get_nameunit(rdp->disks[disk].dev),
203 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
204 		       (((struct ata_device *)
205 			 device_get_softc(rdp->disks[disk].dev))->unit ==
206 			 ATA_MASTER) ? "master" : "slave");
207 	    }
208 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
209 		kprintf("DOWN\n");
210 	    else
211 		kprintf("INVALID no RAID config on this subdisk\n");
212 	}
213 	else
214 	    kprintf("DOWN no device found for this subdisk\n");
215     }
216 
217     disk_setdiskinfo(&rdp->disk, &info);
218 }
219 
220 /*
221  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
222  * to the dev_ops way, because it's just chained from the generic ata ioctl.
223  */
224 static int
225 ata_raid_ioctl(u_long cmd, caddr_t data)
226 {
227     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
228     int *lun = (int *)data;
229     int error = EOPNOTSUPP;
230 
231     switch (cmd) {
232     case IOCATARAIDSTATUS:
233 	error = ata_raid_status(config);
234 	break;
235 
236     case IOCATARAIDCREATE:
237 	error = ata_raid_create(config);
238 	break;
239 
240     case IOCATARAIDDELETE:
241 	error = ata_raid_delete(*lun);
242 	break;
243 
244     case IOCATARAIDADDSPARE:
245 	error = ata_raid_addspare(config);
246 	break;
247 
248     case IOCATARAIDREBUILD:
249 	error = ata_raid_rebuild(*lun);
250 	break;
251     }
252     return error;
253 }
254 
255 static int
256 ata_raid_flush(struct ar_softc *rdp, struct bio *bp)
257 {
258     struct ata_request *request;
259     device_t dev;
260     int disk;
261 
262     bp->bio_driver_info = NULL;
263 
264     for (disk = 0; disk < rdp->total_disks; disk++) {
265 	if ((dev = rdp->disks[disk].dev) != NULL)
266 	    bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info + 1);
267     }
268     for (disk = 0; disk < rdp->total_disks; disk++) {
269 	if ((dev = rdp->disks[disk].dev) == NULL)
270 	    continue;
271 	if (!(request = ata_raid_init_request(rdp, bp)))
272 	    return ENOMEM;
273 	request->dev = dev;
274 	request->u.ata.command = ATA_FLUSHCACHE;
275 	request->u.ata.lba = 0;
276 	request->u.ata.count = 0;
277 	request->u.ata.feature = 0;
278 	request->timeout = 1;
279 	request->retries = 0;
280 	request->flags |= ATA_R_ORDERED | ATA_R_DIRECT;
281 	ata_queue_request(request);
282     }
283     return 0;
284 }
285 
286 /*
287  * XXX TGEN there are a lot of offset -> block number conversions going on
288  * here, which is suboptimal.
289  */
290 static int
291 ata_raid_strategy(struct dev_strategy_args *ap)
292 {
293     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
294     struct bio *bp = ap->a_bio;
295     struct buf *bbp = bp->bio_buf;
296     struct ata_request *request;
297     caddr_t data;
298     u_int64_t blkno, lba, blk = 0;
299     int count, chunk, drv, par = 0, change = 0;
300 
301     if (bbp->b_cmd == BUF_CMD_FLUSH) {
302 	int error;
303 
304 	error = ata_raid_flush(rdp, bp);
305 	if (error != 0) {
306 		bbp->b_flags |= B_ERROR;
307 		bbp->b_error = error;
308 		biodone(bp);
309 	}
310 	return(0);
311     }
312 
313     if (!(rdp->status & AR_S_READY) ||
314 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
315 	bbp->b_flags |= B_ERROR;
316 	bbp->b_error = EIO;
317 	biodone(bp);
318 	return(0);
319     }
320 
321     bbp->b_resid = bbp->b_bcount;
322     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
323 	 /* bio_offset is byte granularity, convert */
324 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
325 	 data = bbp->b_data;
326 	 count > 0;
327 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
328 
329 	switch (rdp->type) {
330 	case AR_T_RAID1:
331 	    drv = 0;
332 	    lba = blkno;
333 	    chunk = count;
334 	    break;
335 
336 	case AR_T_JBOD:
337 	case AR_T_SPAN:
338 	    drv = 0;
339 	    lba = blkno;
340 	    while (lba >= rdp->disks[drv].sectors)
341 		lba -= rdp->disks[drv++].sectors;
342 	    chunk = min(rdp->disks[drv].sectors - lba, count);
343 	    break;
344 
345 	case AR_T_RAID0:
346 	case AR_T_RAID01:
347 	    chunk = blkno % rdp->interleave;
348 	    drv = (blkno / rdp->interleave) % rdp->width;
349 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
350 	    chunk = min(count, rdp->interleave - chunk);
351 	    break;
352 
353 	case AR_T_RAID5:
354 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
355 	    par = rdp->width - 1 -
356 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
357 	    if (drv >= par)
358 		drv++;
359 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
360 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
361 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
362 	    break;
363 
364 	default:
365 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
366 	    bbp->b_flags |= B_ERROR;
367 	    bbp->b_error = EIO;
368 	    biodone(bp);
369 	    return(0);
370 	}
371 
372 	/* offset on all but "first on HPTv2" */
373 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
374 	    lba += rdp->offset_sectors;
375 
376 	if (!(request = ata_raid_init_request(rdp, bp))) {
377 	    bbp->b_flags |= B_ERROR;
378 	    bbp->b_error = EIO;
379 	    biodone(bp);
380 	    return(0);
381 	}
382 	request->data = data;
383 	request->bytecount = chunk * DEV_BSIZE;
384 	request->u.ata.lba = lba;
385 	request->u.ata.count = request->bytecount / DEV_BSIZE;
386 
387 	switch (rdp->type) {
388 	case AR_T_JBOD:
389 	case AR_T_SPAN:
390 	case AR_T_RAID0:
391 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
392 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
393 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
394 		ata_raid_config_changed(rdp, 1);
395 		ata_free_request(request);
396 		bbp->b_flags |= B_ERROR;
397 		bbp->b_error = EIO;
398 		biodone(bp);
399 		return(0);
400 	    }
401 	    request->this = drv;
402 	    request->dev = rdp->disks[request->this].dev;
403 	    ata_raid_send_request(request);
404 	    break;
405 
406 	case AR_T_RAID1:
407 	case AR_T_RAID01:
408 	    if ((rdp->disks[drv].flags &
409 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
410 		!rdp->disks[drv].dev) {
411 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
412 		change = 1;
413 	    }
414 	    if ((rdp->disks[drv + rdp->width].flags &
415 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
416 		!rdp->disks[drv + rdp->width].dev) {
417 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
418 		change = 1;
419 	    }
420 	    if (change)
421 		ata_raid_config_changed(rdp, 1);
422 	    if (!(rdp->status & AR_S_READY)) {
423 		ata_free_request(request);
424 		bbp->b_flags |= B_ERROR;
425 		bbp->b_error = EIO;
426 		biodone(bp);
427 		return(0);
428 	    }
429 
430 	    if (rdp->status & AR_S_REBUILDING)
431 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
432 		      (rdp->interleave * (drv % rdp->width)) +
433 		      lba % rdp->interleave;
434 
435 	    if (bbp->b_cmd == BUF_CMD_READ) {
436 		int src_online =
437 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
438 		int mir_online =
439 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
440 
441 		/* if mirror gone or close to last access on source */
442 		if (!mir_online ||
443 		    ((src_online) &&
444 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
445 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
446 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
447 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
448 		    rdp->toggle = 0;
449 		}
450 		/* if source gone or close to last access on mirror */
451 		else if (!src_online ||
452 			 ((mir_online) &&
453 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
454 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
455 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
456 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
457 		    drv += rdp->width;
458 		    rdp->toggle = 1;
459 		}
460 		/* not close to any previous access, toggle */
461 		else {
462 		    if (rdp->toggle)
463 			rdp->toggle = 0;
464 		    else {
465 			drv += rdp->width;
466 			rdp->toggle = 1;
467 		    }
468 		}
469 
470 		if ((rdp->status & AR_S_REBUILDING) &&
471 		    (blk <= rdp->rebuild_lba) &&
472 		    ((blk + chunk) > rdp->rebuild_lba)) {
473 		    struct ata_composite *composite;
474 		    struct ata_request *rebuild;
475 		    int this;
476 
477 		    /* figure out what part to rebuild */
478 		    if (drv < rdp->width)
479 			this = drv + rdp->width;
480 		    else
481 			this = drv - rdp->width;
482 
483 		    /* do we have a spare to rebuild on ? */
484 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
485 			if ((composite = ata_alloc_composite())) {
486 			    if ((rebuild = ata_alloc_request())) {
487 				rdp->rebuild_lba = blk + chunk;
488 				bcopy(request, rebuild,
489 				      sizeof(struct ata_request));
490 				rebuild->this = this;
491 				rebuild->dev = rdp->disks[this].dev;
492 				rebuild->flags &= ~ATA_R_READ;
493 				rebuild->flags |= ATA_R_WRITE;
494 				spin_init(&composite->lock);
495 				composite->residual = request->bytecount;
496 				composite->rd_needed |= (1 << drv);
497 				composite->wr_depend |= (1 << drv);
498 				composite->wr_needed |= (1 << this);
499 				composite->request[drv] = request;
500 				composite->request[this] = rebuild;
501 				request->composite = composite;
502 				rebuild->composite = composite;
503 				ata_raid_send_request(rebuild);
504 			    }
505 			    else {
506 				ata_free_composite(composite);
507 				kprintf("DOH! ata_alloc_request failed!\n");
508 			    }
509 			}
510 			else {
511 			    kprintf("DOH! ata_alloc_composite failed!\n");
512 			}
513 		    }
514 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
515 			/*
516 			 * if we got here we are a chunk of a RAID01 that
517 			 * does not need a rebuild, but we need to increment
518 			 * the rebuild_lba address to get the rebuild to
519 			 * move to the next chunk correctly
520 			 */
521 			rdp->rebuild_lba = blk + chunk;
522 		    }
523 		    else
524 			kprintf("DOH! we didn't find the rebuild part\n");
525 		}
526 	    }
527 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
528 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
529 		    ((rdp->status & AR_S_REBUILDING) &&
530 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
531 		     ((blk < rdp->rebuild_lba) ||
532 		      ((blk <= rdp->rebuild_lba) &&
533 		       ((blk + chunk) > rdp->rebuild_lba))))) {
534 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
535 			((rdp->status & AR_S_REBUILDING) &&
536 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
537 			 ((blk < rdp->rebuild_lba) ||
538 			  ((blk <= rdp->rebuild_lba) &&
539 			   ((blk + chunk) > rdp->rebuild_lba))))) {
540 			struct ata_request *mirror;
541 			struct ata_composite *composite;
542 			int this = drv + rdp->width;
543 
544 			if ((composite = ata_alloc_composite())) {
545 			    if ((mirror = ata_alloc_request())) {
546 				if ((blk <= rdp->rebuild_lba) &&
547 				    ((blk + chunk) > rdp->rebuild_lba))
548 				    rdp->rebuild_lba = blk + chunk;
549 				bcopy(request, mirror,
550 				      sizeof(struct ata_request));
551 				mirror->this = this;
552 				mirror->dev = rdp->disks[this].dev;
553 				spin_init(&composite->lock);
554 				composite->residual = request->bytecount;
555 				composite->wr_needed |= (1 << drv);
556 				composite->wr_needed |= (1 << this);
557 				composite->request[drv] = request;
558 				composite->request[this] = mirror;
559 				request->composite = composite;
560 				mirror->composite = composite;
561 				ata_raid_send_request(mirror);
562 				rdp->disks[this].last_lba =
563 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
564 				    chunk;
565 			    }
566 			    else {
567 				ata_free_composite(composite);
568 				kprintf("DOH! ata_alloc_request failed!\n");
569 			    }
570 			}
571 			else {
572 			    kprintf("DOH! ata_alloc_composite failed!\n");
573 			}
574 		    }
575 		    else
576 			drv += rdp->width;
577 		}
578 	    }
579 	    request->this = drv;
580 	    request->dev = rdp->disks[request->this].dev;
581 	    ata_raid_send_request(request);
582 	    rdp->disks[request->this].last_lba =
583 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
584 	    break;
585 
586 	case AR_T_RAID5:
587 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
588 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
589 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
590 		change = 1;
591 	    }
592 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
593 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
594 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
595 		change = 1;
596 	    }
597 	    if (change)
598 		ata_raid_config_changed(rdp, 1);
599 	    if (!(rdp->status & AR_S_READY)) {
600 		ata_free_request(request);
601 		bbp->b_flags |= B_ERROR;
602 		bbp->b_error = EIO;
603 		biodone(bp);
604 		return(0);
605 	    }
606 	    if (rdp->status & AR_S_DEGRADED) {
607 		/* do the XOR game if possible */
608 	    }
609 	    else {
610 		request->this = drv;
611 		request->dev = rdp->disks[request->this].dev;
612 		if (bbp->b_cmd == BUF_CMD_READ) {
613 		    ata_raid_send_request(request);
614 		}
615 		if (bbp->b_cmd == BUF_CMD_WRITE) {
616 		    ata_raid_send_request(request);
617 		    /* XXX TGEN no, I don't speak Danish either */
618 		    /*
619 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
620 		     * par kopi af request
621 		     * l�se orgdata fra drv
622 		     * skriv nydata til drv
623 		     * l�se parorgdata fra par
624 		     * skriv orgdata xor parorgdata xor nydata til par
625 		     */
626 		}
627 	    }
628 	    break;
629 
630 	default:
631 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
632 	}
633     }
634 
635     return(0);
636 }
637 
638 static void
639 ata_raid_done(struct ata_request *request)
640 {
641     struct ar_softc *rdp = request->driver;
642     struct ata_composite *composite = NULL;
643     struct bio *bp = request->bio;
644     struct buf *bbp = bp->bio_buf;
645     int i, mirror, finished = 0;
646 
647     if (bbp->b_cmd == BUF_CMD_FLUSH) {
648 	if (bbp->b_error == 0)
649 		bbp->b_error = request->result;
650 	ata_free_request(request);
651 	bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info - 1);
652 	if ((intptr_t)bp->bio_driver_info == 0) {
653 		if (bbp->b_error)
654 			bbp->b_flags |= B_ERROR;
655 		biodone(bp);
656 	}
657 	return;
658     }
659 
660     switch (rdp->type) {
661     case AR_T_JBOD:
662     case AR_T_SPAN:
663     case AR_T_RAID0:
664 	if (request->result) {
665 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
666 	    ata_raid_config_changed(rdp, 1);
667 	    bbp->b_error = request->result;
668 	    finished = 1;
669 	}
670 	else {
671 	    bbp->b_resid -= request->donecount;
672 	    if (!bbp->b_resid)
673 		finished = 1;
674 	}
675 	break;
676 
677     case AR_T_RAID1:
678     case AR_T_RAID01:
679 	if (request->this < rdp->width)
680 	    mirror = request->this + rdp->width;
681 	else
682 	    mirror = request->this - rdp->width;
683 	if (request->result) {
684 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
685 	    ata_raid_config_changed(rdp, 1);
686 	}
687 	if (rdp->status & AR_S_READY) {
688 	    u_int64_t blk = 0;
689 
690 	    if (rdp->status & AR_S_REBUILDING)
691 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
692 		      rdp->interleave + (rdp->interleave *
693 		      (request->this % rdp->width)) +
694 		      request->u.ata.lba % rdp->interleave;
695 
696 	    if (bbp->b_cmd == BUF_CMD_READ) {
697 
698 		/* is this a rebuild composite */
699 		if ((composite = request->composite)) {
700 		    spin_lock(&composite->lock);
701 
702 		    /* handle the read part of a rebuild composite */
703 		    if (request->flags & ATA_R_READ) {
704 
705 			/* if read failed array is now broken */
706 			if (request->result) {
707 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
708 			    ata_raid_config_changed(rdp, 1);
709 			    bbp->b_error = request->result;
710 			    rdp->rebuild_lba = blk;
711 			    finished = 1;
712 			}
713 
714 			/* good data, update how far we've gotten */
715 			else {
716 			    bbp->b_resid -= request->donecount;
717 			    composite->residual -= request->donecount;
718 			    if (!composite->residual) {
719 				if (composite->wr_done & (1 << mirror))
720 				    finished = 1;
721 			    }
722 			}
723 		    }
724 
725 		    /* handle the write part of a rebuild composite */
726 		    else if (request->flags & ATA_R_WRITE) {
727 			if (composite->rd_done & (1 << mirror)) {
728 			    if (request->result) {
729 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
730 				rdp->rebuild_lba = blk;
731 			    }
732 			    if (!composite->residual)
733 				finished = 1;
734 			}
735 		    }
736 		    spin_unlock(&composite->lock);
737 		}
738 
739 		/* if read failed retry on the mirror */
740 		else if (request->result) {
741 		    request->dev = rdp->disks[mirror].dev;
742 		    request->flags &= ~ATA_R_TIMEOUT;
743 		    ata_raid_send_request(request);
744 		    return;
745 		}
746 
747 		/* we have good data */
748 		else {
749 		    bbp->b_resid -= request->donecount;
750 		    if (!bbp->b_resid)
751 			finished = 1;
752 		}
753 	    }
754 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
755 		/* do we have a mirror or rebuild to deal with ? */
756 		if ((composite = request->composite)) {
757 		    spin_lock(&composite->lock);
758 		    if (composite->wr_done & (1 << mirror)) {
759 			if (request->result) {
760 			    if (composite->request[mirror]->result) {
761 				kprintf("DOH! all disks failed and got here\n");
762 				bbp->b_error = EIO;
763 			    }
764 			    if (rdp->status & AR_S_REBUILDING) {
765 				rdp->rebuild_lba = blk;
766 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
767 			    }
768 			    bbp->b_resid -=
769 				composite->request[mirror]->donecount;
770 			    composite->residual -=
771 				composite->request[mirror]->donecount;
772 			}
773 			else {
774 			    bbp->b_resid -= request->donecount;
775 			    composite->residual -= request->donecount;
776 			}
777 			if (!composite->residual)
778 			    finished = 1;
779 		    }
780 		    spin_unlock(&composite->lock);
781 		}
782 		/* no mirror we are done */
783 		else {
784 		    bbp->b_resid -= request->donecount;
785 		    if (!bbp->b_resid)
786 			finished = 1;
787 		}
788 	    }
789 	}
790 	else {
791 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
792 	    bbp->b_error = request->result;
793 	    biodone(bp);
794 	}
795 	break;
796 
797     case AR_T_RAID5:
798 	if (request->result) {
799 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
800 	    ata_raid_config_changed(rdp, 1);
801 	    if (rdp->status & AR_S_READY) {
802 		if (bbp->b_cmd == BUF_CMD_READ) {
803 		    /* do the XOR game to recover data */
804 		}
805 		if (bbp->b_cmd == BUF_CMD_WRITE) {
806 		    /* if the parity failed we're OK sortof */
807 		    /* otherwise wee need to do the XOR long dance */
808 		}
809 		finished = 1;
810 	    }
811 	    else {
812 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
813 		bbp->b_error = request->result;
814 		biodone(bp);
815 	    }
816 	}
817 	else {
818 	    /* did we have an XOR game going ?? */
819 	    bbp->b_resid -= request->donecount;
820 	    if (!bbp->b_resid)
821 		finished = 1;
822 	}
823 	break;
824 
825     default:
826 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
827     }
828 
829     if (finished) {
830 	if ((rdp->status & AR_S_REBUILDING) &&
831 	    rdp->rebuild_lba >= rdp->total_sectors) {
832 	    int disk;
833 
834 	    for (disk = 0; disk < rdp->total_disks; disk++) {
835 		if ((rdp->disks[disk].flags &
836 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
837 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
838 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
839 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
840 		}
841 	    }
842 	    rdp->status &= ~AR_S_REBUILDING;
843 	    ata_raid_config_changed(rdp, 1);
844 	}
845 	if (!bbp->b_resid)
846 	    biodone(bp);
847     }
848 
849     if (composite) {
850 	if (finished) {
851 	    /* we are done with this composite, free all resources */
852 	    for (i = 0; i < 32; i++) {
853 		if (composite->rd_needed & (1 << i) ||
854 		    composite->wr_needed & (1 << i)) {
855 		    ata_free_request(composite->request[i]);
856 		}
857 	    }
858 	    spin_uninit(&composite->lock);
859 	    ata_free_composite(composite);
860 	}
861     }
862     else
863 	ata_free_request(request);
864 }
865 
866 static int
867 ata_raid_dump(struct dev_dump_args *ap)
868 {
869 	struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
870 	struct buf dbuf;
871 	int error = 0;
872 	int disk;
873 
874 	if (ap->a_length == 0) {
875 		/* flush subdisk buffers to media */
876 		for (disk = 0, error = 0; disk < rdp->total_disks; disk++) {
877 			if (rdp->disks[disk].dev) {
878 				error |= ata_controlcmd(rdp->disks[disk].dev,
879 						ATA_FLUSHCACHE, 0, 0, 0);
880 			}
881 		}
882 		return (error ? EIO : 0);
883 	}
884 
885 	bzero(&dbuf, sizeof(struct buf));
886 	initbufbio(&dbuf);
887 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
888 	/* bio_offset is byte granularity, convert block granularity a_blkno */
889 	dbuf.b_bio1.bio_offset = ap->a_offset;
890 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
891 	dbuf.b_bio1.bio_flags |= BIO_SYNC;
892 	dbuf.b_bio1.bio_done = biodone_sync;
893 	dbuf.b_bcount = ap->a_length;
894 	dbuf.b_data = ap->a_virtual;
895 	dbuf.b_cmd = BUF_CMD_WRITE;
896 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
897 	/* wait for completion, unlock the buffer, check status */
898 	if (biowait(&dbuf.b_bio1, "dumpw")) {
899 	    BUF_UNLOCK(&dbuf);
900 	    return(dbuf.b_error ? dbuf.b_error : EIO);
901 	}
902 	BUF_UNLOCK(&dbuf);
903 	uninitbufbio(&dbuf);
904 
905 	return 0;
906 }
907 
908 static void
909 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
910 {
911     int disk, count, status;
912 
913     spin_lock(&rdp->lock);
914     /* set default all working mode */
915     status = rdp->status;
916     rdp->status &= ~AR_S_DEGRADED;
917     rdp->status |= AR_S_READY;
918 
919     /* make sure all lost drives are accounted for */
920     for (disk = 0; disk < rdp->total_disks; disk++) {
921 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
922 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
923     }
924 
925     /* depending on RAID type figure out our health status */
926     switch (rdp->type) {
927     case AR_T_JBOD:
928     case AR_T_SPAN:
929     case AR_T_RAID0:
930 	for (disk = 0; disk < rdp->total_disks; disk++)
931 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
932 		rdp->status &= ~AR_S_READY;
933 	break;
934 
935     case AR_T_RAID1:
936     case AR_T_RAID01:
937 	for (disk = 0; disk < rdp->width; disk++) {
938 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
939 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
940 		rdp->status &= ~AR_S_READY;
941 	    }
942 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
943 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
944 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
945 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
946 		rdp->status |= AR_S_DEGRADED;
947 	    }
948 	}
949 	break;
950 
951     case AR_T_RAID5:
952 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
953 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
954 		count++;
955 	}
956 	if (count) {
957 	    if (count > 1)
958 		rdp->status &= ~AR_S_READY;
959 	    else
960 		rdp->status |= AR_S_DEGRADED;
961 	}
962 	break;
963     default:
964 	rdp->status &= ~AR_S_READY;
965     }
966 
967     /*
968      * Note that when the array breaks so comes up broken we
969      * force a write of the array config to the remaining
970      * drives so that the generation will be incremented past
971      * those of the missing or failed drives (in all cases).
