xref: /dragonfly/sys/dev/disk/sym/sym_hipd.c (revision 5de36205)
1 /*
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /* $FreeBSD: src/sys/dev/sym/sym_hipd.c,v 1.6.2.12 2001/12/02 19:01:10 groudier Exp $ */
59 /* $DragonFly: src/sys/dev/disk/sym/sym_hipd.c,v 1.15 2005/06/16 21:12:30 dillon Exp $ */
60 
61 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62 
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64 /* #define CAM_NEW_TRAN_CODE */
65 
66 #include "use_pci.h"
67 #include <sys/param.h>
68 
69 /*
70  *  Only use the BUS stuff for PCI under FreeBSD 4 and later versions.
71  *  Note that the old BUS stuff also works for FreeBSD 4 and spares
72  *  about 1 KB for the driver object file.
73  */
74 #if 	defined(__DragonFly__) || __FreeBSD_version >= 400000
75 #define	FreeBSD_Bus_Dma_Abstraction
76 #define	FreeBSD_Bus_Io_Abstraction
77 #define	FreeBSD_Bus_Space_Abstraction
78 #endif
79 
80 /*
81  *  Driver configuration options.
82  */
83 #include "opt_sym.h"
84 #include "sym_conf.h"
85 
86 #ifndef FreeBSD_Bus_Io_Abstraction
87 #include "use_ncr.h"	/* To know if the ncr has been configured */
88 #endif
89 
90 #include <sys/systm.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #ifdef FreeBSD_Bus_Io_Abstraction
94 #include <sys/module.h>
95 #include <sys/bus.h>
96 #endif
97 #include <sys/thread2.h>
98 
99 #include <sys/proc.h>
100 
101 #include <bus/pci/pcireg.h>
102 #include <bus/pci/pcivar.h>
103 
104 #ifdef	FreeBSD_Bus_Space_Abstraction
105 #include <machine/bus_memio.h>
106 /*
107  *  Only include bus_pio if needed.
108  *  This avoids bus space primitives to be uselessly bloated
109  *  by out-of-age PIO operations.
110  */
111 #ifdef	SYM_CONF_IOMAPPED
112 #include <machine/bus_pio.h>
113 #endif
114 #endif
115 #include <machine/bus.h>
116 
117 #ifdef FreeBSD_Bus_Io_Abstraction
118 #include <machine/resource.h>
119 #include <sys/rman.h>
120 #endif
121 #include <machine/clock.h>
122 
123 #include <bus/cam/cam.h>
124 #include <bus/cam/cam_ccb.h>
125 #include <bus/cam/cam_sim.h>
126 #include <bus/cam/cam_xpt_sim.h>
127 #include <bus/cam/cam_debug.h>
128 
129 #include <bus/cam/scsi/scsi_all.h>
130 #include <bus/cam/scsi/scsi_message.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/pmap.h>
135 
136 /* Short and quite clear integer types */
137 typedef int8_t    s8;
138 typedef int16_t   s16;
139 typedef	int32_t   s32;
140 typedef u_int8_t  u8;
141 typedef u_int16_t u16;
142 typedef	u_int32_t u32;
143 
144 /*
145  *  From 'cam.error_recovery_diffs.20010313.context' patch.
146  */
147 #ifdef  CAM_NEW_TRAN_CODE
148 #define FreeBSD_New_Tran_Settings
149 #endif  /* CAM_NEW_TRAN_CODE */
150 
151 /*
152  *  Driver definitions.
153  */
154 #include "sym_defs.h"
155 #include "sym_fw.h"
156 
157 /*
158  *  IA32 architecture does not reorder STORES and prevents
159  *  LOADS from passing STORES. It is called `program order'
160  *  by Intel and allows device drivers to deal with memory
161  *  ordering by only ensuring that the code is not reordered
162  *  by the compiler when ordering is required.
163  *  Other architectures implement a weaker ordering that
164  *  requires memory barriers (and also IO barriers when they
165  *  make sense) to be used.
166  */
167 
168 #if	defined	__i386__
169 #define MEMORY_BARRIER()	do { ; } while(0)
170 #elif	defined	__powerpc__
171 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
172 #elif	defined	__ia64__
173 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
174 #elif	defined	__sparc64__
175 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
176 #else
177 #error	"Not supported platform"
178 #endif
179 
180 /*
181  *  Portable but silly implemented byte order primitives.
182  *  We define the primitives we need, since FreeBSD doesn't
183  *  seem to have them yet.
184  */
185 #if	BYTE_ORDER == BIG_ENDIAN
186 
187 #define __revb16(x) (	(((u16)(x) & (u16)0x00ffU) << 8) | \
188 			(((u16)(x) & (u16)0xff00U) >> 8) 	)
189 #define __revb32(x) (	(((u32)(x) & 0x000000ffU) << 24) | \
190 			(((u32)(x) & 0x0000ff00U) <<  8) | \
191 			(((u32)(x) & 0x00ff0000U) >>  8) | \
192 			(((u32)(x) & 0xff000000U) >> 24)	)
193 
194 #define __htole16(v)	__revb16(v)
195 #define __htole32(v)	__revb32(v)
196 #define __le16toh(v)	__htole16(v)
197 #define __le32toh(v)	__htole32(v)
198 
199 static __inline u16	_htole16(u16 v) { return __htole16(v); }
200 static __inline u32	_htole32(u32 v) { return __htole32(v); }
201 #define _le16toh	_htole16
202 #define _le32toh	_htole32
203 
204 #else	/* LITTLE ENDIAN */
205 
206 #define __htole16(v)	(v)
207 #define __htole32(v)	(v)
208 #define __le16toh(v)	(v)
209 #define __le32toh(v)	(v)
210 
211 #define _htole16(v)	(v)
212 #define _htole32(v)	(v)
213 #define _le16toh(v)	(v)
214 #define _le32toh(v)	(v)
215 
216 #endif	/* BYTE_ORDER */
217 
218 /*
219  *  A la VMS/CAM-3 queue management.
220  */
221 
222 typedef struct sym_quehead {
223 	struct sym_quehead *flink;	/* Forward  pointer */
224 	struct sym_quehead *blink;	/* Backward pointer */
225 } SYM_QUEHEAD;
226 
227 #define sym_que_init(ptr) do { \
228 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
229 } while (0)
230 
231 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
232 {
233 	return (head->flink == head) ? 0 : head->flink;
234 }
235 
236 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
237 {
238 	return (head->blink == head) ? 0 : head->blink;
239 }
240 
241 static __inline void __sym_que_add(struct sym_quehead * new,
242 	struct sym_quehead * blink,
243 	struct sym_quehead * flink)
244 {
245 	flink->blink	= new;
246 	new->flink	= flink;
247 	new->blink	= blink;
248 	blink->flink	= new;
249 }
250 
251 static __inline void __sym_que_del(struct sym_quehead * blink,
252 	struct sym_quehead * flink)
253 {
254 	flink->blink = blink;
255 	blink->flink = flink;
256 }
257 
258 static __inline int sym_que_empty(struct sym_quehead *head)
259 {
260 	return head->flink == head;
261 }
262 
263 static __inline void sym_que_splice(struct sym_quehead *list,
264 	struct sym_quehead *head)
265 {
266 	struct sym_quehead *first = list->flink;
267 
268 	if (first != list) {
269 		struct sym_quehead *last = list->blink;
270 		struct sym_quehead *at   = head->flink;
271 
272 		first->blink = head;
273 		head->flink  = first;
274 
275 		last->flink = at;
276 		at->blink   = last;
277 	}
278 }
279 
280 #define sym_que_entry(ptr, type, member) \
281 	((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))
282 
283 
284 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
285 
286 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
287 
288 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
289 
290 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
291 {
292 	struct sym_quehead *elem = head->flink;
293 
294 	if (elem != head)
295 		__sym_que_del(head, elem->flink);
296 	else
297 		elem = 0;
298 	return elem;
299 }
300 
301 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
302 
303 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
304 {
305 	struct sym_quehead *elem = head->blink;
306 
307 	if (elem != head)
308 		__sym_que_del(elem->blink, head);
309 	else
310 		elem = 0;
311 	return elem;
312 }
313 
314 /*
315  *  This one may be useful.
316  */
317 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
318 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
319 /*
320  *  FreeBSD does not offer our kind of queue in the CAM CCB.
321  *  So, we have to cast.
322  */
323 #define sym_qptr(p)	((struct sym_quehead *) (p))
324 
325 /*
326  *  Simple bitmap operations.
327  */
328 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
329 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
330 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
331 
332 /*
333  *  Number of tasks per device we want to handle.
334  */
335 #if	SYM_CONF_MAX_TAG_ORDER > 8
336 #error	"more than 256 tags per logical unit not allowed."
337 #endif
338 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
339 
340 /*
341  *  Donnot use more tasks that we can handle.
342  */
343 #ifndef	SYM_CONF_MAX_TAG
344 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
345 #endif
346 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
347 #undef	SYM_CONF_MAX_TAG
348 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
349 #endif
350 
351 /*
352  *    This one means 'NO TAG for this job'
353  */
354 #define NO_TAG	(256)
355 
356 /*
357  *  Number of SCSI targets.
358  */
359 #if	SYM_CONF_MAX_TARGET > 16
360 #error	"more than 16 targets not allowed."
361 #endif
362 
363 /*
364  *  Number of logical units per target.
365  */
366 #if	SYM_CONF_MAX_LUN > 64
367 #error	"more than 64 logical units per target not allowed."
368 #endif
369 
370 /*
371  *    Asynchronous pre-scaler (ns). Shall be 40 for
372  *    the SCSI timings to be compliant.
373  */
374 #define	SYM_CONF_MIN_ASYNC (40)
375 
376 /*
377  *  Number of entries in the START and DONE queues.
378  *
379  *  We limit to 1 PAGE in order to succeed allocation of
380  *  these queues. Each entry is 8 bytes long (2 DWORDS).
381  */
382 #ifdef	SYM_CONF_MAX_START
383 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
384 #else
385 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
386 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
387 #endif
388 
389 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
390 #undef	SYM_CONF_MAX_QUEUE
391 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
392 #undef	SYM_CONF_MAX_START
393 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
394 #endif
395 
396 /*
397  *  For this one, we want a short name :-)
398  */
399 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
400 
401 /*
402  *  Active debugging tags and verbosity.
403  */
404 #define DEBUG_ALLOC	(0x0001)
405 #define DEBUG_PHASE	(0x0002)
406 #define DEBUG_POLL	(0x0004)
407 #define DEBUG_QUEUE	(0x0008)
408 #define DEBUG_RESULT	(0x0010)
409 #define DEBUG_SCATTER	(0x0020)
410 #define DEBUG_SCRIPT	(0x0040)
411 #define DEBUG_TINY	(0x0080)
412 #define DEBUG_TIMING	(0x0100)
413 #define DEBUG_NEGO	(0x0200)
414 #define DEBUG_TAGS	(0x0400)
415 #define DEBUG_POINTER	(0x0800)
416 
417 #if 0
418 static int sym_debug = 0;
419 	#define DEBUG_FLAGS sym_debug
420 #else
421 /*	#define DEBUG_FLAGS (0x0631) */
422 	#define DEBUG_FLAGS (0x0000)
423 
424 #endif
425 #define sym_verbose	(np->verbose)
426 
427 /*
428  *  Insert a delay in micro-seconds and milli-seconds.
429  */
430 static void UDELAY(int us) { DELAY(us); }
431 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
432 
433 /*
434  *  Simple power of two buddy-like allocator.
435  *
436  *  This simple code is not intended to be fast, but to
437  *  provide power of 2 aligned memory allocations.
438  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
439  *  this allocator allows simple and fast address calculations
440  *  from the SCRIPTS code. In addition, cache line alignment
441  *  is guaranteed for power of 2 cache line size.
442  *
443  *  This allocator has been developped for the Linux sym53c8xx
444  *  driver, since this O/S does not provide naturally aligned
445  *  allocations.
446  *  It has the advantage of allowing the driver to use private
447  *  pages of memory that will be useful if we ever need to deal
448  *  with IO MMUs for PCI.
449  */
450 
451 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
452 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
453 #if 0
454 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
455 #endif
456 #define MEMO_WARN	1
457 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
458 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
459 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
460 
461 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_INTWAIT)
462 #define free_pages(p)		free((p), M_DEVBUF)
463 
464 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
465 
466 typedef struct m_link {		/* Link between free memory chunks */
467 	struct m_link *next;
468 } m_link_s;
469 
470 #ifdef	FreeBSD_Bus_Dma_Abstraction
471 typedef struct m_vtob {		/* Virtual to Bus address translation */
472 	struct m_vtob	*next;
473 	bus_dmamap_t	dmamap;	/* Map for this chunk */
474 	m_addr_t	vaddr;	/* Virtual address */
475 	m_addr_t	baddr;	/* Bus physical address */
476 } m_vtob_s;
477 /* Hash this stuff a bit to speed up translations */
478 #define VTOB_HASH_SHIFT		5
479 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
480 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
481 #define VTOB_HASH_CODE(m)	\
482 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
483 #endif
484 
485 typedef struct m_pool {		/* Memory pool of a given kind */
486 #ifdef	FreeBSD_Bus_Dma_Abstraction
487 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
488 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
489 	m_addr_t (*getp)(struct m_pool *);
490 #ifdef	MEMO_FREE_UNUSED
491 	void (*freep)(struct m_pool *, m_addr_t);
492 #endif
493 #define M_GETP()		mp->getp(mp)
494 #define M_FREEP(p)		mp->freep(mp, p)
495 	int nump;
496 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
497 	struct m_pool *next;
498 #else
499 #define M_GETP()		get_pages()
500 #define M_FREEP(p)		free_pages(p)
501 #endif	/* FreeBSD_Bus_Dma_Abstraction */
502 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
503 } m_pool_s;
504 
505 static void *___sym_malloc(m_pool_s *mp, int size)
506 {
507 	int i = 0;
508 	int s = (1 << MEMO_SHIFT);
509 	int j;
510 	m_addr_t a;
511 	m_link_s *h = mp->h;
512 
513 	if (size > MEMO_CLUSTER_SIZE)
514 		return 0;
515 
516 	while (size > s) {
517 		s <<= 1;
518 		++i;
519 	}
520 
521 	j = i;
522 	while (!h[j].next) {
523 		if (s == MEMO_CLUSTER_SIZE) {
524 			h[j].next = (m_link_s *) M_GETP();
525 			if (h[j].next)
526 				h[j].next->next = 0;
527 			break;
528 		}
529 		++j;
530 		s <<= 1;
531 	}
532 	a = (m_addr_t) h[j].next;
533 	if (a) {
534 		h[j].next = h[j].next->next;
535 		while (j > i) {
536 			j -= 1;
537 			s >>= 1;
538 			h[j].next = (m_link_s *) (a+s);
539 			h[j].next->next = 0;
540 		}
541 	}
542 #ifdef DEBUG
543 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
544 #endif
545 	return (void *) a;
546 }
547 
548 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
549 {
550 	int i = 0;
551 	int s = (1 << MEMO_SHIFT);
552 	m_link_s *q;
553 	m_addr_t a, b;
554 	m_link_s *h = mp->h;
555 
556 #ifdef DEBUG
557 	printf("___sym_mfree(%p, %d)\n", ptr, size);
558 #endif
559 
560 	if (size > MEMO_CLUSTER_SIZE)
561 		return;
562 
563 	while (size > s) {
564 		s <<= 1;
565 		++i;
566 	}
567 
568 	a = (m_addr_t) ptr;
569 
570 	while (1) {
571 #ifdef MEMO_FREE_UNUSED
572 		if (s == MEMO_CLUSTER_SIZE) {
573 			M_FREEP(a);
574 			break;
575 		}
576 #endif
577 		b = a ^ s;
578 		q = &h[i];
579 		while (q->next && q->next != (m_link_s *) b) {
580 			q = q->next;
581 		}
582 		if (!q->next) {
583 			((m_link_s *) a)->next = h[i].next;
584 			h[i].next = (m_link_s *) a;
585 			break;
586 		}
587 		q->next = q->next->next;
588 		a = a & b;
589 		s <<= 1;
590 		++i;
591 	}
592 }
593 
594 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
595 {
596 	void *p;
597 
598 	p = ___sym_malloc(mp, size);
599 
600 	if (DEBUG_FLAGS & DEBUG_ALLOC)
601 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
602 
603 	if (p)
604 		bzero(p, size);
605 	else if (uflags & MEMO_WARN)
606 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
607 
608 	return p;
609 }
610 
611 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
612 
613 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
614 {
615 	if (DEBUG_FLAGS & DEBUG_ALLOC)
616 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
617 
618 	___sym_mfree(mp, ptr, size);
619 
620 }
621 
622 /*
623  * Default memory pool we donnot need to involve in DMA.
624  */
625 #ifndef	FreeBSD_Bus_Dma_Abstraction
626 /*
627  * Without the `bus dma abstraction', all the memory is assumed
628  * DMAable and a single pool is all what we need.
629  */
630 static m_pool_s mp0;
631 
632 #else
633 /*
634  * With the `bus dma abstraction', we use a separate pool for
635  * memory we donnot need to involve in DMA.
636  */
637 static m_addr_t ___mp0_getp(m_pool_s *mp)
638 {
639 	m_addr_t m = (m_addr_t) get_pages();
640 	if (m)
641 		++mp->nump;
642 	return m;
643 }
644 
645 #ifdef	MEMO_FREE_UNUSED
646 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
647 {
648 	free_pages(m);
649 	--mp->nump;
650 }
651 #endif
652 
653 #ifdef	MEMO_FREE_UNUSED
654 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
655 #else
656 static m_pool_s mp0 = {0, 0, ___mp0_getp};
657 #endif
658 
659 #endif	/* FreeBSD_Bus_Dma_Abstraction */
660 
661 /*
662  * Actual memory allocation routine for non-DMAed memory.
663  */
664 static void *sym_calloc(int size, char *name)
665 {
666 	void *m;
667 	/* Lock */
668 	m = __sym_calloc(&mp0, size, name);
669 	/* Unlock */
670 	return m;
671 }
672 
673 /*
674  * Actual memory allocation routine for non-DMAed memory.
675  */
676 static void sym_mfree(void *ptr, int size, char *name)
677 {
678 	/* Lock */
679 	__sym_mfree(&mp0, ptr, size, name);
680 	/* Unlock */
681 }
682 
683 /*
684  * DMAable pools.
685  */
686 #ifndef	FreeBSD_Bus_Dma_Abstraction
687 /*
688  * Without `bus dma abstraction', all the memory is DMAable, and
689  * only a single pool is needed (vtophys() is our friend).
690  */
691 #define __sym_calloc_dma(b, s, n)	sym_calloc(s, n)
692 #define __sym_mfree_dma(b, p, s, n)	sym_mfree(p, s, n)
693 #define __vtobus(b, p)	vtophys(p)
694 
695 #else
696 /*
697  * With `bus dma abstraction', we use a separate pool per parent
698  * BUS handle. A reverse table (hashed) is maintained for virtual
699  * to BUS address translation.
700  */
701 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
702 {
703 	bus_addr_t *baddr;
704 	baddr = (bus_addr_t *)arg;
705 	*baddr = segs->ds_addr;
706 }
707 
708 static m_addr_t ___dma_getp(m_pool_s *mp)
709 {
710 	m_vtob_s *vbp;
711 	void *vaddr = 0;
712 	bus_addr_t baddr = 0;
713 
714 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
715 	if (!vbp)
716 		goto out_err;
717 
718 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
719 			      BUS_DMA_NOWAIT, &vbp->dmamap))
720 		goto out_err;
721 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
722 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0);
723 	if (baddr) {
724 		int hc = VTOB_HASH_CODE(vaddr);
725 		vbp->vaddr = (m_addr_t) vaddr;
726 		vbp->baddr = (m_addr_t) baddr;
727 		vbp->next = mp->vtob[hc];
728 		mp->vtob[hc] = vbp;
729 		++mp->nump;
730 		return (m_addr_t) vaddr;
731 	}
732 out_err:
733 	if (baddr)
734 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
735 	if (vaddr)
736 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
737 	if (vbp->dmamap)
738 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
739 	if (vbp)
740 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
741 	return 0;
742 }
743 
744 #ifdef	MEMO_FREE_UNUSED
745 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
746 {
747 	m_vtob_s **vbpp, *vbp;
748 	int hc = VTOB_HASH_CODE(m);
749 
750 	vbpp = &mp->vtob[hc];
751 	while (*vbpp && (*vbpp)->vaddr != m)
752 		vbpp = &(*vbpp)->next;
753 	if (*vbpp) {
754 		vbp = *vbpp;
755 		*vbpp = (*vbpp)->next;
756 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
757 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
758 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
759 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
760 		--mp->nump;
761 	}
762 }
763 #endif
764 
765 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
766 {
767 	m_pool_s *mp;
768 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
769 	return mp;
770 }
771 
772 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
773 {
774 	m_pool_s *mp = 0;
775 
776 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
777 	if (mp) {
778 		mp->dev_dmat = dev_dmat;
779 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
780 			       BUS_SPACE_MAXADDR_32BIT,
781 			       BUS_SPACE_MAXADDR_32BIT,
782 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
783 			       MEMO_CLUSTER_SIZE, 0, &mp->dmat)) {
784 			mp->getp = ___dma_getp;
785 #ifdef	MEMO_FREE_UNUSED
786 			mp->freep = ___dma_freep;
787 #endif
788 			mp->next = mp0.next;
789 			mp0.next = mp;
790 			return mp;
791 		}
792 	}
793 	if (mp)
794 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
795 	return 0;
796 }
797 
798 #ifdef	MEMO_FREE_UNUSED
799 static void ___del_dma_pool(m_pool_s *p)
800 {
801 	struct m_pool **pp = &mp0.next;
802 
803 	while (*pp && *pp != p)
804 		pp = &(*pp)->next;
805 	if (*pp) {
806 		*pp = (*pp)->next;
807 		bus_dma_tag_destroy(p->dmat);
808 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
809 	}
810 }
811 #endif
812 
813 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
814 {
815 	struct m_pool *mp;
816 	void *m = 0;
817 
818 	/* Lock */
819 	mp = ___get_dma_pool(dev_dmat);
820 	if (!mp)
821 		mp = ___cre_dma_pool(dev_dmat);
822 	if (mp)
823 		m = __sym_calloc(mp, size, name);
824 #ifdef	MEMO_FREE_UNUSED
825 	if (mp && !mp->nump)
826 		___del_dma_pool(mp);
827 #endif
828 	/* Unlock */
829 
830 	return m;
831 }
832 
833 static void
834 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
835 {
836 	struct m_pool *mp;
837 
838 	/* Lock */
839 	mp = ___get_dma_pool(dev_dmat);
840 	if (mp)
841 		__sym_mfree(mp, m, size, name);
842 #ifdef	MEMO_FREE_UNUSED
843 	if (mp && !mp->nump)
844 		___del_dma_pool(mp);
845 #endif
846 	/* Unlock */
847 }
848 
849 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
850 {
851 	m_pool_s *mp;
852 	int hc = VTOB_HASH_CODE(m);
853 	m_vtob_s *vp = 0;
854 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
855 
856 	/* Lock */
857 	mp = ___get_dma_pool(dev_dmat);
858 	if (mp) {
859 		vp = mp->vtob[hc];
860 		while (vp && (m_addr_t) vp->vaddr != a)
861 			vp = vp->next;
862 	}
863 	/* Unlock */
864 	if (!vp)
865 		panic("sym: VTOBUS FAILED!\n");
866 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
867 }
868 
869 #endif	/* FreeBSD_Bus_Dma_Abstraction */
870 
871 /*
872  * Verbs for DMAable memory handling.
873  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
874  * being discarded.
875  */
876 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
877 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
878 #define _sym_mfree_dma(np, p, s, n)	\
879 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
880 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
881 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
882 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
883 #define vtobus(p)			_vtobus(np, p)
884 
885 
886 /*
887  *  Print a buffer in hexadecimal format.
888  */
889 static void sym_printb_hex (u_char *p, int n)
890 {
891 	while (n-- > 0)
892 		printf (" %x", *p++);
893 }
894 
895 /*
896  *  Same with a label at beginning and .\n at end.
897  */
898 static void sym_printl_hex (char *label, u_char *p, int n)
899 {
900 	printf ("%s", label);
901 	sym_printb_hex (p, n);
902 	printf (".\n");
903 }
904 
905 /*
906  *  Return a string for SCSI BUS mode.
907  */
908 static char *sym_scsi_bus_mode(int mode)
909 {
910 	switch(mode) {
911 	case SMODE_HVD:	return "HVD";
912 	case SMODE_SE:	return "SE";
913 	case SMODE_LVD: return "LVD";
914 	}
915 	return "??";
916 }
917 
918 /*
919  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
920  */
921 #ifdef SYM_CONF_NVRAM_SUPPORT
922 static u_char Tekram_sync[16] =
923 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
924 #endif
925 
926 /*
927  *  Union of supported NVRAM formats.
928  */
929 struct sym_nvram {
930 	int type;
931 #define	SYM_SYMBIOS_NVRAM	(1)
932 #define	SYM_TEKRAM_NVRAM	(2)
933 #ifdef	SYM_CONF_NVRAM_SUPPORT
934 	union {
935 		Symbios_nvram Symbios;
936 		Tekram_nvram Tekram;
937 	} data;
938 #endif
939 };
940 
941 /*
942  *  This one is hopefully useless, but actually useful. :-)
943  */
944 #ifndef assert
945 #define	assert(expression) { \
946 	if (!(expression)) { \
947 		(void)panic( \
948 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
949 			#expression, \
950 			__FILE__, __LINE__); \
951 	} \
952 }
953 #endif
954 
955 /*
956  *  Some provision for a possible big endian mode supported by
957  *  Symbios chips (never seen, by the way).
958  *  For now, this stuff does not deserve any comments. :)
959  */
960 
961 #define sym_offb(o)	(o)
962 #define sym_offw(o)	(o)
963 
964 /*
965  *  Some provision for support for BIG ENDIAN CPU.
966  *  Btw, FreeBSD does not seem to be ready yet for big endian.
967  */
968 
969 #if	BYTE_ORDER == BIG_ENDIAN
970 #define cpu_to_scr(dw)	_htole32(dw)
971 #define scr_to_cpu(dw)	_le32toh(dw)
972 #else
973 #define cpu_to_scr(dw)	(dw)
974 #define scr_to_cpu(dw)	(dw)
975 #endif
976 
977 /*
978  *  Access to the chip IO registers and on-chip RAM.
979  *  We use the `bus space' interface under FreeBSD-4 and
980  *  later kernel versions.
981  */
982 
983 #ifdef	FreeBSD_Bus_Space_Abstraction
984 
985 #if defined(SYM_CONF_IOMAPPED)
986 
987 #define INB_OFF(o)	bus_space_read_1(np->io_tag, np->io_bsh, o)
988 #define INW_OFF(o)	bus_space_read_2(np->io_tag, np->io_bsh, o)
989 #define INL_OFF(o)	bus_space_read_4(np->io_tag, np->io_bsh, o)
990 
991 #define OUTB_OFF(o, v)	bus_space_write_1(np->io_tag, np->io_bsh, o, (v))
992 #define OUTW_OFF(o, v)	bus_space_write_2(np->io_tag, np->io_bsh, o, (v))
993 #define OUTL_OFF(o, v)	bus_space_write_4(np->io_tag, np->io_bsh, o, (v))
994 
995 #else	/* Memory mapped IO */
996 
997 #define INB_OFF(o)	bus_space_read_1(np->mmio_tag, np->mmio_bsh, o)
998 #define INW_OFF(o)	bus_space_read_2(np->mmio_tag, np->mmio_bsh, o)
999 #define INL_OFF(o)	bus_space_read_4(np->mmio_tag, np->mmio_bsh, o)
1000 
1001 #define OUTB_OFF(o, v)	bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v))
1002 #define OUTW_OFF(o, v)	bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v))
1003 #define OUTL_OFF(o, v)	bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v))
1004 
1005 #endif	/* SYM_CONF_IOMAPPED */
1006 
1007 #define OUTRAM_OFF(o, a, l)	\
1008 	bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l))
1009 
1010 #else	/* not defined FreeBSD_Bus_Space_Abstraction */
1011 
1012 #if	BYTE_ORDER == BIG_ENDIAN
1013 #error	"BIG ENDIAN support requires bus space kernel interface"
1014 #endif
1015 
1016 /*
1017  *  Access to the chip IO registers and on-chip RAM.
1018  *  We use legacy MMIO and IO interface for FreeBSD 3.X versions.
1019  */
1020 
1021 /*
1022  *  Define some understable verbs for IO and MMIO.
1023  */
1024 #define io_read8(p)	 scr_to_cpu(inb((p)))
1025 #define	io_read16(p)	 scr_to_cpu(inw((p)))
1026 #define io_read32(p)	 scr_to_cpu(inl((p)))
1027 #define	io_write8(p, v)	 outb((p), cpu_to_scr(v))
1028 #define io_write16(p, v) outw((p), cpu_to_scr(v))
1029 #define io_write32(p, v) outl((p), cpu_to_scr(v))
1030 
1031 #define mmio_read8(a)	     scr_to_cpu((*(volatile unsigned char *) (a)))
1032 #define mmio_read16(a)	     scr_to_cpu((*(volatile unsigned short *) (a)))
1033 #define mmio_read32(a)	     scr_to_cpu((*(volatile unsigned int *) (a)))
1034 #define mmio_write8(a, b)   (*(volatile unsigned char *) (a)) = cpu_to_scr(b)
1035 #define mmio_write16(a, b)  (*(volatile unsigned short *) (a)) = cpu_to_scr(b)
1036 #define mmio_write32(a, b)  (*(volatile unsigned int *) (a)) = cpu_to_scr(b)
1037 #define memcpy_to_pci(d, s, n)	bcopy((s), (void *)(d), (n))
1038 
1039 /*
1040  *  Normal IO
1041  */
1042 #if defined(SYM_CONF_IOMAPPED)
1043 
1044 #define	INB_OFF(o)	io_read8(np->io_port + sym_offb(o))
1045 #define	OUTB_OFF(o, v)	io_write8(np->io_port + sym_offb(o), (v))
1046 
1047 #define	INW_OFF(o)	io_read16(np->io_port + sym_offw(o))
1048 #define	OUTW_OFF(o, v)	io_write16(np->io_port + sym_offw(o), (v))
1049 
1050 #define	INL_OFF(o)	io_read32(np->io_port + (o))
1051 #define	OUTL_OFF(o, v)	io_write32(np->io_port + (o), (v))
1052 
1053 #else	/* Memory mapped IO */
1054 
1055 #define	INB_OFF(o)	mmio_read8(np->mmio_va + sym_offb(o))
1056 #define	OUTB_OFF(o, v)	mmio_write8(np->mmio_va + sym_offb(o), (v))
1057 
1058 #define	INW_OFF(o)	mmio_read16(np->mmio_va + sym_offw(o))
1059 #define	OUTW_OFF(o, v)	mmio_write16(np->mmio_va + sym_offw(o), (v))
1060 
1061 #define	INL_OFF(o)	mmio_read32(np->mmio_va + (o))
1062 #define	OUTL_OFF(o, v)	mmio_write32(np->mmio_va + (o), (v))
1063 
1064 #endif
1065 
1066 #define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l))
1067 
1068 #endif	/* FreeBSD_Bus_Space_Abstraction */
1069 
1070 /*
1071  *  Common definitions for both bus space and legacy IO methods.
1072  */
1073 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
1074 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
1075 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
1076 
1077 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
1078 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
1079 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
1080 
1081 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
1082 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
1083 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
1084 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
1085 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
1086 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
1087 
1088 /*
1089  *  We normally want the chip to have a consistent view
1090  *  of driver internal data structures when we restart it.
1091  *  Thus these macros.
1092  */
1093 #define OUTL_DSP(v)				\
1094 	do {					\
1095 		MEMORY_BARRIER();		\
1096 		OUTL (nc_dsp, (v));		\
1097 	} while (0)
1098 
1099 #define OUTONB_STD()				\
1100 	do {					\
1101 		MEMORY_BARRIER();		\
1102 		OUTONB (nc_dcntl, (STD|NOCOM));	\
1103 	} while (0)
1104 
1105 /*
1106  *  Command control block states.
1107  */
1108 #define HS_IDLE		(0)
1109 #define HS_BUSY		(1)
1110 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
1111 #define HS_DISCONNECT	(3)	/* Disconnected by target */
1112 #define HS_WAIT		(4)	/* waiting for resource	  */
1113 
1114 #define HS_DONEMASK	(0x80)
1115 #define HS_COMPLETE	(4|HS_DONEMASK)
1116 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
1117 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
1118 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
1119 
1120 /*
1121  *  Software Interrupt Codes
1122  */
1123 #define	SIR_BAD_SCSI_STATUS	(1)
1124 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
1125 #define	SIR_MSG_RECEIVED	(3)
1126 #define	SIR_MSG_WEIRD		(4)
1127 #define	SIR_NEGO_FAILED		(5)
1128 #define	SIR_NEGO_PROTO		(6)
1129 #define	SIR_SCRIPT_STOPPED	(7)
1130 #define	SIR_REJECT_TO_SEND	(8)
1131 #define	SIR_SWIDE_OVERRUN	(9)
1132 #define	SIR_SODL_UNDERRUN	(10)
1133 #define	SIR_RESEL_NO_MSG_IN	(11)
1134 #define	SIR_RESEL_NO_IDENTIFY	(12)
1135 #define	SIR_RESEL_BAD_LUN	(13)
1136 #define	SIR_TARGET_SELECTED	(14)
1137 #define	SIR_RESEL_BAD_I_T_L	(15)
1138 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
1139 #define	SIR_ABORT_SENT		(17)
1140 #define	SIR_RESEL_ABORTED	(18)
1141 #define	SIR_MSG_OUT_DONE	(19)
1142 #define	SIR_COMPLETE_ERROR	(20)
1143 #define	SIR_DATA_OVERRUN	(21)
1144 #define	SIR_BAD_PHASE		(22)
1145 #define	SIR_MAX			(22)
1146 
1147 /*
1148  *  Extended error bit codes.
1149  *  xerr_status field of struct sym_ccb.
1150  */
1151 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
1152 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
1153 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
1154 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
1155 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
1156 
1157 /*
1158  *  Negotiation status.
1159  *  nego_status field of struct sym_ccb.
1160  */
1161 #define NS_SYNC		(1)
1162 #define NS_WIDE		(2)
1163 #define NS_PPR		(3)
1164 
1165 /*
1166  *  A CCB hashed table is used to retrieve CCB address
1167  *  from DSA value.
1168  */
1169 #define CCB_HASH_SHIFT		8
1170 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
1171 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
1172 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
1173 
1174 /*
1175  *  Device flags.
1176  */
1177 #define SYM_DISC_ENABLED	(1)
1178 #define SYM_TAGS_ENABLED	(1<<1)
1179 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1180 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1181 
1182 /*
1183  *  Host adapter miscellaneous flags.
1184  */
1185 #define SYM_AVOID_BUS_RESET	(1)
1186 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1187 
1188 /*
1189  *  Device quirks.
1190  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1191  *  saving the DATA POINTER then reselects and terminates the IO.
1192  *  On reselection, the automatic RESTORE DATA POINTER makes the
1193  *  CURRENT DATA POINTER not point at the end of the IO.
1194  *  This behaviour just breaks our calculation of the residual.
1195  *  For now, we just force an AUTO SAVE on disconnection and will
1196  *  fix that in a further driver version.
1197  */
1198 #define SYM_QUIRK_AUTOSAVE 1
1199 
1200 /*
1201  *  Misc.
1202  */
1203 #define SYM_SNOOP_TIMEOUT (10000000)
1204 #define SYM_PCI_IO	PCIR_MAPS
1205 #define SYM_PCI_MMIO	(PCIR_MAPS + 4)
1206 #define SYM_PCI_RAM	(PCIR_MAPS + 8)
1207 #define SYM_PCI_RAM64	(PCIR_MAPS + 12)
1208 
1209 /*
1210  *  Back-pointer from the CAM CCB to our data structures.
1211  */
1212 #define sym_hcb_ptr	spriv_ptr0
1213 /* #define sym_ccb_ptr	spriv_ptr1 */
1214 
1215 /*
1216  *  We mostly have to deal with pointers.
1217  *  Thus these typedef's.
1218  */
1219 typedef struct sym_tcb *tcb_p;
1220 typedef struct sym_lcb *lcb_p;
1221 typedef struct sym_ccb *ccb_p;
1222 typedef struct sym_hcb *hcb_p;
1223 
1224 /*
1225  *  Gather negotiable parameters value
1226  */
1227 struct sym_trans {
1228 #ifdef	FreeBSD_New_Tran_Settings
1229 	u8 scsi_version;
1230 	u8 spi_version;
1231 #endif
1232 	u8 period;
1233 	u8 offset;
1234 	u8 width;
1235 	u8 options;	/* PPR options */
1236 };
1237 
1238 struct sym_tinfo {
1239 	struct sym_trans current;
1240 	struct sym_trans goal;
1241 	struct sym_trans user;
1242 };
1243 
1244 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1245 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1246 
1247 /*
1248  *  Global TCB HEADER.
1249  *
1250  *  Due to lack of indirect addressing on earlier NCR chips,
1251  *  this substructure is copied from the TCB to a global
1252  *  address after selection.
1253  *  For SYMBIOS chips that support LOAD/STORE this copy is
1254  *  not needed and thus not performed.
1255  */
1256 struct sym_tcbh {
1257 	/*
1258 	 *  Scripts bus addresses of LUN table accessed from scripts.
1259 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1260 	 *  and we we want to speed-up the general case and not waste
1261 	 *  resources.
1262 	 */
1263 	u32	luntbl_sa;	/* bus address of this table	*/
1264 	u32	lun0_sa;	/* bus address of LCB #0	*/
1265 	/*
1266 	 *  Actual SYNC/WIDE IO registers value for this target.
1267 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1268 	 *  so have alignment constraints.
1269 	 */
1270 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1271 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1272 /*2*/	u_char	filler1;
1273 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1274 };
1275 
1276 /*
1277  *  Target Control Block
1278  */
1279 struct sym_tcb {
1280 	/*
1281 	 *  TCB header.
1282 	 *  Assumed at offset 0.
1283 	 */
1284 /*0*/	struct sym_tcbh head;
1285 
1286 	/*
1287 	 *  LUN table used by the SCRIPTS processor.
1288 	 *  An array of bus addresses is used on reselection.
1289 	 */
1290 	u32	*luntbl;	/* LCBs bus address table	*/
1291 
1292 	/*
1293 	 *  LUN table used by the C code.
1294 	 */
1295 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1296 #if SYM_CONF_MAX_LUN > 1
1297 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1298 #endif
1299 
1300 	/*
1301 	 *  Bitmap that tells about LUNs that succeeded at least
1302 	 *  1 IO and therefore assumed to be a real device.
1303 	 *  Avoid useless allocation of the LCB structure.
1304 	 */
1305 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1306 
1307 	/*
1308 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1309 	 *  allocated (not discovered or LCB allocation failed).
1310 	 */
1311 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1312 
1313 	/*
1314 	 *  Transfer capabilities (SIP)
1315 	 */
1316 	struct sym_tinfo tinfo;
1317 
1318 	/*
1319 	 * Keep track of the CCB used for the negotiation in order
1320 	 * to ensure that only 1 negotiation is queued at a time.
1321 	 */
1322 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1323 
1324 	/*
1325 	 *  Set when we want to reset the device.
1326 	 */
1327 	u_char	to_reset;
1328 
1329 	/*
1330 	 *  Other user settable limits and options.
1331 	 *  These limits are read from the NVRAM if present.
