xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision e293de53)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  * $DragonFly: src/sys/dev/disk/nata/ata-raid.c,v 1.11 2008/08/30 02:56:11 dillon Exp $
28  */
29 
30 #include "opt_ata.h"
31 
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/buf.h>
35 #include <sys/buf2.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/nata.h>
45 #include <sys/spinlock2.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 157, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_config *config);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     struct disk_info info;
137     cdev_t cdev;
138     char buffer[32];
139     int disk;
140 
141     spin_init(&rdp->lock);
142     ata_raid_config_changed(rdp, writeback);
143 
144     /* sanitize arrays total_size % (width * interleave) == 0 */
145     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
146 	rdp->type == AR_T_RAID5) {
147 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
148 			     (rdp->interleave * rdp->width);
149 	ksprintf(buffer, " (stripe %d KB)",
150 		(rdp->interleave * DEV_BSIZE) / 1024);
151     }
152     else
153 	buffer[0] = '\0';
154     /* XXX TGEN add devstats? */
155     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
156     cdev->si_drv1 = rdp;
157     cdev->si_iosize_max = 128 * DEV_BSIZE;
158     rdp->cdev = cdev;
159 
160     bzero(&info, sizeof(info));
161     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
162     info.d_media_blocks = rdp->total_sectors;
163 
164     info.d_secpertrack = rdp->sectors;		/* optional */
165     info.d_nheads = rdp->heads;
166     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
167     info.d_secpercyl = rdp->sectors * rdp->heads;
168 
169     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
170 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
171 	   ata_raid_format(rdp), ata_raid_type(rdp),
172 	   buffer, ata_raid_flags(rdp));
173 
174     if (testing || bootverbose)
175 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
176 	       rdp->lun, rdp->total_sectors,
177 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
178 
179     for (disk = 0; disk < rdp->total_disks; disk++) {
180 	kprintf("ar%d: disk%d ", rdp->lun, disk);
181 	if (rdp->disks[disk].dev) {
182 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
183 		/* status of this disk in the array */
184 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
185 		    kprintf("READY ");
186 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
187 		    kprintf("SPARE ");
188 		else
189 		    kprintf("FREE  ");
190 
191 		/* what type of disk is this in the array */
192 		switch (rdp->type) {
193 		case AR_T_RAID1:
194 		case AR_T_RAID01:
195 		    if (disk < rdp->width)
196 			kprintf("(master) ");
197 		    else
198 			kprintf("(mirror) ");
199 		}
200 
201 		/* which physical disk is used */
202 		kprintf("using %s at ata%d-%s\n",
203 		       device_get_nameunit(rdp->disks[disk].dev),
204 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
205 		       (((struct ata_device *)
206 			 device_get_softc(rdp->disks[disk].dev))->unit ==
207 			 ATA_MASTER) ? "master" : "slave");
208 	    }
209 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
210 		kprintf("DOWN\n");
211 	    else
212 		kprintf("INVALID no RAID config on this subdisk\n");
213 	}
214 	else
215 	    kprintf("DOWN no device found for this subdisk\n");
216     }
217 
218     disk_setdiskinfo(&rdp->disk, &info);
219 }
220 
221 /*
222  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
223  * to the dev_ops way, because it's just chained from the generic ata ioctl.
224  */
225 static int
226 ata_raid_ioctl(u_long cmd, caddr_t data)
227 {
228     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
229     int *lun = (int *)data;
230     int error = EOPNOTSUPP;
231 
232     switch (cmd) {
233     case IOCATARAIDSTATUS:
234 	error = ata_raid_status(config);
235 	break;
236 
237     case IOCATARAIDCREATE:
238 	error = ata_raid_create(config);
239 	break;
240 
241     case IOCATARAIDDELETE:
242 	error = ata_raid_delete(*lun);
243 	break;
244 
245     case IOCATARAIDADDSPARE:
246 	error = ata_raid_addspare(config);
247 	break;
248 
249     case IOCATARAIDREBUILD:
250 	error = ata_raid_rebuild(*lun);
251 	break;
252     }
253     return error;
254 }
255 
256 static int
257 ata_raid_flush(struct ar_softc *rdp, struct bio *bp)
258 {
259     struct ata_request *request;
260     device_t dev;
261     int disk, error;
262 
263     error = 0;
264     bp->bio_driver_info = NULL;
265 
266     for (disk = 0; disk < rdp->total_disks; disk++) {
267 	if ((dev = rdp->disks[disk].dev) != NULL)
268 	    bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info + 1);
269     }
270     for (disk = 0; disk < rdp->total_disks; disk++) {
271 	if ((dev = rdp->disks[disk].dev) == NULL)
272 	    continue;
273 	if (!(request = ata_raid_init_request(rdp, bp)))
274 	    return ENOMEM;
275 	request->dev = dev;
276 	request->u.ata.command = ATA_FLUSHCACHE;
277 	request->u.ata.lba = 0;
278 	request->u.ata.count = 0;
279 	request->u.ata.feature = 0;
280 	request->timeout = 1;
281 	request->retries = 0;
282 	request->flags |= ATA_R_ORDERED | ATA_R_DIRECT;
283 	ata_queue_request(request);
284     }
285     return 0;
286 }
287 
288 /*
289  * XXX TGEN there are a lot of offset -> block number conversions going on
290  * here, which is suboptimal.
291  */
292 static int
293 ata_raid_strategy(struct dev_strategy_args *ap)
294 {
295     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
296     struct bio *bp = ap->a_bio;
297     struct buf *bbp = bp->bio_buf;
298     struct ata_request *request;
299     caddr_t data;
300     u_int64_t blkno, lba, blk = 0;
301     int count, chunk, drv, par = 0, change = 0;
302 
303     if (bbp->b_cmd == BUF_CMD_FLUSH) {
304 	int error;
305 
306 	error = ata_raid_flush(rdp, bp);
307 	if (error != 0) {
308 		bbp->b_flags |= B_ERROR;
309 		bbp->b_error = error;
310 		biodone(bp);
311 	}
312 	return(0);
313     }
314 
315     if (!(rdp->status & AR_S_READY) ||
316 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
317 	bbp->b_flags |= B_ERROR;
318 	bbp->b_error = EIO;
319 	biodone(bp);
320 	return(0);
321     }
322 
323     bbp->b_resid = bbp->b_bcount;
324     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
325 	 /* bio_offset is byte granularity, convert */
326 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
327 	 data = bbp->b_data;
328 	 count > 0;
329 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
330 
331 	switch (rdp->type) {
332 	case AR_T_RAID1:
333 	    drv = 0;
334 	    lba = blkno;
335 	    chunk = count;
336 	    break;
337 
338 	case AR_T_JBOD:
339 	case AR_T_SPAN:
340 	    drv = 0;
341 	    lba = blkno;
342 	    while (lba >= rdp->disks[drv].sectors)
343 		lba -= rdp->disks[drv++].sectors;
344 	    chunk = min(rdp->disks[drv].sectors - lba, count);
345 	    break;
346 
347 	case AR_T_RAID0:
348 	case AR_T_RAID01:
349 	    chunk = blkno % rdp->interleave;
350 	    drv = (blkno / rdp->interleave) % rdp->width;
351 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
352 	    chunk = min(count, rdp->interleave - chunk);
353 	    break;
354 
355 	case AR_T_RAID5:
356 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
357 	    par = rdp->width - 1 -
358 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
359 	    if (drv >= par)
360 		drv++;
361 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
362 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
363 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
364 	    break;
365 
366 	default:
367 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
368 	    bbp->b_flags |= B_ERROR;
369 	    bbp->b_error = EIO;
370 	    biodone(bp);
371 	    return(0);
372 	}
373 
374 	/* offset on all but "first on HPTv2" */
375 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
376 	    lba += rdp->offset_sectors;
377 
378 	if (!(request = ata_raid_init_request(rdp, bp))) {
379 	    bbp->b_flags |= B_ERROR;
380 	    bbp->b_error = EIO;
381 	    biodone(bp);
382 	    return(0);
383 	}
384 	request->data = data;
385 	request->bytecount = chunk * DEV_BSIZE;
386 	request->u.ata.lba = lba;
387 	request->u.ata.count = request->bytecount / DEV_BSIZE;
388 
389 	switch (rdp->type) {
390 	case AR_T_JBOD:
391 	case AR_T_SPAN:
392 	case AR_T_RAID0:
393 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
394 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
395 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
396 		ata_raid_config_changed(rdp, 1);
397 		ata_free_request(request);
398 		bbp->b_flags |= B_ERROR;
399 		bbp->b_error = EIO;
400 		biodone(bp);
401 		return(0);
402 	    }
403 	    request->this = drv;
404 	    request->dev = rdp->disks[request->this].dev;
405 	    ata_raid_send_request(request);
406 	    break;
407 
408 	case AR_T_RAID1:
409 	case AR_T_RAID01:
410 	    if ((rdp->disks[drv].flags &
411 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
412 		!rdp->disks[drv].dev) {
413 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
414 		change = 1;
415 	    }
416 	    if ((rdp->disks[drv + rdp->width].flags &
417 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
418 		!rdp->disks[drv + rdp->width].dev) {
419 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
420 		change = 1;
421 	    }
422 	    if (change)
423 		ata_raid_config_changed(rdp, 1);
424 	    if (!(rdp->status & AR_S_READY)) {
425 		ata_free_request(request);
426 		bbp->b_flags |= B_ERROR;
427 		bbp->b_error = EIO;
428 		biodone(bp);
429 		return(0);
430 	    }
431 
432 	    if (rdp->status & AR_S_REBUILDING)
433 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
434 		      (rdp->interleave * (drv % rdp->width)) +
435 		      lba % rdp->interleave;;
436 
437 	    if (bbp->b_cmd == BUF_CMD_READ) {
438 		int src_online =
439 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
440 		int mir_online =
441 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
442 
443 		/* if mirror gone or close to last access on source */
444 		if (!mir_online ||
445 		    ((src_online) &&
446 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
447 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
448 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
449 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
450 		    rdp->toggle = 0;
451 		}
452 		/* if source gone or close to last access on mirror */
453 		else if (!src_online ||
454 			 ((mir_online) &&
455 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
456 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
457 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
458 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
459 		    drv += rdp->width;
460 		    rdp->toggle = 1;
461 		}
462 		/* not close to any previous access, toggle */
463 		else {
464 		    if (rdp->toggle)
465 			rdp->toggle = 0;
466 		    else {
467 			drv += rdp->width;
468 			rdp->toggle = 1;
469 		    }
470 		}
471 
472 		if ((rdp->status & AR_S_REBUILDING) &&
473 		    (blk <= rdp->rebuild_lba) &&
474 		    ((blk + chunk) > rdp->rebuild_lba)) {
475 		    struct ata_composite *composite;
476 		    struct ata_request *rebuild;
477 		    int this;
478 
479 		    /* figure out what part to rebuild */
480 		    if (drv < rdp->width)
481 			this = drv + rdp->width;
482 		    else
483 			this = drv - rdp->width;
484 
485 		    /* do we have a spare to rebuild on ? */
486 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
487 			if ((composite = ata_alloc_composite())) {
488 			    if ((rebuild = ata_alloc_request())) {
489 				rdp->rebuild_lba = blk + chunk;
490 				bcopy(request, rebuild,
491 				      sizeof(struct ata_request));
492 				rebuild->this = this;
493 				rebuild->dev = rdp->disks[this].dev;
494 				rebuild->flags &= ~ATA_R_READ;
495 				rebuild->flags |= ATA_R_WRITE;
496 				spin_init(&composite->lock);
497 				composite->residual = request->bytecount;
498 				composite->rd_needed |= (1 << drv);
499 				composite->wr_depend |= (1 << drv);
500 				composite->wr_needed |= (1 << this);
501 				composite->request[drv] = request;
502 				composite->request[this] = rebuild;
503 				request->composite = composite;
504 				rebuild->composite = composite;
505 				ata_raid_send_request(rebuild);
506 			    }
507 			    else {
508 				ata_free_composite(composite);
509 				kprintf("DOH! ata_alloc_request failed!\n");
510 			    }
511 			}
512 			else {
513 			    kprintf("DOH! ata_alloc_composite failed!\n");
514 			}
515 		    }
516 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
517 			/*
518 			 * if we got here we are a chunk of a RAID01 that
519 			 * does not need a rebuild, but we need to increment
520 			 * the rebuild_lba address to get the rebuild to
521 			 * move to the next chunk correctly
522 			 */
523 			rdp->rebuild_lba = blk + chunk;
524 		    }
525 		    else
526 			kprintf("DOH! we didn't find the rebuild part\n");
527 		}
528 	    }
529 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
530 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
531 		    ((rdp->status & AR_S_REBUILDING) &&
532 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
533 		     ((blk < rdp->rebuild_lba) ||
534 		      ((blk <= rdp->rebuild_lba) &&
535 		       ((blk + chunk) > rdp->rebuild_lba))))) {
536 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
537 			((rdp->status & AR_S_REBUILDING) &&
538 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
539 			 ((blk < rdp->rebuild_lba) ||
540 			  ((blk <= rdp->rebuild_lba) &&
541 			   ((blk + chunk) > rdp->rebuild_lba))))) {
542 			struct ata_request *mirror;
543 			struct ata_composite *composite;
544 			int this = drv + rdp->width;
545 
546 			if ((composite = ata_alloc_composite())) {
547 			    if ((mirror = ata_alloc_request())) {
548 				if ((blk <= rdp->rebuild_lba) &&
549 				    ((blk + chunk) > rdp->rebuild_lba))
550 				    rdp->rebuild_lba = blk + chunk;
551 				bcopy(request, mirror,
552 				      sizeof(struct ata_request));
553 				mirror->this = this;
554 				mirror->dev = rdp->disks[this].dev;
555 				spin_init(&composite->lock);
556 				composite->residual = request->bytecount;
557 				composite->wr_needed |= (1 << drv);
558 				composite->wr_needed |= (1 << this);
559 				composite->request[drv] = request;
560 				composite->request[this] = mirror;
561 				request->composite = composite;
562 				mirror->composite = composite;
563 				ata_raid_send_request(mirror);
564 				rdp->disks[this].last_lba =
565 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
566 				    chunk;
567 			    }
568 			    else {
569 				ata_free_composite(composite);
570 				kprintf("DOH! ata_alloc_request failed!\n");
571 			    }
572 			}
573 			else {
574 			    kprintf("DOH! ata_alloc_composite failed!\n");
575 			}
576 		    }
577 		    else
578 			drv += rdp->width;
579 		}
580 	    }
581 	    request->this = drv;
582 	    request->dev = rdp->disks[request->this].dev;
583 	    ata_raid_send_request(request);
584 	    rdp->disks[request->this].last_lba =
585 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
586 	    break;
587 
588 	case AR_T_RAID5:
589 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
590 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
591 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
592 		change = 1;
593 	    }
594 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
595 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
596 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
597 		change = 1;
598 	    }
599 	    if (change)
600 		ata_raid_config_changed(rdp, 1);
601 	    if (!(rdp->status & AR_S_READY)) {
602 		ata_free_request(request);
603 		bbp->b_flags |= B_ERROR;
604 		bbp->b_error = EIO;
605 		biodone(bp);
606 		return(0);
607 	    }
608 	    if (rdp->status & AR_S_DEGRADED) {
609 		/* do the XOR game if possible */
610 	    }
611 	    else {
612 		request->this = drv;
613 		request->dev = rdp->disks[request->this].dev;
614 		if (bbp->b_cmd == BUF_CMD_READ) {
615 		    ata_raid_send_request(request);
616 		}
617 		if (bbp->b_cmd == BUF_CMD_WRITE) {
618 		    ata_raid_send_request(request);
619 		    /* XXX TGEN no, I don't speak Danish either */
620 		    /*
621 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
622 		     * par kopi af request
623 		     * l�se orgdata fra drv
624 		     * skriv nydata til drv
625 		     * l�se parorgdata fra par
626 		     * skriv orgdata xor parorgdata xor nydata til par
627 		     */
628 		}
629 	    }
630 	    break;
631 
632 	default:
633 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
634 	}
635     }
636 
637     return(0);
638 }
639 
640 static void
641 ata_raid_done(struct ata_request *request)
642 {
643     struct ar_softc *rdp = request->driver;
644     struct ata_composite *composite = NULL;
645     struct bio *bp = request->bio;
646     struct buf *bbp = bp->bio_buf;
647     int i, mirror, finished = 0;
648 
649     if (bbp->b_cmd == BUF_CMD_FLUSH) {
650 	if (bbp->b_error == 0)
651 		bbp->b_error = request->result;
652 	ata_free_request(request);
653 	bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info - 1);
654 	if ((intptr_t)bp->bio_driver_info == 0) {
655 		if (bbp->b_error)
656 			bbp->b_flags |= B_ERROR;
657 		biodone(bp);
658 	}
659 	return;
660     }
661 
662     switch (rdp->type) {
663     case AR_T_JBOD:
664     case AR_T_SPAN:
665     case AR_T_RAID0:
666 	if (request->result) {
667 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
668 	    ata_raid_config_changed(rdp, 1);
669 	    bbp->b_error = request->result;
670 	    finished = 1;
671 	}
672 	else {
673 	    bbp->b_resid -= request->donecount;
674 	    if (!bbp->b_resid)
675 		finished = 1;
676 	}
677 	break;
678 
679     case AR_T_RAID1:
680     case AR_T_RAID01:
681 	if (request->this < rdp->width)
682 	    mirror = request->this + rdp->width;
683 	else
684 	    mirror = request->this - rdp->width;
685 	if (request->result) {
686 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
687 	    ata_raid_config_changed(rdp, 1);
688 	}
689 	if (rdp->status & AR_S_READY) {
690 	    u_int64_t blk = 0;
691 
692 	    if (rdp->status & AR_S_REBUILDING)
693 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
694 		      rdp->interleave + (rdp->interleave *
695 		      (request->this % rdp->width)) +
696 		      request->u.ata.lba % rdp->interleave;
697 
698 	    if (bbp->b_cmd == BUF_CMD_READ) {
699 
700 		/* is this a rebuild composite */
701 		if ((composite = request->composite)) {
702 		    spin_lock_wr(&composite->lock);
703 
704 		    /* handle the read part of a rebuild composite */
705 		    if (request->flags & ATA_R_READ) {
706 
707 			/* if read failed array is now broken */
708 			if (request->result) {
709 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
710 			    ata_raid_config_changed(rdp, 1);
711 			    bbp->b_error = request->result;
712 			    rdp->rebuild_lba = blk;
713 			    finished = 1;
714 			}
715 
716 			/* good data, update how far we've gotten */
717 			else {
718 			    bbp->b_resid -= request->donecount;
719 			    composite->residual -= request->donecount;
720 			    if (!composite->residual) {
721 				if (composite->wr_done & (1 << mirror))
722 				    finished = 1;
723 			    }
724 			}
725 		    }
726 
727 		    /* handle the write part of a rebuild composite */
728 		    else if (request->flags & ATA_R_WRITE) {
729 			if (composite->rd_done & (1 << mirror)) {
730 			    if (request->result) {
731 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
732 				rdp->rebuild_lba = blk;
733 			    }
734 			    if (!composite->residual)
735 				finished = 1;
736 			}
737 		    }
738 		    spin_unlock_wr(&composite->lock);
739 		}
740 
741 		/* if read failed retry on the mirror */
742 		else if (request->result) {
743 		    request->dev = rdp->disks[mirror].dev;
744 		    request->flags &= ~ATA_R_TIMEOUT;
745 		    ata_raid_send_request(request);
746 		    return;
747 		}
748 
749 		/* we have good data */
750 		else {
751 		    bbp->b_resid -= request->donecount;
752 		    if (!bbp->b_resid)
753 			finished = 1;
754 		}
755 	    }
756 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
757 		/* do we have a mirror or rebuild to deal with ? */
758 		if ((composite = request->composite)) {
759 		    spin_lock_wr(&composite->lock);
760 		    if (composite->wr_done & (1 << mirror)) {
761 			if (request->result) {
762 			    if (composite->request[mirror]->result) {
763 				kprintf("DOH! all disks failed and got here\n");
764 				bbp->b_error = EIO;
765 			    }
766 			    if (rdp->status & AR_S_REBUILDING) {