972      */
973     if (rdp->status != status) {
974 	if (!(rdp->status & AR_S_READY)) {
975 	    kprintf("ar%d: FAILURE - %s array broken\n",
976 		   rdp->lun, ata_raid_type(rdp));
977 	    writeback = 1;
978 	}
979 	else if (rdp->status & AR_S_DEGRADED) {
980 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
981 		kprintf("ar%d: WARNING - mirror", rdp->lun);
982 	    else
983 		kprintf("ar%d: WARNING - parity", rdp->lun);
984 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
985 		   ata_raid_type(rdp));
986 	    writeback = 1;
987 	}
988     }
989     spin_unlock(&rdp->lock);
990     if (writeback)
991 	ata_raid_write_metadata(rdp);
992 
993 }
994 
995 static int
996 ata_raid_status(struct ata_ioc_raid_config *config)
997 {
998     struct ar_softc *rdp;
999     int i;
1000 
1001     if (!(rdp = ata_raid_arrays[config->lun]))
1002 	return ENXIO;
1003 
1004     config->type = rdp->type;
1005     config->total_disks = rdp->total_disks;
1006     for (i = 0; i < rdp->total_disks; i++ ) {
1007 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
1008 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
1009 	else
1010 	    config->disks[i] = -1;
1011     }
1012     config->interleave = rdp->interleave;
1013     config->status = rdp->status;
1014     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
1015     return 0;
1016 }
1017 
1018 static int
1019 ata_raid_create(struct ata_ioc_raid_config *config)
1020 {
1021     struct ar_softc *rdp;
1022     device_t subdisk;
1023     int array, disk;
1024     int ctlr = 0, disk_size = 0, total_disks = 0;
1025     device_t gpdev;
1026 
1027     for (array = 0; array < MAX_ARRAYS; array++) {
1028 	if (!ata_raid_arrays[array])
1029 	    break;
1030     }
1031     if (array >= MAX_ARRAYS)
1032 	return ENOSPC;
1033 
1034     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
1035 	M_WAITOK | M_ZERO);
1036 
1037     for (disk = 0; disk < config->total_disks; disk++) {
1038 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1039 					   config->disks[disk]))) {
1040 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1041 
1042 	    /* is device already assigned to another array ? */
1043 	    if (ars->raid[rdp->volume]) {
1044 		config->disks[disk] = -1;
1045 		kfree(rdp, M_AR);
1046 		return EBUSY;
1047 	    }
1048 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1049 
1050 	    gpdev = GRANDPARENT(rdp->disks[disk].dev);
1051 
1052 	    switch (pci_get_vendor(gpdev)) {
1053 	    case ATA_HIGHPOINT_ID:
1054 		/*
1055 		 * we need some way to decide if it should be v2 or v3
1056 		 * for now just use v2 since the v3 BIOS knows how to
1057 		 * handle that as well.
1058 		 */
1059 		ctlr = AR_F_HPTV2_RAID;
1060 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1061 		break;
1062 
1063 	    case ATA_INTEL_ID:
1064 		ctlr = AR_F_INTEL_RAID;
1065 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1066 		break;
1067 
1068 	    case ATA_ITE_ID:
1069 		ctlr = AR_F_ITE_RAID;
1070 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1071 		break;
1072 
1073 	    case ATA_JMICRON_ID:
1074 		ctlr = AR_F_JMICRON_RAID;
1075 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1076 		break;
1077 
1078 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1079 	    case ATA_PROMISE_ID:
1080 		ctlr = AR_F_PROMISE_RAID;
1081 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1082 		break;
1083 
1084 	    case ATA_SIS_ID:
1085 		ctlr = AR_F_SIS_RAID;
1086 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1087 		break;
1088 
1089 	    case ATA_ATI_ID:
1090 	    case ATA_VIA_ID:
1091 		ctlr = AR_F_VIA_RAID;
1092 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1093 		break;
1094 
1095 	    default:
1096 		/* XXX SOS
1097 		 * right, so here we are, we have an ATA chip and we want
1098 		 * to create a RAID and store the metadata.
1099 		 * we need to find a way to tell what kind of metadata this
1100 		 * hardware's BIOS might be using (good ideas are welcomed)
1101 		 * for now we just use our own native FreeBSD format.
1102 		 * the only way to get support for the BIOS format is to
1103 		 * setup the RAID from there, in that case we pickup the
1104 		 * metadata format from the disks (if we support it).
1105 		 */
1106 		kprintf("WARNING!! - not able to determine metadata format\n"
1107 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1108 		       "If that is not what you want, use the BIOS to "
1109 		       "create the array\n");
1110 		ctlr = AR_F_FREEBSD_RAID;
1111 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1112 		break;
1113 	    }
1114 
1115 	    /* we need all disks to be of the same format */
1116 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1117 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1118 		kfree(rdp, M_AR);
1119 		return EXDEV;
1120 	    }
1121 	    else
1122 		rdp->format = ctlr;
1123 
1124 	    /* use the smallest disk of the lots size */
1125 	    /* gigabyte boundry ??? XXX SOS */
1126 	    if (disk_size)
1127 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1128 	    else
1129 		disk_size = rdp->disks[disk].sectors;
1130 	    rdp->disks[disk].flags =
1131 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1132 
1133 	    total_disks++;
1134 	}
1135 	else {
1136 	    config->disks[disk] = -1;
1137 	    kfree(rdp, M_AR);
1138 	    return ENXIO;
1139 	}
1140     }
1141 
1142     if (total_disks != config->total_disks) {
1143 	kfree(rdp, M_AR);
1144 	return ENODEV;
1145     }
1146 
1147     switch (config->type) {
1148     case AR_T_JBOD:
1149     case AR_T_SPAN:
1150     case AR_T_RAID0:
1151 	break;
1152 
1153     case AR_T_RAID1:
1154 	if (total_disks != 2) {
1155 	    kfree(rdp, M_AR);
1156 	    return EPERM;
1157 	}
1158 	break;
1159 
1160     case AR_T_RAID01:
1161 	if (total_disks % 2 != 0) {
1162 	    kfree(rdp, M_AR);
1163 	    return EPERM;
1164 	}
1165 	break;
1166 
1167     case AR_T_RAID5:
1168 	if (total_disks < 3) {
1169 	    kfree(rdp, M_AR);
1170 	    return EPERM;
1171 	}
1172 	break;
1173 
1174     default:
1175 	kfree(rdp, M_AR);
1176 	return EOPNOTSUPP;
1177     }
1178     rdp->type = config->type;
1179     rdp->lun = array;
1180     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1181 	rdp->type == AR_T_RAID5) {
1182 	int bit = 0;
1183 
1184 	while (config->interleave >>= 1)
1185 	    bit++;
1186 	rdp->interleave = 1 << bit;
1187     }
1188     rdp->offset_sectors = 0;
1189 
1190     /* values that depend on metadata format */
1191     switch (rdp->format) {
1192     case AR_F_ADAPTEC_RAID:
1193 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1194 	break;
1195 
1196     case AR_F_HPTV2_RAID:
1197 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1198 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1199 	break;
1200 
1201     case AR_F_HPTV3_RAID:
1202 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1203 	break;
1204 
1205     case AR_F_INTEL_RAID:
1206 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1207 	break;
1208 
1209     case AR_F_ITE_RAID:
1210 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1211 	break;
1212 
1213     case AR_F_JMICRON_RAID:
1214 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1215 	break;
1216 
1217     case AR_F_LSIV2_RAID:
1218 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1219 	break;
1220 
1221     case AR_F_LSIV3_RAID:
1222 	rdp->interleave = min(max(2, rdp->interleave), 256);
1223 	break;
1224 
1225     case AR_F_PROMISE_RAID:
1226 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1227 	break;
1228 
1229     case AR_F_SII_RAID:
1230 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1231 	break;
1232 
1233     case AR_F_SIS_RAID:
1234 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1235 	break;
1236 
1237     case AR_F_VIA_RAID:
1238 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1239 	break;
1240     }
1241 
1242     rdp->total_disks = total_disks;
1243     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1244     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1245     rdp->heads = 255;
1246     rdp->sectors = 63;
1247     rdp->cylinders = rdp->total_sectors / (255 * 63);
1248     rdp->rebuild_lba = 0;
1249     rdp->status |= AR_S_READY;
1250 
1251     /* we are committed to this array, grap the subdisks */
1252     for (disk = 0; disk < config->total_disks; disk++) {
1253 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1254 					   config->disks[disk]))) {
1255 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1256 
1257 	    ars->raid[rdp->volume] = rdp;
1258 	    ars->disk_number[rdp->volume] = disk;
1259 	}
1260     }
1261     ata_raid_attach(rdp, 1);
1262     ata_raid_arrays[array] = rdp;
1263     config->lun = array;
1264     return 0;
1265 }
1266 
1267 static int
1268 ata_raid_delete(int array)
1269 {
1270     struct ar_softc *rdp;
1271     device_t subdisk;
1272     int disk;
1273 
1274     if (!(rdp = ata_raid_arrays[array]))
1275 	return ENXIO;
1276 
1277     rdp->status &= ~AR_S_READY;
1278     disk_destroy(&rdp->disk);
1279 
1280     for (disk = 0; disk < rdp->total_disks; disk++) {
1281 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1282 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1283 		     device_get_unit(rdp->disks[disk].dev)))) {
1284 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1285 
1286 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1287 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1288 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1289 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1290 		ars->raid[rdp->volume] = NULL;
1291 		ars->disk_number[rdp->volume] = -1;
1292 	    }
1293 	    rdp->disks[disk].flags = 0;
1294 	}
1295     }
1296     ata_raid_wipe_metadata(rdp);
1297     ata_raid_arrays[array] = NULL;
1298     kfree(rdp, M_AR);
1299     return 0;
1300 }
1301 
1302 static int
1303 ata_raid_addspare(struct ata_ioc_raid_config *config)
1304 {
1305     struct ar_softc *rdp;
1306     device_t subdisk;
1307     int disk;
1308 
1309     if (!(rdp = ata_raid_arrays[config->lun]))
1310 	return ENXIO;
1311     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1312 	return ENXIO;
1313     if (rdp->status & AR_S_REBUILDING)
1314 	return EBUSY;
1315     switch (rdp->type) {
1316     case AR_T_RAID1:
1317     case AR_T_RAID01:
1318     case AR_T_RAID5:
1319 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1320 
1321 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1322 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1323 		continue;
1324 
1325 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1326 					       config->disks[0] ))) {
1327 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1328 
1329 		if (ars->raid[rdp->volume])
1330 		    return EBUSY;
1331 
1332 		/* XXX SOS validate size etc etc */
1333 		ars->raid[rdp->volume] = rdp;
1334 		ars->disk_number[rdp->volume] = disk;
1335 		rdp->disks[disk].dev = device_get_parent(subdisk);
1336 		rdp->disks[disk].flags =
1337 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1338 
1339 		device_printf(rdp->disks[disk].dev,
1340 			      "inserted into ar%d disk%d as spare\n",
1341 			      rdp->lun, disk);
1342 		ata_raid_config_changed(rdp, 1);
1343 		return 0;
1344 	    }
1345 	}
1346 	return ENXIO;
1347 
1348     default:
1349 	return EPERM;
1350     }
1351 }
1352 
1353 static int
1354 ata_raid_rebuild(int array)
1355 {
1356     struct ar_softc *rdp;
1357     int disk, count;
1358 
1359     if (!(rdp = ata_raid_arrays[array]))
1360 	return ENXIO;
1361     /* XXX SOS we should lock the rdp softc here */
1362     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1363 	return ENXIO;
1364     if (rdp->status & AR_S_REBUILDING)
1365 	return EBUSY;
1366 
1367     switch (rdp->type) {
1368     case AR_T_RAID1:
1369     case AR_T_RAID01:
1370     case AR_T_RAID5:
1371 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1372 	    if (((rdp->disks[disk].flags &
1373 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1374 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1375 		rdp->disks[disk].dev) {
1376 		count++;
1377 	    }
1378 	}
1379 
1380 	if (count) {
1381 	    rdp->rebuild_lba = 0;
1382 	    rdp->status |= AR_S_REBUILDING;
1383 	    return 0;
1384 	}
1385 	return EIO;
1386 
1387     default:
1388 	return EPERM;
1389     }
1390 }
1391 
1392 static int
1393 ata_raid_read_metadata(device_t subdisk)
1394 {
1395     devclass_t pci_devclass = devclass_find("pci");
1396     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1397     device_t gpdev;
1398     uint16_t vendor;
1399 
1400     /* prioritize vendor native metadata layout if possible */
1401     if (devclass == pci_devclass) {
1402 	gpdev = device_get_parent(subdisk);
1403 	gpdev = GRANDPARENT(gpdev);
1404 	vendor = pci_get_vendor(gpdev);
1405 
1406 	switch (vendor) {
1407 	case ATA_HIGHPOINT_ID:
1408 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1409 		return 0;
1410 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1411 		return 0;
1412 	    break;
1413 
1414 	case ATA_INTEL_ID:
1415 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1416 		return 0;
1417 	    break;
1418 
1419 	case ATA_ITE_ID:
1420 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1421 		return 0;
1422 	    break;
1423 
1424 	case ATA_JMICRON_ID:
1425 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1426 		return 0;
1427 	    break;
1428 
1429 	case ATA_NVIDIA_ID:
1430 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1431 		return 0;
1432 	    break;
1433 
1434 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1435 	case ATA_PROMISE_ID:
1436 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1437 		return 0;
1438 	    break;
1439 
1440 	case ATA_ATI_ID:
1441 	case ATA_SILICON_IMAGE_ID:
1442 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1443 		return 0;
1444 	    break;
1445 
1446 	case ATA_SIS_ID:
1447 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1448 		return 0;
1449 	    break;
1450 
1451 	case ATA_VIA_ID:
1452 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1453 		return 0;
1454 	    break;
1455 	}
1456     }
1457 
1458     /* handle controllers that have multiple layout possibilities */
1459     /* NOTE: the order of these are not insignificant */
1460 
1461     /* Adaptec HostRAID */
1462     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1463 	return 0;
1464 
1465     /* LSILogic v3 and v2 */
1466     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1467 	return 0;
1468     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1469 	return 0;
1470 
1471     /* if none of the above matched, try FreeBSD native format */
1472     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1473 }
1474 
1475 static int
1476 ata_raid_write_metadata(struct ar_softc *rdp)
1477 {
1478     switch (rdp->format) {
1479     case AR_F_FREEBSD_RAID:
1480     case AR_F_PROMISE_RAID:
1481 	return ata_raid_promise_write_meta(rdp);
1482 
1483     case AR_F_HPTV3_RAID:
1484     case AR_F_HPTV2_RAID:
1485 	/*
1486 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1487 	 * this is handy since we cannot know what version BIOS is on there
1488 	 */
1489 	return ata_raid_hptv2_write_meta(rdp);
1490 
1491     case AR_F_INTEL_RAID:
1492 	return ata_raid_intel_write_meta(rdp);
1493 
1494     case AR_F_JMICRON_RAID:
1495 	return ata_raid_jmicron_write_meta(rdp);
1496 
1497     case AR_F_SIS_RAID:
1498 	return ata_raid_sis_write_meta(rdp);
1499 
1500     case AR_F_VIA_RAID:
1501 	return ata_raid_via_write_meta(rdp);
1502 #if 0
1503     case AR_F_HPTV3_RAID:
1504 	return ata_raid_hptv3_write_meta(rdp);
1505 
1506     case AR_F_ADAPTEC_RAID:
1507 	return ata_raid_adaptec_write_meta(rdp);
1508 
1509     case AR_F_ITE_RAID:
1510 	return ata_raid_ite_write_meta(rdp);
1511 
1512     case AR_F_LSIV2_RAID:
1513 	return ata_raid_lsiv2_write_meta(rdp);
1514 
1515     case AR_F_LSIV3_RAID:
1516 	return ata_raid_lsiv3_write_meta(rdp);
1517 
1518     case AR_F_NVIDIA_RAID:
1519 	return ata_raid_nvidia_write_meta(rdp);
1520 
1521     case AR_F_SII_RAID:
1522 	return ata_raid_sii_write_meta(rdp);
1523 
1524 #endif
1525     default:
1526 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1527 	       rdp->lun, ata_raid_format(rdp));
1528     }
1529     return -1;
1530 }
1531 
1532 static int
1533 ata_raid_wipe_metadata(struct ar_softc *rdp)
1534 {
1535     int disk, error = 0;
1536     u_int64_t lba;
1537     u_int32_t size;
1538     u_int8_t *meta;
1539 
1540     for (disk = 0; disk < rdp->total_disks; disk++) {
1541 	if (rdp->disks[disk].dev) {
1542 	    switch (rdp->format) {
1543 	    case AR_F_ADAPTEC_RAID:
1544 		lba = ADP_LBA(rdp->disks[disk].dev);
1545 		size = sizeof(struct adaptec_raid_conf);
1546 		break;
1547 
1548 	    case AR_F_HPTV2_RAID:
1549 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1550 		size = sizeof(struct hptv2_raid_conf);
1551 		break;
1552 
1553 	    case AR_F_HPTV3_RAID:
1554 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1555 		size = sizeof(struct hptv3_raid_conf);
1556 		break;
1557 
1558 	    case AR_F_INTEL_RAID:
1559 		lba = INTEL_LBA(rdp->disks[disk].dev);
1560 		size = 3 * 512;         /* XXX SOS */
1561 		break;
1562 
1563 	    case AR_F_ITE_RAID:
1564 		lba = ITE_LBA(rdp->disks[disk].dev);
1565 		size = sizeof(struct ite_raid_conf);
1566 		break;
1567 
1568 	    case AR_F_JMICRON_RAID:
1569 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1570 		size = sizeof(struct jmicron_raid_conf);
1571 		break;
1572 
1573 	    case AR_F_LSIV2_RAID:
1574 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1575 		size = sizeof(struct lsiv2_raid_conf);
1576 		break;
1577 
1578 	    case AR_F_LSIV3_RAID:
1579 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1580 		size = sizeof(struct lsiv3_raid_conf);
1581 		break;
1582 
1583 	    case AR_F_NVIDIA_RAID:
1584 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1585 		size = sizeof(struct nvidia_raid_conf);
1586 		break;
1587 
1588 	    case AR_F_FREEBSD_RAID:
1589 	    case AR_F_PROMISE_RAID:
1590 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1591 		size = sizeof(struct promise_raid_conf);
1592 		break;
1593 
1594 	    case AR_F_SII_RAID:
1595 		lba = SII_LBA(rdp->disks[disk].dev);
1596 		size = sizeof(struct sii_raid_conf);
1597 		break;
1598 
1599 	    case AR_F_SIS_RAID:
1600 		lba = SIS_LBA(rdp->disks[disk].dev);
1601 		size = sizeof(struct sis_raid_conf);
1602 		break;
1603 
1604 	    case AR_F_VIA_RAID:
1605 		lba = VIA_LBA(rdp->disks[disk].dev);
1606 		size = sizeof(struct via_raid_conf);
1607 		break;
1608 
1609 	    default:
1610 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1611 		       rdp->lun, ata_raid_format(rdp));
1612 		return ENXIO;
1613 	    }
1614 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1615 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1616 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1617 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1618 		error = EIO;
1619 	    }
1620 	    kfree(meta, M_AR);
1621 	}
1622     }
1623     return error;
1624 }
1625 
1626 /* Adaptec HostRAID Metadata */
1627 static int
1628 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1629 {
1630     struct ata_raid_subdisk *ars = device_get_softc(dev);
1631     device_t parent = device_get_parent(dev);
1632     struct adaptec_raid_conf *meta;
1633     struct ar_softc *raid;
1634     int array, disk, retval = 0;
1635 
1636     meta = (struct adaptec_raid_conf *)
1637 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1638 
1639     if (ata_raid_rw(parent, ADP_LBA(parent),
1640 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1641 	if (testing || bootverbose)
1642 	    device_printf(parent, "Adaptec read metadata failed\n");
