xref: /dragonfly/sys/dev/disk/sym/sym_hipd.c (revision bcb3e04d)
1 /*
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /* $FreeBSD: src/sys/dev/sym/sym_hipd.c,v 1.6.2.12 2001/12/02 19:01:10 groudier Exp $ */
59 
60 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
61 
62 /* #define SYM_DEBUG_GENERIC_SUPPORT */
63 
64 #include <sys/param.h>
65 
66 /*
67  *  Only use the BUS stuff for PCI under FreeBSD 4 and later versions.
68  *  Note that the old BUS stuff also works for FreeBSD 4 and spares
69  *  about 1 KB for the driver object file.
70  */
71 #if 	defined(__DragonFly__) || __FreeBSD_version >= 400000
72 #define	FreeBSD_Bus_Dma_Abstraction
73 #define	FreeBSD_Bus_Io_Abstraction
74 #define	FreeBSD_Bus_Space_Abstraction
75 #endif
76 
77 /*
78  *  Driver configuration options.
79  */
80 #include "opt_sym.h"
81 #include "sym_conf.h"
82 
83 #ifndef FreeBSD_Bus_Io_Abstraction
84 #include "use_ncr.h"	/* To know if the ncr has been configured */
85 #endif
86 
87 #include <sys/systm.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #ifdef FreeBSD_Bus_Io_Abstraction
91 #include <sys/module.h>
92 #include <sys/bus.h>
93 #include <sys/rman.h>
94 #endif
95 #include <sys/thread2.h>
96 
97 #include <sys/proc.h>
98 
99 #include <bus/pci/pcireg.h>
100 #include <bus/pci/pcivar.h>
101 
102 #include <machine/clock.h>
103 
104 #include <bus/cam/cam.h>
105 #include <bus/cam/cam_ccb.h>
106 #include <bus/cam/cam_sim.h>
107 #include <bus/cam/cam_xpt_sim.h>
108 #include <bus/cam/cam_debug.h>
109 
110 #include <bus/cam/scsi/scsi_all.h>
111 #include <bus/cam/scsi/scsi_message.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/pmap.h>
116 
117 /* Short and quite clear integer types */
118 typedef int8_t    s8;
119 typedef int16_t   s16;
120 typedef	int32_t   s32;
121 typedef u_int8_t  u8;
122 typedef u_int16_t u16;
123 typedef	u_int32_t u32;
124 
125 /*
126  *  Driver definitions.
127  */
128 #include "sym_defs.h"
129 #include "sym_fw.h"
130 
131 /*
132  *  IA32 architecture does not reorder STORES and prevents
133  *  LOADS from passing STORES. It is called `program order'
134  *  by Intel and allows device drivers to deal with memory
135  *  ordering by only ensuring that the code is not reordered
136  *  by the compiler when ordering is required.
137  *  Other architectures implement a weaker ordering that
138  *  requires memory barriers (and also IO barriers when they
139  *  make sense) to be used.
140  */
141 
142 #if	defined	__i386__ || defined __x86_64__
143 #define MEMORY_BARRIER()	do { ; } while(0)
144 #elif	defined	__powerpc__
145 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
146 #elif	defined	__ia64__
147 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
148 #elif	defined	__sparc64__
149 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
150 #else
151 #error	"Not supported platform"
152 #endif
153 
154 /*
155  *  Portable but silly implemented byte order primitives.
156  *  We define the primitives we need, since FreeBSD doesn't
157  *  seem to have them yet.
158  */
159 #if	BYTE_ORDER == BIG_ENDIAN
160 
161 #define __revb16(x) (	(((u16)(x) & (u16)0x00ffU) << 8) | \
162 			(((u16)(x) & (u16)0xff00U) >> 8) 	)
163 #define __revb32(x) (	(((u32)(x) & 0x000000ffU) << 24) | \
164 			(((u32)(x) & 0x0000ff00U) <<  8) | \
165 			(((u32)(x) & 0x00ff0000U) >>  8) | \
166 			(((u32)(x) & 0xff000000U) >> 24)	)
167 
168 #define __htole16(v)	__revb16(v)
169 #define __htole32(v)	__revb32(v)
170 #define __le16toh(v)	__htole16(v)
171 #define __le32toh(v)	__htole32(v)
172 
173 static __inline u16	_htole16(u16 v) { return __htole16(v); }
174 static __inline u32	_htole32(u32 v) { return __htole32(v); }
175 #define _le16toh	_htole16
176 #define _le32toh	_htole32
177 
178 #else	/* LITTLE ENDIAN */
179 
180 #define __htole16(v)	(v)
181 #define __htole32(v)	(v)
182 #define __le16toh(v)	(v)
183 #define __le32toh(v)	(v)
184 
185 #define _htole16(v)	(v)
186 #define _htole32(v)	(v)
187 #define _le16toh(v)	(v)
188 #define _le32toh(v)	(v)
189 
190 #endif	/* BYTE_ORDER */
191 
192 /*
193  *  A la VMS/CAM-3 queue management.
194  */
195 
196 typedef struct sym_quehead {
197 	struct sym_quehead *flink;	/* Forward  pointer */
198 	struct sym_quehead *blink;	/* Backward pointer */
199 } SYM_QUEHEAD;
200 
201 #define sym_que_init(ptr) do { \
202 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
203 } while (0)
204 
205 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
206 {
207 	return (head->flink == head) ? 0 : head->flink;
208 }
209 
210 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
211 {
212 	return (head->blink == head) ? 0 : head->blink;
213 }
214 
215 static __inline void __sym_que_add(struct sym_quehead * new,
216 	struct sym_quehead * blink,
217 	struct sym_quehead * flink)
218 {
219 	flink->blink	= new;
220 	new->flink	= flink;
221 	new->blink	= blink;
222 	blink->flink	= new;
223 }
224 
225 static __inline void __sym_que_del(struct sym_quehead * blink,
226 	struct sym_quehead * flink)
227 {
228 	flink->blink = blink;
229 	blink->flink = flink;
230 }
231 
232 static __inline int sym_que_empty(struct sym_quehead *head)
233 {
234 	return head->flink == head;
235 }
236 
237 static __inline void sym_que_splice(struct sym_quehead *list,
238 	struct sym_quehead *head)
239 {
240 	struct sym_quehead *first = list->flink;
241 
242 	if (first != list) {
243 		struct sym_quehead *last = list->blink;
244 		struct sym_quehead *at   = head->flink;
245 
246 		first->blink = head;
247 		head->flink  = first;
248 
249 		last->flink = at;
250 		at->blink   = last;
251 	}
252 }
253 
254 #define sym_que_entry(ptr, type, member) \
255 	((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))
256 
257 
258 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
259 
260 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
261 
262 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
263 
264 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
265 {
266 	struct sym_quehead *elem = head->flink;
267 
268 	if (elem != head)
269 		__sym_que_del(head, elem->flink);
270 	else
271 		elem = 0;
272 	return elem;
273 }
274 
275 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
276 
277 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
278 {
279 	struct sym_quehead *elem = head->blink;
280 
281 	if (elem != head)
282 		__sym_que_del(elem->blink, head);
283 	else
284 		elem = 0;
285 	return elem;
286 }
287 
288 /*
289  *  This one may be useful.
290  */
291 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
292 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
293 /*
294  *  FreeBSD does not offer our kind of queue in the CAM CCB.
295  *  So, we have to cast.
296  */
297 #define sym_qptr(p)	((struct sym_quehead *) (p))
298 
299 /*
300  *  Simple bitmap operations.
301  */
302 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
303 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
304 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
305 
306 /*
307  *  Number of tasks per device we want to handle.
308  */
309 #if	SYM_CONF_MAX_TAG_ORDER > 8
310 #error	"more than 256 tags per logical unit not allowed."
311 #endif
312 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
313 
314 /*
315  *  Donnot use more tasks that we can handle.
316  */
317 #ifndef	SYM_CONF_MAX_TAG
318 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
319 #endif
320 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
321 #undef	SYM_CONF_MAX_TAG
322 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
323 #endif
324 
325 /*
326  *    This one means 'NO TAG for this job'
327  */
328 #define NO_TAG	(256)
329 
330 /*
331  *  Number of SCSI targets.
332  */
333 #if	SYM_CONF_MAX_TARGET > 16
334 #error	"more than 16 targets not allowed."
335 #endif
336 
337 /*
338  *  Number of logical units per target.
339  */
340 #if	SYM_CONF_MAX_LUN > 64
341 #error	"more than 64 logical units per target not allowed."
342 #endif
343 
344 /*
345  *    Asynchronous pre-scaler (ns). Shall be 40 for
346  *    the SCSI timings to be compliant.
347  */
348 #define	SYM_CONF_MIN_ASYNC (40)
349 
350 /*
351  *  Number of entries in the START and DONE queues.
352  *
353  *  We limit to 1 PAGE in order to succeed allocation of
354  *  these queues. Each entry is 8 bytes long (2 DWORDS).
355  */
356 #ifdef	SYM_CONF_MAX_START
357 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
358 #else
359 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
360 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
361 #endif
362 
363 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
364 #undef	SYM_CONF_MAX_QUEUE
365 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
366 #undef	SYM_CONF_MAX_START
367 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
368 #endif
369 
370 /*
371  *  For this one, we want a short name :-)
372  */
373 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
374 
375 /*
376  *  Active debugging tags and verbosity.
377  */
378 #define DEBUG_ALLOC	(0x0001)
379 #define DEBUG_PHASE	(0x0002)
380 #define DEBUG_POLL	(0x0004)
381 #define DEBUG_QUEUE	(0x0008)
382 #define DEBUG_RESULT	(0x0010)
383 #define DEBUG_SCATTER	(0x0020)
384 #define DEBUG_SCRIPT	(0x0040)
385 #define DEBUG_TINY	(0x0080)
386 #define DEBUG_TIMING	(0x0100)
387 #define DEBUG_NEGO	(0x0200)
388 #define DEBUG_TAGS	(0x0400)
389 #define DEBUG_POINTER	(0x0800)
390 
391 #if 0
392 static int sym_debug = 0;
393 	#define DEBUG_FLAGS sym_debug
394 #else
395 /*	#define DEBUG_FLAGS (0x0631) */
396 	#define DEBUG_FLAGS (0x0000)
397 
398 #endif
399 #define sym_verbose	(np->verbose)
400 
401 /*
402  *  Insert a delay in micro-seconds and milli-seconds.
403  */
404 static void UDELAY(int us) { DELAY(us); }
405 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
406 
407 /*
408  *  Simple power of two buddy-like allocator.
409  *
410  *  This simple code is not intended to be fast, but to
411  *  provide power of 2 aligned memory allocations.
412  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
413  *  this allocator allows simple and fast address calculations
414  *  from the SCRIPTS code. In addition, cache line alignment
415  *  is guaranteed for power of 2 cache line size.
416  *
417  *  This allocator has been developped for the Linux sym53c8xx
418  *  driver, since this O/S does not provide naturally aligned
419  *  allocations.
420  *  It has the advantage of allowing the driver to use private
421  *  pages of memory that will be useful if we ever need to deal
422  *  with IO MMUs for PCI.