767 				rdp->rebuild_lba = blk;
768 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
769 			    }
770 			    bbp->b_resid -=
771 				composite->request[mirror]->donecount;
772 			    composite->residual -=
773 				composite->request[mirror]->donecount;
774 			}
775 			else {
776 			    bbp->b_resid -= request->donecount;
777 			    composite->residual -= request->donecount;
778 			}
779 			if (!composite->residual)
780 			    finished = 1;
781 		    }
782 		    spin_unlock_wr(&composite->lock);
783 		}
784 		/* no mirror we are done */
785 		else {
786 		    bbp->b_resid -= request->donecount;
787 		    if (!bbp->b_resid)
788 			finished = 1;
789 		}
790 	    }
791 	}
792 	else {
793 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
794 	    bbp->b_error = request->result;
795 	    biodone(bp);
796 	}
797 	break;
798 
799     case AR_T_RAID5:
800 	if (request->result) {
801 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
802 	    ata_raid_config_changed(rdp, 1);
803 	    if (rdp->status & AR_S_READY) {
804 		if (bbp->b_cmd == BUF_CMD_READ) {
805 		    /* do the XOR game to recover data */
806 		}
807 		if (bbp->b_cmd == BUF_CMD_WRITE) {
808 		    /* if the parity failed we're OK sortof */
809 		    /* otherwise wee need to do the XOR long dance */
810 		}
811 		finished = 1;
812 	    }
813 	    else {
814 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
815 		bbp->b_error = request->result;
816 		biodone(bp);
817 	    }
818 	}
819 	else {
820 	    /* did we have an XOR game going ?? */
821 	    bbp->b_resid -= request->donecount;
822 	    if (!bbp->b_resid)
823 		finished = 1;
824 	}
825 	break;
826 
827     default:
828 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
829     }
830 
831     if (finished) {
832 	if ((rdp->status & AR_S_REBUILDING) &&
833 	    rdp->rebuild_lba >= rdp->total_sectors) {
834 	    int disk;
835 
836 	    for (disk = 0; disk < rdp->total_disks; disk++) {
837 		if ((rdp->disks[disk].flags &
838 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
839 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
840 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
841 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
842 		}
843 	    }
844 	    rdp->status &= ~AR_S_REBUILDING;
845 	    ata_raid_config_changed(rdp, 1);
846 	}
847 	if (!bbp->b_resid)
848 	    biodone(bp);
849     }
850 
851     if (composite) {
852 	if (finished) {
853 	    /* we are done with this composite, free all resources */
854 	    for (i = 0; i < 32; i++) {
855 		if (composite->rd_needed & (1 << i) ||
856 		    composite->wr_needed & (1 << i)) {
857 		    ata_free_request(composite->request[i]);
858 		}
859 	    }
860 	    spin_uninit(&composite->lock);
861 	    ata_free_composite(composite);
862 	}
863     }
864     else
865 	ata_free_request(request);
866 }
867 
868 static int
869 ata_raid_dump(struct dev_dump_args *ap)
870 {
871     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
872     struct buf dbuf;
873     vm_paddr_t addr = 0;
874     long blkcnt;
875     int dumppages = MAXDUMPPGS;
876     int error = 0;
877     int i, disk;
878 
879     blkcnt = howmany(PAGE_SIZE, ap->a_secsize);
880 
881     while (ap->a_count > 0) {
882 	caddr_t va = NULL;
883 
884 	if ((ap->a_count / blkcnt) < dumppages)
885 	    dumppages = ap->a_count / blkcnt;
886 
887 	for (i = 0; i < dumppages; ++i) {
888 	    vm_paddr_t a = addr + (i * PAGE_SIZE);
889 	    if (is_physical_memory(a))
890 		va = pmap_kenter_temporary(trunc_page(a), i);
891 	    else
892 		va = pmap_kenter_temporary(trunc_page(0), i);
893 	}
894 
895 	bzero(&dbuf, sizeof(struct buf));
896 	BUF_LOCKINIT(&dbuf);
897 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
898 	initbufbio(&dbuf);
899 	/* bio_offset is byte granularity, convert block granularity a_blkno */
900 	dbuf.b_bio1.bio_offset = (off_t)(ap->a_blkno << DEV_BSHIFT);
901 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
902 	dbuf.b_bcount = dumppages * PAGE_SIZE;
903 	dbuf.b_data = va;
904 	dbuf.b_cmd = BUF_CMD_WRITE;
905 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
906 	/* wait for completion, unlock the buffer, check status */
907 	if (biowait(&dbuf)) {
908 	    BUF_UNLOCK(&dbuf);
909 	    return(dbuf.b_error ? dbuf.b_error : EIO);
910 	}
911 	BUF_UNLOCK(&dbuf);
912 
913 	if (dumpstatus(addr, (off_t)ap->a_count * DEV_BSIZE) < 0)
914 	    return(EINTR);
915 
916 	ap->a_blkno += blkcnt * dumppages;
917 	ap->a_count -= blkcnt * dumppages;
918 	addr += PAGE_SIZE * dumppages;
919     }
920 
921     /* flush subdisk buffers to media */
922     for (disk = 0; disk < rdp->total_disks; disk++)
923 	if (rdp->disks[disk].dev)
924 	    error |= ata_controlcmd(rdp->disks[disk].dev, ATA_FLUSHCACHE, 0, 0,
925 				    0);
926     return (error ? EIO : 0);
927 }
928 
929 static void
930 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
931 {
932     int disk, count, status;
933 
934     spin_lock_wr(&rdp->lock);
935     /* set default all working mode */
936     status = rdp->status;
937     rdp->status &= ~AR_S_DEGRADED;
938     rdp->status |= AR_S_READY;
939 
940     /* make sure all lost drives are accounted for */
941     for (disk = 0; disk < rdp->total_disks; disk++) {
942 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
943 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
944     }
945 
946     /* depending on RAID type figure out our health status */
947     switch (rdp->type) {
948     case AR_T_JBOD:
949     case AR_T_SPAN:
950     case AR_T_RAID0:
951 	for (disk = 0; disk < rdp->total_disks; disk++)
952 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
953 		rdp->status &= ~AR_S_READY;
954 	break;
955 
956     case AR_T_RAID1:
957     case AR_T_RAID01:
958 	for (disk = 0; disk < rdp->width; disk++) {
959 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
960 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
961 		rdp->status &= ~AR_S_READY;
962 	    }
963 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
964 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
965 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
966 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
967 		rdp->status |= AR_S_DEGRADED;
968 	    }
969 	}
970 	break;
971 
972     case AR_T_RAID5:
973 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
974 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
975 		count++;
976 	}
977 	if (count) {
978 	    if (count > 1)
979 		rdp->status &= ~AR_S_READY;
980 	    else
981 		rdp->status |= AR_S_DEGRADED;
982 	}
983 	break;
984     default:
985 	rdp->status &= ~AR_S_READY;
986     }
987 
988     /*
989      * Note that when the array breaks so comes up broken we
990      * force a write of the array config to the remaining
991      * drives so that the generation will be incremented past
992      * those of the missing or failed drives (in all cases).
993      */
994     if (rdp->status != status) {
995 	if (!(rdp->status & AR_S_READY)) {
996 	    kprintf("ar%d: FAILURE - %s array broken\n",
997 		   rdp->lun, ata_raid_type(rdp));
998 	    writeback = 1;
999 	}
1000 	else if (rdp->status & AR_S_DEGRADED) {
1001 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
1002 		kprintf("ar%d: WARNING - mirror", rdp->lun);
1003 	    else
1004 		kprintf("ar%d: WARNING - parity", rdp->lun);
1005 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
1006 		   ata_raid_type(rdp));
1007 	    writeback = 1;
1008 	}
1009     }
1010     spin_unlock_wr(&rdp->lock);
1011     if (writeback)
1012 	ata_raid_write_metadata(rdp);
1013 
1014 }
1015 
1016 static int
1017 ata_raid_status(struct ata_ioc_raid_config *config)
1018 {
1019     struct ar_softc *rdp;
1020     int i;
1021 
1022     if (!(rdp = ata_raid_arrays[config->lun]))
1023 	return ENXIO;
1024 
1025     config->type = rdp->type;
1026     config->total_disks = rdp->total_disks;
1027     for (i = 0; i < rdp->total_disks; i++ ) {
1028 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
1029 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
1030 	else
1031 	    config->disks[i] = -1;
1032     }
1033     config->interleave = rdp->interleave;
1034     config->status = rdp->status;
1035     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
1036     return 0;
1037 }
1038 
1039 static int
1040 ata_raid_create(struct ata_ioc_raid_config *config)
1041 {
1042     struct ar_softc *rdp;
1043     device_t subdisk;
1044     int array, disk;
1045     int ctlr = 0, disk_size = 0, total_disks = 0;
1046 
1047     for (array = 0; array < MAX_ARRAYS; array++) {
1048 	if (!ata_raid_arrays[array])
1049 	    break;
1050     }
1051     if (array >= MAX_ARRAYS)
1052 	return ENOSPC;
1053 
1054     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
1055 	M_WAITOK | M_ZERO);
1056 
1057     for (disk = 0; disk < config->total_disks; disk++) {
1058 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1059 					   config->disks[disk]))) {
1060 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1061 
1062 	    /* is device already assigned to another array ? */
1063 	    if (ars->raid[rdp->volume]) {
1064 		config->disks[disk] = -1;
1065 		kfree(rdp, M_AR);
1066 		return EBUSY;
1067 	    }
1068 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1069 
1070 	    switch (pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev))) {
1071 	    case ATA_HIGHPOINT_ID:
1072 		/*
1073 		 * we need some way to decide if it should be v2 or v3
1074 		 * for now just use v2 since the v3 BIOS knows how to
1075 		 * handle that as well.
1076 		 */
1077 		ctlr = AR_F_HPTV2_RAID;
1078 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1079 		break;
1080 
1081 	    case ATA_INTEL_ID:
1082 		ctlr = AR_F_INTEL_RAID;
1083 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1084 		break;
1085 
1086 	    case ATA_ITE_ID:
1087 		ctlr = AR_F_ITE_RAID;
1088 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1089 		break;
1090 
1091 	    case ATA_JMICRON_ID:
1092 		ctlr = AR_F_JMICRON_RAID;
1093 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1094 		break;
1095 
1096 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1097 	    case ATA_PROMISE_ID:
1098 		ctlr = AR_F_PROMISE_RAID;
1099 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1100 		break;
1101 
1102 	    case ATA_SIS_ID:
1103 		ctlr = AR_F_SIS_RAID;
1104 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1105 		break;
1106 
1107 	    case ATA_ATI_ID:
1108 	    case ATA_VIA_ID:
1109 		ctlr = AR_F_VIA_RAID;
1110 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1111 		break;
1112 
1113 	    default:
1114 		/* XXX SOS
1115 		 * right, so here we are, we have an ATA chip and we want
1116 		 * to create a RAID and store the metadata.
1117 		 * we need to find a way to tell what kind of metadata this
1118 		 * hardware's BIOS might be using (good ideas are welcomed)
1119 		 * for now we just use our own native FreeBSD format.
1120 		 * the only way to get support for the BIOS format is to
1121 		 * setup the RAID from there, in that case we pickup the
1122 		 * metadata format from the disks (if we support it).
1123 		 */
1124 		kprintf("WARNING!! - not able to determine metadata format\n"
1125 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1126 		       "If that is not what you want, use the BIOS to "
1127 		       "create the array\n");
1128 		ctlr = AR_F_FREEBSD_RAID;
1129 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1130 		break;
1131 	    }
1132 
1133 	    /* we need all disks to be of the same format */
1134 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1135 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1136 		kfree(rdp, M_AR);
1137 		return EXDEV;
1138 	    }
1139 	    else
1140 		rdp->format = ctlr;
1141 
1142 	    /* use the smallest disk of the lots size */
1143 	    /* gigabyte boundry ??? XXX SOS */
1144 	    if (disk_size)
1145 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1146 	    else
1147 		disk_size = rdp->disks[disk].sectors;
1148 	    rdp->disks[disk].flags =
1149 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1150 
1151 	    total_disks++;
1152 	}
1153 	else {
1154 	    config->disks[disk] = -1;
1155 	    kfree(rdp, M_AR);
1156 	    return ENXIO;
1157 	}
1158     }
1159 
1160     if (total_disks != config->total_disks) {
1161 	kfree(rdp, M_AR);
1162 	return ENODEV;
1163     }
1164 
1165     switch (config->type) {
1166     case AR_T_JBOD:
1167     case AR_T_SPAN:
1168     case AR_T_RAID0:
1169 	break;
1170 
1171     case AR_T_RAID1:
1172 	if (total_disks != 2) {
1173 	    kfree(rdp, M_AR);
1174 	    return EPERM;
1175 	}
1176 	break;
1177 
1178     case AR_T_RAID01:
1179 	if (total_disks % 2 != 0) {
1180 	    kfree(rdp, M_AR);
1181 	    return EPERM;
1182 	}
1183 	break;
1184 
1185     case AR_T_RAID5:
1186 	if (total_disks < 3) {
1187 	    kfree(rdp, M_AR);
1188 	    return EPERM;
1189 	}
1190 	break;
1191 
1192     default:
1193 	kfree(rdp, M_AR);
1194 	return EOPNOTSUPP;
1195     }
1196     rdp->type = config->type;
1197     rdp->lun = array;
1198     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1199 	rdp->type == AR_T_RAID5) {
1200 	int bit = 0;
1201 
1202 	while (config->interleave >>= 1)
1203 	    bit++;
1204 	rdp->interleave = 1 << bit;
1205     }
1206     rdp->offset_sectors = 0;
1207 
1208     /* values that depend on metadata format */
1209     switch (rdp->format) {
1210     case AR_F_ADAPTEC_RAID:
1211 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1212 	break;
1213 
1214     case AR_F_HPTV2_RAID:
1215 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1216 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1217 	break;
1218 
1219     case AR_F_HPTV3_RAID:
1220 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1221 	break;
1222 
1223     case AR_F_INTEL_RAID:
1224 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1225 	break;
1226 
1227     case AR_F_ITE_RAID:
1228 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1229 	break;
1230 
1231     case AR_F_JMICRON_RAID:
1232 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1233 	break;
1234 
1235     case AR_F_LSIV2_RAID:
1236 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1237 	break;
1238 
1239     case AR_F_LSIV3_RAID:
1240 	rdp->interleave = min(max(2, rdp->interleave), 256);
1241 	break;
1242 
1243     case AR_F_PROMISE_RAID:
1244 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1245 	break;
1246 
1247     case AR_F_SII_RAID:
1248 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1249 	break;
1250 
1251     case AR_F_SIS_RAID:
1252 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1253 	break;
1254 
1255     case AR_F_VIA_RAID:
1256 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1257 	break;
1258     }
1259 
1260     rdp->total_disks = total_disks;
1261     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1262     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1263     rdp->heads = 255;
1264     rdp->sectors = 63;
1265     rdp->cylinders = rdp->total_sectors / (255 * 63);
1266     rdp->rebuild_lba = 0;
1267     rdp->status |= AR_S_READY;
1268 
1269     /* we are committed to this array, grap the subdisks */
1270     for (disk = 0; disk < config->total_disks; disk++) {
1271 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1272 					   config->disks[disk]))) {
1273 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1274 
1275 	    ars->raid[rdp->volume] = rdp;
1276 	    ars->disk_number[rdp->volume] = disk;
1277 	}
1278     }
1279     ata_raid_attach(rdp, 1);
1280     ata_raid_arrays[array] = rdp;
1281     config->lun = array;
1282     return 0;
1283 }
1284 
1285 static int
1286 ata_raid_delete(int array)
1287 {
1288     struct ar_softc *rdp;
1289     device_t subdisk;
1290     int disk;
1291 
1292     if (!(rdp = ata_raid_arrays[array]))
1293 	return ENXIO;
1294 
1295     rdp->status &= ~AR_S_READY;
1296     disk_destroy(&rdp->disk);
1297 
1298     for (disk = 0; disk < rdp->total_disks; disk++) {
1299 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1300 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1301 		     device_get_unit(rdp->disks[disk].dev)))) {
1302 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1303 
1304 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1305 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1306 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1307 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1308 		ars->raid[rdp->volume] = NULL;
1309 		ars->disk_number[rdp->volume] = -1;
1310 	    }
1311 	    rdp->disks[disk].flags = 0;
1312 	}
1313     }
1314     ata_raid_wipe_metadata(rdp);
1315     ata_raid_arrays[array] = NULL;
1316     kfree(rdp, M_AR);
1317     return 0;
1318 }
1319 
1320 static int
1321 ata_raid_addspare(struct ata_ioc_raid_config *config)
1322 {
1323     struct ar_softc *rdp;
1324     device_t subdisk;
1325     int disk;
1326 
1327     if (!(rdp = ata_raid_arrays[config->lun]))
1328 	return ENXIO;
1329     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1330 	return ENXIO;
1331     if (rdp->status & AR_S_REBUILDING)
1332 	return EBUSY;
1333     switch (rdp->type) {
1334     case AR_T_RAID1:
1335     case AR_T_RAID01:
1336     case AR_T_RAID5:
1337 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1338 
1339 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1340 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1341 		continue;
1342 
1343 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1344 					       config->disks[0] ))) {
1345 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1346 
1347 		if (ars->raid[rdp->volume])
1348 		    return EBUSY;
1349 
1350 		/* XXX SOS validate size etc etc */
1351 		ars->raid[rdp->volume] = rdp;
1352 		ars->disk_number[rdp->volume] = disk;
1353 		rdp->disks[disk].dev = device_get_parent(subdisk);
1354 		rdp->disks[disk].flags =
1355 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1356 
1357 		device_printf(rdp->disks[disk].dev,
1358 			      "inserted into ar%d disk%d as spare\n",
1359 			      rdp->lun, disk);
1360 		ata_raid_config_changed(rdp, 1);
1361 		return 0;
1362 	    }
1363 	}
1364 	return ENXIO;
1365 
1366     default:
1367 	return EPERM;
1368     }
1369 }
1370 
1371 static int
1372 ata_raid_rebuild(int array)
1373 {
1374     struct ar_softc *rdp;
1375     int disk, count;
1376 
1377     if (!(rdp = ata_raid_arrays[array]))
1378 	return ENXIO;
1379     /* XXX SOS we should lock the rdp softc here */
1380     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1381 	return ENXIO;
1382     if (rdp->status & AR_S_REBUILDING)
1383 	return EBUSY;
1384 
1385     switch (rdp->type) {
1386     case AR_T_RAID1:
1387     case AR_T_RAID01:
1388     case AR_T_RAID5:
1389 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1390 	    if (((rdp->disks[disk].flags &
1391 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1392 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1393 		rdp->disks[disk].dev) {
1394 		count++;
1395 	    }
1396 	}
1397 
1398 	if (count) {
1399 	    rdp->rebuild_lba = 0;
1400 	    rdp->status |= AR_S_REBUILDING;
1401 	    return 0;
1402 	}
1403 	return EIO;
1404 
1405     default:
1406 	return EPERM;
1407     }
1408 }
1409 
1410 static int
1411 ata_raid_read_metadata(device_t subdisk)
1412 {
1413     devclass_t pci_devclass = devclass_find("pci");
1414     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1415 
1416     /* prioritize vendor native metadata layout if possible */
1417     if (devclass == pci_devclass) {
1418 	switch (pci_get_vendor(GRANDPARENT(device_get_parent(subdisk)))) {
1419 	case ATA_HIGHPOINT_ID:
1420 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1421 		return 0;
1422 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1423 		return 0;
1424 	    break;
1425 
1426 	case ATA_INTEL_ID:
1427 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1428 		return 0;
1429 	    break;
1430 
1431 	case ATA_ITE_ID:
1432 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1433 		return 0;
1434 	    break;
1435 
1436 	case ATA_JMICRON_ID:
1437 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1438 		return 0;
1439 	    break;
1440 
1441 	case ATA_NVIDIA_ID:
1442 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1443 		return 0;
1444 	    break;
1445 
1446 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1447 	case ATA_PROMISE_ID:
1448 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1449 		return 0;
1450 	    break;
1451 
1452 	case ATA_ATI_ID:
1453 	case ATA_SILICON_IMAGE_ID:
1454 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1455 		return 0;
1456 	    break;
1457 
1458 	case ATA_SIS_ID:
1459 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1460 		return 0;