1643 	goto adaptec_out;
1644     }
1645 
1646     /* check if this is a Adaptec RAID struct */
1647     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1648 	if (testing || bootverbose)
1649 	    device_printf(parent, "Adaptec check1 failed\n");
1650 	goto adaptec_out;
1651     }
1652 
1653     if (testing || bootverbose)
1654 	ata_raid_adaptec_print_meta(meta);
1655 
1656     /* now convert Adaptec metadata into our generic form */
1657     for (array = 0; array < MAX_ARRAYS; array++) {
1658 	if (!raidp[array]) {
1659 	    raidp[array] =
1660 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1661 					  M_WAITOK | M_ZERO);
1662 	}
1663 	raid = raidp[array];
1664 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1665 	    continue;
1666 
1667 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1668 	    continue;
1669 
1670 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1671 	    switch (meta->configs[0].type) {
1672 	    case ADP_T_RAID0:
1673 		raid->magic_0 = meta->configs[0].magic_0;
1674 		raid->type = AR_T_RAID0;
1675 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1676 		raid->width = be16toh(meta->configs[0].total_disks);
1677 		break;
1678 
1679 	    case ADP_T_RAID1:
1680 		raid->magic_0 = meta->configs[0].magic_0;
1681 		raid->type = AR_T_RAID1;
1682 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1683 		break;
1684 
1685 	    default:
1686 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1687 			      meta->configs[0].type);
1688 		kfree(raidp[array], M_AR);
1689 		raidp[array] = NULL;
1690 		goto adaptec_out;
1691 	    }
1692 
1693 	    raid->format = AR_F_ADAPTEC_RAID;
1694 	    raid->generation = be32toh(meta->generation);
1695 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1696 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1697 	    raid->heads = 255;
1698 	    raid->sectors = 63;
1699 	    raid->cylinders = raid->total_sectors / (63 * 255);
1700 	    raid->offset_sectors = 0;
1701 	    raid->rebuild_lba = 0;
1702 	    raid->lun = array;
1703 	    strncpy(raid->name, meta->configs[0].name,
1704 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1705 
1706 	    /* clear out any old info */
1707 	    if (raid->generation) {
1708 		for (disk = 0; disk < raid->total_disks; disk++) {
1709 		    raid->disks[disk].dev = NULL;
1710 		    raid->disks[disk].flags = 0;
1711 		}
1712 	    }
1713 	}
1714 	if (be32toh(meta->generation) >= raid->generation) {
1715 	    struct ata_device *atadev = device_get_softc(parent);
1716 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1717 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1718 			      ATA_DEV(atadev->unit);
1719 
1720 	    raid->disks[disk_number].dev = parent;
1721 	    raid->disks[disk_number].sectors =
1722 		be32toh(meta->configs[disk_number + 1].sectors);
1723 	    raid->disks[disk_number].flags =
1724 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1725 	    ars->raid[raid->volume] = raid;
1726 	    ars->disk_number[raid->volume] = disk_number;
1727 	    retval = 1;
1728 	}
1729 	break;
1730     }
1731 
1732 adaptec_out:
1733     kfree(meta, M_AR);
1734     return retval;
1735 }
1736 
1737 /* Highpoint V2 RocketRAID Metadata */
1738 static int
1739 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1740 {
1741     struct ata_raid_subdisk *ars = device_get_softc(dev);
1742     device_t parent = device_get_parent(dev);
1743     struct hptv2_raid_conf *meta;
1744     struct ar_softc *raid = NULL;
1745     int array, disk_number = 0, retval = 0;
1746 
1747     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1748 	M_AR, M_WAITOK | M_ZERO);
1749 
1750     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1751 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1752 	if (testing || bootverbose)
1753 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1754 	goto hptv2_out;
1755     }
1756 
1757     /* check if this is a HighPoint v2 RAID struct */
1758     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1759 	if (testing || bootverbose)
1760 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1761 	goto hptv2_out;
1762     }
1763 
1764     /* is this disk defined, or an old leftover/spare ? */
1765     if (!meta->magic_0) {
1766 	if (testing || bootverbose)
1767 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1768 	goto hptv2_out;
1769     }
1770 
1771     if (testing || bootverbose)
1772 	ata_raid_hptv2_print_meta(meta);
1773 
1774     /* now convert HighPoint (v2) metadata into our generic form */
1775     for (array = 0; array < MAX_ARRAYS; array++) {
1776 	if (!raidp[array]) {
1777 	    raidp[array] =
1778 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1779 					  M_WAITOK | M_ZERO);
1780 	}
1781 	raid = raidp[array];
1782 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1783 	    continue;
1784 
1785 	switch (meta->type) {
1786 	case HPTV2_T_RAID0:
1787 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1788 		(HPTV2_O_RAID0|HPTV2_O_OK))
1789 		goto highpoint_raid1;
1790 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1791 		goto highpoint_raid01;
1792 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1793 		continue;
1794 	    raid->magic_0 = meta->magic_0;
1795 	    raid->type = AR_T_RAID0;
1796 	    raid->interleave = 1 << meta->stripe_shift;
1797 	    disk_number = meta->disk_number;
1798 	    if (!(meta->order & HPTV2_O_OK))
1799 		meta->magic = 0;        /* mark bad */
1800 	    break;
1801 
1802 	case HPTV2_T_RAID1:
1803 highpoint_raid1:
1804 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1805 		continue;
1806 	    raid->magic_0 = meta->magic_0;
1807 	    raid->type = AR_T_RAID1;
1808 	    disk_number = (meta->disk_number > 0);
1809 	    break;
1810 
1811 	case HPTV2_T_RAID01_RAID0:
1812 highpoint_raid01:
1813 	    if (meta->order & HPTV2_O_RAID0) {
1814 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1815 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1816 		    continue;
1817 		raid->magic_0 = meta->magic_0;
1818 		raid->magic_1 = meta->magic_1;
1819 		raid->type = AR_T_RAID01;
1820 		raid->interleave = 1 << meta->stripe_shift;
1821 		disk_number = meta->disk_number;
1822 	    }
1823 	    else {
1824 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1825 		    continue;
1826 		raid->magic_1 = meta->magic_1;
1827 		raid->type = AR_T_RAID01;
1828 		raid->interleave = 1 << meta->stripe_shift;
1829 		disk_number = meta->disk_number + meta->array_width;
1830 		if (!(meta->order & HPTV2_O_RAID1))
1831 		    meta->magic = 0;    /* mark bad */
1832 	    }
1833 	    break;
1834 
1835 	case HPTV2_T_SPAN:
1836 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1837 		continue;
1838 	    raid->magic_0 = meta->magic_0;
1839 	    raid->type = AR_T_SPAN;
1840 	    disk_number = meta->disk_number;
1841 	    break;
1842 
1843 	default:
1844 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1845 			  meta->type);
1846 	    kfree(raidp[array], M_AR);
1847 	    raidp[array] = NULL;
1848 	    goto hptv2_out;
1849 	}
1850 
1851 	raid->format |= AR_F_HPTV2_RAID;
1852 	raid->disks[disk_number].dev = parent;
1853 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1854 	raid->lun = array;
1855 	strncpy(raid->name, meta->name_1,
1856 		min(sizeof(raid->name), sizeof(meta->name_1)));
1857 	if (meta->magic == HPTV2_MAGIC_OK) {
1858 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1859 	    raid->width = meta->array_width;
1860 	    raid->total_sectors = meta->total_sectors;
1861 	    raid->heads = 255;
1862 	    raid->sectors = 63;
1863 	    raid->cylinders = raid->total_sectors / (63 * 255);
1864 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1865 	    raid->rebuild_lba = meta->rebuild_lba;
1866 	    raid->disks[disk_number].sectors =
1867 		raid->total_sectors / raid->width;
1868 	}
1869 	else
1870 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1871 
1872 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1873 	    raid->total_disks = raid->width;
1874 	if (disk_number >= raid->total_disks)
1875 	    raid->total_disks = disk_number + 1;
1876 	ars->raid[raid->volume] = raid;
1877 	ars->disk_number[raid->volume] = disk_number;
1878 	retval = 1;
1879 	break;
1880     }
1881 
1882 hptv2_out:
1883     kfree(meta, M_AR);
1884     return retval;
1885 }
1886 
1887 static int
1888 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1889 {
1890     struct hptv2_raid_conf *meta;
1891     struct timeval timestamp;
1892     int disk, error = 0;
1893 
1894     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1895 	M_AR, M_WAITOK | M_ZERO);
1896 
1897     microtime(&timestamp);
1898     rdp->magic_0 = timestamp.tv_sec + 2;
1899     rdp->magic_1 = timestamp.tv_sec;
1900 
1901     for (disk = 0; disk < rdp->total_disks; disk++) {
1902 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1903 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1904 	    meta->magic = HPTV2_MAGIC_OK;
1905 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1906 	    meta->magic_0 = rdp->magic_0;
1907 	    if (strlen(rdp->name))
1908 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1909 	    else
1910 		strcpy(meta->name_1, "FreeBSD");
1911 	}
1912 	meta->disk_number = disk;
1913 
1914 	switch (rdp->type) {
1915 	case AR_T_RAID0:
1916 	    meta->type = HPTV2_T_RAID0;
1917 	    strcpy(meta->name_2, "RAID 0");
1918 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1919 		meta->order = HPTV2_O_OK;
1920 	    break;
1921 
1922 	case AR_T_RAID1:
1923 	    meta->type = HPTV2_T_RAID0;
1924 	    strcpy(meta->name_2, "RAID 1");
1925 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1926 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1927 	    break;
1928 
1929 	case AR_T_RAID01:
1930 	    meta->type = HPTV2_T_RAID01_RAID0;
1931 	    strcpy(meta->name_2, "RAID 0+1");
1932 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1933 		if (disk < rdp->width) {
1934 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1935 		    meta->magic_0 = rdp->magic_0 - 1;
1936 		}
1937 		else {
1938 		    meta->order = HPTV2_O_RAID1;
1939 		    meta->disk_number -= rdp->width;
1940 		}
1941 	    }
1942 	    else
1943 		meta->magic_0 = rdp->magic_0 - 1;
1944 	    meta->magic_1 = rdp->magic_1;
1945 	    break;
1946 
1947 	case AR_T_SPAN:
1948 	    meta->type = HPTV2_T_SPAN;
1949 	    strcpy(meta->name_2, "SPAN");
1950 	    break;
1951 	default:
1952 	    kfree(meta, M_AR);
1953 	    return ENODEV;
1954 	}
1955 
1956 	meta->array_width = rdp->width;
1957 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1958 	meta->total_sectors = rdp->total_sectors;
1959 	meta->rebuild_lba = rdp->rebuild_lba;
1960 	if (testing || bootverbose)
1961 	    ata_raid_hptv2_print_meta(meta);
1962 	if (rdp->disks[disk].dev) {
1963 	    if (ata_raid_rw(rdp->disks[disk].dev,
1964 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1965 			    sizeof(struct promise_raid_conf),
1966 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1967 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1968 		error = EIO;
1969 	    }
1970 	}
1971     }
1972     kfree(meta, M_AR);
1973     return error;
1974 }
1975 
1976 /* Highpoint V3 RocketRAID Metadata */
1977 static int
1978 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1979 {
1980     struct ata_raid_subdisk *ars = device_get_softc(dev);
1981     device_t parent = device_get_parent(dev);
1982     struct hptv3_raid_conf *meta;
1983     struct ar_softc *raid = NULL;
1984     int array, disk_number, retval = 0;
1985 
1986     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1987 	M_AR, M_WAITOK | M_ZERO);
1988 
1989     if (ata_raid_rw(parent, HPTV3_LBA(parent),
1990 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
1991 	if (testing || bootverbose)
1992 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
1993 	goto hptv3_out;
1994     }
1995 
1996     /* check if this is a HighPoint v3 RAID struct */
1997     if (meta->magic != HPTV3_MAGIC) {
1998 	if (testing || bootverbose)
1999 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
2000 	goto hptv3_out;
2001     }
2002 
2003     /* check if there are any config_entries */
2004     if (meta->config_entries < 1) {
2005 	if (testing || bootverbose)
2006 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
2007 	goto hptv3_out;
2008     }
2009 
2010     if (testing || bootverbose)
2011 	ata_raid_hptv3_print_meta(meta);
2012 
2013     /* now convert HighPoint (v3) metadata into our generic form */
2014     for (array = 0; array < MAX_ARRAYS; array++) {
2015 	if (!raidp[array]) {
2016 	    raidp[array] =
2017 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2018 					  M_WAITOK | M_ZERO);
2019 	}
2020 	raid = raidp[array];
2021 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
2022 	    continue;
2023 
2024 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
2025 	    continue;
2026 
2027 	switch (meta->configs[0].type) {
2028 	case HPTV3_T_RAID0:
2029 	    raid->type = AR_T_RAID0;
2030 	    raid->width = meta->configs[0].total_disks;
2031 	    disk_number = meta->configs[0].disk_number;
2032 	    break;
2033 
2034 	case HPTV3_T_RAID1:
2035 	    raid->type = AR_T_RAID1;
2036 	    raid->width = meta->configs[0].total_disks / 2;
2037 	    disk_number = meta->configs[0].disk_number;
2038 	    break;
2039 
2040 	case HPTV3_T_RAID5:
2041 	    raid->type = AR_T_RAID5;
2042 	    raid->width = meta->configs[0].total_disks;
2043 	    disk_number = meta->configs[0].disk_number;
2044 	    break;
2045 
2046 	case HPTV3_T_SPAN:
2047 	    raid->type = AR_T_SPAN;
2048 	    raid->width = meta->configs[0].total_disks;
2049 	    disk_number = meta->configs[0].disk_number;
2050 	    break;
2051 
2052 	default:
2053 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2054 			  meta->configs[0].type);
2055 	    kfree(raidp[array], M_AR);
2056 	    raidp[array] = NULL;
2057 	    goto hptv3_out;
2058 	}
2059 	if (meta->config_entries == 2) {
2060 	    switch (meta->configs[1].type) {
2061 	    case HPTV3_T_RAID1:
2062 		if (raid->type == AR_T_RAID0) {
2063 		    raid->type = AR_T_RAID01;
2064 		    disk_number = meta->configs[1].disk_number +
2065 				  (meta->configs[0].disk_number << 1);
2066 		    break;
2067 		}
2068 	    default:
2069 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2070 			      meta->configs[1].type);
2071 		kfree(raidp[array], M_AR);
2072 		raidp[array] = NULL;
2073 		goto hptv3_out;
2074 	    }
2075 	}
2076 
2077 	raid->magic_0 = meta->magic_0;
2078 	raid->format = AR_F_HPTV3_RAID;
2079 	raid->generation = meta->timestamp;
2080 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2081 	raid->total_disks = meta->configs[0].total_disks +
2082 	    meta->configs[1].total_disks;
2083 	raid->total_sectors = meta->configs[0].total_sectors +
2084 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2085 	raid->heads = 255;
2086 	raid->sectors = 63;
2087 	raid->cylinders = raid->total_sectors / (63 * 255);
2088 	raid->offset_sectors = 0;
2089 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2090 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2091 	raid->lun = array;
2092 	strncpy(raid->name, meta->name,
2093 		min(sizeof(raid->name), sizeof(meta->name)));
2094 	raid->disks[disk_number].sectors = raid->total_sectors /
2095 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2096 	raid->disks[disk_number].dev = parent;
2097 	raid->disks[disk_number].flags =
2098 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2099 	ars->raid[raid->volume] = raid;
2100 	ars->disk_number[raid->volume] = disk_number;
2101 	retval = 1;
2102 	break;
2103     }
2104 
2105 hptv3_out:
2106     kfree(meta, M_AR);
2107     return retval;
2108 }
2109 
2110 /* Intel MatrixRAID Metadata */
2111 static int
2112 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2113 {
2114     struct ata_raid_subdisk *ars = device_get_softc(dev);
2115     device_t parent = device_get_parent(dev);
2116     struct intel_raid_conf *meta;
2117     struct intel_raid_mapping *map;
2118     struct ar_softc *raid = NULL;
2119     u_int32_t checksum, *ptr;
2120     int array, count, disk, volume = 1, retval = 0;
2121     char *tmp;
2122 
2123     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2124 
2125     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2126 	if (testing || bootverbose)
2127 	    device_printf(parent, "Intel read metadata failed\n");
2128 	goto intel_out;
2129     }
2130     tmp = (char *)meta;
2131     bcopy(tmp, tmp+1024, 512);
2132     bcopy(tmp+512, tmp, 1024);
2133     bzero(tmp+1024, 512);
2134 
2135     /* check if this is a Intel RAID struct */
2136     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2137 	if (testing || bootverbose)
2138 	    device_printf(parent, "Intel check1 failed\n");
2139 	goto intel_out;
2140     }
2141 
2142     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2143 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2144 	checksum += *ptr++;
2145     }
2146     checksum -= meta->checksum;
2147     if (checksum != meta->checksum) {
2148 	if (testing || bootverbose)
2149 	    device_printf(parent, "Intel check2 failed\n");
2150 	goto intel_out;
2151     }
2152 
2153     if (testing || bootverbose)
2154 	ata_raid_intel_print_meta(meta);
2155 
2156     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2157 
2158     /* now convert Intel metadata into our generic form */
2159     for (array = 0; array < MAX_ARRAYS; array++) {
2160 	if (!raidp[array]) {
2161 	    raidp[array] =
2162 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2163 					  M_WAITOK | M_ZERO);
2164 	}
2165 	raid = raidp[array];
2166 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2167 	    continue;
2168 
2169 	if ((raid->format & AR_F_INTEL_RAID) &&
2170 	    (raid->magic_0 != meta->config_id))
2171 	    continue;
2172 
2173 	/*
2174 	 * update our knowledge about the array config based on generation
2175 	 * NOTE: there can be multiple volumes on a disk set
2176 	 */
2177 	if (!meta->generation || meta->generation > raid->generation) {
2178 	    switch (map->type) {
2179 	    case INTEL_T_RAID0:
2180 		raid->type = AR_T_RAID0;
2181 		raid->width = map->total_disks;
2182 		break;
2183 
2184 	    case INTEL_T_RAID1:
2185 		if (map->total_disks == 4)
2186 		    raid->type = AR_T_RAID01;
2187 		else
2188 		    raid->type = AR_T_RAID1;
2189 		raid->width = map->total_disks / 2;
2190 		break;
2191 
2192 	    case INTEL_T_RAID5:
2193 		raid->type = AR_T_RAID5;
2194 		raid->width = map->total_disks;
2195 		break;
2196 
2197 	    default:
2198 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2199 			      map->type);
2200 		kfree(raidp[array], M_AR);
2201 		raidp[array] = NULL;
2202 		goto intel_out;
2203 	    }
2204 
2205 	    switch (map->status) {
2206 	    case INTEL_S_READY:
2207 		raid->status = AR_S_READY;
2208 		break;
2209 	    case INTEL_S_DEGRADED:
2210 		raid->status |= AR_S_DEGRADED;
2211 		break;
2212 	    case INTEL_S_DISABLED:
2213 	    case INTEL_S_FAILURE:
2214 		raid->status = 0;
2215 	    }
2216 
2217 	    raid->magic_0 = meta->config_id;
2218 	    raid->format = AR_F_INTEL_RAID;
2219 	    raid->generation = meta->generation;
2220 	    raid->interleave = map->stripe_sectors;
2221 	    raid->total_disks = map->total_disks;
2222 	    raid->total_sectors = map->total_sectors;
2223 	    raid->heads = 255;
2224 	    raid->sectors = 63;
2225 	    raid->cylinders = raid->total_sectors / (63 * 255);
2226 	    raid->offset_sectors = map->offset;
2227 	    raid->rebuild_lba = 0;
2228 	    raid->lun = array;
2229 	    raid->volume = volume - 1;
2230 	    strncpy(raid->name, map->name,
2231 		    min(sizeof(raid->name), sizeof(map->name)));
2232 
2233 	    /* clear out any old info */
2234 	    for (disk = 0; disk < raid->total_disks; disk++) {