423  */
424 
425 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
426 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
427 #if 0
428 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
429 #endif
430 #define MEMO_WARN	1
431 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
432 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
433 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
434 
435 #define get_pages()		kmalloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_INTWAIT)
436 #define free_pages(p)		kfree((p), M_DEVBUF)
437 
438 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
439 
440 typedef struct m_link {		/* Link between free memory chunks */
441 	struct m_link *next;
442 } m_link_s;
443 
444 #ifdef	FreeBSD_Bus_Dma_Abstraction
445 typedef struct m_vtob {		/* Virtual to Bus address translation */
446 	struct m_vtob	*next;
447 	bus_dmamap_t	dmamap;	/* Map for this chunk */
448 	m_addr_t	vaddr;	/* Virtual address */
449 	m_addr_t	baddr;	/* Bus physical address */
450 } m_vtob_s;
451 /* Hash this stuff a bit to speed up translations */
452 #define VTOB_HASH_SHIFT		5
453 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
454 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
455 #define VTOB_HASH_CODE(m)	\
456 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
457 #endif
458 
459 typedef struct m_pool {		/* Memory pool of a given kind */
460 #ifdef	FreeBSD_Bus_Dma_Abstraction
461 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
462 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
463 	m_addr_t (*getp)(struct m_pool *);
464 #ifdef	MEMO_FREE_UNUSED
465 	void (*freep)(struct m_pool *, m_addr_t);
466 #endif
467 #define M_GETP()		mp->getp(mp)
468 #define M_FREEP(p)		mp->freep(mp, p)
469 	int nump;
470 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
471 	struct m_pool *next;
472 #else
473 #define M_GETP()		get_pages()
474 #define M_FREEP(p)		free_pages(p)
475 #endif	/* FreeBSD_Bus_Dma_Abstraction */
476 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
477 } m_pool_s;
478 
479 static void *___sym_malloc(m_pool_s *mp, int size)
480 {
481 	int i = 0;
482 	int s = (1 << MEMO_SHIFT);
483 	int j;
484 	m_addr_t a;
485 	m_link_s *h = mp->h;
486 
487 	if (size > MEMO_CLUSTER_SIZE)
488 		return 0;
489 
490 	while (size > s) {
491 		s <<= 1;
492 		++i;
493 	}
494 
495 	j = i;
496 	while (!h[j].next) {
497 		if (s == MEMO_CLUSTER_SIZE) {
498 			h[j].next = (m_link_s *) M_GETP();
499 			if (h[j].next)
500 				h[j].next->next = 0;
501 			break;
502 		}
503 		++j;
504 		s <<= 1;
505 	}
506 	a = (m_addr_t) h[j].next;
507 	if (a) {
508 		h[j].next = h[j].next->next;
509 		while (j > i) {
510 			j -= 1;
511 			s >>= 1;
512 			h[j].next = (m_link_s *) (a+s);
513 			h[j].next->next = 0;
514 		}
515 	}
516 #ifdef DEBUG
517 	kprintf("___sym_malloc(%d) = %p\n", size, (void *) a);
518 #endif
519 	return (void *) a;
520 }
521 
522 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
523 {
524 	int i = 0;
525 	int s = (1 << MEMO_SHIFT);
526 	m_link_s *q;
527 	m_addr_t a, b;
528 	m_link_s *h = mp->h;
529 
530 #ifdef DEBUG
531 	kprintf("___sym_mfree(%p, %d)\n", ptr, size);
532 #endif
533 
534 	if (size > MEMO_CLUSTER_SIZE)
535 		return;
536 
537 	while (size > s) {
538 		s <<= 1;
539 		++i;
540 	}
541 
542 	a = (m_addr_t) ptr;
543 
544 	while (1) {
545 #ifdef MEMO_FREE_UNUSED
546 		if (s == MEMO_CLUSTER_SIZE) {
547 			M_FREEP(a);
548 			break;
549 		}
550 #endif
551 		b = a ^ s;
552 		q = &h[i];
553 		while (q->next && q->next != (m_link_s *) b) {
554 			q = q->next;
555 		}
556 		if (!q->next) {
557 			((m_link_s *) a)->next = h[i].next;
558 			h[i].next = (m_link_s *) a;
559 			break;
560 		}
561 		q->next = q->next->next;
562 		a = a & b;
563 		s <<= 1;
564 		++i;
565 	}
566 }
567 
568 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
569 {
570 	void *p;
571 
572 	p = ___sym_malloc(mp, size);
573 
574 	if (DEBUG_FLAGS & DEBUG_ALLOC)
575 		kprintf ("new %-10s[%4d] @%p.\n", name, size, p);
576 
577 	if (p)
578 		bzero(p, size);
579 	else if (uflags & MEMO_WARN)
580 		kprintf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
581 
582 	return p;
583 }
584 
585 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
586 
587 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
588 {
589 	if (DEBUG_FLAGS & DEBUG_ALLOC)
590 		kprintf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
591 
592 	___sym_mfree(mp, ptr, size);
593 
594 }
595 
596 /*
597  * Default memory pool we donnot need to involve in DMA.
598  */
599 #ifndef	FreeBSD_Bus_Dma_Abstraction
600 /*
601  * Without the `bus dma abstraction', all the memory is assumed
602  * DMAable and a single pool is all what we need.
603  */
604 static m_pool_s mp0;
605 
606 #else
607 /*
608  * With the `bus dma abstraction', we use a separate pool for
609  * memory we donnot need to involve in DMA.
610  */
611 static m_addr_t ___mp0_getp(m_pool_s *mp)
612 {
613 	m_addr_t m = (m_addr_t) get_pages();
614 	if (m)
615 		++mp->nump;
616 	return m;
617 }
618 
619 #ifdef	MEMO_FREE_UNUSED
620 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
621 {
622 	free_pages(m);
623 	--mp->nump;
624 }
625 #endif
626 
627 #ifdef	MEMO_FREE_UNUSED
628 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
629 #else
630 static m_pool_s mp0 = {0, 0, ___mp0_getp};
631 #endif
632 
633 #endif	/* FreeBSD_Bus_Dma_Abstraction */
634 
635 /*
636  * Actual memory allocation routine for non-DMAed memory.
637  */
638 static void *sym_calloc(int size, char *name)
639 {
640 	void *m;
641 	/* Lock */
642 	m = __sym_calloc(&mp0, size, name);
643 	/* Unlock */
644 	return m;
645 }
646 
647 /*
648  * Actual memory allocation routine for non-DMAed memory.
649  */
650 static void sym_mfree(void *ptr, int size, char *name)
651 {
652 	/* Lock */
653 	__sym_mfree(&mp0, ptr, size, name);
654 	/* Unlock */
655 }
656 
657 /*
658  * DMAable pools.
659  */
660 #ifndef	FreeBSD_Bus_Dma_Abstraction
661 /*
662  * Without `bus dma abstraction', all the memory is DMAable, and
663  * only a single pool is needed (vtophys() is our friend).
664  */
665 #define __sym_calloc_dma(b, s, n)	sym_calloc(s, n)
666 #define __sym_mfree_dma(b, p, s, n)	sym_mfree(p, s, n)
667 #define __vtobus(b, p)	vtophys(p)
668 
669 #else
670 /*
671  * With `bus dma abstraction', we use a separate pool per parent
672  * BUS handle. A reverse table (hashed) is maintained for virtual
673  * to BUS address translation.
674  */
675 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
676 {
677 	bus_addr_t *baddr;
678 	baddr = (bus_addr_t *)arg;
679 	*baddr = segs->ds_addr;
680 }
681 
682 static m_addr_t ___dma_getp(m_pool_s *mp)
683 {
684 	m_vtob_s *vbp;
685 	void *vaddr = 0;
686 	bus_addr_t baddr = 0;
687 
688 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
689 	if (!vbp)
690 		goto out_err;
691 
692 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
693 			      BUS_DMA_NOWAIT, &vbp->dmamap))
694 		goto out_err;
695 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
696 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0);
697 	if (baddr) {
698 		int hc = VTOB_HASH_CODE(vaddr);
699 		vbp->vaddr = (m_addr_t) vaddr;
700 		vbp->baddr = (m_addr_t) baddr;
701 		vbp->next = mp->vtob[hc];
702 		mp->vtob[hc] = vbp;
703 		++mp->nump;
704 		return (m_addr_t) vaddr;
705 	}
706 out_err:
707 	if (baddr)
708 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
709 	if (vaddr)
710 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
711 	if (vbp->dmamap)
712 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
713 	if (vbp)
714 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
715 	return 0;
716 }
717 
718 #ifdef	MEMO_FREE_UNUSED
719 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
720 {
721 	m_vtob_s **vbpp, *vbp;
722 	int hc = VTOB_HASH_CODE(m);
723 
724 	vbpp = &mp->vtob[hc];
725 	while (*vbpp && (*vbpp)->vaddr != m)
726 		vbpp = &(*vbpp)->next;
727 	if (*vbpp) {
728 		vbp = *vbpp;
729 		*vbpp = (*vbpp)->next;
730 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
731 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
732 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
733 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
734 		--mp->nump;
735 	}
736 }
737 #endif
738 
739 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
740 {
741 	m_pool_s *mp;
742 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
743 	return mp;
744 }
745 
746 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
747 {
748 	m_pool_s *mp = 0;
749 
750 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
751 	if (mp) {
752 		mp->dev_dmat = dev_dmat;
753 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
754 			       BUS_SPACE_MAXADDR_32BIT,
755 			       BUS_SPACE_MAXADDR_32BIT,
756 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
757 			       MEMO_CLUSTER_SIZE, 0, &mp->dmat)) {
758 			mp->getp = ___dma_getp;
759 #ifdef	MEMO_FREE_UNUSED
760 			mp->freep = ___dma_freep;
761 #endif
762 			mp->next = mp0.next;
763 			mp0.next = mp;
764 			return mp;
765 		}
766 	}
767 	if (mp)
768 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
769 	return 0;
770 }
771 
772 #ifdef	MEMO_FREE_UNUSED
773 static void ___del_dma_pool(m_pool_s *p)
774 {
775 	struct m_pool **pp = &mp0.next;
776 
777 	while (*pp && *pp != p)
778 		pp = &(*pp)->next;
779 	if (*pp) {
780 		*pp = (*pp)->next;
781 		bus_dma_tag_destroy(p->dmat);
782 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
783 	}
784 }
785 #endif
786 
787 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
788 {
789 	struct m_pool *mp;
790 	void *m = 0;
791 
792 	/* Lock */
793 	mp = ___get_dma_pool(dev_dmat);
794 	if (!mp)
795 		mp = ___cre_dma_pool(dev_dmat);
796 	if (mp)
797 		m = __sym_calloc(mp, size, name);
798 #ifdef	MEMO_FREE_UNUSED
799 	if (mp && !mp->nump)
800 		___del_dma_pool(mp);
801 #endif
802 	/* Unlock */
803 
804 	return m;
805 }
806 
807 static void
808 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
809 {
810 	struct m_pool *mp;
811 
812 	/* Lock */
813 	mp = ___get_dma_pool(dev_dmat);
814 	if (mp)
815 		__sym_mfree(mp, m, size, name);
816 #ifdef	MEMO_FREE_UNUSED
817 	if (mp && !mp->nump)
818 		___del_dma_pool(mp);
819 #endif
820 	/* Unlock */
821 }
822 
823 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
824 {
825 	m_pool_s *mp;
826 	int hc = VTOB_HASH_CODE(m);
827 	m_vtob_s *vp = 0;
828 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
829 
830 	/* Lock */
831 	mp = ___get_dma_pool(dev_dmat);
832 	if (mp) {
833 		vp = mp->vtob[hc];
834 		while (vp && (m_addr_t) vp->vaddr != a)
835 			vp = vp->next;
836 	}
837 	/* Unlock */
838 	if (!vp)
839 		panic("sym: VTOBUS FAILED!\n");
840 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
841 }
842 
843 #endif	/* FreeBSD_Bus_Dma_Abstraction */
844 
845 /*
846  * Verbs for DMAable memory handling.
847  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
848  * being discarded.
849  */
850 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
851 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
852 #define _sym_mfree_dma(np, p, s, n)	\
853 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
854 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
855 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
856 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
857 #define vtobus(p)			_vtobus(np, p)
858 
859 
860 /*
861  *  Print a buffer in hexadecimal format.
862  */
863 static void sym_printb_hex (u_char *p, int n)
864 {
865 	while (n-- > 0)
866 		kprintf (" %x", *p++);
867 }
868 
869 /*
870  *  Same with a label at beginning and .\n at end.
871  */
872 static void sym_printl_hex (char *label, u_char *p, int n)
873 {
874 	kprintf ("%s", label);
875 	sym_printb_hex (p, n);
876 	kprintf (".\n");
877 }
878 
879 /*
880  *  Return a string for SCSI BUS mode.
881  */
882 static char *sym_scsi_bus_mode(int mode)
883 {
884 	switch(mode) {
885 	case SMODE_HVD:	return "HVD";
886 	case SMODE_SE:	return "SE";
887 	case SMODE_LVD: return "LVD";
888 	}
889 	return "??";
890 }
891 
892 /*
893  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
894  */
895 #ifdef SYM_CONF_NVRAM_SUPPORT
896 static u_char Tekram_sync[16] =
897 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
898 #endif
899 
900 /*
901  *  Union of supported NVRAM formats.
902  */
903 struct sym_nvram {
904 	int type;
905 #define	SYM_SYMBIOS_NVRAM	(1)
906 #define	SYM_TEKRAM_NVRAM	(2)
907 #ifdef	SYM_CONF_NVRAM_SUPPORT
908 	union {
909 		Symbios_nvram Symbios;
910 		Tekram_nvram Tekram;
911 	} data;
912 #endif
913 };
914 
915 /*
916  *  This one is hopefully useless, but actually useful. :-)
917  */
918 #ifndef assert
919 #define	assert(expression) { \
920 	if (!(expression)) { \
921 		(void)panic( \
922 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
923 			#expression, \
924 			__FILE__, __LINE__); \
925 	} \
926 }
927 #endif
928 
929 /*
930  *  Some provision for a possible big endian mode supported by
931  *  Symbios chips (never seen, by the way).
932  *  For now, this stuff does not deserve any comments. :)
933  */
934 
935 #define sym_offb(o)	(o)
936 #define sym_offw(o)	(o)
937 
938 /*
939  *  Some provision for support for BIG ENDIAN CPU.
940  *  Btw, FreeBSD does not seem to be ready yet for big endian.
941  */
942 
943 #if	BYTE_ORDER == BIG_ENDIAN
944 #define cpu_to_scr(dw)	_htole32(dw)
945 #define scr_to_cpu(dw)	_le32toh(dw)
946 #else
947 #define cpu_to_scr(dw)	(dw)
948 #define scr_to_cpu(dw)	(dw)
949 #endif
950 
951 /*
952  *  Access to the chip IO registers and on-chip RAM.
953  *  We use the `bus space' interface under FreeBSD-4 and
954  *  later kernel versions.
955  */
956 
957 #ifdef	FreeBSD_Bus_Space_Abstraction
958 
959 #if defined(SYM_CONF_IOMAPPED)
960 
961 #define INB_OFF(o)	bus_space_read_1(np->io_tag, np->io_bsh, o)
962 #define INW_OFF(o)	bus_space_read_2(np->io_tag, np->io_bsh, o)
963 #define INL_OFF(o)	bus_space_read_4(np->io_tag, np->io_bsh, o)
964 
965 #define OUTB_OFF(o, v)	bus_space_write_1(np->io_tag, np->io_bsh, o, (v))
966 #define OUTW_OFF(o, v)	bus_space_write_2(np->io_tag, np->io_bsh, o, (v))
967 #define OUTL_OFF(o, v)	bus_space_write_4(np->io_tag, np->io_bsh, o, (v))
968 
969 #else	/* Memory mapped IO */
970 
971 #define INB_OFF(o)	bus_space_read_1(np->mmio_tag, np->mmio_bsh, o)
972 #define INW_OFF(o)	bus_space_read_2(np->mmio_tag, np->mmio_bsh, o)
973 #define INL_OFF(o)	bus_space_read_4(np->mmio_tag, np->mmio_bsh, o)
974 
975 #define OUTB_OFF(o, v)	bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v))
976 #define OUTW_OFF(o, v)	bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v))
977 #define OUTL_OFF(o, v)	bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v))
978 
979 #endif	/* SYM_CONF_IOMAPPED */
980 
981 #define OUTRAM_OFF(o, a, l)	\
982 	bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l))
983 
984 #else	/* not defined FreeBSD_Bus_Space_Abstraction */
985 
986 #if	BYTE_ORDER == BIG_ENDIAN
987 #error	"BIG ENDIAN support requires bus space kernel interface"
988 #endif
989 
990 /*
991  *  Access to the chip IO registers and on-chip RAM.