1332 	 */
1333 	u_char	usrflags;
1334 	u_short	usrtags;
1335 };
1336 
1337 /*
1338  *  Global LCB HEADER.
1339  *
1340  *  Due to lack of indirect addressing on earlier NCR chips,
1341  *  this substructure is copied from the LCB to a global
1342  *  address after selection.
1343  *  For SYMBIOS chips that support LOAD/STORE this copy is
1344  *  not needed and thus not performed.
1345  */
1346 struct sym_lcbh {
1347 	/*
1348 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1349 	 *  For not probed logical units, this address points to
1350 	 *  SCRIPTS that deal with bad LU handling (must be at
1351 	 *  offset zero of the LCB for that reason).
1352 	 */
1353 /*0*/	u32	resel_sa;
1354 
1355 	/*
1356 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1357 	 *  to the unique ITL nexus allowed to be disconnected.
1358 	 */
1359 	u32	itl_task_sa;
1360 
1361 	/*
1362 	 *  Task table bus address (read from SCRIPTS).
1363 	 */
1364 	u32	itlq_tbl_sa;
1365 };
1366 
1367 /*
1368  *  Logical Unit Control Block
1369  */
1370 struct sym_lcb {
1371 	/*
1372 	 *  TCB header.
1373 	 *  Assumed at offset 0.
1374 	 */
1375 /*0*/	struct sym_lcbh head;
1376 
1377 	/*
1378 	 *  Task table read from SCRIPTS that contains pointers to
1379 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1380 	 *  inside the header.
1381 	 */
1382 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1383 
1384 	/*
1385 	 *  Busy CCBs management.
1386 	 */
1387 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1388 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1389 
1390 	/*
1391 	 *  Circular tag allocation buffer.
1392 	 */
1393 	u_short	ia_tag;		/* Tag allocation index		*/
1394 	u_short	if_tag;		/* Tag release index		*/
1395 	u_char	*cb_tags;	/* Circular tags buffer		*/
1396 
1397 	/*
1398 	 *  Set when we want to clear all tasks.
1399 	 */
1400 	u_char to_clear;
1401 
1402 	/*
1403 	 *  Capabilities.
1404 	 */
1405 	u_char	user_flags;
1406 	u_char	current_flags;
1407 };
1408 
1409 /*
1410  *  Action from SCRIPTS on a task.
1411  *  Is part of the CCB, but is also used separately to plug
1412  *  error handling action to perform from SCRIPTS.
1413  */
1414 struct sym_actscr {
1415 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1416 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1417 };
1418 
1419 /*
1420  *  Phase mismatch context.
1421  *
1422  *  It is part of the CCB and is used as parameters for the
1423  *  DATA pointer. We need two contexts to handle correctly the
1424  *  SAVED DATA POINTER.
1425  */
1426 struct sym_pmc {
1427 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1428 	u32	ret;		/* SCRIPT return address	*/
1429 };
1430 
1431 /*
1432  *  LUN control block lookup.
1433  *  We use a direct pointer for LUN #0, and a table of
1434  *  pointers which is only allocated for devices that support
1435  *  LUN(s) > 0.
1436  */
1437 #if SYM_CONF_MAX_LUN <= 1
1438 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1439 #else
1440 #define sym_lp(np, tp, lun) \
1441 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1442 #endif
1443 
1444 /*
1445  *  Status are used by the host and the script processor.
1446  *
1447  *  The last four bytes (status[4]) are copied to the
1448  *  scratchb register (declared as scr0..scr3) just after the
1449  *  select/reselect, and copied back just after disconnecting.
1450  *  Inside the script the XX_REG are used.
1451  */
1452 
1453 /*
1454  *  Last four bytes (script)
1455  */
1456 #define  QU_REG	scr0
1457 #define  HS_REG	scr1
1458 #define  HS_PRT	nc_scr1
1459 #define  SS_REG	scr2
1460 #define  SS_PRT	nc_scr2
1461 #define  HF_REG	scr3
1462 #define  HF_PRT	nc_scr3
1463 
1464 /*
1465  *  Last four bytes (host)
1466  */
1467 #define  actualquirks  phys.head.status[0]
1468 #define  host_status   phys.head.status[1]
1469 #define  ssss_status   phys.head.status[2]
1470 #define  host_flags    phys.head.status[3]
1471 
1472 /*
1473  *  Host flags
1474  */
1475 #define HF_IN_PM0	1u
1476 #define HF_IN_PM1	(1u<<1)
1477 #define HF_ACT_PM	(1u<<2)
1478 #define HF_DP_SAVED	(1u<<3)
1479 #define HF_SENSE	(1u<<4)
1480 #define HF_EXT_ERR	(1u<<5)
1481 #define HF_DATA_IN	(1u<<6)
1482 #ifdef SYM_CONF_IARB_SUPPORT
1483 #define HF_HINT_IARB	(1u<<7)
1484 #endif
1485 
1486 /*
1487  *  Global CCB HEADER.
1488  *
1489  *  Due to lack of indirect addressing on earlier NCR chips,
1490  *  this substructure is copied from the ccb to a global
1491  *  address after selection (or reselection) and copied back
1492  *  before disconnect.
1493  *  For SYMBIOS chips that support LOAD/STORE this copy is
1494  *  not needed and thus not performed.
1495  */
1496 
1497 struct sym_ccbh {
1498 	/*
1499 	 *  Start and restart SCRIPTS addresses (must be at 0).
1500 	 */
1501 /*0*/	struct sym_actscr go;
1502 
1503 	/*
1504 	 *  SCRIPTS jump address that deal with data pointers.
1505 	 *  'savep' points to the position in the script responsible
1506 	 *  for the actual transfer of data.
1507 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1508 	 */
1509 	u32	savep;		/* Jump address to saved data pointer	*/
1510 	u32	lastp;		/* SCRIPTS address at end of data	*/
1511 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1512 
1513 	/*
1514 	 *  Status fields.
1515 	 */
1516 	u8	status[4];
1517 };
1518 
1519 /*
1520  *  Data Structure Block
1521  *
1522  *  During execution of a ccb by the script processor, the
1523  *  DSA (data structure address) register points to this
1524  *  substructure of the ccb.
1525  */
1526 struct sym_dsb {
1527 	/*
1528 	 *  CCB header.
1529 	 *  Also assumed at offset 0 of the sym_ccb structure.
1530 	 */
1531 /*0*/	struct sym_ccbh head;
1532 
1533 	/*
1534 	 *  Phase mismatch contexts.
1535 	 *  We need two to handle correctly the SAVED DATA POINTER.
1536 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1537 	 *  for address calculation from SCRIPTS.
1538 	 */
1539 	struct sym_pmc pm0;
1540 	struct sym_pmc pm1;
1541 
1542 	/*
1543 	 *  Table data for Script
1544 	 */
1545 	struct sym_tblsel  select;
1546 	struct sym_tblmove smsg;
1547 	struct sym_tblmove smsg_ext;
1548 	struct sym_tblmove cmd;
1549 	struct sym_tblmove sense;
1550 	struct sym_tblmove wresid;
1551 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1552 };
1553 
1554 /*
1555  *  Our Command Control Block
1556  */
1557 struct sym_ccb {
1558 	/*
1559 	 *  This is the data structure which is pointed by the DSA
1560 	 *  register when it is executed by the script processor.
1561 	 *  It must be the first entry.
1562 	 */
1563 	struct sym_dsb phys;
1564 
1565 	/*
1566 	 *  Pointer to CAM ccb and related stuff.
1567 	 */
1568 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1569 	u8	cdb_buf[16];	/* Copy of CDB			*/
1570 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1571 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1572 	int	data_len;	/* Total data length		*/
1573 	int	segments;	/* Number of SG segments	*/
1574 
1575 	/*
1576 	 *  Miscellaneous status'.
1577 	 */
1578 	u_char	nego_status;	/* Negotiation status		*/
1579 	u_char	xerr_status;	/* Extended error flags		*/
1580 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1581 
1582 	/*
1583 	 *  Message areas.
1584 	 *  We prepare a message to be sent after selection.
1585 	 *  We may use a second one if the command is rescheduled
1586 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1587 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1588 	 *  While negotiating sync or wide transfer,
1589 	 *  a SDTR or WDTR message is appended.
1590 	 */
1591 	u_char	scsi_smsg [12];
1592 	u_char	scsi_smsg2[12];
1593 
1594 	/*
1595 	 *  Auto request sense related fields.
1596 	 */
1597 	u_char	sensecmd[6];	/* Request Sense command	*/
1598 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1599 	u_char	sv_xerr_status;	/* Saved extended status	*/
1600 	int	sv_resid;	/* Saved residual		*/
1601 
1602 	/*
1603 	 *  Map for the DMA of user data.
1604 	 */
1605 #ifdef	FreeBSD_Bus_Dma_Abstraction
1606 	void		*arg;	/* Argument for some callback	*/
1607 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1608 	u_char		dmamapped;
1609 #define SYM_DMA_NONE	0
1610 #define SYM_DMA_READ	1
1611 #define SYM_DMA_WRITE	2
1612 #endif
1613 	/*
1614 	 *  Other fields.
1615 	 */
1616 	u32	ccb_ba;		/* BUS address of this CCB	*/
1617 	u_short	tag;		/* Tag for this transfer	*/
1618 				/*  NO_TAG means no tag		*/
1619 	u_char	target;
1620 	u_char	lun;
1621 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1622 	SYM_QUEHEAD
1623 		link_ccbq;	/* Link to free/busy CCB queue	*/
1624 	u32	startp;		/* Initial data pointer		*/
1625 	int	ext_sg;		/* Extreme data pointer, used	*/
1626 	int	ext_ofs;	/*  to calculate the residual.	*/
1627 	u_char	to_abort;	/* Want this IO to be aborted	*/
1628 };
1629 
1630 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1631 
1632 /*
1633  *  Host Control Block
1634  */
1635 struct sym_hcb {
1636 	/*
1637 	 *  Global headers.
1638 	 *  Due to poorness of addressing capabilities, earlier
1639 	 *  chips (810, 815, 825) copy part of the data structures
1640 	 *  (CCB, TCB and LCB) in fixed areas.
1641 	 */
1642 #ifdef	SYM_CONF_GENERIC_SUPPORT
1643 	struct sym_ccbh	ccb_head;
1644 	struct sym_tcbh	tcb_head;
1645 	struct sym_lcbh	lcb_head;
1646 #endif
1647 	/*
1648 	 *  Idle task and invalid task actions and
1649 	 *  their bus addresses.
1650 	 */
1651 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1652 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1653 
1654 	/*
1655 	 *  Dummy lun table to protect us against target
1656 	 *  returning bad lun number on reselection.
1657 	 */
1658 	u32	*badluntbl;	/* Table physical address	*/
1659 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1660 
1661 	/*
1662 	 *  Bus address of this host control block.
1663 	 */
1664 	u32	hcb_ba;
1665 
1666 	/*
1667 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1668 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1669 	 *  field.
1670 	 */
1671 	u32	scr_ram_seg;
1672 
1673 	/*
1674 	 *  Chip and controller indentification.
1675 	 */
1676 #ifdef FreeBSD_Bus_Io_Abstraction
1677 	device_t device;
1678 #else
1679 	pcici_t	pci_tag;
1680 #endif
1681 	int	unit;
1682 	char	inst_name[8];
1683 
1684 	/*
1685 	 *  Initial value of some IO register bits.
1686 	 *  These values are assumed to have been set by BIOS, and may
1687 	 *  be used to probe adapter implementation differences.
1688 	 */
1689 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1690 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1691 		sv_stest1;
1692 
1693 	/*
1694 	 *  Actual initial value of IO register bits used by the
1695 	 *  driver. They are loaded at initialisation according to
1696 	 *  features that are to be enabled/disabled.
1697 	 */
1698 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1699 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1700 
1701 	/*
1702 	 *  Target data.
1703 	 */
1704 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1705 
1706 	/*
1707 	 *  Target control block bus address array used by the SCRIPT
1708 	 *  on reselection.
1709 	 */
1710 	u32		*targtbl;
1711 	u32		targtbl_ba;
1712 
1713 	/*
1714 	 *  CAM SIM information for this instance.
1715 	 */
1716 	struct		cam_sim  *sim;
1717 	struct		cam_path *path;
1718 
1719 	/*
1720 	 *  Allocated hardware resources.
1721 	 */
1722 #ifdef FreeBSD_Bus_Io_Abstraction
1723 	struct resource	*irq_res;
1724 	struct resource	*io_res;
1725 	struct resource	*mmio_res;
1726 	struct resource	*ram_res;
1727 	int		ram_id;
1728 	void *intr;
1729 #endif
1730 
1731 	/*
1732 	 *  Bus stuff.
1733 	 *
1734 	 *  My understanding of PCI is that all agents must share the
1735 	 *  same addressing range and model.
1736 	 *  But some hardware architecture guys provide complex and
1737 	 *  brain-deaded stuff that makes shit.
1738 	 *  This driver only support PCI compliant implementations and
1739 	 *  deals with part of the BUS stuff complexity only to fit O/S
1740 	 *  requirements.
1741 	 */
1742 #ifdef FreeBSD_Bus_Io_Abstraction
1743 	bus_space_handle_t	io_bsh;
1744 	bus_space_tag_t		io_tag;
1745 	bus_space_handle_t	mmio_bsh;
1746 	bus_space_tag_t		mmio_tag;
1747 	bus_space_handle_t	ram_bsh;
1748 	bus_space_tag_t		ram_tag;
1749 #endif
1750 
1751 	/*
1752 	 *  DMA stuff.
1753 	 */
1754 #ifdef	FreeBSD_Bus_Dma_Abstraction
1755 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1756 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1757 #endif
1758 	/*
1759 	 *  Virtual and physical bus addresses of the chip.
1760 	 */
1761 	vm_offset_t	mmio_va;	/* MMIO kernel virtual address	*/
1762 	vm_offset_t	mmio_pa;	/* MMIO CPU physical address	*/
1763 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1764 	int		mmio_ws;	/* MMIO Window size		*/
1765 
1766 	vm_offset_t	ram_va;		/* RAM kernel virtual address	*/
1767 	vm_offset_t	ram_pa;		/* RAM CPU physical address	*/
1768 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1769 	int		ram_ws;		/* RAM window size		*/
1770 	u32		io_port;	/* IO port address		*/
1771 
1772 	/*
1773 	 *  SCRIPTS virtual and physical bus addresses.
1774 	 *  'script'  is loaded in the on-chip RAM if present.
1775 	 *  'scripth' stays in main memory for all chips except the
1776 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1777 	 */
1778 	u_char		*scripta0;	/* Copies of script and scripth	*/
1779 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1780 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1781 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1782 	vm_offset_t	scriptb0_ba;
1783 	u_short		scripta_sz;	/* Actual size of script A	*/
1784 	u_short		scriptb_sz;	/* Actual size of script B	*/
1785 
1786 	/*
1787 	 *  Bus addresses, setup and patch methods for
1788 	 *  the selected firmware.
1789 	 */
1790 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1791 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1792 	void		(*fw_setup)(hcb_p np, struct sym_fw *fw);
1793 	void		(*fw_patch)(hcb_p np);
1794 	char		*fw_name;
1795 
1796 	/*
1797 	 *  General controller parameters and configuration.
1798 	 */
1799 	u_short	device_id;	/* PCI device id		*/
1800 	u_char	revision_id;	/* PCI device revision id	*/
1801 	u_int	features;	/* Chip features map		*/
1802 	u_char	myaddr;		/* SCSI id of the adapter	*/
1803 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1804 	u_char	maxwide;	/* Maximum transfer width	*/
1805 	u_char	minsync;	/* Min sync period factor (ST)	*/
1806 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1807 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1808 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1809 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1810 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1811 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1812 	u_char	clock_divn;	/* Number of clock divisors	*/
1813 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1814 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1815 	/*
1816 	 *  Start queue management.
1817 	 *  It is filled up by the host processor and accessed by the
1818 	 *  SCRIPTS processor in order to start SCSI commands.
1819 	 */
1820 	volatile		/* Prevent code optimizations	*/
1821 	u32	*squeue;	/* Start queue virtual address	*/
1822 	u32	squeue_ba;	/* Start queue BUS address	*/
1823 	u_short	squeueput;	/* Next free slot of the queue	*/
1824 	u_short	actccbs;	/* Number of allocated CCBs	*/
1825 
1826 	/*
1827 	 *  Command completion queue.
1828 	 *  It is the same size as the start queue to avoid overflow.
1829 	 */
1830 	u_short	dqueueget;	/* Next position to scan	*/
1831 	volatile		/* Prevent code optimizations	*/
1832 	u32	*dqueue;	/* Completion (done) queue	*/
1833 	u32	dqueue_ba;	/* Done queue BUS address	*/
1834 
1835 	/*
1836 	 *  Miscellaneous buffers accessed by the scripts-processor.
1837 	 *  They shall be DWORD aligned, because they may be read or
1838 	 *  written with a script command.
1839 	 */
1840 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1841 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1842 	u32		lastmsg;	/* Last SCSI message sent	*/
1843 	u_char		scratch;	/* Scratch for SCSI receive	*/
1844 
1845 	/*
1846 	 *  Miscellaneous configuration and status parameters.
1847 	 */
1848 	u_char		usrflags;	/* Miscellaneous user flags	*/
1849 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1850 	u_char		verbose;	/* Verbosity for this controller*/
1851 	u32		cache;		/* Used for cache test at init.	*/
1852 
1853 	/*
1854 	 *  CCB lists and queue.
1855 	 */
1856 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1857 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1858 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1859 
1860 	/*
1861 	 *  During error handling and/or recovery,
1862 	 *  active CCBs that are to be completed with
1863 	 *  error or requeued are moved from the busy_ccbq
1864 	 *  to the comp_ccbq prior to completion.
1865 	 */
1866 	SYM_QUEHEAD	comp_ccbq;
1867 
1868 	/*
1869 	 *  CAM CCB pending queue.
1870 	 */
1871 	SYM_QUEHEAD	cam_ccbq;
1872 
1873 	/*
1874 	 *  IMMEDIATE ARBITRATION (IARB) control.
1875 	 *
1876 	 *  We keep track in 'last_cp' of the last CCB that has been
1877 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1878 	 *  this CCB completes. If last_cp is not zero at the moment
1879 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1880 	 *  used by the SCRIPTS as a hint for setting IARB.
1881 	 *  We donnot set more than 'iarb_max' consecutive hints for
1882 	 *  IARB in order to leave devices a chance to reselect.
1883 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1884 	 */
1885 #ifdef SYM_CONF_IARB_SUPPORT
1886 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1887 	u_short		iarb_count;	/* Actual # of these hints	*/
1888 	ccb_p		last_cp;
1889 #endif
1890 
1891 	/*
1892 	 *  Command abort handling.
1893 	 *  We need to synchronize tightly with the SCRIPTS
1894 	 *  processor in order to handle things correctly.
1895 	 */
1896 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1897 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1898 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1899 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1900 };
1901 
1902 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1903 
1904 /*
1905  *  Return the name of the controller.
1906  */
1907 static __inline char *sym_name(hcb_p np)
1908 {
1909 	return np->inst_name;
1910 }
1911 
1912 /*--------------------------------------------------------------------------*/
1913 /*------------------------------ FIRMWARES ---------------------------------*/
1914 /*--------------------------------------------------------------------------*/
1915 
1916 /*
1917  *  This stuff will be moved to a separate source file when
1918  *  the driver will be broken into several source modules.
1919  */
1920 
1921 /*
1922  *  Macros used for all firmwares.
1923  */
1924 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1925 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1926 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1927 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1928 
1929 
1930 #ifdef	SYM_CONF_GENERIC_SUPPORT
1931 /*
1932  *  Allocate firmware #1 script area.
1933  */
1934 #define	SYM_FWA_SCR		sym_fw1a_scr
1935 #define	SYM_FWB_SCR		sym_fw1b_scr
1936 #include "sym_fw1.h"
1937 struct sym_fwa_ofs sym_fw1a_ofs = {
1938 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1939 };
1940 struct sym_fwb_ofs sym_fw1b_ofs = {
1941 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1942 };
1943 #undef	SYM_FWA_SCR
1944 #undef	SYM_FWB_SCR
1945 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1946 
1947 /*
1948  *  Allocate firmware #2 script area.
1949  */
1950 #define	SYM_FWA_SCR		sym_fw2a_scr
1951 #define	SYM_FWB_SCR		sym_fw2b_scr
1952 #include "sym_fw2.h"
1953 struct sym_fwa_ofs sym_fw2a_ofs = {
1954 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1955 };
1956 struct sym_fwb_ofs sym_fw2b_ofs = {
1957 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1958 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1959 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1960 };
1961 #undef	SYM_FWA_SCR
1962 #undef	SYM_FWB_SCR
1963 
1964 #undef	SYM_GEN_A
1965 #undef	SYM_GEN_B
1966 #undef	PADDR_A
1967 #undef	PADDR_B
1968 
1969 #ifdef	SYM_CONF_GENERIC_SUPPORT
1970 /*
1971  *  Patch routine for firmware #1.
1972  */
1973 static void
1974 sym_fw1_patch(hcb_p np)
1975 {
1976 	struct sym_fw1a_scr *scripta0;
1977 	struct sym_fw1b_scr *scriptb0;
1978 
1979 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1980 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1981 
1982 	/*
1983 	 *  Remove LED support if not needed.
1984 	 */
1985 	if (!(np->features & FE_LED0)) {
1986 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1987 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1988 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1989 	}
1990 
1991 #ifdef SYM_CONF_IARB_SUPPORT
1992 	/*
1993 	 *    If user does not want to use IMMEDIATE ARBITRATION
1994 	 *    when we are reselected while attempting to arbitrate,
1995 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1996 	 */
1997 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1998 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1999 #endif
2000 	/*
2001 	 *  Patch some data in SCRIPTS.
2002 	 *  - start and done queue initial bus address.
2003 	 *  - target bus address table bus address.
2004 	 */
2005 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
2006 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
2007 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
2008 }
2009 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2010 
2011 /*
2012  *  Patch routine for firmware #2.
2013  */
2014 static void
2015 sym_fw2_patch(hcb_p np)
2016 {
2017 	struct sym_fw2a_scr *scripta0;
2018 	struct sym_fw2b_scr *scriptb0;
2019 
2020 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
2021 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
2022 
2023 	/*
2024 	 *  Remove LED support if not needed.
2025 	 */
2026 	if (!(np->features & FE_LED0)) {
2027 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
2028 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
2029 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
2030 	}
2031 
2032 #ifdef SYM_CONF_IARB_SUPPORT
2033 	/*
2034 	 *    If user does not want to use IMMEDIATE ARBITRATION
2035 	 *    when we are reselected while attempting to arbitrate,
2036 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
2037 	 */
2038 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
2039 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
2040 #endif
2041 	/*
2042 	 *  Patch some variable in SCRIPTS.
2043 	 *  - start and done queue initial bus address.
2044 	 *  - target bus address table bus address.
2045 	 */
2046 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
2047 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
2048 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
2049 
2050 	/*
2051 	 *  Remove the load of SCNTL4 on reselection if not a C10.
2052 	 */
2053 	if (!(np->features & FE_C10)) {
2054 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
2055 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
2056 	}
2057 
2058 	/*
2059 	 *  Remove a couple of work-arounds specific to C1010 if
2060 	 *  they are not desirable. See `sym_fw2.h' for more details.
2061 	 */
2062 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
2063 	      np->revision_id < 0x1 &&
2064 	      np->pciclk_khz < 60000)) {
2065 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
2066 		scripta0->datao_phase[1] = cpu_to_scr(0);
2067 	}
2068 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
2069 	      /* np->revision_id < 0xff */ 1)) {
2070 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
2071 		scripta0->sel_done[1] = cpu_to_scr(0);
2072 	}
2073 
2074 	/*
2075 	 *  Patch some other variables in SCRIPTS.
2076 	 *  These ones are loaded by the SCRIPTS processor.
2077 	 */
2078 	scriptb0->pm0_data_addr[0] =
2079 		cpu_to_scr(np->scripta_ba +
2080 			   offsetof(struct sym_fw2a_scr, pm0_data));
2081 	scriptb0->pm1_data_addr[0] =
2082 		cpu_to_scr(np->scripta_ba +
2083 			   offsetof(struct sym_fw2a_scr, pm1_data));
2084 }
2085 
2086 /*
2087  *  Fill the data area in scripts.
2088  *  To be done for all firmwares.
2089  */
2090 static void
2091 sym_fw_fill_data (u32 *in, u32 *out)
2092 {
2093 	int	i;
2094 
2095 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
2096 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
2097 		*in++  = offsetof (struct sym_dsb, data[i]);
2098 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
2099 		*out++ = offsetof (struct sym_dsb, data[i]);
2100 	}
2101 }
2102 
2103 /*
2104  *  Setup useful script bus addresses.
2105  *  To be done for all firmwares.
2106  */
2107 static void
2108 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw)
2109 {
2110 	u32 *pa;
2111 	u_short *po;
2112 	int i;
2113 
2114 	/*
2115 	 *  Build the bus address table for script A
2116 	 *  from the script A offset table.
2117 	 */
2118 	po = (u_short *) fw->a_ofs;
2119 	pa = (u32 *) &np->fwa_bas;
2120 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
2121 		pa[i] = np->scripta_ba + po[i];
2122 
2123 	/*
2124 	 *  Same for script B.
2125 	 */
2126 	po = (u_short *) fw->b_ofs;
2127 	pa = (u32 *) &np->fwb_bas;
2128 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
2129 		pa[i] = np->scriptb_ba + po[i];
2130 }
2131 
2132 #ifdef	SYM_CONF_GENERIC_SUPPORT
2133 /*
2134  *  Setup routine for firmware #1.
2135  */
2136 static void
2137 sym_fw1_setup(hcb_p np, struct sym_fw *fw)
2138 {
2139 	struct sym_fw1a_scr *scripta0;
2140 	struct sym_fw1b_scr *scriptb0;
2141 
2142 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
2143 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
2144 
2145 	/*
2146 	 *  Fill variable parts in scripts.
2147 	 */
2148 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2149 
2150 	/*
2151 	 *  Setup bus addresses used from the C code..
2152 	 */
2153 	sym_fw_setup_bus_addresses(np, fw);
2154 }
2155 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2156 
2157 /*
2158  *  Setup routine for firmware #2.
2159  */
2160 static void
2161 sym_fw2_setup(hcb_p np, struct sym_fw *fw)
2162 {
2163 	struct sym_fw2a_scr *scripta0;
2164 	struct sym_fw2b_scr *scriptb0;
2165 
2166 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
2167 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
2168 
2169 	/*
2170 	 *  Fill variable parts in scripts.
2171 	 */
2172 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2173 
2174 	/*
2175 	 *  Setup bus addresses used from the C code..
2176 	 */
2177 	sym_fw_setup_bus_addresses(np, fw);
2178 }
2179 
2180 /*
2181  *  Allocate firmware descriptors.
2182  */
2183 #ifdef	SYM_CONF_GENERIC_SUPPORT
2184 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2185 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2186 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2187 
2188 /*
2189  *  Find the most appropriate firmware for a chip.
2190  */
2191 static struct sym_fw *
2192 sym_find_firmware(struct sym_pci_chip *chip)
2193 {
2194 	if (chip->features & FE_LDSTR)
2195 		return &sym_fw2;
2196 #ifdef	SYM_CONF_GENERIC_SUPPORT
2197 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2198 		return &sym_fw1;
2199 #endif
2200 	else
2201 		return 0;
2202 }
2203 
2204 /*
2205  *  Bind a script to physical addresses.
2206  */
2207 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2208 {
2209 	u32 opcode, new, old, tmp1, tmp2;
2210 	u32 *end, *cur;
2211 	int relocs;
2212 
2213 	cur = start;
2214 	end = start + len/4;
2215 
2216 	while (cur < end) {
2217 
2218 		opcode = *cur;
2219 
2220 		/*
2221 		 *  If we forget to change the length
2222 		 *  in scripts, a field will be
2223 		 *  padded with 0. This is an illegal
2224 		 *  command.
2225 		 */
2226 		if (opcode == 0) {
2227 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2228 				sym_name(np), (int) (cur-start));
2229 			MDELAY (10000);
2230 			++cur;
2231 			continue;
2232 		};
2233 
2234 		/*
2235 		 *  We use the bogus value 0xf00ff00f ;-)
2236 		 *  to reserve data area in SCRIPTS.
2237 		 */
2238 		if (opcode == SCR_DATA_ZERO) {
2239 			*cur++ = 0;
2240 			continue;
2241 		}
2242 
2243 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2244 			printf ("%d:  <%x>\n", (int) (cur-start),
2245 				(unsigned)opcode);
2246 
2247 		/*
2248 		 *  We don't have to decode ALL commands
2249 		 */
2250 		switch (opcode >> 28) {
2251 		case 0xf:
2252 			/*
2253 			 *  LOAD / STORE DSA relative, don't relocate.
2254 			 */
2255 			relocs = 0;
2256 			break;
2257 		case 0xe:
2258 			/*
2259 			 *  LOAD / STORE absolute.
2260 			 */
2261 			relocs = 1;
2262 			break;
2263 		case 0xc:
2264 			/*
2265 			 *  COPY has TWO arguments.
2266 			 */
2267 			relocs = 2;
2268 			tmp1 = cur[1];
2269 			tmp2 = cur[2];
2270 			if ((tmp1 ^ tmp2) & 3) {
2271 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2272 					sym_name(np), (int) (cur-start));
2273 				MDELAY (10000);
2274 			}
2275 			/*
2276 			 *  If PREFETCH feature not enabled, remove
2277 			 *  the NO FLUSH bit if present.
2278 			 */
2279 			if ((opcode & SCR_NO_FLUSH) &&
2280 			    !(np->features & FE_PFEN)) {
2281 				opcode = (opcode & ~SCR_NO_FLUSH);
2282 			}
2283 			break;
2284 		case 0x0:
2285 			/*
2286 			 *  MOVE/CHMOV (absolute address)
2287 			 */
2288 			if (!(np->features & FE_WIDE))
2289 				opcode = (opcode | OPC_MOVE);
2290 			relocs = 1;
2291 			break;
2292 		case 0x1:
2293 			/*
2294 			 *  MOVE/CHMOV (table indirect)
2295 			 */
2296 			if (!(np->features & FE_WIDE))
2297 				opcode = (opcode | OPC_MOVE);
2298 			relocs = 0;
2299 			break;
2300 		case 0x8:
2301 			/*
2302 			 *  JUMP / CALL
2303 			 *  dont't relocate if relative :-)
2304 			 */
2305 			if (opcode & 0x00800000)
2306 				relocs = 0;
2307 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2308 				relocs = 2;
2309 			else
2310 				relocs = 1;
2311 			break;
2312 		case 0x4:
2313 		case 0x5:
2314 		case 0x6:
2315 		case 0x7:
2316 			relocs = 1;
2317 			break;
2318 		default:
2319 			relocs = 0;
2320 			break;
2321 		};
2322 
2323 		/*
2324 		 *  Scriptify:) the opcode.
2325 		 */
2326 		*cur++ = cpu_to_scr(opcode);
2327 
2328 		/*
2329 		 *  If no relocation, assume 1 argument
2330 		 *  and just scriptize:) it.
2331 		 */
2332 		if (!relocs) {
2333 			*cur = cpu_to_scr(*cur);
2334 			++cur;
2335 			continue;
2336 		}
2337 
2338 		/*
2339 		 *  Otherwise performs all needed relocations.
2340 		 */
2341 		while (relocs--) {
2342 			old = *cur;
2343 
2344 			switch (old & RELOC_MASK) {
2345 			case RELOC_REGISTER:
2346 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2347 				break;
2348 			case RELOC_LABEL_A:
2349 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2350 				break;
2351 			case RELOC_LABEL_B:
2352 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2353 				break;
2354 			case RELOC_SOFTC:
2355 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2356 				break;
2357 			case 0:
2358 				/*
2359 				 *  Don't relocate a 0 address.
2360 				 *  They are mostly used for patched or
2361 				 *  script self-modified areas.
2362 				 */
2363 				if (old == 0) {
2364 					new = old;
2365 					break;
2366 				}
2367 				/* fall through */
2368 			default:
2369 				new = 0;
2370 				panic("sym_fw_bind_script: "
2371 				      "weird relocation %x\n", old);
2372 				break;
2373 			}
2374 
2375 			*cur++ = cpu_to_scr(new);
2376 		}
2377 	};
2378 }
2379 
2380 /*--------------------------------------------------------------------------*/
2381 /*--------------------------- END OF FIRMARES  -----------------------------*/
2382 /*--------------------------------------------------------------------------*/
2383 
2384 /*
2385  *  Function prototypes.
2386  */
2387 static void sym_save_initial_setting (hcb_p np);
2388 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2389 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2390 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2391 static void sym_chip_reset (hcb_p np);
2392 static void sym_soft_reset (hcb_p np);
2393 static void sym_start_reset (hcb_p np);
2394 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2395 static int  sym_wakeup_done (hcb_p np);
2396 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2397 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2398 static void sym_init (hcb_p np, int reason);
2399 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2400 		        u_char *fakp);
2401 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2402 			 u_char div, u_char fak);
2403 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2404 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2405 			 u_char per, u_char wide, u_char div, u_char fak);
2406 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2407 			 u_char per, u_char wide, u_char div, u_char fak);
2408 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2409 static void sym_intr (void *arg);
2410 static void sym_poll (struct cam_sim *sim);
2411 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2412 static void sym_int_sto (hcb_p np);
2413 static void sym_int_udc (hcb_p np);
2414 static void sym_int_sbmc (hcb_p np);
2415 static void sym_int_par (hcb_p np, u_short sist);
2416 static void sym_int_ma (hcb_p np);
2417 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2418 				    int task);
2419 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2420 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2421 static void sym_sir_task_recovery (hcb_p np, int num);
2422 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2423 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2424 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2425 static int  sym_show_msg (u_char * msg);
2426 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2427 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2428 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2429 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2430 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2431 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2432 static void sym_int_sir (hcb_p np);
2433 static void sym_free_ccb (hcb_p np, ccb_p cp);
2434 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2435 static ccb_p sym_alloc_ccb (hcb_p np);
2436 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2437 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2438 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2439 static int  sym_snooptest (hcb_p np);
2440 static void sym_selectclock(hcb_p np, u_char scntl3);
2441 static void sym_getclock (hcb_p np, int mult);
2442 static int  sym_getpciclock (hcb_p np);
2443 static void sym_complete_ok (hcb_p np, ccb_p cp);
2444 static void sym_complete_error (hcb_p np, ccb_p cp);
2445 static void sym_timeout (void *arg);
2446 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2447 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2448 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2449 static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
2450 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2451 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2452 				      ccb_p cp);
2453 #ifdef	FreeBSD_Bus_Dma_Abstraction
2454 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2455 					bus_dma_segment_t *psegs, int nsegs);
2456 #else
2457 static int  sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr,
2458 				 vm_size_t len);
2459 static int  sym_scatter_sg_virtual (hcb_p np, ccb_p cp,
2460 				    bus_dma_segment_t *psegs, int nsegs);
2461 static int  sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr,
2462 				  vm_size_t len);
2463 #endif
2464 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2465 				    bus_dma_segment_t *psegs, int nsegs);
2466 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2467 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2468 			      struct ccb_trans_settings *cts);
2469 static void sym_update_dflags(hcb_p np, u_char *flags,
2470 			      struct ccb_trans_settings *cts);
2471 
2472 #ifdef FreeBSD_Bus_Io_Abstraction
2473 static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2474 static int  sym_pci_probe (device_t dev);
2475 static int  sym_pci_attach (device_t dev);
2476 #else
2477 static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag);
2478 static const char *sym_pci_probe (pcici_t tag, pcidi_t type);
2479 static void sym_pci_attach (pcici_t tag, int unit);
2480 static int sym_pci_attach2 (pcici_t tag, int unit);
2481 #endif
2482 
2483 static void sym_pci_free (hcb_p np);
2484 static int  sym_cam_attach (hcb_p np);
2485 static void sym_cam_free (hcb_p np);
2486 
2487 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2488 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2489 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2490 
2491 /*
2492  *  Print something which allows to retrieve the controler type,
2493  *  unit, target, lun concerned by a kernel message.
2494  */
2495 static void PRINT_TARGET (hcb_p np, int target)
2496 {
2497 	printf ("%s:%d:", sym_name(np), target);
2498 }
2499 
2500 static void PRINT_LUN(hcb_p np, int target, int lun)
2501 {
2502 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2503 }
2504 
2505 static void PRINT_ADDR (ccb_p cp)
2506 {
2507 	if (cp && cp->cam_ccb)
2508 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2509 }
2510 
2511 /*
2512  *  Take into account this ccb in the freeze count.
2513  */
2514 static void sym_freeze_cam_ccb(union ccb *ccb)
2515 {
2516 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2517 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2518 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2519 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2520 		}
2521 	}
2522 }
2523 
2524 /*
2525  *  Set the status field of a CAM CCB.
2526  */
2527 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2528 {
2529 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2530 	ccb->ccb_h.status |= status;
2531 }
2532 
2533 /*
2534  *  Get the status field of a CAM CCB.
2535  */
2536 static __inline int sym_get_cam_status(union ccb *ccb)
2537 {
2538 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2539 }
2540 
2541 /*
2542  *  Enqueue a CAM CCB.
2543  */
2544 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
2545 {
2546 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2547 	ccb->ccb_h.status = CAM_REQ_INPROG;
2548 
2549 	callout_reset(&ccb->ccb_h.timeout_ch, ccb->ccb_h.timeout*hz/1000,
2550 		      sym_timeout, ccb);
2551 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2552 	ccb->ccb_h.sym_hcb_ptr = np;
2553 
2554 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2555 }
2556 
2557 /*
2558  *  Complete a pending CAM CCB.
2559  */
2560 static void sym_xpt_done(hcb_p np, union ccb *ccb)
2561 {
2562 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2563 		callout_stop(&ccb->ccb_h.timeout_ch);
2564 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2565 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2566 		ccb->ccb_h.sym_hcb_ptr = 0;
2567 	}
2568 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2569 		sym_freeze_cam_ccb(ccb);
2570 	xpt_done(ccb);
2571 }
2572 
2573 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2574 {
2575 	sym_set_cam_status(ccb, cam_status);
2576 	sym_xpt_done(np, ccb);
2577 }
2578 
2579 /*
2580  *  SYMBIOS chip clock divisor table.
2581  *
2582  *  Divisors are multiplied by 10,000,000 in order to make
2583  *  calculations more simple.
2584  */
2585 #define _5M 5000000
2586 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2587 
2588 /*
2589  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2590  *  128 transfers. All chips support at least 16 transfers
2591  *  bursts. The 825A, 875 and 895 chips support bursts of up
2592  *  to 128 transfers and the 895A and 896 support bursts of up
2593  *  to 64 transfers. All other chips support up to 16
2594  *  transfers bursts.
2595  *
2596  *  For PCI 32 bit data transfers each transfer is a DWORD.
2597  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2598  *
2599  *  We use log base 2 (burst length) as internal code, with
2600  *  value 0 meaning "burst disabled".
2601  */
2602 
2603 /*
2604  *  Burst length from burst code.
2605  */
2606 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2607 
2608 /*
2609  *  Burst code from io register bits.
2610  */
2611 #define burst_code(dmode, ctest4, ctest5) \
2612 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2613 
2614 /*
2615  *  Set initial io register bits from burst code.