2235 		raid->disks[disk].dev = NULL;
2236 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2237 		      raid->disks[disk].serial,
2238 		      sizeof(raid->disks[disk].serial));
2239 		raid->disks[disk].sectors =
2240 		    meta->disk[map->disk_idx[disk]].sectors;
2241 		raid->disks[disk].flags = 0;
2242 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2243 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2244 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2245 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2246 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2247 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2248 		    raid->disks[disk].flags |= AR_DF_SPARE;
2249 		}
2250 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2251 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2252 	    }
2253 	}
2254 	if (meta->generation >= raid->generation) {
2255 	    for (disk = 0; disk < raid->total_disks; disk++) {
2256 		struct ata_device *atadev = device_get_softc(parent);
2257 
2258 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2259 		    sizeof(raid->disks[disk].serial))) {
2260 		    raid->disks[disk].dev = parent;
2261 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2262 		    ars->raid[raid->volume] = raid;
2263 		    ars->disk_number[raid->volume] = disk;
2264 		    retval = 1;
2265 		}
2266 	    }
2267 	}
2268 	else
2269 	    goto intel_out;
2270 
2271 	if (retval) {
2272 	    if (volume < meta->total_volumes) {
2273 		map = (struct intel_raid_mapping *)
2274 		      &map->disk_idx[map->total_disks];
2275 		volume++;
2276 		retval = 0;
2277 		continue;
2278 	    }
2279 	    break;
2280 	}
2281 	else {
2282 	    kfree(raidp[array], M_AR);
2283 	    raidp[array] = NULL;
2284 	    if (volume == 2)
2285 		retval = 1;
2286 	}
2287     }
2288 
2289 intel_out:
2290     kfree(meta, M_AR);
2291     return retval;
2292 }
2293 
2294 static int
2295 ata_raid_intel_write_meta(struct ar_softc *rdp)
2296 {
2297     struct intel_raid_conf *meta;
2298     struct intel_raid_mapping *map;
2299     struct timeval timestamp;
2300     u_int32_t checksum, *ptr;
2301     int count, disk, error = 0;
2302     char *tmp;
2303 
2304     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2305 
2306     rdp->generation++;
2307 
2308     /* Generate a new config_id if none exists */
2309     if (!rdp->magic_0) {
2310 	microtime(&timestamp);
2311 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2312     }
2313 
2314     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2315     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2316     meta->config_id = rdp->magic_0;
2317     meta->generation = rdp->generation;
2318     meta->total_disks = rdp->total_disks;
2319     meta->total_volumes = 1;                                    /* XXX SOS */
2320     for (disk = 0; disk < rdp->total_disks; disk++) {
2321 	if (rdp->disks[disk].dev) {
2322 	    struct ata_channel *ch =
2323 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2324 	    struct ata_device *atadev =
2325 		device_get_softc(rdp->disks[disk].dev);
2326 
2327 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2328 		  sizeof(rdp->disks[disk].serial));
2329 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2330 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2331 	}
2332 	else
2333 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2334 	meta->disk[disk].flags = 0;
2335 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2336 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2337 	else {
2338 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2339 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2340 	    else
2341 		meta->disk[disk].flags |= INTEL_F_DOWN;
2342 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2343 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2344 	}
2345     }
2346     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2347 
2348     bcopy(rdp->name, map->name, sizeof(rdp->name));
2349     map->total_sectors = rdp->total_sectors;
2350     map->state = 12;                                            /* XXX SOS */
2351     map->offset = rdp->offset_sectors;
2352     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2353     map->stripe_sectors =  rdp->interleave;
2354     map->disk_sectors = rdp->total_sectors / rdp->width;
2355     map->status = INTEL_S_READY;                                /* XXX SOS */
2356     switch (rdp->type) {
2357     case AR_T_RAID0:
2358 	map->type = INTEL_T_RAID0;
2359 	break;
2360     case AR_T_RAID1:
2361 	map->type = INTEL_T_RAID1;
2362 	break;
2363     case AR_T_RAID01:
2364 	map->type = INTEL_T_RAID1;
2365 	break;
2366     case AR_T_RAID5:
2367 	map->type = INTEL_T_RAID5;
2368 	break;
2369     default:
2370 	kfree(meta, M_AR);
2371 	return ENODEV;
2372     }
2373     map->total_disks = rdp->total_disks;
2374     map->magic[0] = 0x02;
2375     map->magic[1] = 0xff;
2376     map->magic[2] = 0x01;
2377     for (disk = 0; disk < rdp->total_disks; disk++)
2378 	map->disk_idx[disk] = disk;
2379 
2380     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2381     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2382 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2383 	checksum += *ptr++;
2384     }
2385     meta->checksum = checksum;
2386 
2387     if (testing || bootverbose)
2388 	ata_raid_intel_print_meta(meta);
2389 
2390     tmp = (char *)meta;
2391     bcopy(tmp, tmp+1024, 512);
2392     bcopy(tmp+512, tmp, 1024);
2393     bzero(tmp+1024, 512);
2394 
2395     for (disk = 0; disk < rdp->total_disks; disk++) {
2396 	if (rdp->disks[disk].dev) {
2397 	    if (ata_raid_rw(rdp->disks[disk].dev,
2398 			    INTEL_LBA(rdp->disks[disk].dev),
2399 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2400 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2401 		error = EIO;
2402 	    }
2403 	}
2404     }
2405     kfree(meta, M_AR);
2406     return error;
2407 }
2408 
2409 
2410 /* Integrated Technology Express Metadata */
2411 static int
2412 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2413 {
2414     struct ata_raid_subdisk *ars = device_get_softc(dev);
2415     device_t parent = device_get_parent(dev);
2416     struct ite_raid_conf *meta;
2417     struct ar_softc *raid = NULL;
2418     int array, disk_number, count, retval = 0;
2419     u_int16_t *ptr;
2420 
2421     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2422 	M_WAITOK | M_ZERO);
2423 
2424     if (ata_raid_rw(parent, ITE_LBA(parent),
2425 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2426 	if (testing || bootverbose)
2427 	    device_printf(parent, "ITE read metadata failed\n");
2428 	goto ite_out;
2429     }
2430 
2431     /* check if this is a ITE RAID struct */
2432     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2433 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2434 	ptr[count] = be16toh(ptr[count]);
2435 
2436     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2437 	if (testing || bootverbose)
2438 	    device_printf(parent, "ITE check1 failed\n");
2439 	goto ite_out;
2440     }
2441 
2442     if (testing || bootverbose)
2443 	ata_raid_ite_print_meta(meta);
2444 
2445     /* now convert ITE metadata into our generic form */
2446     for (array = 0; array < MAX_ARRAYS; array++) {
2447 	if ((raid = raidp[array])) {
2448 	    if (raid->format != AR_F_ITE_RAID)
2449 		continue;
2450 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2451 		continue;
2452 	}
2453 
2454 	/* if we dont have a disks timestamp the RAID is invalidated */
2455 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2456 	    goto ite_out;
2457 
2458 	if (!raid) {
2459 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2460 						     M_AR, M_WAITOK | M_ZERO);
2461 	}
2462 
2463 	switch (meta->type) {
2464 	case ITE_T_RAID0:
2465 	    raid->type = AR_T_RAID0;
2466 	    raid->width = meta->array_width;
2467 	    raid->total_disks = meta->array_width;
2468 	    disk_number = meta->disk_number;
2469 	    break;
2470 
2471 	case ITE_T_RAID1:
2472 	    raid->type = AR_T_RAID1;
2473 	    raid->width = 1;
2474 	    raid->total_disks = 2;
2475 	    disk_number = meta->disk_number;
2476 	    break;
2477 
2478 	case ITE_T_RAID01:
2479 	    raid->type = AR_T_RAID01;
2480 	    raid->width = meta->array_width;
2481 	    raid->total_disks = 4;
2482 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2483 			  ((meta->disk_number & 0x01) << 1);
2484 	    break;
2485 
2486 	case ITE_T_SPAN:
2487 	    raid->type = AR_T_SPAN;
2488 	    raid->width = 1;
2489 	    raid->total_disks = meta->array_width;
2490 	    disk_number = meta->disk_number;
2491 	    break;
2492 
2493 	default:
2494 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2495 	    kfree(raidp[array], M_AR);
2496 	    raidp[array] = NULL;
2497 	    goto ite_out;
2498 	}
2499 
2500 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2501 	raid->format = AR_F_ITE_RAID;
2502 	raid->generation = 0;
2503 	raid->interleave = meta->stripe_sectors;
2504 	raid->total_sectors = meta->total_sectors;
2505 	raid->heads = 255;
2506 	raid->sectors = 63;
2507 	raid->cylinders = raid->total_sectors / (63 * 255);
2508 	raid->offset_sectors = 0;
2509 	raid->rebuild_lba = 0;
2510 	raid->lun = array;
2511 
2512 	raid->disks[disk_number].dev = parent;
2513 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2514 	raid->disks[disk_number].flags =
2515 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2516 	ars->raid[raid->volume] = raid;
2517 	ars->disk_number[raid->volume] = disk_number;
2518 	retval = 1;
2519 	break;
2520     }
2521 ite_out:
2522     kfree(meta, M_AR);
2523     return retval;
2524 }
2525 
2526 /* JMicron Technology Corp Metadata */
2527 static int
2528 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2529 {
2530     struct ata_raid_subdisk *ars = device_get_softc(dev);
2531     device_t parent = device_get_parent(dev);
2532     struct jmicron_raid_conf *meta;
2533     struct ar_softc *raid = NULL;
2534     u_int16_t checksum, *ptr;
2535     u_int64_t disk_size;
2536     int count, array, disk, total_disks, retval = 0;
2537 
2538     meta = (struct jmicron_raid_conf *)
2539 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2540 
2541     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2542 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2543 	if (testing || bootverbose)
2544 	    device_printf(parent,
2545 			  "JMicron read metadata failed\n");
2546     }
2547 
2548     /* check for JMicron signature */
2549     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2550 	if (testing || bootverbose)
2551 	    device_printf(parent, "JMicron check1 failed\n");
2552 	goto jmicron_out;
2553     }
2554 
2555     /* calculate checksum and compare for valid */
2556     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2557 	checksum += *ptr++;
2558     if (checksum) {
2559 	if (testing || bootverbose)
2560 	    device_printf(parent, "JMicron check2 failed\n");
2561 	goto jmicron_out;
2562     }
2563 
2564     if (testing || bootverbose)
2565 	ata_raid_jmicron_print_meta(meta);
2566 
2567     /* now convert JMicron meta into our generic form */
2568     for (array = 0; array < MAX_ARRAYS; array++) {
2569 jmicron_next:
2570 	if (!raidp[array]) {
2571 	    raidp[array] =
2572 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2573 					  M_WAITOK | M_ZERO);
2574 	}
2575 	raid = raidp[array];
2576 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2577 	    continue;
2578 
2579 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2580 	    if (meta->disks[disk]) {
2581 		if (raid->format == AR_F_JMICRON_RAID) {
2582 		    if (bcmp(&meta->disks[disk],
2583 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2584 			array++;
2585 			goto jmicron_next;
2586 		    }
2587 		}
2588 		else
2589 		    bcopy(&meta->disks[disk],
2590 			  raid->disks[disk].serial, sizeof(u_int32_t));
2591 		total_disks++;
2592 	    }
2593 	}
2594 	/* handle spares XXX SOS */
2595 
2596 	switch (meta->type) {
2597 	case JM_T_RAID0:
2598 	    raid->type = AR_T_RAID0;
2599 	    raid->width = total_disks;
2600 	    break;
2601 
2602 	case JM_T_RAID1:
2603 	    raid->type = AR_T_RAID1;
2604 	    raid->width = 1;
2605 	    break;
2606 
2607 	case JM_T_RAID01:
2608 	    raid->type = AR_T_RAID01;
2609 	    raid->width = total_disks / 2;
2610 	    break;
2611 
2612 	case JM_T_RAID5:
2613 	    raid->type = AR_T_RAID5;
2614 	    raid->width = total_disks;
2615 	    break;
2616 
2617 	case JM_T_JBOD:
2618 	    raid->type = AR_T_SPAN;
2619 	    raid->width = 1;
2620 	    break;
2621 
2622 	default:
2623 	    device_printf(parent,
2624 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2625 	    kfree(raidp[array], M_AR);
2626 	    raidp[array] = NULL;
2627 	    goto jmicron_out;
2628 	}
2629 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2630 	raid->format = AR_F_JMICRON_RAID;
2631 	strncpy(raid->name, meta->name, sizeof(meta->name));
2632 	raid->generation = 0;
2633 	raid->interleave = 2 << meta->stripe_shift;
2634 	raid->total_disks = total_disks;
2635 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2636 	raid->heads = 255;
2637 	raid->sectors = 63;
2638 	raid->cylinders = raid->total_sectors / (63 * 255);
2639 	raid->offset_sectors = meta->offset * 16;
2640 	raid->rebuild_lba = 0;
2641 	raid->lun = array;
2642 
2643 	for (disk = 0; disk < raid->total_disks; disk++) {
2644 	    if (meta->disks[disk] == meta->disk_id) {
2645 		raid->disks[disk].dev = parent;
2646 		raid->disks[disk].sectors = disk_size;
2647 		raid->disks[disk].flags =
2648 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2649 		ars->raid[raid->volume] = raid;
2650 		ars->disk_number[raid->volume] = disk;
2651 		retval = 1;
2652 		break;
2653 	    }
2654 	}
2655 	break;
2656     }
2657 jmicron_out:
2658     kfree(meta, M_AR);
2659     return retval;
2660 }
2661 
2662 static int
2663 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2664 {
2665     struct jmicron_raid_conf *meta;
2666     u_int64_t disk_sectors;
2667     int disk, error = 0;
2668 
2669     meta = (struct jmicron_raid_conf *)
2670 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2671 
2672     rdp->generation++;
2673     switch (rdp->type) {
2674     case AR_T_JBOD:
2675 	meta->type = JM_T_JBOD;
2676 	break;
2677 
2678     case AR_T_RAID0:
2679 	meta->type = JM_T_RAID0;
2680 	break;
2681 
2682     case AR_T_RAID1:
2683 	meta->type = JM_T_RAID1;
2684 	break;
2685 
2686     case AR_T_RAID5:
2687 	meta->type = JM_T_RAID5;
2688 	break;
2689 
2690     case AR_T_RAID01:
2691 	meta->type = JM_T_RAID01;
2692 	break;
2693 
2694     default:
2695 	kfree(meta, M_AR);
2696 	return ENODEV;
2697     }
2698     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2699     meta->version = JMICRON_VERSION;
2700     meta->offset = rdp->offset_sectors / 16;
2701     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2702     meta->disk_sectors_low = disk_sectors & 0xffff;
2703     meta->disk_sectors_high = disk_sectors >> 16;
2704     strncpy(meta->name, rdp->name, sizeof(meta->name));
2705     meta->stripe_shift = ffs(rdp->interleave) - 2;
2706 
2707     for (disk = 0; disk < rdp->total_disks; disk++) {
2708 	if (rdp->disks[disk].serial[0])
2709 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2710 	else
2711 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2712     }
2713 
2714     for (disk = 0; disk < rdp->total_disks; disk++) {
2715 	if (rdp->disks[disk].dev) {
2716 	    u_int16_t checksum = 0, *ptr;
2717 	    int count;
2718 
2719 	    meta->disk_id = meta->disks[disk];
2720 	    meta->checksum = 0;
2721 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2722 		checksum += *ptr++;
2723 	    meta->checksum -= checksum;
2724 
2725 	    if (testing || bootverbose)
2726 		ata_raid_jmicron_print_meta(meta);
2727 
2728 	    if (ata_raid_rw(rdp->disks[disk].dev,
2729 			    JMICRON_LBA(rdp->disks[disk].dev),
2730 			    meta, sizeof(struct jmicron_raid_conf),
2731 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2732 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2733 		error = EIO;
2734 	    }
2735 	}
2736     }
2737     /* handle spares XXX SOS */
2738 
2739     kfree(meta, M_AR);
2740     return error;
2741 }
2742 
2743 /* LSILogic V2 MegaRAID Metadata */
2744 static int
2745 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2746 {
2747     struct ata_raid_subdisk *ars = device_get_softc(dev);
2748     device_t parent = device_get_parent(dev);
2749     struct lsiv2_raid_conf *meta;
2750     struct ar_softc *raid = NULL;
2751     int array, retval = 0;
2752 
2753     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2754 	M_AR, M_WAITOK | M_ZERO);
2755 
2756     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2757 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2758 	if (testing || bootverbose)
2759 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2760 	goto lsiv2_out;
2761     }
2762 
2763     /* check if this is a LSI RAID struct */
2764     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2765 	if (testing || bootverbose)
2766 	    device_printf(parent, "LSI (v2) check1 failed\n");
2767 	goto lsiv2_out;
2768     }
2769 
2770     if (testing || bootverbose)
2771 	ata_raid_lsiv2_print_meta(meta);
2772 
2773     /* now convert LSI (v2) config meta into our generic form */
2774     for (array = 0; array < MAX_ARRAYS; array++) {
2775 	int raid_entry, conf_entry;
2776 
2777 	if (!raidp[array + meta->raid_number]) {
2778 	    raidp[array + meta->raid_number] =
2779 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2780 					  M_WAITOK | M_ZERO);
2781 	}
2782 	raid = raidp[array + meta->raid_number];
2783 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2784 	    continue;
2785 
2786 	if (raid->magic_0 &&
2787 	    ((raid->magic_0 != meta->timestamp) ||
2788 	     (raid->magic_1 != meta->raid_number)))
2789 	    continue;
2790 
2791 	array += meta->raid_number;
2792 
2793 	raid_entry = meta->raid_number;
2794 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2795 		     meta->disk_number - 1;
2796 
2797 	switch (meta->configs[raid_entry].raid.type) {
2798 	case LSIV2_T_RAID0:
2799 	    raid->magic_0 = meta->timestamp;
2800 	    raid->magic_1 = meta->raid_number;
2801 	    raid->type = AR_T_RAID0;
2802 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2803 	    raid->width = meta->configs[raid_entry].raid.array_width;
2804 	    break;
2805 
2806 	case LSIV2_T_RAID1:
2807 	    raid->magic_0 = meta->timestamp;
2808 	    raid->magic_1 = meta->raid_number;
2809 	    raid->type = AR_T_RAID1;
2810 	    raid->width = meta->configs[raid_entry].raid.array_width;
2811 	    break;
2812 
2813 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2814 	    raid->magic_0 = meta->timestamp;
2815 	    raid->magic_1 = meta->raid_number;
2816 	    raid->type = AR_T_RAID01;
2817 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2818 	    raid->width = meta->configs[raid_entry].raid.array_width;
2819 	    break;
2820 
2821 	default:
2822 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2823 			  meta->configs[raid_entry].raid.type);
2824 	    kfree(raidp[array], M_AR);
2825 	    raidp[array] = NULL;
2826 	    goto lsiv2_out;
2827 	}
2828 
2829 	raid->format = AR_F_LSIV2_RAID;
2830 	raid->generation = 0;
2831 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2832 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2833 	raid->heads = 255;
2834 	raid->sectors = 63;
2835 	raid->cylinders = raid->total_sectors / (63 * 255);
2836 	raid->offset_sectors = 0;
2837 	raid->rebuild_lba = 0;
2838 	raid->lun = array;
2839 
2840 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2841 	    raid->disks[meta->disk_number].dev = parent;