992  *  We use legacy MMIO and IO interface for FreeBSD 3.X versions.
993  */
994 
995 /*
996  *  Define some understable verbs for IO and MMIO.
997  */
998 #define io_read8(p)	 scr_to_cpu(inb((p)))
999 #define	io_read16(p)	 scr_to_cpu(inw((p)))
1000 #define io_read32(p)	 scr_to_cpu(inl((p)))
1001 #define	io_write8(p, v)	 outb((p), cpu_to_scr(v))
1002 #define io_write16(p, v) outw((p), cpu_to_scr(v))
1003 #define io_write32(p, v) outl((p), cpu_to_scr(v))
1004 
1005 #define mmio_read8(a)	     scr_to_cpu((*(volatile unsigned char *) (a)))
1006 #define mmio_read16(a)	     scr_to_cpu((*(volatile unsigned short *) (a)))
1007 #define mmio_read32(a)	     scr_to_cpu((*(volatile unsigned int *) (a)))
1008 #define mmio_write8(a, b)   (*(volatile unsigned char *) (a)) = cpu_to_scr(b)
1009 #define mmio_write16(a, b)  (*(volatile unsigned short *) (a)) = cpu_to_scr(b)
1010 #define mmio_write32(a, b)  (*(volatile unsigned int *) (a)) = cpu_to_scr(b)
1011 #define memcpy_to_pci(d, s, n)	bcopy((s), (void *)(d), (n))
1012 
1013 /*
1014  *  Normal IO
1015  */
1016 #if defined(SYM_CONF_IOMAPPED)
1017 
1018 #define	INB_OFF(o)	io_read8(np->io_port + sym_offb(o))
1019 #define	OUTB_OFF(o, v)	io_write8(np->io_port + sym_offb(o), (v))
1020 
1021 #define	INW_OFF(o)	io_read16(np->io_port + sym_offw(o))
1022 #define	OUTW_OFF(o, v)	io_write16(np->io_port + sym_offw(o), (v))
1023 
1024 #define	INL_OFF(o)	io_read32(np->io_port + (o))
1025 #define	OUTL_OFF(o, v)	io_write32(np->io_port + (o), (v))
1026 
1027 #else	/* Memory mapped IO */
1028 
1029 #define	INB_OFF(o)	mmio_read8(np->mmio_va + sym_offb(o))
1030 #define	OUTB_OFF(o, v)	mmio_write8(np->mmio_va + sym_offb(o), (v))
1031 
1032 #define	INW_OFF(o)	mmio_read16(np->mmio_va + sym_offw(o))
1033 #define	OUTW_OFF(o, v)	mmio_write16(np->mmio_va + sym_offw(o), (v))
1034 
1035 #define	INL_OFF(o)	mmio_read32(np->mmio_va + (o))
1036 #define	OUTL_OFF(o, v)	mmio_write32(np->mmio_va + (o), (v))
1037 
1038 #endif
1039 
1040 #define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l))
1041 
1042 #endif	/* FreeBSD_Bus_Space_Abstraction */
1043 
1044 /*
1045  *  Common definitions for both bus space and legacy IO methods.
1046  */
1047 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
1048 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
1049 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
1050 
1051 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
1052 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
1053 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
1054 
1055 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
1056 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
1057 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
1058 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
1059 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
1060 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
1061 
1062 /*
1063  *  We normally want the chip to have a consistent view
1064  *  of driver internal data structures when we restart it.
1065  *  Thus these macros.
1066  */
1067 #define OUTL_DSP(v)				\
1068 	do {					\
1069 		MEMORY_BARRIER();		\
1070 		OUTL (nc_dsp, (v));		\
1071 	} while (0)
1072 
1073 #define OUTONB_STD()				\
1074 	do {					\
1075 		MEMORY_BARRIER();		\
1076 		OUTONB (nc_dcntl, (STD|NOCOM));	\
1077 	} while (0)
1078 
1079 /*
1080  *  Command control block states.
1081  */
1082 #define HS_IDLE		(0)
1083 #define HS_BUSY		(1)
1084 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
1085 #define HS_DISCONNECT	(3)	/* Disconnected by target */
1086 #define HS_WAIT		(4)	/* waiting for resource	  */
1087 
1088 #define HS_DONEMASK	(0x80)
1089 #define HS_COMPLETE	(4|HS_DONEMASK)
1090 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
1091 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
1092 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
1093 
1094 /*
1095  *  Software Interrupt Codes
1096  */
1097 #define	SIR_BAD_SCSI_STATUS	(1)
1098 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
1099 #define	SIR_MSG_RECEIVED	(3)
1100 #define	SIR_MSG_WEIRD		(4)
1101 #define	SIR_NEGO_FAILED		(5)
1102 #define	SIR_NEGO_PROTO		(6)
1103 #define	SIR_SCRIPT_STOPPED	(7)
1104 #define	SIR_REJECT_TO_SEND	(8)
1105 #define	SIR_SWIDE_OVERRUN	(9)
1106 #define	SIR_SODL_UNDERRUN	(10)
1107 #define	SIR_RESEL_NO_MSG_IN	(11)
1108 #define	SIR_RESEL_NO_IDENTIFY	(12)
1109 #define	SIR_RESEL_BAD_LUN	(13)
1110 #define	SIR_TARGET_SELECTED	(14)
1111 #define	SIR_RESEL_BAD_I_T_L	(15)
1112 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
1113 #define	SIR_ABORT_SENT		(17)
1114 #define	SIR_RESEL_ABORTED	(18)
1115 #define	SIR_MSG_OUT_DONE	(19)
1116 #define	SIR_COMPLETE_ERROR	(20)
1117 #define	SIR_DATA_OVERRUN	(21)
1118 #define	SIR_BAD_PHASE		(22)
1119 #define	SIR_MAX			(22)
1120 
1121 /*
1122  *  Extended error bit codes.
1123  *  xerr_status field of struct sym_ccb.
1124  */
1125 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
1126 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
1127 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
1128 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
1129 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
1130 
1131 /*
1132  *  Negotiation status.
1133  *  nego_status field of struct sym_ccb.
1134  */
1135 #define NS_SYNC		(1)
1136 #define NS_WIDE		(2)
1137 #define NS_PPR		(3)
1138 
1139 /*
1140  *  A CCB hashed table is used to retrieve CCB address
1141  *  from DSA value.
1142  */
1143 #define CCB_HASH_SHIFT		8
1144 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
1145 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
1146 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
1147 
1148 /*
1149  *  Device flags.
1150  */
1151 #define SYM_DISC_ENABLED	(1)
1152 #define SYM_TAGS_ENABLED	(1<<1)
1153 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1154 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1155 
1156 /*
1157  *  Host adapter miscellaneous flags.
1158  */
1159 #define SYM_AVOID_BUS_RESET	(1)
1160 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1161 
1162 /*
1163  *  Device quirks.
1164  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1165  *  saving the DATA POINTER then reselects and terminates the IO.
1166  *  On reselection, the automatic RESTORE DATA POINTER makes the
1167  *  CURRENT DATA POINTER not point at the end of the IO.
1168  *  This behaviour just breaks our calculation of the residual.
1169  *  For now, we just force an AUTO SAVE on disconnection and will
1170  *  fix that in a further driver version.
1171  */
1172 #define SYM_QUIRK_AUTOSAVE 1
1173 
1174 /*
1175  *  Misc.
1176  */
1177 #define SYM_SNOOP_TIMEOUT (10000000)
1178 #define SYM_PCI_IO	PCIR_MAPS
1179 #define SYM_PCI_MMIO	(PCIR_MAPS + 4)
1180 #define SYM_PCI_RAM	(PCIR_MAPS + 8)
1181 #define SYM_PCI_RAM64	(PCIR_MAPS + 12)
1182 
1183 /*
1184  *  Back-pointer from the CAM CCB to our data structures.
1185  */
1186 #define sym_hcb_ptr	spriv_ptr0
1187 /* #define sym_ccb_ptr	spriv_ptr1 */
1188 
1189 /*
1190  *  We mostly have to deal with pointers.
1191  *  Thus these typedef's.
1192  */
1193 typedef struct sym_tcb *tcb_p;
1194 typedef struct sym_lcb *lcb_p;
1195 typedef struct sym_ccb *ccb_p;
1196 typedef struct sym_hcb *hcb_p;
1197 
1198 /*
1199  *  Gather negotiable parameters value
1200  */
1201 struct sym_trans {
1202 	u8 scsi_version;
1203 	u8 spi_version;
1204 	u8 period;
1205 	u8 offset;
1206 	u8 width;
1207 	u8 options;	/* PPR options */
1208 };
1209 
1210 struct sym_tinfo {
1211 	struct sym_trans current;
1212 	struct sym_trans goal;
1213 	struct sym_trans user;
1214 };
1215 
1216 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1217 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1218 
1219 /*
1220  *  Global TCB HEADER.
1221  *
1222  *  Due to lack of indirect addressing on earlier NCR chips,
1223  *  this substructure is copied from the TCB to a global
1224  *  address after selection.
1225  *  For SYMBIOS chips that support LOAD/STORE this copy is
1226  *  not needed and thus not performed.
1227  */
1228 struct sym_tcbh {
1229 	/*
1230 	 *  Scripts bus addresses of LUN table accessed from scripts.
1231 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1232 	 *  and we we want to speed-up the general case and not waste
1233 	 *  resources.
1234 	 */
1235 	u32	luntbl_sa;	/* bus address of this table	*/
1236 	u32	lun0_sa;	/* bus address of LCB #0	*/
1237 	/*
1238 	 *  Actual SYNC/WIDE IO registers value for this target.
1239 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1240 	 *  so have alignment constraints.
1241 	 */
1242 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1243 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1244 /*2*/	u_char	filler1;
1245 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1246 };
1247 
1248 /*
1249  *  Target Control Block
1250  */
1251 struct sym_tcb {
1252 	/*
1253 	 *  TCB header.
1254 	 *  Assumed at offset 0.
1255 	 */
1256 /*0*/	struct sym_tcbh head;
1257 
1258 	/*
1259 	 *  LUN table used by the SCRIPTS processor.
1260 	 *  An array of bus addresses is used on reselection.
1261 	 */
1262 	u32	*luntbl;	/* LCBs bus address table	*/
1263 
1264 	/*
1265 	 *  LUN table used by the C code.
1266 	 */
1267 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1268 #if SYM_CONF_MAX_LUN > 1
1269 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1270 #endif
1271 
1272 	/*
1273 	 *  Bitmap that tells about LUNs that succeeded at least
1274 	 *  1 IO and therefore assumed to be a real device.
1275 	 *  Avoid useless allocation of the LCB structure.
1276 	 */
1277 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1278 
1279 	/*
1280 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1281 	 *  allocated (not discovered or LCB allocation failed).
1282 	 */
1283 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1284 
1285 	/*
1286 	 *  Transfer capabilities (SIP)
1287 	 */
1288 	struct sym_tinfo tinfo;
1289 
1290 	/*
1291 	 * Keep track of the CCB used for the negotiation in order
1292 	 * to ensure that only 1 negotiation is queued at a time.
1293 	 */
1294 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1295 
1296 	/*
1297 	 *  Set when we want to reset the device.
1298 	 */
1299 	u_char	to_reset;
1300 
1301 	/*
1302 	 *  Other user settable limits and options.
1303 	 *  These limits are read from the NVRAM if present.
1304 	 */
1305 	u_char	usrflags;
1306 	u_short	usrtags;
1307 };
1308 
1309 /*
1310  *  Global LCB HEADER.
1311  *
1312  *  Due to lack of indirect addressing on earlier NCR chips,
1313  *  this substructure is copied from the LCB to a global
1314  *  address after selection.
1315  *  For SYMBIOS chips that support LOAD/STORE this copy is
1316  *  not needed and thus not performed.
1317  */
1318 struct sym_lcbh {
1319 	/*
1320 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1321 	 *  For not probed logical units, this address points to
1322 	 *  SCRIPTS that deal with bad LU handling (must be at
1323 	 *  offset zero of the LCB for that reason).
1324 	 */
1325 /*0*/	u32	resel_sa;
1326 
1327 	/*
1328 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1329 	 *  to the unique ITL nexus allowed to be disconnected.
1330 	 */
1331 	u32	itl_task_sa;
1332 
1333 	/*
1334 	 *  Task table bus address (read from SCRIPTS).
1335 	 */
1336 	u32	itlq_tbl_sa;
1337 };
1338 
1339 /*
1340  *  Logical Unit Control Block
1341  */
1342 struct sym_lcb {
1343 	/*
1344 	 *  TCB header.
1345 	 *  Assumed at offset 0.