1461 	    break;
1462 
1463 	case ATA_VIA_ID:
1464 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1465 		return 0;
1466 	    break;
1467 	}
1468     }
1469 
1470     /* handle controllers that have multiple layout possibilities */
1471     /* NOTE: the order of these are not insignificant */
1472 
1473     /* Adaptec HostRAID */
1474     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1475 	return 0;
1476 
1477     /* LSILogic v3 and v2 */
1478     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1479 	return 0;
1480     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1481 	return 0;
1482 
1483     /* if none of the above matched, try FreeBSD native format */
1484     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1485 }
1486 
1487 static int
1488 ata_raid_write_metadata(struct ar_softc *rdp)
1489 {
1490     switch (rdp->format) {
1491     case AR_F_FREEBSD_RAID:
1492     case AR_F_PROMISE_RAID:
1493 	return ata_raid_promise_write_meta(rdp);
1494 
1495     case AR_F_HPTV3_RAID:
1496     case AR_F_HPTV2_RAID:
1497 	/*
1498 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1499 	 * this is handy since we cannot know what version BIOS is on there
1500 	 */
1501 	return ata_raid_hptv2_write_meta(rdp);
1502 
1503     case AR_F_INTEL_RAID:
1504 	return ata_raid_intel_write_meta(rdp);
1505 
1506     case AR_F_JMICRON_RAID:
1507 	return ata_raid_jmicron_write_meta(rdp);
1508 
1509     case AR_F_SIS_RAID:
1510 	return ata_raid_sis_write_meta(rdp);
1511 
1512     case AR_F_VIA_RAID:
1513 	return ata_raid_via_write_meta(rdp);
1514 #if 0
1515     case AR_F_HPTV3_RAID:
1516 	return ata_raid_hptv3_write_meta(rdp);
1517 
1518     case AR_F_ADAPTEC_RAID:
1519 	return ata_raid_adaptec_write_meta(rdp);
1520 
1521     case AR_F_ITE_RAID:
1522 	return ata_raid_ite_write_meta(rdp);
1523 
1524     case AR_F_LSIV2_RAID:
1525 	return ata_raid_lsiv2_write_meta(rdp);
1526 
1527     case AR_F_LSIV3_RAID:
1528 	return ata_raid_lsiv3_write_meta(rdp);
1529 
1530     case AR_F_NVIDIA_RAID:
1531 	return ata_raid_nvidia_write_meta(rdp);
1532 
1533     case AR_F_SII_RAID:
1534 	return ata_raid_sii_write_meta(rdp);
1535 
1536 #endif
1537     default:
1538 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1539 	       rdp->lun, ata_raid_format(rdp));
1540     }
1541     return -1;
1542 }
1543 
1544 static int
1545 ata_raid_wipe_metadata(struct ar_softc *rdp)
1546 {
1547     int disk, error = 0;
1548     u_int64_t lba;
1549     u_int32_t size;
1550     u_int8_t *meta;
1551 
1552     for (disk = 0; disk < rdp->total_disks; disk++) {
1553 	if (rdp->disks[disk].dev) {
1554 	    switch (rdp->format) {
1555 	    case AR_F_ADAPTEC_RAID:
1556 		lba = ADP_LBA(rdp->disks[disk].dev);
1557 		size = sizeof(struct adaptec_raid_conf);
1558 		break;
1559 
1560 	    case AR_F_HPTV2_RAID:
1561 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1562 		size = sizeof(struct hptv2_raid_conf);
1563 		break;
1564 
1565 	    case AR_F_HPTV3_RAID:
1566 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1567 		size = sizeof(struct hptv3_raid_conf);
1568 		break;
1569 
1570 	    case AR_F_INTEL_RAID:
1571 		lba = INTEL_LBA(rdp->disks[disk].dev);
1572 		size = 3 * 512;         /* XXX SOS */
1573 		break;
1574 
1575 	    case AR_F_ITE_RAID:
1576 		lba = ITE_LBA(rdp->disks[disk].dev);
1577 		size = sizeof(struct ite_raid_conf);
1578 		break;
1579 
1580 	    case AR_F_JMICRON_RAID:
1581 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1582 		size = sizeof(struct jmicron_raid_conf);
1583 		break;
1584 
1585 	    case AR_F_LSIV2_RAID:
1586 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1587 		size = sizeof(struct lsiv2_raid_conf);
1588 		break;
1589 
1590 	    case AR_F_LSIV3_RAID:
1591 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1592 		size = sizeof(struct lsiv3_raid_conf);
1593 		break;
1594 
1595 	    case AR_F_NVIDIA_RAID:
1596 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1597 		size = sizeof(struct nvidia_raid_conf);
1598 		break;
1599 
1600 	    case AR_F_FREEBSD_RAID:
1601 	    case AR_F_PROMISE_RAID:
1602 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1603 		size = sizeof(struct promise_raid_conf);
1604 		break;
1605 
1606 	    case AR_F_SII_RAID:
1607 		lba = SII_LBA(rdp->disks[disk].dev);
1608 		size = sizeof(struct sii_raid_conf);
1609 		break;
1610 
1611 	    case AR_F_SIS_RAID:
1612 		lba = SIS_LBA(rdp->disks[disk].dev);
1613 		size = sizeof(struct sis_raid_conf);
1614 		break;
1615 
1616 	    case AR_F_VIA_RAID:
1617 		lba = VIA_LBA(rdp->disks[disk].dev);
1618 		size = sizeof(struct via_raid_conf);
1619 		break;
1620 
1621 	    default:
1622 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1623 		       rdp->lun, ata_raid_format(rdp));
1624 		return ENXIO;
1625 	    }
1626 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1627 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1628 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1629 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1630 		error = EIO;
1631 	    }
1632 	    kfree(meta, M_AR);
1633 	}
1634     }
1635     return error;
1636 }
1637 
1638 /* Adaptec HostRAID Metadata */
1639 static int
1640 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1641 {
1642     struct ata_raid_subdisk *ars = device_get_softc(dev);
1643     device_t parent = device_get_parent(dev);
1644     struct adaptec_raid_conf *meta;
1645     struct ar_softc *raid;
1646     int array, disk, retval = 0;
1647 
1648     meta = (struct adaptec_raid_conf *)
1649 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1650 
1651     if (ata_raid_rw(parent, ADP_LBA(parent),
1652 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1653 	if (testing || bootverbose)
1654 	    device_printf(parent, "Adaptec read metadata failed\n");
1655 	goto adaptec_out;
1656     }
1657 
1658     /* check if this is a Adaptec RAID struct */
1659     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1660 	if (testing || bootverbose)
1661 	    device_printf(parent, "Adaptec check1 failed\n");
1662 	goto adaptec_out;
1663     }
1664 
1665     if (testing || bootverbose)
1666 	ata_raid_adaptec_print_meta(meta);
1667 
1668     /* now convert Adaptec metadata into our generic form */
1669     for (array = 0; array < MAX_ARRAYS; array++) {
1670 	if (!raidp[array]) {
1671 	    raidp[array] =
1672 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1673 					  M_WAITOK | M_ZERO);
1674 	}
1675 	raid = raidp[array];
1676 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1677 	    continue;
1678 
1679 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1680 	    continue;
1681 
1682 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1683 	    switch (meta->configs[0].type) {
1684 	    case ADP_T_RAID0:
1685 		raid->magic_0 = meta->configs[0].magic_0;
1686 		raid->type = AR_T_RAID0;
1687 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1688 		raid->width = be16toh(meta->configs[0].total_disks);
1689 		break;
1690 
1691 	    case ADP_T_RAID1:
1692 		raid->magic_0 = meta->configs[0].magic_0;
1693 		raid->type = AR_T_RAID1;
1694 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1695 		break;
1696 
1697 	    default:
1698 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1699 			      meta->configs[0].type);
1700 		kfree(raidp[array], M_AR);
1701 		raidp[array] = NULL;
1702 		goto adaptec_out;
1703 	    }
1704 
1705 	    raid->format = AR_F_ADAPTEC_RAID;
1706 	    raid->generation = be32toh(meta->generation);
1707 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1708 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1709 	    raid->heads = 255;
1710 	    raid->sectors = 63;
1711 	    raid->cylinders = raid->total_sectors / (63 * 255);
1712 	    raid->offset_sectors = 0;
1713 	    raid->rebuild_lba = 0;
1714 	    raid->lun = array;
1715 	    strncpy(raid->name, meta->configs[0].name,
1716 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1717 
1718 	    /* clear out any old info */
1719 	    if (raid->generation) {
1720 		for (disk = 0; disk < raid->total_disks; disk++) {
1721 		    raid->disks[disk].dev = NULL;
1722 		    raid->disks[disk].flags = 0;
1723 		}
1724 	    }
1725 	}
1726 	if (be32toh(meta->generation) >= raid->generation) {
1727 	    struct ata_device *atadev = device_get_softc(parent);
1728 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1729 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1730 			      ATA_DEV(atadev->unit);
1731 
1732 	    raid->disks[disk_number].dev = parent;
1733 	    raid->disks[disk_number].sectors =
1734 		be32toh(meta->configs[disk_number + 1].sectors);
1735 	    raid->disks[disk_number].flags =
1736 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1737 	    ars->raid[raid->volume] = raid;
1738 	    ars->disk_number[raid->volume] = disk_number;
1739 	    retval = 1;
1740 	}
1741 	break;
1742     }
1743 
1744 adaptec_out:
1745     kfree(meta, M_AR);
1746     return retval;
1747 }
1748 
1749 /* Highpoint V2 RocketRAID Metadata */
1750 static int
1751 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1752 {
1753     struct ata_raid_subdisk *ars = device_get_softc(dev);
1754     device_t parent = device_get_parent(dev);
1755     struct hptv2_raid_conf *meta;
1756     struct ar_softc *raid = NULL;
1757     int array, disk_number = 0, retval = 0;
1758 
1759     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1760 	M_AR, M_WAITOK | M_ZERO);
1761 
1762     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1763 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1764 	if (testing || bootverbose)
1765 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1766 	goto hptv2_out;
1767     }
1768 
1769     /* check if this is a HighPoint v2 RAID struct */
1770     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1771 	if (testing || bootverbose)
1772 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1773 	goto hptv2_out;
1774     }
1775 
1776     /* is this disk defined, or an old leftover/spare ? */
1777     if (!meta->magic_0) {
1778 	if (testing || bootverbose)
1779 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1780 	goto hptv2_out;
1781     }
1782 
1783     if (testing || bootverbose)
1784 	ata_raid_hptv2_print_meta(meta);
1785 
1786     /* now convert HighPoint (v2) metadata into our generic form */
1787     for (array = 0; array < MAX_ARRAYS; array++) {
1788 	if (!raidp[array]) {
1789 	    raidp[array] =
1790 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1791 					  M_WAITOK | M_ZERO);
1792 	}
1793 	raid = raidp[array];
1794 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1795 	    continue;
1796 
1797 	switch (meta->type) {
1798 	case HPTV2_T_RAID0:
1799 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1800 		(HPTV2_O_RAID0|HPTV2_O_OK))
1801 		goto highpoint_raid1;
1802 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1803 		goto highpoint_raid01;
1804 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1805 		continue;
1806 	    raid->magic_0 = meta->magic_0;
1807 	    raid->type = AR_T_RAID0;
1808 	    raid->interleave = 1 << meta->stripe_shift;
1809 	    disk_number = meta->disk_number;
1810 	    if (!(meta->order & HPTV2_O_OK))
1811 		meta->magic = 0;        /* mark bad */
1812 	    break;
1813 
1814 	case HPTV2_T_RAID1:
1815 highpoint_raid1:
1816 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1817 		continue;
1818 	    raid->magic_0 = meta->magic_0;
1819 	    raid->type = AR_T_RAID1;
1820 	    disk_number = (meta->disk_number > 0);
1821 	    break;
1822 
1823 	case HPTV2_T_RAID01_RAID0:
1824 highpoint_raid01:
1825 	    if (meta->order & HPTV2_O_RAID0) {
1826 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1827 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1828 		    continue;
1829 		raid->magic_0 = meta->magic_0;
1830 		raid->magic_1 = meta->magic_1;
1831 		raid->type = AR_T_RAID01;
1832 		raid->interleave = 1 << meta->stripe_shift;
1833 		disk_number = meta->disk_number;
1834 	    }
1835 	    else {
1836 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1837 		    continue;
1838 		raid->magic_1 = meta->magic_1;
1839 		raid->type = AR_T_RAID01;
1840 		raid->interleave = 1 << meta->stripe_shift;
1841 		disk_number = meta->disk_number + meta->array_width;
1842 		if (!(meta->order & HPTV2_O_RAID1))
1843 		    meta->magic = 0;    /* mark bad */
1844 	    }
1845 	    break;
1846 
1847 	case HPTV2_T_SPAN:
1848 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1849 		continue;
1850 	    raid->magic_0 = meta->magic_0;
1851 	    raid->type = AR_T_SPAN;
1852 	    disk_number = meta->disk_number;
1853 	    break;
1854 
1855 	default:
1856 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1857 			  meta->type);
1858 	    kfree(raidp[array], M_AR);
1859 	    raidp[array] = NULL;
1860 	    goto hptv2_out;
1861 	}
1862 
1863 	raid->format |= AR_F_HPTV2_RAID;
1864 	raid->disks[disk_number].dev = parent;
1865 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1866 	raid->lun = array;
1867 	strncpy(raid->name, meta->name_1,
1868 		min(sizeof(raid->name), sizeof(meta->name_1)));
1869 	if (meta->magic == HPTV2_MAGIC_OK) {
1870 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1871 	    raid->width = meta->array_width;
1872 	    raid->total_sectors = meta->total_sectors;
1873 	    raid->heads = 255;
1874 	    raid->sectors = 63;
1875 	    raid->cylinders = raid->total_sectors / (63 * 255);
1876 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1877 	    raid->rebuild_lba = meta->rebuild_lba;
1878 	    raid->disks[disk_number].sectors =
1879 		raid->total_sectors / raid->width;
1880 	}
1881 	else
1882 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1883 
1884 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1885 	    raid->total_disks = raid->width;
1886 	if (disk_number >= raid->total_disks)
1887 	    raid->total_disks = disk_number + 1;
1888 	ars->raid[raid->volume] = raid;
1889 	ars->disk_number[raid->volume] = disk_number;
1890 	retval = 1;
1891 	break;
1892     }
1893 
1894 hptv2_out:
1895     kfree(meta, M_AR);
1896     return retval;
1897 }
1898 
1899 static int
1900 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1901 {
1902     struct hptv2_raid_conf *meta;
1903     struct timeval timestamp;
1904     int disk, error = 0;
1905 
1906     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1907 	M_AR, M_WAITOK | M_ZERO);
1908 
1909     microtime(&timestamp);
1910     rdp->magic_0 = timestamp.tv_sec + 2;
1911     rdp->magic_1 = timestamp.tv_sec;
1912 
1913     for (disk = 0; disk < rdp->total_disks; disk++) {
1914 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1915 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1916 	    meta->magic = HPTV2_MAGIC_OK;
1917 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1918 	    meta->magic_0 = rdp->magic_0;
1919 	    if (strlen(rdp->name))
1920 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1921 	    else
1922 		strcpy(meta->name_1, "FreeBSD");
1923 	}
1924 	meta->disk_number = disk;
1925 
1926 	switch (rdp->type) {
1927 	case AR_T_RAID0:
1928 	    meta->type = HPTV2_T_RAID0;
1929 	    strcpy(meta->name_2, "RAID 0");
1930 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1931 		meta->order = HPTV2_O_OK;
1932 	    break;
1933 
1934 	case AR_T_RAID1:
1935 	    meta->type = HPTV2_T_RAID0;
1936 	    strcpy(meta->name_2, "RAID 1");
1937 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1938 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1939 	    break;
1940 
1941 	case AR_T_RAID01:
1942 	    meta->type = HPTV2_T_RAID01_RAID0;
1943 	    strcpy(meta->name_2, "RAID 0+1");
1944 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1945 		if (disk < rdp->width) {
1946 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1947 		    meta->magic_0 = rdp->magic_0 - 1;
1948 		}
1949 		else {
1950 		    meta->order = HPTV2_O_RAID1;
1951 		    meta->disk_number -= rdp->width;
1952 		}
1953 	    }
1954 	    else
1955 		meta->magic_0 = rdp->magic_0 - 1;
1956 	    meta->magic_1 = rdp->magic_1;
1957 	    break;
1958 
1959 	case AR_T_SPAN:
1960 	    meta->type = HPTV2_T_SPAN;
1961 	    strcpy(meta->name_2, "SPAN");
1962 	    break;
1963 	default:
1964 	    kfree(meta, M_AR);
1965 	    return ENODEV;
1966 	}
1967 
1968 	meta->array_width = rdp->width;
1969 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1970 	meta->total_sectors = rdp->total_sectors;
1971 	meta->rebuild_lba = rdp->rebuild_lba;
1972 	if (testing || bootverbose)
1973 	    ata_raid_hptv2_print_meta(meta);
1974 	if (rdp->disks[disk].dev) {
1975 	    if (ata_raid_rw(rdp->disks[disk].dev,
1976 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1977 			    sizeof(struct promise_raid_conf),
1978 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1979 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1980 		error = EIO;
1981 	    }
1982 	}
1983     }
1984     kfree(meta, M_AR);
1985     return error;
1986 }
1987 
1988 /* Highpoint V3 RocketRAID Metadata */
1989 static int
1990 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1991 {
1992     struct ata_raid_subdisk *ars = device_get_softc(dev);
1993     device_t parent = device_get_parent(dev);
1994     struct hptv3_raid_conf *meta;
1995     struct ar_softc *raid = NULL;
1996     int array, disk_number, retval = 0;
1997 
1998     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1999 	M_AR, M_WAITOK | M_ZERO);
2000 
2001     if (ata_raid_rw(parent, HPTV3_LBA(parent),
2002 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
2003 	if (testing || bootverbose)
2004 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
2005 	goto hptv3_out;
2006     }
2007 
2008     /* check if this is a HighPoint v3 RAID struct */
2009     if (meta->magic != HPTV3_MAGIC) {
2010 	if (testing || bootverbose)
2011 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
2012 	goto hptv3_out;
2013     }
2014 
2015     /* check if there are any config_entries */
2016     if (meta->config_entries < 1) {
2017 	if (testing || bootverbose)
2018 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
2019 	goto hptv3_out;
2020     }
2021 
2022     if (testing || bootverbose)
2023 	ata_raid_hptv3_print_meta(meta);
2024 
2025     /* now convert HighPoint (v3) metadata into our generic form */
2026     for (array = 0; array < MAX_ARRAYS; array++) {
2027 	if (!raidp[array]) {
2028 	    raidp[array] =
2029 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2030 					  M_WAITOK | M_ZERO);
2031 	}
2032 	raid = raidp[array];
2033 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
2034 	    continue;
2035 
2036 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
2037 	    continue;
2038 
2039 	switch (meta->configs[0].type) {
2040 	case HPTV3_T_RAID0:
2041 	    raid->type = AR_T_RAID0;
2042 	    raid->width = meta->configs[0].total_disks;
2043 	    disk_number = meta->configs[0].disk_number;
2044 	    break;
2045 
2046 	case HPTV3_T_RAID1:
2047 	    raid->type = AR_T_RAID1;
2048 	    raid->width = meta->configs[0].total_disks / 2;
2049 	    disk_number = meta->configs[0].disk_number;
2050 	    break;
2051 
2052 	case HPTV3_T_RAID5:
2053 	    raid->type = AR_T_RAID5;
2054 	    raid->width = meta->configs[0].total_disks;
2055 	    disk_number = meta->configs[0].disk_number;
2056 	    break;
2057 
2058 	case HPTV3_T_SPAN:
2059 	    raid->type = AR_T_SPAN;
2060 	    raid->width = meta->configs[0].total_disks;
2061 	    disk_number = meta->configs[0].disk_number;
2062 	    break;
2063 
2064 	default:
2065 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2066 			  meta->configs[0].type);
2067 	    kfree(raidp[array], M_AR);
2068 	    raidp[array] = NULL;
2069 	    goto hptv3_out;
2070 	}
2071 	if (meta->config_entries == 2) {
2072 	    switch (meta->configs[1].type) {
2073 	    case HPTV3_T_RAID1:
2074 		if (raid->type == AR_T_RAID0) {
2075 		    raid->type = AR_T_RAID01;
2076 		    disk_number = meta->configs[1].disk_number +
2077 				  (meta->configs[0].disk_number << 1);
2078 		    break;
2079 		}
2080 	    default:
2081 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2082 			      meta->configs[1].type);
2083 		kfree(raidp[array], M_AR);
2084 		raidp[array] = NULL;
2085 		goto hptv3_out;
2086 	    }
2087 	}
2088 
2089 	raid->magic_0 = meta->magic_0;
2090 	raid->format = AR_F_HPTV3_RAID;
2091 	raid->generation = meta->timestamp;
2092 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2093 	raid->total_disks = meta->configs[0].total_disks +
2094 	    meta->configs[1].total_disks;
2095 	raid->total_sectors = meta->configs[0].total_sectors +
2096 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2097 	raid->heads = 255;
2098 	raid->sectors = 63;
2099 	raid->cylinders = raid->total_sectors / (63 * 255);