2842 	    raid->disks[meta->disk_number].sectors =
2843 		meta->configs[conf_entry].disk.disk_sectors;
2844 	    raid->disks[meta->disk_number].flags =
2845 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2846 	    ars->raid[raid->volume] = raid;
2847 	    ars->disk_number[raid->volume] = meta->disk_number;
2848 	    retval = 1;
2849 	}
2850 	else
2851 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2852 
2853 	break;
2854     }
2855 
2856 lsiv2_out:
2857     kfree(meta, M_AR);
2858     return retval;
2859 }
2860 
2861 /* LSILogic V3 MegaRAID Metadata */
2862 static int
2863 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2864 {
2865     struct ata_raid_subdisk *ars = device_get_softc(dev);
2866     device_t parent = device_get_parent(dev);
2867     struct lsiv3_raid_conf *meta;
2868     struct ar_softc *raid = NULL;
2869     u_int8_t checksum, *ptr;
2870     int array, entry, count, disk_number, retval = 0;
2871 
2872     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2873 	M_AR, M_WAITOK | M_ZERO);
2874 
2875     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2876 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2877 	if (testing || bootverbose)
2878 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2879 	goto lsiv3_out;
2880     }
2881 
2882     /* check if this is a LSI RAID struct */
2883     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2884 	if (testing || bootverbose)
2885 	    device_printf(parent, "LSI (v3) check1 failed\n");
2886 	goto lsiv3_out;
2887     }
2888 
2889     /* check if the checksum is OK */
2890     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2891 	checksum += *ptr++;
2892     if (checksum) {
2893 	if (testing || bootverbose)
2894 	    device_printf(parent, "LSI (v3) check2 failed\n");
2895 	goto lsiv3_out;
2896     }
2897 
2898     if (testing || bootverbose)
2899 	ata_raid_lsiv3_print_meta(meta);
2900 
2901     /* now convert LSI (v3) config meta into our generic form */
2902     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2903 	if (!raidp[array]) {
2904 	    raidp[array] =
2905 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2906 					  M_WAITOK | M_ZERO);
2907 	}
2908 	raid = raidp[array];
2909 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2910 	    array++;
2911 	    continue;
2912 	}
2913 
2914 	if ((raid->format == AR_F_LSIV3_RAID) &&
2915 	    (raid->magic_0 != meta->timestamp)) {
2916 	    array++;
2917 	    continue;
2918 	}
2919 
2920 	switch (meta->raid[entry].total_disks) {
2921 	case 0:
2922 	    entry++;
2923 	    continue;
2924 	case 1:
2925 	    if (meta->raid[entry].device == meta->device) {
2926 		disk_number = 0;
2927 		break;
2928 	    }
2929 	    if (raid->format)
2930 		array++;
2931 	    entry++;
2932 	    continue;
2933 	case 2:
2934 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2935 	    break;
2936 	default:
2937 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2938 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2939 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2940 	    break;
2941 	}
2942 
2943 	switch (meta->raid[entry].type) {
2944 	case LSIV3_T_RAID0:
2945 	    raid->type = AR_T_RAID0;
2946 	    raid->width = meta->raid[entry].total_disks;
2947 	    break;
2948 
2949 	case LSIV3_T_RAID1:
2950 	    raid->type = AR_T_RAID1;
2951 	    raid->width = meta->raid[entry].array_width;
2952 	    break;
2953 
2954 	default:
2955 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2956 			  meta->raid[entry].type);
2957 	    kfree(raidp[array], M_AR);
2958 	    raidp[array] = NULL;
2959 	    entry++;
2960 	    continue;
2961 	}
2962 
2963 	raid->magic_0 = meta->timestamp;
2964 	raid->format = AR_F_LSIV3_RAID;
2965 	raid->generation = 0;
2966 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2967 	raid->total_disks = meta->raid[entry].total_disks;
2968 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2969 	raid->heads = 255;
2970 	raid->sectors = 63;
2971 	raid->cylinders = raid->total_sectors / (63 * 255);
2972 	raid->offset_sectors = meta->raid[entry].offset;
2973 	raid->rebuild_lba = 0;
2974 	raid->lun = array;
2975 
2976 	raid->disks[disk_number].dev = parent;
2977 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2978 	raid->disks[disk_number].flags =
2979 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2980 	ars->raid[raid->volume] = raid;
2981 	ars->disk_number[raid->volume] = disk_number;
2982 	retval = 1;
2983 	entry++;
2984 	array++;
2985     }
2986 
2987 lsiv3_out:
2988     kfree(meta, M_AR);
2989     return retval;
2990 }
2991 
2992 /* nVidia MediaShield Metadata */
2993 static int
2994 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
2995 {
2996     struct ata_raid_subdisk *ars = device_get_softc(dev);
2997     device_t parent = device_get_parent(dev);
2998     struct nvidia_raid_conf *meta;
2999     struct ar_softc *raid = NULL;
3000     u_int32_t checksum, *ptr;
3001     int array, count, retval = 0;
3002 
3003     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
3004 	M_AR, M_WAITOK | M_ZERO);
3005 
3006     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3007 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3008 	if (testing || bootverbose)
3009 	    device_printf(parent, "nVidia read metadata failed\n");
3010 	goto nvidia_out;
3011     }
3012 
3013     /* check if this is a nVidia RAID struct */
3014     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3015 	if (testing || bootverbose)
3016 	    device_printf(parent, "nVidia check1 failed\n");
3017 	goto nvidia_out;
3018     }
3019 
3020     /* check if the checksum is OK */
3021     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3022 	 count < meta->config_size; count++)
3023 	checksum += *ptr++;
3024     if (checksum) {
3025 	if (testing || bootverbose)
3026 	    device_printf(parent, "nVidia check2 failed\n");
3027 	goto nvidia_out;
3028     }
3029 
3030     if (testing || bootverbose)
3031 	ata_raid_nvidia_print_meta(meta);
3032 
3033     /* now convert nVidia meta into our generic form */
3034     for (array = 0; array < MAX_ARRAYS; array++) {
3035 	if (!raidp[array]) {
3036 	    raidp[array] =
3037 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3038 					  M_WAITOK | M_ZERO);
3039 	}
3040 	raid = raidp[array];
3041 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3042 	    continue;
3043 
3044 	if (raid->format == AR_F_NVIDIA_RAID &&
3045 	    ((raid->magic_0 != meta->magic_1) ||
3046 	     (raid->magic_1 != meta->magic_2))) {
3047 	    continue;
3048 	}
3049 
3050 	switch (meta->type) {
3051 	case NV_T_SPAN:
3052 	    raid->type = AR_T_SPAN;
3053 	    break;
3054 
3055 	case NV_T_RAID0:
3056 	    raid->type = AR_T_RAID0;
3057 	    break;
3058 
3059 	case NV_T_RAID1:
3060 	    raid->type = AR_T_RAID1;
3061 	    break;
3062 
3063 	case NV_T_RAID5:
3064 	    raid->type = AR_T_RAID5;
3065 	    break;
3066 
3067 	case NV_T_RAID01:
3068 	    raid->type = AR_T_RAID01;
3069 	    break;
3070 
3071 	default:
3072 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3073 			  meta->type);
3074 	    kfree(raidp[array], M_AR);
3075 	    raidp[array] = NULL;
3076 	    goto nvidia_out;
3077 	}
3078 	raid->magic_0 = meta->magic_1;
3079 	raid->magic_1 = meta->magic_2;
3080 	raid->format = AR_F_NVIDIA_RAID;
3081 	raid->generation = 0;
3082 	raid->interleave = meta->stripe_sectors;
3083 	raid->width = meta->array_width;
3084 	raid->total_disks = meta->total_disks;
3085 	raid->total_sectors = meta->total_sectors;
3086 	raid->heads = 255;
3087 	raid->sectors = 63;
3088 	raid->cylinders = raid->total_sectors / (63 * 255);
3089 	raid->offset_sectors = 0;
3090 	raid->rebuild_lba = meta->rebuild_lba;
3091 	raid->lun = array;
3092 	raid->status = AR_S_READY;
3093 	if (meta->status & NV_S_DEGRADED)
3094 	    raid->status |= AR_S_DEGRADED;
3095 
3096 	raid->disks[meta->disk_number].dev = parent;
3097 	raid->disks[meta->disk_number].sectors =
3098 	    raid->total_sectors / raid->width;
3099 	raid->disks[meta->disk_number].flags =
3100 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3101 	ars->raid[raid->volume] = raid;
3102 	ars->disk_number[raid->volume] = meta->disk_number;
3103 	retval = 1;
3104 	break;
3105     }
3106 
3107 nvidia_out:
3108     kfree(meta, M_AR);
3109     return retval;
3110 }
3111 
3112 /* Promise FastTrak Metadata */
3113 static int
3114 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3115 {
3116     struct ata_raid_subdisk *ars = device_get_softc(dev);
3117     device_t parent = device_get_parent(dev);
3118     struct promise_raid_conf *meta;
3119     struct ar_softc *raid;
3120     u_int32_t checksum, *ptr;
3121     int array, count, disk, disksum = 0, retval = 0;
3122 
3123     meta = (struct promise_raid_conf *)
3124 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3125 
3126     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3127 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3128 	if (testing || bootverbose)
3129 	    device_printf(parent, "%s read metadata failed\n",
3130 			  native ? "FreeBSD" : "Promise");
3131 	goto promise_out;
3132     }
3133 
3134     /* check the signature */
3135     if (native) {
3136 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3137 	    if (testing || bootverbose)
3138 		device_printf(parent, "FreeBSD check1 failed\n");
3139 	    goto promise_out;
3140 	}
3141     }
3142     else {
3143 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3144 	    if (testing || bootverbose)
3145 		device_printf(parent, "Promise check1 failed\n");
3146 	    goto promise_out;
3147 	}
3148     }
3149 
3150     /* check if the checksum is OK */
3151     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3152 	checksum += *ptr++;
3153     if (checksum != *ptr) {
3154 	if (testing || bootverbose)
3155 	    device_printf(parent, "%s check2 failed\n",
3156 			  native ? "FreeBSD" : "Promise");
3157 	goto promise_out;
3158     }
3159 
3160     /* check on disk integrity status */
3161     if (meta->raid.integrity != PR_I_VALID) {
3162 	if (testing || bootverbose)
3163 	    device_printf(parent, "%s check3 failed\n",
3164 			  native ? "FreeBSD" : "Promise");
3165 	goto promise_out;
3166     }
3167 
3168     if (testing || bootverbose)
3169 	ata_raid_promise_print_meta(meta);
3170 
3171     /* now convert Promise metadata into our generic form */
3172     for (array = 0; array < MAX_ARRAYS; array++) {
3173 	if (!raidp[array]) {
3174 	    raidp[array] =
3175 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3176 					  M_WAITOK | M_ZERO);
3177 	}
3178 	raid = raidp[array];
3179 	if (raid->format &&
3180 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3181 	    continue;
3182 
3183 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3184 	    !(meta->raid.magic_1 == (raid->magic_1)))
3185 	    continue;
3186 
3187 	/* update our knowledge about the array config based on generation */
3188 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3189 	    switch (meta->raid.type) {
3190 	    case PR_T_SPAN:
3191 		raid->type = AR_T_SPAN;
3192 		break;
3193 
3194 	    case PR_T_JBOD:
3195 		raid->type = AR_T_JBOD;
3196 		break;
3197 
3198 	    case PR_T_RAID0:
3199 		raid->type = AR_T_RAID0;
3200 		break;
3201 
3202 	    case PR_T_RAID1:
3203 		raid->type = AR_T_RAID1;
3204 		if (meta->raid.array_width > 1)
3205 		    raid->type = AR_T_RAID01;
3206 		break;
3207 
3208 	    case PR_T_RAID5:
3209 		raid->type = AR_T_RAID5;
3210 		break;
3211 
3212 	    default:
3213 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3214 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3215 		kfree(raidp[array], M_AR);
3216 		raidp[array] = NULL;
3217 		goto promise_out;
3218 	    }
3219 	    raid->magic_1 = meta->raid.magic_1;
3220 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3221 	    raid->generation = meta->raid.generation;
3222 	    raid->interleave = 1 << meta->raid.stripe_shift;
3223 	    raid->width = meta->raid.array_width;
3224 	    raid->total_disks = meta->raid.total_disks;
3225 	    raid->heads = meta->raid.heads + 1;
3226 	    raid->sectors = meta->raid.sectors;
3227 	    raid->cylinders = meta->raid.cylinders + 1;
3228 	    raid->total_sectors = meta->raid.total_sectors;
3229 	    raid->offset_sectors = 0;
3230 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3231 	    raid->lun = array;
3232 	    if ((meta->raid.status &
3233 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3234 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3235 		raid->status |= AR_S_READY;
3236 		if (meta->raid.status & PR_S_DEGRADED)
3237 		    raid->status |= AR_S_DEGRADED;
3238 	    }
3239 	    else
3240 		raid->status &= ~AR_S_READY;
3241 
3242 	    /* convert disk flags to our internal types */
3243 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3244 		raid->disks[disk].dev = NULL;
3245 		raid->disks[disk].flags = 0;
3246 		*((u_int64_t *)(raid->disks[disk].serial)) =
3247 		    meta->raid.disk[disk].magic_0;
3248 		disksum += meta->raid.disk[disk].flags;
3249 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3250 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3251 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3252 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3253 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3254 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3255 		    raid->disks[disk].flags |= AR_DF_SPARE;
3256 		}
3257 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3258 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3259 	    }
3260 	    if (!disksum) {
3261 		device_printf(parent, "%s subdisks has no flags\n",
3262 			      native ? "FreeBSD" : "Promise");
3263 		kfree(raidp[array], M_AR);
3264 		raidp[array] = NULL;
3265 		goto promise_out;
3266 	    }
3267 	}
3268 	if (meta->raid.generation >= raid->generation) {
3269 	    int disk_number = meta->raid.disk_number;
3270 
3271 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3272 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3273 		raid->disks[disk_number].dev = parent;
3274 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3275 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3276 		if ((raid->disks[disk_number].flags &
3277 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3278 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3279 		    ars->raid[raid->volume] = raid;
3280 		    ars->disk_number[raid->volume] = disk_number;
3281 		    retval = 1;
3282 		}
3283 	    }
3284 	}
3285 	break;
3286     }
3287 
3288 promise_out:
3289     kfree(meta, M_AR);
3290     return retval;
3291 }
3292 
3293 static int
3294 ata_raid_promise_write_meta(struct ar_softc *rdp)
3295 {
3296     struct promise_raid_conf *meta;
3297     struct timeval timestamp;
3298     u_int32_t *ckptr;
3299     int count, disk, drive, error = 0;
3300 
3301     meta = (struct promise_raid_conf *)
3302 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3303 
3304     rdp->generation++;
3305     microtime(&timestamp);
3306 
3307     for (disk = 0; disk < rdp->total_disks; disk++) {
3308 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3309 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3310 	meta->dummy_0 = 0x00020000;
3311 	meta->raid.disk_number = disk;
3312 
3313 	if (rdp->disks[disk].dev) {
3314 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3315 	    struct ata_channel *ch =
3316 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3317 
3318 	    meta->raid.channel = ch->unit;
3319 	    meta->raid.device = ATA_DEV(atadev->unit);
3320 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3321 	    meta->raid.disk_offset = rdp->offset_sectors;
3322 	}
3323 	else {
3324 	    meta->raid.channel = 0;
3325 	    meta->raid.device = 0;
3326 	    meta->raid.disk_sectors = 0;
3327 	    meta->raid.disk_offset = 0;
3328 	}
3329 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3330 	meta->magic_1 = timestamp.tv_sec >> 16;
3331 	meta->magic_2 = timestamp.tv_sec;
3332 	meta->raid.integrity = PR_I_VALID;
3333 	meta->raid.magic_0 = meta->magic_0;
3334 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3335 	meta->raid.generation = rdp->generation;
3336 
3337 	if (rdp->status & AR_S_READY) {
3338 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3339 	    meta->raid.status =
3340 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3341 	    if (rdp->status & AR_S_DEGRADED)
3342 		meta->raid.status |= PR_S_DEGRADED;
3343 	    else
3344 		meta->raid.status |= PR_S_FUNCTIONAL;
3345 	}
3346 	else {
3347 	    meta->raid.flags = PR_F_DOWN;
3348 	    meta->raid.status = 0;
3349 	}
3350 
3351 	switch (rdp->type) {
3352 	case AR_T_RAID0:
3353 	    meta->raid.type = PR_T_RAID0;
3354 	    break;
3355 	case AR_T_RAID1:
3356 	    meta->raid.type = PR_T_RAID1;
3357 	    break;
3358 	case AR_T_RAID01:
3359 	    meta->raid.type = PR_T_RAID1;
3360 	    break;
3361 	case AR_T_RAID5:
3362 	    meta->raid.type = PR_T_RAID5;
3363 	    break;
3364 	case AR_T_SPAN:
3365 	    meta->raid.type = PR_T_SPAN;
3366 	    break;
3367 	case AR_T_JBOD:
3368 	    meta->raid.type = PR_T_JBOD;
3369 	    break;
3370 	default:
3371 	    kfree(meta, M_AR);
3372 	    return ENODEV;
3373 	}
3374 
3375 	meta->raid.total_disks = rdp->total_disks;
3376 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3377 	meta->raid.array_width = rdp->width;
3378 	meta->raid.array_number = rdp->lun;
3379 	meta->raid.total_sectors = rdp->total_sectors;
3380 	meta->raid.cylinders = rdp->cylinders - 1;
3381 	meta->raid.heads = rdp->heads - 1;
3382 	meta->raid.sectors = rdp->sectors;
3383 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3384 
3385 	bzero(&meta->raid.disk, 8 * 12);
3386 	for (drive = 0; drive < rdp->total_disks; drive++) {
3387 	    meta->raid.disk[drive].flags = 0;
3388 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3389 		meta->raid.disk[drive].flags |= PR_F_VALID;
3390 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3391 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3392 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3393 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3394 	    else
3395 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3396 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3397 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3398 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3399 	    meta->raid.disk[drive].dummy_0 = 0x0;
3400 	    if (rdp->disks[drive].dev) {
3401 		struct ata_channel *ch =
3402 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3403 		struct ata_device *atadev =
3404 		    device_get_softc(rdp->disks[drive].dev);
3405 
3406 		meta->raid.disk[drive].channel = ch->unit;
3407 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3408 	    }
3409 	    meta->raid.disk[drive].magic_0 =
3410 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3411 	}
3412 
3413 	if (rdp->disks[disk].dev) {
3414 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3415 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3416 		if (rdp->format == AR_F_FREEBSD_RAID)
3417 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3418 		else
3419 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3420 	    }
3421 	    else
3422 		bzero(meta->promise_id, sizeof(meta->promise_id));
3423 	    meta->checksum = 0;
3424 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3425 		meta->checksum += *ckptr++;
3426 	    if (testing || bootverbose)
3427 		ata_raid_promise_print_meta(meta);
3428 	    if (ata_raid_rw(rdp->disks[disk].dev,
3429 			    PROMISE_LBA(rdp->disks[disk].dev),
3430 			    meta, sizeof(struct promise_raid_conf),
3431 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3432 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3433 		error = EIO;