1346 	 */
1347 /*0*/	struct sym_lcbh head;
1348 
1349 	/*
1350 	 *  Task table read from SCRIPTS that contains pointers to
1351 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1352 	 *  inside the header.
1353 	 */
1354 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1355 
1356 	/*
1357 	 *  Busy CCBs management.
1358 	 */
1359 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1360 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1361 
1362 	/*
1363 	 *  Circular tag allocation buffer.
1364 	 */
1365 	u_short	ia_tag;		/* Tag allocation index		*/
1366 	u_short	if_tag;		/* Tag release index		*/
1367 	u_char	*cb_tags;	/* Circular tags buffer		*/
1368 
1369 	/*
1370 	 *  Set when we want to clear all tasks.
1371 	 */
1372 	u_char to_clear;
1373 
1374 	/*
1375 	 *  Capabilities.
1376 	 */
1377 	u_char	user_flags;
1378 	u_char	current_flags;
1379 };
1380 
1381 /*
1382  *  Action from SCRIPTS on a task.
1383  *  Is part of the CCB, but is also used separately to plug
1384  *  error handling action to perform from SCRIPTS.
1385  */
1386 struct sym_actscr {
1387 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1388 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1389 };
1390 
1391 /*
1392  *  Phase mismatch context.
1393  *
1394  *  It is part of the CCB and is used as parameters for the
1395  *  DATA pointer. We need two contexts to handle correctly the
1396  *  SAVED DATA POINTER.
1397  */
1398 struct sym_pmc {
1399 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1400 	u32	ret;		/* SCRIPT return address	*/
1401 };
1402 
1403 /*
1404  *  LUN control block lookup.
1405  *  We use a direct pointer for LUN #0, and a table of
1406  *  pointers which is only allocated for devices that support
1407  *  LUN(s) > 0.
1408  */
1409 #if SYM_CONF_MAX_LUN <= 1
1410 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1411 #else
1412 #define sym_lp(np, tp, lun) \
1413 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1414 #endif
1415 
1416 /*
1417  *  Status are used by the host and the script processor.
1418  *
1419  *  The last four bytes (status[4]) are copied to the
1420  *  scratchb register (declared as scr0..scr3) just after the
1421  *  select/reselect, and copied back just after disconnecting.
1422  *  Inside the script the XX_REG are used.
1423  */
1424 
1425 /*
1426  *  Last four bytes (script)
1427  */
1428 #define  QU_REG	scr0
1429 #define  HS_REG	scr1
1430 #define  HS_PRT	nc_scr1
1431 #define  SS_REG	scr2
1432 #define  SS_PRT	nc_scr2
1433 #define  HF_REG	scr3
1434 #define  HF_PRT	nc_scr3
1435 
1436 /*
1437  *  Last four bytes (host)
1438  */
1439 #define  actualquirks  phys.head.status[0]
1440 #define  host_status   phys.head.status[1]
1441 #define  ssss_status   phys.head.status[2]
1442 #define  host_flags    phys.head.status[3]
1443 
1444 /*
1445  *  Host flags
1446  */
1447 #define HF_IN_PM0	1u
1448 #define HF_IN_PM1	(1u<<1)
1449 #define HF_ACT_PM	(1u<<2)
1450 #define HF_DP_SAVED	(1u<<3)
1451 #define HF_SENSE	(1u<<4)
1452 #define HF_EXT_ERR	(1u<<5)
1453 #define HF_DATA_IN	(1u<<6)
1454 #ifdef SYM_CONF_IARB_SUPPORT
1455 #define HF_HINT_IARB	(1u<<7)
1456 #endif
1457 
1458 /*
1459  *  Global CCB HEADER.
1460  *
1461  *  Due to lack of indirect addressing on earlier NCR chips,
1462  *  this substructure is copied from the ccb to a global
1463  *  address after selection (or reselection) and copied back
1464  *  before disconnect.
1465  *  For SYMBIOS chips that support LOAD/STORE this copy is
1466  *  not needed and thus not performed.
1467  */
1468 
1469 struct sym_ccbh {
1470 	/*
1471 	 *  Start and restart SCRIPTS addresses (must be at 0).
1472 	 */
1473 /*0*/	struct sym_actscr go;
1474 
1475 	/*
1476 	 *  SCRIPTS jump address that deal with data pointers.
1477 	 *  'savep' points to the position in the script responsible
1478 	 *  for the actual transfer of data.
1479 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1480 	 */
1481 	u32	savep;		/* Jump address to saved data pointer	*/
1482 	u32	lastp;		/* SCRIPTS address at end of data	*/
1483 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1484 
1485 	/*
1486 	 *  Status fields.
1487 	 */
1488 	u8	status[4];
1489 };
1490 
1491 /*
1492  *  Data Structure Block
1493  *
1494  *  During execution of a ccb by the script processor, the
1495  *  DSA (data structure address) register points to this
1496  *  substructure of the ccb.
1497  */
1498 struct sym_dsb {
1499 	/*
1500 	 *  CCB header.
1501 	 *  Also assumed at offset 0 of the sym_ccb structure.
1502 	 */
1503 /*0*/	struct sym_ccbh head;
1504 
1505 	/*
1506 	 *  Phase mismatch contexts.
1507 	 *  We need two to handle correctly the SAVED DATA POINTER.
1508 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1509 	 *  for address calculation from SCRIPTS.
1510 	 */
1511 	struct sym_pmc pm0;
1512 	struct sym_pmc pm1;
1513 
1514 	/*
1515 	 *  Table data for Script
1516 	 */
1517 	struct sym_tblsel  select;
1518 	struct sym_tblmove smsg;
1519 	struct sym_tblmove smsg_ext;
1520 	struct sym_tblmove cmd;
1521 	struct sym_tblmove sense;
1522 	struct sym_tblmove wresid;
1523 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1524 };
1525 
1526 /*
1527  *  Our Command Control Block
1528  */
1529 struct sym_ccb {
1530 	/*
1531 	 *  This is the data structure which is pointed by the DSA
1532 	 *  register when it is executed by the script processor.
1533 	 *  It must be the first entry.
1534 	 */
1535 	struct sym_dsb phys;
1536 
1537 	/*
1538 	 *  Pointer to CAM ccb and related stuff.
1539 	 */
1540 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1541 	u8	cdb_buf[16];	/* Copy of CDB			*/
1542 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1543 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1544 	int	data_len;	/* Total data length		*/
1545 	int	segments;	/* Number of SG segments	*/
1546 
1547 	/*
1548 	 *  Miscellaneous status'.
1549 	 */
1550 	u_char	nego_status;	/* Negotiation status		*/
1551 	u_char	xerr_status;	/* Extended error flags		*/
1552 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1553 
1554 	/*
1555 	 *  Message areas.
1556 	 *  We prepare a message to be sent after selection.
1557 	 *  We may use a second one if the command is rescheduled
1558 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1559 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1560 	 *  While negotiating sync or wide transfer,
1561 	 *  a SDTR or WDTR message is appended.
1562 	 */
1563 	u_char	scsi_smsg [12];
1564 	u_char	scsi_smsg2[12];
1565 
1566 	/*
1567 	 *  Auto request sense related fields.
1568 	 */
1569 	u_char	sensecmd[6];	/* Request Sense command	*/
1570 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1571 	u_char	sv_xerr_status;	/* Saved extended status	*/
1572 	int	sv_resid;	/* Saved residual		*/
1573 
1574 	/*
1575 	 *  Map for the DMA of user data.
1576 	 */
1577 #ifdef	FreeBSD_Bus_Dma_Abstraction
1578 	void		*arg;	/* Argument for some callback	*/
1579 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1580 	u_char		dmamapped;
1581 #define SYM_DMA_NONE	0
1582 #define SYM_DMA_READ	1
1583 #define SYM_DMA_WRITE	2
1584 #endif
1585 	/*
1586 	 *  Other fields.
1587 	 */
1588 	u32	ccb_ba;		/* BUS address of this CCB	*/
1589 	u_short	tag;		/* Tag for this transfer	*/
1590 				/*  NO_TAG means no tag		*/
1591 	u_char	target;
1592 	u_char	lun;
1593 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1594 	SYM_QUEHEAD
1595 		link_ccbq;	/* Link to free/busy CCB queue	*/
1596 	u32	startp;		/* Initial data pointer		*/
1597 	int	ext_sg;		/* Extreme data pointer, used	*/
1598 	int	ext_ofs;	/*  to calculate the residual.	*/
1599 	u_char	to_abort;	/* Want this IO to be aborted	*/
1600 };
1601 
1602 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1603 
1604 /*
1605  *  Host Control Block
1606  */
1607 struct sym_hcb {
1608 	/*
1609 	 *  Global headers.
1610 	 *  Due to poorness of addressing capabilities, earlier
1611 	 *  chips (810, 815, 825) copy part of the data structures
1612 	 *  (CCB, TCB and LCB) in fixed areas.
1613 	 */
1614 #ifdef	SYM_CONF_GENERIC_SUPPORT
1615 	struct sym_ccbh	ccb_head;
1616 	struct sym_tcbh	tcb_head;
1617 	struct sym_lcbh	lcb_head;
1618 #endif
1619 	/*
1620 	 *  Idle task and invalid task actions and
1621 	 *  their bus addresses.
1622 	 */
1623 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1624 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1625 
1626 	/*
1627 	 *  Dummy lun table to protect us against target
1628 	 *  returning bad lun number on reselection.
1629 	 */
1630 	u32	*badluntbl;	/* Table physical address	*/
1631 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1632 
1633 	/*
1634 	 *  Bus address of this host control block.
1635 	 */
1636 	u32	hcb_ba;
1637 
1638 	/*
1639 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1640 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1641 	 *  field.
1642 	 */
1643 	u32	scr_ram_seg;
1644 
1645 	/*
1646 	 *  Chip and controller indentification.
1647 	 */
1648 #ifdef FreeBSD_Bus_Io_Abstraction
1649 	device_t device;
1650 #else
1651 	pcici_t	pci_tag;
1652 #endif
1653 	int	unit;
1654 	char	inst_name[8];
1655 
1656 	/*
1657 	 *  Initial value of some IO register bits.
1658 	 *  These values are assumed to have been set by BIOS, and may
1659 	 *  be used to probe adapter implementation differences.
1660 	 */
1661 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1662 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1663 		sv_stest1;
1664 
1665 	/*
1666 	 *  Actual initial value of IO register bits used by the
1667 	 *  driver. They are loaded at initialisation according to
1668 	 *  features that are to be enabled/disabled.
1669 	 */
1670 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1671 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1672 
1673 	/*
1674 	 *  Target data.
1675 	 */
1676 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1677 
1678 	/*
1679 	 *  Target control block bus address array used by the SCRIPT
1680 	 *  on reselection.
1681 	 */
1682 	u32		*targtbl;
1683 	u32		targtbl_ba;
1684 
1685 	/*
1686 	 *  CAM SIM information for this instance.
1687 	 */
1688 	struct		cam_sim  *sim;
1689 	struct		cam_path *path;
1690 
1691 	/*
1692 	 *  Allocated hardware resources.
1693 	 */
1694 #ifdef FreeBSD_Bus_Io_Abstraction
1695 	struct resource	*irq_res;
1696 	struct resource	*io_res;
1697 	struct resource	*mmio_res;
1698 	struct resource	*ram_res;
1699 	int		ram_id;
1700 	void *intr;
1701 #endif
1702 
1703 	/*
1704 	 *  Bus stuff.
1705 	 *
1706 	 *  My understanding of PCI is that all agents must share the
1707 	 *  same addressing range and model.
1708 	 *  But some hardware architecture guys provide complex and
1709 	 *  brain-deaded stuff that makes shit.
1710 	 *  This driver only support PCI compliant implementations and
1711 	 *  deals with part of the BUS stuff complexity only to fit O/S
1712 	 *  requirements.
1713 	 */
1714 #ifdef FreeBSD_Bus_Io_Abstraction
1715 	bus_space_handle_t	io_bsh;
1716 	bus_space_tag_t		io_tag;
1717 	bus_space_handle_t	mmio_bsh;
1718 	bus_space_tag_t		mmio_tag;
1719 	bus_space_handle_t	ram_bsh;
1720 	bus_space_tag_t		ram_tag;
1721 #endif
1722 
1723 	/*
1724 	 *  DMA stuff.
1725 	 */
1726 #ifdef	FreeBSD_Bus_Dma_Abstraction
1727 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1728 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1729 #endif
1730 	/*
1731 	 *  Virtual and physical bus addresses of the chip.
1732 	 */
1733 	vm_offset_t	mmio_va;	/* MMIO kernel virtual address	*/
1734 	vm_offset_t	mmio_pa;	/* MMIO CPU physical address	*/
1735 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1736 	int		mmio_ws;	/* MMIO Window size		*/
1737 
1738 	vm_offset_t	ram_va;		/* RAM kernel virtual address	*/
1739 	vm_offset_t	ram_pa;		/* RAM CPU physical address	*/
1740 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1741 	int		ram_ws;		/* RAM window size		*/
1742 	u32		io_port;	/* IO port address		*/
1743 
1744 	/*
1745 	 *  SCRIPTS virtual and physical bus addresses.
1746 	 *  'script'  is loaded in the on-chip RAM if present.
1747 	 *  'scripth' stays in main memory for all chips except the
1748 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1749 	 */
1750 	u_char		*scripta0;	/* Copies of script and scripth	*/
1751 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1752 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1753 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1754 	vm_offset_t	scriptb0_ba;
1755 	u_short		scripta_sz;	/* Actual size of script A	*/
1756 	u_short		scriptb_sz;	/* Actual size of script B	*/
1757 
1758 	/*
1759 	 *  Bus addresses, setup and patch methods for
1760 	 *  the selected firmware.