2100 	raid->offset_sectors = 0;
2101 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2102 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2103 	raid->lun = array;
2104 	strncpy(raid->name, meta->name,
2105 		min(sizeof(raid->name), sizeof(meta->name)));
2106 	raid->disks[disk_number].sectors = raid->total_sectors /
2107 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2108 	raid->disks[disk_number].dev = parent;
2109 	raid->disks[disk_number].flags =
2110 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2111 	ars->raid[raid->volume] = raid;
2112 	ars->disk_number[raid->volume] = disk_number;
2113 	retval = 1;
2114 	break;
2115     }
2116 
2117 hptv3_out:
2118     kfree(meta, M_AR);
2119     return retval;
2120 }
2121 
2122 /* Intel MatrixRAID Metadata */
2123 static int
2124 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2125 {
2126     struct ata_raid_subdisk *ars = device_get_softc(dev);
2127     device_t parent = device_get_parent(dev);
2128     struct intel_raid_conf *meta;
2129     struct intel_raid_mapping *map;
2130     struct ar_softc *raid = NULL;
2131     u_int32_t checksum, *ptr;
2132     int array, count, disk, volume = 1, retval = 0;
2133     char *tmp;
2134 
2135     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2136 
2137     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2138 	if (testing || bootverbose)
2139 	    device_printf(parent, "Intel read metadata failed\n");
2140 	goto intel_out;
2141     }
2142     tmp = (char *)meta;
2143     bcopy(tmp, tmp+1024, 512);
2144     bcopy(tmp+512, tmp, 1024);
2145     bzero(tmp+1024, 512);
2146 
2147     /* check if this is a Intel RAID struct */
2148     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2149 	if (testing || bootverbose)
2150 	    device_printf(parent, "Intel check1 failed\n");
2151 	goto intel_out;
2152     }
2153 
2154     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2155 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2156 	checksum += *ptr++;
2157     }
2158     checksum -= meta->checksum;
2159     if (checksum != meta->checksum) {
2160 	if (testing || bootverbose)
2161 	    device_printf(parent, "Intel check2 failed\n");
2162 	goto intel_out;
2163     }
2164 
2165     if (testing || bootverbose)
2166 	ata_raid_intel_print_meta(meta);
2167 
2168     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2169 
2170     /* now convert Intel metadata into our generic form */
2171     for (array = 0; array < MAX_ARRAYS; array++) {
2172 	if (!raidp[array]) {
2173 	    raidp[array] =
2174 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2175 					  M_WAITOK | M_ZERO);
2176 	}
2177 	raid = raidp[array];
2178 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2179 	    continue;
2180 
2181 	if ((raid->format & AR_F_INTEL_RAID) &&
2182 	    (raid->magic_0 != meta->config_id))
2183 	    continue;
2184 
2185 	/*
2186 	 * update our knowledge about the array config based on generation
2187 	 * NOTE: there can be multiple volumes on a disk set
2188 	 */
2189 	if (!meta->generation || meta->generation > raid->generation) {
2190 	    switch (map->type) {
2191 	    case INTEL_T_RAID0:
2192 		raid->type = AR_T_RAID0;
2193 		raid->width = map->total_disks;
2194 		break;
2195 
2196 	    case INTEL_T_RAID1:
2197 		if (map->total_disks == 4)
2198 		    raid->type = AR_T_RAID01;
2199 		else
2200 		    raid->type = AR_T_RAID1;
2201 		raid->width = map->total_disks / 2;
2202 		break;
2203 
2204 	    case INTEL_T_RAID5:
2205 		raid->type = AR_T_RAID5;
2206 		raid->width = map->total_disks;
2207 		break;
2208 
2209 	    default:
2210 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2211 			      map->type);
2212 		kfree(raidp[array], M_AR);
2213 		raidp[array] = NULL;
2214 		goto intel_out;
2215 	    }
2216 
2217 	    switch (map->status) {
2218 	    case INTEL_S_READY:
2219 		raid->status = AR_S_READY;
2220 		break;
2221 	    case INTEL_S_DEGRADED:
2222 		raid->status |= AR_S_DEGRADED;
2223 		break;
2224 	    case INTEL_S_DISABLED:
2225 	    case INTEL_S_FAILURE:
2226 		raid->status = 0;
2227 	    }
2228 
2229 	    raid->magic_0 = meta->config_id;
2230 	    raid->format = AR_F_INTEL_RAID;
2231 	    raid->generation = meta->generation;
2232 	    raid->interleave = map->stripe_sectors;
2233 	    raid->total_disks = map->total_disks;
2234 	    raid->total_sectors = map->total_sectors;
2235 	    raid->heads = 255;
2236 	    raid->sectors = 63;
2237 	    raid->cylinders = raid->total_sectors / (63 * 255);
2238 	    raid->offset_sectors = map->offset;
2239 	    raid->rebuild_lba = 0;
2240 	    raid->lun = array;
2241 	    raid->volume = volume - 1;
2242 	    strncpy(raid->name, map->name,
2243 		    min(sizeof(raid->name), sizeof(map->name)));
2244 
2245 	    /* clear out any old info */
2246 	    for (disk = 0; disk < raid->total_disks; disk++) {
2247 		raid->disks[disk].dev = NULL;
2248 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2249 		      raid->disks[disk].serial,
2250 		      sizeof(raid->disks[disk].serial));
2251 		raid->disks[disk].sectors =
2252 		    meta->disk[map->disk_idx[disk]].sectors;
2253 		raid->disks[disk].flags = 0;
2254 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2255 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2256 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2257 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2258 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2259 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2260 		    raid->disks[disk].flags |= AR_DF_SPARE;
2261 		}
2262 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2263 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2264 	    }
2265 	}
2266 	if (meta->generation >= raid->generation) {
2267 	    for (disk = 0; disk < raid->total_disks; disk++) {
2268 		struct ata_device *atadev = device_get_softc(parent);
2269 
2270 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2271 		    sizeof(raid->disks[disk].serial))) {
2272 		    raid->disks[disk].dev = parent;
2273 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2274 		    ars->raid[raid->volume] = raid;
2275 		    ars->disk_number[raid->volume] = disk;
2276 		    retval = 1;
2277 		}
2278 	    }
2279 	}
2280 	else
2281 	    goto intel_out;
2282 
2283 	if (retval) {
2284 	    if (volume < meta->total_volumes) {
2285 		map = (struct intel_raid_mapping *)
2286 		      &map->disk_idx[map->total_disks];
2287 		volume++;
2288 		retval = 0;
2289 		continue;
2290 	    }
2291 	    break;
2292 	}
2293 	else {
2294 	    kfree(raidp[array], M_AR);
2295 	    raidp[array] = NULL;
2296 	    if (volume == 2)
2297 		retval = 1;
2298 	}
2299     }
2300 
2301 intel_out:
2302     kfree(meta, M_AR);
2303     return retval;
2304 }
2305 
2306 static int
2307 ata_raid_intel_write_meta(struct ar_softc *rdp)
2308 {
2309     struct intel_raid_conf *meta;
2310     struct intel_raid_mapping *map;
2311     struct timeval timestamp;
2312     u_int32_t checksum, *ptr;
2313     int count, disk, error = 0;
2314     char *tmp;
2315 
2316     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2317 
2318     rdp->generation++;
2319 
2320     /* Generate a new config_id if none exists */
2321     if (!rdp->magic_0) {
2322 	microtime(&timestamp);
2323 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2324     }
2325 
2326     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2327     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2328     meta->config_id = rdp->magic_0;
2329     meta->generation = rdp->generation;
2330     meta->total_disks = rdp->total_disks;
2331     meta->total_volumes = 1;                                    /* XXX SOS */
2332     for (disk = 0; disk < rdp->total_disks; disk++) {
2333 	if (rdp->disks[disk].dev) {
2334 	    struct ata_channel *ch =
2335 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2336 	    struct ata_device *atadev =
2337 		device_get_softc(rdp->disks[disk].dev);
2338 
2339 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2340 		  sizeof(rdp->disks[disk].serial));
2341 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2342 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2343 	}
2344 	else
2345 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2346 	meta->disk[disk].flags = 0;
2347 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2348 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2349 	else {
2350 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2351 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2352 	    else
2353 		meta->disk[disk].flags |= INTEL_F_DOWN;
2354 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2355 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2356 	}
2357     }
2358     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2359 
2360     bcopy(rdp->name, map->name, sizeof(rdp->name));
2361     map->total_sectors = rdp->total_sectors;
2362     map->state = 12;                                            /* XXX SOS */
2363     map->offset = rdp->offset_sectors;
2364     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2365     map->stripe_sectors =  rdp->interleave;
2366     map->disk_sectors = rdp->total_sectors / rdp->width;
2367     map->status = INTEL_S_READY;                                /* XXX SOS */
2368     switch (rdp->type) {
2369     case AR_T_RAID0:
2370 	map->type = INTEL_T_RAID0;
2371 	break;
2372     case AR_T_RAID1:
2373 	map->type = INTEL_T_RAID1;
2374 	break;
2375     case AR_T_RAID01:
2376 	map->type = INTEL_T_RAID1;
2377 	break;
2378     case AR_T_RAID5:
2379 	map->type = INTEL_T_RAID5;
2380 	break;
2381     default:
2382 	kfree(meta, M_AR);
2383 	return ENODEV;
2384     }
2385     map->total_disks = rdp->total_disks;
2386     map->magic[0] = 0x02;
2387     map->magic[1] = 0xff;
2388     map->magic[2] = 0x01;
2389     for (disk = 0; disk < rdp->total_disks; disk++)
2390 	map->disk_idx[disk] = disk;
2391 
2392     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2393     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2394 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2395 	checksum += *ptr++;
2396     }
2397     meta->checksum = checksum;
2398 
2399     if (testing || bootverbose)
2400 	ata_raid_intel_print_meta(meta);
2401 
2402     tmp = (char *)meta;
2403     bcopy(tmp, tmp+1024, 512);
2404     bcopy(tmp+512, tmp, 1024);
2405     bzero(tmp+1024, 512);
2406 
2407     for (disk = 0; disk < rdp->total_disks; disk++) {
2408 	if (rdp->disks[disk].dev) {
2409 	    if (ata_raid_rw(rdp->disks[disk].dev,
2410 			    INTEL_LBA(rdp->disks[disk].dev),
2411 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2412 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2413 		error = EIO;
2414 	    }
2415 	}
2416     }
2417     kfree(meta, M_AR);
2418     return error;
2419 }
2420 
2421 
2422 /* Integrated Technology Express Metadata */
2423 static int
2424 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2425 {
2426     struct ata_raid_subdisk *ars = device_get_softc(dev);
2427     device_t parent = device_get_parent(dev);
2428     struct ite_raid_conf *meta;
2429     struct ar_softc *raid = NULL;
2430     int array, disk_number, count, retval = 0;
2431     u_int16_t *ptr;
2432 
2433     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2434 	M_WAITOK | M_ZERO);
2435 
2436     if (ata_raid_rw(parent, ITE_LBA(parent),
2437 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2438 	if (testing || bootverbose)
2439 	    device_printf(parent, "ITE read metadata failed\n");
2440 	goto ite_out;
2441     }
2442 
2443     /* check if this is a ITE RAID struct */
2444     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2445 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2446 	ptr[count] = be16toh(ptr[count]);
2447 
2448     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2449 	if (testing || bootverbose)
2450 	    device_printf(parent, "ITE check1 failed\n");
2451 	goto ite_out;
2452     }
2453 
2454     if (testing || bootverbose)
2455 	ata_raid_ite_print_meta(meta);
2456 
2457     /* now convert ITE metadata into our generic form */
2458     for (array = 0; array < MAX_ARRAYS; array++) {
2459 	if ((raid = raidp[array])) {
2460 	    if (raid->format != AR_F_ITE_RAID)
2461 		continue;
2462 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2463 		continue;
2464 	}
2465 
2466 	/* if we dont have a disks timestamp the RAID is invalidated */
2467 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2468 	    goto ite_out;
2469 
2470 	if (!raid) {
2471 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2472 						     M_AR, M_WAITOK | M_ZERO);
2473 	}
2474 
2475 	switch (meta->type) {
2476 	case ITE_T_RAID0:
2477 	    raid->type = AR_T_RAID0;
2478 	    raid->width = meta->array_width;
2479 	    raid->total_disks = meta->array_width;
2480 	    disk_number = meta->disk_number;
2481 	    break;
2482 
2483 	case ITE_T_RAID1:
2484 	    raid->type = AR_T_RAID1;
2485 	    raid->width = 1;
2486 	    raid->total_disks = 2;
2487 	    disk_number = meta->disk_number;
2488 	    break;
2489 
2490 	case ITE_T_RAID01:
2491 	    raid->type = AR_T_RAID01;
2492 	    raid->width = meta->array_width;
2493 	    raid->total_disks = 4;
2494 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2495 			  ((meta->disk_number & 0x01) << 1);
2496 	    break;
2497 
2498 	case ITE_T_SPAN:
2499 	    raid->type = AR_T_SPAN;
2500 	    raid->width = 1;
2501 	    raid->total_disks = meta->array_width;
2502 	    disk_number = meta->disk_number;
2503 	    break;
2504 
2505 	default:
2506 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2507 	    kfree(raidp[array], M_AR);
2508 	    raidp[array] = NULL;
2509 	    goto ite_out;
2510 	}
2511 
2512 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2513 	raid->format = AR_F_ITE_RAID;
2514 	raid->generation = 0;
2515 	raid->interleave = meta->stripe_sectors;
2516 	raid->total_sectors = meta->total_sectors;
2517 	raid->heads = 255;
2518 	raid->sectors = 63;
2519 	raid->cylinders = raid->total_sectors / (63 * 255);
2520 	raid->offset_sectors = 0;
2521 	raid->rebuild_lba = 0;
2522 	raid->lun = array;
2523 
2524 	raid->disks[disk_number].dev = parent;
2525 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2526 	raid->disks[disk_number].flags =
2527 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2528 	ars->raid[raid->volume] = raid;
2529 	ars->disk_number[raid->volume] = disk_number;
2530 	retval = 1;
2531 	break;
2532     }
2533 ite_out:
2534     kfree(meta, M_AR);
2535     return retval;
2536 }
2537 
2538 /* JMicron Technology Corp Metadata */
2539 static int
2540 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2541 {
2542     struct ata_raid_subdisk *ars = device_get_softc(dev);
2543     device_t parent = device_get_parent(dev);
2544     struct jmicron_raid_conf *meta;
2545     struct ar_softc *raid = NULL;
2546     u_int16_t checksum, *ptr;
2547     u_int64_t disk_size;
2548     int count, array, disk, total_disks, retval = 0;
2549 
2550     meta = (struct jmicron_raid_conf *)
2551 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2552 
2553     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2554 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2555 	if (testing || bootverbose)
2556 	    device_printf(parent,
2557 			  "JMicron read metadata failed\n");
2558     }
2559 
2560     /* check for JMicron signature */
2561     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2562 	if (testing || bootverbose)
2563 	    device_printf(parent, "JMicron check1 failed\n");
2564 	goto jmicron_out;
2565     }
2566 
2567     /* calculate checksum and compare for valid */
2568     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2569 	checksum += *ptr++;
2570     if (checksum) {
2571 	if (testing || bootverbose)
2572 	    device_printf(parent, "JMicron check2 failed\n");
2573 	goto jmicron_out;
2574     }
2575 
2576     if (testing || bootverbose)
2577 	ata_raid_jmicron_print_meta(meta);
2578 
2579     /* now convert JMicron meta into our generic form */
2580     for (array = 0; array < MAX_ARRAYS; array++) {
2581 jmicron_next:
2582 	if (!raidp[array]) {
2583 	    raidp[array] =
2584 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2585 					  M_WAITOK | M_ZERO);
2586 	}
2587 	raid = raidp[array];
2588 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2589 	    continue;
2590 
2591 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2592 	    if (meta->disks[disk]) {
2593 		if (raid->format == AR_F_JMICRON_RAID) {
2594 		    if (bcmp(&meta->disks[disk],
2595 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2596 			array++;
2597 			goto jmicron_next;
2598 		    }
2599 		}
2600 		else
2601 		    bcopy(&meta->disks[disk],
2602 			  raid->disks[disk].serial, sizeof(u_int32_t));
2603 		total_disks++;
2604 	    }
2605 	}
2606 	/* handle spares XXX SOS */
2607 
2608 	switch (meta->type) {
2609 	case JM_T_RAID0:
2610 	    raid->type = AR_T_RAID0;
2611 	    raid->width = total_disks;
2612 	    break;
2613 
2614 	case JM_T_RAID1:
2615 	    raid->type = AR_T_RAID1;
2616 	    raid->width = 1;
2617 	    break;
2618 
2619 	case JM_T_RAID01:
2620 	    raid->type = AR_T_RAID01;
2621 	    raid->width = total_disks / 2;
2622 	    break;
2623 
2624 	case JM_T_RAID5:
2625 	    raid->type = AR_T_RAID5;
2626 	    raid->width = total_disks;
2627 	    break;
2628 
2629 	case JM_T_JBOD:
2630 	    raid->type = AR_T_SPAN;
2631 	    raid->width = 1;
2632 	    break;
2633 
2634 	default:
2635 	    device_printf(parent,
2636 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2637 	    kfree(raidp[array], M_AR);
2638 	    raidp[array] = NULL;
2639 	    goto jmicron_out;
2640 	}
2641 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2642 	raid->format = AR_F_JMICRON_RAID;
2643 	strncpy(raid->name, meta->name, sizeof(meta->name));
2644 	raid->generation = 0;
2645 	raid->interleave = 2 << meta->stripe_shift;
2646 	raid->total_disks = total_disks;
2647 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2648 	raid->heads = 255;
2649 	raid->sectors = 63;
2650 	raid->cylinders = raid->total_sectors / (63 * 255);
2651 	raid->offset_sectors = meta->offset * 16;
2652 	raid->rebuild_lba = 0;
2653 	raid->lun = array;
2654 
2655 	for (disk = 0; disk < raid->total_disks; disk++) {
2656 	    if (meta->disks[disk] == meta->disk_id) {
2657 		raid->disks[disk].dev = parent;
2658 		raid->disks[disk].sectors = disk_size;
2659 		raid->disks[disk].flags =
2660 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2661 		ars->raid[raid->volume] = raid;
2662 		ars->disk_number[raid->volume] = disk;
2663 		retval = 1;
2664 		break;
2665 	    }
2666 	}
2667 	break;
2668     }
2669 jmicron_out:
2670     kfree(meta, M_AR);
2671     return retval;
2672 }
2673 
2674 static int
2675 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2676 {
2677     struct jmicron_raid_conf *meta;
2678     u_int64_t disk_sectors;
2679     int disk, error = 0;
2680 
2681     meta = (struct jmicron_raid_conf *)
2682 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2683 
2684     rdp->generation++;
2685     switch (rdp->type) {
2686     case AR_T_JBOD:
2687 	meta->type = JM_T_JBOD;
2688 	break;
2689 
2690     case AR_T_RAID0:
2691 	meta->type = JM_T_RAID0;
2692 	break;
2693 
2694     case AR_T_RAID1:
2695 	meta->type = JM_T_RAID1;
2696 	break;
2697 
2698     case AR_T_RAID5:
2699 	meta->type = JM_T_RAID5;
2700 	break;
2701 
2702     case AR_T_RAID01:
2703 	meta->type = JM_T_RAID01;
2704 	break;
2705 
2706     default:
2707 	kfree(meta, M_AR);
2708 	return ENODEV;
2709     }
2710     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2711     meta->version = JMICRON_VERSION;
2712     meta->offset = rdp->offset_sectors / 16;
2713     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2714     meta->disk_sectors_low = disk_sectors & 0xffff;
2715     meta->disk_sectors_high = disk_sectors >> 16;
2716     strncpy(meta->name, rdp->name, sizeof(meta->name));
2717     meta->stripe_shift = ffs(rdp->interleave) - 2;
2718 
2719     for (disk = 0; disk < rdp->total_disks; disk++) {
2720 	if (rdp->disks[disk].serial[0])
2721 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2722 	else
2723 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2724     }
2725 
2726     for (disk = 0; disk < rdp->total_disks; disk++) {
2727 	if (rdp->disks[disk].dev) {
2728 	    u_int16_t checksum = 0, *ptr;
2729 	    int count;
2730 
2731 	    meta->disk_id = meta->disks[disk];
2732 	    meta->checksum = 0;
2733 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2734 		checksum += *ptr++;
2735 	    meta->checksum -= checksum;
2736 
2737 	    if (testing || bootverbose)
2738 		ata_raid_jmicron_print_meta(meta);
2739 
2740 	    if (ata_raid_rw(rdp->disks[disk].dev,