2616  */
2617 static __inline void sym_init_burst(hcb_p np, u_char bc)
2618 {
2619 	np->rv_ctest4	&= ~0x80;
2620 	np->rv_dmode	&= ~(0x3 << 6);
2621 	np->rv_ctest5	&= ~0x4;
2622 
2623 	if (!bc) {
2624 		np->rv_ctest4	|= 0x80;
2625 	}
2626 	else {
2627 		--bc;
2628 		np->rv_dmode	|= ((bc & 0x3) << 6);
2629 		np->rv_ctest5	|= (bc & 0x4);
2630 	}
2631 }
2632 
2633 
2634 /*
2635  * Print out the list of targets that have some flag disabled by user.
2636  */
2637 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2638 {
2639 	int cnt;
2640 	int i;
2641 
2642 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2643 		if (i == np->myaddr)
2644 			continue;
2645 		if (np->target[i].usrflags & mask) {
2646 			if (!cnt++)
2647 				printf("%s: %s disabled for targets",
2648 					sym_name(np), msg);
2649 			printf(" %d", i);
2650 		}
2651 	}
2652 	if (cnt)
2653 		printf(".\n");
2654 }
2655 
2656 /*
2657  *  Save initial settings of some IO registers.
2658  *  Assumed to have been set by BIOS.
2659  *  We cannot reset the chip prior to reading the
2660  *  IO registers, since informations will be lost.
2661  *  Since the SCRIPTS processor may be running, this
2662  *  is not safe on paper, but it seems to work quite
2663  *  well. :)
2664  */
2665 static void sym_save_initial_setting (hcb_p np)
2666 {
2667 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2668 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2669 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2670 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2671 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2672 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2673 	np->sv_gpcntl	= INB(nc_gpcntl);
2674 	np->sv_stest1	= INB(nc_stest1);
2675 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2676 	np->sv_stest4	= INB(nc_stest4);
2677 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2678 		np->sv_scntl4	= INB(nc_scntl4);
2679 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2680 	}
2681 	else
2682 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2683 }
2684 
2685 /*
2686  *  Prepare io register values used by sym_init() according
2687  *  to selected and supported features.
2688  */
2689 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2690 {
2691 	u_char	burst_max;
2692 	u32	period;
2693 	int i;
2694 
2695 	/*
2696 	 *  Wide ?
2697 	 */
2698 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2699 
2700 	/*
2701 	 *  Get the frequency of the chip's clock.
2702 	 */
2703 	if	(np->features & FE_QUAD)
2704 		np->multiplier	= 4;
2705 	else if	(np->features & FE_DBLR)
2706 		np->multiplier	= 2;
2707 	else
2708 		np->multiplier	= 1;
2709 
2710 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2711 	np->clock_khz	*= np->multiplier;
2712 
2713 	if (np->clock_khz != 40000)
2714 		sym_getclock(np, np->multiplier);
2715 
2716 	/*
2717 	 * Divisor to be used for async (timer pre-scaler).
2718 	 */
2719 	i = np->clock_divn - 1;
2720 	while (--i >= 0) {
2721 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2722 			++i;
2723 			break;
2724 		}
2725 	}
2726 	np->rv_scntl3 = i+1;
2727 
2728 	/*
2729 	 * The C1010 uses hardwired divisors for async.
2730 	 * So, we just throw away, the async. divisor.:-)
2731 	 */
2732 	if (np->features & FE_C10)
2733 		np->rv_scntl3 = 0;
2734 
2735 	/*
2736 	 * Minimum synchronous period factor supported by the chip.
2737 	 * Btw, 'period' is in tenths of nanoseconds.
2738 	 */
2739 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2740 	if	(period <= 250)		np->minsync = 10;
2741 	else if	(period <= 303)		np->minsync = 11;
2742 	else if	(period <= 500)		np->minsync = 12;
2743 	else				np->minsync = (period + 40 - 1) / 40;
2744 
2745 	/*
2746 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2747 	 */
2748 	if	(np->minsync < 25 &&
2749 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2750 		np->minsync = 25;
2751 	else if	(np->minsync < 12 &&
2752 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2753 		np->minsync = 12;
2754 
2755 	/*
2756 	 * Maximum synchronous period factor supported by the chip.
2757 	 */
2758 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2759 	np->maxsync = period > 2540 ? 254 : period / 10;
2760 
2761 	/*
2762 	 * If chip is a C1010, guess the sync limits in DT mode.
2763 	 */
2764 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2765 		if (np->clock_khz == 160000) {
2766 			np->minsync_dt = 9;
2767 			np->maxsync_dt = 50;
2768 			np->maxoffs_dt = 62;
2769 		}
2770 	}
2771 
2772 	/*
2773 	 *  64 bit addressing  (895A/896/1010) ?
2774 	 */
2775 	if (np->features & FE_DAC)
2776 #if BITS_PER_LONG > 32
2777 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2778 #else
2779 		np->rv_ccntl1	|= (DDAC);
2780 #endif
2781 
2782 	/*
2783 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2784   	 */
2785 	if (np->features & FE_NOPM)
2786 		np->rv_ccntl0	|= (ENPMJ);
2787 
2788  	/*
2789 	 *  C1010 Errata.
2790 	 *  In dual channel mode, contention occurs if internal cycles
2791 	 *  are used. Disable internal cycles.
2792 	 */
2793 	if (np->device_id == PCI_ID_LSI53C1010 &&
2794 	    np->revision_id < 0x2)
2795 		np->rv_ccntl0	|=  DILS;
2796 
2797 	/*
2798 	 *  Select burst length (dwords)
2799 	 */
2800 	burst_max	= SYM_SETUP_BURST_ORDER;
2801 	if (burst_max == 255)
2802 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2803 				       np->sv_ctest5);
2804 	if (burst_max > 7)
2805 		burst_max = 7;
2806 	if (burst_max > np->maxburst)
2807 		burst_max = np->maxburst;
2808 
2809 	/*
2810 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2811 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2812 	 *  based transactions on LOAD/STORE instructions. So we have
2813 	 *  to prevent these chips from using such PCI transactions in
2814 	 *  this driver. The generic ncr driver that does not use
2815 	 *  LOAD/STORE instructions does not need this work-around.
2816 	 */
2817 	if ((np->device_id == PCI_ID_SYM53C810 &&
2818 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2819 	    (np->device_id == PCI_ID_SYM53C860 &&
2820 	     np->revision_id <= 0x1))
2821 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2822 
2823 	/*
2824 	 *  Select all supported special features.
2825 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2826 	 *  does not help, but burst op fetch (BOF) does.
2827 	 *  Disabling PFEN makes sure BOF will be used.
2828 	 */
2829 	if (np->features & FE_ERL)
2830 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2831 	if (np->features & FE_BOF)
2832 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2833 	if (np->features & FE_ERMP)
2834 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2835 #if 1
2836 	if ((np->features & FE_PFEN) && !np->ram_ba)
2837 #else
2838 	if (np->features & FE_PFEN)
2839 #endif
2840 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2841 	if (np->features & FE_CLSE)
2842 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2843 	if (np->features & FE_WRIE)
2844 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2845 	if (np->features & FE_DFS)
2846 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2847 
2848 	/*
2849 	 *  Select some other
2850 	 */
2851 	if (SYM_SETUP_PCI_PARITY)
2852 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2853 	if (SYM_SETUP_SCSI_PARITY)
2854 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2855 
2856 	/*
2857 	 *  Get parity checking, host ID and verbose mode from NVRAM
2858 	 */
2859 	np->myaddr = 255;
2860 	sym_nvram_setup_host (np, nvram);
2861 
2862 	/*
2863 	 *  Get SCSI addr of host adapter (set by bios?).
2864 	 */
2865 	if (np->myaddr == 255) {
2866 		np->myaddr = INB(nc_scid) & 0x07;
2867 		if (!np->myaddr)
2868 			np->myaddr = SYM_SETUP_HOST_ID;
2869 	}
2870 
2871 	/*
2872 	 *  Prepare initial io register bits for burst length
2873 	 */
2874 	sym_init_burst(np, burst_max);
2875 
2876 	/*
2877 	 *  Set SCSI BUS mode.
2878 	 *  - LVD capable chips (895/895A/896/1010) report the
2879 	 *    current BUS mode through the STEST4 IO register.
2880 	 *  - For previous generation chips (825/825A/875),
2881 	 *    user has to tell us how to check against HVD,
2882 	 *    since a 100% safe algorithm is not possible.
2883 	 */
2884 	np->scsi_mode = SMODE_SE;
2885 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2886 		np->scsi_mode = (np->sv_stest4 & SMODE);
2887 	else if	(np->features & FE_DIFF) {
2888 		if (SYM_SETUP_SCSI_DIFF == 1) {
2889 			if (np->sv_scntl3) {
2890 				if (np->sv_stest2 & 0x20)
2891 					np->scsi_mode = SMODE_HVD;
2892 			}
2893 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2894 				if (!(INB(nc_gpreg) & 0x08))
2895 					np->scsi_mode = SMODE_HVD;
2896 			}
2897 		}
2898 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2899 			np->scsi_mode = SMODE_HVD;
2900 	}
2901 	if (np->scsi_mode == SMODE_HVD)
2902 		np->rv_stest2 |= 0x20;
2903 
2904 	/*
2905 	 *  Set LED support from SCRIPTS.
2906 	 *  Ignore this feature for boards known to use a
2907 	 *  specific GPIO wiring and for the 895A, 896
2908 	 *  and 1010 that drive the LED directly.
2909 	 */
2910 	if ((SYM_SETUP_SCSI_LED ||
2911 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2912 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2913 	       np->device_id == PCI_ID_SYM53C895))) &&
2914 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2915 		np->features |= FE_LED0;
2916 
2917 	/*
2918 	 *  Set irq mode.
2919 	 */
2920 	switch(SYM_SETUP_IRQ_MODE & 3) {
2921 	case 2:
2922 		np->rv_dcntl	|= IRQM;
2923 		break;
2924 	case 1:
2925 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2926 		break;
2927 	default:
2928 		break;
2929 	}
2930 
2931 	/*
2932 	 *  Configure targets according to driver setup.
2933 	 *  If NVRAM present get targets setup from NVRAM.
2934 	 */
2935 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2936 		tcb_p tp = &np->target[i];
2937 
2938 #ifdef	FreeBSD_New_Tran_Settings
2939 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2940 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2941 #endif
2942 		tp->tinfo.user.period = np->minsync;
2943 		tp->tinfo.user.offset = np->maxoffs;
2944 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2945 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2946 		tp->usrtags = SYM_SETUP_MAX_TAG;
2947 
2948 		sym_nvram_setup_target (np, i, nvram);
2949 
2950 		/*
2951 		 *  For now, guess PPR/DT support from the period
2952 		 *  and BUS width.
2953 		 */
2954 		if (np->features & FE_ULTRA3) {
2955 			if (tp->tinfo.user.period <= 9	&&
2956 			    tp->tinfo.user.width == BUS_16_BIT) {
2957 				tp->tinfo.user.options |= PPR_OPT_DT;
2958 				tp->tinfo.user.offset   = np->maxoffs_dt;
2959 #ifdef	FreeBSD_New_Tran_Settings
2960 				tp->tinfo.user.spi_version = 3;
2961 #endif
2962 			}
2963 		}
2964 
2965 		if (!tp->usrtags)
2966 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2967 	}
2968 
2969 	/*
2970 	 *  Let user know about the settings.
2971 	 */
2972 	i = nvram->type;
2973 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2974 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2975 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2976 		np->myaddr,
2977 		(np->features & FE_ULTRA3) ? 80 :
2978 		(np->features & FE_ULTRA2) ? 40 :
2979 		(np->features & FE_ULTRA)  ? 20 : 10,
2980 		sym_scsi_bus_mode(np->scsi_mode),
2981 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2982 	/*
2983 	 *  Tell him more on demand.
2984 	 */
2985 	if (sym_verbose) {
2986 		printf("%s: %s IRQ line driver%s\n",
2987 			sym_name(np),
2988 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2989 			np->ram_ba ? ", using on-chip SRAM" : "");
2990 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2991 		if (np->features & FE_NOPM)
2992 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2993 			       sym_name(np));
2994 	}
2995 	/*
2996 	 *  And still more.
2997 	 */
2998 	if (sym_verbose > 1) {
2999 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3000 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3001 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3002 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3003 
3004 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3005 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3006 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
3007 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
3008 	}
3009 	/*
3010 	 *  Let user be aware of targets that have some disable flags set.
3011 	 */
3012 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
3013 	if (sym_verbose)
3014 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
3015 				       "SCAN FOR LUNS");
3016 
3017 	return 0;
3018 }
3019 
3020 /*
3021  *  Prepare the next negotiation message if needed.
3022  *
3023  *  Fill in the part of message buffer that contains the
3024  *  negotiation and the nego_status field of the CCB.
3025  *  Returns the size of the message in bytes.
3026  */
3027 
3028 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
3029 {
3030 	tcb_p tp = &np->target[cp->target];
3031 	int msglen = 0;
3032 
3033 	/*
3034 	 *  Early C1010 chips need a work-around for DT
3035 	 *  data transfer to work.
3036 	 */
3037 	if (!(np->features & FE_U3EN))
3038 		tp->tinfo.goal.options = 0;
3039 	/*
3040 	 *  negotiate using PPR ?
3041 	 */
3042 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
3043 		nego = NS_PPR;
3044 	/*
3045 	 *  negotiate wide transfers ?
3046 	 */
3047 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
3048 		nego = NS_WIDE;
3049 	/*
3050 	 *  negotiate synchronous transfers?
3051 	 */
3052 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
3053 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
3054 		nego = NS_SYNC;
3055 
3056 	switch (nego) {
3057 	case NS_SYNC:
3058 		msgptr[msglen++] = M_EXTENDED;
3059 		msgptr[msglen++] = 3;
3060 		msgptr[msglen++] = M_X_SYNC_REQ;
3061 		msgptr[msglen++] = tp->tinfo.goal.period;
3062 		msgptr[msglen++] = tp->tinfo.goal.offset;
3063 		break;
3064 	case NS_WIDE:
3065 		msgptr[msglen++] = M_EXTENDED;
3066 		msgptr[msglen++] = 2;
3067 		msgptr[msglen++] = M_X_WIDE_REQ;
3068 		msgptr[msglen++] = tp->tinfo.goal.width;
3069 		break;
3070 	case NS_PPR:
3071 		msgptr[msglen++] = M_EXTENDED;
3072 		msgptr[msglen++] = 6;
3073 		msgptr[msglen++] = M_X_PPR_REQ;
3074 		msgptr[msglen++] = tp->tinfo.goal.period;
3075 		msgptr[msglen++] = 0;
3076 		msgptr[msglen++] = tp->tinfo.goal.offset;
3077 		msgptr[msglen++] = tp->tinfo.goal.width;
3078 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
3079 		break;
3080 	};
3081 
3082 	cp->nego_status = nego;
3083 
3084 	if (nego) {
3085 		tp->nego_cp = cp; /* Keep track a nego will be performed */
3086 		if (DEBUG_FLAGS & DEBUG_NEGO) {
3087 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
3088 					  nego == NS_WIDE ? "wide msgout" :
3089 					  "ppr msgout", msgptr);
3090 		};
3091 	};
3092 
3093 	return msglen;
3094 }
3095 
3096 /*
3097  *  Insert a job into the start queue.
3098  */
3099 static void sym_put_start_queue(hcb_p np, ccb_p cp)
3100 {
3101 	u_short	qidx;
3102 
3103 #ifdef SYM_CONF_IARB_SUPPORT
3104 	/*
3105 	 *  If the previously queued CCB is not yet done,
3106 	 *  set the IARB hint. The SCRIPTS will go with IARB
3107 	 *  for this job when starting the previous one.
3108 	 *  We leave devices a chance to win arbitration by
3109 	 *  not using more than 'iarb_max' consecutive
3110 	 *  immediate arbitrations.
3111 	 */
3112 	if (np->last_cp && np->iarb_count < np->iarb_max) {
3113 		np->last_cp->host_flags |= HF_HINT_IARB;
3114 		++np->iarb_count;
3115 	}
3116 	else
3117 		np->iarb_count = 0;
3118 	np->last_cp = cp;
3119 #endif
3120 
3121 	/*
3122 	 *  Insert first the idle task and then our job.
3123 	 *  The MB should ensure proper ordering.
3124 	 */
3125 	qidx = np->squeueput + 2;
3126 	if (qidx >= MAX_QUEUE*2) qidx = 0;
3127 
3128 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
3129 	MEMORY_BARRIER();
3130 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
3131 
3132 	np->squeueput = qidx;
3133 
3134 	if (DEBUG_FLAGS & DEBUG_QUEUE)
3135 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
3136 
3137 	/*
3138 	 *  Script processor may be waiting for reselect.
3139 	 *  Wake it up.
3140 	 */
3141 	MEMORY_BARRIER();
3142 	OUTB (nc_istat, SIGP|np->istat_sem);
3143 }
3144 
3145 
3146 /*
3147  *  Soft reset the chip.
3148  *
3149  *  Raising SRST when the chip is running may cause
3150  *  problems on dual function chips (see below).
3151  *  On the other hand, LVD devices need some delay
3152  *  to settle and report actual BUS mode in STEST4.
3153  */
3154 static void sym_chip_reset (hcb_p np)
3155 {
3156 	OUTB (nc_istat, SRST);
3157 	UDELAY (10);
3158 	OUTB (nc_istat, 0);
3159 	UDELAY(2000);	/* For BUS MODE to settle */
3160 }
3161 
3162 /*
3163  *  Soft reset the chip.
3164  *
3165  *  Some 896 and 876 chip revisions may hang-up if we set
3166  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
3167  *  are running.
3168  *  So, we need to abort the current operation prior to
3169  *  soft resetting the chip.
3170  */
3171 static void sym_soft_reset (hcb_p np)
3172 {
3173 	u_char istat;
3174 	int i;
3175 
3176 	OUTB (nc_istat, CABRT);
3177 	for (i = 1000000 ; i ; --i) {
3178 		istat = INB (nc_istat);
3179 		if (istat & SIP) {
3180 			INW (nc_sist);
3181 			continue;
3182 		}
3183 		if (istat & DIP) {
3184 			OUTB (nc_istat, 0);
3185 			INB (nc_dstat);
3186 			break;
3187 		}
3188 	}
3189 	if (!i)
3190 		printf("%s: unable to abort current chip operation.\n",
3191 			sym_name(np));
3192 	sym_chip_reset (np);
3193 }
3194 
3195 /*
3196  *  Start reset process.
3197  *
3198  *  The interrupt handler will reinitialize the chip.
3199  */
3200 static void sym_start_reset(hcb_p np)
3201 {
3202 	(void) sym_reset_scsi_bus(np, 1);
3203 }
3204 
3205 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3206 {
3207 	u32 term;
3208 	int retv = 0;
3209 
3210 	sym_soft_reset(np);	/* Soft reset the chip */
3211 	if (enab_int)
3212 		OUTW (nc_sien, RST);
3213 	/*
3214 	 *  Enable Tolerant, reset IRQD if present and
3215 	 *  properly set IRQ mode, prior to resetting the bus.
3216 	 */
3217 	OUTB (nc_stest3, TE);
3218 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3219 	OUTB (nc_scntl1, CRST);
3220 	UDELAY (200);
3221 
3222 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3223 		goto out;
3224 	/*
3225 	 *  Check for no terminators or SCSI bus shorts to ground.
3226 	 *  Read SCSI data bus, data parity bits and control signals.
3227 	 *  We are expecting RESET to be TRUE and other signals to be
3228 	 *  FALSE.
3229 	 */
3230 	term =	INB(nc_sstat0);
3231 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3232 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3233 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3234 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3235 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3236 
3237 	if (!(np->features & FE_WIDE))
3238 		term &= 0x3ffff;
3239 
3240 	if (term != (2<<7)) {
3241 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3242 			sym_name(np));
3243 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3244 			"0x%lx, expecting 0x%lx\n",
3245 			sym_name(np),
3246 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3247 			(u_long)term, (u_long)(2<<7));
3248 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3249 			retv = 1;
3250 	}
3251 out:
3252 	OUTB (nc_scntl1, 0);
3253 	/* MDELAY(100); */
3254 	return retv;
3255 }
3256 
3257 /*
3258  *  The chip may have completed jobs. Look at the DONE QUEUE.
3259  *
3260  *  On architectures that may reorder LOAD/STORE operations,
3261  *  a memory barrier may be needed after the reading of the
3262  *  so-called `flag' and prior to dealing with the data.
3263  */
3264 static int sym_wakeup_done (hcb_p np)
3265 {
3266 	ccb_p cp;
3267 	int i, n;
3268 	u32 dsa;
3269 
3270 	n = 0;
3271 	i = np->dqueueget;
3272 	while (1) {
3273 		dsa = scr_to_cpu(np->dqueue[i]);
3274 		if (!dsa)
3275 			break;
3276 		np->dqueue[i] = 0;
3277 		if ((i = i+2) >= MAX_QUEUE*2)
3278 			i = 0;
3279 
3280 		cp = sym_ccb_from_dsa(np, dsa);
3281 		if (cp) {
3282 			MEMORY_BARRIER();
3283 			sym_complete_ok (np, cp);
3284 			++n;
3285 		}
3286 		else
3287 			printf ("%s: bad DSA (%x) in done queue.\n",
3288 				sym_name(np), (u_int) dsa);
3289 	}
3290 	np->dqueueget = i;
3291 
3292 	return n;
3293 }
3294 
3295 /*
3296  *  Complete all active CCBs with error.
3297  *  Used on CHIP/SCSI RESET.
3298  */
3299 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3300 {
3301 	/*
3302 	 *  Move all active CCBs to the COMP queue
3303 	 *  and flush this queue.
3304 	 */
3305 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3306 	sym_que_init(&np->busy_ccbq);
3307 	sym_flush_comp_queue(np, cam_status);
3308 }
3309 
3310 /*
3311  *  Start chip.
3312  *
3313  *  'reason' means:
3314  *     0: initialisation.
3315  *     1: SCSI BUS RESET delivered or received.
3316  *     2: SCSI BUS MODE changed.
3317  */
3318 static void sym_init (hcb_p np, int reason)
3319 {
3320  	int	i;
3321 	u32	phys;
3322 
3323  	/*
3324 	 *  Reset chip if asked, otherwise just clear fifos.
3325  	 */
3326 	if (reason == 1)
3327 		sym_soft_reset(np);
3328 	else {
3329 		OUTB (nc_stest3, TE|CSF);
3330 		OUTONB (nc_ctest3, CLF);
3331 	}
3332 
3333 	/*
3334 	 *  Clear Start Queue
3335 	 */
3336 	phys = np->squeue_ba;
3337 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3338 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3339 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3340 	}
3341 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3342 
3343 	/*
3344 	 *  Start at first entry.
3345 	 */
3346 	np->squeueput = 0;
3347 
3348 	/*
3349 	 *  Clear Done Queue
3350 	 */
3351 	phys = np->dqueue_ba;
3352 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3353 		np->dqueue[i]   = 0;
3354 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3355 	}
3356 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3357 
3358 	/*
3359 	 *  Start at first entry.
3360 	 */
3361 	np->dqueueget = 0;
3362 
3363 	/*
3364 	 *  Install patches in scripts.
3365 	 *  This also let point to first position the start
3366 	 *  and done queue pointers used from SCRIPTS.
3367 	 */
3368 	np->fw_patch(np);
3369 
3370 	/*
3371 	 *  Wakeup all pending jobs.
3372 	 */
3373 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3374 
3375 	/*
3376 	 *  Init chip.
3377 	 */
3378 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3379 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3380 
3381 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3382 					/*  full arb., ena parity, par->ATN  */
3383 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3384 
3385 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3386 
3387 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3388 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3389 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3390 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3391 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3392 
3393 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3394 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3395 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3396 
3397 	/* Extended Sreq/Sack filtering not supported on the C10 */
3398 	if (np->features & FE_C10)
3399 		OUTB (nc_stest2, np->rv_stest2);
3400 	else
3401 		OUTB (nc_stest2, EXT|np->rv_stest2);
3402 
3403 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3404 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3405 
3406 	/*
3407 	 *  For now, disable AIP generation on C1010-66.
3408 	 */
3409 	if (np->device_id == PCI_ID_LSI53C1010_2)
3410 		OUTB (nc_aipcntl1, DISAIP);
3411 
3412 	/*
3413 	 *  C10101 Errata.
3414 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3415 	 *  STEST1 register to disable SGE. We probably should do
3416 	 *  that from SCRIPTS for each selection/reselection, but
3417 	 *  I just don't want. :)
3418 	 */
3419 	if (np->device_id == PCI_ID_LSI53C1010 &&
3420 	    /* np->revision_id < 0xff */ 1)
3421 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3422 
3423 	/*
3424 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3425 	 *  Disable overlapped arbitration for some dual function devices,
3426 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3427 	 */
3428 	if (np->device_id == PCI_ID_SYM53C875)
3429 		OUTB (nc_ctest0, (1<<5));
3430 	else if (np->device_id == PCI_ID_SYM53C896)
3431 		np->rv_ccntl0 |= DPR;
3432 
3433 	/*
3434 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3435 	 *  and/or hardware phase mismatch, since only such chips
3436 	 *  seem to support those IO registers.
3437 	 */
3438 	if (np->features & (FE_DAC|FE_NOPM)) {
3439 		OUTB (nc_ccntl0, np->rv_ccntl0);
3440 		OUTB (nc_ccntl1, np->rv_ccntl1);
3441 	}
3442 
3443 	/*
3444 	 *  If phase mismatch handled by scripts (895A/896/1010),
3445 	 *  set PM jump addresses.
3446 	 */
3447 	if (np->features & FE_NOPM) {
3448 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3449 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3450 	}
3451 
3452 	/*
3453 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3454 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3455 	 */
3456 	if (np->features & FE_LED0)
3457 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3458 	else if (np->features & FE_LEDC)
3459 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3460 
3461 	/*
3462 	 *      enable ints
3463 	 */
3464 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3465 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3466 
3467 	/*
3468 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3469 	 *  Try to eat the spurious SBMC interrupt that may occur when
3470 	 *  we reset the chip but not the SCSI BUS (at initialization).
3471 	 */
3472 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3473 		OUTONW (nc_sien, SBMC);
3474 		if (reason == 0) {
3475 			MDELAY(100);
3476 			INW (nc_sist);
3477 		}
3478 		np->scsi_mode = INB (nc_stest4) & SMODE;
3479 	}
3480 
3481 	/*
3482 	 *  Fill in target structure.
3483 	 *  Reinitialize usrsync.
3484 	 *  Reinitialize usrwide.
3485 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3486 	 */
3487 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3488 		tcb_p tp = &np->target[i];
3489 
3490 		tp->to_reset  = 0;
3491 		tp->head.sval = 0;
3492 		tp->head.wval = np->rv_scntl3;
3493 		tp->head.uval = 0;
3494 
3495 		tp->tinfo.current.period = 0;
3496 		tp->tinfo.current.offset = 0;
3497 		tp->tinfo.current.width  = BUS_8_BIT;
3498 		tp->tinfo.current.options = 0;
3499 	}
3500 
3501 	/*
3502 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3503 	 *  and start script processor.
3504 	 */
3505 	if (np->ram_ba) {
3506 		if (sym_verbose > 1)
3507 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3508 				sym_name(np));
3509 		if (np->ram_ws == 8192) {
3510 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3511 			OUTL (nc_mmws, np->scr_ram_seg);
3512 			OUTL (nc_mmrs, np->scr_ram_seg);
3513 			OUTL (nc_sfs,  np->scr_ram_seg);
3514 			phys = SCRIPTB_BA (np, start64);
3515 		}
3516 		else
3517 			phys = SCRIPTA_BA (np, init);
3518 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3519 	}
3520 	else
3521 		phys = SCRIPTA_BA (np, init);
3522 
3523 	np->istat_sem = 0;
3524 
3525 	OUTL (nc_dsa, np->hcb_ba);
3526 	OUTL_DSP (phys);
3527 
3528 	/*
3529 	 *  Notify the XPT about the RESET condition.
3530 	 */
3531 	if (reason != 0)
3532 		xpt_async(AC_BUS_RESET, np->path, NULL);
3533 }
3534 
3535 /*
3536  *  Get clock factor and sync divisor for a given
3537  *  synchronous factor period.
3538  */
3539 static int
3540 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3541 {
3542 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3543 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3544 	u32	fak;			/* Sync factor in sxfer		*/
3545 	u32	per;			/* Period in tenths of ns	*/
3546 	u32	kpc;			/* (per * clk)			*/
3547 	int	ret;
3548 
3549 	/*
3550 	 *  Compute the synchronous period in tenths of nano-seconds
3551 	 */
3552 	if (dt && sfac <= 9)	per = 125;
3553 	else if	(sfac <= 10)	per = 250;
3554 	else if	(sfac == 11)	per = 303;
3555 	else if	(sfac == 12)	per = 500;
3556 	else			per = 40 * sfac;
3557 	ret = per;
3558 
3559 	kpc = per * clk;
3560 	if (dt)
3561 		kpc <<= 1;
3562 
3563 	/*
3564 	 *  For earliest C10 revision 0, we cannot use extra
3565 	 *  clocks for the setting of the SCSI clocking.
3566 	 *  Note that this limits the lowest sync data transfer
3567 	 *  to 5 Mega-transfers per second and may result in
3568 	 *  using higher clock divisors.
3569 	 */
3570 #if 1
3571 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3572 		/*
3573 		 *  Look for the lowest clock divisor that allows an
3574 		 *  output speed not faster than the period.
3575 		 */
3576 		while (div > 0) {
3577 			--div;
3578 			if (kpc > (div_10M[div] << 2)) {
3579 				++div;
3580 				break;
3581 			}
3582 		}
3583 		fak = 0;			/* No extra clocks */
3584 		if (div == np->clock_divn) {	/* Are we too fast ? */
3585 			ret = -1;
3586 		}
3587 		*divp = div;
3588 		*fakp = fak;
3589 		return ret;
3590 	}
3591 #endif
3592 
3593 	/*
3594 	 *  Look for the greatest clock divisor that allows an
3595 	 *  input speed faster than the period.
3596 	 */
3597 	while (div-- > 0)
3598 		if (kpc >= (div_10M[div] << 2)) break;
3599 
3600 	/*
3601 	 *  Calculate the lowest clock factor that allows an output
3602 	 *  speed not faster than the period, and the max output speed.
3603 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3604 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3605 	 */
3606 	if (dt) {
3607 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3608 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3609 	}
3610 	else {
3611 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3612 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3613 	}
3614 
3615 	/*
3616 	 *  Check against our hardware limits, or bugs :).
3617 	 */
3618 	if (fak < 0)	{fak = 0; ret = -1;}
3619 	if (fak > 2)	{fak = 2; ret = -1;}
3620 
3621 	/*
3622 	 *  Compute and return sync parameters.
3623 	 */
3624 	*divp = div;
3625 	*fakp = fak;
3626 
3627 	return ret;
3628 }
3629 
3630 /*
3631  *  Tell the SCSI layer about the new transfer parameters.
3632  */
3633 static void
3634 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3635 {
3636 	struct ccb_trans_settings cts;
3637 	struct cam_path *path;
3638 	int sts;
3639 	tcb_p tp = &np->target[target];
3640 
3641 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3642 	                      CAM_LUN_WILDCARD);
3643 	if (sts != CAM_REQ_CMP)
3644 		return;
3645 
3646 	bzero(&cts, sizeof(cts));
3647 
3648 #ifdef	FreeBSD_New_Tran_Settings
3649 #define	cts__scsi (cts.proto_specific.scsi)
3650 #define	cts__spi  (cts.xport_specific.spi)
3651 
3652 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3653 	cts.protocol  = PROTO_SCSI;
3654 	cts.transport = XPORT_SPI;
3655 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3656 	cts.transport_version = tp->tinfo.current.spi_version;
3657 
3658 	cts__spi.valid = spi_valid;
3659 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3660 		cts__spi.sync_period = tp->tinfo.current.period;
3661 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3662 		cts__spi.sync_offset = tp->tinfo.current.offset;
3663 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3664 		cts__spi.bus_width   = tp->tinfo.current.width;
3665 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3666 		cts__spi.ppr_options = tp->tinfo.current.options;
3667 #undef cts__spi
3668 #undef cts__scsi
3669 #else
3670 	cts.valid = spi_valid;
3671 	if (spi_valid & CCB_TRANS_SYNC_RATE_VALID)
3672 		cts.sync_period = tp->tinfo.current.period;
3673 	if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID)
3674 		cts.sync_offset = tp->tinfo.current.offset;
3675 	if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID)
3676 		cts.bus_width   = tp->tinfo.current.width;
3677 #endif
3678 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3679 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3680 	xpt_free_path(path);
3681 }
3682 
3683 #ifdef	FreeBSD_New_Tran_Settings
3684 #define SYM_SPI_VALID_WDTR		\
3685 	CTS_SPI_VALID_BUS_WIDTH |	\
3686 	CTS_SPI_VALID_SYNC_RATE |	\
3687 	CTS_SPI_VALID_SYNC_OFFSET
3688 #define SYM_SPI_VALID_SDTR		\
3689 	CTS_SPI_VALID_SYNC_RATE |	\
3690 	CTS_SPI_VALID_SYNC_OFFSET
3691 #define SYM_SPI_VALID_PPR		\
3692 	CTS_SPI_VALID_PPR_OPTIONS |	\
3693 	CTS_SPI_VALID_BUS_WIDTH |	\
3694 	CTS_SPI_VALID_SYNC_RATE |	\
3695 	CTS_SPI_VALID_SYNC_OFFSET
3696 #else
3697 #define SYM_SPI_VALID_WDTR		\
3698 	CCB_TRANS_BUS_WIDTH_VALID |	\
3699 	CCB_TRANS_SYNC_RATE_VALID |	\
3700 	CCB_TRANS_SYNC_OFFSET_VALID
3701 #define SYM_SPI_VALID_SDTR		\
3702 	CCB_TRANS_SYNC_RATE_VALID |	\
3703 	CCB_TRANS_SYNC_OFFSET_VALID
3704 #define SYM_SPI_VALID_PPR		\
3705 	CCB_TRANS_BUS_WIDTH_VALID |	\
3706 	CCB_TRANS_SYNC_RATE_VALID |	\
3707 	CCB_TRANS_SYNC_OFFSET_VALID
3708 #endif
3709 
3710 /*
3711  *  We received a WDTR.
3712  *  Let everything be aware of the changes.
3713  */
3714 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3715 {
3716 	tcb_p tp = &np->target[cp->target];
3717 
3718 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3719 
3720 	/*
3721 	 *  Tell the SCSI layer about the new transfer parameters.
3722 	 */
3723 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3724 	tp->tinfo.current.offset = 0;
3725 	tp->tinfo.current.period = 0;
3726 	tp->tinfo.current.options = 0;
3727 
3728 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3729 }
3730 
3731 /*
3732  *  We received a SDTR.
3733  *  Let everything be aware of the changes.
3734  */
3735 static void
3736 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3737 {
3738 	tcb_p tp = &np->target[cp->target];
3739 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3740 
3741 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3742 
3743 	/*
3744 	 *  Tell the SCSI layer about the new transfer parameters.
3745 	 */
3746 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3747 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3748 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3749 
3750 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3751 }
3752 
3753 /*
3754  *  We received a PPR.
3755  *  Let everything be aware of the changes.
3756  */
3757 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3758 			 u_char per, u_char wide, u_char div, u_char fak)
3759 {
3760 	tcb_p tp = &np->target[cp->target];
3761 
3762 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3763 
3764 	/*
3765 	 *  Tell the SCSI layer about the new transfer parameters.
3766 	 */
3767 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3768 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3769 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3770 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3771 
3772 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3773 }
3774 
3775 /*
3776  *  Switch trans mode for current job and it's target.
3777  */
3778 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3779 			 u_char per, u_char wide, u_char div, u_char fak)
3780 {
3781 	SYM_QUEHEAD *qp;
3782 	union	ccb *ccb;
3783 	tcb_p tp;
3784 	u_char target = INB (nc_sdid) & 0x0f;
3785 	u_char sval, wval, uval;
3786 
3787 	assert (cp);
3788 	if (!cp) return;
3789 	ccb = cp->cam_ccb;
3790 	assert (ccb);
3791 	if (!ccb) return;
3792 	assert (target == (cp->target & 0xf));
3793 	tp = &np->target[target];
3794 
3795 	sval = tp->head.sval;
3796 	wval = tp->head.wval;
3797 	uval = tp->head.uval;
3798 
3799 #if 0
3800 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3801 		sval, wval, uval, np->rv_scntl3);
3802 #endif
3803 	/*
3804 	 *  Set the offset.
3805 	 */
3806 	if (!(np->features & FE_C10))
3807 		sval = (sval & ~0x1f) | ofs;
3808 	else
3809 		sval = (sval & ~0x3f) | ofs;
3810 
3811 	/*
3812 	 *  Set the sync divisor and extra clock factor.
3813 	 */
3814 	if (ofs != 0) {
3815 		wval = (wval & ~0x70) | ((div+1) << 4);
3816 		if (!(np->features & FE_C10))
3817 			sval = (sval & ~0xe0) | (fak << 5);
3818 		else {
3819 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3820 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3821 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3822 		}
3823 	}
3824 
3825 	/*
3826 	 *  Set the bus width.
3827 	 */
3828 	wval = wval & ~EWS;
3829 	if (wide != 0)
3830 		wval |= EWS;
3831 
3832 	/*
3833 	 *  Set misc. ultra enable bits.
3834 	 */
3835 	if (np->features & FE_C10) {
3836 		uval = uval & ~(U3EN|AIPCKEN);
3837 		if (dt)	{
3838 			assert(np->features & FE_U3EN);
3839 			uval |= U3EN;
3840 		}
3841 	}
3842 	else {
3843 		wval = wval & ~ULTRA;
3844 		if (per <= 12)	wval |= ULTRA;
3845 	}
3846 
3847 	/*
3848 	 *   Stop there if sync parameters are unchanged.
3849 	 */
3850 	if (tp->head.sval == sval &&
3851 	    tp->head.wval == wval &&
3852 	    tp->head.uval == uval)
3853 		return;
3854 	tp->head.sval = sval;
3855 	tp->head.wval = wval;
3856 	tp->head.uval = uval;
3857 
3858 	/*
3859 	 *  Disable extended Sreq/Sack filtering if per < 50.
3860 	 *  Not supported on the C1010.
3861 	 */
3862 	if (per < 50 && !(np->features & FE_C10))
3863 		OUTOFFB (nc_stest2, EXT);
3864 
3865 	/*
3866 	 *  set actual value and sync_status
3867 	 */
3868 	OUTB (nc_sxfer,  tp->head.sval);
3869 	OUTB (nc_scntl3, tp->head.wval);
3870 
3871 	if (np->features & FE_C10) {
3872 		OUTB (nc_scntl4, tp->head.uval);
3873 	}
3874 
3875 	/*
3876 	 *  patch ALL busy ccbs of this target.
3877 	 */
3878 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3879 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3880 		if (cp->target != target)
3881 			continue;
3882 		cp->phys.select.sel_scntl3 = tp->head.wval;
3883 		cp->phys.select.sel_sxfer  = tp->head.sval;
3884 		if (np->features & FE_C10) {
3885 			cp->phys.select.sel_scntl4 = tp->head.uval;
3886 		}
3887 	}
3888 }
3889 
3890 /*
3891  *  log message for real hard errors
3892  *
3893  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3894  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3895  *
3896  *  exception register:
3897  *  	ds:	dstat
3898  *  	si:	sist
3899  *
3900  *  SCSI bus lines:
3901  *  	so:	control lines as driven by chip.
3902  *  	si:	control lines as seen by chip.
3903  *  	sd:	scsi data lines as seen by chip.
3904  *
3905  *  wide/fastmode:
3906  *  	sxfer:	(see the manual)
3907  *  	scntl3:	(see the manual)
3908  *
3909  *  current script command:
3910  *  	dsp:	script adress (relative to start of script).