1761 	 */
1762 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1763 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1764 	void		(*fw_setup)(hcb_p np, struct sym_fw *fw);
1765 	void		(*fw_patch)(hcb_p np);
1766 	char		*fw_name;
1767 
1768 	/*
1769 	 *  General controller parameters and configuration.
1770 	 */
1771 	u_short	device_id;	/* PCI device id		*/
1772 	u_char	revision_id;	/* PCI device revision id	*/
1773 	u_int	features;	/* Chip features map		*/
1774 	u_char	myaddr;		/* SCSI id of the adapter	*/
1775 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1776 	u_char	maxwide;	/* Maximum transfer width	*/
1777 	u_char	minsync;	/* Min sync period factor (ST)	*/
1778 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1779 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1780 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1781 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1782 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1783 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1784 	u_char	clock_divn;	/* Number of clock divisors	*/
1785 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1786 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1787 	/*
1788 	 *  Start queue management.
1789 	 *  It is filled up by the host processor and accessed by the
1790 	 *  SCRIPTS processor in order to start SCSI commands.
1791 	 */
1792 	volatile		/* Prevent code optimizations	*/
1793 	u32	*squeue;	/* Start queue virtual address	*/
1794 	u32	squeue_ba;	/* Start queue BUS address	*/
1795 	u_short	squeueput;	/* Next free slot of the queue	*/
1796 	u_short	actccbs;	/* Number of allocated CCBs	*/
1797 
1798 	/*
1799 	 *  Command completion queue.
1800 	 *  It is the same size as the start queue to avoid overflow.
1801 	 */
1802 	u_short	dqueueget;	/* Next position to scan	*/
1803 	volatile		/* Prevent code optimizations	*/
1804 	u32	*dqueue;	/* Completion (done) queue	*/
1805 	u32	dqueue_ba;	/* Done queue BUS address	*/
1806 
1807 	/*
1808 	 *  Miscellaneous buffers accessed by the scripts-processor.
1809 	 *  They shall be DWORD aligned, because they may be read or
1810 	 *  written with a script command.
1811 	 */
1812 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1813 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1814 	u32		lastmsg;	/* Last SCSI message sent	*/
1815 	u_char		scratch;	/* Scratch for SCSI receive	*/
1816 
1817 	/*
1818 	 *  Miscellaneous configuration and status parameters.
1819 	 */
1820 	u_char		usrflags;	/* Miscellaneous user flags	*/
1821 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1822 	u_char		verbose;	/* Verbosity for this controller*/
1823 	u32		cache;		/* Used for cache test at init.	*/
1824 
1825 	/*
1826 	 *  CCB lists and queue.
1827 	 */
1828 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1829 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1830 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1831 
1832 	/*
1833 	 *  During error handling and/or recovery,
1834 	 *  active CCBs that are to be completed with
1835 	 *  error or requeued are moved from the busy_ccbq
1836 	 *  to the comp_ccbq prior to completion.
1837 	 */
1838 	SYM_QUEHEAD	comp_ccbq;
1839 
1840 	/*
1841 	 *  CAM CCB pending queue.
1842 	 */
1843 	SYM_QUEHEAD	cam_ccbq;
1844 
1845 	/*
1846 	 *  IMMEDIATE ARBITRATION (IARB) control.
1847 	 *
1848 	 *  We keep track in 'last_cp' of the last CCB that has been
1849 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1850 	 *  this CCB completes. If last_cp is not zero at the moment
1851 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1852 	 *  used by the SCRIPTS as a hint for setting IARB.
1853 	 *  We donnot set more than 'iarb_max' consecutive hints for
1854 	 *  IARB in order to leave devices a chance to reselect.
1855 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1856 	 */
1857 #ifdef SYM_CONF_IARB_SUPPORT
1858 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1859 	u_short		iarb_count;	/* Actual # of these hints	*/
1860 	ccb_p		last_cp;
1861 #endif
1862 
1863 	/*
1864 	 *  Command abort handling.
1865 	 *  We need to synchronize tightly with the SCRIPTS
1866 	 *  processor in order to handle things correctly.
1867 	 */
1868 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1869 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1870 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1871 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1872 };
1873 
1874 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1875 
1876 /*
1877  *  Return the name of the controller.
1878  */
1879 static __inline char *sym_name(hcb_p np)
1880 {
1881 	return np->inst_name;
1882 }
1883 
1884 /*--------------------------------------------------------------------------*/
1885 /*------------------------------ FIRMWARES ---------------------------------*/
1886 /*--------------------------------------------------------------------------*/
1887 
1888 /*
1889  *  This stuff will be moved to a separate source file when
1890  *  the driver will be broken into several source modules.
1891  */
1892 
1893 /*
1894  *  Macros used for all firmwares.
1895  */
1896 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1897 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1898 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1899 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1900 
1901 
1902 #ifdef	SYM_CONF_GENERIC_SUPPORT
1903 /*
1904  *  Allocate firmware #1 script area.
1905  */
1906 #define	SYM_FWA_SCR		sym_fw1a_scr
1907 #define	SYM_FWB_SCR		sym_fw1b_scr
1908 #include "sym_fw1.h"
1909 struct sym_fwa_ofs sym_fw1a_ofs = {
1910 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1911 };
1912 struct sym_fwb_ofs sym_fw1b_ofs = {
1913 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1914 };
1915 #undef	SYM_FWA_SCR
1916 #undef	SYM_FWB_SCR
1917 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1918 
1919 /*
1920  *  Allocate firmware #2 script area.
1921  */
1922 #define	SYM_FWA_SCR		sym_fw2a_scr
1923 #define	SYM_FWB_SCR		sym_fw2b_scr
1924 #include "sym_fw2.h"
1925 struct sym_fwa_ofs sym_fw2a_ofs = {
1926 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1927 };
1928 struct sym_fwb_ofs sym_fw2b_ofs = {
1929 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1930 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1931 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1932 };
1933 #undef	SYM_FWA_SCR
1934 #undef	SYM_FWB_SCR
1935 
1936 #undef	SYM_GEN_A
1937 #undef	SYM_GEN_B
1938 #undef	PADDR_A
1939 #undef	PADDR_B
1940 
1941 #ifdef	SYM_CONF_GENERIC_SUPPORT
1942 /*
1943  *  Patch routine for firmware #1.
1944  */
1945 static void
1946 sym_fw1_patch(hcb_p np)
1947 {
1948 	struct sym_fw1a_scr *scripta0;
1949 	struct sym_fw1b_scr *scriptb0;
1950 
1951 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1952 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1953 
1954 	/*
1955 	 *  Remove LED support if not needed.
1956 	 */
1957 	if (!(np->features & FE_LED0)) {
1958 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1959 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1960 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1961 	}
1962 
1963 #ifdef SYM_CONF_IARB_SUPPORT
1964 	/*
1965 	 *    If user does not want to use IMMEDIATE ARBITRATION
1966 	 *    when we are reselected while attempting to arbitrate,
1967 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1968 	 */
1969 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1970 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1971 #endif
1972 	/*
1973 	 *  Patch some data in SCRIPTS.
1974 	 *  - start and done queue initial bus address.
1975 	 *  - target bus address table bus address.
1976 	 */
1977 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1978 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1979 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1980 }
1981 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1982 
1983 /*
1984  *  Patch routine for firmware #2.
1985  */
1986 static void
1987 sym_fw2_patch(hcb_p np)
1988 {
1989 	struct sym_fw2a_scr *scripta0;
1990 	struct sym_fw2b_scr *scriptb0;
1991 
1992 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1993 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1994 
1995 	/*
1996 	 *  Remove LED support if not needed.
1997 	 */
1998 	if (!(np->features & FE_LED0)) {
1999 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
2000 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
2001 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
2002 	}
2003 
2004 #ifdef SYM_CONF_IARB_SUPPORT
2005 	/*
2006 	 *    If user does not want to use IMMEDIATE ARBITRATION
2007 	 *    when we are reselected while attempting to arbitrate,
2008 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
2009 	 */
2010 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
2011 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
2012 #endif
2013 	/*
2014 	 *  Patch some variable in SCRIPTS.
2015 	 *  - start and done queue initial bus address.
2016 	 *  - target bus address table bus address.
2017 	 */
2018 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
2019 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
2020 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
2021 
2022 	/*
2023 	 *  Remove the load of SCNTL4 on reselection if not a C10.
2024 	 */
2025 	if (!(np->features & FE_C10)) {
2026 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
2027 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
2028 	}
2029 
2030 	/*
2031 	 *  Remove a couple of work-arounds specific to C1010 if
2032 	 *  they are not desirable. See `sym_fw2.h' for more details.
2033 	 */
2034 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
2035 	      np->revision_id < 0x1 &&
2036 	      np->pciclk_khz < 60000)) {
2037 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
2038 		scripta0->datao_phase[1] = cpu_to_scr(0);
2039 	}
2040 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
2041 	      /* np->revision_id < 0xff */ 1)) {
2042 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
2043 		scripta0->sel_done[1] = cpu_to_scr(0);
2044 	}
2045 
2046 	/*
2047 	 *  Patch some other variables in SCRIPTS.
2048 	 *  These ones are loaded by the SCRIPTS processor.
2049 	 */
2050 	scriptb0->pm0_data_addr[0] =
2051 		cpu_to_scr(np->scripta_ba +
2052 			   offsetof(struct sym_fw2a_scr, pm0_data));
2053 	scriptb0->pm1_data_addr[0] =
2054 		cpu_to_scr(np->scripta_ba +
2055 			   offsetof(struct sym_fw2a_scr, pm1_data));
2056 }
2057 
2058 /*
2059  *  Fill the data area in scripts.
2060  *  To be done for all firmwares.
2061  */
2062 static void
2063 sym_fw_fill_data (u32 *in, u32 *out)
2064 {
2065 	int	i;
2066 
2067 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
2068 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
2069 		*in++  = offsetof (struct sym_dsb, data[i]);
2070 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
2071 		*out++ = offsetof (struct sym_dsb, data[i]);
2072 	}
2073 }
2074 
2075 /*
2076  *  Setup useful script bus addresses.
2077  *  To be done for all firmwares.
2078  */
2079 static void
2080 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw)
2081 {
2082 	u32 *pa;
2083 	u_short *po;
2084 	int i;
2085 
2086 	/*
2087 	 *  Build the bus address table for script A
2088 	 *  from the script A offset table.
2089 	 */
2090 	po = (u_short *) fw->a_ofs;
2091 	pa = (u32 *) &np->fwa_bas;
2092 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
2093 		pa[i] = np->scripta_ba + po[i];
2094 
2095 	/*
2096 	 *  Same for script B.
2097 	 */
2098 	po = (u_short *) fw->b_ofs;
2099 	pa = (u32 *) &np->fwb_bas;
2100 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
2101 		pa[i] = np->scriptb_ba + po[i];
2102 }
2103 
2104 #ifdef	SYM_CONF_GENERIC_SUPPORT
2105 /*
2106  *  Setup routine for firmware #1.
2107  */
2108 static void
2109 sym_fw1_setup(hcb_p np, struct sym_fw *fw)
2110 {
2111 	struct sym_fw1a_scr *scripta0;
2112 	struct sym_fw1b_scr *scriptb0;
2113 
2114 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
2115 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
2116 
2117 	/*
2118 	 *  Fill variable parts in scripts.
2119 	 */
2120 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2121 
2122 	/*
2123 	 *  Setup bus addresses used from the C code..
2124 	 */
2125 	sym_fw_setup_bus_addresses(np, fw);
2126 }
2127 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2128 
2129 /*
2130  *  Setup routine for firmware #2.
2131  */
2132 static void
2133 sym_fw2_setup(hcb_p np, struct sym_fw *fw)
2134 {
2135 	struct sym_fw2a_scr *scripta0;
2136 	struct sym_fw2b_scr *scriptb0;
2137 
2138 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
2139 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
2140 
2141 	/*
2142 	 *  Fill variable parts in scripts.
2143 	 */
2144 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2145 
2146 	/*
2147 	 *  Setup bus addresses used from the C code..
2148 	 */
2149 	sym_fw_setup_bus_addresses(np, fw);
2150 }
2151 
2152 /*
2153  *  Allocate firmware descriptors.
2154  */
2155 #ifdef	SYM_CONF_GENERIC_SUPPORT
2156 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2157 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2158 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2159 
2160 /*
2161  *  Find the most appropriate firmware for a chip.
2162  */
2163 static struct sym_fw *
2164 sym_find_firmware(struct sym_pci_chip *chip)
2165 {
2166 	if (chip->features & FE_LDSTR)
2167 		return &sym_fw2;
2168 #ifdef	SYM_CONF_GENERIC_SUPPORT
2169 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2170 		return &sym_fw1;
2171 #endif
2172 	else
2173 		return 0;
2174 }
2175 
2176 /*
2177  *  Bind a script to physical addresses.
2178  */
2179 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2180 {
2181 	u32 opcode, new, old, tmp1, tmp2;
2182 	u32 *end, *cur;
2183 	int relocs;
2184 
2185 	cur = start;
2186 	end = start + len/4;
2187 
2188 	while (cur < end) {
2189 
2190 		opcode = *cur;
2191 
2192 		/*
2193 		 *  If we forget to change the length
2194 		 *  in scripts, a field will be
2195 		 *  padded with 0. This is an illegal
2196 		 *  command.