2741 			    JMICRON_LBA(rdp->disks[disk].dev),
2742 			    meta, sizeof(struct jmicron_raid_conf),
2743 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2744 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2745 		error = EIO;
2746 	    }
2747 	}
2748     }
2749     /* handle spares XXX SOS */
2750 
2751     kfree(meta, M_AR);
2752     return error;
2753 }
2754 
2755 /* LSILogic V2 MegaRAID Metadata */
2756 static int
2757 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2758 {
2759     struct ata_raid_subdisk *ars = device_get_softc(dev);
2760     device_t parent = device_get_parent(dev);
2761     struct lsiv2_raid_conf *meta;
2762     struct ar_softc *raid = NULL;
2763     int array, retval = 0;
2764 
2765     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2766 	M_AR, M_WAITOK | M_ZERO);
2767 
2768     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2769 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2770 	if (testing || bootverbose)
2771 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2772 	goto lsiv2_out;
2773     }
2774 
2775     /* check if this is a LSI RAID struct */
2776     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2777 	if (testing || bootverbose)
2778 	    device_printf(parent, "LSI (v2) check1 failed\n");
2779 	goto lsiv2_out;
2780     }
2781 
2782     if (testing || bootverbose)
2783 	ata_raid_lsiv2_print_meta(meta);
2784 
2785     /* now convert LSI (v2) config meta into our generic form */
2786     for (array = 0; array < MAX_ARRAYS; array++) {
2787 	int raid_entry, conf_entry;
2788 
2789 	if (!raidp[array + meta->raid_number]) {
2790 	    raidp[array + meta->raid_number] =
2791 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2792 					  M_WAITOK | M_ZERO);
2793 	}
2794 	raid = raidp[array + meta->raid_number];
2795 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2796 	    continue;
2797 
2798 	if (raid->magic_0 &&
2799 	    ((raid->magic_0 != meta->timestamp) ||
2800 	     (raid->magic_1 != meta->raid_number)))
2801 	    continue;
2802 
2803 	array += meta->raid_number;
2804 
2805 	raid_entry = meta->raid_number;
2806 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2807 		     meta->disk_number - 1;
2808 
2809 	switch (meta->configs[raid_entry].raid.type) {
2810 	case LSIV2_T_RAID0:
2811 	    raid->magic_0 = meta->timestamp;
2812 	    raid->magic_1 = meta->raid_number;
2813 	    raid->type = AR_T_RAID0;
2814 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2815 	    raid->width = meta->configs[raid_entry].raid.array_width;
2816 	    break;
2817 
2818 	case LSIV2_T_RAID1:
2819 	    raid->magic_0 = meta->timestamp;
2820 	    raid->magic_1 = meta->raid_number;
2821 	    raid->type = AR_T_RAID1;
2822 	    raid->width = meta->configs[raid_entry].raid.array_width;
2823 	    break;
2824 
2825 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2826 	    raid->magic_0 = meta->timestamp;
2827 	    raid->magic_1 = meta->raid_number;
2828 	    raid->type = AR_T_RAID01;
2829 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2830 	    raid->width = meta->configs[raid_entry].raid.array_width;
2831 	    break;
2832 
2833 	default:
2834 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2835 			  meta->configs[raid_entry].raid.type);
2836 	    kfree(raidp[array], M_AR);
2837 	    raidp[array] = NULL;
2838 	    goto lsiv2_out;
2839 	}
2840 
2841 	raid->format = AR_F_LSIV2_RAID;
2842 	raid->generation = 0;
2843 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2844 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2845 	raid->heads = 255;
2846 	raid->sectors = 63;
2847 	raid->cylinders = raid->total_sectors / (63 * 255);
2848 	raid->offset_sectors = 0;
2849 	raid->rebuild_lba = 0;
2850 	raid->lun = array;
2851 
2852 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2853 	    raid->disks[meta->disk_number].dev = parent;
2854 	    raid->disks[meta->disk_number].sectors =
2855 		meta->configs[conf_entry].disk.disk_sectors;
2856 	    raid->disks[meta->disk_number].flags =
2857 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2858 	    ars->raid[raid->volume] = raid;
2859 	    ars->disk_number[raid->volume] = meta->disk_number;
2860 	    retval = 1;
2861 	}
2862 	else
2863 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2864 
2865 	break;
2866     }
2867 
2868 lsiv2_out:
2869     kfree(meta, M_AR);
2870     return retval;
2871 }
2872 
2873 /* LSILogic V3 MegaRAID Metadata */
2874 static int
2875 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2876 {
2877     struct ata_raid_subdisk *ars = device_get_softc(dev);
2878     device_t parent = device_get_parent(dev);
2879     struct lsiv3_raid_conf *meta;
2880     struct ar_softc *raid = NULL;
2881     u_int8_t checksum, *ptr;
2882     int array, entry, count, disk_number, retval = 0;
2883 
2884     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2885 	M_AR, M_WAITOK | M_ZERO);
2886 
2887     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2888 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2889 	if (testing || bootverbose)
2890 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2891 	goto lsiv3_out;
2892     }
2893 
2894     /* check if this is a LSI RAID struct */
2895     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2896 	if (testing || bootverbose)
2897 	    device_printf(parent, "LSI (v3) check1 failed\n");
2898 	goto lsiv3_out;
2899     }
2900 
2901     /* check if the checksum is OK */
2902     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2903 	checksum += *ptr++;
2904     if (checksum) {
2905 	if (testing || bootverbose)
2906 	    device_printf(parent, "LSI (v3) check2 failed\n");
2907 	goto lsiv3_out;
2908     }
2909 
2910     if (testing || bootverbose)
2911 	ata_raid_lsiv3_print_meta(meta);
2912 
2913     /* now convert LSI (v3) config meta into our generic form */
2914     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2915 	if (!raidp[array]) {
2916 	    raidp[array] =
2917 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2918 					  M_WAITOK | M_ZERO);
2919 	}
2920 	raid = raidp[array];
2921 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2922 	    array++;
2923 	    continue;
2924 	}
2925 
2926 	if ((raid->format == AR_F_LSIV3_RAID) &&
2927 	    (raid->magic_0 != meta->timestamp)) {
2928 	    array++;
2929 	    continue;
2930 	}
2931 
2932 	switch (meta->raid[entry].total_disks) {
2933 	case 0:
2934 	    entry++;
2935 	    continue;
2936 	case 1:
2937 	    if (meta->raid[entry].device == meta->device) {
2938 		disk_number = 0;
2939 		break;
2940 	    }
2941 	    if (raid->format)
2942 		array++;
2943 	    entry++;
2944 	    continue;
2945 	case 2:
2946 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2947 	    break;
2948 	default:
2949 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2950 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2951 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2952 	    break;
2953 	}
2954 
2955 	switch (meta->raid[entry].type) {
2956 	case LSIV3_T_RAID0:
2957 	    raid->type = AR_T_RAID0;
2958 	    raid->width = meta->raid[entry].total_disks;
2959 	    break;
2960 
2961 	case LSIV3_T_RAID1:
2962 	    raid->type = AR_T_RAID1;
2963 	    raid->width = meta->raid[entry].array_width;
2964 	    break;
2965 
2966 	default:
2967 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2968 			  meta->raid[entry].type);
2969 	    kfree(raidp[array], M_AR);
2970 	    raidp[array] = NULL;
2971 	    entry++;
2972 	    continue;
2973 	}
2974 
2975 	raid->magic_0 = meta->timestamp;
2976 	raid->format = AR_F_LSIV3_RAID;
2977 	raid->generation = 0;
2978 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2979 	raid->total_disks = meta->raid[entry].total_disks;
2980 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2981 	raid->heads = 255;
2982 	raid->sectors = 63;
2983 	raid->cylinders = raid->total_sectors / (63 * 255);
2984 	raid->offset_sectors = meta->raid[entry].offset;
2985 	raid->rebuild_lba = 0;
2986 	raid->lun = array;
2987 
2988 	raid->disks[disk_number].dev = parent;
2989 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2990 	raid->disks[disk_number].flags =
2991 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2992 	ars->raid[raid->volume] = raid;
2993 	ars->disk_number[raid->volume] = disk_number;
2994 	retval = 1;
2995 	entry++;
2996 	array++;
2997     }
2998 
2999 lsiv3_out:
3000     kfree(meta, M_AR);
3001     return retval;
3002 }
3003 
3004 /* nVidia MediaShield Metadata */
3005 static int
3006 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
3007 {
3008     struct ata_raid_subdisk *ars = device_get_softc(dev);
3009     device_t parent = device_get_parent(dev);
3010     struct nvidia_raid_conf *meta;
3011     struct ar_softc *raid = NULL;
3012     u_int32_t checksum, *ptr;
3013     int array, count, retval = 0;
3014 
3015     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
3016 	M_AR, M_WAITOK | M_ZERO);
3017 
3018     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3019 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3020 	if (testing || bootverbose)
3021 	    device_printf(parent, "nVidia read metadata failed\n");
3022 	goto nvidia_out;
3023     }
3024 
3025     /* check if this is a nVidia RAID struct */
3026     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3027 	if (testing || bootverbose)
3028 	    device_printf(parent, "nVidia check1 failed\n");
3029 	goto nvidia_out;
3030     }
3031 
3032     /* check if the checksum is OK */
3033     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3034 	 count < meta->config_size; count++)
3035 	checksum += *ptr++;
3036     if (checksum) {
3037 	if (testing || bootverbose)
3038 	    device_printf(parent, "nVidia check2 failed\n");
3039 	goto nvidia_out;
3040     }
3041 
3042     if (testing || bootverbose)
3043 	ata_raid_nvidia_print_meta(meta);
3044 
3045     /* now convert nVidia meta into our generic form */
3046     for (array = 0; array < MAX_ARRAYS; array++) {
3047 	if (!raidp[array]) {
3048 	    raidp[array] =
3049 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3050 					  M_WAITOK | M_ZERO);
3051 	}
3052 	raid = raidp[array];
3053 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3054 	    continue;
3055 
3056 	if (raid->format == AR_F_NVIDIA_RAID &&
3057 	    ((raid->magic_0 != meta->magic_1) ||
3058 	     (raid->magic_1 != meta->magic_2))) {
3059 	    continue;
3060 	}
3061 
3062 	switch (meta->type) {
3063 	case NV_T_SPAN:
3064 	    raid->type = AR_T_SPAN;
3065 	    break;
3066 
3067 	case NV_T_RAID0:
3068 	    raid->type = AR_T_RAID0;
3069 	    break;
3070 
3071 	case NV_T_RAID1:
3072 	    raid->type = AR_T_RAID1;
3073 	    break;
3074 
3075 	case NV_T_RAID5:
3076 	    raid->type = AR_T_RAID5;
3077 	    break;
3078 
3079 	case NV_T_RAID01:
3080 	    raid->type = AR_T_RAID01;
3081 	    break;
3082 
3083 	default:
3084 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3085 			  meta->type);
3086 	    kfree(raidp[array], M_AR);
3087 	    raidp[array] = NULL;
3088 	    goto nvidia_out;
3089 	}
3090 	raid->magic_0 = meta->magic_1;
3091 	raid->magic_1 = meta->magic_2;
3092 	raid->format = AR_F_NVIDIA_RAID;
3093 	raid->generation = 0;
3094 	raid->interleave = meta->stripe_sectors;
3095 	raid->width = meta->array_width;
3096 	raid->total_disks = meta->total_disks;
3097 	raid->total_sectors = meta->total_sectors;
3098 	raid->heads = 255;
3099 	raid->sectors = 63;
3100 	raid->cylinders = raid->total_sectors / (63 * 255);
3101 	raid->offset_sectors = 0;
3102 	raid->rebuild_lba = meta->rebuild_lba;
3103 	raid->lun = array;
3104 	raid->status = AR_S_READY;
3105 	if (meta->status & NV_S_DEGRADED)
3106 	    raid->status |= AR_S_DEGRADED;
3107 
3108 	raid->disks[meta->disk_number].dev = parent;
3109 	raid->disks[meta->disk_number].sectors =
3110 	    raid->total_sectors / raid->width;
3111 	raid->disks[meta->disk_number].flags =
3112 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3113 	ars->raid[raid->volume] = raid;
3114 	ars->disk_number[raid->volume] = meta->disk_number;
3115 	retval = 1;
3116 	break;
3117     }
3118 
3119 nvidia_out:
3120     kfree(meta, M_AR);
3121     return retval;
3122 }
3123 
3124 /* Promise FastTrak Metadata */
3125 static int
3126 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3127 {
3128     struct ata_raid_subdisk *ars = device_get_softc(dev);
3129     device_t parent = device_get_parent(dev);
3130     struct promise_raid_conf *meta;
3131     struct ar_softc *raid;
3132     u_int32_t checksum, *ptr;
3133     int array, count, disk, disksum = 0, retval = 0;
3134 
3135     meta = (struct promise_raid_conf *)
3136 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3137 
3138     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3139 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3140 	if (testing || bootverbose)
3141 	    device_printf(parent, "%s read metadata failed\n",
3142 			  native ? "FreeBSD" : "Promise");
3143 	goto promise_out;
3144     }
3145 
3146     /* check the signature */
3147     if (native) {
3148 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3149 	    if (testing || bootverbose)
3150 		device_printf(parent, "FreeBSD check1 failed\n");
3151 	    goto promise_out;
3152 	}
3153     }
3154     else {
3155 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3156 	    if (testing || bootverbose)
3157 		device_printf(parent, "Promise check1 failed\n");
3158 	    goto promise_out;
3159 	}
3160     }
3161 
3162     /* check if the checksum is OK */
3163     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3164 	checksum += *ptr++;
3165     if (checksum != *ptr) {
3166 	if (testing || bootverbose)
3167 	    device_printf(parent, "%s check2 failed\n",
3168 			  native ? "FreeBSD" : "Promise");
3169 	goto promise_out;
3170     }
3171 
3172     /* check on disk integrity status */
3173     if (meta->raid.integrity != PR_I_VALID) {
3174 	if (testing || bootverbose)
3175 	    device_printf(parent, "%s check3 failed\n",
3176 			  native ? "FreeBSD" : "Promise");
3177 	goto promise_out;
3178     }
3179 
3180     if (testing || bootverbose)
3181 	ata_raid_promise_print_meta(meta);
3182 
3183     /* now convert Promise metadata into our generic form */
3184     for (array = 0; array < MAX_ARRAYS; array++) {
3185 	if (!raidp[array]) {
3186 	    raidp[array] =
3187 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3188 					  M_WAITOK | M_ZERO);
3189 	}
3190 	raid = raidp[array];
3191 	if (raid->format &&
3192 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3193 	    continue;
3194 
3195 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3196 	    !(meta->raid.magic_1 == (raid->magic_1)))
3197 	    continue;
3198 
3199 	/* update our knowledge about the array config based on generation */
3200 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3201 	    switch (meta->raid.type) {
3202 	    case PR_T_SPAN:
3203 		raid->type = AR_T_SPAN;
3204 		break;
3205 
3206 	    case PR_T_JBOD:
3207 		raid->type = AR_T_JBOD;
3208 		break;
3209 
3210 	    case PR_T_RAID0:
3211 		raid->type = AR_T_RAID0;
3212 		break;
3213 
3214 	    case PR_T_RAID1:
3215 		raid->type = AR_T_RAID1;
3216 		if (meta->raid.array_width > 1)
3217 		    raid->type = AR_T_RAID01;
3218 		break;
3219 
3220 	    case PR_T_RAID5:
3221 		raid->type = AR_T_RAID5;
3222 		break;
3223 
3224 	    default:
3225 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3226 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3227 		kfree(raidp[array], M_AR);
3228 		raidp[array] = NULL;
3229 		goto promise_out;
3230 	    }
3231 	    raid->magic_1 = meta->raid.magic_1;
3232 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3233 	    raid->generation = meta->raid.generation;
3234 	    raid->interleave = 1 << meta->raid.stripe_shift;
3235 	    raid->width = meta->raid.array_width;
3236 	    raid->total_disks = meta->raid.total_disks;
3237 	    raid->heads = meta->raid.heads + 1;
3238 	    raid->sectors = meta->raid.sectors;
3239 	    raid->cylinders = meta->raid.cylinders + 1;
3240 	    raid->total_sectors = meta->raid.total_sectors;
3241 	    raid->offset_sectors = 0;
3242 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3243 	    raid->lun = array;
3244 	    if ((meta->raid.status &
3245 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3246 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3247 		raid->status |= AR_S_READY;
3248 		if (meta->raid.status & PR_S_DEGRADED)
3249 		    raid->status |= AR_S_DEGRADED;
3250 	    }
3251 	    else
3252 		raid->status &= ~AR_S_READY;
3253 
3254 	    /* convert disk flags to our internal types */
3255 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3256 		raid->disks[disk].dev = NULL;
3257 		raid->disks[disk].flags = 0;
3258 		*((u_int64_t *)(raid->disks[disk].serial)) =
3259 		    meta->raid.disk[disk].magic_0;
3260 		disksum += meta->raid.disk[disk].flags;
3261 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3262 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3263 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3264 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3265 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3266 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3267 		    raid->disks[disk].flags |= AR_DF_SPARE;
3268 		}
3269 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3270 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3271 	    }
3272 	    if (!disksum) {
3273 		device_printf(parent, "%s subdisks has no flags\n",
3274 			      native ? "FreeBSD" : "Promise");
3275 		kfree(raidp[array], M_AR);
3276 		raidp[array] = NULL;
3277 		goto promise_out;
3278 	    }
3279 	}
3280 	if (meta->raid.generation >= raid->generation) {
3281 	    int disk_number = meta->raid.disk_number;
3282 
3283 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3284 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3285 		raid->disks[disk_number].dev = parent;
3286 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3287 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3288 		if ((raid->disks[disk_number].flags &
3289 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3290 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3291 		    ars->raid[raid->volume] = raid;
3292 		    ars->disk_number[raid->volume] = disk_number;
3293 		    retval = 1;
3294 		}
3295 	    }
3296 	}
3297 	break;
3298     }
3299 
3300 promise_out:
3301     kfree(meta, M_AR);
3302     return retval;
3303 }
3304 
3305 static int
3306 ata_raid_promise_write_meta(struct ar_softc *rdp)
3307 {
3308     struct promise_raid_conf *meta;
3309     struct timeval timestamp;
3310     u_int32_t *ckptr;
3311     int count, disk, drive, error = 0;
3312 
3313     meta = (struct promise_raid_conf *)
3314 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3315 
3316     rdp->generation++;
3317     microtime(&timestamp);
3318 
3319     for (disk = 0; disk < rdp->total_disks; disk++) {
3320 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3321 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3322 	meta->dummy_0 = 0x00020000;
3323 	meta->raid.disk_number = disk;
3324 
3325 	if (rdp->disks[disk].dev) {
3326 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3327 	    struct ata_channel *ch =
3328 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3329 
3330 	    meta->raid.channel = ch->unit;
3331 	    meta->raid.device = ATA_DEV(atadev->unit);
3332 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3333 	    meta->raid.disk_offset = rdp->offset_sectors;
3334 	}
3335 	else {
3336 	    meta->raid.channel = 0;
3337 	    meta->raid.device = 0;
3338 	    meta->raid.disk_sectors = 0;
3339 	    meta->raid.disk_offset = 0;
3340 	}
3341 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3342 	meta->magic_1 = timestamp.tv_sec >> 16;
3343 	meta->magic_2 = timestamp.tv_sec;
3344 	meta->raid.integrity = PR_I_VALID;
3345 	meta->raid.magic_0 = meta->magic_0;
3346 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3347 	meta->raid.generation = rdp->generation;
3348 
3349 	if (rdp->status & AR_S_READY) {
3350 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3351 	    meta->raid.status =
3352 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3353 	    if (rdp->status & AR_S_DEGRADED)
3354 		meta->raid.status |= PR_S_DEGRADED;
3355 	    else
3356 		meta->raid.status |= PR_S_FUNCTIONAL;
3357 	}
3358 	else {
3359 	    meta->raid.flags = PR_F_DOWN;
3360 	    meta->raid.status = 0;
3361 	}
3362 
3363 	switch (rdp->type) {
3364 	case AR_T_RAID0:
3365 	    meta->raid.type = PR_T_RAID0;
3366 	    break;
3367 	case AR_T_RAID1:
3368 	    meta->raid.type = PR_T_RAID1;
3369 	    break;
3370 	case AR_T_RAID01:
3371 	    meta->raid.type = PR_T_RAID1;
3372 	    break;
3373 	case AR_T_RAID5:
3374 	    meta->raid.type = PR_T_RAID5;
3375 	    break;
3376 	case AR_T_SPAN:
3377 	    meta->raid.type = PR_T_SPAN;
3378 	    break;
3379 	case AR_T_JBOD:
3380 	    meta->raid.type = PR_T_JBOD;
3381 	    break;
3382 	default:
3383 	    kfree(meta, M_AR);
3384 	    return ENODEV;
3385 	}
3386 
3387 	meta->raid.total_disks = rdp->total_disks;
3388 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3389 	meta->raid.array_width = rdp->width;
3390 	meta->raid.array_number = rdp->lun;
3391 	meta->raid.total_sectors = rdp->total_sectors;
3392 	meta->raid.cylinders = rdp->cylinders - 1;
3393 	meta->raid.heads = rdp->heads - 1;
3394 	meta->raid.sectors = rdp->sectors;
3395 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3396 
3397 	bzero(&meta->raid.disk, 8 * 12);
3398 	for (drive = 0; drive < rdp->total_disks; drive++) {
3399 	    meta->raid.disk[drive].flags = 0;
3400 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3401 		meta->raid.disk[drive].flags |= PR_F_VALID;
3402 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3403 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3404 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3405 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3406 	    else
3407 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3408 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3409 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3410 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3411 	    meta->raid.disk[drive].dummy_0 = 0x0;
3412 	    if (rdp->disks[drive].dev) {
3413 		struct ata_channel *ch =
3414 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3415 		struct ata_device *atadev =
3416 		    device_get_softc(rdp->disks[drive].dev);
3417 
3418 		meta->raid.disk[drive].channel = ch->unit;
3419 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3420 	    }
3421 	    meta->raid.disk[drive].magic_0 =
3422 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3423 	}
3424 
3425 	if (rdp->disks[disk].dev) {
3426 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3427 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3428 		if (rdp->format == AR_F_FREEBSD_RAID)
3429 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3430 		else
3431 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3432 	    }
3433 	    else
3434 		bzero(meta->promise_id, sizeof(meta->promise_id));
3435 	    meta->checksum = 0;
3436 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3437 		meta->checksum += *ckptr++;
3438 	    if (testing || bootverbose)
3439 		ata_raid_promise_print_meta(meta);
3440 	    if (ata_raid_rw(rdp->disks[disk].dev,
3441 			    PROMISE_LBA(rdp->disks[disk].dev),
3442 			    meta, sizeof(struct promise_raid_conf),
3443 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3444 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3445 		error = EIO;
3446 	    }
3447 	}
3448     }
3449     kfree(meta, M_AR);
3450     return error;
3451 }
3452 
3453 /* Silicon Image Medley Metadata */
3454 static int
3455 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3456 {
3457     struct ata_raid_subdisk *ars = device_get_softc(dev);
3458     device_t parent = device_get_parent(dev);
3459     struct sii_raid_conf *meta;
3460     struct ar_softc *raid = NULL;
3461     u_int16_t checksum, *ptr;
3462     int array, count, disk, retval = 0;
3463 
3464     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3465 	M_WAITOK | M_ZERO);
3466 
3467     if (ata_raid_rw(parent, SII_LBA(parent),
3468 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3469 	if (testing || bootverbose)
3470 	    device_printf(parent, "Silicon Image read metadata failed\n");
3471 	goto sii_out;
3472     }
3473 
3474     /* check if this is a Silicon Image (Medley) RAID struct */
3475     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3476 	checksum += *ptr++;
3477     if (checksum) {
3478 	if (testing || bootverbose)
3479 	    device_printf(parent, "Silicon Image check1 failed\n");
3480 	goto sii_out;
3481     }
3482 
3483     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3484 	checksum += *ptr++;
3485     if (checksum != meta->checksum_1) {
3486 	if (testing || bootverbose)
3487 	    device_printf(parent, "Silicon Image check2 failed\n");
3488 	goto sii_out;
3489     }
3490 
3491     /* check verison */
3492     if (meta->version_major != 0x0002 ||
3493 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3494 	if (testing || bootverbose)
3495 	    device_printf(parent, "Silicon Image check3 failed\n");
3496 	goto sii_out;
3497     }
3498 
3499     if (testing || bootverbose)
3500 	ata_raid_sii_print_meta(meta);
3501 
3502     /* now convert Silicon Image meta into our generic form */
3503     for (array = 0; array < MAX_ARRAYS; array++) {
3504 	if (!raidp[array]) {
3505 	    raidp[array] =
3506 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3507 					  M_WAITOK | M_ZERO);
3508 	}
3509 	raid = raidp[array];
3510 	if (raid->format && (raid->format != AR_F_SII_RAID))
3511 	    continue;
3512 
3513 	if (raid->format == AR_F_SII_RAID &&
3514 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3515 	    continue;
3516 	}
3517 
3518 	/* update our knowledge about the array config based on generation */
3519 	if (!meta->generation || meta->generation > raid->generation) {
3520 	    switch (meta->type) {
3521 	    case SII_T_RAID0:
3522 		raid->type = AR_T_RAID0;
3523 		break;
3524 
3525 	    case SII_T_RAID1:
3526 		raid->type = AR_T_RAID1;
3527 		break;
3528 
3529 	    case SII_T_RAID01:
3530 		raid->type = AR_T_RAID01;
3531 		break;
3532 
3533 	    case SII_T_SPARE:
3534 		device_printf(parent, "Silicon Image SPARE disk\n");
3535 		kfree(raidp[array], M_AR);
3536 		raidp[array] = NULL;
3537 		goto sii_out;
3538 
3539 	    default:
3540 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3541 			      meta->type);
3542 		kfree(raidp[array], M_AR);
3543 		raidp[array] = NULL;
3544 		goto sii_out;
3545 	    }
3546 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3547 	    raid->format = AR_F_SII_RAID;
3548 	    raid->generation = meta->generation;
3549 	    raid->interleave = meta->stripe_sectors;
3550 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3551 	    raid->total_disks =
3552 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3553 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3554 	    raid->total_sectors = meta->total_sectors;
3555 	    raid->heads = 255;
3556 	    raid->sectors = 63;
3557 	    raid->cylinders = raid->total_sectors / (63 * 255);
3558 	    raid->offset_sectors = 0;
3559 	    raid->rebuild_lba = meta->rebuild_lba;
3560 	    raid->lun = array;
3561 	    strncpy(raid->name, meta->name,
3562 		    min(sizeof(raid->name), sizeof(meta->name)));
3563 
3564 	    /* clear out any old info */
3565 	    if (raid->generation) {
3566 		for (disk = 0; disk < raid->total_disks; disk++) {
3567 		    raid->disks[disk].dev = NULL;
3568 		    raid->disks[disk].flags = 0;
3569 		}
3570 	    }
3571 	}
3572 	if (meta->generation >= raid->generation) {
3573 	    /* XXX SOS add check for the right physical disk by serial# */
3574 	    if (meta->status & SII_S_READY) {
3575 		int disk_number = (raid->type == AR_T_RAID01) ?
3576 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3577 		    meta->disk_number;
3578 
3579 		raid->disks[disk_number].dev = parent;
3580 		raid->disks[disk_number].sectors =
3581 		    raid->total_sectors / raid->width;
3582 		raid->disks[disk_number].flags =
3583 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3584 		ars->raid[raid->volume] = raid;
3585 		ars->disk_number[raid->volume] = disk_number;
3586 		retval = 1;
3587 	    }
3588 	}
3589 	break;
3590     }
3591 
3592 sii_out:
3593     kfree(meta, M_AR);
3594     return retval;
3595 }
3596 
3597 /* Silicon Integrated Systems Metadata */
3598 static int
3599 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3600 {
3601     struct ata_raid_subdisk *ars = device_get_softc(dev);
3602     device_t parent = device_get_parent(dev);
3603     struct sis_raid_conf *meta;
3604     struct ar_softc *raid = NULL;
3605     int array, disk_number, drive, retval = 0;
3606 
3607     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3608 	M_WAITOK | M_ZERO);
3609 
3610     if (ata_raid_rw(parent, SIS_LBA(parent),
3611 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3612 	if (testing || bootverbose)
3613 	    device_printf(parent,
3614 			  "Silicon Integrated Systems read metadata failed\n");
3615     }
3616 
3617     /* check for SiS magic */
3618     if (meta->magic != SIS_MAGIC) {
3619 	if (testing || bootverbose)
3620 	    device_printf(parent,
3621 			  "Silicon Integrated Systems check1 failed\n");
3622 	goto sis_out;
3623     }
3624 
3625     if (testing || bootverbose)
3626 	ata_raid_sis_print_meta(meta);
3627 
3628     /* now convert SiS meta into our generic form */
3629     for (array = 0; array < MAX_ARRAYS; array++) {
3630 	if (!raidp[array]) {
3631 	    raidp[array] =
3632 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3633 					  M_WAITOK | M_ZERO);
3634 	}
3635 
3636 	raid = raidp[array];
3637 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3638 	    continue;
3639 
3640 	if ((raid->format == AR_F_SIS_RAID) &&
3641 	    ((raid->magic_0 != meta->controller_pci_id) ||
3642 	     (raid->magic_1 != meta->timestamp))) {
3643 	    continue;
3644 	}
3645 
3646 	switch (meta->type_total_disks & SIS_T_MASK) {
3647 	case SIS_T_JBOD:
3648 	    raid->type = AR_T_JBOD;
3649 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3650 	    raid->total_sectors += SIS_LBA(parent);
3651 	    break;
3652 
3653 	case SIS_T_RAID0:
3654 	    raid->type = AR_T_RAID0;
3655 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3656 	    if (!raid->total_sectors ||
3657 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3658 		raid->total_sectors = raid->width * SIS_LBA(parent);
3659 	    break;
3660 
3661 	case SIS_T_RAID1:
3662 	    raid->type = AR_T_RAID1;
3663 	    raid->width = 1;
3664 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3665 		raid->total_sectors = SIS_LBA(parent);
3666 	    break;
3667 
3668 	default:
3669 	    device_printf(parent, "Silicon Integrated Systems "
3670 			  "unknown RAID type 0x%08x\n", meta->magic);
3671 	    kfree(raidp[array], M_AR);
3672 	    raidp[array] = NULL;
3673 	    goto sis_out;
3674 	}
3675 	raid->magic_0 = meta->controller_pci_id;
3676 	raid->magic_1 = meta->timestamp;
3677 	raid->format = AR_F_SIS_RAID;
3678 	raid->generation = 0;
3679 	raid->interleave = meta->stripe_sectors;
3680 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3681 	raid->heads = 255;
3682 	raid->sectors = 63;
3683 	raid->cylinders = raid->total_sectors / (63 * 255);
3684 	raid->offset_sectors = 0;
3685 	raid->rebuild_lba = 0;
3686 	raid->lun = array;
3687 	/* XXX SOS if total_disks > 2 this doesn't float */
3688 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3689 	    disk_number = 0;
3690 	else
3691 	    disk_number = 1;
3692 
3693 	for (drive = 0; drive < raid->total_disks; drive++) {
3694 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3695 	    if (drive == disk_number) {
3696 		raid->disks[disk_number].dev = parent;
3697 		raid->disks[disk_number].flags =
3698 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3699 		ars->raid[raid->volume] = raid;
3700 		ars->disk_number[raid->volume] = disk_number;
3701 	    }
3702 	}
3703 	retval = 1;
3704 	break;
3705     }
3706 
3707 sis_out:
3708     kfree(meta, M_AR);
3709     return retval;
3710 }
3711 
3712 static int
3713 ata_raid_sis_write_meta(struct ar_softc *rdp)
3714 {
3715     struct sis_raid_conf *meta;
3716     struct timeval timestamp;
3717     int disk, error = 0;
3718 
3719     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3720 	M_WAITOK | M_ZERO);
3721 
3722     rdp->generation++;
3723     microtime(&timestamp);
3724 
3725     meta->magic = SIS_MAGIC;
3726     /* XXX SOS if total_disks > 2 this doesn't float */
3727     for (disk = 0; disk < rdp->total_disks; disk++) {
3728 	if (rdp->disks[disk].dev) {
3729 	    struct ata_channel *ch =
3730 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3731 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3732 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3733 
3734 	    meta->disks |= disk_number << ((1 - disk) << 2);
3735 	}
3736     }
3737     switch (rdp->type) {
3738     case AR_T_JBOD:
3739 	meta->type_total_disks = SIS_T_JBOD;
3740 	break;
3741 
3742     case AR_T_RAID0:
3743 	meta->type_total_disks = SIS_T_RAID0;
3744 	break;
3745 
3746     case AR_T_RAID1:
3747 	meta->type_total_disks = SIS_T_RAID1;
3748 	break;
3749 
3750     default:
3751 	kfree(meta, M_AR);
3752 	return ENODEV;
3753     }
3754     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3755     meta->stripe_sectors = rdp->interleave;
3756     meta->timestamp = timestamp.tv_sec;
3757 
3758     for (disk = 0; disk < rdp->total_disks; disk++) {
3759 	if (rdp->disks[disk].dev) {
3760 	    struct ata_channel *ch =
3761 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3762 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3763 
3764 	    meta->controller_pci_id =
3765 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3766 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3767 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3768 
3769 	    /* XXX SOS if total_disks > 2 this may not float */
3770 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3771 
3772 	    if (testing || bootverbose)
3773 		ata_raid_sis_print_meta(meta);
3774 
3775 	    if (ata_raid_rw(rdp->disks[disk].dev,
3776 			    SIS_LBA(rdp->disks[disk].dev),
3777 			    meta, sizeof(struct sis_raid_conf),
3778 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3779 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3780 		error = EIO;
3781 	    }
3782 	}
3783     }
3784     kfree(meta, M_AR);
3785     return error;
3786 }
3787 
3788 /* VIA Tech V-RAID Metadata */
3789 static int
3790 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3791 {
3792     struct ata_raid_subdisk *ars = device_get_softc(dev);
3793     device_t parent = device_get_parent(dev);
3794     struct via_raid_conf *meta;
3795     struct ar_softc *raid = NULL;
3796     u_int8_t checksum, *ptr;
3797     int array, count, disk, retval = 0;
3798 
3799     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3800 	M_WAITOK | M_ZERO);
3801 
3802     if (ata_raid_rw(parent, VIA_LBA(parent),
3803 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3804 	if (testing || bootverbose)
3805 	    device_printf(parent, "VIA read metadata failed\n");
3806 	goto via_out;
3807     }
3808 
3809     /* check if this is a VIA RAID struct */
3810     if (meta->magic != VIA_MAGIC) {
3811 	if (testing || bootverbose)
3812 	    device_printf(parent, "VIA check1 failed\n");
3813 	goto via_out;
3814     }
3815 
3816     /* calculate checksum and compare for valid */
3817     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3818 	checksum += *ptr++;
3819     if (checksum != meta->checksum) {
3820 	if (testing || bootverbose)
3821 	    device_printf(parent, "VIA check2 failed\n");
3822 	goto via_out;
3823     }
3824 
3825     if (testing || bootverbose)
3826 	ata_raid_via_print_meta(meta);
3827 
3828     /* now convert VIA meta into our generic form */
3829     for (array = 0; array < MAX_ARRAYS; array++) {
3830 	if (!raidp[array]) {
3831 	    raidp[array] =
3832 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3833 					  M_WAITOK | M_ZERO);
3834 	}
3835 	raid = raidp[array];
3836 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3837 	    continue;
3838 
3839 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3840 	    continue;
3841 
3842 	switch (meta->type & VIA_T_MASK) {
3843 	case VIA_T_RAID0:
3844 	    raid->type = AR_T_RAID0;
3845 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3846 	    if (!raid->total_sectors ||
3847 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3848 		raid->total_sectors = raid->width * meta->disk_sectors;
3849 	    break;
3850 
3851 	case VIA_T_RAID1:
3852 	    raid->type = AR_T_RAID1;
3853 	    raid->width = 1;
3854 	    raid->total_sectors = meta->disk_sectors;
3855 	    break;
3856 
3857 	case VIA_T_RAID01:
3858 	    raid->type = AR_T_RAID01;
3859 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3860 	    if (!raid->total_sectors ||
3861 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3862 		raid->total_sectors = raid->width * meta->disk_sectors;
3863 	    break;
3864 
3865 	case VIA_T_RAID5:
3866 	    raid->type = AR_T_RAID5;
3867 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3868 	    if (!raid->total_sectors ||
3869 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3870 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3871 	    break;
3872 
3873 	case VIA_T_SPAN:
3874 	    raid->type = AR_T_SPAN;
3875 	    raid->width = 1;
3876 	    raid->total_sectors += meta->disk_sectors;
3877 	    break;
3878 
3879 	default:
3880 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3881 	    kfree(raidp[array], M_AR);
3882 	    raidp[array] = NULL;
3883 	    goto via_out;
3884 	}
3885 	raid->magic_0 = meta->disks[0];
3886 	raid->format = AR_F_VIA_RAID;
3887 	raid->generation = 0;
3888 	raid->interleave =
3889 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3890 	for (count = 0, disk = 0; disk < 8; disk++)
3891 	    if (meta->disks[disk])
3892 		count++;
3893 	raid->total_disks = count;
3894 	raid->heads = 255;
3895 	raid->sectors = 63;
3896 	raid->cylinders = raid->total_sectors / (63 * 255);
3897 	raid->offset_sectors = 0;
3898 	raid->rebuild_lba = 0;
3899 	raid->lun = array;
3900 
3901 	for (disk = 0; disk < raid->total_disks; disk++) {
3902 	    if (meta->disks[disk] == meta->disk_id) {
3903 		raid->disks[disk].dev = parent;
3904 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3905 		      sizeof(u_int32_t));
3906 		raid->disks[disk].sectors = meta->disk_sectors;
3907 		raid->disks[disk].flags =
3908 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3909 		ars->raid[raid->volume] = raid;
3910 		ars->disk_number[raid->volume] = disk;
3911 		retval = 1;
3912 		break;
3913 	    }
3914 	}
3915 	break;
3916     }
3917 
3918 via_out:
3919     kfree(meta, M_AR);
3920     return retval;
3921 }
3922 
3923 static int
3924 ata_raid_via_write_meta(struct ar_softc *rdp)
3925 {
3926     struct via_raid_conf *meta;
3927     int disk, error = 0;
3928 
3929     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3930 	M_WAITOK | M_ZERO);
3931 
3932     rdp->generation++;
3933 
3934     meta->magic = VIA_MAGIC;
3935     meta->dummy_0 = 0x02;
3936     switch (rdp->type) {
3937     case AR_T_SPAN:
3938 	meta->type = VIA_T_SPAN;
3939 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3940 	break;
3941 
3942     case AR_T_RAID0:
3943 	meta->type = VIA_T_RAID0;
3944 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3945 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3946 	break;
3947 
3948     case AR_T_RAID1:
3949 	meta->type = VIA_T_RAID1;
3950 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3951 	break;
3952 
3953     case AR_T_RAID5:
3954 	meta->type = VIA_T_RAID5;
3955 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3956 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3957 	break;
3958 
3959     case AR_T_RAID01:
3960 	meta->type = VIA_T_RAID01;
3961 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3962 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3963 	break;
3964 
3965     default:
3966 	kfree(meta, M_AR);
3967 	return ENODEV;
3968     }
3969     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3970     meta->disk_sectors =
3971 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3972     for (disk = 0; disk < rdp->total_disks; disk++)
3973 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3974 
3975     for (disk = 0; disk < rdp->total_disks; disk++) {
3976 	if (rdp->disks[disk].dev) {
3977 	    u_int8_t *ptr;
3978 	    int count;
3979 
3980 	    meta->disk_index = disk * sizeof(u_int32_t);
3981 	    if (rdp->type == AR_T_RAID01)
3982 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3983 				   (meta->disk_index & ~0x08);
3984 	    meta->disk_id = meta->disks[disk];
3985 	    meta->checksum = 0;
3986 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3987 		meta->checksum += *ptr++;
3988 
3989 	    if (testing || bootverbose)
3990 		ata_raid_via_print_meta(meta);
3991 
3992 	    if (ata_raid_rw(rdp->disks[disk].dev,
3993 			    VIA_LBA(rdp->disks[disk].dev),
3994 			    meta, sizeof(struct via_raid_conf),