3434 	    }
3435 	}
3436     }
3437     kfree(meta, M_AR);
3438     return error;
3439 }
3440 
3441 /* Silicon Image Medley Metadata */
3442 static int
3443 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3444 {
3445     struct ata_raid_subdisk *ars = device_get_softc(dev);
3446     device_t parent = device_get_parent(dev);
3447     struct sii_raid_conf *meta;
3448     struct ar_softc *raid = NULL;
3449     u_int16_t checksum, *ptr;
3450     int array, count, disk, retval = 0;
3451 
3452     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3453 	M_WAITOK | M_ZERO);
3454 
3455     if (ata_raid_rw(parent, SII_LBA(parent),
3456 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3457 	if (testing || bootverbose)
3458 	    device_printf(parent, "Silicon Image read metadata failed\n");
3459 	goto sii_out;
3460     }
3461 
3462     /* check if this is a Silicon Image (Medley) RAID struct */
3463     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3464 	checksum += *ptr++;
3465     if (checksum) {
3466 	if (testing || bootverbose)
3467 	    device_printf(parent, "Silicon Image check1 failed\n");
3468 	goto sii_out;
3469     }
3470 
3471     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3472 	checksum += *ptr++;
3473     if (checksum != meta->checksum_1) {
3474 	if (testing || bootverbose)
3475 	    device_printf(parent, "Silicon Image check2 failed\n");
3476 	goto sii_out;
3477     }
3478 
3479     /* check verison */
3480     if (meta->version_major != 0x0002 ||
3481 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3482 	if (testing || bootverbose)
3483 	    device_printf(parent, "Silicon Image check3 failed\n");
3484 	goto sii_out;
3485     }
3486 
3487     if (testing || bootverbose)
3488 	ata_raid_sii_print_meta(meta);
3489 
3490     /* now convert Silicon Image meta into our generic form */
3491     for (array = 0; array < MAX_ARRAYS; array++) {
3492 	if (!raidp[array]) {
3493 	    raidp[array] =
3494 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3495 					  M_WAITOK | M_ZERO);
3496 	}
3497 	raid = raidp[array];
3498 	if (raid->format && (raid->format != AR_F_SII_RAID))
3499 	    continue;
3500 
3501 	if (raid->format == AR_F_SII_RAID &&
3502 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3503 	    continue;
3504 	}
3505 
3506 	/* update our knowledge about the array config based on generation */
3507 	if (!meta->generation || meta->generation > raid->generation) {
3508 	    switch (meta->type) {
3509 	    case SII_T_RAID0:
3510 		raid->type = AR_T_RAID0;
3511 		break;
3512 
3513 	    case SII_T_RAID1:
3514 		raid->type = AR_T_RAID1;
3515 		break;
3516 
3517 	    case SII_T_RAID01:
3518 		raid->type = AR_T_RAID01;
3519 		break;
3520 
3521 	    case SII_T_SPARE:
3522 		device_printf(parent, "Silicon Image SPARE disk\n");
3523 		kfree(raidp[array], M_AR);
3524 		raidp[array] = NULL;
3525 		goto sii_out;
3526 
3527 	    default:
3528 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3529 			      meta->type);
3530 		kfree(raidp[array], M_AR);
3531 		raidp[array] = NULL;
3532 		goto sii_out;
3533 	    }
3534 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3535 	    raid->format = AR_F_SII_RAID;
3536 	    raid->generation = meta->generation;
3537 	    raid->interleave = meta->stripe_sectors;
3538 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3539 	    raid->total_disks =
3540 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3541 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3542 	    raid->total_sectors = meta->total_sectors;
3543 	    raid->heads = 255;
3544 	    raid->sectors = 63;
3545 	    raid->cylinders = raid->total_sectors / (63 * 255);
3546 	    raid->offset_sectors = 0;
3547 	    raid->rebuild_lba = meta->rebuild_lba;
3548 	    raid->lun = array;
3549 	    strncpy(raid->name, meta->name,
3550 		    min(sizeof(raid->name), sizeof(meta->name)));
3551 
3552 	    /* clear out any old info */
3553 	    if (raid->generation) {
3554 		for (disk = 0; disk < raid->total_disks; disk++) {
3555 		    raid->disks[disk].dev = NULL;
3556 		    raid->disks[disk].flags = 0;
3557 		}
3558 	    }
3559 	}
3560 	if (meta->generation >= raid->generation) {
3561 	    /* XXX SOS add check for the right physical disk by serial# */
3562 	    if (meta->status & SII_S_READY) {
3563 		int disk_number = (raid->type == AR_T_RAID01) ?
3564 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3565 		    meta->disk_number;
3566 
3567 		raid->disks[disk_number].dev = parent;
3568 		raid->disks[disk_number].sectors =
3569 		    raid->total_sectors / raid->width;
3570 		raid->disks[disk_number].flags =
3571 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3572 		ars->raid[raid->volume] = raid;
3573 		ars->disk_number[raid->volume] = disk_number;
3574 		retval = 1;
3575 	    }
3576 	}
3577 	break;
3578     }
3579 
3580 sii_out:
3581     kfree(meta, M_AR);
3582     return retval;
3583 }
3584 
3585 /* Silicon Integrated Systems Metadata */
3586 static int
3587 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3588 {
3589     struct ata_raid_subdisk *ars = device_get_softc(dev);
3590     device_t parent = device_get_parent(dev);
3591     struct sis_raid_conf *meta;
3592     struct ar_softc *raid = NULL;
3593     int array, disk_number, drive, retval = 0;
3594 
3595     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3596 	M_WAITOK | M_ZERO);
3597 
3598     if (ata_raid_rw(parent, SIS_LBA(parent),
3599 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3600 	if (testing || bootverbose)
3601 	    device_printf(parent,
3602 			  "Silicon Integrated Systems read metadata failed\n");
3603     }
3604 
3605     /* check for SiS magic */
3606     if (meta->magic != SIS_MAGIC) {
3607 	if (testing || bootverbose)
3608 	    device_printf(parent,
3609 			  "Silicon Integrated Systems check1 failed\n");
3610 	goto sis_out;
3611     }
3612 
3613     if (testing || bootverbose)
3614 	ata_raid_sis_print_meta(meta);
3615 
3616     /* now convert SiS meta into our generic form */
3617     for (array = 0; array < MAX_ARRAYS; array++) {
3618 	if (!raidp[array]) {
3619 	    raidp[array] =
3620 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3621 					  M_WAITOK | M_ZERO);
3622 	}
3623 
3624 	raid = raidp[array];
3625 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3626 	    continue;
3627 
3628 	if ((raid->format == AR_F_SIS_RAID) &&
3629 	    ((raid->magic_0 != meta->controller_pci_id) ||
3630 	     (raid->magic_1 != meta->timestamp))) {
3631 	    continue;
3632 	}
3633 
3634 	switch (meta->type_total_disks & SIS_T_MASK) {
3635 	case SIS_T_JBOD:
3636 	    raid->type = AR_T_JBOD;
3637 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3638 	    raid->total_sectors += SIS_LBA(parent);
3639 	    break;
3640 
3641 	case SIS_T_RAID0:
3642 	    raid->type = AR_T_RAID0;
3643 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3644 	    if (!raid->total_sectors ||
3645 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3646 		raid->total_sectors = raid->width * SIS_LBA(parent);
3647 	    break;
3648 
3649 	case SIS_T_RAID1:
3650 	    raid->type = AR_T_RAID1;
3651 	    raid->width = 1;
3652 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3653 		raid->total_sectors = SIS_LBA(parent);
3654 	    break;
3655 
3656 	default:
3657 	    device_printf(parent, "Silicon Integrated Systems "
3658 			  "unknown RAID type 0x%08x\n", meta->magic);
3659 	    kfree(raidp[array], M_AR);
3660 	    raidp[array] = NULL;
3661 	    goto sis_out;
3662 	}
3663 	raid->magic_0 = meta->controller_pci_id;
3664 	raid->magic_1 = meta->timestamp;
3665 	raid->format = AR_F_SIS_RAID;
3666 	raid->generation = 0;
3667 	raid->interleave = meta->stripe_sectors;
3668 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3669 	raid->heads = 255;
3670 	raid->sectors = 63;
3671 	raid->cylinders = raid->total_sectors / (63 * 255);
3672 	raid->offset_sectors = 0;
3673 	raid->rebuild_lba = 0;
3674 	raid->lun = array;
3675 	/* XXX SOS if total_disks > 2 this doesn't float */
3676 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3677 	    disk_number = 0;
3678 	else
3679 	    disk_number = 1;
3680 
3681 	for (drive = 0; drive < raid->total_disks; drive++) {
3682 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3683 	    if (drive == disk_number) {
3684 		raid->disks[disk_number].dev = parent;
3685 		raid->disks[disk_number].flags =
3686 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3687 		ars->raid[raid->volume] = raid;
3688 		ars->disk_number[raid->volume] = disk_number;
3689 	    }
3690 	}
3691 	retval = 1;
3692 	break;
3693     }
3694 
3695 sis_out:
3696     kfree(meta, M_AR);
3697     return retval;
3698 }
3699 
3700 static int
3701 ata_raid_sis_write_meta(struct ar_softc *rdp)
3702 {
3703     struct sis_raid_conf *meta;
3704     struct timeval timestamp;
3705     int disk, error = 0;
3706 
3707     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3708 	M_WAITOK | M_ZERO);
3709 
3710     rdp->generation++;
3711     microtime(&timestamp);
3712 
3713     meta->magic = SIS_MAGIC;
3714     /* XXX SOS if total_disks > 2 this doesn't float */
3715     for (disk = 0; disk < rdp->total_disks; disk++) {
3716 	if (rdp->disks[disk].dev) {
3717 	    struct ata_channel *ch =
3718 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3719 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3720 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3721 
3722 	    meta->disks |= disk_number << ((1 - disk) << 2);
3723 	}
3724     }
3725     switch (rdp->type) {
3726     case AR_T_JBOD:
3727 	meta->type_total_disks = SIS_T_JBOD;
3728 	break;
3729 
3730     case AR_T_RAID0:
3731 	meta->type_total_disks = SIS_T_RAID0;
3732 	break;
3733 
3734     case AR_T_RAID1:
3735 	meta->type_total_disks = SIS_T_RAID1;
3736 	break;
3737 
3738     default:
3739 	kfree(meta, M_AR);
3740 	return ENODEV;
3741     }
3742     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3743     meta->stripe_sectors = rdp->interleave;
3744     meta->timestamp = timestamp.tv_sec;
3745 
3746     for (disk = 0; disk < rdp->total_disks; disk++) {
3747 	if (rdp->disks[disk].dev) {
3748 	    struct ata_channel *ch =
3749 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3750 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3751 
3752 	    meta->controller_pci_id =
3753 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3754 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3755 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3756 
3757 	    /* XXX SOS if total_disks > 2 this may not float */
3758 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3759 
3760 	    if (testing || bootverbose)
3761 		ata_raid_sis_print_meta(meta);
3762 
3763 	    if (ata_raid_rw(rdp->disks[disk].dev,
3764 			    SIS_LBA(rdp->disks[disk].dev),
3765 			    meta, sizeof(struct sis_raid_conf),
3766 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3767 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3768 		error = EIO;
3769 	    }
3770 	}
3771     }
3772     kfree(meta, M_AR);
3773     return error;
3774 }
3775 
3776 /* VIA Tech V-RAID Metadata */
3777 static int
3778 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3779 {
3780     struct ata_raid_subdisk *ars = device_get_softc(dev);
3781     device_t parent = device_get_parent(dev);
3782     struct via_raid_conf *meta;
3783     struct ar_softc *raid = NULL;
3784     u_int8_t checksum, *ptr;
3785     int array, count, disk, retval = 0;
3786 
3787     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3788 	M_WAITOK | M_ZERO);
3789 
3790     if (ata_raid_rw(parent, VIA_LBA(parent),
3791 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3792 	if (testing || bootverbose)
3793 	    device_printf(parent, "VIA read metadata failed\n");
3794 	goto via_out;
3795     }
3796 
3797     /* check if this is a VIA RAID struct */
3798     if (meta->magic != VIA_MAGIC) {
3799 	if (testing || bootverbose)
3800 	    device_printf(parent, "VIA check1 failed\n");
3801 	goto via_out;
3802     }
3803 
3804     /* calculate checksum and compare for valid */
3805     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3806 	checksum += *ptr++;
3807     if (checksum != meta->checksum) {
3808 	if (testing || bootverbose)
3809 	    device_printf(parent, "VIA check2 failed\n");
3810 	goto via_out;
3811     }
3812 
3813     if (testing || bootverbose)
3814 	ata_raid_via_print_meta(meta);
3815 
3816     /* now convert VIA meta into our generic form */
3817     for (array = 0; array < MAX_ARRAYS; array++) {
3818 	if (!raidp[array]) {
3819 	    raidp[array] =
3820 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3821 					  M_WAITOK | M_ZERO);
3822 	}
3823 	raid = raidp[array];
3824 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3825 	    continue;
3826 
3827 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3828 	    continue;
3829 
3830 	switch (meta->type & VIA_T_MASK) {
3831 	case VIA_T_RAID0:
3832 	    raid->type = AR_T_RAID0;
3833 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3834 	    if (!raid->total_sectors ||
3835 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3836 		raid->total_sectors = raid->width * meta->disk_sectors;
3837 	    break;
3838 
3839 	case VIA_T_RAID1:
3840 	    raid->type = AR_T_RAID1;
3841 	    raid->width = 1;
3842 	    raid->total_sectors = meta->disk_sectors;
3843 	    break;
3844 
3845 	case VIA_T_RAID01:
3846 	    raid->type = AR_T_RAID01;
3847 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3848 	    if (!raid->total_sectors ||
3849 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3850 		raid->total_sectors = raid->width * meta->disk_sectors;
3851 	    break;
3852 
3853 	case VIA_T_RAID5:
3854 	    raid->type = AR_T_RAID5;
3855 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3856 	    if (!raid->total_sectors ||
3857 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3858 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3859 	    break;
3860 
3861 	case VIA_T_SPAN:
3862 	    raid->type = AR_T_SPAN;
3863 	    raid->width = 1;
3864 	    raid->total_sectors += meta->disk_sectors;
3865 	    break;
3866 
3867 	default:
3868 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3869 	    kfree(raidp[array], M_AR);
3870 	    raidp[array] = NULL;
3871 	    goto via_out;
3872 	}
3873 	raid->magic_0 = meta->disks[0];
3874 	raid->format = AR_F_VIA_RAID;
3875 	raid->generation = 0;
3876 	raid->interleave =
3877 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3878 	for (count = 0, disk = 0; disk < 8; disk++)
3879 	    if (meta->disks[disk])
3880 		count++;
3881 	raid->total_disks = count;
3882 	raid->heads = 255;
3883 	raid->sectors = 63;
3884 	raid->cylinders = raid->total_sectors / (63 * 255);
3885 	raid->offset_sectors = 0;
3886 	raid->rebuild_lba = 0;
3887 	raid->lun = array;
3888 
3889 	for (disk = 0; disk < raid->total_disks; disk++) {
3890 	    if (meta->disks[disk] == meta->disk_id) {
3891 		raid->disks[disk].dev = parent;
3892 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3893 		      sizeof(u_int32_t));
3894 		raid->disks[disk].sectors = meta->disk_sectors;
3895 		raid->disks[disk].flags =
3896 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3897 		ars->raid[raid->volume] = raid;
3898 		ars->disk_number[raid->volume] = disk;
3899 		retval = 1;
3900 		break;
3901 	    }
3902 	}
3903 	break;
3904     }
3905 
3906 via_out:
3907     kfree(meta, M_AR);
3908     return retval;
3909 }
3910 
3911 static int
3912 ata_raid_via_write_meta(struct ar_softc *rdp)
3913 {
3914     struct via_raid_conf *meta;
3915     int disk, error = 0;
3916 
3917     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3918 	M_WAITOK | M_ZERO);
3919 
3920     rdp->generation++;
3921 
3922     meta->magic = VIA_MAGIC;
3923     meta->dummy_0 = 0x02;
3924     switch (rdp->type) {
3925     case AR_T_SPAN:
3926 	meta->type = VIA_T_SPAN;
3927 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3928 	break;
3929 
3930     case AR_T_RAID0:
3931 	meta->type = VIA_T_RAID0;
3932 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3933 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3934 	break;
3935 
3936     case AR_T_RAID1:
3937 	meta->type = VIA_T_RAID1;
3938 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3939 	break;
3940 
3941     case AR_T_RAID5:
3942 	meta->type = VIA_T_RAID5;
3943 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3944 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3945 	break;
3946 
3947     case AR_T_RAID01:
3948 	meta->type = VIA_T_RAID01;
3949 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3950 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3951 	break;
3952 
3953     default:
3954 	kfree(meta, M_AR);
3955 	return ENODEV;
3956     }
3957     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3958     meta->disk_sectors =
3959 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3960     for (disk = 0; disk < rdp->total_disks; disk++)
3961 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3962 
3963     for (disk = 0; disk < rdp->total_disks; disk++) {
3964 	if (rdp->disks[disk].dev) {
3965 	    u_int8_t *ptr;
3966 	    int count;
3967 
3968 	    meta->disk_index = disk * sizeof(u_int32_t);
3969 	    if (rdp->type == AR_T_RAID01)
3970 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3971 				   (meta->disk_index & ~0x08);
3972 	    meta->disk_id = meta->disks[disk];
3973 	    meta->checksum = 0;
3974 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3975 		meta->checksum += *ptr++;
3976 
3977 	    if (testing || bootverbose)
3978 		ata_raid_via_print_meta(meta);
3979 
3980 	    if (ata_raid_rw(rdp->disks[disk].dev,
3981 			    VIA_LBA(rdp->disks[disk].dev),
3982 			    meta, sizeof(struct via_raid_conf),
3983 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3984 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3985 		error = EIO;
3986 	    }
3987 	}
3988     }
3989     kfree(meta, M_AR);
3990     return error;
3991 }
3992 
3993 static struct ata_request *
3994 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
3995 {
3996     struct ata_request *request;
3997 
3998     if (!(request = ata_alloc_request())) {
3999 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4000 	return NULL;
4001     }
4002     request->timeout = ATA_DEFAULT_TIMEOUT;
4003     request->retries = 2;
4004     request->callback = ata_raid_done;
4005     request->driver = rdp;
4006     request->bio = bio;
4007     switch (request->bio->bio_buf->b_cmd) {
4008     case BUF_CMD_READ:
4009 	request->flags = ATA_R_READ;
4010 	break;
4011     case BUF_CMD_WRITE:
4012 	request->flags = ATA_R_WRITE;
4013 	break;
4014     case BUF_CMD_FLUSH:
4015 	request->flags = ATA_R_CONTROL;
4016 	break;
4017     default:
4018 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4019 	ata_free_request(request);
4020 #if 0
4021 	bio->bio_buf->b_flags |= B_ERROR;
4022 	bio->bio_buf->b_error = EIO;
4023 	biodone(bio);
4024 #endif /* 0 */
4025 	return(NULL);
4026     }
4027     return request;
4028 }
4029 
4030 static int
4031 ata_raid_send_request(struct ata_request *request)
4032 {
4033     struct ata_device *atadev = device_get_softc(request->dev);
4034 
4035     request->transfersize = min(request->bytecount, atadev->max_iosize);
4036     if (request->flags & ATA_R_READ) {
4037 	if (atadev->mode >= ATA_DMA) {
4038 	    request->flags |= ATA_R_DMA;
4039 	    request->u.ata.command = ATA_READ_DMA;
4040 	}
4041 	else if (atadev->max_iosize > DEV_BSIZE)
4042 	    request->u.ata.command = ATA_READ_MUL;
4043 	else
4044 	    request->u.ata.command = ATA_READ;
4045     }
4046     else if (request->flags & ATA_R_WRITE) {
4047 	if (atadev->mode >= ATA_DMA) {