2197 		 */
2198 		if (opcode == 0) {
2199 			kprintf ("%s: ERROR0 IN SCRIPT at %d.\n",
2200 				sym_name(np), (int) (cur-start));
2201 			MDELAY (10000);
2202 			++cur;
2203 			continue;
2204 		};
2205 
2206 		/*
2207 		 *  We use the bogus value 0xf00ff00f ;-)
2208 		 *  to reserve data area in SCRIPTS.
2209 		 */
2210 		if (opcode == SCR_DATA_ZERO) {
2211 			*cur++ = 0;
2212 			continue;
2213 		}
2214 
2215 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2216 			kprintf ("%d:  <%x>\n", (int) (cur-start),
2217 				(unsigned)opcode);
2218 
2219 		/*
2220 		 *  We don't have to decode ALL commands
2221 		 */
2222 		switch (opcode >> 28) {
2223 		case 0xf:
2224 			/*
2225 			 *  LOAD / STORE DSA relative, don't relocate.
2226 			 */
2227 			relocs = 0;
2228 			break;
2229 		case 0xe:
2230 			/*
2231 			 *  LOAD / STORE absolute.
2232 			 */
2233 			relocs = 1;
2234 			break;
2235 		case 0xc:
2236 			/*
2237 			 *  COPY has TWO arguments.
2238 			 */
2239 			relocs = 2;
2240 			tmp1 = cur[1];
2241 			tmp2 = cur[2];
2242 			if ((tmp1 ^ tmp2) & 3) {
2243 				kprintf ("%s: ERROR1 IN SCRIPT at %d.\n",
2244 					sym_name(np), (int) (cur-start));
2245 				MDELAY (10000);
2246 			}
2247 			/*
2248 			 *  If PREFETCH feature not enabled, remove
2249 			 *  the NO FLUSH bit if present.
2250 			 */
2251 			if ((opcode & SCR_NO_FLUSH) &&
2252 			    !(np->features & FE_PFEN)) {
2253 				opcode = (opcode & ~SCR_NO_FLUSH);
2254 			}
2255 			break;
2256 		case 0x0:
2257 			/*
2258 			 *  MOVE/CHMOV (absolute address)
2259 			 */
2260 			if (!(np->features & FE_WIDE))
2261 				opcode = (opcode | OPC_MOVE);
2262 			relocs = 1;
2263 			break;
2264 		case 0x1:
2265 			/*
2266 			 *  MOVE/CHMOV (table indirect)
2267 			 */
2268 			if (!(np->features & FE_WIDE))
2269 				opcode = (opcode | OPC_MOVE);
2270 			relocs = 0;
2271 			break;
2272 		case 0x8:
2273 			/*
2274 			 *  JUMP / CALL
2275 			 *  dont't relocate if relative :-)
2276 			 */
2277 			if (opcode & 0x00800000)
2278 				relocs = 0;
2279 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2280 				relocs = 2;
2281 			else
2282 				relocs = 1;
2283 			break;
2284 		case 0x4:
2285 		case 0x5:
2286 		case 0x6:
2287 		case 0x7:
2288 			relocs = 1;
2289 			break;
2290 		default:
2291 			relocs = 0;
2292 			break;
2293 		};
2294 
2295 		/*
2296 		 *  Scriptify:) the opcode.
2297 		 */
2298 		*cur++ = cpu_to_scr(opcode);
2299 
2300 		/*
2301 		 *  If no relocation, assume 1 argument
2302 		 *  and just scriptize:) it.
2303 		 */
2304 		if (!relocs) {
2305 			*cur = cpu_to_scr(*cur);
2306 			++cur;
2307 			continue;
2308 		}
2309 
2310 		/*
2311 		 *  Otherwise performs all needed relocations.
2312 		 */
2313 		while (relocs--) {
2314 			old = *cur;
2315 
2316 			switch (old & RELOC_MASK) {
2317 			case RELOC_REGISTER:
2318 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2319 				break;
2320 			case RELOC_LABEL_A:
2321 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2322 				break;
2323 			case RELOC_LABEL_B:
2324 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2325 				break;
2326 			case RELOC_SOFTC:
2327 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2328 				break;
2329 			case 0:
2330 				/*
2331 				 *  Don't relocate a 0 address.
2332 				 *  They are mostly used for patched or
2333 				 *  script self-modified areas.
2334 				 */
2335 				if (old == 0) {
2336 					new = old;
2337 					break;
2338 				}
2339 				/* fall through */
2340 			default:
2341 				new = 0;
2342 				panic("sym_fw_bind_script: "
2343 				      "weird relocation %x\n", old);
2344 				break;
2345 			}
2346 
2347 			*cur++ = cpu_to_scr(new);
2348 		}
2349 	};
2350 }
2351 
2352 /*--------------------------------------------------------------------------*/
2353 /*--------------------------- END OF FIRMWARES  ----------------------------*/
2354 /*--------------------------------------------------------------------------*/
2355 
2356 /*
2357  *  Function prototypes.
2358  */
2359 static void sym_save_initial_setting (hcb_p np);
2360 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2361 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2362 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2363 static void sym_chip_reset (hcb_p np);
2364 static void sym_soft_reset (hcb_p np);
2365 static void sym_start_reset (hcb_p np);
2366 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2367 static int  sym_wakeup_done (hcb_p np);
2368 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2369 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2370 static void sym_init (hcb_p np, int reason);
2371 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2372 		        u_char *fakp);
2373 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2374 			 u_char div, u_char fak);
2375 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2376 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2377 			 u_char per, u_char wide, u_char div, u_char fak);
2378 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2379 			 u_char per, u_char wide, u_char div, u_char fak);
2380 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2381 static void sym_intr (void *arg);
2382 static void sym_poll (struct cam_sim *sim);
2383 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2384 static void sym_int_sto (hcb_p np);
2385 static void sym_int_udc (hcb_p np);
2386 static void sym_int_sbmc (hcb_p np);
2387 static void sym_int_par (hcb_p np, u_short sist);
2388 static void sym_int_ma (hcb_p np);
2389 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2390 				    int task);
2391 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2392 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2393 static void sym_sir_task_recovery (hcb_p np, int num);
2394 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2395 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2396 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2397 static int  sym_show_msg (u_char * msg);
2398 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2399 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2400 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2401 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2402 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2403 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2404 static void sym_int_sir (hcb_p np);
2405 static void sym_free_ccb (hcb_p np, ccb_p cp);
2406 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2407 static ccb_p sym_alloc_ccb (hcb_p np);
2408 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2409 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2410 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2411 static int  sym_snooptest (hcb_p np);
2412 static void sym_selectclock(hcb_p np, u_char scntl3);
2413 static void sym_getclock (hcb_p np, int mult);
2414 static int  sym_getpciclock (hcb_p np);
2415 static void sym_complete_ok (hcb_p np, ccb_p cp);
2416 static void sym_complete_error (hcb_p np, ccb_p cp);
2417 static void sym_timeout (void *arg);
2418 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2419 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2420 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2421 static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
2422 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2423 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2424 				      ccb_p cp);
2425 #ifdef	FreeBSD_Bus_Dma_Abstraction
2426 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2427 					bus_dma_segment_t *psegs, int nsegs);
2428 #else
2429 static int  sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr,
2430 				 vm_size_t len);
2431 static int  sym_scatter_sg_virtual (hcb_p np, ccb_p cp,
2432 				    bus_dma_segment_t *psegs, int nsegs);
2433 static int  sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr,
2434 				  vm_size_t len);
2435 #endif
2436 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2437 				    bus_dma_segment_t *psegs, int nsegs);
2438 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2439 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2440 			      struct ccb_trans_settings *cts);
2441 static void sym_update_dflags(hcb_p np, u_char *flags,
2442 			      struct ccb_trans_settings *cts);
2443 
2444 #ifdef FreeBSD_Bus_Io_Abstraction
2445 static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2446 static int  sym_pci_probe (device_t dev);
2447 static int  sym_pci_attach (device_t dev);
2448 #else
2449 static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag);
2450 static const char *sym_pci_probe (pcici_t tag, pcidi_t type);
2451 static void sym_pci_attach (pcici_t tag, int unit);
2452 static int sym_pci_attach2 (pcici_t tag, int unit);
2453 #endif
2454 
2455 static void sym_pci_free (hcb_p np);
2456 static int  sym_cam_attach (hcb_p np);
2457 static void sym_cam_free (hcb_p np);
2458 
2459 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2460 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2461 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2462 
2463 /*
2464  *  Print something which allows to retrieve the controler type,
2465  *  unit, target, lun concerned by a kernel message.
2466  */
2467 static void PRINT_TARGET (hcb_p np, int target)
2468 {
2469 	kprintf ("%s:%d:", sym_name(np), target);
2470 }
2471 
2472 static void PRINT_LUN(hcb_p np, int target, int lun)
2473 {
2474 	kprintf ("%s:%d:%d:", sym_name(np), target, lun);
2475 }
2476 
2477 static void PRINT_ADDR (ccb_p cp)
2478 {
2479 	if (cp && cp->cam_ccb)
2480 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2481 }
2482 
2483 /*
2484  *  Take into account this ccb in the freeze count.
2485  */
2486 static void sym_freeze_cam_ccb(union ccb *ccb)
2487 {
2488 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2489 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2490 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2491 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2492 		}
2493 	}
2494 }
2495 
2496 /*
2497  *  Set the status field of a CAM CCB.
2498  */
2499 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2500 {
2501 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2502 	ccb->ccb_h.status |= status;
2503 }
2504 
2505 /*
2506  *  Get the status field of a CAM CCB.
2507  */
2508 static __inline int sym_get_cam_status(union ccb *ccb)
2509 {
2510 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2511 }
2512 
2513 /*
2514  *  Enqueue a CAM CCB.
2515  */
2516 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
2517 {
2518 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2519 	ccb->ccb_h.status = CAM_REQ_INPROG;
2520 
2521 	callout_reset(&ccb->ccb_h.timeout_ch, ccb->ccb_h.timeout*hz/1000,
2522 		      sym_timeout, ccb);
2523 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2524 	ccb->ccb_h.sym_hcb_ptr = np;
2525 
2526 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2527 }
2528 
2529 /*
2530  *  Complete a pending CAM CCB.
2531  */
2532 static void sym_xpt_done(hcb_p np, union ccb *ccb)
2533 {
2534 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2535 		callout_stop(&ccb->ccb_h.timeout_ch);
2536 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2537 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2538 		ccb->ccb_h.sym_hcb_ptr = 0;
2539 	}
2540 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2541 		sym_freeze_cam_ccb(ccb);
2542 	xpt_done(ccb);
2543 }
2544 
2545 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2546 {
2547 	sym_set_cam_status(ccb, cam_status);
2548 	sym_xpt_done(np, ccb);
2549 }
2550 
2551 /*
2552  *  SYMBIOS chip clock divisor table.
2553  *
2554  *  Divisors are multiplied by 10,000,000 in order to make
2555  *  calculations more simple.
2556  */
2557 #define _5M 5000000
2558 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2559 
2560 /*
2561  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2562  *  128 transfers. All chips support at least 16 transfers
2563  *  bursts. The 825A, 875 and 895 chips support bursts of up
2564  *  to 128 transfers and the 895A and 896 support bursts of up
2565  *  to 64 transfers. All other chips support up to 16
2566  *  transfers bursts.
2567  *
2568  *  For PCI 32 bit data transfers each transfer is a DWORD.
2569  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2570  *
2571  *  We use log base 2 (burst length) as internal code, with
2572  *  value 0 meaning "burst disabled".
2573  */
2574 
2575 /*
2576  *  Burst length from burst code.
2577  */
2578 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2579 
2580 /*
2581  *  Burst code from io register bits.
2582  */
2583 #define burst_code(dmode, ctest4, ctest5) \
2584 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2585 
2586 /*
2587  *  Set initial io register bits from burst code.
2588  */
2589 static __inline void sym_init_burst(hcb_p np, u_char bc)
2590 {
2591 	np->rv_ctest4	&= ~0x80;
2592 	np->rv_dmode	&= ~(0x3 << 6);
2593 	np->rv_ctest5	&= ~0x4;
2594 
2595 	if (!bc) {
2596 		np->rv_ctest4	|= 0x80;
2597 	}
2598 	else {
2599 		--bc;
2600 		np->rv_dmode	|= ((bc & 0x3) << 6);
2601 		np->rv_ctest5	|= (bc & 0x4);
2602 	}
2603 }
2604 
2605 
2606 /*
2607  * Print out the list of targets that have some flag disabled by user.
2608  */
2609 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2610 {
2611 	int cnt;
2612 	int i;
2613 
2614 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2615 		if (i == np->myaddr)
2616 			continue;
2617 		if (np->target[i].usrflags & mask) {
2618 			if (!cnt++)
2619 				kprintf("%s: %s disabled for targets",
2620 					sym_name(np), msg);
2621 			kprintf(" %d", i);
2622 		}
2623 	}
2624 	if (cnt)
2625 		kprintf(".\n");
2626 }
2627 
2628 /*
2629  *  Save initial settings of some IO registers.
2630  *  Assumed to have been set by BIOS.
2631  *  We cannot reset the chip prior to reading the
2632  *  IO registers, since informations will be lost.