3911  *  	dbc:	first word of script command.
3912  *
3913  *  First 24 register of the chip:
3914  *  	r0..rf
3915  */
3916 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3917 {
3918 	u32	dsp;
3919 	int	script_ofs;
3920 	int	script_size;
3921 	char	*script_name;
3922 	u_char	*script_base;
3923 	int	i;
3924 
3925 	dsp	= INL (nc_dsp);
3926 
3927 	if	(dsp > np->scripta_ba &&
3928 		 dsp <= np->scripta_ba + np->scripta_sz) {
3929 		script_ofs	= dsp - np->scripta_ba;
3930 		script_size	= np->scripta_sz;
3931 		script_base	= (u_char *) np->scripta0;
3932 		script_name	= "scripta";
3933 	}
3934 	else if (np->scriptb_ba < dsp &&
3935 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3936 		script_ofs	= dsp - np->scriptb_ba;
3937 		script_size	= np->scriptb_sz;
3938 		script_base	= (u_char *) np->scriptb0;
3939 		script_name	= "scriptb";
3940 	} else {
3941 		script_ofs	= dsp;
3942 		script_size	= 0;
3943 		script_base	= 0;
3944 		script_name	= "mem";
3945 	}
3946 
3947 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3948 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3949 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3950 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3951 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3952 		(unsigned)INL (nc_dbc));
3953 
3954 	if (((script_ofs & 3) == 0) &&
3955 	    (unsigned)script_ofs < script_size) {
3956 		printf ("%s: script cmd = %08x\n", sym_name(np),
3957 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3958 	}
3959 
3960         printf ("%s: regdump:", sym_name(np));
3961         for (i=0; i<24;i++)
3962             printf (" %02x", (unsigned)INB_OFF(i));
3963         printf (".\n");
3964 
3965 	/*
3966 	 *  PCI BUS error, read the PCI ststus register.
3967 	 */
3968 	if (dstat & (MDPE|BF)) {
3969 		u_short pci_sts;
3970 #ifdef FreeBSD_Bus_Io_Abstraction
3971 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3972 #else
3973 		pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2);
3974 #endif
3975 		if (pci_sts & 0xf900) {
3976 #ifdef FreeBSD_Bus_Io_Abstraction
3977 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3978 #else
3979 			pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2);
3980 #endif
3981 			printf("%s: PCI STATUS = 0x%04x\n",
3982 				sym_name(np), pci_sts & 0xf900);
3983 		}
3984 	}
3985 }
3986 
3987 /*
3988  *  chip interrupt handler
3989  *
3990  *  In normal situations, interrupt conditions occur one at
3991  *  a time. But when something bad happens on the SCSI BUS,
3992  *  the chip may raise several interrupt flags before
3993  *  stopping and interrupting the CPU. The additionnal
3994  *  interrupt flags are stacked in some extra registers
3995  *  after the SIP and/or DIP flag has been raised in the
3996  *  ISTAT. After the CPU has read the interrupt condition
3997  *  flag from SIST or DSTAT, the chip unstacks the other
3998  *  interrupt flags and sets the corresponding bits in
3999  *  SIST or DSTAT. Since the chip starts stacking once the
4000  *  SIP or DIP flag is set, there is a small window of time
4001  *  where the stacking does not occur.
4002  *
4003  *  Typically, multiple interrupt conditions may happen in
4004  *  the following situations:
4005  *
4006  *  - SCSI parity error + Phase mismatch  (PAR|MA)
4007  *    When an parity error is detected in input phase
4008  *    and the device switches to msg-in phase inside a
4009  *    block MOV.
4010  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
4011  *    When a stupid device does not want to handle the
4012  *    recovery of an SCSI parity error.
4013  *  - Some combinations of STO, PAR, UDC, ...
4014  *    When using non compliant SCSI stuff, when user is
4015  *    doing non compliant hot tampering on the BUS, when
4016  *    something really bad happens to a device, etc ...
4017  *
4018  *  The heuristic suggested by SYMBIOS to handle
4019  *  multiple interrupts is to try unstacking all
4020  *  interrupts conditions and to handle them on some
4021  *  priority based on error severity.
4022  *  This will work when the unstacking has been
4023  *  successful, but we cannot be 100 % sure of that,
4024  *  since the CPU may have been faster to unstack than
4025  *  the chip is able to stack. Hmmm ... But it seems that
4026  *  such a situation is very unlikely to happen.
4027  *
4028  *  If this happen, for example STO caught by the CPU
4029  *  then UDC happenning before the CPU have restarted
4030  *  the SCRIPTS, the driver may wrongly complete the
4031  *  same command on UDC, since the SCRIPTS didn't restart
4032  *  and the DSA still points to the same command.
4033  *  We avoid this situation by setting the DSA to an
4034  *  invalid value when the CCB is completed and before
4035  *  restarting the SCRIPTS.
4036  *
4037  *  Another issue is that we need some section of our
4038  *  recovery procedures to be somehow uninterruptible but
4039  *  the SCRIPTS processor does not provides such a
4040  *  feature. For this reason, we handle recovery preferently
4041  *  from the C code and check against some SCRIPTS critical
4042  *  sections from the C code.
4043  *
4044  *  Hopefully, the interrupt handling of the driver is now
4045  *  able to resist to weird BUS error conditions, but donnot
4046  *  ask me for any guarantee that it will never fail. :-)
4047  *  Use at your own decision and risk.
4048  */
4049 
4050 static void sym_intr1 (hcb_p np)
4051 {
4052 	u_char	istat, istatc;
4053 	u_char	dstat;
4054 	u_short	sist;
4055 
4056 	/*
4057 	 *  interrupt on the fly ?
4058 	 *
4059 	 *  A `dummy read' is needed to ensure that the
4060 	 *  clear of the INTF flag reaches the device
4061 	 *  before the scanning of the DONE queue.
4062 	 */
4063 	istat = INB (nc_istat);
4064 	if (istat & INTF) {
4065 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
4066 		istat = INB (nc_istat);		/* DUMMY READ */
4067 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
4068 		(void)sym_wakeup_done (np);
4069 	};
4070 
4071 	if (!(istat & (SIP|DIP)))
4072 		return;
4073 
4074 #if 0	/* We should never get this one */
4075 	if (istat & CABRT)
4076 		OUTB (nc_istat, CABRT);
4077 #endif
4078 
4079 	/*
4080 	 *  PAR and MA interrupts may occur at the same time,
4081 	 *  and we need to know of both in order to handle
4082 	 *  this situation properly. We try to unstack SCSI
4083 	 *  interrupts for that reason. BTW, I dislike a LOT
4084 	 *  such a loop inside the interrupt routine.
4085 	 *  Even if DMA interrupt stacking is very unlikely to
4086 	 *  happen, we also try unstacking these ones, since
4087 	 *  this has no performance impact.
4088 	 */
4089 	sist	= 0;
4090 	dstat	= 0;
4091 	istatc	= istat;
4092 	do {
4093 		if (istatc & SIP)
4094 			sist  |= INW (nc_sist);
4095 		if (istatc & DIP)
4096 			dstat |= INB (nc_dstat);
4097 		istatc = INB (nc_istat);
4098 		istat |= istatc;
4099 	} while (istatc & (SIP|DIP));
4100 
4101 	if (DEBUG_FLAGS & DEBUG_TINY)
4102 		printf ("<%d|%x:%x|%x:%x>",
4103 			(int)INB(nc_scr0),
4104 			dstat,sist,
4105 			(unsigned)INL(nc_dsp),
4106 			(unsigned)INL(nc_dbc));
4107 	/*
4108 	 *  On paper, a memory barrier may be needed here.
4109 	 *  And since we are paranoid ... :)
4110 	 */
4111 	MEMORY_BARRIER();
4112 
4113 	/*
4114 	 *  First, interrupts we want to service cleanly.
4115 	 *
4116 	 *  Phase mismatch (MA) is the most frequent interrupt
4117 	 *  for chip earlier than the 896 and so we have to service
4118 	 *  it as quickly as possible.
4119 	 *  A SCSI parity error (PAR) may be combined with a phase
4120 	 *  mismatch condition (MA).
4121 	 *  Programmed interrupts (SIR) are used to call the C code
4122 	 *  from SCRIPTS.
4123 	 *  The single step interrupt (SSI) is not used in this
4124 	 *  driver.
4125 	 */
4126 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
4127 	    !(dstat & (MDPE|BF|ABRT|IID))) {
4128 		if	(sist & PAR)	sym_int_par (np, sist);
4129 		else if (sist & MA)	sym_int_ma (np);
4130 		else if (dstat & SIR)	sym_int_sir (np);
4131 		else if (dstat & SSI)	OUTONB_STD ();
4132 		else			goto unknown_int;
4133 		return;
4134 	};
4135 
4136 	/*
4137 	 *  Now, interrupts that donnot happen in normal
4138 	 *  situations and that we may need to recover from.
4139 	 *
4140 	 *  On SCSI RESET (RST), we reset everything.
4141 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
4142 	 *  active CCBs with RESET status, prepare all devices
4143 	 *  for negotiating again and restart the SCRIPTS.
4144 	 *  On STO and UDC, we complete the CCB with the corres-
4145 	 *  ponding status and restart the SCRIPTS.
4146 	 */
4147 	if (sist & RST) {
4148 		xpt_print_path(np->path);
4149 		printf("SCSI BUS reset detected.\n");
4150 		sym_init (np, 1);
4151 		return;
4152 	};
4153 
4154 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4155 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4156 
4157 	if (!(sist  & (GEN|HTH|SGE)) &&
4158 	    !(dstat & (MDPE|BF|ABRT|IID))) {
4159 		if	(sist & SBMC)	sym_int_sbmc (np);
4160 		else if (sist & STO)	sym_int_sto (np);
4161 		else if (sist & UDC)	sym_int_udc (np);
4162 		else			goto unknown_int;
4163 		return;
4164 	};
4165 
4166 	/*
4167 	 *  Now, interrupts we are not able to recover cleanly.
4168 	 *
4169 	 *  Log message for hard errors.
4170 	 *  Reset everything.
4171 	 */
4172 
4173 	sym_log_hard_error(np, sist, dstat);
4174 
4175 	if ((sist & (GEN|HTH|SGE)) ||
4176 		(dstat & (MDPE|BF|ABRT|IID))) {
4177 		sym_start_reset(np);
4178 		return;
4179 	};
4180 
4181 unknown_int:
4182 	/*
4183 	 *  We just miss the cause of the interrupt. :(
4184 	 *  Print a message. The timeout will do the real work.
4185 	 */
4186 	printf(	"%s: unknown interrupt(s) ignored, "
4187 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
4188 		sym_name(np), istat, dstat, sist);
4189 }
4190 
4191 static void sym_intr(void *arg)
4192 {
4193 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
4194 	sym_intr1((hcb_p) arg);
4195 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
4196 	return;
4197 }
4198 
4199 static void sym_poll(struct cam_sim *sim)
4200 {
4201 	crit_enter();
4202 	sym_intr(cam_sim_softc(sim));
4203 	crit_exit();
4204 }
4205 
4206 
4207 /*
4208  *  generic recovery from scsi interrupt
4209  *
4210  *  The doc says that when the chip gets an SCSI interrupt,
4211  *  it tries to stop in an orderly fashion, by completing
4212  *  an instruction fetch that had started or by flushing
4213  *  the DMA fifo for a write to memory that was executing.
4214  *  Such a fashion is not enough to know if the instruction
4215  *  that was just before the current DSP value has been
4216  *  executed or not.
4217  *
4218  *  There are some small SCRIPTS sections that deal with
4219  *  the start queue and the done queue that may break any
4220  *  assomption from the C code if we are interrupted
4221  *  inside, so we reset if this happens. Btw, since these
4222  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4223  *  started SCSI operations, it is very unlikely to happen.
4224  *
4225  *  All the driver data structures are supposed to be
4226  *  allocated from the same 4 GB memory window, so there
4227  *  is a 1 to 1 relationship between DSA and driver data
4228  *  structures. Since we are careful :) to invalidate the
4229  *  DSA when we complete a command or when the SCRIPTS
4230  *  pushes a DSA into a queue, we can trust it when it
4231  *  points to a CCB.
4232  */
4233 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4234 {
4235 	u32	dsp	= INL (nc_dsp);
4236 	u32	dsa	= INL (nc_dsa);
4237 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4238 
4239 	/*
4240 	 *  If we haven't been interrupted inside the SCRIPTS
4241 	 *  critical pathes, we can safely restart the SCRIPTS
4242 	 *  and trust the DSA value if it matches a CCB.
4243 	 */
4244 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4245 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4246 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4247 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4248 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4249 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4250 	    (!(dsp > SCRIPTA_BA (np, done) &&
4251 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4252 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4253 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4254 		/*
4255 		 *  If we have a CCB, let the SCRIPTS call us back for
4256 		 *  the handling of the error with SCRATCHA filled with
4257 		 *  STARTPOS. This way, we will be able to freeze the
4258 		 *  device queue and requeue awaiting IOs.
4259 		 */
4260 		if (cp) {
4261 			cp->host_status = hsts;
4262 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4263 		}
4264 		/*
4265 		 *  Otherwise just restart the SCRIPTS.
4266 		 */
4267 		else {
4268 			OUTL (nc_dsa, 0xffffff);
4269 			OUTL_DSP (SCRIPTA_BA (np, start));
4270 		}
4271 	}
4272 	else
4273 		goto reset_all;
4274 
4275 	return;
4276 
4277 reset_all:
4278 	sym_start_reset(np);
4279 }
4280 
4281 /*
4282  *  chip exception handler for selection timeout
4283  */
4284 void sym_int_sto (hcb_p np)
4285 {
4286 	u32 dsp	= INL (nc_dsp);
4287 
4288 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4289 
4290 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4291 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4292 	else
4293 		sym_start_reset(np);
4294 }
4295 
4296 /*
4297  *  chip exception handler for unexpected disconnect
4298  */
4299 void sym_int_udc (hcb_p np)
4300 {
4301 	printf ("%s: unexpected disconnect\n", sym_name(np));
4302 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4303 }
4304 
4305 /*
4306  *  chip exception handler for SCSI bus mode change
4307  *
4308  *  spi2-r12 11.2.3 says a transceiver mode change must
4309  *  generate a reset event and a device that detects a reset
4310  *  event shall initiate a hard reset. It says also that a
4311  *  device that detects a mode change shall set data transfer
4312  *  mode to eight bit asynchronous, etc...
4313  *  So, just reinitializing all except chip should be enough.
4314  */
4315 static void sym_int_sbmc (hcb_p np)
4316 {
4317 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4318 
4319 	/*
4320 	 *  Notify user.
4321 	 */
4322 	xpt_print_path(np->path);
4323 	printf("SCSI BUS mode change from %s to %s.\n",
4324 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4325 
4326 	/*
4327 	 *  Should suspend command processing for a few seconds and
4328 	 *  reinitialize all except the chip.
4329 	 */
4330 	sym_init (np, 2);
4331 }
4332 
4333 /*
4334  *  chip exception handler for SCSI parity error.
4335  *
4336  *  When the chip detects a SCSI parity error and is
4337  *  currently executing a (CH)MOV instruction, it does
4338  *  not interrupt immediately, but tries to finish the
4339  *  transfer of the current scatter entry before
4340  *  interrupting. The following situations may occur:
4341  *
4342  *  - The complete scatter entry has been transferred
4343  *    without the device having changed phase.
4344  *    The chip will then interrupt with the DSP pointing
4345  *    to the instruction that follows the MOV.
4346  *
4347  *  - A phase mismatch occurs before the MOV finished
4348  *    and phase errors are to be handled by the C code.
4349  *    The chip will then interrupt with both PAR and MA
4350  *    conditions set.
4351  *
4352  *  - A phase mismatch occurs before the MOV finished and
4353  *    phase errors are to be handled by SCRIPTS.
4354  *    The chip will load the DSP with the phase mismatch
4355  *    JUMP address and interrupt the host processor.
4356  */
4357 static void sym_int_par (hcb_p np, u_short sist)
4358 {
4359 	u_char	hsts	= INB (HS_PRT);
4360 	u32	dsp	= INL (nc_dsp);
4361 	u32	dbc	= INL (nc_dbc);
4362 	u32	dsa	= INL (nc_dsa);
4363 	u_char	sbcl	= INB (nc_sbcl);
4364 	u_char	cmd	= dbc >> 24;
4365 	int phase	= cmd & 7;
4366 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4367 
4368 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4369 		sym_name(np), hsts, dbc, sbcl);
4370 
4371 	/*
4372 	 *  Check that the chip is connected to the SCSI BUS.
4373 	 */
4374 	if (!(INB (nc_scntl1) & ISCON)) {
4375 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4376 		return;
4377 	}
4378 
4379 	/*
4380 	 *  If the nexus is not clearly identified, reset the bus.
4381 	 *  We will try to do better later.
4382 	 */
4383 	if (!cp)
4384 		goto reset_all;
4385 
4386 	/*
4387 	 *  Check instruction was a MOV, direction was INPUT and
4388 	 *  ATN is asserted.
4389 	 */
4390 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4391 		goto reset_all;
4392 
4393 	/*
4394 	 *  Keep track of the parity error.
4395 	 */
4396 	OUTONB (HF_PRT, HF_EXT_ERR);
4397 	cp->xerr_status |= XE_PARITY_ERR;
4398 
4399 	/*
4400 	 *  Prepare the message to send to the device.
4401 	 */
4402 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4403 
4404 	/*
4405 	 *  If the old phase was DATA IN phase, we have to deal with
4406 	 *  the 3 situations described above.
4407 	 *  For other input phases (MSG IN and STATUS), the device
4408 	 *  must resend the whole thing that failed parity checking
4409 	 *  or signal error. So, jumping to dispatcher should be OK.
4410 	 */
4411 	if (phase == 1 || phase == 5) {
4412 		/* Phase mismatch handled by SCRIPTS */
4413 		if (dsp == SCRIPTB_BA (np, pm_handle))
4414 			OUTL_DSP (dsp);
4415 		/* Phase mismatch handled by the C code */
4416 		else if (sist & MA)
4417 			sym_int_ma (np);
4418 		/* No phase mismatch occurred */
4419 		else {
4420 			OUTL (nc_temp, dsp);
4421 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4422 		}
4423 	}
4424 	else
4425 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4426 	return;
4427 
4428 reset_all:
4429 	sym_start_reset(np);
4430 	return;
4431 }
4432 
4433 /*
4434  *  chip exception handler for phase errors.
4435  *
4436  *  We have to construct a new transfer descriptor,
4437  *  to transfer the rest of the current block.
4438  */
4439 static void sym_int_ma (hcb_p np)
4440 {
4441 	u32	dbc;
4442 	u32	rest;
4443 	u32	dsp;
4444 	u32	dsa;
4445 	u32	nxtdsp;
4446 	u32	*vdsp;
4447 	u32	oadr, olen;
4448 	u32	*tblp;
4449         u32	newcmd;
4450 	u_int	delta;
4451 	u_char	cmd;
4452 	u_char	hflags, hflags0;
4453 	struct	sym_pmc *pm;
4454 	ccb_p	cp;
4455 
4456 	dsp	= INL (nc_dsp);
4457 	dbc	= INL (nc_dbc);
4458 	dsa	= INL (nc_dsa);
4459 
4460 	cmd	= dbc >> 24;
4461 	rest	= dbc & 0xffffff;
4462 	delta	= 0;
4463 
4464 	/*
4465 	 *  locate matching cp if any.
4466 	 */
4467 	cp = sym_ccb_from_dsa(np, dsa);
4468 
4469 	/*
4470 	 *  Donnot take into account dma fifo and various buffers in
4471 	 *  INPUT phase since the chip flushes everything before
4472 	 *  raising the MA interrupt for interrupted INPUT phases.
4473 	 *  For DATA IN phase, we will check for the SWIDE later.
4474 	 */
4475 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4476 		u_char ss0, ss2;
4477 
4478 		if (np->features & FE_DFBC)
4479 			delta = INW (nc_dfbc);
4480 		else {
4481 			u32 dfifo;
4482 
4483 			/*
4484 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4485 			 */
4486 			dfifo = INL(nc_dfifo);
4487 
4488 			/*
4489 			 *  Calculate remaining bytes in DMA fifo.
4490 			 *  (CTEST5 = dfifo >> 16)
4491 			 */
4492 			if (dfifo & (DFS << 16))
4493 				delta = ((((dfifo >> 8) & 0x300) |
4494 				          (dfifo & 0xff)) - rest) & 0x3ff;
4495 			else
4496 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4497 		}
4498 
4499 		/*
4500 		 *  The data in the dma fifo has not been transfered to
4501 		 *  the target -> add the amount to the rest
4502 		 *  and clear the data.
4503 		 *  Check the sstat2 register in case of wide transfer.
4504 		 */
4505 		rest += delta;
4506 		ss0  = INB (nc_sstat0);
4507 		if (ss0 & OLF) rest++;
4508 		if (!(np->features & FE_C10))
4509 			if (ss0 & ORF) rest++;
4510 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4511 			ss2 = INB (nc_sstat2);
4512 			if (ss2 & OLF1) rest++;
4513 			if (!(np->features & FE_C10))
4514 				if (ss2 & ORF1) rest++;
4515 		};
4516 
4517 		/*
4518 		 *  Clear fifos.
4519 		 */
4520 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4521 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4522 	}
4523 
4524 	/*
4525 	 *  log the information
4526 	 */
4527 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4528 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4529 			(unsigned) rest, (unsigned) delta);
4530 
4531 	/*
4532 	 *  try to find the interrupted script command,
4533 	 *  and the address at which to continue.
4534 	 */
4535 	vdsp	= 0;
4536 	nxtdsp	= 0;
4537 	if	(dsp >  np->scripta_ba &&
4538 		 dsp <= np->scripta_ba + np->scripta_sz) {
4539 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4540 		nxtdsp = dsp;
4541 	}
4542 	else if	(dsp >  np->scriptb_ba &&
4543 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4544 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4545 		nxtdsp = dsp;
4546 	}
4547 
4548 	/*
4549 	 *  log the information
4550 	 */
4551 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4552 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4553 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4554 	};
4555 
4556 	if (!vdsp) {
4557 		printf ("%s: interrupted SCRIPT address not found.\n",
4558 			sym_name (np));
4559 		goto reset_all;
4560 	}
4561 
4562 	if (!cp) {
4563 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4564 			sym_name (np));
4565 		goto reset_all;
4566 	}
4567 
4568 	/*
4569 	 *  get old startaddress and old length.
4570 	 */
4571 	oadr = scr_to_cpu(vdsp[1]);
4572 
4573 	if (cmd & 0x10) {	/* Table indirect */
4574 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4575 		olen = scr_to_cpu(tblp[0]);
4576 		oadr = scr_to_cpu(tblp[1]);
4577 	} else {
4578 		tblp = (u32 *) 0;
4579 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4580 	};
4581 
4582 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4583 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4584 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4585 			tblp,
4586 			(unsigned) olen,
4587 			(unsigned) oadr);
4588 	};
4589 
4590 	/*
4591 	 *  check cmd against assumed interrupted script command.
4592 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4593 	 *  the phase.
4594 	 */
4595 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4596 		PRINT_ADDR(cp);
4597 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4598 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4599 
4600 		goto reset_all;
4601 	};
4602 
4603 	/*
4604 	 *  if old phase not dataphase, leave here.
4605 	 */
4606 	if (cmd & 2) {
4607 		PRINT_ADDR(cp);
4608 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4609 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4610 			(unsigned)oadr, (unsigned)rest);
4611 		goto unexpected_phase;
4612 	};
4613 
4614 	/*
4615 	 *  Choose the correct PM save area.
4616 	 *
4617 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4618 	 *  this stuff. The equivalent code is implemented in
4619 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4620 	 *  handle PM from the SCRIPTS processor.
4621 	 */
4622 	hflags0 = INB (HF_PRT);
4623 	hflags = hflags0;
4624 
4625 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4626 		if (hflags & HF_IN_PM0)
4627 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4628 		else if	(hflags & HF_IN_PM1)
4629 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4630 
4631 		if (hflags & HF_DP_SAVED)
4632 			hflags ^= HF_ACT_PM;
4633 	}
4634 
4635 	if (!(hflags & HF_ACT_PM)) {
4636 		pm = &cp->phys.pm0;
4637 		newcmd = SCRIPTA_BA (np, pm0_data);
4638 	}
4639 	else {
4640 		pm = &cp->phys.pm1;
4641 		newcmd = SCRIPTA_BA (np, pm1_data);
4642 	}
4643 
4644 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4645 	if (hflags != hflags0)
4646 		OUTB (HF_PRT, hflags);
4647 
4648 	/*
4649 	 *  fillin the phase mismatch context
4650 	 */
4651 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4652 	pm->sg.size = cpu_to_scr(rest);
4653 	pm->ret     = cpu_to_scr(nxtdsp);
4654 
4655 	/*
4656 	 *  If we have a SWIDE,
4657 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4658 	 *  - compute the SCRIPTS address to restart from,
4659 	 *  - move current data pointer context by one byte.
4660 	 */
4661 	nxtdsp = SCRIPTA_BA (np, dispatch);
4662 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4663 	    (INB (nc_scntl2) & WSR)) {
4664 		u32 tmp;
4665 
4666 		/*
4667 		 *  Set up the table indirect for the MOVE
4668 		 *  of the residual byte and adjust the data
4669 		 *  pointer context.
4670 		 */
4671 		tmp = scr_to_cpu(pm->sg.addr);
4672 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4673 		pm->sg.addr = cpu_to_scr(tmp + 1);
4674 		tmp = scr_to_cpu(pm->sg.size);
4675 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4676 		pm->sg.size = cpu_to_scr(tmp - 1);
4677 
4678 		/*
4679 		 *  If only the residual byte is to be moved,
4680 		 *  no PM context is needed.
4681 		 */
4682 		if ((tmp&0xffffff) == 1)
4683 			newcmd = pm->ret;
4684 
4685 		/*
4686 		 *  Prepare the address of SCRIPTS that will
4687 		 *  move the residual byte to memory.
4688 		 */
4689 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4690 	}
4691 
4692 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4693 		PRINT_ADDR(cp);
4694 		printf ("PM %x %x %x / %x %x %x.\n",
4695 			hflags0, hflags, newcmd,
4696 			(unsigned)scr_to_cpu(pm->sg.addr),
4697 			(unsigned)scr_to_cpu(pm->sg.size),
4698 			(unsigned)scr_to_cpu(pm->ret));
4699 	}
4700 
4701 	/*
4702 	 *  Restart the SCRIPTS processor.
4703 	 */
4704 	OUTL (nc_temp, newcmd);
4705 	OUTL_DSP (nxtdsp);
4706 	return;
4707 
4708 	/*
4709 	 *  Unexpected phase changes that occurs when the current phase
4710 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4711 	 *  Such event may only happen when the SCRIPTS is using a
4712 	 *  multibyte SCSI MOVE.
4713 	 *
4714 	 *  Phase change		Some possible cause
4715 	 *
4716 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4717 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4718 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4719 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4720 	 *  			negotiation messages.
4721 	 *
4722 	 *  The code below does not care of the new phase and so
4723 	 *  trusts the target. Why to annoy it ?
4724 	 *  If the interrupted phase is COMMAND phase, we restart at
4725 	 *  dispatcher.
4726 	 *  If a target does not get all the messages after selection,
4727 	 *  the code assumes blindly that the target discards extended
4728 	 *  messages and clears the negotiation status.
4729 	 *  If the target does not want all our response to negotiation,
4730 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4731 	 *  bloat for such a should_not_happen situation).
4732 	 *  In all other situation, we reset the BUS.
4733 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4734 	 */
4735 unexpected_phase:
4736 	dsp -= 8;
4737 	nxtdsp = 0;
4738 
4739 	switch (cmd & 7) {
4740 	case 2:	/* COMMAND phase */
4741 		nxtdsp = SCRIPTA_BA (np, dispatch);
4742 		break;
4743 #if 0
4744 	case 3:	/* STATUS  phase */
4745 		nxtdsp = SCRIPTA_BA (np, dispatch);
4746 		break;
4747 #endif
4748 	case 6:	/* MSG OUT phase */
4749 		/*
4750 		 *  If the device may want to use untagged when we want
4751 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4752 		 *  since we will not be able to handle reselect.
4753 		 *  Otherwise, we just don't care.
4754 		 */
4755 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4756 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4757 				cp->host_status = HS_BUSY;
4758 				np->msgout[0] = M_IDENTIFY | cp->lun;
4759 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4760 			}
4761 			else
4762 				nxtdsp = SCRIPTB_BA (np, ident_break);
4763 		}
4764 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4765 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4766 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4767 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4768 		}
4769 		break;
4770 #if 0
4771 	case 7:	/* MSG IN  phase */
4772 		nxtdsp = SCRIPTA_BA (np, clrack);
4773 		break;
4774 #endif
4775 	}
4776 
4777 	if (nxtdsp) {
4778 		OUTL_DSP (nxtdsp);
4779 		return;
4780 	}
4781 
4782 reset_all:
4783 	sym_start_reset(np);
4784 }
4785 
4786 /*
4787  *  Dequeue from the START queue all CCBs that match
4788  *  a given target/lun/task condition (-1 means all),
4789  *  and move them from the BUSY queue to the COMP queue
4790  *  with CAM_REQUEUE_REQ status condition.
4791  *  This function is used during error handling/recovery.
4792  *  It is called with SCRIPTS not running.
4793  */
4794 static int
4795 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4796 {
4797 	int j;
4798 	ccb_p cp;
4799 
4800 	/*
4801 	 *  Make sure the starting index is within range.
4802 	 */
4803 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4804 
4805 	/*
4806 	 *  Walk until end of START queue and dequeue every job
4807 	 *  that matches the target/lun/task condition.
4808 	 */
4809 	j = i;
4810 	while (i != np->squeueput) {
4811 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4812 		assert(cp);
4813 #ifdef SYM_CONF_IARB_SUPPORT
4814 		/* Forget hints for IARB, they may be no longer relevant */
4815 		cp->host_flags &= ~HF_HINT_IARB;
4816 #endif
4817 		if ((target == -1 || cp->target == target) &&
4818 		    (lun    == -1 || cp->lun    == lun)    &&
4819 		    (task   == -1 || cp->tag    == task)) {
4820 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4821 			sym_remque(&cp->link_ccbq);
4822 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4823 		}
4824 		else {
4825 			if (i != j)
4826 				np->squeue[j] = np->squeue[i];
4827 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4828 		}
4829 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4830 	}
4831 	if (i != j)		/* Copy back the idle task if needed */
4832 		np->squeue[j] = np->squeue[i];
4833 	np->squeueput = j;	/* Update our current start queue pointer */
4834 
4835 	return (i - j) / 2;
4836 }
4837 
4838 /*
4839  *  Complete all CCBs queued to the COMP queue.
4840  *
4841  *  These CCBs are assumed:
4842  *  - Not to be referenced either by devices or
4843  *    SCRIPTS-related queues and datas.
4844  *  - To have to be completed with an error condition
4845  *    or requeued.
4846  *
4847  *  The device queue freeze count is incremented
4848  *  for each CCB that does not prevent this.
4849  *  This function is called when all CCBs involved
4850  *  in error handling/recovery have been reaped.
4851  */
4852 static void
4853 sym_flush_comp_queue(hcb_p np, int cam_status)
4854 {
4855 	SYM_QUEHEAD *qp;
4856 	ccb_p cp;
4857 
4858 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
4859 		union ccb *ccb;
4860 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4861 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4862 		/* Leave quiet CCBs waiting for resources */
4863 		if (cp->host_status == HS_WAIT)
4864 			continue;
4865 		ccb = cp->cam_ccb;
4866 		if (cam_status)
4867 			sym_set_cam_status(ccb, cam_status);
4868 		sym_free_ccb(np, cp);
4869 		sym_freeze_cam_ccb(ccb);
4870 		sym_xpt_done(np, ccb);
4871 	}
4872 }
4873 
4874 /*
4875  *  chip handler for bad SCSI status condition
4876  *
4877  *  In case of bad SCSI status, we unqueue all the tasks
4878  *  currently queued to the controller but not yet started
4879  *  and then restart the SCRIPTS processor immediately.
4880  *
4881  *  QUEUE FULL and BUSY conditions are handled the same way.
4882  *  Basically all the not yet started tasks are requeued in
4883  *  device queue and the queue is frozen until a completion.
4884  *
4885  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4886  *  the CCB of the failed command to prepare a REQUEST SENSE
4887  *  SCSI command and queue it to the controller queue.
4888  *
4889  *  SCRATCHA is assumed to have been loaded with STARTPOS
4890  *  before the SCRIPTS called the C code.
4891  */
4892 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4893 {
4894 	tcb_p tp	= &np->target[cp->target];
4895 	u32		startp;
4896 	u_char		s_status = cp->ssss_status;
4897 	u_char		h_flags  = cp->host_flags;
4898 	int		msglen;
4899 	int		nego;
4900 	int		i;
4901 
4902 	/*
4903 	 *  Compute the index of the next job to start from SCRIPTS.
4904 	 */
4905 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4906 
4907 	/*
4908 	 *  The last CCB queued used for IARB hint may be
4909 	 *  no longer relevant. Forget it.
4910 	 */
4911 #ifdef SYM_CONF_IARB_SUPPORT
4912 	if (np->last_cp)
4913 		np->last_cp = 0;
4914 #endif
4915 
4916 	/*
4917 	 *  Now deal with the SCSI status.
4918 	 */
4919 	switch(s_status) {
4920 	case S_BUSY:
4921 	case S_QUEUE_FULL:
4922 		if (sym_verbose >= 2) {
4923 			PRINT_ADDR(cp);
4924 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4925 		}
4926 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4927 		sym_complete_error (np, cp);
4928 		break;
4929 	case S_TERMINATED:
4930 	case S_CHECK_COND:
4931 		/*
4932 		 *  If we get an SCSI error when requesting sense, give up.
4933 		 */
4934 		if (h_flags & HF_SENSE) {
4935 			sym_complete_error (np, cp);
4936 			break;
4937 		}
4938 
4939 		/*
4940 		 *  Dequeue all queued CCBs for that device not yet started,
4941 		 *  and restart the SCRIPTS processor immediately.
4942 		 */
4943 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4944 		OUTL_DSP (SCRIPTA_BA (np, start));
4945 
4946  		/*
4947 		 *  Save some info of the actual IO.
4948 		 *  Compute the data residual.
4949 		 */
4950 		cp->sv_scsi_status = cp->ssss_status;
4951 		cp->sv_xerr_status = cp->xerr_status;
4952 		cp->sv_resid = sym_compute_residual(np, cp);
4953 
4954 		/*
4955 		 *  Prepare all needed data structures for
4956 		 *  requesting sense data.
4957 		 */
4958 
4959 		/*
4960 		 *  identify message
4961 		 */
4962 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4963 		msglen = 1;
4964 
4965 		/*
4966 		 *  If we are currently using anything different from
4967 		 *  async. 8 bit data transfers with that target,
4968 		 *  start a negotiation, since the device may want
4969 		 *  to report us a UNIT ATTENTION condition due to
4970 		 *  a cause we currently ignore, and we donnot want
4971 		 *  to be stuck with WIDE and/or SYNC data transfer.
4972 		 *
4973 		 *  cp->nego_status is filled by sym_prepare_nego().
4974 		 */
4975 		cp->nego_status = 0;
4976 		nego = 0;
4977 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4978 			nego = NS_PPR;
4979 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4980 			nego = NS_WIDE;
4981 		else if (tp->tinfo.current.offset != 0)
4982 			nego = NS_SYNC;
4983 		if (nego)
4984 			msglen +=
4985 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4986 		/*
4987 		 *  Message table indirect structure.
4988 		 */
4989 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4990 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4991 
4992 		/*
4993 		 *  sense command
4994 		 */
4995 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4996 		cp->phys.cmd.size	= cpu_to_scr(6);
4997 
4998 		/*
4999 		 *  patch requested size into sense command
5000 		 */
5001 		cp->sensecmd[0]		= 0x03;
5002 		cp->sensecmd[1]		= cp->lun << 5;
5003 #ifdef	FreeBSD_New_Tran_Settings
5004 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
5005 			cp->sensecmd[1]	= 0;
5006 #endif
5007 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
5008 		cp->data_len		= SYM_SNS_BBUF_LEN;
5009 
5010 		/*
5011 		 *  sense data
5012 		 */
5013 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
5014 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
5015 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
5016 
5017 		/*
5018 		 *  requeue the command.
5019 		 */
5020 		startp = SCRIPTB_BA (np, sdata_in);
5021 
5022 		cp->phys.head.savep	= cpu_to_scr(startp);
5023 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
5024 		cp->phys.head.lastp	= cpu_to_scr(startp);
5025 		cp->startp	= cpu_to_scr(startp);
5026 
5027 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
5028 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5029 		cp->ssss_status = S_ILLEGAL;
5030 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
5031 		cp->xerr_status = 0;
5032 		cp->extra_bytes = 0;
5033 
5034 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
5035 
5036 		/*
5037 		 *  Requeue the command.
5038 		 */
5039 		sym_put_start_queue(np, cp);
5040 
5041 		/*
5042 		 *  Give back to upper layer everything we have dequeued.
5043 		 */
5044 		sym_flush_comp_queue(np, 0);
5045 		break;
5046 	}
5047 }
5048 
5049 /*
5050  *  After a device has accepted some management message
5051  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
5052  *  a device signals a UNIT ATTENTION condition, some
5053  *  tasks are thrown away by the device. We are required
5054  *  to reflect that on our tasks list since the device
5055  *  will never complete these tasks.
5056  *
5057  *  This function move from the BUSY queue to the COMP
5058  *  queue all disconnected CCBs for a given target that
5059  *  match the following criteria:
5060  *  - lun=-1  means any logical UNIT otherwise a given one.
5061  *  - task=-1 means any task, otherwise a given one.
5062  */
5063 static int
5064 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
5065 {
5066 	SYM_QUEHEAD qtmp, *qp;
5067 	int i = 0;
5068 	ccb_p cp;
5069 
5070 	/*
5071 	 *  Move the entire BUSY queue to our temporary queue.
5072 	 */
5073 	sym_que_init(&qtmp);
5074 	sym_que_splice(&np->busy_ccbq, &qtmp);
5075 	sym_que_init(&np->busy_ccbq);
5076 
5077 	/*
5078 	 *  Put all CCBs that matches our criteria into
5079 	 *  the COMP queue and put back other ones into
5080 	 *  the BUSY queue.
5081 	 */
5082 	while ((qp = sym_remque_head(&qtmp)) != 0) {
5083 		union ccb *ccb;
5084 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5085 		ccb = cp->cam_ccb;
5086 		if (cp->host_status != HS_DISCONNECT ||
5087 		    cp->target != target	     ||
5088 		    (lun  != -1 && cp->lun != lun)   ||
5089 		    (task != -1 &&
5090 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
5091 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
5092 			continue;
5093 		}
5094 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
5095 
5096 		/* Preserve the software timeout condition */
5097 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
5098 			sym_set_cam_status(ccb, cam_status);
5099 		++i;
5100 #if 0
5101 printf("XXXX TASK @%p CLEARED\n", cp);
5102 #endif
5103 	}
5104 	return i;
5105 }
5106 
5107 /*
5108  *  chip handler for TASKS recovery
5109  *
5110  *  We cannot safely abort a command, while the SCRIPTS
5111  *  processor is running, since we just would be in race
5112  *  with it.
5113  *
5114  *  As long as we have tasks to abort, we keep the SEM
5115  *  bit set in the ISTAT. When this bit is set, the
5116  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
5117  *  each time it enters the scheduler.