4048 	    request->flags |= ATA_R_DMA;
4049 	    request->u.ata.command = ATA_WRITE_DMA;
4050 	}
4051 	else if (atadev->max_iosize > DEV_BSIZE)
4052 	    request->u.ata.command = ATA_WRITE_MUL;
4053 	else
4054 	    request->u.ata.command = ATA_WRITE;
4055     }
4056     else {
4057 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4058 	ata_free_request(request);
4059 	return EIO;
4060     }
4061     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4062     ata_queue_request(request);
4063     return 0;
4064 }
4065 
4066 static int
4067 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4068 {
4069     struct ata_device *atadev = device_get_softc(dev);
4070     struct ata_request *request;
4071     int error;
4072 
4073     if (bcount % DEV_BSIZE) {
4074 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4075 	return ENOMEM;
4076     }
4077 
4078     if (!(request = ata_alloc_request())) {
4079 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4080 	return ENOMEM;
4081     }
4082 
4083     /* setup request */
4084     request->dev = dev;
4085     request->timeout = 10;
4086     request->retries = 0;
4087     request->data = data;
4088     request->bytecount = bcount;
4089     request->transfersize = DEV_BSIZE;
4090     request->u.ata.lba = lba;
4091     request->u.ata.count = request->bytecount / DEV_BSIZE;
4092     request->flags = flags;
4093 
4094     if (flags & ATA_R_READ) {
4095 	if (atadev->mode >= ATA_DMA) {
4096 	    request->u.ata.command = ATA_READ_DMA;
4097 	    request->flags |= ATA_R_DMA;
4098 	}
4099 	else
4100 	    request->u.ata.command = ATA_READ;
4101 	ata_queue_request(request);
4102     }
4103     else if (flags & ATA_R_WRITE) {
4104 	if (atadev->mode >= ATA_DMA) {
4105 	    request->u.ata.command = ATA_WRITE_DMA;
4106 	    request->flags |= ATA_R_DMA;
4107 	}
4108 	else
4109 	    request->u.ata.command = ATA_WRITE;
4110 	ata_queue_request(request);
4111     }
4112     else {
4113 	device_printf(dev, "FAILURE - unknown IO operation\n");
4114 	request->result = EIO;
4115     }
4116     error = request->result;
4117     ata_free_request(request);
4118     return error;
4119 }
4120 
4121 /*
4122  * module handeling
4123  */
4124 static int
4125 ata_raid_subdisk_probe(device_t dev)
4126 {
4127     device_quiet(dev);
4128     return 0;
4129 }
4130 
4131 static int
4132 ata_raid_subdisk_attach(device_t dev)
4133 {
4134     struct ata_raid_subdisk *ars = device_get_softc(dev);
4135     int volume;
4136 
4137     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4138 	ars->raid[volume] = NULL;
4139 	ars->disk_number[volume] = -1;
4140     }
4141     ata_raid_read_metadata(dev);
4142     return 0;
4143 }
4144 
4145 static int
4146 ata_raid_subdisk_detach(device_t dev)
4147 {
4148     struct ata_raid_subdisk *ars = device_get_softc(dev);
4149     int volume;
4150 
4151     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4152 	if (ars->raid[volume]) {
4153 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4154 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4155 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4156 	    ata_raid_config_changed(ars->raid[volume], 1);
4157 	    ars->raid[volume] = NULL;
4158 	    ars->disk_number[volume] = -1;
4159 	}
4160     }
4161     return 0;
4162 }
4163 
4164 static device_method_t ata_raid_sub_methods[] = {
4165     /* device interface */
4166     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4167     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4168     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4169     DEVMETHOD_END
4170 };
4171 
4172 static driver_t ata_raid_sub_driver = {
4173     "subdisk",
4174     ata_raid_sub_methods,
4175     sizeof(struct ata_raid_subdisk)
4176 };
4177 
4178 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4179 
4180 static int
4181 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4182 {
4183     int i;
4184 
4185     switch (what) {
4186     case MOD_LOAD:
4187 	if (testing || bootverbose)
4188 	    kprintf("ATA PseudoRAID loaded\n");
4189 #if 0
4190 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4191 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4192 				M_AR, M_WAITOK | M_ZERO);
4193 #endif
4194 	/* attach found PseudoRAID arrays */
4195 	for (i = 0; i < MAX_ARRAYS; i++) {
4196 	    struct ar_softc *rdp = ata_raid_arrays[i];
4197 
4198 	    if (!rdp || !rdp->format)
4199 		continue;
4200 	    if (testing || bootverbose)
4201 		ata_raid_print_meta(rdp);
4202 	    ata_raid_attach(rdp, 0);
4203 	}
4204 	ata_raid_ioctl_func = ata_raid_ioctl;
4205 	return 0;
4206 
4207     case MOD_UNLOAD:
4208 	/* detach found PseudoRAID arrays */
4209 	for (i = 0; i < MAX_ARRAYS; i++) {
4210 	    struct ar_softc *rdp = ata_raid_arrays[i];
4211 
4212 	    if (!rdp || !rdp->status)
4213 		continue;
4214 	    disk_destroy(&rdp->disk);
4215 	}
4216 	if (testing || bootverbose)
4217 	    kprintf("ATA PseudoRAID unloaded\n");
4218 #if 0
4219 	kfree(ata_raid_arrays, M_AR);
4220 #endif
4221 	ata_raid_ioctl_func = NULL;
4222 	return 0;
4223 
4224     default:
4225 	return EOPNOTSUPP;
4226     }
4227 }
4228 
4229 static moduledata_t ata_raid_moduledata =
4230     { "ataraid", ata_raid_module_event_handler, NULL };
4231 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4232 MODULE_VERSION(ataraid, 1);
4233 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4234 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4235 
4236 static char *
4237 ata_raid_format(struct ar_softc *rdp)
4238 {
4239     switch (rdp->format) {
4240     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4241     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4242     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4243     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4244     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4245     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4246     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4247     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4248     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4249     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4250     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4251     case AR_F_SII_RAID:         return "Silicon Image Medley";
4252     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4253     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4254     default:                    return "UNKNOWN";
4255     }
4256 }
4257 
4258 static char *
4259 ata_raid_type(struct ar_softc *rdp)
4260 {
4261     switch (rdp->type) {
4262     case AR_T_JBOD:     return "JBOD";
4263     case AR_T_SPAN:     return "SPAN";
4264     case AR_T_RAID0:    return "RAID0";
4265     case AR_T_RAID1:    return "RAID1";
4266     case AR_T_RAID3:    return "RAID3";
4267     case AR_T_RAID4:    return "RAID4";
4268     case AR_T_RAID5:    return "RAID5";
4269     case AR_T_RAID01:   return "RAID0+1";
4270     default:            return "UNKNOWN";
4271     }
4272 }
4273 
4274 static char *
4275 ata_raid_flags(struct ar_softc *rdp)
4276 {
4277     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4278     case AR_S_READY:                                    return "READY";
4279     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4280     case AR_S_READY | AR_S_REBUILDING:
4281     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4282     default:                                            return "BROKEN";
4283     }
4284 }
4285 
4286 /* debugging gunk */
4287 static void
4288 ata_raid_print_meta(struct ar_softc *raid)
4289 {
4290     int i;
4291 
4292     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4293     kprintf("=================================================\n");
4294     kprintf("format              %s\n", ata_raid_format(raid));
4295     kprintf("type                %s\n", ata_raid_type(raid));
4296     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4297 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4298     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4299     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4300     kprintf("generation          %u\n", raid->generation);
4301     kprintf("total_sectors       %ju\n", raid->total_sectors);
4302     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4303     kprintf("heads               %u\n", raid->heads);
4304     kprintf("sectors             %u\n", raid->sectors);
4305     kprintf("cylinders           %u\n", raid->cylinders);
4306     kprintf("width               %u\n", raid->width);
4307     kprintf("interleave          %u\n", raid->interleave);
4308     kprintf("total_disks         %u\n", raid->total_disks);
4309     for (i = 0; i < raid->total_disks; i++) {
4310 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4311 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4312 	if (raid->disks[i].dev) {
4313 	    kprintf("        ");
4314 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4315 			  raid->disks[i].sectors);
4316 	}
4317     }
4318     kprintf("=================================================\n");
4319 }
4320 
4321 static char *
4322 ata_raid_adaptec_type(int type)
4323 {
4324     static char buffer[16];
4325 
4326     switch (type) {
4327     case ADP_T_RAID0:   return "RAID0";
4328     case ADP_T_RAID1:   return "RAID1";
4329     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4330 			return buffer;
4331     }
4332 }
4333 
4334 static void
4335 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4336 {
4337     int i;
4338 
4339     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4340     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4341     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4342     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4343     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4344     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4345     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4346     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4347     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4348     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4349     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4350     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4351 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4352 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4353     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4354 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4355 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4356 
4357     for (i = 0; i < be16toh(meta->total_configs); i++) {
4358 	kprintf("    %d   total_disks  %u\n", i,
4359 	       be16toh(meta->configs[i].disk_number));
4360 	kprintf("    %d   generation   %u\n", i,
4361 	       be16toh(meta->configs[i].generation));
4362 	kprintf("    %d   magic_0      0x%08x\n", i,
4363 	       be32toh(meta->configs[i].magic_0));
4364 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4365 	kprintf("    %d   type         %s\n", i,
4366 	       ata_raid_adaptec_type(meta->configs[i].type));
4367 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4368 	kprintf("    %d   flags        %d\n", i,
4369 	       be32toh(meta->configs[i].flags));
4370 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4371 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4372 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4373 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4374 	kprintf("    %d   disk_number  %u\n", i,
4375 	       be32toh(meta->configs[i].disk_number));
4376 	kprintf("    %d   dummy_6      0x%08x\n", i,
4377 	       be32toh(meta->configs[i].dummy_6));
4378 	kprintf("    %d   sectors      %u\n", i,
4379 	       be32toh(meta->configs[i].sectors));
4380 	kprintf("    %d   stripe_shift %u\n", i,
4381 	       be16toh(meta->configs[i].stripe_shift));
4382 	kprintf("    %d   dummy_7      0x%08x\n", i,
4383 	       be32toh(meta->configs[i].dummy_7));
4384 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4385 	       be32toh(meta->configs[i].dummy_8[0]),
4386 	       be32toh(meta->configs[i].dummy_8[1]),
4387 	       be32toh(meta->configs[i].dummy_8[2]),
4388 	       be32toh(meta->configs[i].dummy_8[3]));
4389 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4390     }
4391     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4392     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4393     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4394     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4395     kprintf("=================================================\n");
4396 }
4397 
4398 static char *
4399 ata_raid_hptv2_type(int type)
4400 {
4401     static char buffer[16];
4402 
4403     switch (type) {
4404     case HPTV2_T_RAID0:         return "RAID0";
4405     case HPTV2_T_RAID1:         return "RAID1";
4406     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4407     case HPTV2_T_SPAN:          return "SPAN";
4408     case HPTV2_T_RAID_3:        return "RAID3";
4409     case HPTV2_T_RAID_5:        return "RAID5";
4410     case HPTV2_T_JBOD:          return "JBOD";
4411     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4412     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4413 			return buffer;
4414     }
4415 }
4416 
4417 static void
4418 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4419 {
4420     int i;
4421 
4422     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4423     kprintf("magic               0x%08x\n", meta->magic);
4424     kprintf("magic_0             0x%08x\n", meta->magic_0);
4425     kprintf("magic_1             0x%08x\n", meta->magic_1);
4426     kprintf("order               0x%08x\n", meta->order);
4427     kprintf("array_width         %u\n", meta->array_width);
4428     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4429     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4430     kprintf("disk_number         %u\n", meta->disk_number);
4431     kprintf("total_sectors       %u\n", meta->total_sectors);
4432     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4433     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4434     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4435     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4436     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4437     kprintf("log_index           0x%02x\n", meta->error_log_index);
4438     if (meta->error_log_entries) {
4439 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4440 	for (i = meta->error_log_index;
4441 	     i < meta->error_log_index + meta->error_log_entries; i++)
4442 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4443 		   meta->errorlog[i%32].timestamp,
4444 		   meta->errorlog[i%32].reason,
4445 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4446 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4447     }
4448     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4449     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4450     kprintf("name_1              <%.15s>\n", meta->name_1);
4451     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4452     kprintf("name_2              <%.15s>\n", meta->name_2);
4453     kprintf("=================================================\n");
4454 }
4455 
4456 static char *
4457 ata_raid_hptv3_type(int type)
4458 {
4459     static char buffer[16];
4460 
4461     switch (type) {
4462     case HPTV3_T_SPARE: return "SPARE";
4463     case HPTV3_T_JBOD:  return "JBOD";
4464     case HPTV3_T_SPAN:  return "SPAN";
4465     case HPTV3_T_RAID0: return "RAID0";
4466     case HPTV3_T_RAID1: return "RAID1";
4467     case HPTV3_T_RAID3: return "RAID3";
4468     case HPTV3_T_RAID5: return "RAID5";
4469     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4470 			return buffer;
4471     }
4472 }
4473 
4474 static void
4475 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4476 {
4477     int i;
4478 
4479     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4480     kprintf("magic               0x%08x\n", meta->magic);
4481     kprintf("magic_0             0x%08x\n", meta->magic_0);
4482     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4483     kprintf("mode                0x%02x\n", meta->mode);
4484     kprintf("user_mode           0x%02x\n", meta->user_mode);
4485     kprintf("config_entries      0x%02x\n", meta->config_entries);
4486     for (i = 0; i < meta->config_entries; i++) {
4487 	kprintf("config %d:\n", i);
4488 	kprintf("    total_sectors       %ju\n",
4489 	       meta->configs[0].total_sectors +
4490 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4491 	kprintf("    type                %s\n",
4492 	       ata_raid_hptv3_type(meta->configs[i].type));
4493 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4494 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4495 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4496 	kprintf("    status              %b\n", meta->configs[i].status,
4497 	       "\20\2RAID5\1NEED_REBUILD\n");
4498 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4499 	kprintf("    rebuild_lba         %ju\n",
4500 	       meta->configs_high[0].rebuild_lba +
4501 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4502     }
4503     kprintf("name                <%.16s>\n", meta->name);
4504     kprintf("timestamp           0x%08x\n", meta->timestamp);
4505     kprintf("description         <%.16s>\n", meta->description);
4506     kprintf("creator             <%.16s>\n", meta->creator);
4507     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4508     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4509     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4510     kprintf("flags               %b\n", meta->flags,
4511 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4512     kprintf("=================================================\n");
4513 }
4514 
4515 static char *
4516 ata_raid_intel_type(int type)
4517 {
4518     static char buffer[16];
4519 
4520     switch (type) {
4521     case INTEL_T_RAID0: return "RAID0";
4522     case INTEL_T_RAID1: return "RAID1";
4523     case INTEL_T_RAID5: return "RAID5";
4524     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4525 			return buffer;
4526     }
4527 }
4528 
4529 static void
4530 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4531 {
4532     struct intel_raid_mapping *map;
4533     int i, j;
4534 
4535     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4536     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4537     kprintf("version             <%.6s>\n", meta->version);
4538     kprintf("checksum            0x%08x\n", meta->checksum);
4539     kprintf("config_size         0x%08x\n", meta->config_size);
4540     kprintf("config_id           0x%08x\n", meta->config_id);
4541     kprintf("generation          0x%08x\n", meta->generation);
4542     kprintf("total_disks         %u\n", meta->total_disks);
4543     kprintf("total_volumes       %u\n", meta->total_volumes);
4544     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4545     for (i = 0; i < meta->total_disks; i++ ) {
4546 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4547 	       meta->disk[i].serial, meta->disk[i].sectors,
4548 	       meta->disk[i].id, meta->disk[i].flags);
4549     }
4550     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4551     for (j = 0; j < meta->total_volumes; j++) {
4552 	kprintf("name                %.16s\n", map->name);
4553 	kprintf("total_sectors       %ju\n", map->total_sectors);
4554 	kprintf("state               %u\n", map->state);
4555 	kprintf("reserved            %u\n", map->reserved);
4556 	kprintf("offset              %u\n", map->offset);