2633  *  Since the SCRIPTS processor may be running, this
2634  *  is not safe on paper, but it seems to work quite
2635  *  well. :)
2636  */
2637 static void sym_save_initial_setting (hcb_p np)
2638 {
2639 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2640 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2641 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2642 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2643 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2644 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2645 	np->sv_gpcntl	= INB(nc_gpcntl);
2646 	np->sv_stest1	= INB(nc_stest1);
2647 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2648 	np->sv_stest4	= INB(nc_stest4);
2649 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2650 		np->sv_scntl4	= INB(nc_scntl4);
2651 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2652 	}
2653 	else
2654 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2655 }
2656 
2657 /*
2658  *  Prepare io register values used by sym_init() according
2659  *  to selected and supported features.
2660  */
2661 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2662 {
2663 	u_char	burst_max;
2664 	u32	period;
2665 	int i;
2666 
2667 	/*
2668 	 *  Wide ?
2669 	 */
2670 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2671 
2672 	/*
2673 	 *  Get the frequency of the chip's clock.
2674 	 */
2675 	if	(np->features & FE_QUAD)
2676 		np->multiplier	= 4;
2677 	else if	(np->features & FE_DBLR)
2678 		np->multiplier	= 2;
2679 	else
2680 		np->multiplier	= 1;
2681 
2682 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2683 	np->clock_khz	*= np->multiplier;
2684 
2685 	if (np->clock_khz != 40000)
2686 		sym_getclock(np, np->multiplier);
2687 
2688 	/*
2689 	 * Divisor to be used for async (timer pre-scaler).
2690 	 */
2691 	i = np->clock_divn - 1;
2692 	while (--i >= 0) {
2693 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2694 			++i;
2695 			break;
2696 		}
2697 	}
2698 	np->rv_scntl3 = i+1;
2699 
2700 	/*
2701 	 * The C1010 uses hardwired divisors for async.
2702 	 * So, we just throw away, the async. divisor.:-)
2703 	 */
2704 	if (np->features & FE_C10)
2705 		np->rv_scntl3 = 0;
2706 
2707 	/*
2708 	 * Minimum synchronous period factor supported by the chip.
2709 	 * Btw, 'period' is in tenths of nanoseconds.
2710 	 */
2711 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2712 	if	(period <= 250)		np->minsync = 10;
2713 	else if	(period <= 303)		np->minsync = 11;
2714 	else if	(period <= 500)		np->minsync = 12;
2715 	else				np->minsync = (period + 40 - 1) / 40;
2716 
2717 	/*
2718 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2719 	 */
2720 	if	(np->minsync < 25 &&
2721 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2722 		np->minsync = 25;
2723 	else if	(np->minsync < 12 &&
2724 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2725 		np->minsync = 12;
2726 
2727 	/*
2728 	 * Maximum synchronous period factor supported by the chip.
2729 	 */
2730 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2731 	np->maxsync = period > 2540 ? 254 : period / 10;
2732 
2733 	/*
2734 	 * If chip is a C1010, guess the sync limits in DT mode.
2735 	 */
2736 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2737 		if (np->clock_khz == 160000) {
2738 			np->minsync_dt = 9;
2739 			np->maxsync_dt = 50;
2740 			np->maxoffs_dt = 62;
2741 		}
2742 	}
2743 
2744 	/*
2745 	 *  64 bit addressing  (895A/896/1010) ?
2746 	 */
2747 	if (np->features & FE_DAC)
2748 #if BITS_PER_LONG > 32
2749 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2750 #else
2751 		np->rv_ccntl1	|= (DDAC);
2752 #endif
2753 
2754 	/*
2755 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2756   	 */
2757 	if (np->features & FE_NOPM)
2758 		np->rv_ccntl0	|= (ENPMJ);
2759 
2760  	/*
2761 	 *  C1010 Errata.
2762 	 *  In dual channel mode, contention occurs if internal cycles
2763 	 *  are used. Disable internal cycles.
2764 	 */
2765 	if (np->device_id == PCI_ID_LSI53C1010 &&
2766 	    np->revision_id < 0x2)
2767 		np->rv_ccntl0	|=  DILS;
2768 
2769 	/*
2770 	 *  Select burst length (dwords)
2771 	 */
2772 	burst_max	= SYM_SETUP_BURST_ORDER;
2773 	if (burst_max == 255)
2774 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2775 				       np->sv_ctest5);
2776 	if (burst_max > 7)
2777 		burst_max = 7;
2778 	if (burst_max > np->maxburst)
2779 		burst_max = np->maxburst;
2780 
2781 	/*
2782 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2783 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2784 	 *  based transactions on LOAD/STORE instructions. So we have
2785 	 *  to prevent these chips from using such PCI transactions in
2786 	 *  this driver. The generic ncr driver that does not use
2787 	 *  LOAD/STORE instructions does not need this work-around.
2788 	 */
2789 	if ((np->device_id == PCI_ID_SYM53C810 &&
2790 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2791 	    (np->device_id == PCI_ID_SYM53C860 &&
2792 	     np->revision_id <= 0x1))
2793 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2794 
2795 	/*
2796 	 *  Select all supported special features.
2797 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2798 	 *  does not help, but burst op fetch (BOF) does.
2799 	 *  Disabling PFEN makes sure BOF will be used.
2800 	 */
2801 	if (np->features & FE_ERL)
2802 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2803 	if (np->features & FE_BOF)
2804 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2805 	if (np->features & FE_ERMP)
2806 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2807 #if 1
2808 	if ((np->features & FE_PFEN) && !np->ram_ba)
2809 #else
2810 	if (np->features & FE_PFEN)
2811 #endif
2812 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2813 	if (np->features & FE_CLSE)
2814 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2815 	if (np->features & FE_WRIE)
2816 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2817 	if (np->features & FE_DFS)
2818 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2819 
2820 	/*
2821 	 *  Select some other
2822 	 */
2823 	if (SYM_SETUP_PCI_PARITY)
2824 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2825 	if (SYM_SETUP_SCSI_PARITY)
2826 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2827 
2828 	/*
2829 	 *  Get parity checking, host ID and verbose mode from NVRAM
2830 	 */
2831 	np->myaddr = 255;
2832 	sym_nvram_setup_host (np, nvram);
2833 
2834 	/*
2835 	 *  Get SCSI addr of host adapter (set by bios?).
2836 	 */
2837 	if (np->myaddr == 255) {
2838 		np->myaddr = INB(nc_scid) & 0x07;
2839 		if (!np->myaddr)
2840 			np->myaddr = SYM_SETUP_HOST_ID;
2841 	}
2842 
2843 	/*
2844 	 *  Prepare initial io register bits for burst length
2845 	 */
2846 	sym_init_burst(np, burst_max);
2847 
2848 	/*
2849 	 *  Set SCSI BUS mode.
2850 	 *  - LVD capable chips (895/895A/896/1010) report the
2851 	 *    current BUS mode through the STEST4 IO register.
2852 	 *  - For previous generation chips (825/825A/875),
2853 	 *    user has to tell us how to check against HVD,
2854 	 *    since a 100% safe algorithm is not possible.
2855 	 */
2856 	np->scsi_mode = SMODE_SE;
2857 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2858 		np->scsi_mode = (np->sv_stest4 & SMODE);
2859 	else if	(np->features & FE_DIFF) {
2860 		if (SYM_SETUP_SCSI_DIFF == 1) {
2861 			if (np->sv_scntl3) {
2862 				if (np->sv_stest2 & 0x20)
2863 					np->scsi_mode = SMODE_HVD;
2864 			}
2865 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2866 				if (!(INB(nc_gpreg) & 0x08))
2867 					np->scsi_mode = SMODE_HVD;
2868 			}
2869 		}
2870 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2871 			np->scsi_mode = SMODE_HVD;
2872 	}
2873 	if (np->scsi_mode == SMODE_HVD)
2874 		np->rv_stest2 |= 0x20;
2875 
2876 	/*
2877 	 *  Set LED support from SCRIPTS.
2878 	 *  Ignore this feature for boards known to use a
2879 	 *  specific GPIO wiring and for the 895A, 896
2880 	 *  and 1010 that drive the LED directly.
2881 	 */
2882 	if ((SYM_SETUP_SCSI_LED ||
2883 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2884 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2885 	       np->device_id == PCI_ID_SYM53C895))) &&
2886 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2887 		np->features |= FE_LED0;
2888 
2889 	/*
2890 	 *  Set irq mode.
2891 	 */
2892 	switch(SYM_SETUP_IRQ_MODE & 3) {
2893 	case 2:
2894 		np->rv_dcntl	|= IRQM;
2895 		break;
2896 	case 1:
2897 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2898 		break;
2899 	default:
2900 		break;
2901 	}
2902 
2903 	/*
2904 	 *  Configure targets according to driver setup.
2905 	 *  If NVRAM present get targets setup from NVRAM.
2906 	 */
2907 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2908 		tcb_p tp = &np->target[i];
2909 
2910 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2911 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2912 		tp->tinfo.user.period = np->minsync;
2913 		tp->tinfo.user.offset = np->maxoffs;
2914 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2915 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2916 		tp->usrtags = SYM_SETUP_MAX_TAG;
2917 
2918 		sym_nvram_setup_target (np, i, nvram);
2919 
2920 		/*
2921 		 *  For now, guess PPR/DT support from the period
2922 		 *  and BUS width.
2923 		 */
2924 		if (np->features & FE_ULTRA3) {
2925 			if (tp->tinfo.user.period <= 9	&&
2926 			    tp->tinfo.user.width == BUS_16_BIT) {
2927 				tp->tinfo.user.options |= PPR_OPT_DT;
2928 				tp->tinfo.user.offset   = np->maxoffs_dt;
2929 				tp->tinfo.user.spi_version = 3;
2930 			}
2931 		}
2932 
2933 		if (!tp->usrtags)
2934 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2935 	}
2936 
2937 	/*
2938 	 *  Let user know about the settings.
2939 	 */
2940 	i = nvram->type;
2941 	kprintf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2942 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2943 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2944 		np->myaddr,
2945 		(np->features & FE_ULTRA3) ? 80 :
2946 		(np->features & FE_ULTRA2) ? 40 :
2947 		(np->features & FE_ULTRA)  ? 20 : 10,
2948 		sym_scsi_bus_mode(np->scsi_mode),
2949 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2950 	/*
2951 	 *  Tell him more on demand.
2952 	 */
2953 	if (sym_verbose) {
2954 		kprintf("%s: %s IRQ line driver%s\n",
2955 			sym_name(np),
2956 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2957 			np->ram_ba ? ", using on-chip SRAM" : "");
2958 		kprintf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2959 		if (np->features & FE_NOPM)
2960 			kprintf("%s: handling phase mismatch from SCRIPTS.\n",
2961 			       sym_name(np));
2962 	}
2963 	/*
2964 	 *  And still more.
2965 	 */
2966 	if (sym_verbose > 1) {
2967 		kprintf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2968 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2969 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2970 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2971 
2972 		kprintf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2973 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2974 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2975 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2976 	}
2977 	/*
2978 	 *  Let user be aware of targets that have some disable flags set.
2979 	 */
2980 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2981 	if (sym_verbose)
2982 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2983 				       "SCAN FOR LUNS");
2984 
2985 	return 0;
2986 }
2987 
2988 /*
2989  *  Prepare the next negotiation message if needed.
2990  *
2991  *  Fill in the part of message buffer that contains the
2992  *  negotiation and the nego_status field of the CCB.
2993  *  Returns the size of the message in bytes.
2994  */
2995 
2996 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2997 {
2998 	tcb_p tp = &np->target[cp->target];
2999 	int msglen = 0;
3000 
3001 	/*
3002 	 *  Early C1010 chips need a work-around for DT
3003 	 *  data transfer to work.
3004 	 */
3005 	if (!(np->features & FE_U3EN))
3006 		tp->tinfo.goal.options = 0;
3007 	/*
3008 	 *  negotiate using PPR ?
3009 	 */
3010 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
3011 		nego = NS_PPR;
3012 	/*
3013 	 *  negotiate wide transfers ?
3014 	 */
3015 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
3016 		nego = NS_WIDE;
3017 	/*
3018 	 *  negotiate synchronous transfers?
3019 	 */
3020 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
3021 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
3022 		nego = NS_SYNC;
3023 
3024 	switch (nego) {
3025 	case NS_SYNC:
3026 		msgptr[msglen++] = M_EXTENDED;
3027 		msgptr[msglen++] = 3;
3028 		msgptr[msglen++] = M_X_SYNC_REQ;
3029 		msgptr[msglen++] = tp->tinfo.goal.period;
3030 		msgptr[msglen++] = tp->tinfo.goal.offset;
3031 		break;
3032 	case NS_WIDE:
3033 		msgptr[msglen++] = M_EXTENDED;
3034 		msgptr[msglen++] = 2;
3035 		msgptr[msglen++] = M_X_WIDE_REQ;
3036 		msgptr[msglen++] = tp->tinfo.goal.width;
3037 		break;
3038 	case NS_PPR:
3039 		msgptr[msglen++] = M_EXTENDED;
3040 		msgptr[msglen++] = 6;
3041 		msgptr[msglen++] = M_X_PPR_REQ;
3042 		msgptr[msglen++] = tp->tinfo.goal.period;
3043 		msgptr[msglen++] = 0;
3044 		msgptr[msglen++] = tp->tinfo.goal.offset;
3045 		msgptr[msglen++] = tp->tinfo.goal.width;
3046 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
3047 		break;
3048 	};
3049 
3050 	cp->nego_status = nego;
3051 
3052 	if (nego) {
3053 		tp->nego_cp = cp; /* Keep track a nego will be performed */
3054 		if (DEBUG_FLAGS & DEBUG_NEGO) {
3055 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
3056 					  nego == NS_WIDE ? "wide msgout" :
3057 					  "ppr msgout", msgptr);
3058 		};
3059 	};
3060 
3061 	return msglen;
3062 }
3063 
3064 /*
3065  *  Insert a job into the start queue.