5118  *
5119  *  If we have to reset a target, clear tasks of a unit,
5120  *  or to perform the abort of a disconnected job, we
5121  *  restart the SCRIPTS for selecting the target. Once
5122  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
5123  *  If it loses arbitration, the SCRIPTS will interrupt again
5124  *  the next time it will enter its scheduler, and so on ...
5125  *
5126  *  On SIR_TARGET_SELECTED, we scan for the more
5127  *  appropriate thing to do:
5128  *
5129  *  - If nothing, we just sent a M_ABORT message to the
5130  *    target to get rid of the useless SCSI bus ownership.
5131  *    According to the specs, no tasks shall be affected.
5132  *  - If the target is to be reset, we send it a M_RESET
5133  *    message.
5134  *  - If a logical UNIT is to be cleared , we send the
5135  *    IDENTIFY(lun) + M_ABORT.
5136  *  - If an untagged task is to be aborted, we send the
5137  *    IDENTIFY(lun) + M_ABORT.
5138  *  - If a tagged task is to be aborted, we send the
5139  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
5140  *
5141  *  Once our 'kiss of death' :) message has been accepted
5142  *  by the target, the SCRIPTS interrupts again
5143  *  (SIR_ABORT_SENT). On this interrupt, we complete
5144  *  all the CCBs that should have been aborted by the
5145  *  target according to our message.
5146  */
5147 static void sym_sir_task_recovery(hcb_p np, int num)
5148 {
5149 	SYM_QUEHEAD *qp;
5150 	ccb_p cp;
5151 	tcb_p tp;
5152 	int target=-1, lun=-1, task;
5153 	int i, k;
5154 
5155 	switch(num) {
5156 	/*
5157 	 *  The SCRIPTS processor stopped before starting
5158 	 *  the next command in order to allow us to perform
5159 	 *  some task recovery.
5160 	 */
5161 	case SIR_SCRIPT_STOPPED:
5162 		/*
5163 		 *  Do we have any target to reset or unit to clear ?
5164 		 */
5165 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5166 			tp = &np->target[i];
5167 			if (tp->to_reset ||
5168 			    (tp->lun0p && tp->lun0p->to_clear)) {
5169 				target = i;
5170 				break;
5171 			}
5172 			if (!tp->lunmp)
5173 				continue;
5174 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5175 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5176 					target	= i;
5177 					break;
5178 				}
5179 			}
5180 			if (target != -1)
5181 				break;
5182 		}
5183 
5184 		/*
5185 		 *  If not, walk the busy queue for any
5186 		 *  disconnected CCB to be aborted.
5187 		 */
5188 		if (target == -1) {
5189 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5190 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
5191 				if (cp->host_status != HS_DISCONNECT)
5192 					continue;
5193 				if (cp->to_abort) {
5194 					target = cp->target;
5195 					break;
5196 				}
5197 			}
5198 		}
5199 
5200 		/*
5201 		 *  If some target is to be selected,
5202 		 *  prepare and start the selection.
5203 		 */
5204 		if (target != -1) {
5205 			tp = &np->target[target];
5206 			np->abrt_sel.sel_id	= target;
5207 			np->abrt_sel.sel_scntl3 = tp->head.wval;
5208 			np->abrt_sel.sel_sxfer  = tp->head.sval;
5209 			OUTL(nc_dsa, np->hcb_ba);
5210 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
5211 			return;
5212 		}
5213 
5214 		/*
5215 		 *  Now look for a CCB to abort that haven't started yet.
5216 		 *  Btw, the SCRIPTS processor is still stopped, so
5217 		 *  we are not in race.
5218 		 */
5219 		i = 0;
5220 		cp = 0;
5221 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5222 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5223 			if (cp->host_status != HS_BUSY &&
5224 			    cp->host_status != HS_NEGOTIATE)
5225 				continue;
5226 			if (!cp->to_abort)
5227 				continue;
5228 #ifdef SYM_CONF_IARB_SUPPORT
5229 			/*
5230 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5231 			 *    want to cancel the last queued CCB, since the
5232 			 *    SCRIPTS may have anticipated the selection.
5233 			 */
5234 			if (cp == np->last_cp) {
5235 				cp->to_abort = 0;
5236 				continue;
5237 			}
5238 #endif
5239 			i = 1;	/* Means we have found some */
5240 			break;
5241 		}
5242 		if (!i) {
5243 			/*
5244 			 *  We are done, so we donnot need
5245 			 *  to synchronize with the SCRIPTS anylonger.
5246 			 *  Remove the SEM flag from the ISTAT.
5247 			 */
5248 			np->istat_sem = 0;
5249 			OUTB (nc_istat, SIGP);
5250 			break;
5251 		}
5252 		/*
5253 		 *  Compute index of next position in the start
5254 		 *  queue the SCRIPTS intends to start and dequeue
5255 		 *  all CCBs for that device that haven't been started.
5256 		 */
5257 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5258 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5259 
5260 		/*
5261 		 *  Make sure at least our IO to abort has been dequeued.
5262 		 */
5263 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5264 
5265 		/*
5266 		 *  Keep track in cam status of the reason of the abort.
5267 		 */
5268 		if (cp->to_abort == 2)
5269 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5270 		else
5271 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5272 
5273 		/*
5274 		 *  Complete with error everything that we have dequeued.
5275 	 	 */
5276 		sym_flush_comp_queue(np, 0);
5277 		break;
5278 	/*
5279 	 *  The SCRIPTS processor has selected a target
5280 	 *  we may have some manual recovery to perform for.
5281 	 */
5282 	case SIR_TARGET_SELECTED:
5283 		target = (INB (nc_sdid) & 0xf);
5284 		tp = &np->target[target];
5285 
5286 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5287 
5288 		/*
5289 		 *  If the target is to be reset, prepare a
5290 		 *  M_RESET message and clear the to_reset flag
5291 		 *  since we donnot expect this operation to fail.
5292 		 */
5293 		if (tp->to_reset) {
5294 			np->abrt_msg[0] = M_RESET;
5295 			np->abrt_tbl.size = 1;
5296 			tp->to_reset = 0;
5297 			break;
5298 		}
5299 
5300 		/*
5301 		 *  Otherwise, look for some logical unit to be cleared.
5302 		 */
5303 		if (tp->lun0p && tp->lun0p->to_clear)
5304 			lun = 0;
5305 		else if (tp->lunmp) {
5306 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5307 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5308 					lun = k;
5309 					break;
5310 				}
5311 			}
5312 		}
5313 
5314 		/*
5315 		 *  If a logical unit is to be cleared, prepare
5316 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5317 		 */
5318 		if (lun != -1) {
5319 			lcb_p lp = sym_lp(np, tp, lun);
5320 			lp->to_clear = 0; /* We donnot expect to fail here */
5321 			np->abrt_msg[0] = M_IDENTIFY | lun;
5322 			np->abrt_msg[1] = M_ABORT;
5323 			np->abrt_tbl.size = 2;
5324 			break;
5325 		}
5326 
5327 		/*
5328 		 *  Otherwise, look for some disconnected job to
5329 		 *  abort for this target.
5330 		 */
5331 		i = 0;
5332 		cp = 0;
5333 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5334 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5335 			if (cp->host_status != HS_DISCONNECT)
5336 				continue;
5337 			if (cp->target != target)
5338 				continue;
5339 			if (!cp->to_abort)
5340 				continue;
5341 			i = 1;	/* Means we have some */
5342 			break;
5343 		}
5344 
5345 		/*
5346 		 *  If we have none, probably since the device has
5347 		 *  completed the command before we won abitration,
5348 		 *  send a M_ABORT message without IDENTIFY.
5349 		 *  According to the specs, the device must just
5350 		 *  disconnect the BUS and not abort any task.
5351 		 */
5352 		if (!i) {
5353 			np->abrt_msg[0] = M_ABORT;
5354 			np->abrt_tbl.size = 1;
5355 			break;
5356 		}
5357 
5358 		/*
5359 		 *  We have some task to abort.
5360 		 *  Set the IDENTIFY(lun)
5361 		 */
5362 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5363 
5364 		/*
5365 		 *  If we want to abort an untagged command, we
5366 		 *  will send a IDENTIFY + M_ABORT.
5367 		 *  Otherwise (tagged command), we will send
5368 		 *  a IDENTITFY + task attributes + ABORT TAG.
5369 		 */
5370 		if (cp->tag == NO_TAG) {
5371 			np->abrt_msg[1] = M_ABORT;
5372 			np->abrt_tbl.size = 2;
5373 		}
5374 		else {
5375 			np->abrt_msg[1] = cp->scsi_smsg[1];
5376 			np->abrt_msg[2] = cp->scsi_smsg[2];
5377 			np->abrt_msg[3] = M_ABORT_TAG;
5378 			np->abrt_tbl.size = 4;
5379 		}
5380 		/*
5381 		 *  Keep track of software timeout condition, since the
5382 		 *  peripheral driver may not count retries on abort
5383 		 *  conditions not due to timeout.
5384 		 */
5385 		if (cp->to_abort == 2)
5386 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5387 		cp->to_abort = 0; /* We donnot expect to fail here */
5388 		break;
5389 
5390 	/*
5391 	 *  The target has accepted our message and switched
5392 	 *  to BUS FREE phase as we expected.
5393 	 */
5394 	case SIR_ABORT_SENT:
5395 		target = (INB (nc_sdid) & 0xf);
5396 		tp = &np->target[target];
5397 
5398 		/*
5399 		**  If we didn't abort anything, leave here.
5400 		*/
5401 		if (np->abrt_msg[0] == M_ABORT)
5402 			break;
5403 
5404 		/*
5405 		 *  If we sent a M_RESET, then a hardware reset has
5406 		 *  been performed by the target.
5407 		 *  - Reset everything to async 8 bit
5408 		 *  - Tell ourself to negotiate next time :-)
5409 		 *  - Prepare to clear all disconnected CCBs for
5410 		 *    this target from our task list (lun=task=-1)
5411 		 */
5412 		lun = -1;
5413 		task = -1;
5414 		if (np->abrt_msg[0] == M_RESET) {
5415 			tp->head.sval = 0;
5416 			tp->head.wval = np->rv_scntl3;
5417 			tp->head.uval = 0;
5418 			tp->tinfo.current.period = 0;
5419 			tp->tinfo.current.offset = 0;
5420 			tp->tinfo.current.width  = BUS_8_BIT;
5421 			tp->tinfo.current.options = 0;
5422 		}
5423 
5424 		/*
5425 		 *  Otherwise, check for the LUN and TASK(s)
5426 		 *  concerned by the cancelation.
5427 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5428 		 *  or an ABORT message :-)
5429 		 */
5430 		else {
5431 			lun = np->abrt_msg[0] & 0x3f;
5432 			if (np->abrt_msg[1] == M_ABORT_TAG)
5433 				task = np->abrt_msg[2];
5434 		}
5435 
5436 		/*
5437 		 *  Complete all the CCBs the device should have
5438 		 *  aborted due to our 'kiss of death' message.
5439 		 */
5440 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5441 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5442 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5443 		sym_flush_comp_queue(np, 0);
5444 
5445 		/*
5446 		 *  If we sent a BDR, make uper layer aware of that.
5447 		 */
5448 		if (np->abrt_msg[0] == M_RESET)
5449 			xpt_async(AC_SENT_BDR, np->path, NULL);
5450 		break;
5451 	}
5452 
5453 	/*
5454 	 *  Print to the log the message we intend to send.
5455 	 */
5456 	if (num == SIR_TARGET_SELECTED) {
5457 		PRINT_TARGET(np, target);
5458 		sym_printl_hex("control msgout:", np->abrt_msg,
5459 			      np->abrt_tbl.size);
5460 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5461 	}
5462 
5463 	/*
5464 	 *  Let the SCRIPTS processor continue.
5465 	 */
5466 	OUTONB_STD ();
5467 }
5468 
5469 /*
5470  *  Gerard's alchemy:) that deals with with the data
5471  *  pointer for both MDP and the residual calculation.
5472  *
5473  *  I didn't want to bloat the code by more than 200
5474  *  lignes for the handling of both MDP and the residual.
5475  *  This has been achieved by using a data pointer
5476  *  representation consisting in an index in the data
5477  *  array (dp_sg) and a negative offset (dp_ofs) that
5478  *  have the following meaning:
5479  *
5480  *  - dp_sg = SYM_CONF_MAX_SG
5481  *    we are at the end of the data script.
5482  *  - dp_sg < SYM_CONF_MAX_SG
5483  *    dp_sg points to the next entry of the scatter array
5484  *    we want to transfer.
5485  *  - dp_ofs < 0
5486  *    dp_ofs represents the residual of bytes of the
5487  *    previous entry scatter entry we will send first.
5488  *  - dp_ofs = 0
5489  *    no residual to send first.
5490  *
5491  *  The function sym_evaluate_dp() accepts an arbitray
5492  *  offset (basically from the MDP message) and returns
5493  *  the corresponding values of dp_sg and dp_ofs.
5494  */
5495 
5496 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5497 {
5498 	u32	dp_scr;
5499 	int	dp_ofs, dp_sg, dp_sgmin;
5500 	int	tmp;
5501 	struct sym_pmc *pm;
5502 
5503 	/*
5504 	 *  Compute the resulted data pointer in term of a script
5505 	 *  address within some DATA script and a signed byte offset.
5506 	 */
5507 	dp_scr = scr;
5508 	dp_ofs = *ofs;
5509 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5510 		pm = &cp->phys.pm0;
5511 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5512 		pm = &cp->phys.pm1;
5513 	else
5514 		pm = 0;
5515 
5516 	if (pm) {
5517 		dp_scr  = scr_to_cpu(pm->ret);
5518 		dp_ofs -= scr_to_cpu(pm->sg.size);
5519 	}
5520 
5521 	/*
5522 	 *  If we are auto-sensing, then we are done.
5523 	 */
5524 	if (cp->host_flags & HF_SENSE) {
5525 		*ofs = dp_ofs;
5526 		return 0;
5527 	}
5528 
5529 	/*
5530 	 *  Deduce the index of the sg entry.
5531 	 *  Keep track of the index of the first valid entry.
5532 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5533 	 *  end of the data.
5534 	 */
5535 	tmp = scr_to_cpu(cp->phys.head.goalp);
5536 	dp_sg = SYM_CONF_MAX_SG;
5537 	if (dp_scr != tmp)
5538 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5539 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5540 
5541 	/*
5542 	 *  Move to the sg entry the data pointer belongs to.
5543 	 *
5544 	 *  If we are inside the data area, we expect result to be:
5545 	 *
5546 	 *  Either,
5547 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5548 	 *      the data pointer belongs to (or the end of the data)
5549 	 *  Or,
5550 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5551 	 *      the data pointer belongs to + 1.
5552 	 */
5553 	if (dp_ofs < 0) {
5554 		int n;
5555 		while (dp_sg > dp_sgmin) {
5556 			--dp_sg;
5557 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5558 			n = dp_ofs + (tmp & 0xffffff);
5559 			if (n > 0) {
5560 				++dp_sg;
5561 				break;
5562 			}
5563 			dp_ofs = n;
5564 		}
5565 	}
5566 	else if (dp_ofs > 0) {
5567 		while (dp_sg < SYM_CONF_MAX_SG) {
5568 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5569 			dp_ofs -= (tmp & 0xffffff);
5570 			++dp_sg;
5571 			if (dp_ofs <= 0)
5572 				break;
5573 		}
5574 	}
5575 
5576 	/*
5577 	 *  Make sure the data pointer is inside the data area.
5578 	 *  If not, return some error.
5579 	 */
5580 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5581 		goto out_err;
5582 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5583 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5584 		goto out_err;
5585 
5586 	/*
5587 	 *  Save the extreme pointer if needed.
5588 	 */
5589 	if (dp_sg > cp->ext_sg ||
5590             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5591 		cp->ext_sg  = dp_sg;
5592 		cp->ext_ofs = dp_ofs;
5593 	}
5594 
5595 	/*
5596 	 *  Return data.
5597 	 */
5598 	*ofs = dp_ofs;
5599 	return dp_sg;
5600 
5601 out_err:
5602 	return -1;
5603 }
5604 
5605 /*
5606  *  chip handler for MODIFY DATA POINTER MESSAGE
5607  *
5608  *  We also call this function on IGNORE WIDE RESIDUE
5609  *  messages that do not match a SWIDE full condition.
5610  *  Btw, we assume in that situation that such a message
5611  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5612  */
5613 
5614 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5615 {
5616 	int dp_ofs	= ofs;
5617 	u32	dp_scr	= INL (nc_temp);
5618 	u32	dp_ret;
5619 	u32	tmp;
5620 	u_char	hflags;
5621 	int	dp_sg;
5622 	struct	sym_pmc *pm;
5623 
5624 	/*
5625 	 *  Not supported for auto-sense.
5626 	 */
5627 	if (cp->host_flags & HF_SENSE)
5628 		goto out_reject;
5629 
5630 	/*
5631 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5632 	 *  to the resulted data pointer.
5633 	 */
5634 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5635 	if (dp_sg < 0)
5636 		goto out_reject;
5637 
5638 	/*
5639 	 *  And our alchemy:) allows to easily calculate the data
5640 	 *  script address we want to return for the next data phase.
5641 	 */
5642 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5643 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5644 
5645 	/*
5646 	 *  If offset / scatter entry is zero we donnot need
5647 	 *  a context for the new current data pointer.
5648 	 */
5649 	if (dp_ofs == 0) {
5650 		dp_scr = dp_ret;
5651 		goto out_ok;
5652 	}
5653 
5654 	/*
5655 	 *  Get a context for the new current data pointer.
5656 	 */
5657 	hflags = INB (HF_PRT);
5658 
5659 	if (hflags & HF_DP_SAVED)
5660 		hflags ^= HF_ACT_PM;
5661 
5662 	if (!(hflags & HF_ACT_PM)) {
5663 		pm  = &cp->phys.pm0;
5664 		dp_scr = SCRIPTA_BA (np, pm0_data);
5665 	}
5666 	else {
5667 		pm = &cp->phys.pm1;
5668 		dp_scr = SCRIPTA_BA (np, pm1_data);
5669 	}
5670 
5671 	hflags &= ~(HF_DP_SAVED);
5672 
5673 	OUTB (HF_PRT, hflags);
5674 
5675 	/*
5676 	 *  Set up the new current data pointer.
5677 	 *  ofs < 0 there, and for the next data phase, we
5678 	 *  want to transfer part of the data of the sg entry
5679 	 *  corresponding to index dp_sg-1 prior to returning
5680 	 *  to the main data script.
5681 	 */
5682 	pm->ret = cpu_to_scr(dp_ret);
5683 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5684 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5685 	pm->sg.addr = cpu_to_scr(tmp);
5686 	pm->sg.size = cpu_to_scr(-dp_ofs);
5687 
5688 out_ok:
5689 	OUTL (nc_temp, dp_scr);
5690 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5691 	return;
5692 
5693 out_reject:
5694 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5695 }
5696 
5697 
5698 /*
5699  *  chip calculation of the data residual.
5700  *
5701  *  As I used to say, the requirement of data residual
5702  *  in SCSI is broken, useless and cannot be achieved
5703  *  without huge complexity.
5704  *  But most OSes and even the official CAM require it.
5705  *  When stupidity happens to be so widely spread inside
5706  *  a community, it gets hard to convince.
5707  *
5708  *  Anyway, I don't care, since I am not going to use
5709  *  any software that considers this data residual as
5710  *  a relevant information. :)
5711  */
5712 
5713 static int sym_compute_residual(hcb_p np, ccb_p cp)
5714 {
5715 	int dp_sg, dp_sgmin, resid = 0;
5716 	int dp_ofs = 0;
5717 
5718 	/*
5719 	 *  Check for some data lost or just thrown away.
5720 	 *  We are not required to be quite accurate in this
5721 	 *  situation. Btw, if we are odd for output and the
5722 	 *  device claims some more data, it may well happen
5723 	 *  than our residual be zero. :-)
5724 	 */
5725 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5726 		if (cp->xerr_status & XE_EXTRA_DATA)
5727 			resid -= cp->extra_bytes;
5728 		if (cp->xerr_status & XE_SODL_UNRUN)
5729 			++resid;
5730 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5731 			--resid;
5732 	}
5733 
5734 	/*
5735 	 *  If all data has been transferred,
5736 	 *  there is no residual.
5737 	 */
5738 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5739 		return resid;
5740 
5741 	/*
5742 	 *  If no data transfer occurs, or if the data
5743 	 *  pointer is weird, return full residual.
5744 	 */
5745 	if (cp->startp == cp->phys.head.lastp ||
5746 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5747 			    &dp_ofs) < 0) {
5748 		return cp->data_len;
5749 	}
5750 
5751 	/*
5752 	 *  If we were auto-sensing, then we are done.
5753 	 */
5754 	if (cp->host_flags & HF_SENSE) {
5755 		return -dp_ofs;
5756 	}
5757 
5758 	/*
5759 	 *  We are now full comfortable in the computation
5760 	 *  of the data residual (2's complement).
5761 	 */
5762 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5763 	resid = -cp->ext_ofs;
5764 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5765 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5766 		resid += (tmp & 0xffffff);
5767 	}
5768 
5769 	/*
5770 	 *  Hopefully, the result is not too wrong.
5771 	 */
5772 	return resid;
5773 }
5774 
5775 /*
5776  *  Print out the content of a SCSI message.
5777  */
5778 
5779 static int sym_show_msg (u_char * msg)
5780 {
5781 	u_char i;
5782 	printf ("%x",*msg);
5783 	if (*msg==M_EXTENDED) {
5784 		for (i=1;i<8;i++) {
5785 			if (i-1>msg[1]) break;
5786 			printf ("-%x",msg[i]);
5787 		};
5788 		return (i+1);
5789 	} else if ((*msg & 0xf0) == 0x20) {
5790 		printf ("-%x",msg[1]);
5791 		return (2);
5792 	};
5793 	return (1);
5794 }
5795 
5796 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5797 {
5798 	PRINT_ADDR(cp);
5799 	if (label)
5800 		printf ("%s: ", label);
5801 
5802 	(void) sym_show_msg (msg);
5803 	printf (".\n");
5804 }
5805 
5806 /*
5807  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5808  *
5809  *  When we try to negotiate, we append the negotiation message
5810  *  to the identify and (maybe) simple tag message.
5811  *  The host status field is set to HS_NEGOTIATE to mark this
5812  *  situation.
5813  *
5814  *  If the target doesn't answer this message immediately
5815  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5816  *  will be raised eventually.
5817  *  The handler removes the HS_NEGOTIATE status, and sets the
5818  *  negotiated value to the default (async / nowide).
5819  *
5820  *  If we receive a matching answer immediately, we check it
5821  *  for validity, and set the values.
5822  *
5823  *  If we receive a Reject message immediately, we assume the
5824  *  negotiation has failed, and fall back to standard values.
5825  *
5826  *  If we receive a negotiation message while not in HS_NEGOTIATE
5827  *  state, it's a target initiated negotiation. We prepare a
5828  *  (hopefully) valid answer, set our parameters, and send back
5829  *  this answer to the target.
5830  *
5831  *  If the target doesn't fetch the answer (no message out phase),
5832  *  we assume the negotiation has failed, and fall back to default
5833  *  settings (SIR_NEGO_PROTO interrupt).
5834  *
5835  *  When we set the values, we adjust them in all ccbs belonging
5836  *  to this target, in the controller's register, and in the "phys"
5837  *  field of the controller's struct sym_hcb.
5838  */
5839 
5840 /*
5841  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5842  */
5843 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5844 {
5845 	u_char	chg, ofs, per, fak, div;
5846 	int	req = 1;
5847 
5848 	/*
5849 	 *  Synchronous request message received.
5850 	 */
5851 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5852 		sym_print_msg(cp, "sync msgin", np->msgin);
5853 	};
5854 
5855 	/*
5856 	 * request or answer ?
5857 	 */
5858 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5859 		OUTB (HS_PRT, HS_BUSY);
5860 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5861 			goto reject_it;
5862 		req = 0;
5863 	}
5864 
5865 	/*
5866 	 *  get requested values.
5867 	 */
5868 	chg = 0;
5869 	per = np->msgin[3];
5870 	ofs = np->msgin[4];
5871 
5872 	/*
5873 	 *  check values against our limits.
5874 	 */
5875 	if (ofs) {
5876 		if (ofs > np->maxoffs)
5877 			{chg = 1; ofs = np->maxoffs;}
5878 		if (req) {
5879 			if (ofs > tp->tinfo.user.offset)
5880 				{chg = 1; ofs = tp->tinfo.user.offset;}
5881 		}
5882 	}
5883 
5884 	if (ofs) {
5885 		if (per < np->minsync)
5886 			{chg = 1; per = np->minsync;}
5887 		if (req) {
5888 			if (per < tp->tinfo.user.period)
5889 				{chg = 1; per = tp->tinfo.user.period;}
5890 		}
5891 	}
5892 
5893 	div = fak = 0;
5894 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5895 		goto reject_it;
5896 
5897 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5898 		PRINT_ADDR(cp);
5899 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5900 			ofs, per, div, fak, chg);
5901 	}
5902 
5903 	/*
5904 	 *  This was an answer message
5905 	 */
5906 	if (req == 0) {
5907 		if (chg) 	/* Answer wasn't acceptable. */
5908 			goto reject_it;
5909 		sym_setsync (np, cp, ofs, per, div, fak);
5910 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5911 		return;
5912 	}
5913 
5914 	/*
5915 	 *  It was a request. Set value and
5916 	 *  prepare an answer message
5917 	 */
5918 	sym_setsync (np, cp, ofs, per, div, fak);
5919 
5920 	np->msgout[0] = M_EXTENDED;
5921 	np->msgout[1] = 3;
5922 	np->msgout[2] = M_X_SYNC_REQ;
5923 	np->msgout[3] = per;
5924 	np->msgout[4] = ofs;
5925 
5926 	cp->nego_status = NS_SYNC;
5927 
5928 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5929 		sym_print_msg(cp, "sync msgout", np->msgout);
5930 	}
5931 
5932 	np->msgin [0] = M_NOOP;
5933 
5934 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5935 	return;
5936 reject_it:
5937 	sym_setsync (np, cp, 0, 0, 0, 0);
5938 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5939 }
5940 
5941 /*
5942  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5943  */
5944 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5945 {
5946 	u_char	chg, ofs, per, fak, dt, div, wide;
5947 	int	req = 1;
5948 
5949 	/*
5950 	 * Synchronous request message received.
5951 	 */
5952 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5953 		sym_print_msg(cp, "ppr msgin", np->msgin);
5954 	};
5955 
5956 	/*
5957 	 *  get requested values.
5958 	 */
5959 	chg  = 0;
5960 	per  = np->msgin[3];
5961 	ofs  = np->msgin[5];
5962 	wide = np->msgin[6];
5963 	dt   = np->msgin[7] & PPR_OPT_DT;
5964 
5965 	/*
5966 	 * request or answer ?
5967 	 */
5968 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5969 		OUTB (HS_PRT, HS_BUSY);
5970 		if (cp->nego_status && cp->nego_status != NS_PPR)
5971 			goto reject_it;
5972 		req = 0;
5973 	}
5974 
5975 	/*
5976 	 *  check values against our limits.
5977 	 */
5978 	if (wide > np->maxwide)
5979 		{chg = 1; wide = np->maxwide;}
5980 	if (!wide || !(np->features & FE_ULTRA3))
5981 		dt &= ~PPR_OPT_DT;
5982 	if (req) {
5983 		if (wide > tp->tinfo.user.width)
5984 			{chg = 1; wide = tp->tinfo.user.width;}
5985 	}
5986 
5987 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5988 		dt &= ~PPR_OPT_DT;
5989 
5990 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5991 
5992 	if (ofs) {
5993 		if (dt) {
5994 			if (ofs > np->maxoffs_dt)
5995 				{chg = 1; ofs = np->maxoffs_dt;}
5996 		}
5997 		else if (ofs > np->maxoffs)
5998 			{chg = 1; ofs = np->maxoffs;}
5999 		if (req) {
6000 			if (ofs > tp->tinfo.user.offset)
6001 				{chg = 1; ofs = tp->tinfo.user.offset;}
6002 		}
6003 	}
6004 
6005 	if (ofs) {
6006 		if (dt) {
6007 			if (per < np->minsync_dt)
6008 				{chg = 1; per = np->minsync_dt;}
6009 		}
6010 		else if (per < np->minsync)
6011 			{chg = 1; per = np->minsync;}
6012 		if (req) {
6013 			if (per < tp->tinfo.user.period)
6014 				{chg = 1; per = tp->tinfo.user.period;}
6015 		}
6016 	}
6017 
6018 	div = fak = 0;
6019 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
6020 		goto reject_it;
6021 
6022 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6023 		PRINT_ADDR(cp);
6024 		printf ("ppr: "
6025 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
6026 			dt, ofs, per, wide, div, fak, chg);
6027 	}
6028 
6029 	/*
6030 	 *  It was an answer.
6031 	 */
6032 	if (req == 0) {
6033 		if (chg) 	/* Answer wasn't acceptable */
6034 			goto reject_it;
6035 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
6036 		OUTL_DSP (SCRIPTA_BA (np, clrack));
6037 		return;
6038 	}
6039 
6040 	/*
6041 	 *  It was a request. Set value and
6042 	 *  prepare an answer message
6043 	 */
6044 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
6045 
6046 	np->msgout[0] = M_EXTENDED;
6047 	np->msgout[1] = 6;
6048 	np->msgout[2] = M_X_PPR_REQ;
6049 	np->msgout[3] = per;
6050 	np->msgout[4] = 0;
6051 	np->msgout[5] = ofs;
6052 	np->msgout[6] = wide;
6053 	np->msgout[7] = dt;
6054 
6055 	cp->nego_status = NS_PPR;
6056 
6057 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6058 		sym_print_msg(cp, "ppr msgout", np->msgout);
6059 	}
6060 
6061 	np->msgin [0] = M_NOOP;
6062 
6063 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
6064 	return;
6065 reject_it:
6066 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6067 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6068 	/*
6069 	 *  If it was a device response that should result in
6070 	 *  ST, we may want to try a legacy negotiation later.
6071 	 */
6072 	if (!req && !dt) {
6073 		tp->tinfo.goal.options = 0;
6074 		tp->tinfo.goal.width   = wide;
6075 		tp->tinfo.goal.period  = per;
6076 		tp->tinfo.goal.offset  = ofs;
6077 	}
6078 	return;
6079 }
6080 
6081 /*
6082  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
6083  */
6084 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
6085 {
6086 	u_char	chg, wide;
6087 	int	req = 1;
6088 
6089 	/*
6090 	 *  Wide request message received.
6091 	 */
6092 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6093 		sym_print_msg(cp, "wide msgin", np->msgin);
6094 	};
6095 
6096 	/*
6097 	 * Is it an request from the device?
6098 	 */
6099 	if (INB (HS_PRT) == HS_NEGOTIATE) {
6100 		OUTB (HS_PRT, HS_BUSY);
6101 		if (cp->nego_status && cp->nego_status != NS_WIDE)
6102 			goto reject_it;
6103 		req = 0;
6104 	}
6105 
6106 	/*
6107 	 *  get requested values.
6108 	 */
6109 	chg  = 0;
6110 	wide = np->msgin[3];
6111 
6112 	/*
6113 	 *  check values against driver limits.
6114 	 */
6115 	if (wide > np->maxwide)
6116 		{chg = 1; wide = np->maxwide;}
6117 	if (req) {
6118 		if (wide > tp->tinfo.user.width)
6119 			{chg = 1; wide = tp->tinfo.user.width;}
6120 	}
6121 
6122 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6123 		PRINT_ADDR(cp);
6124 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
6125 	}
6126 
6127 	/*
6128 	 * This was an answer message
6129 	 */
6130 	if (req == 0) {
6131 		if (chg)	/*  Answer wasn't acceptable. */
6132 			goto reject_it;
6133 		sym_setwide (np, cp, wide);
6134 
6135 		/*
6136 		 * Negotiate for SYNC immediately after WIDE response.
6137 		 * This allows to negotiate for both WIDE and SYNC on
6138 		 * a single SCSI command (Suggested by Justin Gibbs).
6139 		 */
6140 		if (tp->tinfo.goal.offset) {
6141 			np->msgout[0] = M_EXTENDED;
6142 			np->msgout[1] = 3;
6143 			np->msgout[2] = M_X_SYNC_REQ;
6144 			np->msgout[3] = tp->tinfo.goal.period;
6145 			np->msgout[4] = tp->tinfo.goal.offset;
6146 
6147 			if (DEBUG_FLAGS & DEBUG_NEGO) {
6148 				sym_print_msg(cp, "sync msgout", np->msgout);
6149 			}
6150 
6151 			cp->nego_status = NS_SYNC;
6152 			OUTB (HS_PRT, HS_NEGOTIATE);
6153 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
6154 			return;
6155 		}
6156 
6157 		OUTL_DSP (SCRIPTA_BA (np, clrack));
6158 		return;
6159 	};
6160 
6161 	/*
6162 	 *  It was a request, set value and
6163 	 *  prepare an answer message
6164 	 */
6165 	sym_setwide (np, cp, wide);
6166 
6167 	np->msgout[0] = M_EXTENDED;
6168 	np->msgout[1] = 2;
6169 	np->msgout[2] = M_X_WIDE_REQ;
6170 	np->msgout[3] = wide;
6171 
6172 	np->msgin [0] = M_NOOP;
6173 
6174 	cp->nego_status = NS_WIDE;
6175 
6176 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6177 		sym_print_msg(cp, "wide msgout", np->msgout);
6178 	}
6179 
6180 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
6181 	return;
6182 reject_it:
6183 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6184 }
6185 
6186 /*
6187  *  Reset SYNC or WIDE to default settings.
6188  *
6189  *  Called when a negotiation does not succeed either
6190  *  on rejection or on protocol error.
6191  *
6192  *  If it was a PPR that made problems, we may want to
6193  *  try a legacy negotiation later.
6194  */
6195 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
6196 {
6197 	/*
6198 	 *  any error in negotiation:
6199 	 *  fall back to default mode.
6200 	 */
6201 	switch (cp->nego_status) {
6202 	case NS_PPR:
6203 #if 0
6204 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6205 #else
6206 		tp->tinfo.goal.options = 0;
6207 		if (tp->tinfo.goal.period < np->minsync)
6208 			tp->tinfo.goal.period = np->minsync;
6209 		if (tp->tinfo.goal.offset > np->maxoffs)
6210 			tp->tinfo.goal.offset = np->maxoffs;
6211 #endif
6212 		break;
6213 	case NS_SYNC:
6214 		sym_setsync (np, cp, 0, 0, 0, 0);
6215 		break;
6216 	case NS_WIDE:
6217 		sym_setwide (np, cp, 0);
6218 		break;
6219 	};
6220 	np->msgin [0] = M_NOOP;
6221 	np->msgout[0] = M_NOOP;
6222 	cp->nego_status = 0;
6223 }
6224 
6225 /*
6226  *  chip handler for MESSAGE REJECT received in response to
6227  *  a WIDE or SYNCHRONOUS negotiation.
6228  */
6229 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6230 {
6231 	sym_nego_default(np, tp, cp);
6232 	OUTB (HS_PRT, HS_BUSY);
6233 }
6234 
6235 /*
6236  *  chip exception handler for programmed interrupts.
6237  */
6238 void sym_int_sir (hcb_p np)
6239 {
6240 	u_char	num	= INB (nc_dsps);
6241 	u32	dsa	= INL (nc_dsa);
6242 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6243 	u_char	target	= INB (nc_sdid) & 0x0f;
6244 	tcb_p	tp	= &np->target[target];
6245 	int	tmp;
6246 
6247 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6248 
6249 	switch (num) {
6250 	/*
6251 	 *  Command has been completed with error condition
6252 	 *  or has been auto-sensed.
6253 	 */
6254 	case SIR_COMPLETE_ERROR:
6255 		sym_complete_error(np, cp);
6256 		return;
6257 	/*
6258 	 *  The C code is currently trying to recover from something.
6259 	 *  Typically, user want to abort some command.
6260 	 */
6261 	case SIR_SCRIPT_STOPPED:
6262 	case SIR_TARGET_SELECTED:
6263 	case SIR_ABORT_SENT:
6264 		sym_sir_task_recovery(np, num);
6265 		return;
6266 	/*
6267 	 *  The device didn't go to MSG OUT phase after having
6268 	 *  been selected with ATN. We donnot want to handle
6269 	 *  that.
6270 	 */
6271 	case SIR_SEL_ATN_NO_MSG_OUT:
6272 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6273 			sym_name (np), target);
6274 		goto out_stuck;
6275 	/*
6276 	 *  The device didn't switch to MSG IN phase after
6277 	 *  having reseleted the initiator.
6278 	 */
6279 	case SIR_RESEL_NO_MSG_IN:
6280 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6281 			sym_name (np), target);
6282 		goto out_stuck;
6283 	/*
6284 	 *  After reselection, the device sent a message that wasn't
6285 	 *  an IDENTIFY.
6286 	 */
6287 	case SIR_RESEL_NO_IDENTIFY:
6288 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6289 			sym_name (np), target);
6290 		goto out_stuck;
6291 	/*
6292 	 *  The device reselected a LUN we donnot know about.
6293 	 */
6294 	case SIR_RESEL_BAD_LUN:
6295 		np->msgout[0] = M_RESET;
6296 		goto out;
6297 	/*
6298 	 *  The device reselected for an untagged nexus and we
6299 	 *  haven't any.
6300 	 */
6301 	case SIR_RESEL_BAD_I_T_L:
6302 		np->msgout[0] = M_ABORT;
6303 		goto out;
6304 	/*
6305 	 *  The device reselected for a tagged nexus that we donnot
6306 	 *  have.
6307 	 */
6308 	case SIR_RESEL_BAD_I_T_L_Q:
6309 		np->msgout[0] = M_ABORT_TAG;
6310 		goto out;
6311 	/*
6312 	 *  The SCRIPTS let us know that the device has grabbed
6313 	 *  our message and will abort the job.
6314 	 */
6315 	case SIR_RESEL_ABORTED:
6316 		np->lastmsg = np->msgout[0];
6317 		np->msgout[0] = M_NOOP;
6318 		printf ("%s:%d: message %x sent on bad reselection.\n",
6319 			sym_name (np), target, np->lastmsg);
6320 		goto out;
6321 	/*
6322 	 *  The SCRIPTS let us know that a message has been
6323 	 *  successfully sent to the device.
6324 	 */
6325 	case SIR_MSG_OUT_DONE:
6326 		np->lastmsg = np->msgout[0];
6327 		np->msgout[0] = M_NOOP;
6328 		/* Should we really care of that */
6329 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6330 			if (cp) {
6331 				cp->xerr_status &= ~XE_PARITY_ERR;
6332 				if (!cp->xerr_status)
6333 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6334 			}
6335 		}
6336 		goto out;
6337 	/*
6338 	 *  The device didn't send a GOOD SCSI status.
6339 	 *  We may have some work to do prior to allow
6340 	 *  the SCRIPTS processor to continue.
6341 	 */
6342 	case SIR_BAD_SCSI_STATUS:
6343 		if (!cp)
6344 			goto out;
6345 		sym_sir_bad_scsi_status(np, num, cp);
6346 		return;
6347 	/*
6348 	 *  We are asked by the SCRIPTS to prepare a
6349 	 *  REJECT message.
6350 	 */
6351 	case SIR_REJECT_TO_SEND:
6352 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6353 		np->msgout[0] = M_REJECT;
6354 		goto out;
6355 	/*
6356 	 *  We have been ODD at the end of a DATA IN
6357 	 *  transfer and the device didn't send a
6358 	 *  IGNORE WIDE RESIDUE message.
6359 	 *  It is a data overrun condition.