3995 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3996 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3997 		error = EIO;
3998 	    }
3999 	}
4000     }
4001     kfree(meta, M_AR);
4002     return error;
4003 }
4004 
4005 static struct ata_request *
4006 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
4007 {
4008     struct ata_request *request;
4009 
4010     if (!(request = ata_alloc_request())) {
4011 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4012 	return NULL;
4013     }
4014     request->timeout = ATA_DEFAULT_TIMEOUT;
4015     request->retries = 2;
4016     request->callback = ata_raid_done;
4017     request->driver = rdp;
4018     request->bio = bio;
4019     switch (request->bio->bio_buf->b_cmd) {
4020     case BUF_CMD_READ:
4021 	request->flags = ATA_R_READ;
4022 	break;
4023     case BUF_CMD_WRITE:
4024 	request->flags = ATA_R_WRITE;
4025 	break;
4026     case BUF_CMD_FLUSH:
4027 	request->flags = ATA_R_CONTROL;
4028 	break;
4029     default:
4030 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4031 	ata_free_request(request);
4032 #if 0
4033 	bio->bio_buf->b_flags |= B_ERROR;
4034 	bio->bio_buf->b_error = EIO;
4035 	biodone(bio);
4036 #endif /* 0 */
4037 	return(NULL);
4038     }
4039     return request;
4040 }
4041 
4042 static int
4043 ata_raid_send_request(struct ata_request *request)
4044 {
4045     struct ata_device *atadev = device_get_softc(request->dev);
4046 
4047     request->transfersize = min(request->bytecount, atadev->max_iosize);
4048     if (request->flags & ATA_R_READ) {
4049 	if (atadev->mode >= ATA_DMA) {
4050 	    request->flags |= ATA_R_DMA;
4051 	    request->u.ata.command = ATA_READ_DMA;
4052 	}
4053 	else if (atadev->max_iosize > DEV_BSIZE)
4054 	    request->u.ata.command = ATA_READ_MUL;
4055 	else
4056 	    request->u.ata.command = ATA_READ;
4057     }
4058     else if (request->flags & ATA_R_WRITE) {
4059 	if (atadev->mode >= ATA_DMA) {
4060 	    request->flags |= ATA_R_DMA;
4061 	    request->u.ata.command = ATA_WRITE_DMA;
4062 	}
4063 	else if (atadev->max_iosize > DEV_BSIZE)
4064 	    request->u.ata.command = ATA_WRITE_MUL;
4065 	else
4066 	    request->u.ata.command = ATA_WRITE;
4067     }
4068     else {
4069 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4070 	ata_free_request(request);
4071 	return EIO;
4072     }
4073     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4074     ata_queue_request(request);
4075     return 0;
4076 }
4077 
4078 static int
4079 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4080 {
4081     struct ata_device *atadev = device_get_softc(dev);
4082     struct ata_request *request;
4083     int error;
4084 
4085     if (bcount % DEV_BSIZE) {
4086 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4087 	return ENOMEM;
4088     }
4089 
4090     if (!(request = ata_alloc_request())) {
4091 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4092 	return ENOMEM;
4093     }
4094 
4095     /* setup request */
4096     request->dev = dev;
4097     request->timeout = 10;
4098     request->retries = 0;
4099     request->data = data;
4100     request->bytecount = bcount;
4101     request->transfersize = DEV_BSIZE;
4102     request->u.ata.lba = lba;
4103     request->u.ata.count = request->bytecount / DEV_BSIZE;
4104     request->flags = flags;
4105 
4106     if (flags & ATA_R_READ) {
4107 	if (atadev->mode >= ATA_DMA) {
4108 	    request->u.ata.command = ATA_READ_DMA;
4109 	    request->flags |= ATA_R_DMA;
4110 	}
4111 	else
4112 	    request->u.ata.command = ATA_READ;
4113 	ata_queue_request(request);
4114     }
4115     else if (flags & ATA_R_WRITE) {
4116 	if (atadev->mode >= ATA_DMA) {
4117 	    request->u.ata.command = ATA_WRITE_DMA;
4118 	    request->flags |= ATA_R_DMA;
4119 	}
4120 	else
4121 	    request->u.ata.command = ATA_WRITE;
4122 	ata_queue_request(request);
4123     }
4124     else {
4125 	device_printf(dev, "FAILURE - unknown IO operation\n");
4126 	request->result = EIO;
4127     }
4128     error = request->result;
4129     ata_free_request(request);
4130     return error;
4131 }
4132 
4133 /*
4134  * module handeling
4135  */
4136 static int
4137 ata_raid_subdisk_probe(device_t dev)
4138 {
4139     device_quiet(dev);
4140     return 0;
4141 }
4142 
4143 static int
4144 ata_raid_subdisk_attach(device_t dev)
4145 {
4146     struct ata_raid_subdisk *ars = device_get_softc(dev);
4147     int volume;
4148 
4149     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4150 	ars->raid[volume] = NULL;
4151 	ars->disk_number[volume] = -1;
4152     }
4153     ata_raid_read_metadata(dev);
4154     return 0;
4155 }
4156 
4157 static int
4158 ata_raid_subdisk_detach(device_t dev)
4159 {
4160     struct ata_raid_subdisk *ars = device_get_softc(dev);
4161     int volume;
4162 
4163     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4164 	if (ars->raid[volume]) {
4165 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4166 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4167 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4168 	    ata_raid_config_changed(ars->raid[volume], 1);
4169 	    ars->raid[volume] = NULL;
4170 	    ars->disk_number[volume] = -1;
4171 	}
4172     }
4173     return 0;
4174 }
4175 
4176 static device_method_t ata_raid_sub_methods[] = {
4177     /* device interface */
4178     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4179     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4180     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4181     { 0, 0 }
4182 };
4183 
4184 static driver_t ata_raid_sub_driver = {
4185     "subdisk",
4186     ata_raid_sub_methods,
4187     sizeof(struct ata_raid_subdisk)
4188 };
4189 
4190 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4191 
4192 static int
4193 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4194 {
4195     int i;
4196 
4197     switch (what) {
4198     case MOD_LOAD:
4199 	if (testing || bootverbose)
4200 	    kprintf("ATA PseudoRAID loaded\n");
4201 #if 0
4202 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4203 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4204 				M_AR, M_WAITOK | M_ZERO);
4205 #endif
4206 	/* attach found PseudoRAID arrays */
4207 	for (i = 0; i < MAX_ARRAYS; i++) {
4208 	    struct ar_softc *rdp = ata_raid_arrays[i];
4209 
4210 	    if (!rdp || !rdp->format)
4211 		continue;
4212 	    if (testing || bootverbose)
4213 		ata_raid_print_meta(rdp);
4214 	    ata_raid_attach(rdp, 0);
4215 	}
4216 	ata_raid_ioctl_func = ata_raid_ioctl;
4217 	return 0;
4218 
4219     case MOD_UNLOAD:
4220 	/* detach found PseudoRAID arrays */
4221 	for (i = 0; i < MAX_ARRAYS; i++) {
4222 	    struct ar_softc *rdp = ata_raid_arrays[i];
4223 
4224 	    if (!rdp || !rdp->status)
4225 		continue;
4226 	    disk_destroy(&rdp->disk);
4227 	}
4228 	if (testing || bootverbose)
4229 	    kprintf("ATA PseudoRAID unloaded\n");
4230 #if 0
4231 	kfree(ata_raid_arrays, M_AR);
4232 #endif
4233 	ata_raid_ioctl_func = NULL;
4234 	return 0;
4235 
4236     default:
4237 	return EOPNOTSUPP;
4238     }
4239 }
4240 
4241 static moduledata_t ata_raid_moduledata =
4242     { "ataraid", ata_raid_module_event_handler, NULL };
4243 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4244 MODULE_VERSION(ataraid, 1);
4245 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4246 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4247 
4248 static char *
4249 ata_raid_format(struct ar_softc *rdp)
4250 {
4251     switch (rdp->format) {
4252     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4253     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4254     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4255     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4256     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4257     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4258     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4259     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4260     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4261     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4262     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4263     case AR_F_SII_RAID:         return "Silicon Image Medley";
4264     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4265     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4266     default:                    return "UNKNOWN";
4267     }
4268 }
4269 
4270 static char *
4271 ata_raid_type(struct ar_softc *rdp)
4272 {
4273     switch (rdp->type) {
4274     case AR_T_JBOD:     return "JBOD";
4275     case AR_T_SPAN:     return "SPAN";
4276     case AR_T_RAID0:    return "RAID0";
4277     case AR_T_RAID1:    return "RAID1";
4278     case AR_T_RAID3:    return "RAID3";
4279     case AR_T_RAID4:    return "RAID4";
4280     case AR_T_RAID5:    return "RAID5";
4281     case AR_T_RAID01:   return "RAID0+1";
4282     default:            return "UNKNOWN";
4283     }
4284 }
4285 
4286 static char *
4287 ata_raid_flags(struct ar_softc *rdp)
4288 {
4289     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4290     case AR_S_READY:                                    return "READY";
4291     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4292     case AR_S_READY | AR_S_REBUILDING:
4293     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4294     default:                                            return "BROKEN";
4295     }
4296 }
4297 
4298 /* debugging gunk */
4299 static void
4300 ata_raid_print_meta(struct ar_softc *raid)
4301 {
4302     int i;
4303 
4304     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4305     kprintf("=================================================\n");
4306     kprintf("format              %s\n", ata_raid_format(raid));
4307     kprintf("type                %s\n", ata_raid_type(raid));
4308     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4309 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4310     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4311     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4312     kprintf("generation          %u\n", raid->generation);
4313     kprintf("total_sectors       %ju\n", raid->total_sectors);
4314     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4315     kprintf("heads               %u\n", raid->heads);
4316     kprintf("sectors             %u\n", raid->sectors);
4317     kprintf("cylinders           %u\n", raid->cylinders);
4318     kprintf("width               %u\n", raid->width);
4319     kprintf("interleave          %u\n", raid->interleave);
4320     kprintf("total_disks         %u\n", raid->total_disks);
4321     for (i = 0; i < raid->total_disks; i++) {
4322 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4323 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4324 	if (raid->disks[i].dev) {
4325 	    kprintf("        ");
4326 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4327 			  raid->disks[i].sectors);
4328 	}
4329     }
4330     kprintf("=================================================\n");
4331 }
4332 
4333 static char *
4334 ata_raid_adaptec_type(int type)
4335 {
4336     static char buffer[16];
4337 
4338     switch (type) {
4339     case ADP_T_RAID0:   return "RAID0";
4340     case ADP_T_RAID1:   return "RAID1";
4341     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4342 			return buffer;
4343     }
4344 }
4345 
4346 static void
4347 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4348 {
4349     int i;
4350 
4351     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4352     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4353     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4354     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4355     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4356     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4357     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4358     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4359     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4360     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4361     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4362     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4363 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4364 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4365     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4366 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4367 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4368 
4369     for (i = 0; i < be16toh(meta->total_configs); i++) {
4370 	kprintf("    %d   total_disks  %u\n", i,
4371 	       be16toh(meta->configs[i].disk_number));
4372 	kprintf("    %d   generation   %u\n", i,
4373 	       be16toh(meta->configs[i].generation));
4374 	kprintf("    %d   magic_0      0x%08x\n", i,
4375 	       be32toh(meta->configs[i].magic_0));
4376 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4377 	kprintf("    %d   type         %s\n", i,
4378 	       ata_raid_adaptec_type(meta->configs[i].type));
4379 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4380 	kprintf("    %d   flags        %d\n", i,
4381 	       be32toh(meta->configs[i].flags));
4382 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4383 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4384 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4385 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4386 	kprintf("    %d   disk_number  %u\n", i,
4387 	       be32toh(meta->configs[i].disk_number));
4388 	kprintf("    %d   dummy_6      0x%08x\n", i,
4389 	       be32toh(meta->configs[i].dummy_6));
4390 	kprintf("    %d   sectors      %u\n", i,
4391 	       be32toh(meta->configs[i].sectors));
4392 	kprintf("    %d   stripe_shift %u\n", i,
4393 	       be16toh(meta->configs[i].stripe_shift));
4394 	kprintf("    %d   dummy_7      0x%08x\n", i,
4395 	       be32toh(meta->configs[i].dummy_7));
4396 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4397 	       be32toh(meta->configs[i].dummy_8[0]),
4398 	       be32toh(meta->configs[i].dummy_8[1]),
4399 	       be32toh(meta->configs[i].dummy_8[2]),
4400 	       be32toh(meta->configs[i].dummy_8[3]));
4401 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4402     }
4403     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4404     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4405     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4406     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4407     kprintf("=================================================\n");
4408 }
4409 
4410 static char *
4411 ata_raid_hptv2_type(int type)
4412 {
4413     static char buffer[16];
4414 
4415     switch (type) {
4416     case HPTV2_T_RAID0:         return "RAID0";
4417     case HPTV2_T_RAID1:         return "RAID1";
4418     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4419     case HPTV2_T_SPAN:          return "SPAN";
4420     case HPTV2_T_RAID_3:        return "RAID3";
4421     case HPTV2_T_RAID_5:        return "RAID5";
4422     case HPTV2_T_JBOD:          return "JBOD";
4423     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4424     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4425 			return buffer;
4426     }
4427 }
4428 
4429 static void
4430 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4431 {
4432     int i;
4433 
4434     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4435     kprintf("magic               0x%08x\n", meta->magic);
4436     kprintf("magic_0             0x%08x\n", meta->magic_0);
4437     kprintf("magic_1             0x%08x\n", meta->magic_1);
4438     kprintf("order               0x%08x\n", meta->order);
4439     kprintf("array_width         %u\n", meta->array_width);
4440     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4441     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4442     kprintf("disk_number         %u\n", meta->disk_number);
4443     kprintf("total_sectors       %u\n", meta->total_sectors);
4444     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4445     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4446     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4447     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4448     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4449     kprintf("log_index           0x%02x\n", meta->error_log_index);
4450     if (meta->error_log_entries) {
4451 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4452 	for (i = meta->error_log_index;
4453 	     i < meta->error_log_index + meta->error_log_entries; i++)
4454 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4455 		   meta->errorlog[i%32].timestamp,
4456 		   meta->errorlog[i%32].reason,
4457 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4458 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4459     }
4460     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4461     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4462     kprintf("name_1              <%.15s>\n", meta->name_1);
4463     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4464     kprintf("name_2              <%.15s>\n", meta->name_2);
4465     kprintf("=================================================\n");
4466 }
4467 
4468 static char *
4469 ata_raid_hptv3_type(int type)
4470 {
4471     static char buffer[16];
4472 
4473     switch (type) {
4474     case HPTV3_T_SPARE: return "SPARE";
4475     case HPTV3_T_JBOD:  return "JBOD";
4476     case HPTV3_T_SPAN:  return "SPAN";
4477     case HPTV3_T_RAID0: return "RAID0";
4478     case HPTV3_T_RAID1: return "RAID1";
4479     case HPTV3_T_RAID3: return "RAID3";
4480     case HPTV3_T_RAID5: return "RAID5";
4481     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4482 			return buffer;
4483     }
4484 }
4485 
4486 static void
4487 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4488 {
4489     int i;
4490 
4491     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4492     kprintf("magic               0x%08x\n", meta->magic);
4493     kprintf("magic_0             0x%08x\n", meta->magic_0);
4494     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4495     kprintf("mode                0x%02x\n", meta->mode);
4496     kprintf("user_mode           0x%02x\n", meta->user_mode);
4497     kprintf("config_entries      0x%02x\n", meta->config_entries);
4498     for (i = 0; i < meta->config_entries; i++) {
4499 	kprintf("config %d:\n", i);
4500 	kprintf("    total_sectors       %ju\n",
4501 	       meta->configs[0].total_sectors +
4502 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4503 	kprintf("    type                %s\n",
4504 	       ata_raid_hptv3_type(meta->configs[i].type));
4505 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4506 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4507 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4508 	kprintf("    status              %b\n", meta->configs[i].status,
4509 	       "\20\2RAID5\1NEED_REBUILD\n");
4510 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4511 	kprintf("    rebuild_lba         %ju\n",
4512 	       meta->configs_high[0].rebuild_lba +
4513 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4514     }
4515     kprintf("name                <%.16s>\n", meta->name);
4516     kprintf("timestamp           0x%08x\n", meta->timestamp);
4517     kprintf("description         <%.16s>\n", meta->description);
4518     kprintf("creator             <%.16s>\n", meta->creator);
4519     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4520     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4521     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4522     kprintf("flags               %b\n", meta->flags,
4523 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4524     kprintf("=================================================\n");
4525 }
4526 
4527 static char *
4528 ata_raid_intel_type(int type)
4529 {
4530     static char buffer[16];
4531 
4532     switch (type) {
4533     case INTEL_T_RAID0: return "RAID0";
4534     case INTEL_T_RAID1: return "RAID1";
4535     case INTEL_T_RAID5: return "RAID5";
4536     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4537 			return buffer;
4538     }
4539 }
4540 
4541 static void
4542 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4543 {
4544     struct intel_raid_mapping *map;
4545     int i, j;
4546 
4547     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4548     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4549     kprintf("version             <%.6s>\n", meta->version);
4550     kprintf("checksum            0x%08x\n", meta->checksum);
4551     kprintf("config_size         0x%08x\n", meta->config_size);