4557 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4558 	kprintf("stripe_count        %u\n", map->stripe_count);
4559 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4560 	kprintf("status              %u\n", map->status);
4561 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4562 	kprintf("total_disks         %u\n", map->total_disks);
4563 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4564 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4565 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4566 	for (i = 0; i < map->total_disks; i++ ) {
4567 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4568 	}
4569 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4570     }
4571     kprintf("=================================================\n");
4572 }
4573 
4574 static char *
4575 ata_raid_ite_type(int type)
4576 {
4577     static char buffer[16];
4578 
4579     switch (type) {
4580     case ITE_T_RAID0:   return "RAID0";
4581     case ITE_T_RAID1:   return "RAID1";
4582     case ITE_T_RAID01:  return "RAID0+1";
4583     case ITE_T_SPAN:    return "SPAN";
4584     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4585 			return buffer;
4586     }
4587 }
4588 
4589 static void
4590 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4591 {
4592     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4593     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4594     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4595 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4596 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4597 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4598     kprintf("total_sectors       %jd\n", meta->total_sectors);
4599     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4600     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4601     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4602 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4603 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4604 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4605     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4606     kprintf("array_width         %u\n", meta->array_width);
4607     kprintf("disk_number         %u\n", meta->disk_number);
4608     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4609     kprintf("=================================================\n");
4610 }
4611 
4612 static char *
4613 ata_raid_jmicron_type(int type)
4614 {
4615     static char buffer[16];
4616 
4617     switch (type) {
4618     case JM_T_RAID0:	return "RAID0";
4619     case JM_T_RAID1:	return "RAID1";
4620     case JM_T_RAID01:	return "RAID0+1";
4621     case JM_T_JBOD:	return "JBOD";
4622     case JM_T_RAID5:	return "RAID5";
4623     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4624 			return buffer;
4625     }
4626 }
4627 
4628 static void
4629 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4630 {
4631     int i;
4632 
4633     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4634     kprintf("signature           %.2s\n", meta->signature);
4635     kprintf("version             0x%04x\n", meta->version);
4636     kprintf("checksum            0x%04x\n", meta->checksum);
4637     kprintf("disk_id             0x%08x\n", meta->disk_id);
4638     kprintf("offset              0x%08x\n", meta->offset);
4639     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4640     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4641     kprintf("name                %.16s\n", meta->name);
4642     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4643     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4644     kprintf("flags               0x%04x\n", meta->flags);
4645     kprintf("spare:\n");
4646     for (i=0; i < 2 && meta->spare[i]; i++)
4647 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4648     kprintf("disks:\n");
4649     for (i=0; i < 8 && meta->disks[i]; i++)
4650 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4651     kprintf("=================================================\n");
4652 }
4653 
4654 static char *
4655 ata_raid_lsiv2_type(int type)
4656 {
4657     static char buffer[16];
4658 
4659     switch (type) {
4660     case LSIV2_T_RAID0: return "RAID0";
4661     case LSIV2_T_RAID1: return "RAID1";
4662     case LSIV2_T_SPARE: return "SPARE";
4663     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4664 			return buffer;
4665     }
4666 }
4667 
4668 static void
4669 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4670 {
4671     int i;
4672 
4673     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4674     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4675     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4676     kprintf("flags               0x%02x\n", meta->flags);
4677     kprintf("version             0x%04x\n", meta->version);
4678     kprintf("config_entries      0x%02x\n", meta->config_entries);
4679     kprintf("raid_count          0x%02x\n", meta->raid_count);
4680     kprintf("total_disks         0x%02x\n", meta->total_disks);
4681     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4682     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4683     for (i = 0; i < meta->config_entries; i++) {
4684 	kprintf("    type             %s\n",
4685 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4686 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4687 	kprintf("    stripe_sectors   %u\n",
4688 	       meta->configs[i].raid.stripe_sectors);
4689 	kprintf("    array_width      %u\n",
4690 	       meta->configs[i].raid.array_width);
4691 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4692 	kprintf("    config_offset    %u\n",
4693 	       meta->configs[i].raid.config_offset);
4694 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4695 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4696 	kprintf("    total_sectors    %u\n",
4697 	       meta->configs[i].raid.total_sectors);
4698     }
4699     kprintf("disk_number         0x%02x\n", meta->disk_number);
4700     kprintf("raid_number         0x%02x\n", meta->raid_number);
4701     kprintf("timestamp           0x%08x\n", meta->timestamp);
4702     kprintf("=================================================\n");
4703 }
4704 
4705 static char *
4706 ata_raid_lsiv3_type(int type)
4707 {
4708     static char buffer[16];
4709 
4710     switch (type) {
4711     case LSIV3_T_RAID0: return "RAID0";
4712     case LSIV3_T_RAID1: return "RAID1";
4713     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4714 			return buffer;
4715     }
4716 }
4717 
4718 static void
4719 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4720 {
4721     int i;
4722 
4723     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4724     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4725     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4726     kprintf("version             0x%04x\n", meta->version);
4727     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4728     kprintf("RAID configs:\n");
4729     for (i = 0; i < 8; i++) {
4730 	if (meta->raid[i].total_disks) {
4731 	    kprintf("%02d  stripe_pages       %u\n", i,
4732 		   meta->raid[i].stripe_pages);
4733 	    kprintf("%02d  type               %s\n", i,
4734 		   ata_raid_lsiv3_type(meta->raid[i].type));
4735 	    kprintf("%02d  total_disks        %u\n", i,
4736 		   meta->raid[i].total_disks);
4737 	    kprintf("%02d  array_width        %u\n", i,
4738 		   meta->raid[i].array_width);
4739 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4740 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4741 	    kprintf("%02d  device             0x%02x\n", i,
4742 		   meta->raid[i].device);
4743 	}
4744     }
4745     kprintf("DISK configs:\n");
4746     for (i = 0; i < 6; i++) {
4747 	    if (meta->disk[i].disk_sectors) {
4748 	    kprintf("%02d  disk_sectors       %u\n", i,
4749 		   meta->disk[i].disk_sectors);
4750 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4751 	}
4752     }
4753     kprintf("device              0x%02x\n", meta->device);
4754     kprintf("timestamp           0x%08x\n", meta->timestamp);
4755     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4756     kprintf("=================================================\n");
4757 }
4758 
4759 static char *
4760 ata_raid_nvidia_type(int type)
4761 {
4762     static char buffer[16];
4763 
4764     switch (type) {
4765     case NV_T_SPAN:     return "SPAN";
4766     case NV_T_RAID0:    return "RAID0";
4767     case NV_T_RAID1:    return "RAID1";
4768     case NV_T_RAID3:    return "RAID3";
4769     case NV_T_RAID5:    return "RAID5";
4770     case NV_T_RAID01:   return "RAID0+1";
4771     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4772 			return buffer;
4773     }
4774 }
4775 
4776 static void
4777 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4778 {
4779     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4780     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4781     kprintf("config_size         %d\n", meta->config_size);
4782     kprintf("checksum            0x%08x\n", meta->checksum);
4783     kprintf("version             0x%04x\n", meta->version);
4784     kprintf("disk_number         %d\n", meta->disk_number);
4785     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4786     kprintf("total_sectors       %d\n", meta->total_sectors);
4787     kprintf("sectors_size        %d\n", meta->sector_size);
4788     kprintf("serial              %.16s\n", meta->serial);
4789     kprintf("revision            %.4s\n", meta->revision);
4790     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4791     kprintf("magic_0             0x%08x\n", meta->magic_0);
4792     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4793     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4794     kprintf("flags               0x%02x\n", meta->flags);
4795     kprintf("array_width         %d\n", meta->array_width);
4796     kprintf("total_disks         %d\n", meta->total_disks);
4797     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4798     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4799     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4800     kprintf("stripe_sectors      %d\n", meta->stripe_sectors);
4801     kprintf("stripe_bytes        %d\n", meta->stripe_bytes);
4802     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4803     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4804     kprintf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
4805     kprintf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
4806     kprintf("rebuild_lba         %d\n", meta->rebuild_lba);
4807     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4808     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4809     kprintf("status              0x%08x\n", meta->status);
4810     kprintf("=================================================\n");
4811 }
4812 
4813 static char *
4814 ata_raid_promise_type(int type)
4815 {
4816     static char buffer[16];
4817 
4818     switch (type) {
4819     case PR_T_RAID0:    return "RAID0";
4820     case PR_T_RAID1:    return "RAID1";
4821     case PR_T_RAID3:    return "RAID3";
4822     case PR_T_RAID5:    return "RAID5";
4823     case PR_T_SPAN:     return "SPAN";
4824     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4825 			return buffer;
4826     }
4827 }
4828 
4829 static void
4830 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4831 {
4832     int i;
4833 
4834     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4835     kprintf("promise_id          <%s>\n", meta->promise_id);
4836     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4837     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4838     kprintf("magic_1             0x%04x\n", meta->magic_1);
4839     kprintf("magic_2             0x%08x\n", meta->magic_2);
4840     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4841 		meta->raid.integrity, "\20\10VALID\n" );
4842     kprintf("flags               0x%02x %b\n",
4843 	   meta->raid.flags, meta->raid.flags,
4844 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4845 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4846     kprintf("disk_number         %d\n", meta->raid.disk_number);
4847     kprintf("channel             0x%02x\n", meta->raid.channel);
4848     kprintf("device              0x%02x\n", meta->raid.device);
4849     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4850     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4851     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4852     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4853     kprintf("generation          0x%04x\n", meta->raid.generation);
4854     kprintf("status              0x%02x %b\n",
4855 	    meta->raid.status, meta->raid.status,
4856 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4857     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4858     kprintf("total_disks         %u\n", meta->raid.total_disks);
4859     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4860     kprintf("array_width         %u\n", meta->raid.array_width);
4861     kprintf("array_number        %u\n", meta->raid.array_number);
4862     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4863     kprintf("cylinders           %u\n", meta->raid.cylinders);
4864     kprintf("heads               %u\n", meta->raid.heads);
4865     kprintf("sectors             %u\n", meta->raid.sectors);
4866     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4867     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4868     for (i = 0; i < 8; i++) {
4869 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4870 	       i, meta->raid.disk[i].flags,
4871 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4872 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4873 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4874 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4875     }
4876     kprintf("checksum            0x%08x\n", meta->checksum);
4877     kprintf("=================================================\n");
4878 }
4879 
4880 static char *
4881 ata_raid_sii_type(int type)
4882 {
4883     static char buffer[16];
4884 
4885     switch (type) {
4886     case SII_T_RAID0:   return "RAID0";
4887     case SII_T_RAID1:   return "RAID1";
4888     case SII_T_RAID01:  return "RAID0+1";
4889     case SII_T_SPARE:   return "SPARE";
4890     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4891 			return buffer;
4892     }
4893 }
4894 
4895 static void
4896 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4897 {
4898     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4899     kprintf("total_sectors       %ju\n", meta->total_sectors);
4900     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4901     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4902     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4903     kprintf("version_minor       0x%04x\n", meta->version_minor);
4904     kprintf("version_major       0x%04x\n", meta->version_major);
4905     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4906 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4907 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4908     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4909     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4910     kprintf("disk_number         %u\n", meta->disk_number);
4911     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4912     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4913     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4914     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4915     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4916     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4917     kprintf("generation          0x%08x\n", meta->generation);
4918     kprintf("status              0x%02x %b\n",
4919 	    meta->status, meta->status,
4920 	   "\20\1READY\n");
4921     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4922     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4923     kprintf("position            %02x\n", meta->position);
4924     kprintf("dummy_3             %04x\n", meta->dummy_3);
4925     kprintf("name                <%.16s>\n", meta->name);
4926     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4927     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4928     kprintf("=================================================\n");
4929 }
4930 
4931 static char *
4932 ata_raid_sis_type(int type)
4933 {
4934     static char buffer[16];
4935 
4936     switch (type) {
4937     case SIS_T_JBOD:    return "JBOD";
4938     case SIS_T_RAID0:   return "RAID0";
4939     case SIS_T_RAID1:   return "RAID1";
4940     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4941 			return buffer;
4942     }
4943 }
4944 
4945 static void
4946 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4947 {
4948     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4949     kprintf("magic               0x%04x\n", meta->magic);
4950     kprintf("disks               0x%02x\n", meta->disks);
4951     kprintf("type                %s\n",
4952 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4953     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4954     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4955     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4956     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4957     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4958     kprintf("timestamp           0x%08x\n", meta->timestamp);
4959     kprintf("model               %.40s\n", meta->model);
4960     kprintf("disk_number         %u\n", meta->disk_number);
4961     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4962 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4963     kprintf("=================================================\n");
4964 }
4965 
4966 static char *
4967 ata_raid_via_type(int type)
4968 {
4969     static char buffer[16];
4970 
4971     switch (type) {
4972     case VIA_T_RAID0:   return "RAID0";
4973     case VIA_T_RAID1:   return "RAID1";
4974     case VIA_T_RAID5:   return "RAID5";
4975     case VIA_T_RAID01:  return "RAID0+1";
4976     case VIA_T_SPAN:    return "SPAN";
4977     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4978 			return buffer;
4979     }
4980 }
4981 
4982 static void
4983 ata_raid_via_print_meta(struct via_raid_conf *meta)
4984 {
4985     int i;
4986 
4987     kprintf("*************** ATA VIA Metadata ****************\n");
4988     kprintf("magic               0x%02x\n", meta->magic);
4989     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4990     kprintf("type                %s\n",
4991 	   ata_raid_via_type(meta->type & VIA_T_MASK));
4992     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
4993     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
4994     kprintf("disk_index          0x%02x\n", meta->disk_index);
4995     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
4996     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
4997     kprintf(" stripe_sectors     %d\n",
4998 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
4999     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5000     kprintf("disk_id             0x%08x\n", meta->disk_id);
5001     kprintf("DISK#   disk_id\n");
5002     for (i = 0; i < 8; i++) {
5003 	if (meta->disks[i])
5004 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5005     }
5006     kprintf("checksum            0x%02x\n", meta->checksum);
5007     kprintf("=================================================\n");
5008 }
5009