6360 	 */
6361 	case SIR_SWIDE_OVERRUN:
6362 		if (cp) {
6363 			OUTONB (HF_PRT, HF_EXT_ERR);
6364 			cp->xerr_status |= XE_SWIDE_OVRUN;
6365 		}
6366 		goto out;
6367 	/*
6368 	 *  We have been ODD at the end of a DATA OUT
6369 	 *  transfer.
6370 	 *  It is a data underrun condition.
6371 	 */
6372 	case SIR_SODL_UNDERRUN:
6373 		if (cp) {
6374 			OUTONB (HF_PRT, HF_EXT_ERR);
6375 			cp->xerr_status |= XE_SODL_UNRUN;
6376 		}
6377 		goto out;
6378 	/*
6379 	 *  The device wants us to tranfer more data than
6380 	 *  expected or in the wrong direction.
6381 	 *  The number of extra bytes is in scratcha.
6382 	 *  It is a data overrun condition.
6383 	 */
6384 	case SIR_DATA_OVERRUN:
6385 		if (cp) {
6386 			OUTONB (HF_PRT, HF_EXT_ERR);
6387 			cp->xerr_status |= XE_EXTRA_DATA;
6388 			cp->extra_bytes += INL (nc_scratcha);
6389 		}
6390 		goto out;
6391 	/*
6392 	 *  The device switched to an illegal phase (4/5).
6393 	 */
6394 	case SIR_BAD_PHASE:
6395 		if (cp) {
6396 			OUTONB (HF_PRT, HF_EXT_ERR);
6397 			cp->xerr_status |= XE_BAD_PHASE;
6398 		}
6399 		goto out;
6400 	/*
6401 	 *  We received a message.
6402 	 */
6403 	case SIR_MSG_RECEIVED:
6404 		if (!cp)
6405 			goto out_stuck;
6406 		switch (np->msgin [0]) {
6407 		/*
6408 		 *  We received an extended message.
6409 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6410 		 *  and reject all other extended messages.
6411 		 */
6412 		case M_EXTENDED:
6413 			switch (np->msgin [2]) {
6414 			case M_X_MODIFY_DP:
6415 				if (DEBUG_FLAGS & DEBUG_POINTER)
6416 					sym_print_msg(cp,"modify DP",np->msgin);
6417 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6418 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6419 				sym_modify_dp(np, tp, cp, tmp);
6420 				return;
6421 			case M_X_SYNC_REQ:
6422 				sym_sync_nego(np, tp, cp);
6423 				return;
6424 			case M_X_PPR_REQ:
6425 				sym_ppr_nego(np, tp, cp);
6426 				return;
6427 			case M_X_WIDE_REQ:
6428 				sym_wide_nego(np, tp, cp);
6429 				return;
6430 			default:
6431 				goto out_reject;
6432 			}
6433 			break;
6434 		/*
6435 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6436 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6437 		 *  RESIDUE messages that haven't been anticipated by
6438 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6439 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6440 		 */
6441 		case M_IGN_RESIDUE:
6442 			if (DEBUG_FLAGS & DEBUG_POINTER)
6443 				sym_print_msg(cp,"ign wide residue", np->msgin);
6444 			sym_modify_dp(np, tp, cp, -1);
6445 			return;
6446 		case M_REJECT:
6447 			if (INB (HS_PRT) == HS_NEGOTIATE)
6448 				sym_nego_rejected(np, tp, cp);
6449 			else {
6450 				PRINT_ADDR(cp);
6451 				printf ("M_REJECT received (%x:%x).\n",
6452 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6453 			}
6454 			goto out_clrack;
6455 			break;
6456 		default:
6457 			goto out_reject;
6458 		}
6459 		break;
6460 	/*
6461 	 *  We received an unknown message.
6462 	 *  Ignore all MSG IN phases and reject it.
6463 	 */
6464 	case SIR_MSG_WEIRD:
6465 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6466 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6467 		return;
6468 	/*
6469 	 *  Negotiation failed.
6470 	 *  Target does not send us the reply.
6471 	 *  Remove the HS_NEGOTIATE status.
6472 	 */
6473 	case SIR_NEGO_FAILED:
6474 		OUTB (HS_PRT, HS_BUSY);
6475 	/*
6476 	 *  Negotiation failed.
6477 	 *  Target does not want answer message.
6478 	 */
6479 	case SIR_NEGO_PROTO:
6480 		sym_nego_default(np, tp, cp);
6481 		goto out;
6482 	};
6483 
6484 out:
6485 	OUTONB_STD ();
6486 	return;
6487 out_reject:
6488 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6489 	return;
6490 out_clrack:
6491 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6492 	return;
6493 out_stuck:
6494 	;
6495 }
6496 
6497 /*
6498  *  Acquire a control block
6499  */
6500 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6501 {
6502 	tcb_p tp = &np->target[tn];
6503 	lcb_p lp = sym_lp(np, tp, ln);
6504 	u_short tag = NO_TAG;
6505 	SYM_QUEHEAD *qp;
6506 	ccb_p cp = (ccb_p) 0;
6507 
6508 	/*
6509 	 *  Look for a free CCB
6510 	 */
6511 	if (sym_que_empty(&np->free_ccbq))
6512 		(void) sym_alloc_ccb(np);
6513 	qp = sym_remque_head(&np->free_ccbq);
6514 	if (!qp)
6515 		goto out;
6516 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6517 
6518 	/*
6519 	 *  If the LCB is not yet available and the LUN
6520 	 *  has been probed ok, try to allocate the LCB.
6521 	 */
6522 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6523 		lp = sym_alloc_lcb(np, tn, ln);
6524 		if (!lp)
6525 			goto out_free;
6526 	}
6527 
6528 	/*
6529 	 *  If the LCB is not available here, then the
6530 	 *  logical unit is not yet discovered. For those
6531 	 *  ones only accept 1 SCSI IO per logical unit,
6532 	 *  since we cannot allow disconnections.
6533 	 */
6534 	if (!lp) {
6535 		if (!sym_is_bit(tp->busy0_map, ln))
6536 			sym_set_bit(tp->busy0_map, ln);
6537 		else
6538 			goto out_free;
6539 	} else {
6540 		/*
6541 		 *  If we have been asked for a tagged command.
6542 		 */
6543 		if (tag_order) {
6544 			/*
6545 			 *  Debugging purpose.
6546 			 */
6547 			assert(lp->busy_itl == 0);
6548 			/*
6549 			 *  Allocate resources for tags if not yet.
6550 			 */
6551 			if (!lp->cb_tags) {
6552 				sym_alloc_lcb_tags(np, tn, ln);
6553 				if (!lp->cb_tags)
6554 					goto out_free;
6555 			}
6556 			/*
6557 			 *  Get a tag for this SCSI IO and set up
6558 			 *  the CCB bus address for reselection,
6559 			 *  and count it for this LUN.
6560 			 *  Toggle reselect path to tagged.
6561 			 */
6562 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6563 				tag = lp->cb_tags[lp->ia_tag];
6564 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6565 					lp->ia_tag = 0;
6566 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6567 				++lp->busy_itlq;
6568 				lp->head.resel_sa =
6569 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6570 			}
6571 			else
6572 				goto out_free;
6573 		}
6574 		/*
6575 		 *  This command will not be tagged.
6576 		 *  If we already have either a tagged or untagged
6577 		 *  one, refuse to overlap this untagged one.
6578 		 */
6579 		else {
6580 			/*
6581 			 *  Debugging purpose.
6582 			 */
6583 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6584 			/*
6585 			 *  Count this nexus for this LUN.
6586 			 *  Set up the CCB bus address for reselection.
6587 			 *  Toggle reselect path to untagged.
6588 			 */
6589 			if (++lp->busy_itl == 1) {
6590 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6591 				lp->head.resel_sa =
6592 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6593 			}
6594 			else
6595 				goto out_free;
6596 		}
6597 	}
6598 	/*
6599 	 *  Put the CCB into the busy queue.
6600 	 */
6601 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6602 
6603 	/*
6604 	 *  Remember all informations needed to free this CCB.
6605 	 */
6606 	cp->to_abort = 0;
6607 	cp->tag	   = tag;
6608 	cp->target = tn;
6609 	cp->lun    = ln;
6610 
6611 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6612 		PRINT_LUN(np, tn, ln);
6613 		printf ("ccb @%p using tag %d.\n", cp, tag);
6614 	}
6615 
6616 out:
6617 	return cp;
6618 out_free:
6619 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6620 	return (ccb_p) 0;
6621 }
6622 
6623 /*
6624  *  Release one control block
6625  */
6626 static void sym_free_ccb (hcb_p np, ccb_p cp)
6627 {
6628 	tcb_p tp = &np->target[cp->target];
6629 	lcb_p lp = sym_lp(np, tp, cp->lun);
6630 
6631 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6632 		PRINT_LUN(np, cp->target, cp->lun);
6633 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6634 	}
6635 
6636 	/*
6637 	 *  If LCB available,
6638 	 */
6639 	if (lp) {
6640 		/*
6641 		 *  If tagged, release the tag, set the relect path
6642 		 */
6643 		if (cp->tag != NO_TAG) {
6644 			/*
6645 			 *  Free the tag value.
6646 			 */
6647 			lp->cb_tags[lp->if_tag] = cp->tag;
6648 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6649 				lp->if_tag = 0;
6650 			/*
6651 			 *  Make the reselect path invalid,
6652 			 *  and uncount this CCB.
6653 			 */
6654 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6655 			--lp->busy_itlq;
6656 		} else {	/* Untagged */
6657 			/*
6658 			 *  Make the reselect path invalid,
6659 			 *  and uncount this CCB.
6660 			 */
6661 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6662 			--lp->busy_itl;
6663 		}
6664 		/*
6665 		 *  If no JOB active, make the LUN reselect path invalid.
6666 		 */
6667 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6668 			lp->head.resel_sa =
6669 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6670 	}
6671 	/*
6672 	 *  Otherwise, we only accept 1 IO per LUN.
6673 	 *  Clear the bit that keeps track of this IO.
6674 	 */
6675 	else
6676 		sym_clr_bit(tp->busy0_map, cp->lun);
6677 
6678 	/*
6679 	 *  We donnot queue more than 1 ccb per target
6680 	 *  with negotiation at any time. If this ccb was
6681 	 *  used for negotiation, clear this info in the tcb.
6682 	 */
6683 	if (cp == tp->nego_cp)
6684 		tp->nego_cp = 0;
6685 
6686 #ifdef SYM_CONF_IARB_SUPPORT
6687 	/*
6688 	 *  If we just complete the last queued CCB,
6689 	 *  clear this info that is no longer relevant.
6690 	 */
6691 	if (cp == np->last_cp)
6692 		np->last_cp = 0;
6693 #endif
6694 
6695 #ifdef	FreeBSD_Bus_Dma_Abstraction
6696 	/*
6697 	 *  Unmap user data from DMA map if needed.
6698 	 */
6699 	if (cp->dmamapped) {
6700 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6701 		cp->dmamapped = 0;
6702 	}
6703 #endif
6704 
6705 	/*
6706 	 *  Make this CCB available.
6707 	 */
6708 	cp->cam_ccb = 0;
6709 	cp->host_status = HS_IDLE;
6710 	sym_remque(&cp->link_ccbq);
6711 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6712 }
6713 
6714 /*
6715  *  Allocate a CCB from memory and initialize its fixed part.
6716  */
6717 static ccb_p sym_alloc_ccb(hcb_p np)
6718 {
6719 	ccb_p cp = 0;
6720 	int hcode;
6721 
6722 	/*
6723 	 *  Prevent from allocating more CCBs than we can
6724 	 *  queue to the controller.
6725 	 */
6726 	if (np->actccbs >= SYM_CONF_MAX_START)
6727 		return 0;
6728 
6729 	/*
6730 	 *  Allocate memory for this CCB.
6731 	 */
6732 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6733 	if (!cp)
6734 		goto out_free;
6735 
6736 	/*
6737 	 *  Allocate a bounce buffer for sense data.
6738 	 */
6739 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6740 	if (!cp->sns_bbuf)
6741 		goto out_free;
6742 
6743 	/*
6744 	 *  Allocate a map for the DMA of user data.
6745 	 */
6746 #ifdef	FreeBSD_Bus_Dma_Abstraction
6747 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6748 		goto out_free;
6749 #endif
6750 	/*
6751 	 *  Count it.
6752 	 */
6753 	np->actccbs++;
6754 
6755 	/*
6756 	 *  Compute the bus address of this ccb.
6757 	 */
6758 	cp->ccb_ba = vtobus(cp);
6759 
6760 	/*
6761 	 *  Insert this ccb into the hashed list.
6762 	 */
6763 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6764 	cp->link_ccbh = np->ccbh[hcode];
6765 	np->ccbh[hcode] = cp;
6766 
6767 	/*
6768 	 *  Initialyze the start and restart actions.
6769 	 */
6770 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6771 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6772 
6773  	/*
6774 	 *  Initilialyze some other fields.
6775 	 */
6776 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6777 
6778 	/*
6779 	 *  Chain into free ccb queue.
6780 	 */
6781 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6782 
6783 	return cp;
6784 out_free:
6785 	if (cp) {
6786 		if (cp->sns_bbuf)
6787 			sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
6788 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
6789 	}
6790 	return 0;
6791 }
6792 
6793 /*
6794  *  Look up a CCB from a DSA value.
6795  */
6796 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6797 {
6798 	int hcode;
6799 	ccb_p cp;
6800 
6801 	hcode = CCB_HASH_CODE(dsa);
6802 	cp = np->ccbh[hcode];
6803 	while (cp) {
6804 		if (cp->ccb_ba == dsa)
6805 			break;
6806 		cp = cp->link_ccbh;
6807 	}
6808 
6809 	return cp;
6810 }
6811 
6812 /*
6813  *  Target control block initialisation.
6814  *  Nothing important to do at the moment.
6815  */
6816 static void sym_init_tcb (hcb_p np, u_char tn)
6817 {
6818 	/*
6819 	 *  Check some alignments required by the chip.
6820 	 */
6821 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6822 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6823 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6824 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6825 }
6826 
6827 /*
6828  *  Lun control block allocation and initialization.
6829  */
6830 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6831 {
6832 	tcb_p tp = &np->target[tn];
6833 	lcb_p lp = sym_lp(np, tp, ln);
6834 
6835 	/*
6836 	 *  Already done, just return.
6837 	 */
6838 	if (lp)
6839 		return lp;
6840 	/*
6841 	 *  Check against some race.
6842 	 */
6843 	assert(!sym_is_bit(tp->busy0_map, ln));
6844 
6845 	/*
6846 	 *  Initialize the target control block if not yet.
6847 	 */
6848 	sym_init_tcb (np, tn);
6849 
6850 	/*
6851 	 *  Allocate the LCB bus address array.
6852 	 *  Compute the bus address of this table.
6853 	 */
6854 	if (ln && !tp->luntbl) {
6855 		int i;
6856 
6857 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6858 		if (!tp->luntbl)
6859 			goto fail;
6860 		for (i = 0 ; i < 64 ; i++)
6861 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6862 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6863 	}
6864 
6865 	/*
6866 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6867 	 */
6868 	if (ln && !tp->lunmp) {
6869 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6870 				   "LUNMP");
6871 		if (!tp->lunmp)
6872 			goto fail;
6873 	}
6874 
6875 	/*
6876 	 *  Allocate the lcb.
6877 	 *  Make it available to the chip.
6878 	 */
6879 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6880 	if (!lp)
6881 		goto fail;
6882 	if (ln) {
6883 		tp->lunmp[ln] = lp;
6884 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6885 	}
6886 	else {
6887 		tp->lun0p = lp;
6888 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6889 	}
6890 
6891 	/*
6892 	 *  Let the itl task point to error handling.
6893 	 */
6894 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6895 
6896 	/*
6897 	 *  Set the reselect pattern to our default. :)
6898 	 */
6899 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6900 
6901 	/*
6902 	 *  Set user capabilities.
6903 	 */
6904 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6905 
6906 fail:
6907 	return lp;
6908 }
6909 
6910 /*
6911  *  Allocate LCB resources for tagged command queuing.
6912  */
6913 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6914 {
6915 	tcb_p tp = &np->target[tn];
6916 	lcb_p lp = sym_lp(np, tp, ln);
6917 	int i;
6918 
6919 	/*
6920 	 *  If LCB not available, try to allocate it.
6921 	 */
6922 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6923 		goto fail;
6924 
6925 	/*
6926 	 *  Allocate the task table and and the tag allocation
6927 	 *  circular buffer. We want both or none.
6928 	 */
6929 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6930 	if (!lp->itlq_tbl)
6931 		goto fail;
6932 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6933 	if (!lp->cb_tags) {
6934 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6935 		lp->itlq_tbl = 0;
6936 		goto fail;
6937 	}
6938 
6939 	/*
6940 	 *  Initialize the task table with invalid entries.
6941 	 */
6942 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6943 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6944 
6945 	/*
6946 	 *  Fill up the tag buffer with tag numbers.
6947 	 */
6948 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6949 		lp->cb_tags[i] = i;
6950 
6951 	/*
6952 	 *  Make the task table available to SCRIPTS,
6953 	 *  And accept tagged commands now.
6954 	 */
6955 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6956 fail:
6957 	;
6958 }
6959 
6960 /*
6961  *  Test the pci bus snoop logic :-(
6962  *
6963  *  Has to be called with interrupts disabled.
6964  */
6965 #ifndef SYM_CONF_IOMAPPED
6966 static int sym_regtest (hcb_p np)
6967 {
6968 	volatile u32 data;
6969 	/*
6970 	 *  chip registers may NOT be cached.
6971 	 *  write 0xffffffff to a read only register area,
6972 	 *  and try to read it back.
6973 	 */
6974 	data = 0xffffffff;
6975 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6976 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6977 #if 1
6978 	if (data == 0xffffffff) {
6979 #else
6980 	if ((data & 0xe2f0fffd) != 0x02000080) {
6981 #endif
6982 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6983 			(unsigned) data);
6984 		return (0x10);
6985 	};
6986 	return (0);
6987 }
6988 #endif
6989 
6990 static int sym_snooptest (hcb_p np)
6991 {
6992 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6993 	int	i, err=0;
6994 #ifndef SYM_CONF_IOMAPPED
6995 	err |= sym_regtest (np);
6996 	if (err) return (err);
6997 #endif
6998 restart_test:
6999 	/*
7000 	 *  Enable Master Parity Checking as we intend
7001 	 *  to enable it for normal operations.
7002 	 */
7003 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
7004 	/*
7005 	 *  init
7006 	 */
7007 	pc  = SCRIPTB0_BA (np, snooptest);
7008 	host_wr = 1;
7009 	sym_wr  = 2;
7010 	/*
7011 	 *  Set memory and register.
7012 	 */
7013 	np->cache = cpu_to_scr(host_wr);
7014 	OUTL (nc_temp, sym_wr);
7015 	/*
7016 	 *  Start script (exchange values)
7017 	 */
7018 	OUTL (nc_dsa, np->hcb_ba);
7019 	OUTL_DSP (pc);
7020 	/*
7021 	 *  Wait 'til done (with timeout)
7022 	 */
7023 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
7024 		if (INB(nc_istat) & (INTF|SIP|DIP))
7025 			break;
7026 	if (i>=SYM_SNOOP_TIMEOUT) {
7027 		printf ("CACHE TEST FAILED: timeout.\n");
7028 		return (0x20);
7029 	};
7030 	/*
7031 	 *  Check for fatal DMA errors.
7032 	 */
7033 	dstat = INB (nc_dstat);
7034 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
7035 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
7036 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
7037 			"DISABLING MASTER DATA PARITY CHECKING.\n",
7038 			sym_name(np));
7039 		np->rv_ctest4 &= ~MPEE;
7040 		goto restart_test;
7041 	}
7042 #endif
7043 	if (dstat & (MDPE|BF|IID)) {
7044 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
7045 		return (0x80);
7046 	}
7047 	/*
7048 	 *  Save termination position.
7049 	 */
7050 	pc = INL (nc_dsp);
7051 	/*
7052 	 *  Read memory and register.
7053 	 */
7054 	host_rd = scr_to_cpu(np->cache);
7055 	sym_rd  = INL (nc_scratcha);
7056 	sym_bk  = INL (nc_temp);
7057 
7058 	/*
7059 	 *  Check termination position.
7060 	 */
7061 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
7062 		printf ("CACHE TEST FAILED: script execution failed.\n");
7063 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
7064 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
7065 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
7066 		return (0x40);
7067 	};
7068 	/*
7069 	 *  Show results.
7070 	 */
7071 	if (host_wr != sym_rd) {
7072 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
7073 			(int) host_wr, (int) sym_rd);
7074 		err |= 1;
7075 	};
7076 	if (host_rd != sym_wr) {
7077 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
7078 			(int) sym_wr, (int) host_rd);
7079 		err |= 2;
7080 	};
7081 	if (sym_bk != sym_wr) {
7082 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
7083 			(int) sym_wr, (int) sym_bk);
7084 		err |= 4;
7085 	};
7086 
7087 	return (err);
7088 }
7089 
7090 /*
7091  *  Determine the chip's clock frequency.
7092  *
7093  *  This is essential for the negotiation of the synchronous
7094  *  transfer rate.
7095  *
7096  *  Note: we have to return the correct value.
7097  *  THERE IS NO SAFE DEFAULT VALUE.
7098  *
7099  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7100  *  53C860 and 53C875 rev. 1 support fast20 transfers but
7101  *  do not have a clock doubler and so are provided with a
7102  *  80 MHz clock. All other fast20 boards incorporate a doubler
7103  *  and so should be delivered with a 40 MHz clock.
7104  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
7105  *  clock and provide a clock quadrupler (160 Mhz).
7106  */
7107 
7108 /*
7109  *  Select SCSI clock frequency
7110  */
7111 static void sym_selectclock(hcb_p np, u_char scntl3)
7112 {
7113 	/*
7114 	 *  If multiplier not present or not selected, leave here.
7115 	 */
7116 	if (np->multiplier <= 1) {
7117 		OUTB(nc_scntl3,	scntl3);
7118 		return;
7119 	}
7120 
7121 	if (sym_verbose >= 2)
7122 		printf ("%s: enabling clock multiplier\n", sym_name(np));
7123 
7124 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
7125 	/*
7126 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
7127 	 *  Otherwise wait 20 micro-seconds.
7128 	 */
7129 	if (np->features & FE_LCKFRQ) {
7130 		int i = 20;
7131 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7132 			UDELAY (20);
7133 		if (!i)
7134 			printf("%s: the chip cannot lock the frequency\n",
7135 				sym_name(np));
7136 	} else
7137 		UDELAY (20);
7138 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
7139 	OUTB(nc_scntl3,	scntl3);
7140 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
7141 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
7142 }
7143 
7144 /*
7145  *  calculate SCSI clock frequency (in KHz)
7146  */
7147 static unsigned getfreq (hcb_p np, int gen)
7148 {
7149 	unsigned int ms = 0;
7150 	unsigned int f;
7151 
7152 	/*
7153 	 * Measure GEN timer delay in order
7154 	 * to calculate SCSI clock frequency
7155 	 *
7156 	 * This code will never execute too
7157 	 * many loop iterations (if DELAY is
7158 	 * reasonably correct). It could get
7159 	 * too low a delay (too high a freq.)
7160 	 * if the CPU is slow executing the
7161 	 * loop for some reason (an NMI, for
7162 	 * example). For this reason we will
7163 	 * if multiple measurements are to be
7164 	 * performed trust the higher delay
7165 	 * (lower frequency returned).
7166 	 */
7167 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
7168 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
7169 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
7170 	(void) INW (nc_sist);	/* another one, just to be sure :) */
7171 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
7172 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7173 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
7174 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
7175 		UDELAY (1000);	/* count ms */
7176 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7177  	/*
7178  	 * set prescaler to divide by whatever 0 means
7179  	 * 0 ought to choose divide by 2, but appears
7180  	 * to set divide by 3.5 mode in my 53c810 ...
7181  	 */
7182  	OUTB (nc_scntl3, 0);
7183 
7184   	/*
7185  	 * adjust for prescaler, and convert into KHz
7186   	 */
7187 	f = ms ? ((1 << gen) * 4340) / ms : 0;
7188 
7189 	if (sym_verbose >= 2)
7190 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
7191 			sym_name(np), gen, ms, f);
7192 
7193 	return f;
7194 }
7195 
7196 static unsigned sym_getfreq (hcb_p np)
7197 {
7198 	u_int f1, f2;
7199 	int gen = 11;
7200 
7201 	(void) getfreq (np, gen);	/* throw away first result */
7202 	f1 = getfreq (np, gen);
7203 	f2 = getfreq (np, gen);
7204 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
7205 	return f1;
7206 }
7207 
7208 /*
7209  *  Get/probe chip SCSI clock frequency
7210  */
7211 static void sym_getclock (hcb_p np, int mult)
7212 {
7213 	unsigned char scntl3 = np->sv_scntl3;
7214 	unsigned char stest1 = np->sv_stest1;
7215 	unsigned f1;
7216 
7217 	/*
7218 	 *  For the C10 core, assume 40 MHz.
7219 	 */
7220 	if (np->features & FE_C10) {
7221 		np->multiplier = mult;
7222 		np->clock_khz = 40000 * mult;
7223 		return;
7224 	}
7225 
7226 	np->multiplier = 1;
7227 	f1 = 40000;
7228 	/*
7229 	 *  True with 875/895/896/895A with clock multiplier selected
7230 	 */
7231 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7232 		if (sym_verbose >= 2)
7233 			printf ("%s: clock multiplier found\n", sym_name(np));
7234 		np->multiplier = mult;
7235 	}
7236 
7237 	/*
7238 	 *  If multiplier not found or scntl3 not 7,5,3,
7239 	 *  reset chip and get frequency from general purpose timer.
7240 	 *  Otherwise trust scntl3 BIOS setting.
7241 	 */
7242 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7243 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7244 		f1 = sym_getfreq (np);
7245 
7246 		if (sym_verbose)
7247 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7248 
7249 		if	(f1 <	45000)		f1 =  40000;
7250 		else if (f1 <	55000)		f1 =  50000;
7251 		else				f1 =  80000;
7252 
7253 		if (f1 < 80000 && mult > 1) {
7254 			if (sym_verbose >= 2)
7255 				printf ("%s: clock multiplier assumed\n",
7256 					sym_name(np));
7257 			np->multiplier	= mult;
7258 		}
7259 	} else {
7260 		if	((scntl3 & 7) == 3)	f1 =  40000;
7261 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7262 		else 				f1 = 160000;
7263 
7264 		f1 /= np->multiplier;
7265 	}
7266 
7267 	/*
7268 	 *  Compute controller synchronous parameters.
7269 	 */
7270 	f1		*= np->multiplier;
7271 	np->clock_khz	= f1;
7272 }
7273 
7274 /*
7275  *  Get/probe PCI clock frequency
7276  */
7277 static int sym_getpciclock (hcb_p np)
7278 {
7279 	int f = 0;
7280 
7281 	/*
7282 	 *  For the C1010-33, this doesn't work.
7283 	 *  For the C1010-66, this will be tested when I'll have
7284 	 *  such a beast to play with.
7285 	 */
7286 	if (!(np->features & FE_C10)) {
7287 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7288 		f = (int) sym_getfreq (np);
7289 		OUTB (nc_stest1, 0);
7290 	}
7291 	np->pciclk_khz = f;
7292 
7293 	return f;
7294 }
7295 
7296 /*============= DRIVER ACTION/COMPLETION ====================*/
7297 
7298 /*
7299  *  Print something that tells about extended errors.
7300  */
7301 static void sym_print_xerr(ccb_p cp, int x_status)
7302 {
7303 	if (x_status & XE_PARITY_ERR) {
7304 		PRINT_ADDR(cp);
7305 		printf ("unrecovered SCSI parity error.\n");
7306 	}
7307 	if (x_status & XE_EXTRA_DATA) {
7308 		PRINT_ADDR(cp);
7309 		printf ("extraneous data discarded.\n");
7310 	}
7311 	if (x_status & XE_BAD_PHASE) {
7312 		PRINT_ADDR(cp);
7313 		printf ("illegal scsi phase (4/5).\n");
7314 	}
7315 	if (x_status & XE_SODL_UNRUN) {
7316 		PRINT_ADDR(cp);
7317 		printf ("ODD transfer in DATA OUT phase.\n");
7318 	}
7319 	if (x_status & XE_SWIDE_OVRUN) {
7320 		PRINT_ADDR(cp);
7321 		printf ("ODD transfer in DATA IN phase.\n");
7322 	}
7323 }
7324 
7325 /*
7326  *  Choose the more appropriate CAM status if
7327  *  the IO encountered an extended error.
7328  */
7329 static int sym_xerr_cam_status(int cam_status, int x_status)
7330 {
7331 	if (x_status) {
7332 		if	(x_status & XE_PARITY_ERR)
7333 			cam_status = CAM_UNCOR_PARITY;
7334 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7335 			cam_status = CAM_DATA_RUN_ERR;
7336 		else if	(x_status & XE_BAD_PHASE)
7337 			cam_status = CAM_REQ_CMP_ERR;
7338 		else
7339 			cam_status = CAM_REQ_CMP_ERR;
7340 	}
7341 	return cam_status;
7342 }
7343 
7344 /*
7345  *  Complete execution of a SCSI command with extented
7346  *  error, SCSI status error, or having been auto-sensed.
7347  *
7348  *  The SCRIPTS processor is not running there, so we
7349  *  can safely access IO registers and remove JOBs from
7350  *  the START queue.
7351  *  SCRATCHA is assumed to have been loaded with STARTPOS
7352  *  before the SCRIPTS called the C code.
7353  */
7354 static void sym_complete_error (hcb_p np, ccb_p cp)
7355 {
7356 	struct ccb_scsiio *csio;
7357 	u_int cam_status;
7358 	int i;
7359 
7360 	/*
7361 	 *  Paranoid check. :)
7362 	 */
7363 	if (!cp || !cp->cam_ccb)
7364 		return;
7365 
7366 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7367 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7368 			cp->host_status, cp->ssss_status, cp->host_flags,
7369 			cp->target, cp->lun);
7370 		MDELAY(100);
7371 	}
7372 
7373 	/*
7374 	 *  Get CAM command pointer.
7375 	 */
7376 	csio = &cp->cam_ccb->csio;
7377 
7378 	/*
7379 	 *  Check for extended errors.
7380 	 */
7381 	if (cp->xerr_status) {
7382 		if (sym_verbose)
7383 			sym_print_xerr(cp, cp->xerr_status);
7384 		if (cp->host_status == HS_COMPLETE)
7385 			cp->host_status = HS_COMP_ERR;
7386 	}
7387 
7388 	/*
7389 	 *  Calculate the residual.
7390 	 */
7391 	csio->sense_resid = 0;
7392 	csio->resid = sym_compute_residual(np, cp);
7393 
7394 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7395 		csio->resid  = 0;	/* throw them away. :)		   */
7396 		cp->sv_resid = 0;
7397 	}
7398 
7399 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7400 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7401 		csio->sense_resid = csio->resid;	/* Swap residuals */
7402 		csio->resid       = cp->sv_resid;
7403 		cp->sv_resid	  = 0;
7404 		if (sym_verbose && cp->sv_xerr_status)
7405 			sym_print_xerr(cp, cp->sv_xerr_status);
7406 		if (cp->host_status == HS_COMPLETE &&
7407 		    cp->ssss_status == S_GOOD &&
7408 		    cp->xerr_status == 0) {
7409 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7410 							 cp->sv_xerr_status);
7411 			cam_status |= CAM_AUTOSNS_VALID;
7412 			/*
7413 			 *  Bounce back the sense data to user and
7414 			 *  fix the residual.
7415 			 */
7416 			bzero(&csio->sense_data, csio->sense_len);
7417 			bcopy(cp->sns_bbuf, &csio->sense_data,
7418 			      MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
7419 			csio->sense_resid += csio->sense_len;
7420 			csio->sense_resid -= SYM_SNS_BBUF_LEN;
7421 #if 0
7422 			/*
7423 			 *  If the device reports a UNIT ATTENTION condition
7424 			 *  due to a RESET condition, we should consider all
7425 			 *  disconnect CCBs for this unit as aborted.
7426 			 */
7427 			if (1) {
7428 				u_char *p;
7429 				p  = (u_char *) csio->sense_data;
7430 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7431 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7432 							cp->target,cp->lun, -1);
7433 			}
7434 #endif
7435 		}
7436 		else
7437 			cam_status = CAM_AUTOSENSE_FAIL;
7438 	}
7439 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7440 		csio->scsi_status = cp->ssss_status;
7441 		cam_status = CAM_SCSI_STATUS_ERROR;
7442 	}
7443 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7444 		cam_status = CAM_SEL_TIMEOUT;
7445 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7446 		cam_status = CAM_UNEXP_BUSFREE;
7447 	else {						/* Extended error */
7448 		if (sym_verbose) {
7449 			PRINT_ADDR(cp);
7450 			printf ("COMMAND FAILED (%x %x %x).\n",
7451 				cp->host_status, cp->ssss_status,
7452 				cp->xerr_status);
7453 		}
7454 		csio->scsi_status = cp->ssss_status;
7455 		/*
7456 		 *  Set the most appropriate value for CAM status.
7457 		 */
7458 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7459 						 cp->xerr_status);
7460 	}
7461 
7462 	/*
7463 	 *  Dequeue all queued CCBs for that device
7464 	 *  not yet started by SCRIPTS.
7465 	 */
7466 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7467 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7468 
7469 	/*
7470 	 *  Restart the SCRIPTS processor.
7471 	 */
7472 	OUTL_DSP (SCRIPTA_BA (np, start));
7473 
7474 #ifdef	FreeBSD_Bus_Dma_Abstraction
7475 	/*
7476 	 *  Synchronize DMA map if needed.
7477 	 */
7478 	if (cp->dmamapped) {
7479 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7480 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7481 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7482 	}
7483 #endif
7484 	/*
7485 	 *  Add this one to the COMP queue.
7486 	 *  Complete all those commands with either error
7487 	 *  or requeue condition.
7488 	 */
7489 	sym_set_cam_status((union ccb *) csio, cam_status);
7490 	sym_remque(&cp->link_ccbq);
7491 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7492 	sym_flush_comp_queue(np, 0);
7493 }
7494 
7495 /*
7496  *  Complete execution of a successful SCSI command.
7497  *
7498  *  Only successful commands go to the DONE queue,
7499  *  since we need to have the SCRIPTS processor
7500  *  stopped on any error condition.
7501  *  The SCRIPTS processor is running while we are
7502  *  completing successful commands.
7503  */
7504 static void sym_complete_ok (hcb_p np, ccb_p cp)
7505 {
7506 	struct ccb_scsiio *csio;
7507 	tcb_p tp;
7508 	lcb_p lp;
7509 
7510 	/*
7511 	 *  Paranoid check. :)
7512 	 */
7513 	if (!cp || !cp->cam_ccb)
7514 		return;
7515 	assert (cp->host_status == HS_COMPLETE);
7516 
7517 	/*
7518 	 *  Get command, target and lun pointers.
7519 	 */
7520 	csio = &cp->cam_ccb->csio;
7521 	tp = &np->target[cp->target];
7522 	lp = sym_lp(np, tp, cp->lun);
7523 
7524 	/*
7525 	 *  Assume device discovered on first success.
7526 	 */
7527 	if (!lp)
7528 		sym_set_bit(tp->lun_map, cp->lun);
7529 
7530 	/*
7531 	 *  If all data have been transferred, given than no
7532 	 *  extended error did occur, there is no residual.
7533 	 */
7534 	csio->resid = 0;
7535 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7536 		csio->resid = sym_compute_residual(np, cp);
7537 
7538 	/*
7539 	 *  Wrong transfer residuals may be worse than just always
7540 	 *  returning zero. User can disable this feature from
7541 	 *  sym_conf.h. Residual support is enabled by default.
7542 	 */
7543 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7544 		csio->resid  = 0;
7545 
7546 #ifdef	FreeBSD_Bus_Dma_Abstraction
7547 	/*
7548 	 *  Synchronize DMA map if needed.
7549 	 */
7550 	if (cp->dmamapped) {
7551 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7552 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7553 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7554 	}
7555 #endif
7556 	/*
7557 	 *  Set status and complete the command.
7558 	 */
7559 	csio->scsi_status = cp->ssss_status;
7560 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7561 	sym_free_ccb (np, cp);
7562 	sym_xpt_done(np, (union ccb *) csio);
7563 }
7564 
7565 /*
7566  *  Our timeout handler.
7567  */
7568 static void sym_timeout1(void *arg)
7569 {
7570 	union ccb *ccb = (union ccb *) arg;
7571 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7572 
7573 	/*
7574 	 *  Check that the CAM CCB is still queued.
7575 	 */
7576 	if (!np)
7577 		return;
7578 
7579 	switch(ccb->ccb_h.func_code) {
7580 	case XPT_SCSI_IO:
7581 		(void) sym_abort_scsiio(np, ccb, 1);
7582 		break;
7583 	default:
7584 		break;
7585 	}
7586 }
7587 
7588 static void sym_timeout(void *arg)
7589 {
7590 	crit_enter();
7591 	sym_timeout1(arg);
7592 	crit_exit();
7593 }
7594 
7595 /*
7596  *  Abort an SCSI IO.
7597  */
7598 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7599 {
7600 	ccb_p cp;
7601 	SYM_QUEHEAD *qp;
7602 
7603 	/*
7604 	 *  Look up our CCB control block.
7605 	 */
7606 	cp = 0;
7607 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7608 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7609 		if (cp2->cam_ccb == ccb) {
7610 			cp = cp2;
7611 			break;
7612 		}
7613 	}
7614 	if (!cp || cp->host_status == HS_WAIT)
7615 		return -1;
7616 
7617 	/*
7618 	 *  If a previous abort didn't succeed in time,
7619 	 *  perform a BUS reset.
7620 	 */
7621 	if (cp->to_abort) {
7622 		sym_reset_scsi_bus(np, 1);
7623 		return 0;
7624 	}
7625 
7626 	/*
7627 	 *  Mark the CCB for abort and allow time for.
7628 	 */
7629 	cp->to_abort = timed_out ? 2 : 1;
7630 	callout_reset(&ccb->ccb_h.timeout_ch, 10 * hz, sym_timeout, ccb);
7631 
7632 	/*
7633 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7634 	 */
7635 	np->istat_sem = SEM;
7636 	OUTB (nc_istat, SIGP|SEM);
7637 	return 0;
7638 }
7639 
7640 /*
7641  *  Reset a SCSI device (all LUNs of a target).
7642  */
7643 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7644 {
7645 	tcb_p tp;
7646 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7647 
7648 	if (ccb_h->target_id   == np->myaddr ||
7649 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7650 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7651 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7652 		return;
7653 	}
7654 
7655 	tp = &np->target[ccb_h->target_id];
7656 
7657 	tp->to_reset = 1;
7658 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7659 
7660 	np->istat_sem = SEM;
7661 	OUTB (nc_istat, SIGP|SEM);
7662 	return;
7663 }
7664 
7665 /*
7666  *  SIM action entry point.
7667  */
7668 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7669 {
7670 	crit_enter();
7671 	sym_action1(sim, ccb);
7672 	crit_exit();
7673 }
7674 
7675 static void sym_action1(struct cam_sim *sim, union ccb *ccb)
7676 {
7677 	hcb_p	np;
7678 	tcb_p	tp;
7679 	lcb_p	lp;
7680 	ccb_p	cp;
7681 	int 	tmp;
7682 	u_char	idmsg, *msgptr;
7683 	u_int   msglen;
7684 	struct	ccb_scsiio *csio;
7685 	struct	ccb_hdr  *ccb_h;
7686 
7687 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7688 
7689 	/*
7690 	 *  Retrieve our controller data structure.