4552     kprintf("config_id           0x%08x\n", meta->config_id);
4553     kprintf("generation          0x%08x\n", meta->generation);
4554     kprintf("total_disks         %u\n", meta->total_disks);
4555     kprintf("total_volumes       %u\n", meta->total_volumes);
4556     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4557     for (i = 0; i < meta->total_disks; i++ ) {
4558 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4559 	       meta->disk[i].serial, meta->disk[i].sectors,
4560 	       meta->disk[i].id, meta->disk[i].flags);
4561     }
4562     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4563     for (j = 0; j < meta->total_volumes; j++) {
4564 	kprintf("name                %.16s\n", map->name);
4565 	kprintf("total_sectors       %ju\n", map->total_sectors);
4566 	kprintf("state               %u\n", map->state);
4567 	kprintf("reserved            %u\n", map->reserved);
4568 	kprintf("offset              %u\n", map->offset);
4569 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4570 	kprintf("stripe_count        %u\n", map->stripe_count);
4571 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4572 	kprintf("status              %u\n", map->status);
4573 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4574 	kprintf("total_disks         %u\n", map->total_disks);
4575 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4576 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4577 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4578 	for (i = 0; i < map->total_disks; i++ ) {
4579 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4580 	}
4581 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4582     }
4583     kprintf("=================================================\n");
4584 }
4585 
4586 static char *
4587 ata_raid_ite_type(int type)
4588 {
4589     static char buffer[16];
4590 
4591     switch (type) {
4592     case ITE_T_RAID0:   return "RAID0";
4593     case ITE_T_RAID1:   return "RAID1";
4594     case ITE_T_RAID01:  return "RAID0+1";
4595     case ITE_T_SPAN:    return "SPAN";
4596     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4597 			return buffer;
4598     }
4599 }
4600 
4601 static void
4602 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4603 {
4604     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4605     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4606     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4607 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4608 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4609 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4610     kprintf("total_sectors       %jd\n", meta->total_sectors);
4611     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4612     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4613     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4614 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4615 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4616 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4617     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4618     kprintf("array_width         %u\n", meta->array_width);
4619     kprintf("disk_number         %u\n", meta->disk_number);
4620     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4621     kprintf("=================================================\n");
4622 }
4623 
4624 static char *
4625 ata_raid_jmicron_type(int type)
4626 {
4627     static char buffer[16];
4628 
4629     switch (type) {
4630     case JM_T_RAID0:	return "RAID0";
4631     case JM_T_RAID1:	return "RAID1";
4632     case JM_T_RAID01:	return "RAID0+1";
4633     case JM_T_JBOD:	return "JBOD";
4634     case JM_T_RAID5:	return "RAID5";
4635     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4636 			return buffer;
4637     }
4638 }
4639 
4640 static void
4641 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4642 {
4643     int i;
4644 
4645     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4646     kprintf("signature           %.2s\n", meta->signature);
4647     kprintf("version             0x%04x\n", meta->version);
4648     kprintf("checksum            0x%04x\n", meta->checksum);
4649     kprintf("disk_id             0x%08x\n", meta->disk_id);
4650     kprintf("offset              0x%08x\n", meta->offset);
4651     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4652     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4653     kprintf("name                %.16s\n", meta->name);
4654     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4655     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4656     kprintf("flags               0x%04x\n", meta->flags);
4657     kprintf("spare:\n");
4658     for (i=0; i < 2 && meta->spare[i]; i++)
4659 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4660     kprintf("disks:\n");
4661     for (i=0; i < 8 && meta->disks[i]; i++)
4662 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4663     kprintf("=================================================\n");
4664 }
4665 
4666 static char *
4667 ata_raid_lsiv2_type(int type)
4668 {
4669     static char buffer[16];
4670 
4671     switch (type) {
4672     case LSIV2_T_RAID0: return "RAID0";
4673     case LSIV2_T_RAID1: return "RAID1";
4674     case LSIV2_T_SPARE: return "SPARE";
4675     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4676 			return buffer;
4677     }
4678 }
4679 
4680 static void
4681 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4682 {
4683     int i;
4684 
4685     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4686     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4687     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4688     kprintf("flags               0x%02x\n", meta->flags);
4689     kprintf("version             0x%04x\n", meta->version);
4690     kprintf("config_entries      0x%02x\n", meta->config_entries);
4691     kprintf("raid_count          0x%02x\n", meta->raid_count);
4692     kprintf("total_disks         0x%02x\n", meta->total_disks);
4693     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4694     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4695     for (i = 0; i < meta->config_entries; i++) {
4696 	kprintf("    type             %s\n",
4697 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4698 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4699 	kprintf("    stripe_sectors   %u\n",
4700 	       meta->configs[i].raid.stripe_sectors);
4701 	kprintf("    array_width      %u\n",
4702 	       meta->configs[i].raid.array_width);
4703 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4704 	kprintf("    config_offset    %u\n",
4705 	       meta->configs[i].raid.config_offset);
4706 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4707 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4708 	kprintf("    total_sectors    %u\n",
4709 	       meta->configs[i].raid.total_sectors);
4710     }
4711     kprintf("disk_number         0x%02x\n", meta->disk_number);
4712     kprintf("raid_number         0x%02x\n", meta->raid_number);
4713     kprintf("timestamp           0x%08x\n", meta->timestamp);
4714     kprintf("=================================================\n");
4715 }
4716 
4717 static char *
4718 ata_raid_lsiv3_type(int type)
4719 {
4720     static char buffer[16];
4721 
4722     switch (type) {
4723     case LSIV3_T_RAID0: return "RAID0";
4724     case LSIV3_T_RAID1: return "RAID1";
4725     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4726 			return buffer;
4727     }
4728 }
4729 
4730 static void
4731 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4732 {
4733     int i;
4734 
4735     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4736     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4737     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4738     kprintf("version             0x%04x\n", meta->version);
4739     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4740     kprintf("RAID configs:\n");
4741     for (i = 0; i < 8; i++) {
4742 	if (meta->raid[i].total_disks) {
4743 	    kprintf("%02d  stripe_pages       %u\n", i,
4744 		   meta->raid[i].stripe_pages);
4745 	    kprintf("%02d  type               %s\n", i,
4746 		   ata_raid_lsiv3_type(meta->raid[i].type));
4747 	    kprintf("%02d  total_disks        %u\n", i,
4748 		   meta->raid[i].total_disks);
4749 	    kprintf("%02d  array_width        %u\n", i,
4750 		   meta->raid[i].array_width);
4751 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4752 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4753 	    kprintf("%02d  device             0x%02x\n", i,
4754 		   meta->raid[i].device);
4755 	}
4756     }
4757     kprintf("DISK configs:\n");
4758     for (i = 0; i < 6; i++) {
4759 	    if (meta->disk[i].disk_sectors) {
4760 	    kprintf("%02d  disk_sectors       %u\n", i,
4761 		   meta->disk[i].disk_sectors);
4762 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4763 	}
4764     }
4765     kprintf("device              0x%02x\n", meta->device);
4766     kprintf("timestamp           0x%08x\n", meta->timestamp);
4767     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4768     kprintf("=================================================\n");
4769 }
4770 
4771 static char *
4772 ata_raid_nvidia_type(int type)
4773 {
4774     static char buffer[16];
4775 
4776     switch (type) {
4777     case NV_T_SPAN:     return "SPAN";
4778     case NV_T_RAID0:    return "RAID0";
4779     case NV_T_RAID1:    return "RAID1";
4780     case NV_T_RAID3:    return "RAID3";
4781     case NV_T_RAID5:    return "RAID5";
4782     case NV_T_RAID01:   return "RAID0+1";
4783     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4784 			return buffer;
4785     }
4786 }
4787 
4788 static void
4789 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4790 {
4791     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4792     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4793     kprintf("config_size         %d\n", meta->config_size);
4794     kprintf("checksum            0x%08x\n", meta->checksum);
4795     kprintf("version             0x%04x\n", meta->version);
4796     kprintf("disk_number         %d\n", meta->disk_number);
4797     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4798     kprintf("total_sectors       %d\n", meta->total_sectors);
4799     kprintf("sectors_size        %d\n", meta->sector_size);
4800     kprintf("serial              %.16s\n", meta->serial);
4801     kprintf("revision            %.4s\n", meta->revision);
4802     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4803     kprintf("magic_0             0x%08x\n", meta->magic_0);
4804     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4805     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4806     kprintf("flags               0x%02x\n", meta->flags);
4807     kprintf("array_width         %d\n", meta->array_width);
4808     kprintf("total_disks         %d\n", meta->total_disks);
4809     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4810     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4811     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4812     kprintf("stripe_sectors      %d\n", meta->stripe_sectors);
4813     kprintf("stripe_bytes        %d\n", meta->stripe_bytes);
4814     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4815     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4816     kprintf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
4817     kprintf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
4818     kprintf("rebuild_lba         %d\n", meta->rebuild_lba);
4819     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4820     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4821     kprintf("status              0x%08x\n", meta->status);
4822     kprintf("=================================================\n");
4823 }
4824 
4825 static char *
4826 ata_raid_promise_type(int type)
4827 {
4828     static char buffer[16];
4829 
4830     switch (type) {
4831     case PR_T_RAID0:    return "RAID0";
4832     case PR_T_RAID1:    return "RAID1";
4833     case PR_T_RAID3:    return "RAID3";
4834     case PR_T_RAID5:    return "RAID5";
4835     case PR_T_SPAN:     return "SPAN";
4836     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4837 			return buffer;
4838     }
4839 }
4840 
4841 static void
4842 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4843 {
4844     int i;
4845 
4846     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4847     kprintf("promise_id          <%s>\n", meta->promise_id);
4848     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4849     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4850     kprintf("magic_1             0x%04x\n", meta->magic_1);
4851     kprintf("magic_2             0x%08x\n", meta->magic_2);
4852     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4853 		meta->raid.integrity, "\20\10VALID\n" );
4854     kprintf("flags               0x%02x %b\n",
4855 	   meta->raid.flags, meta->raid.flags,
4856 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4857 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4858     kprintf("disk_number         %d\n", meta->raid.disk_number);
4859     kprintf("channel             0x%02x\n", meta->raid.channel);
4860     kprintf("device              0x%02x\n", meta->raid.device);
4861     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4862     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4863     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4864     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4865     kprintf("generation          0x%04x\n", meta->raid.generation);
4866     kprintf("status              0x%02x %b\n",
4867 	    meta->raid.status, meta->raid.status,
4868 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4869     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4870     kprintf("total_disks         %u\n", meta->raid.total_disks);
4871     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4872     kprintf("array_width         %u\n", meta->raid.array_width);
4873     kprintf("array_number        %u\n", meta->raid.array_number);
4874     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4875     kprintf("cylinders           %u\n", meta->raid.cylinders);
4876     kprintf("heads               %u\n", meta->raid.heads);
4877     kprintf("sectors             %u\n", meta->raid.sectors);
4878     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4879     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4880     for (i = 0; i < 8; i++) {
4881 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4882 	       i, meta->raid.disk[i].flags,
4883 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4884 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4885 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4886 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4887     }
4888     kprintf("checksum            0x%08x\n", meta->checksum);
4889     kprintf("=================================================\n");
4890 }
4891 
4892 static char *
4893 ata_raid_sii_type(int type)
4894 {
4895     static char buffer[16];
4896 
4897     switch (type) {
4898     case SII_T_RAID0:   return "RAID0";
4899     case SII_T_RAID1:   return "RAID1";
4900     case SII_T_RAID01:  return "RAID0+1";
4901     case SII_T_SPARE:   return "SPARE";
4902     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4903 			return buffer;
4904     }
4905 }
4906 
4907 static void
4908 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4909 {
4910     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4911     kprintf("total_sectors       %ju\n", meta->total_sectors);
4912     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4913     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4914     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4915     kprintf("version_minor       0x%04x\n", meta->version_minor);
4916     kprintf("version_major       0x%04x\n", meta->version_major);
4917     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4918 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4919 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4920     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4921     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4922     kprintf("disk_number         %u\n", meta->disk_number);
4923     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4924     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4925     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4926     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4927     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4928     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4929     kprintf("generation          0x%08x\n", meta->generation);
4930     kprintf("status              0x%02x %b\n",
4931 	    meta->status, meta->status,
4932 	   "\20\1READY\n");
4933     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4934     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4935     kprintf("position            %02x\n", meta->position);
4936     kprintf("dummy_3             %04x\n", meta->dummy_3);
4937     kprintf("name                <%.16s>\n", meta->name);
4938     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4939     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4940     kprintf("=================================================\n");
4941 }
4942 
4943 static char *
4944 ata_raid_sis_type(int type)
4945 {
4946     static char buffer[16];
4947 
4948     switch (type) {
4949     case SIS_T_JBOD:    return "JBOD";
4950     case SIS_T_RAID0:   return "RAID0";
4951     case SIS_T_RAID1:   return "RAID1";
4952     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4953 			return buffer;
4954     }
4955 }
4956 
4957 static void
4958 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4959 {
4960     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4961     kprintf("magic               0x%04x\n", meta->magic);
4962     kprintf("disks               0x%02x\n", meta->disks);
4963     kprintf("type                %s\n",
4964 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4965     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4966     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4967     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4968     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4969     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4970     kprintf("timestamp           0x%08x\n", meta->timestamp);
4971     kprintf("model               %.40s\n", meta->model);
4972     kprintf("disk_number         %u\n", meta->disk_number);
4973     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4974 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4975     kprintf("=================================================\n");
4976 }
4977 
4978 static char *
4979 ata_raid_via_type(int type)
4980 {
4981     static char buffer[16];
4982 
4983     switch (type) {
4984     case VIA_T_RAID0:   return "RAID0";
4985     case VIA_T_RAID1:   return "RAID1";
4986     case VIA_T_RAID5:   return "RAID5";
4987     case VIA_T_RAID01:  return "RAID0+1";
4988     case VIA_T_SPAN:    return "SPAN";
4989     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4990 			return buffer;
4991     }
4992 }
4993 
4994 static void
4995 ata_raid_via_print_meta(struct via_raid_conf *meta)
4996 {
4997     int i;
4998 
4999     kprintf("*************** ATA VIA Metadata ****************\n");
5000     kprintf("magic               0x%02x\n", meta->magic);
5001     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
5002     kprintf("type                %s\n",
5003 	   ata_raid_via_type(meta->type & VIA_T_MASK));
5004     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
5005     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
5006     kprintf("disk_index          0x%02x\n", meta->disk_index);
5007     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
5008     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
5009     kprintf(" stripe_sectors     %d\n",
5010 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
5011     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5012     kprintf("disk_id             0x%08x\n", meta->disk_id);
5013     kprintf("DISK#   disk_id\n");
5014     for (i = 0; i < 8; i++) {
5015 	if (meta->disks[i])
5016 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5017     }
5018     kprintf("checksum            0x%02x\n", meta->checksum);
5019     kprintf("=================================================\n");
5020 }
5021