7691 	 */
7692 	np = (hcb_p) cam_sim_softc(sim);
7693 
7694 	/*
7695 	 *  The common case is SCSI IO.
7696 	 *  We deal with other ones elsewhere.
7697 	 */
7698 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7699 		sym_action2(sim, ccb);
7700 		return;
7701 	}
7702 	csio  = &ccb->csio;
7703 	ccb_h = &csio->ccb_h;
7704 
7705 	/*
7706 	 *  Work around races.
7707 	 */
7708 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7709 		xpt_done(ccb);
7710 		return;
7711 	}
7712 
7713 	/*
7714 	 *  Minimal checkings, so that we will not
7715 	 *  go outside our tables.
7716 	 */
7717 	if (ccb_h->target_id   == np->myaddr ||
7718 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7719 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7720 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7721 		return;
7722         }
7723 
7724 	/*
7725 	 *  Retreive the target and lun descriptors.
7726 	 */
7727 	tp = &np->target[ccb_h->target_id];
7728 	lp = sym_lp(np, tp, ccb_h->target_lun);
7729 
7730 	/*
7731 	 *  Complete the 1st INQUIRY command with error
7732 	 *  condition if the device is flagged NOSCAN
7733 	 *  at BOOT in the NVRAM. This may speed up
7734 	 *  the boot and maintain coherency with BIOS
7735 	 *  device numbering. Clearing the flag allows
7736 	 *  user to rescan skipped devices later.
7737 	 *  We also return error for devices not flagged
7738 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7739 	 *  devices behave badly when asked for some non
7740 	 *  zero LUN. Btw, this is an absolute hack.:-)
7741 	 */
7742 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7743 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7744 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7745 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7746 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7747 		     ccb_h->target_lun != 0)) {
7748 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7749 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7750 			return;
7751 		}
7752 	}
7753 
7754 	/*
7755 	 *  Get a control block for this IO.
7756 	 */
7757 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7758 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7759 	if (!cp) {
7760 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7761 		return;
7762 	}
7763 
7764 	/*
7765 	 *  Keep track of the IO in our CCB.
7766 	 */
7767 	cp->cam_ccb = ccb;
7768 
7769 	/*
7770 	 *  Build the IDENTIFY message.
7771 	 */
7772 	idmsg = M_IDENTIFY | cp->lun;
7773 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7774 		idmsg |= 0x40;
7775 
7776 	msgptr = cp->scsi_smsg;
7777 	msglen = 0;
7778 	msgptr[msglen++] = idmsg;
7779 
7780 	/*
7781 	 *  Build the tag message if present.
7782 	 */
7783 	if (cp->tag != NO_TAG) {
7784 		u_char order = csio->tag_action;
7785 
7786 		switch(order) {
7787 		case M_ORDERED_TAG:
7788 			break;
7789 		case M_HEAD_TAG:
7790 			break;
7791 		default:
7792 			order = M_SIMPLE_TAG;
7793 		}
7794 		msgptr[msglen++] = order;
7795 
7796 		/*
7797 		 *  For less than 128 tags, actual tags are numbered
7798 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7799 		 *  with devices that have problems with #TAG 0 or too
7800 		 *  great #TAG numbers. For more tags (up to 256),
7801 		 *  we use directly our tag number.
7802 		 */
7803 #if SYM_CONF_MAX_TASK > (512/4)
7804 		msgptr[msglen++] = cp->tag;
7805 #else
7806 		msgptr[msglen++] = (cp->tag << 1) + 1;
7807 #endif
7808 	}
7809 
7810 	/*
7811 	 *  Build a negotiation message if needed.
7812 	 *  (nego_status is filled by sym_prepare_nego())
7813 	 */
7814 	cp->nego_status = 0;
7815 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7816 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7817 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7818 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7819 		if (!tp->nego_cp && lp)
7820 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7821 	}
7822 
7823 	/*
7824 	 *  Fill in our ccb
7825 	 */
7826 
7827 	/*
7828 	 *  Startqueue
7829 	 */
7830 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7831 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7832 
7833 	/*
7834 	 *  select
7835 	 */
7836 	cp->phys.select.sel_id		= cp->target;
7837 	cp->phys.select.sel_scntl3	= tp->head.wval;
7838 	cp->phys.select.sel_sxfer	= tp->head.sval;
7839 	cp->phys.select.sel_scntl4	= tp->head.uval;
7840 
7841 	/*
7842 	 *  message
7843 	 */
7844 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7845 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7846 
7847 	/*
7848 	 *  command
7849 	 */
7850 	if (sym_setup_cdb(np, csio, cp) < 0) {
7851 		sym_free_ccb(np, cp);
7852 		sym_xpt_done(np, ccb);
7853 		return;
7854 	}
7855 
7856 	/*
7857 	 *  status
7858 	 */
7859 #if	0	/* Provision */
7860 	cp->actualquirks	= tp->quirks;
7861 #endif
7862 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7863 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7864 	cp->ssss_status		= S_ILLEGAL;
7865 	cp->xerr_status		= 0;
7866 	cp->host_flags		= 0;
7867 	cp->extra_bytes		= 0;
7868 
7869 	/*
7870 	 *  extreme data pointer.
7871 	 *  shall be positive, so -1 is lower than lowest.:)
7872 	 */
7873 	cp->ext_sg  = -1;
7874 	cp->ext_ofs = 0;
7875 
7876 	/*
7877 	 *  Build the data descriptor block
7878 	 *  and start the IO.
7879 	 */
7880 	sym_setup_data_and_start(np, csio, cp);
7881 }
7882 
7883 /*
7884  *  Setup buffers and pointers that address the CDB.
7885  *  I bet, physical CDBs will never be used on the planet,
7886  *  since they can be bounced without significant overhead.
7887  */
7888 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7889 {
7890 	struct ccb_hdr *ccb_h;
7891 	u32	cmd_ba;
7892 	int	cmd_len;
7893 
7894 	ccb_h = &csio->ccb_h;
7895 
7896 	/*
7897 	 *  CDB is 16 bytes max.
7898 	 */
7899 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7900 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7901 		return -1;
7902 	}
7903 	cmd_len = csio->cdb_len;
7904 
7905 	if (ccb_h->flags & CAM_CDB_POINTER) {
7906 		/* CDB is a pointer */
7907 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7908 			/* CDB pointer is virtual */
7909 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7910 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7911 		} else {
7912 			/* CDB pointer is physical */
7913 #if 0
7914 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7915 #else
7916 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7917 			return -1;
7918 #endif
7919 		}
7920 	} else {
7921 		/* CDB is in the CAM ccb (buffer) */
7922 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7923 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7924 	}
7925 
7926 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7927 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7928 
7929 	return 0;
7930 }
7931 
7932 /*
7933  *  Set up data pointers used by SCRIPTS.
7934  */
7935 static void __inline
7936 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7937 {
7938 	u32 lastp, goalp;
7939 
7940 	/*
7941 	 *  No segments means no data.
7942 	 */
7943 	if (!cp->segments)
7944 		dir = CAM_DIR_NONE;
7945 
7946 	/*
7947 	 *  Set the data pointer.
7948 	 */
7949 	switch(dir) {
7950 	case CAM_DIR_OUT:
7951 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7952 		lastp = goalp - 8 - (cp->segments * (2*4));
7953 		break;
7954 	case CAM_DIR_IN:
7955 		cp->host_flags |= HF_DATA_IN;
7956 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7957 		lastp = goalp - 8 - (cp->segments * (2*4));
7958 		break;
7959 	case CAM_DIR_NONE:
7960 	default:
7961 		lastp = goalp = SCRIPTB_BA (np, no_data);
7962 		break;
7963 	}
7964 
7965 	cp->phys.head.lastp = cpu_to_scr(lastp);
7966 	cp->phys.head.goalp = cpu_to_scr(goalp);
7967 	cp->phys.head.savep = cpu_to_scr(lastp);
7968 	cp->startp	    = cp->phys.head.savep;
7969 }
7970 
7971 
7972 #ifdef	FreeBSD_Bus_Dma_Abstraction
7973 /*
7974  *  Call back routine for the DMA map service.
7975  *  If bounce buffers are used (why ?), we may sleep and then
7976  *  be called there in another context.
7977  */
7978 static void
7979 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7980 {
7981 	ccb_p	cp;
7982 	hcb_p	np;
7983 	union	ccb *ccb;
7984 
7985 	crit_enter();
7986 
7987 	cp  = (ccb_p) arg;
7988 	ccb = cp->cam_ccb;
7989 	np  = (hcb_p) cp->arg;
7990 
7991 	/*
7992 	 *  Deal with weird races.
7993 	 */
7994 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7995 		goto out_abort;
7996 
7997 	/*
7998 	 *  Deal with weird errors.
7999 	 */
8000 	if (error) {
8001 		cp->dmamapped = 0;
8002 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
8003 		goto out_abort;
8004 	}
8005 
8006 	/*
8007 	 *  Build the data descriptor for the chip.
8008 	 */
8009 	if (nsegs) {
8010 		int retv;
8011 		/* 896 rev 1 requires to be careful about boundaries */
8012 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
8013 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
8014 		else
8015 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
8016 		if (retv < 0) {
8017 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
8018 			goto out_abort;
8019 		}
8020 	}
8021 
8022 	/*
8023 	 *  Synchronize the DMA map only if we have
8024 	 *  actually mapped the data.
8025 	 */
8026 	if (cp->dmamapped) {
8027 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
8028 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
8029 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
8030 	}
8031 
8032 	/*
8033 	 *  Set host status to busy state.
8034 	 *  May have been set back to HS_WAIT to avoid a race.
8035 	 */
8036 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
8037 
8038 	/*
8039 	 *  Set data pointers.
8040 	 */
8041 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
8042 
8043 	/*
8044 	 *  Enqueue this IO in our pending queue.
8045 	 */
8046 	sym_enqueue_cam_ccb(np, ccb);
8047 
8048 	/*
8049 	 *  When `#ifed 1', the code below makes the driver
8050 	 *  panic on the first attempt to write to a SCSI device.
8051 	 *  It is the first test we want to do after a driver
8052 	 *  change that does not seem obviously safe. :)
8053 	 */
8054 #if 0
8055 	switch (cp->cdb_buf[0]) {
8056 	case 0x0A: case 0x2A: case 0xAA:
8057 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
8058 		MDELAY(10000);
8059 		break;
8060 	default:
8061 		break;
8062 	}
8063 #endif
8064 	/*
8065 	 *  Activate this job.
8066 	 */
8067 	sym_put_start_queue(np, cp);
8068 out:
8069 	crit_exit();
8070 	return;
8071 out_abort:
8072 	sym_free_ccb(np, cp);
8073 	sym_xpt_done(np, ccb);
8074 	goto out;
8075 }
8076 
8077 /*
8078  *  How complex it gets to deal with the data in CAM.
8079  *  The Bus Dma stuff makes things still more complex.
8080  */
8081 static void
8082 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8083 {
8084 	struct ccb_hdr *ccb_h;
8085 	int dir, retv;
8086 
8087 	ccb_h = &csio->ccb_h;
8088 
8089 	/*
8090 	 *  Now deal with the data.
8091 	 */
8092 	cp->data_len = csio->dxfer_len;
8093 	cp->arg      = np;
8094 
8095 	/*
8096 	 *  No direction means no data.
8097 	 */
8098 	dir = (ccb_h->flags & CAM_DIR_MASK);
8099 	if (dir == CAM_DIR_NONE) {
8100 		sym_execute_ccb(cp, NULL, 0, 0);
8101 		return;
8102 	}
8103 
8104 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8105 		/* Single buffer */
8106 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8107 			/* Buffer is virtual */
8108 			cp->dmamapped = (dir == CAM_DIR_IN) ?
8109 						SYM_DMA_READ : SYM_DMA_WRITE;
8110 			crit_enter();
8111 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
8112 					       csio->data_ptr, csio->dxfer_len,
8113 					       sym_execute_ccb, cp, 0);
8114 			if (retv == EINPROGRESS) {
8115 				cp->host_status	= HS_WAIT;
8116 				xpt_freeze_simq(np->sim, 1);
8117 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
8118 			}
8119 			crit_exit();
8120 		} else {
8121 			/* Buffer is physical */
8122 			struct bus_dma_segment seg;
8123 
8124 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
8125 			sym_execute_ccb(cp, &seg, 1, 0);
8126 		}
8127 	} else {
8128 		/* Scatter/gather list */
8129 		struct bus_dma_segment *segs;
8130 
8131 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8132 			/* The SG list pointer is physical */
8133 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8134 			goto out_abort;
8135 		}
8136 
8137 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8138 			/* SG buffer pointers are virtual */
8139 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8140 			goto out_abort;
8141 		}
8142 
8143 		/* SG buffer pointers are physical */
8144 		segs  = (struct bus_dma_segment *)csio->data_ptr;
8145 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
8146 	}
8147 	return;
8148 out_abort:
8149 	sym_free_ccb(np, cp);
8150 	sym_xpt_done(np, (union ccb *) csio);
8151 }
8152 
8153 /*
8154  *  Move the scatter list to our data block.
8155  */
8156 static int
8157 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
8158 			     bus_dma_segment_t *psegs, int nsegs)
8159 {
8160 	struct sym_tblmove *data;
8161 	bus_dma_segment_t *psegs2;
8162 
8163 	if (nsegs > SYM_CONF_MAX_SG)
8164 		return -1;
8165 
8166 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
8167 	psegs2 = &psegs[nsegs-1];
8168 	cp->segments = nsegs;
8169 
8170 	while (1) {
8171 		data->addr = cpu_to_scr(psegs2->ds_addr);
8172 		data->size = cpu_to_scr(psegs2->ds_len);
8173 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8174 			printf ("%s scatter: paddr=%lx len=%ld\n",
8175 				sym_name(np), (long) psegs2->ds_addr,
8176 				(long) psegs2->ds_len);
8177 		}
8178 		if (psegs2 != psegs) {
8179 			--data;
8180 			--psegs2;
8181 			continue;
8182 		}
8183 		break;
8184 	}
8185 	return 0;
8186 }
8187 
8188 #else	/* FreeBSD_Bus_Dma_Abstraction */
8189 
8190 /*
8191  *  How complex it gets to deal with the data in CAM.
8192  *  Variant without the Bus Dma Abstraction option.
8193  */
8194 static void
8195 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8196 {
8197 	struct ccb_hdr *ccb_h;
8198 	int dir, retv;
8199 
8200 	ccb_h = &csio->ccb_h;
8201 
8202 	/*
8203 	 *  Now deal with the data.
8204 	 */
8205 	cp->data_len = 0;
8206 	cp->segments = 0;
8207 
8208 	/*
8209 	 *  No direction means no data.
8210 	 */
8211 	dir = (ccb_h->flags & CAM_DIR_MASK);
8212 	if (dir == CAM_DIR_NONE)
8213 		goto end_scatter;
8214 
8215 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8216 		/* Single buffer */
8217 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8218 			/* Buffer is virtual */
8219 			retv = sym_scatter_virtual(np, cp,
8220 						(vm_offset_t) csio->data_ptr,
8221 						(vm_size_t) csio->dxfer_len);
8222 		} else {
8223 			/* Buffer is physical */
8224 			retv = sym_scatter_physical(np, cp,
8225 						(vm_offset_t) csio->data_ptr,
8226 						(vm_size_t) csio->dxfer_len);
8227 		}
8228 	} else {
8229 		/* Scatter/gather list */
8230 		int nsegs;
8231 		struct bus_dma_segment *segs;
8232 		segs  = (struct bus_dma_segment *)csio->data_ptr;
8233 		nsegs = csio->sglist_cnt;
8234 
8235 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8236 			/* The SG list pointer is physical */
8237 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8238 			goto out_abort;
8239 		}
8240 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8241 			/* SG buffer pointers are virtual */
8242 			retv = sym_scatter_sg_virtual(np, cp, segs, nsegs);
8243 		} else {
8244 			/* SG buffer pointers are physical */
8245 			retv = sym_scatter_sg_physical(np, cp, segs, nsegs);
8246 		}
8247 	}
8248 	if (retv < 0) {
8249 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
8250 		goto out_abort;
8251 	}
8252 
8253 end_scatter:
8254 	/*
8255 	 *  Set data pointers.
8256 	 */
8257 	sym_setup_data_pointers(np, cp, dir);
8258 
8259 	/*
8260 	 *  Enqueue this IO in our pending queue.
8261 	 */
8262 	sym_enqueue_cam_ccb(np, (union ccb *) csio);
8263 
8264 	/*
8265 	 *  Activate this job.
8266 	 */
8267 	sym_put_start_queue(np, cp);
8268 
8269 	/*
8270 	 *  Command is successfully queued.
8271 	 */
8272 	return;
8273 out_abort:
8274 	sym_free_ccb(np, cp);
8275 	sym_xpt_done(np, (union ccb *) csio);
8276 }
8277 
8278 /*
8279  *  Scatter a virtual buffer into bus addressable chunks.
8280  */
8281 static int
8282 sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
8283 {
8284 	u_long	pe, pn;
8285 	u_long	n, k;
8286 	int s;
8287 
8288 	cp->data_len += len;
8289 
8290 	pe = vaddr + len;
8291 	n  = len;
8292 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8293 
8294 	while (n && s >= 0) {
8295 		pn = (pe - 1) & ~PAGE_MASK;
8296 		k = pe - pn;
8297 		if (k > n) {
8298 			k  = n;
8299 			pn = pe - n;
8300 		}
8301 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8302 			printf ("%s scatter: va=%lx pa=%lx siz=%ld\n",
8303 				sym_name(np), pn, (u_long) vtobus(pn), k);
8304 		}
8305 		cp->phys.data[s].addr = cpu_to_scr(vtobus(pn));
8306 		cp->phys.data[s].size = cpu_to_scr(k);
8307 		pe = pn;
8308 		n -= k;
8309 		--s;
8310 	}
8311 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8312 
8313 	return n ? -1 : 0;
8314 }
8315 
8316 /*
8317  *  Scatter a SG list with virtual addresses into bus addressable chunks.
8318  */
8319 static int
8320 sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8321 {
8322 	int i, retv = 0;
8323 
8324 	for (i = nsegs - 1 ;  i >= 0 ; --i) {
8325 		retv = sym_scatter_virtual(np, cp,
8326 					   psegs[i].ds_addr, psegs[i].ds_len);
8327 		if (retv < 0)
8328 			break;
8329 	}
8330 	return retv;
8331 }
8332 
8333 /*
8334  *  Scatter a physical buffer into bus addressable chunks.
8335  */
8336 static int
8337 sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len)
8338 {
8339 	struct bus_dma_segment seg;
8340 
8341 	seg.ds_addr = paddr;
8342 	seg.ds_len  = len;
8343 	return sym_scatter_sg_physical(np, cp, &seg, 1);
8344 }
8345 
8346 #endif	/* FreeBSD_Bus_Dma_Abstraction */
8347 
8348 /*
8349  *  Scatter a SG list with physical addresses into bus addressable chunks.
8350  *  We need to ensure 16MB boundaries not to be crossed during DMA of
8351  *  each segment, due to some chips being flawed.
8352  */
8353 #define BOUND_MASK ((1UL<<24)-1)
8354 static int
8355 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8356 {
8357 	u_long	ps, pe, pn;
8358 	u_long	k;
8359 	int s, t;
8360 
8361 #ifndef	FreeBSD_Bus_Dma_Abstraction
8362 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8363 #else
8364 	s  = SYM_CONF_MAX_SG - 1;
8365 #endif
8366 	t  = nsegs - 1;
8367 	ps = psegs[t].ds_addr;
8368 	pe = ps + psegs[t].ds_len;
8369 
8370 	while (s >= 0) {
8371 		pn = (pe - 1) & ~BOUND_MASK;
8372 		if (pn <= ps)
8373 			pn = ps;
8374 		k = pe - pn;
8375 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8376 			printf ("%s scatter: paddr=%lx len=%ld\n",
8377 				sym_name(np), pn, k);
8378 		}
8379 		cp->phys.data[s].addr = cpu_to_scr(pn);
8380 		cp->phys.data[s].size = cpu_to_scr(k);
8381 #ifndef	FreeBSD_Bus_Dma_Abstraction
8382 		cp->data_len += k;
8383 #endif
8384 		--s;
8385 		if (pn == ps) {
8386 			if (--t < 0)
8387 				break;
8388 			ps = psegs[t].ds_addr;
8389 			pe = ps + psegs[t].ds_len;
8390 		}
8391 		else
8392 			pe = pn;
8393 	}
8394 
8395 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8396 
8397 	return t >= 0 ? -1 : 0;
8398 }
8399 #undef BOUND_MASK
8400 
8401 /*
8402  *  SIM action for non performance critical stuff.
8403  */
8404 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8405 {
8406 	hcb_p	np;
8407 	tcb_p	tp;
8408 	lcb_p	lp;
8409 	struct	ccb_hdr  *ccb_h;
8410 
8411 	/*
8412 	 *  Retrieve our controller data structure.
8413 	 */
8414 	np = (hcb_p) cam_sim_softc(sim);
8415 
8416 	ccb_h = &ccb->ccb_h;
8417 
8418 	switch (ccb_h->func_code) {
8419 	case XPT_SET_TRAN_SETTINGS:
8420 	{
8421 		struct ccb_trans_settings *cts;
8422 
8423 		cts  = &ccb->cts;
8424 		tp = &np->target[ccb_h->target_id];
8425 
8426 		/*
8427 		 *  Update SPI transport settings in TARGET control block.
8428 		 *  Update SCSI device settings in LUN control block.
8429 		 */
8430 		lp = sym_lp(np, tp, ccb_h->target_lun);
8431 #ifdef	FreeBSD_New_Tran_Settings
8432 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8433 #else
8434 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
8435 #endif
8436 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8437 			if (lp)
8438 				sym_update_dflags(np, &lp->current_flags, cts);
8439 		}
8440 #ifdef	FreeBSD_New_Tran_Settings
8441 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8442 #else
8443 		if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
8444 #endif
8445 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8446 			if (lp)
8447 				sym_update_dflags(np, &lp->user_flags, cts);
8448 		}
8449 
8450 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8451 		break;
8452 	}
8453 	case XPT_GET_TRAN_SETTINGS:
8454 	{
8455 		struct ccb_trans_settings *cts;
8456 		struct sym_trans *tip;
8457 		u_char dflags;
8458 
8459 		cts = &ccb->cts;
8460 		tp = &np->target[ccb_h->target_id];
8461 		lp = sym_lp(np, tp, ccb_h->target_lun);
8462 
8463 #ifdef	FreeBSD_New_Tran_Settings
8464 #define	cts__scsi (&cts->proto_specific.scsi)
8465 #define	cts__spi  (&cts->xport_specific.spi)
8466 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8467 			tip = &tp->tinfo.current;
8468 			dflags = lp ? lp->current_flags : 0;
8469 		}
8470 		else {
8471 			tip = &tp->tinfo.user;
8472 			dflags = lp ? lp->user_flags : tp->usrflags;
8473 		}
8474 
8475 		cts->protocol  = PROTO_SCSI;
8476 		cts->transport = XPORT_SPI;
8477 		cts->protocol_version  = tip->scsi_version;
8478 		cts->transport_version = tip->spi_version;
8479 
8480 		cts__spi->sync_period = tip->period;
8481 		cts__spi->sync_offset = tip->offset;
8482 		cts__spi->bus_width   = tip->width;
8483 		cts__spi->ppr_options = tip->options;
8484 
8485 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8486 		                | CTS_SPI_VALID_SYNC_OFFSET
8487 		                | CTS_SPI_VALID_BUS_WIDTH
8488 		                | CTS_SPI_VALID_PPR_OPTIONS;
8489 
8490 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8491 		if (dflags & SYM_DISC_ENABLED)
8492 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8493 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8494 
8495 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8496 		if (dflags & SYM_TAGS_ENABLED)
8497 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8498 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8499 #undef	cts__spi
8500 #undef	cts__scsi
8501 #else
8502 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
8503 			tip = &tp->tinfo.current;
8504 			dflags = lp ? lp->current_flags : 0;
8505 		}
8506 		else {
8507 			tip = &tp->tinfo.user;
8508 			dflags = lp ? lp->user_flags : tp->usrflags;
8509 		}
8510 
8511 		cts->sync_period = tip->period;
8512 		cts->sync_offset = tip->offset;
8513 		cts->bus_width   = tip->width;
8514 
8515 		cts->valid = CCB_TRANS_SYNC_RATE_VALID
8516 			   | CCB_TRANS_SYNC_OFFSET_VALID
8517 			   | CCB_TRANS_BUS_WIDTH_VALID;
8518 
8519 		cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
8520 
8521 		if (dflags & SYM_DISC_ENABLED)
8522 			cts->flags |= CCB_TRANS_DISC_ENB;
8523 
8524 		if (dflags & SYM_TAGS_ENABLED)
8525 			cts->flags |= CCB_TRANS_TAG_ENB;
8526 
8527 		cts->valid |= CCB_TRANS_DISC_VALID;
8528 		cts->valid |= CCB_TRANS_TQ_VALID;
8529 #endif
8530 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8531 		break;
8532 	}
8533 	case XPT_CALC_GEOMETRY:
8534 	{
8535 		struct ccb_calc_geometry *ccg;
8536 		u32 size_mb;
8537 		u32 secs_per_cylinder;
8538 		int extended;
8539 
8540 		/*
8541 		 *  Silly DOS geometry.
8542 		 */
8543 		ccg = &ccb->ccg;
8544 		size_mb = ccg->volume_size
8545 			/ ((1024L * 1024L) / ccg->block_size);
8546 		extended = 1;
8547 
8548 		if (size_mb > 1024 && extended) {
8549 			ccg->heads = 255;
8550 			ccg->secs_per_track = 63;
8551 		} else {
8552 			ccg->heads = 64;
8553 			ccg->secs_per_track = 32;
8554 		}
8555 		secs_per_cylinder = ccg->heads * ccg->secs_per_track;
8556 		ccg->cylinders = ccg->volume_size / secs_per_cylinder;
8557 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8558 		break;
8559 	}
8560 	case XPT_PATH_INQ:
8561 	{
8562 		struct ccb_pathinq *cpi = &ccb->cpi;
8563 		cpi->version_num = 1;
8564 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8565 		if ((np->features & FE_WIDE) != 0)
8566 			cpi->hba_inquiry |= PI_WIDE_16;
8567 		cpi->target_sprt = 0;
8568 		cpi->hba_misc = 0;
8569 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8570 			cpi->hba_misc |= PIM_SCANHILO;
8571 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8572 			cpi->hba_misc |= PIM_NOBUSRESET;
8573 		cpi->hba_eng_cnt = 0;
8574 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8575 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8576 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8577 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8578 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8579 		cpi->bus_id = cam_sim_bus(sim);
8580 		cpi->initiator_id = np->myaddr;
8581 		cpi->base_transfer_speed = 3300;
8582 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8583 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8584 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8585 		cpi->unit_number = cam_sim_unit(sim);
8586 
8587 #ifdef	FreeBSD_New_Tran_Settings
8588 		cpi->protocol = PROTO_SCSI;
8589 		cpi->protocol_version = SCSI_REV_2;
8590 		cpi->transport = XPORT_SPI;
8591 		cpi->transport_version = 2;
8592 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8593 		if (np->features & FE_ULTRA3) {
8594 			cpi->transport_version = 3;
8595 			cpi->xport_specific.spi.ppr_options =
8596 			    SID_SPI_CLOCK_DT_ST;
8597 		}
8598 #endif
8599 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8600 		break;
8601 	}
8602 	case XPT_ABORT:
8603 	{
8604 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8605 		switch(abort_ccb->ccb_h.func_code) {
8606 		case XPT_SCSI_IO:
8607 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8608 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8609 				break;
8610 			}
8611 		default:
8612 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8613 			break;
8614 		}
8615 		break;
8616 	}
8617 	case XPT_RESET_DEV:
8618 	{
8619 		sym_reset_dev(np, ccb);
8620 		break;
8621 	}
8622 	case XPT_RESET_BUS:
8623 	{
8624 		sym_reset_scsi_bus(np, 0);
8625 		if (sym_verbose) {
8626 			xpt_print_path(np->path);
8627 			printf("SCSI BUS reset delivered.\n");
8628 		}
8629 		sym_init (np, 1);
8630 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8631 		break;
8632 	}
8633 	case XPT_ACCEPT_TARGET_IO:
8634 	case XPT_CONT_TARGET_IO:
8635 	case XPT_EN_LUN:
8636 	case XPT_NOTIFY_ACK:
8637 	case XPT_IMMED_NOTIFY:
8638 	case XPT_TERM_IO:
8639 	default:
8640 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8641 		break;
8642 	}
8643 }
8644 
8645 /*
8646  *  Asynchronous notification handler.
8647  */
8648 static void
8649 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8650 {
8651 	hcb_p np;
8652 	struct cam_sim *sim;
8653 	u_int tn;
8654 	tcb_p tp;
8655 
8656 	crit_enter();
8657 
8658 	sim = (struct cam_sim *) cb_arg;
8659 	np  = (hcb_p) cam_sim_softc(sim);
8660 
8661 	switch (code) {
8662 	case AC_LOST_DEVICE:
8663 		tn = xpt_path_target_id(path);
8664 		if (tn >= SYM_CONF_MAX_TARGET)
8665 			break;
8666 
8667 		tp = &np->target[tn];
8668 
8669 		tp->to_reset  = 0;
8670 		tp->head.sval = 0;
8671 		tp->head.wval = np->rv_scntl3;
8672 		tp->head.uval = 0;
8673 
8674 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8675 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8676 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8677 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8678 
8679 		break;
8680 	default:
8681 		break;
8682 	}
8683 
8684 	crit_exit();
8685 }
8686 
8687 /*
8688  *  Update transfer settings of a target.
8689  */
8690 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8691 			    struct ccb_trans_settings *cts)
8692 {
8693 	/*
8694 	 *  Update the infos.
8695 	 */
8696 #ifdef	FreeBSD_New_Tran_Settings
8697 #define cts__spi (&cts->xport_specific.spi)
8698 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8699 		tip->width = cts__spi->bus_width;
8700 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8701 		tip->offset = cts__spi->sync_offset;
8702 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8703 		tip->period = cts__spi->sync_period;
8704 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8705 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8706 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8707 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8708 		tip->scsi_version = cts->protocol_version;
8709 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8710 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8711 		tip->spi_version = cts->transport_version;
8712 #undef cts__spi
8713 #else
8714 	if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
8715 		tip->width = cts->bus_width;
8716 	if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
8717 		tip->offset = cts->sync_offset;
8718 	if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
8719 		tip->period = cts->sync_period;
8720 #endif
8721 	/*
8722 	 *  Scale against driver configuration limits.
8723 	 */
8724 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8725 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8726 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8727 
8728 	/*
8729 	 *  Scale against actual controller BUS width.
8730 	 */
8731 	if (tip->width > np->maxwide)
8732 		tip->width  = np->maxwide;
8733 
8734 #ifdef	FreeBSD_New_Tran_Settings
8735 	/*
8736 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8737 	 */
8738 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8739 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8740 		tip->options &= ~PPR_OPT_DT;
8741 	}
8742 #else
8743 	/*
8744 	 *  For now, only assume DT if period <= 9, BUS 16 and offset != 0.
8745 	 */
8746 	tip->options = 0;
8747 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) &&
8748 	    tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) {
8749 		tip->options |= PPR_OPT_DT;
8750 	}
8751 #endif
8752 
8753 	/*
8754 	 *  Scale period factor and offset against controller limits.
8755 	 */
8756 	if (tip->options & PPR_OPT_DT) {
8757 		if (tip->period < np->minsync_dt)
8758 			tip->period = np->minsync_dt;
8759 		if (tip->period > np->maxsync_dt)
8760 			tip->period = np->maxsync_dt;
8761 		if (tip->offset > np->maxoffs_dt)
8762 			tip->offset = np->maxoffs_dt;
8763 	}
8764 	else {
8765 		if (tip->period < np->minsync)
8766 			tip->period = np->minsync;
8767 		if (tip->period > np->maxsync)
8768 			tip->period = np->maxsync;
8769 		if (tip->offset > np->maxoffs)
8770 			tip->offset = np->maxoffs;
8771 	}
8772 }
8773 
8774 /*
8775  *  Update flags for a device (logical unit).
8776  */
8777 static void
8778 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8779 {
8780 #ifdef	FreeBSD_New_Tran_Settings
8781 #define	cts__scsi (&cts->proto_specific.scsi)
8782 #define	cts__spi  (&cts->xport_specific.spi)
8783 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8784 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8785 			*flags |= SYM_DISC_ENABLED;
8786 		else
8787 			*flags &= ~SYM_DISC_ENABLED;
8788 	}
8789 
8790 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8791 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8792 			*flags |= SYM_TAGS_ENABLED;
8793 		else
8794 			*flags &= ~SYM_TAGS_ENABLED;
8795 	}
8796 #undef	cts__spi
8797 #undef	cts__scsi
8798 #else
8799 	if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
8800 		if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
8801 			*flags |= SYM_DISC_ENABLED;
8802 		else
8803 			*flags &= ~SYM_DISC_ENABLED;
8804 	}
8805 
8806 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
8807 		if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
8808 			*flags |= SYM_TAGS_ENABLED;
8809 		else
8810 			*flags &= ~SYM_TAGS_ENABLED;
8811 	}
8812 #endif
8813 }
8814 
8815 
8816 /*============= DRIVER INITIALISATION ==================*/
8817 
8818 #ifdef FreeBSD_Bus_Io_Abstraction
8819 
8820 static device_method_t sym_pci_methods[] = {
8821 	DEVMETHOD(device_probe,	 sym_pci_probe),
8822 	DEVMETHOD(device_attach, sym_pci_attach),
8823 	{ 0, 0 }
8824 };
8825 
8826 static driver_t sym_pci_driver = {
8827 	"sym",
8828 	sym_pci_methods,
8829 	sizeof(struct sym_hcb)
8830 };
8831 
8832 static devclass_t sym_devclass;
8833 
8834 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
8835 
8836 #else	/* Pre-FreeBSD_Bus_Io_Abstraction */
8837 
8838 static u_long sym_unit;
8839 
8840 static struct	pci_device sym_pci_driver = {
8841 	"sym",
8842 	sym_pci_probe,
8843 	sym_pci_attach,
8844 	&sym_unit,
8845 	NULL
8846 };
8847 
8848 #if 	defined(__DragonFly__) || __FreeBSD_version >= 400000
8849 COMPAT_PCI_DRIVER (sym, sym_pci_driver);
8850 #else
8851 DATA_SET (pcidevice_set, sym_pci_driver);
8852 #endif
8853 
8854 #endif /* FreeBSD_Bus_Io_Abstraction */
8855 
8856 static struct sym_pci_chip sym_pci_dev_table[] = {
8857  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8858  FE_ERL}
8859  ,
8860 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8861  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8862  FE_BOF}
8863  ,
8864 #else
8865  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8866  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8867  ,
8868 #endif
8869  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8870  FE_BOF|FE_ERL}
8871  ,
8872  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8873  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8874  ,
8875  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8876  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8877  ,
8878  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8879  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8880  ,
8881  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8882  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8883  FE_RAM|FE_DIFF}
8884  ,
8885  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8886  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8887  FE_RAM|FE_DIFF}
8888  ,
8889  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8890  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8891  FE_RAM|FE_DIFF}
8892  ,
8893  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8894  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8895  FE_RAM|FE_DIFF}
8896  ,
8897 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8898  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8899  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8900  FE_RAM|FE_LCKFRQ}
8901  ,
8902 #else
8903  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8904  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8905  FE_RAM|FE_LCKFRQ}
8906  ,
8907 #endif
8908  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8909  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8910  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8911  ,
8912  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8913  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8914  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8915  ,
8916  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8917  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8918  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8919  FE_C10}
8920  ,
8921  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8922  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8923  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8924  FE_C10|FE_U3EN}
8925  ,
8926  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8927  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8928  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8929  FE_C10|FE_U3EN}
8930  ,
8931  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8932  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8933  FE_RAM|FE_IO256|FE_LEDC}
8934 };
8935 
8936 #define sym_pci_num_devs \
8937 	(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
8938 
8939 /*
8940  *  Look up the chip table.
8941  *
8942  *  Return a pointer to the chip entry if found,
8943  *  zero otherwise.
8944  */
8945 static struct sym_pci_chip *
8946 #ifdef FreeBSD_Bus_Io_Abstraction
8947 sym_find_pci_chip(device_t dev)
8948 #else
8949 sym_find_pci_chip(pcici_t pci_tag)
8950 #endif
8951 {
8952 	struct	sym_pci_chip *chip;
8953 	int	i;
8954 	u_short	device_id;
8955 	u_char	revision;
8956 
8957 #ifdef FreeBSD_Bus_Io_Abstraction
8958 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8959 		return 0;
8960 
8961 	device_id = pci_get_device(dev);
8962 	revision  = pci_get_revid(dev);
8963 #else
8964 	if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR)
8965 		return 0;
8966 
8967 	device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
8968 	revision  = pci_cfgread(pci_tag, PCIR_REVID,  1);
8969 #endif
8970 
8971 	for (i = 0; i < sym_pci_num_devs; i++) {
8972 		chip = &sym_pci_dev_table[i];
8973 		if (device_id != chip->device_id)
8974 			continue;
8975 		if (revision > chip->revision_id)
8976 			continue;
8977 		return chip;
8978 	}
8979 
8980 	return 0;
8981 }
8982 
8983 /*
8984  *  Tell upper layer if the chip is supported.
8985  */
8986 #ifdef FreeBSD_Bus_Io_Abstraction
8987 static int
8988 sym_pci_probe(device_t dev)
8989 {
8990 	struct	sym_pci_chip *chip;
8991 
8992 	chip = sym_find_pci_chip(dev);
8993 	if (chip && sym_find_firmware(chip)) {
8994 		device_set_desc(dev, chip->name);
8995 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0;
8996 	}
8997 	return ENXIO;
8998 }
8999 #else /* Pre-FreeBSD_Bus_Io_Abstraction */
9000 static const char *
9001 sym_pci_probe(pcici_t pci_tag, pcidi_t type)
9002 {
9003 	struct	sym_pci_chip *chip;
9004 
9005 	chip = sym_find_pci_chip(pci_tag);
9006 	if (chip && sym_find_firmware(chip)) {
9007 #if NNCR > 0
9008 	/* Only claim chips we are allowed to take precedence over the ncr */
9009 	if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP))
9010 #else
9011 	if (1)
9012 #endif
9013 		return chip->name;
9014 	}
9015 	return 0;
9016 }
9017 #endif
9018 
9019 /*
9020  *  Attach a sym53c8xx device.
9021  */
9022 #ifdef FreeBSD_Bus_Io_Abstraction
9023 static int
9024 sym_pci_attach(device_t dev)
9025 #else
9026 static void
9027 sym_pci_attach(pcici_t pci_tag, int unit)
9028 {
9029 	int err = sym_pci_attach2(pci_tag, unit);
9030 	if (err)
9031 		printf("sym: failed to attach unit %d - err=%d.\n", unit, err);
9032 }
9033 static int
9034 sym_pci_attach2(pcici_t pci_tag, int unit)
9035 #endif
9036 {
9037 	struct	sym_pci_chip *chip;
9038 	u_short	command;
9039 	u_char	cachelnsz;
9040 	struct	sym_hcb *np = 0;
9041 	struct	sym_nvram nvram;
9042 	struct	sym_fw *fw = 0;
9043 	int 	i;
9044 #ifdef	FreeBSD_Bus_Dma_Abstraction
9045 	bus_dma_tag_t	bus_dmat;
9046 
9047 	/*
9048 	 *  I expected to be told about a parent
9049 	 *  DMA tag, but didn't find any.
9050 	 */
9051 	bus_dmat = NULL;
9052 #endif
9053 
9054 	/*
9055 	 *  Only probed devices should be attached.
9056 	 *  We just enjoy being paranoid. :)
9057 	 */
9058 #ifdef FreeBSD_Bus_Io_Abstraction
9059 	chip = sym_find_pci_chip(dev);
9060 #else
9061 	chip = sym_find_pci_chip(pci_tag);
9062 #endif
9063 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
9064 		return (ENXIO);
9065 
9066 	/*
9067 	 *  Allocate immediately the host control block,
9068 	 *  since we are only expecting to succeed. :)
9069 	 *  We keep track in the HCB of all the resources that
9070 	 *  are to be released on error.
9071 	 */
9072 #ifdef	FreeBSD_Bus_Dma_Abstraction
9073 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
9074 	if (np)
9075 		np->bus_dmat = bus_dmat;
9076 	else
9077 		goto attach_failed;
9078 #else
9079 	np = sym_calloc_dma(sizeof(*np), "HCB");
9080 	if (!np)
9081 		goto attach_failed;
9082 #endif
9083 
9084 	/*
9085 	 *  Copy some useful infos to the HCB.
9086 	 */
9087 	np->hcb_ba	 = vtobus(np);
9088 	np->verbose	 = bootverbose;
9089 #ifdef FreeBSD_Bus_Io_Abstraction
9090 	np->device	 = dev;
9091 	np->unit	 = device_get_unit(dev);
9092 	np->device_id	 = pci_get_device(dev);
9093 	np->revision_id  = pci_get_revid(dev);
9094 #else
9095 	np->pci_tag	 = pci_tag;
9096 	np->unit	 = unit;
9097 	np->device_id	 = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
9098 	np->revision_id  = pci_cfgread(pci_tag, PCIR_REVID,  1);
9099 #endif
9100 	np->features	 = chip->features;
9101 	np->clock_divn	 = chip->nr_divisor;
9102 	np->maxoffs	 = chip->offset_max;
9103 	np->maxburst	 = chip->burst_max;
9104 	np->scripta_sz	 = fw->a_size;
9105 	np->scriptb_sz	 = fw->b_size;
9106 	np->fw_setup	 = fw->setup;
9107 	np->fw_patch	 = fw->patch;
9108 	np->fw_name	 = fw->name;
9109 
9110 	/*
9111 	 * Edit its name.
9112 	 */
9113 	snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
9114 
9115 	/*
9116 	 *  Initialyze the CCB free and busy queues.
9117 	 */
9118 	sym_que_init(&np->free_ccbq);
9119 	sym_que_init(&np->busy_ccbq);
9120 	sym_que_init(&np->comp_ccbq);
9121 	sym_que_init(&np->cam_ccbq);
9122 
9123 	/*
9124 	 *  Allocate a tag for the DMA of user data.
9125 	 */
9126 #ifdef	FreeBSD_Bus_Dma_Abstraction
9127 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
9128 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
9129 				NULL, NULL,
9130 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
9131 				(1<<24), 0, &np->data_dmat)) {
9132 		device_printf(dev, "failed to create DMA tag.\n");
9133 		goto attach_failed;
9134 	}
9135 #endif
9136 	/*
9137 	 *  Read and apply some fix-ups to the PCI COMMAND
9138 	 *  register. We want the chip to be enabled for:
9139 	 *  - BUS mastering
9140 	 *  - PCI parity checking (reporting would also be fine)
9141 	 *  - Write And Invalidate.
9142 	 */
9143 #ifdef FreeBSD_Bus_Io_Abstraction
9144 	command = pci_read_config(dev, PCIR_COMMAND, 2);
9145 #else
9146 	command = pci_cfgread(pci_tag, PCIR_COMMAND, 2);
9147 #endif
9148 	command |= PCIM_CMD_BUSMASTEREN;
9149 	command |= PCIM_CMD_PERRESPEN;
9150 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
9151 #ifdef FreeBSD_Bus_Io_Abstraction
9152 	pci_write_config(dev, PCIR_COMMAND, command, 2);
9153 #else
9154 	pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2);
9155 #endif
9156 
9157 	/*
9158 	 *  Let the device know about the cache line size,
9159 	 *  if it doesn't yet.
9160 	 */
9161 #ifdef FreeBSD_Bus_Io_Abstraction
9162 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
9163 #else
9164 	cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1);
9165 #endif
9166 	if (!cachelnsz) {
9167 		cachelnsz = 8;
9168 #ifdef FreeBSD_Bus_Io_Abstraction
9169 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
9170 #else
9171 		pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1);
9172 #endif
9173 	}
9174 
9175 	/*
9176 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
9177 	 */
9178 #ifdef FreeBSD_Bus_Io_Abstraction
9179 	if ((command & PCIM_CMD_MEMEN) != 0) {
9180 		int regs_id = SYM_PCI_MMIO;
9181 		np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9182 						  0, ~0, 1, RF_ACTIVE);
9183 	}
9184 	if (!np->mmio_res) {
9185 		device_printf(dev, "failed to allocate MMIO resources\n");
9186 		goto attach_failed;
9187 	}
9188 	np->mmio_bsh = rman_get_bushandle(np->mmio_res);
9189 	np->mmio_tag = rman_get_bustag(np->mmio_res);
9190 	np->mmio_pa  = rman_get_start(np->mmio_res);
9191 	np->mmio_va  = (vm_offset_t) rman_get_virtual(np->mmio_res);
9192 	np->mmio_ba  = np->mmio_pa;
9193 #else
9194 	if ((command & PCIM_CMD_MEMEN) != 0) {
9195 		vm_offset_t vaddr, paddr;
9196 		if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) {
9197 			printf("%s: failed to map MMIO window\n", sym_name(np));
9198 			goto attach_failed;
9199 		}
9200 		np->mmio_va = vaddr;
9201 		np->mmio_pa = paddr;
9202 		np->mmio_ba = paddr;
9203 	}
9204 #endif
9205 
9206 	/*
9207 	 *  Allocate the IRQ.
9208 	 */
9209 #ifdef FreeBSD_Bus_Io_Abstraction
9210 	i = 0;
9211 	np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i,
9212 					 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
9213 	if (!np->irq_res) {
9214 		device_printf(dev, "failed to allocate IRQ resource\n");
9215 		goto attach_failed;
9216 	}
9217 #endif
9218 
9219 #ifdef	SYM_CONF_IOMAPPED
9220 	/*
9221 	 *  User want us to use normal IO with PCI.
9222 	 *  Alloc/get/map/retrieve everything that deals with IO.
9223 	 */
9224 #ifdef FreeBSD_Bus_Io_Abstraction
9225 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9226 		int regs_id = SYM_PCI_IO;
9227 		np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &regs_id,
9228 						0, ~0, 1, RF_ACTIVE);
9229 	}
9230 	if (!np->io_res) {
9231 		device_printf(dev, "failed to allocate IO resources\n");
9232 		goto attach_failed;
9233 	}
9234 	np->io_bsh  = rman_get_bushandle(np->io_res);
9235 	np->io_tag  = rman_get_bustag(np->io_res);
9236 	np->io_port = rman_get_start(np->io_res);
9237 #else
9238 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9239 		pci_port_t io_port;
9240 		if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) {
9241 			printf("%s: failed to map IO window\n", sym_name(np));
9242 			goto attach_failed;
9243 		}
9244 		np->io_port = io_port;
9245 	}
9246 #endif
9247 
9248 #endif /* SYM_CONF_IOMAPPED */
9249 
9250 	/*
9251 	 *  If the chip has RAM.
9252 	 *  Alloc/get/map/retrieve the corresponding resources.
9253 	 */
9254 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
9255 	    (command & PCIM_CMD_MEMEN) != 0) {
9256 #ifdef FreeBSD_Bus_Io_Abstraction
9257 		int regs_id = SYM_PCI_RAM;
9258 		if (np->features & FE_64BIT)
9259 			regs_id = SYM_PCI_RAM64;
9260 		np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9261 						 0, ~0, 1, RF_ACTIVE);
9262 		if (!np->ram_res) {
9263 			device_printf(dev,"failed to allocate RAM resources\n");
9264 			goto attach_failed;
9265 		}
9266 		np->ram_id  = regs_id;
9267 		np->ram_bsh = rman_get_bushandle(np->ram_res);
9268 		np->ram_tag = rman_get_bustag(np->ram_res);
9269 		np->ram_pa  = rman_get_start(np->ram_res);
9270 		np->ram_va  = (vm_offset_t) rman_get_virtual(np->ram_res);
9271 		np->ram_ba  = np->ram_pa;
9272 #else
9273 		vm_offset_t vaddr, paddr;
9274 		int regs_id = SYM_PCI_RAM;
9275 		if (np->features & FE_64BIT)
9276 			regs_id = SYM_PCI_RAM64;
9277 		if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) {
9278 			printf("%s: failed to map RAM window\n", sym_name(np));
9279 			goto attach_failed;
9280 		}
9281 		np->ram_va = vaddr;
9282 		np->ram_pa = paddr;
9283 		np->ram_ba = paddr;
9284 #endif
9285 	}
9286 
9287 	/*
9288 	 *  Save setting of some IO registers, so we will
9289 	 *  be able to probe specific implementations.
9290 	 */
9291 	sym_save_initial_setting (np);
9292 
9293 	/*
9294 	 *  Reset the chip now, since it has been reported
9295 	 *  that SCSI clock calibration may not work properly
9296 	 *  if the chip is currently active.
9297 	 */
9298 	sym_chip_reset (np);
9299 
9300 	/*
9301 	 *  Try to read the user set-up.
9302 	 */
9303 	(void) sym_read_nvram(np, &nvram);
9304 
9305 	/*
9306 	 *  Prepare controller and devices settings, according
9307 	 *  to chip features, user set-up and driver set-up.
9308 	 */
9309 	(void) sym_prepare_setting(np, &nvram);
9310 
9311 	/*
9312 	 *  Check the PCI clock frequency.
9313 	 *  Must be performed after prepare_setting since it destroys
9314 	 *  STEST1 that is used to probe for the clock doubler.
9315 	 */
9316 	i = sym_getpciclock(np);
9317 	if (i > 37000)
9318 #ifdef FreeBSD_Bus_Io_Abstraction
9319 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
9320 #else
9321 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
9322 			sym_name(np), i);
9323 #endif
9324 
9325 	/*
9326 	 *  Allocate the start queue.
9327 	 */
9328 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
9329 	if (!np->squeue)
9330 		goto attach_failed;
9331 	np->squeue_ba = vtobus(np->squeue);
9332 
9333 	/*
9334 	 *  Allocate the done queue.
9335 	 */
9336 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
9337 	if (!np->dqueue)
9338 		goto attach_failed;
9339 	np->dqueue_ba = vtobus(np->dqueue);
9340 
9341 	/*
9342 	 *  Allocate the target bus address array.
9343 	 */
9344 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
9345 	if (!np->targtbl)
9346 		goto attach_failed;
9347 	np->targtbl_ba = vtobus(np->targtbl);
9348 
9349 	/*
9350 	 *  Allocate SCRIPTS areas.
9351 	 */
9352 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
9353 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
9354 	if (!np->scripta0 || !np->scriptb0)
9355 		goto attach_failed;
9356 
9357 	/*
9358 	 *  Allocate some CCB. We need at least ONE.
9359 	 */
9360 	if (!sym_alloc_ccb(np))
9361 		goto attach_failed;
9362 
9363 	/*
9364 	 *  Calculate BUS addresses where we are going
9365 	 *  to load the SCRIPTS.
9366 	 */
9367 	np->scripta_ba	= vtobus(np->scripta0);
9368 	np->scriptb_ba	= vtobus(np->scriptb0);
9369 	np->scriptb0_ba	= np->scriptb_ba;
9370 
9371 	if (np->ram_ba) {
9372 		np->scripta_ba	= np->ram_ba;
9373 		if (np->features & FE_RAM8K) {
9374 			np->ram_ws = 8192;
9375 			np->scriptb_ba = np->scripta_ba + 4096;
9376 #if BITS_PER_LONG > 32
9377 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
9378 #endif
9379 		}
9380 		else
9381 			np->ram_ws = 4096;
9382 	}
9383 
9384 	/*
9385 	 *  Copy scripts to controller instance.
9386 	 */
9387 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
9388 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
9389 
9390 	/*
9391 	 *  Setup variable parts in scripts and compute
9392 	 *  scripts bus addresses used from the C code.
9393 	 */
9394 	np->fw_setup(np, fw);
9395 
9396 	/*
9397 	 *  Bind SCRIPTS with physical addresses usable by the
9398 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
9399 	 */
9400 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
9401 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
9402 
9403 #ifdef SYM_CONF_IARB_SUPPORT
9404 	/*
9405 	 *    If user wants IARB to be set when we win arbitration
9406 	 *    and have other jobs, compute the max number of consecutive
9407 	 *    settings of IARB hints before we leave devices a chance to
9408 	 *    arbitrate for reselection.
9409 	 */
9410 #ifdef	SYM_SETUP_IARB_MAX
9411 	np->iarb_max = SYM_SETUP_IARB_MAX;
9412 #else
9413 	np->iarb_max = 4;
9414 #endif
9415 #endif
9416 
9417 	/*
9418 	 *  Prepare the idle and invalid task actions.
9419 	 */
9420 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9421 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9422 	np->idletask_ba		= vtobus(&np->idletask);
9423 
9424 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9425 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9426 	np->notask_ba		= vtobus(&np->notask);
9427 
9428 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9429 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9430 	np->bad_itl_ba		= vtobus(&np->bad_itl);
9431 
9432 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9433 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
9434 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
9435 
9436 	/*
9437 	 *  Allocate and prepare the lun JUMP table that is used
9438 	 *  for a target prior the probing of devices (bad lun table).
9439 	 *  A private table will be allocated for the target on the
9440 	 *  first INQUIRY response received.
9441 	 */
9442 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
9443 	if (!np->badluntbl)
9444 		goto attach_failed;
9445 
9446 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
9447 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
9448 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
9449 
9450 	/*
9451 	 *  Prepare the bus address array that contains the bus
9452 	 *  address of each target control block.
9453 	 *  For now, assume all logical units are wrong. :)
9454 	 */
9455 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
9456 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
9457 		np->target[i].head.luntbl_sa =
9458 				cpu_to_scr(vtobus(np->badluntbl));
9459 		np->target[i].head.lun0_sa =
9460 				cpu_to_scr(vtobus(&np->badlun_sa));
9461 	}
9462 
9463 	/*
9464 	 *  Now check the cache handling of the pci chipset.
9465 	 */
9466 	if (sym_snooptest (np)) {
9467 #ifdef FreeBSD_Bus_Io_Abstraction
9468 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
9469 #else
9470 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
9471 #endif
9472 		goto attach_failed;
9473 	};
9474 
9475 	/*
9476 	 *  Now deal with CAM.
9477 	 *  Hopefully, we will succeed with that one.:)
9478 	 */
9479 	if (!sym_cam_attach(np))
9480 		goto attach_failed;
9481 
9482 	/*
9483 	 *  Sigh! we are done.
9484 	 */
9485 	return 0;
9486 
9487 	/*
9488 	 *  We have failed.
9489 	 *  We will try to free all the resources we have
9490 	 *  allocated, but if we are a boot device, this
9491 	 *  will not help that much.;)
9492 	 */
9493 attach_failed:
9494 	if (np)
9495 		sym_pci_free(np);
9496 	return ENXIO;
9497 }
9498 
9499 /*
9500  *  Free everything that have been allocated for this device.
9501  */
9502 static void sym_pci_free(hcb_p np)
9503 {
9504 	SYM_QUEHEAD *qp;
9505 	ccb_p cp;
9506 	tcb_p tp;
9507 	lcb_p lp;
9508 	int target, lun;
9509 
9510 	/*
9511 	 *  First free CAM resources.
9512 	 */
9513 	crit_enter();
9514 	sym_cam_free(np);
9515 	crit_exit();
9516 
9517 	/*
9518 	 *  Now every should be quiet for us to
9519 	 *  free other resources.
9520 	 */
9521 #ifdef FreeBSD_Bus_Io_Abstraction
9522 	if (np->ram_res)
9523 		bus_release_resource(np->device, SYS_RES_MEMORY,
9524 				     np->ram_id, np->ram_res);
9525 	if (np->mmio_res)
9526 		bus_release_resource(np->device, SYS_RES_MEMORY,
9527 				     SYM_PCI_MMIO, np->mmio_res);
9528 	if (np->io_res)
9529 		bus_release_resource(np->device, SYS_RES_IOPORT,
9530 				     SYM_PCI_IO, np->io_res);
9531 	if (np->irq_res)
9532 		bus_release_resource(np->device, SYS_RES_IRQ,
9533 				     0, np->irq_res);
9534 #else
9535 	/*
9536 	 *  YEAH!!!
9537 	 *  It seems there is no means to free MMIO resources.
9538 	 */
9539 #endif
9540 
9541 	if (np->scriptb0)
9542 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
9543 	if (np->scripta0)
9544 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
9545 	if (np->squeue)
9546 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
9547 	if (np->dqueue)
9548 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
9549 
9550 	while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
9551 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
9552 #ifdef	FreeBSD_Bus_Dma_Abstraction
9553 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
9554 #endif
9555 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
9556 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
9557 	}
9558 
9559 	if (np->badluntbl)
9560 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
9561 
9562 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
9563 		tp = &np->target[target];
9564 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
9565 			lp = sym_lp(np, tp, lun);
9566 			if (!lp)
9567 				continue;
9568 			if (lp->itlq_tbl)
9569 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
9570 				       "ITLQ_TBL");
9571 			if (lp->cb_tags)
9572 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
9573 				       "CB_TAGS");
9574 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
9575 		}
9576 #if SYM_CONF_MAX_LUN > 1
9577 		if (tp->lunmp)
9578 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
9579 			       "LUNMP");
9580 #endif
9581 	}
9582 	if (np->targtbl)
9583 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
9584 #ifdef	FreeBSD_Bus_Dma_Abstraction
9585 	if (np->data_dmat)
9586 		bus_dma_tag_destroy(np->data_dmat);
9587 #endif
9588 	sym_mfree_dma(np, sizeof(*np), "HCB");
9589 }
9590 
9591 /*
9592  *  Allocate CAM resources and register a bus to CAM.
9593  */
9594 int sym_cam_attach(hcb_p np)
9595 {
9596 	struct cam_devq *devq = 0;
9597 	struct cam_sim *sim = 0;
9598 	struct cam_path *path = 0;
9599 	struct ccb_setasync csa;
9600 	int err;
9601 
9602 	crit_enter();
9603 
9604 	/*
9605 	 *  Establish our interrupt handler.
9606 	 */
9607 #ifdef FreeBSD_Bus_Io_Abstraction
9608 	err = bus_setup_intr(np->device, np->irq_res, INTR_TYPE_CAM,
9609 			     sym_intr, np, &np->intr, NULL);
9610 	if (err) {
9611 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
9612 			      err);
9613 		goto fail;
9614 	}
9615 #else
9616 	err = 0;
9617 	if (!pci_map_int (np->pci_tag, sym_intr, np)) {
9618 		printf("%s: failed to map interrupt\n", sym_name(np));
9619 		goto fail;
9620 	}
9621 #endif
9622 
9623 	/*
9624 	 *  Create the device queue for our sym SIM.
9625 	 */
9626 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
9627 	if (devq == NULL) {
9628 		goto fail;
9629 	}
9630 
9631 	/*
9632 	 *  Construct our SIM entry.
9633 	 */
9634 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
9635 			    1, SYM_SETUP_MAX_TAG, devq);
9636 	cam_simq_release(devq);
9637 	if (sim == NULL)
9638 		goto fail;
9639 
9640 	if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
9641 		goto fail;
9642 	np->sim = sim;
9643 	sim = 0;
9644 
9645 	if (xpt_create_path(&path, 0,
9646 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
9647 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
9648 		goto fail;
9649 	}
9650 	np->path = path;
9651 
9652 	/*
9653 	 *  Establish our async notification handler.
9654 	 */
9655 	xpt_setup_ccb(&csa.ccb_h, np->path, 5);
9656 	csa.ccb_h.func_code = XPT_SASYNC_CB;
9657 	csa.event_enable    = AC_LOST_DEVICE;
9658 	csa.callback	    = sym_async;
9659 	csa.callback_arg    = np->sim;
9660 	xpt_action((union ccb *)&csa);
9661 
9662 	/*
9663 	 *  Start the chip now, without resetting the BUS, since
9664 	 *  it seems that this must stay under control of CAM.
9665 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9666 	 *  get a spurious SMBC interrupt.
9667 	 */
9668 	sym_init (np, 0);
9669 
9670 	crit_exit();
9671 	return 1;
9672 fail:
9673 	if (sim)
9674 		cam_sim_free(sim);
9675 
9676 	sym_cam_free(np);
9677 
9678 	crit_exit();
9679 	return 0;
9680 }
9681 
9682 /*
9683  *  Free everything that deals with CAM.
9684  */
9685 void sym_cam_free(hcb_p np)
9686 {
9687 #ifdef FreeBSD_Bus_Io_Abstraction
9688 	if (np->intr)
9689 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9690 #else
9691 	/* pci_unmap_int(np->pci_tag); */	/* Does nothing */
9692 #endif
9693 
9694 	if (np->sim) {
9695 		xpt_bus_deregister(cam_sim_path(np->sim));
9696 		cam_sim_free(np->sim);
9697 	}
9698 	if (np->path)
9699 		xpt_free_path(np->path);
9700 }
9701 
9702 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9703 
9704 /*
9705  *  Get host setup from NVRAM.
9706  */
9707 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9708 {
9709 #ifdef SYM_CONF_NVRAM_SUPPORT
9710 	/*
9711 	 *  Get parity checking, host ID, verbose mode
9712 	 *  and miscellaneous host flags from NVRAM.
9713 	 */
9714 	switch(nvram->type) {
9715 	case SYM_SYMBIOS_NVRAM:
9716 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9717 			np->rv_scntl0  &= ~0x0a;
9718 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9719 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9720 			np->verbose += 1;
9721 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9722 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9723 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9724 			np->usrflags |= SYM_AVOID_BUS_RESET;
9725 		break;
9726 	case SYM_TEKRAM_NVRAM:
9727 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9728 		break;
9729 	default:
9730 		break;
9731 	}
9732 #endif
9733 }
9734 
9735 /*
9736  *  Get target setup from NVRAM.
9737  */
9738 #ifdef SYM_CONF_NVRAM_SUPPORT
9739 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9740 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9741 #endif
9742 
9743 static void
9744 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9745 {
9746 #ifdef SYM_CONF_NVRAM_SUPPORT
9747 	switch(nvp->type) {
9748 	case SYM_SYMBIOS_NVRAM:
9749 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9750 		break;
9751 	case SYM_TEKRAM_NVRAM:
9752 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9753 		break;
9754 	default:
9755 		break;
9756 	}
9757 #endif
9758 }
9759 
9760 #ifdef SYM_CONF_NVRAM_SUPPORT
9761 /*
9762  *  Get target set-up from Symbios format NVRAM.
9763  */
9764 static void
9765 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9766 {
9767 	tcb_p tp = &np->target[target];
9768 	Symbios_target *tn = &nvram->target[target];
9769 
9770 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9771 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9772 	tp->usrtags =
9773 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9774 
9775 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9776 		tp->usrflags &= ~SYM_DISC_ENABLED;
9777 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9778 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9779 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9780 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9781 }
9782 
9783 /*
9784  *  Get target set-up from Tekram format NVRAM.
9785  */
9786 static void
9787 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9788 {
9789 	tcb_p tp = &np->target[target];
9790 	struct Tekram_target *tn = &nvram->target[target];
9791 	int i;
9792 
9793 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9794 		i = tn->sync_index & 0xf;
9795 		tp->tinfo.user.period = Tekram_sync[i];
9796 	}
9797 
9798 	tp->tinfo.user.width =
9799 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9800 
9801 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9802 		tp->usrtags = 2 << nvram->max_tags_index;
9803 	}
9804 
9805 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9806 		tp->usrflags |= SYM_DISC_ENABLED;
9807 
9808 	/* If any device does not support parity, we will not use this option */
9809 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9810 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9811 }
9812 
9813 #ifdef	SYM_CONF_DEBUG_NVRAM
9814 /*
9815  *  Dump Symbios format NVRAM for debugging purpose.
9816  */
9817 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9818 {
9819 	int i;
9820 
9821 	/* display Symbios nvram host data */
9822 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9823 		sym_name(np), nvram->host_id & 0x0f,
9824 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9825 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9826 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9827 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9828 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9829 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9830 
9831 	/* display Symbios nvram drive data */
9832 	for (i = 0 ; i < 15 ; i++) {
9833 		struct Symbios_target *tn = &nvram->target[i];
9834 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9835 		sym_name(np), i,
9836 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9837 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9838 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9839 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9840 		tn->bus_width,
9841 		tn->sync_period / 4,
9842 		tn->timeout);
9843 	}
9844 }
9845 
9846 /*
9847  *  Dump TEKRAM format NVRAM for debugging purpose.
9848  */
9849 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9850 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9851 {
9852 	int i, tags, boot_delay;
9853 	char *rem;
9854 
9855 	/* display Tekram nvram host data */
9856 	tags = 2 << nvram->max_tags_index;
9857 	boot_delay = 0;
9858 	if (nvram->boot_delay_index < 6)
9859 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9860 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9861 	default:
9862 	case 0:	rem = "";			break;
9863 	case 1: rem = " REMOVABLE=boot device";	break;
9864 	case 2: rem = " REMOVABLE=all";		break;
9865 	}
9866 
9867 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9868 		sym_name(np), nvram->host_id & 0x0f,
9869 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9870 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9871 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9872 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9873 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9874 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9875 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9876 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9877 		rem, boot_delay, tags);
9878 
9879 	/* display Tekram nvram drive data */
9880 	for (i = 0; i <= 15; i++) {
9881 		int sync, j;
9882 		struct Tekram_target *tn = &nvram->target[i];
9883 		j = tn->sync_index & 0xf;
9884 		sync = Tekram_sync[j];
9885 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9886 		sym_name(np), i,
9887 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9888 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9889 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9890 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9891 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9892 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9893 		sync);
9894 	}
9895 }
9896 #endif	/* SYM_CONF_DEBUG_NVRAM */
9897 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9898 
9899 
9900 /*
9901  *  Try reading Symbios or Tekram NVRAM
9902  */
9903 #ifdef SYM_CONF_NVRAM_SUPPORT
9904 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9905 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9906 #endif
9907 
9908 int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9909 {
9910 #ifdef SYM_CONF_NVRAM_SUPPORT
9911 	/*
9912 	 *  Try to read SYMBIOS nvram.
9913 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9914 	 */
9915 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9916 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9917 		nvp->type = SYM_SYMBIOS_NVRAM;
9918 #ifdef SYM_CONF_DEBUG_NVRAM
9919 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9920 #endif
9921 	}
9922 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9923 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9924 		nvp->type = SYM_TEKRAM_NVRAM;
9925 #ifdef SYM_CONF_DEBUG_NVRAM
9926 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9927 #endif
9928 	}
9929 	else
9930 		nvp->type = 0;
9931 #else
9932 	nvp->type = 0;
9933 #endif
9934 	return nvp->type;
9935 }
9936 
9937 
9938 #ifdef SYM_CONF_NVRAM_SUPPORT
9939 /*
9940  *  24C16 EEPROM reading.
9941  *
9942  *  GPOI0 - data in/data out
9943  *  GPIO1 - clock
9944  *  Symbios NVRAM wiring now also used by Tekram.
9945  */
9946 
9947 #define SET_BIT 0
9948 #define CLR_BIT 1
9949 #define SET_CLK 2
9950 #define CLR_CLK 3
9951 
9952 /*
9953  *  Set/clear data/clock bit in GPIO0
9954  */
9955 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9956 			  int bit_mode)
9957 {
9958 	UDELAY (5);
9959 	switch (bit_mode){
9960 	case SET_BIT:
9961 		*gpreg |= write_bit;
9962 		break;
9963 	case CLR_BIT:
9964 		*gpreg &= 0xfe;
9965 		break;
9966 	case SET_CLK:
9967 		*gpreg |= 0x02;
9968 		break;
9969 	case CLR_CLK:
9970 		*gpreg &= 0xfd;
9971 		break;
9972 
9973 	}
9974 	OUTB (nc_gpreg, *gpreg);
9975 	UDELAY (5);
9976 }
9977 
9978 /*
9979  *  Send START condition to NVRAM to wake it up.
9980  */
9981 static void S24C16_start(hcb_p np, u_char *gpreg)
9982 {
9983 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9984 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9985 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9986 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9987 }
9988 
9989 /*
9990  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9991  */
9992 static void S24C16_stop(hcb_p np, u_char *gpreg)
9993 {
9994 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9995 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9996 }
9997 
9998 /*
9999  *  Read or write a bit to the NVRAM,
10000  *  read if GPIO0 input else write if GPIO0 output
10001  */
10002 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
10003 			 u_char *gpreg)
10004 {
10005 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
10006 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
10007 	if (read_bit)
10008 		*read_bit = INB (nc_gpreg);
10009 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
10010 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
10011 }
10012 
10013 /*
10014  *  Output an ACK to the NVRAM after reading,
10015  *  change GPIO0 to output and when done back to an input
10016  */
10017 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
10018 			    u_char *gpcntl)
10019 {
10020 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
10021 	S24C16_do_bit(np, 0, write_bit, gpreg);
10022 	OUTB (nc_gpcntl, *gpcntl);
10023 }
10024 
10025 /*
10026  *  Input an ACK from NVRAM after writing,
10027  *  change GPIO0 to input and when done back to an output
10028  */
10029 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
10030 			   u_char *gpcntl)
10031 {
10032 	OUTB (nc_gpcntl, *gpcntl | 0x01);
10033 	S24C16_do_bit(np, read_bit, 1, gpreg);
10034 	OUTB (nc_gpcntl, *gpcntl);
10035 }
10036 
10037 /*
10038  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
10039  *  GPIO0 must already be set as an output
10040  */
10041 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
10042 			     u_char *gpreg, u_char *gpcntl)
10043 {
10044 	int x;
10045 
10046 	for (x = 0; x < 8; x++)
10047 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
10048 
10049 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
10050 }
10051 
10052 /*
10053  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
10054  *  GPIO0 must already be set as an input
10055  */
10056 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
10057 			    u_char *gpreg, u_char *gpcntl)
10058 {
10059 	int x;
10060 	u_char read_bit;
10061 
10062 	*read_data = 0;
10063 	for (x = 0; x < 8; x++) {
10064 		S24C16_do_bit(np, &read_bit, 1, gpreg);
10065 		*read_data |= ((read_bit & 0x01) << (7 - x));
10066 	}
10067 
10068 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
10069 }
10070 
10071 /*
10072  *  Read 'len' bytes starting at 'offset'.
10073  */
10074 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
10075 {
10076 	u_char	gpcntl, gpreg;
10077 	u_char	old_gpcntl, old_gpreg;
10078 	u_char	ack_data;
10079 	int	retv = 1;
10080 	int	x;
10081 
10082 	/* save current state of GPCNTL and GPREG */
10083 	old_gpreg	= INB (nc_gpreg);
10084 	old_gpcntl	= INB (nc_gpcntl);
10085 	gpcntl		= old_gpcntl & 0x1c;
10086 
10087 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
10088 	OUTB (nc_gpreg,  old_gpreg);
10089 	OUTB (nc_gpcntl, gpcntl);
10090 
10091 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
10092 	gpreg = old_gpreg;
10093 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
10094 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
10095 
10096 	/* now set NVRAM inactive with GPIO0/1 both high */
10097 	S24C16_stop(np, &gpreg);
10098 
10099 	/* activate NVRAM */
10100 	S24C16_start(np, &gpreg);
10101 
10102 	/* write device code and random address MSB */
10103 	S24C16_write_byte(np, &ack_data,
10104 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
10105 	if (ack_data & 0x01)
10106 		goto out;
10107 
10108 	/* write random address LSB */
10109 	S24C16_write_byte(np, &ack_data,
10110 		offset & 0xff, &gpreg, &gpcntl);
10111 	if (ack_data & 0x01)
10112 		goto out;
10113 
10114 	/* regenerate START state to set up for reading */
10115 	S24C16_start(np, &gpreg);
10116 
10117 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
10118 	S24C16_write_byte(np, &ack_data,
10119 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
10120 	if (ack_data & 0x01)
10121 		goto out;
10122 
10123 	/* now set up GPIO0 for inputting data */
10124 	gpcntl |= 0x01;
10125 	OUTB (nc_gpcntl, gpcntl);
10126 
10127 	/* input all requested data - only part of total NVRAM */
10128 	for (x = 0; x < len; x++)
10129 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
10130 
10131 	/* finally put NVRAM back in inactive mode */
10132 	gpcntl &= 0xfe;
10133 	OUTB (nc_gpcntl, gpcntl);
10134 	S24C16_stop(np, &gpreg);
10135 	retv = 0;
10136 out:
10137 	/* return GPIO0/1 to original states after having accessed NVRAM */
10138 	OUTB (nc_gpcntl, old_gpcntl);
10139 	OUTB (nc_gpreg,  old_gpreg);
10140 
10141 	return retv;
10142 }
10143 
10144 #undef SET_BIT
10145 #undef CLR_BIT
10146 #undef SET_CLK
10147 #undef CLR_CLK
10148 
10149 /*
10150  *  Try reading Symbios NVRAM.
10151  *  Return 0 if OK.
10152  */
10153 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
10154 {
10155 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
10156 	u_char *data = (u_char *) nvram;
10157 	int len  = sizeof(*nvram);
10158 	u_short	csum;
10159 	int x;
10160 
10161 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
10162 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
10163 		return 1;
10164 
10165 	/* check valid NVRAM signature, verify byte count and checksum */
10166 	if (nvram->type != 0 ||
10167 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
10168 	    nvram->byte_count != len - 12)
10169 		return 1;
10170 
10171 	/* verify checksum */
10172 	for (x = 6, csum = 0; x < len - 6; x++)
10173 		csum += data[x];
10174 	if (csum != nvram->checksum)
10175 		return 1;
10176 
10177 	return 0;
10178 }
10179 
10180 /*
10181  *  93C46 EEPROM reading.
10182  *
10183  *  GPOI0 - data in
10184  *  GPIO1 - data out
10185  *  GPIO2 - clock
10186  *  GPIO4 - chip select
10187  *
10188  *  Used by Tekram.
10189  */
10190 
10191 /*
10192  *  Pulse clock bit in GPIO0
10193  */
10194 static void T93C46_Clk(hcb_p np, u_char *gpreg)
10195 {
10196 	OUTB (nc_gpreg, *gpreg | 0x04);
10197 	UDELAY (2);
10198 	OUTB (nc_gpreg, *gpreg);
10199 }
10200 
10201 /*
10202  *  Read bit from NVRAM
10203  */
10204 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
10205 {
10206 	UDELAY (2);
10207 	T93C46_Clk(np, gpreg);
10208 	*read_bit = INB (nc_gpreg);
10209 }
10210 
10211 /*
10212  *  Write bit to GPIO0
10213  */
10214 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
10215 {
10216 	if (write_bit & 0x01)
10217 		*gpreg |= 0x02;
10218 	else
10219 		*gpreg &= 0xfd;
10220 
10221 	*gpreg |= 0x10;
10222 
10223 	OUTB (nc_gpreg, *gpreg);
10224 	UDELAY (2);
10225 
10226 	T93C46_Clk(np, gpreg);
10227 }
10228 
10229 /*
10230  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
10231  */
10232 static void T93C46_Stop(hcb_p np, u_char *gpreg)
10233 {
10234 	*gpreg &= 0xef;
10235 	OUTB (nc_gpreg, *gpreg);
10236 	UDELAY (2);
10237 
10238 	T93C46_Clk(np, gpreg);
10239 }
10240 
10241 /*
10242  *  Send read command and address to NVRAM
10243  */
10244 static void T93C46_Send_Command(hcb_p np, u_short write_data,
10245 				u_char *read_bit, u_char *gpreg)
10246 {
10247 	int x;
10248 
10249 	/* send 9 bits, start bit (1), command (2), address (6)  */
10250 	for (x = 0; x < 9; x++)
10251 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
10252 
10253 	*read_bit = INB (nc_gpreg);
10254 }
10255 
10256 /*
10257  *  READ 2 bytes from the NVRAM
10258  */
10259 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
10260 {
10261 	int x;
10262 	u_char read_bit;
10263 
10264 	*nvram_data = 0;
10265 	for (x = 0; x < 16; x++) {
10266 		T93C46_Read_Bit(np, &read_bit, gpreg);
10267 
10268 		if (read_bit & 0x01)
10269 			*nvram_data |=  (0x01 << (15 - x));
10270 		else
10271 			*nvram_data &= ~(0x01 << (15 - x));
10272 	}
10273 }
10274 
10275 /*
10276  *  Read Tekram NvRAM data.
10277  */
10278 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
10279 {
10280 	u_char	read_bit;
10281 	int	x;
10282 
10283 	for (x = 0; x < len; x++)  {
10284 
10285 		/* output read command and address */
10286 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
10287 		if (read_bit & 0x01)
10288 			return 1; /* Bad */
10289 		T93C46_Read_Word(np, &data[x], gpreg);
10290 		T93C46_Stop(np, gpreg);
10291 	}
10292 
10293 	return 0;
10294 }
10295 
10296 /*
10297  *  Try reading 93C46 Tekram NVRAM.
10298  */
10299 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
10300 {
10301 	u_char gpcntl, gpreg;
10302 	u_char old_gpcntl, old_gpreg;
10303 	int retv = 1;
10304 
10305 	/* save current state of GPCNTL and GPREG */
10306 	old_gpreg	= INB (nc_gpreg);
10307 	old_gpcntl	= INB (nc_gpcntl);
10308 
10309 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
10310 	   1/2/4 out */
10311 	gpreg = old_gpreg & 0xe9;
10312 	OUTB (nc_gpreg, gpreg);
10313 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
10314 	OUTB (nc_gpcntl, gpcntl);
10315 
10316 	/* input all of NVRAM, 64 words */
10317 	retv = T93C46_Read_Data(np, (u_short *) nvram,
10318 				sizeof(*nvram) / sizeof(short), &gpreg);
10319 
10320 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
10321 	OUTB (nc_gpcntl, old_gpcntl);
10322 	OUTB (nc_gpreg,  old_gpreg);
10323 
10324 	return retv;
10325 }
10326 
10327 /*
10328  *  Try reading Tekram NVRAM.
10329  *  Return 0 if OK.
10330  */
10331 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
10332 {
10333 	u_char *data = (u_char *) nvram;
10334 	int len = sizeof(*nvram);
10335 	u_short	csum;
10336 	int x;
10337 
10338 	switch (np->device_id) {
10339 	case PCI_ID_SYM53C885:
10340 	case PCI_ID_SYM53C895:
10341 	case PCI_ID_SYM53C896:
10342 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10343 					  data, len);
10344 		break;
10345 	case PCI_ID_SYM53C875:
10346 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10347 					  data, len);
10348 		if (!x)
10349 			break;
10350 	default:
10351 		x = sym_read_T93C46_nvram(np, nvram);
10352 		break;
10353 	}
10354 	if (x)
10355 		return 1;
10356 
10357 	/* verify checksum */
10358 	for (x = 0, csum = 0; x < len - 1; x += 2)
10359 		csum += data[x] + (data[x+1] << 8);
10360 	if (csum != 0x1234)
10361 		return 1;
10362 
10363 	return 0;
10364 }
10365 
10366 #endif	/* SYM_CONF_NVRAM_SUPPORT */
10367