3066  */
3067 static void sym_put_start_queue(hcb_p np, ccb_p cp)
3068 {
3069 	u_short	qidx;
3070 
3071 #ifdef SYM_CONF_IARB_SUPPORT
3072 	/*
3073 	 *  If the previously queued CCB is not yet done,
3074 	 *  set the IARB hint. The SCRIPTS will go with IARB
3075 	 *  for this job when starting the previous one.
3076 	 *  We leave devices a chance to win arbitration by
3077 	 *  not using more than 'iarb_max' consecutive
3078 	 *  immediate arbitrations.
3079 	 */
3080 	if (np->last_cp && np->iarb_count < np->iarb_max) {
3081 		np->last_cp->host_flags |= HF_HINT_IARB;
3082 		++np->iarb_count;
3083 	}
3084 	else
3085 		np->iarb_count = 0;
3086 	np->last_cp = cp;
3087 #endif
3088 
3089 	/*
3090 	 *  Insert first the idle task and then our job.
3091 	 *  The MB should ensure proper ordering.
3092 	 */
3093 	qidx = np->squeueput + 2;
3094 	if (qidx >= MAX_QUEUE*2) qidx = 0;
3095 
3096 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
3097 	MEMORY_BARRIER();
3098 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
3099 
3100 	np->squeueput = qidx;
3101 
3102 	if (DEBUG_FLAGS & DEBUG_QUEUE)
3103 		kprintf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
3104 
3105 	/*
3106 	 *  Script processor may be waiting for reselect.
3107 	 *  Wake it up.
3108 	 */
3109 	MEMORY_BARRIER();
3110 	OUTB (nc_istat, SIGP|np->istat_sem);
3111 }
3112 
3113 
3114 /*
3115  *  Soft reset the chip.
3116  *
3117  *  Raising SRST when the chip is running may cause
3118  *  problems on dual function chips (see below).
3119  *  On the other hand, LVD devices need some delay
3120  *  to settle and report actual BUS mode in STEST4.
3121  */
3122 static void sym_chip_reset (hcb_p np)
3123 {
3124 	OUTB (nc_istat, SRST);
3125 	UDELAY (10);
3126 	OUTB (nc_istat, 0);
3127 	UDELAY(2000);	/* For BUS MODE to settle */
3128 }
3129 
3130 /*
3131  *  Soft reset the chip.
3132  *
3133  *  Some 896 and 876 chip revisions may hang-up if we set
3134  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
3135  *  are running.
3136  *  So, we need to abort the current operation prior to
3137  *  soft resetting the chip.
3138  */
3139 static void sym_soft_reset (hcb_p np)
3140 {
3141 	u_char istat;
3142 	int i;
3143 
3144 	OUTB (nc_istat, CABRT);
3145 	for (i = 1000000 ; i ; --i) {
3146 		istat = INB (nc_istat);
3147 		if (istat & SIP) {
3148 			INW (nc_sist);
3149 			continue;
3150 		}
3151 		if (istat & DIP) {
3152 			OUTB (nc_istat, 0);
3153 			INB (nc_dstat);
3154 			break;
3155 		}
3156 	}
3157 	if (!i)
3158 		kprintf("%s: unable to abort current chip operation.\n",
3159 			sym_name(np));
3160 	sym_chip_reset (np);
3161 }
3162 
3163 /*
3164  *  Start reset process.
3165  *
3166  *  The interrupt handler will reinitialize the chip.
3167  */
3168 static void sym_start_reset(hcb_p np)
3169 {
3170 	(void) sym_reset_scsi_bus(np, 1);
3171 }
3172 
3173 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3174 {
3175 	u32 term;
3176 	int retv = 0;
3177 
3178 	sym_soft_reset(np);	/* Soft reset the chip */
3179 	if (enab_int)
3180 		OUTW (nc_sien, RST);
3181 	/*
3182 	 *  Enable Tolerant, reset IRQD if present and
3183 	 *  properly set IRQ mode, prior to resetting the bus.
3184 	 */
3185 	OUTB (nc_stest3, TE);
3186 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3187 	OUTB (nc_scntl1, CRST);
3188 	UDELAY (200);
3189 
3190 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3191 		goto out;
3192 	/*
3193 	 *  Check for no terminators or SCSI bus shorts to ground.
3194 	 *  Read SCSI data bus, data parity bits and control signals.
3195 	 *  We are expecting RESET to be TRUE and other signals to be
3196 	 *  FALSE.
3197 	 */
3198 	term =	INB(nc_sstat0);
3199 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3200 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3201 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3202 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3203 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3204 
3205 	if (!(np->features & FE_WIDE))
3206 		term &= 0x3ffff;
3207 
3208 	if (term != (2<<7)) {
3209 		kprintf("%s: suspicious SCSI data while resetting the BUS.\n",
3210 			sym_name(np));
3211 		kprintf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3212 			"0x%lx, expecting 0x%lx\n",
3213 			sym_name(np),
3214 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3215 			(u_long)term, (u_long)(2<<7));
3216 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3217 			retv = 1;
3218 	}
3219 out:
3220 	OUTB (nc_scntl1, 0);
3221 	/* MDELAY(100); */
3222 	return retv;
3223 }
3224 
3225 /*
3226  *  The chip may have completed jobs. Look at the DONE QUEUE.
3227  *
3228  *  On architectures that may reorder LOAD/STORE operations,
3229  *  a memory barrier may be needed after the reading of the
3230  *  so-called `flag' and prior to dealing with the data.
3231  */
3232 static int sym_wakeup_done (hcb_p np)
3233 {
3234 	ccb_p cp;
3235 	int i, n;
3236 	u32 dsa;
3237 
3238 	n = 0;
3239 	i = np->dqueueget;
3240 	while (1) {
3241 		dsa = scr_to_cpu(np->dqueue[i]);
3242 		if (!dsa)
3243 			break;
3244 		np->dqueue[i] = 0;
3245 		if ((i = i+2) >= MAX_QUEUE*2)
3246 			i = 0;
3247 
3248 		cp = sym_ccb_from_dsa(np, dsa);
3249 		if (cp) {
3250 			MEMORY_BARRIER();
3251 			sym_complete_ok (np, cp);
3252 			++n;
3253 		}
3254 		else
3255 			kprintf ("%s: bad DSA (%x) in done queue.\n",
3256 				sym_name(np), (u_int) dsa);
3257 	}
3258 	np->dqueueget = i;
3259 
3260 	return n;
3261 }
3262 
3263 /*
3264  *  Complete all active CCBs with error.
3265  *  Used on CHIP/SCSI RESET.
3266  */
3267 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3268 {
3269 	/*
3270 	 *  Move all active CCBs to the COMP queue
3271 	 *  and flush this queue.
3272 	 */
3273 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3274 	sym_que_init(&np->busy_ccbq);
3275 	sym_flush_comp_queue(np, cam_status);
3276 }
3277 
3278 /*
3279  *  Start chip.
3280  *
3281  *  'reason' means:
3282  *     0: initialisation.
3283  *     1: SCSI BUS RESET delivered or received.
3284  *     2: SCSI BUS MODE changed.
3285  */
3286 static void sym_init (hcb_p np, int reason)
3287 {
3288  	int	i;
3289 	u32	phys;
3290 
3291  	/*
3292 	 *  Reset chip if asked, otherwise just clear fifos.
3293  	 */
3294 	if (reason == 1)
3295 		sym_soft_reset(np);
3296 	else {
3297 		OUTB (nc_stest3, TE|CSF);
3298 		OUTONB (nc_ctest3, CLF);
3299 	}
3300 
3301 	/*
3302 	 *  Clear Start Queue
3303 	 */
3304 	phys = np->squeue_ba;
3305 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3306 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3307 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3308 	}
3309 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3310 
3311 	/*
3312 	 *  Start at first entry.
3313 	 */
3314 	np->squeueput = 0;
3315 
3316 	/*
3317 	 *  Clear Done Queue
3318 	 */
3319 	phys = np->dqueue_ba;
3320 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3321 		np->dqueue[i]   = 0;
3322 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3323 	}
3324 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3325 
3326 	/*
3327 	 *  Start at first entry.
3328 	 */
3329 	np->dqueueget = 0;
3330 
3331 	/*
3332 	 *  Install patches in scripts.
3333 	 *  This also let point to first position the start
3334 	 *  and done queue pointers used from SCRIPTS.
3335 	 */
3336 	np->fw_patch(np);
3337 
3338 	/*
3339 	 *  Wakeup all pending jobs.
3340 	 */
3341 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3342 
3343 	/*
3344 	 *  Init chip.
3345 	 */
3346 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3347 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3348 
3349 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3350 					/*  full arb., ena parity, par->ATN  */
3351 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3352 
3353 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3354 
3355 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3356 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3357 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3358 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3359 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3360 
3361 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3362 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3363 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3364 
3365 	/* Extended Sreq/Sack filtering not supported on the C10 */
3366 	if (np->features & FE_C10)
3367 		OUTB (nc_stest2, np->rv_stest2);
3368 	else
3369 		OUTB (nc_stest2, EXT|np->rv_stest2);
3370 
3371 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3372 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3373 
3374 	/*
3375 	 *  For now, disable AIP generation on C1010-66.
3376 	 */
3377 	if (np->device_id == PCI_ID_LSI53C1010_2)
3378 		OUTB (nc_aipcntl1, DISAIP);
3379 
3380 	/*
3381 	 *  C10101 Errata.
3382 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3383 	 *  STEST1 register to disable SGE. We probably should do
3384 	 *  that from SCRIPTS for each selection/reselection, but
3385 	 *  I just don't want. :)
3386 	 */
3387 	if (np->device_id == PCI_ID_LSI53C1010 &&
3388 	    /* np->revision_id < 0xff */ 1)
3389 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3390 
3391 	/*
3392 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3393 	 *  Disable overlapped arbitration for some dual function devices,
3394 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3395 	 */
3396 	if (np->device_id == PCI_ID_SYM53C875)
3397 		OUTB (nc_ctest0, (1<<5));
3398 	else if (np->device_id == PCI_ID_SYM53C896)
3399 		np->rv_ccntl0 |= DPR;
3400 
3401 	/*
3402 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3403 	 *  and/or hardware phase mismatch, since only such chips
3404 	 *  seem to support those IO registers.
3405 	 */
3406 	if (np->features & (FE_DAC|FE_NOPM)) {
3407 		OUTB (nc_ccntl0, np->rv_ccntl0);
3408 		OUTB (nc_ccntl1, np->rv_ccntl1);
3409 	}
3410 
3411 	/*
3412 	 *  If phase mismatch handled by scripts (895A/896/1010),
3413 	 *  set PM jump addresses.
3414 	 */
3415 	if (np->features & FE_NOPM) {
3416 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3417 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3418 	}
3419 
3420 	/*
3421 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3422 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3423 	 */
3424 	if (np->features & FE_LED0)
3425 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3426 	else if (np->features & FE_LEDC)
3427 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3428 
3429 	/*
3430 	 *      enable ints
3431 	 */
3432 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3433 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3434 
3435 	/*
3436 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3437 	 *  Try to eat the spurious SBMC interrupt that may occur when
3438 	 *  we reset the chip but not the SCSI BUS (at initialization).
3439 	 */
3440 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3441 		OUTONW (nc_sien, SBMC);
3442 		if (reason == 0) {
3443 			MDELAY(100);
3444 			INW (nc_sist);
3445 		}
3446 		np->scsi_mode = INB (nc_stest4) & SMODE;
3447 	}
3448 
3449 	/*
3450 	 *  Fill in target structure.
3451 	 *  Reinitialize usrsync.
3452 	 *  Reinitialize usrwide.
3453 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3454 	 */
3455 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3456 		tcb_p tp = &np->target[i];
3457 
3458 		tp->to_reset  = 0;
3459 		tp->head.sval = 0;
3460 		tp->head.wval = np->rv_scntl3;
3461 		tp->head.uval = 0;
3462 
3463 		tp->tinfo.current.period = 0;
3464 		tp->tinfo.current.offset = 0;
3465 		tp->tinfo.current.width  = BUS_8_BIT;
3466 		tp->tinfo.current.options = 0;
3467 	}
3468 
3469 	/*
3470 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3471 	 *  and start script processor.
3472 	 */
3473 	if (np->ram_ba) {
3474 		if (sym_verbose > 1)
3475 			kprintf ("%s: Downloading SCSI SCRIPTS.\n",
3476 				sym_name(np));
3477 		if (np->ram_ws == 8192) {
3478 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3479 			OUTL (nc_mmws, np->scr_ram_seg);
3480 			OUTL (nc_mmrs, np->scr_ram_seg);
3481 			OUTL (nc_sfs,  np->scr_ram_seg);
3482 			phys = SCRIPTB_BA (np, start64);
3483 		}
3484 		else
3485 			phys = SCRIPTA_BA (np, init);
3486 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3487 	}
3488 	else
3489 		phys = SCRIPTA_BA (np, init);
3490 
3491 	np->istat_sem = 0;
3492 
3493 	OUTL (nc_dsa, np->hcb_ba);
3494 	OUTL_DSP (phys);
3495 
3496 	/*
3497 	 *  Notify the XPT about the RESET condition.
3498 	 */
3499 	if (reason != 0)
3500 		xpt_async(AC_BUS_RESET, np->path, NULL);
3501 }
3502 
3503 /*
3504  *  Get clock factor and sync divisor for a given
3505  *  synchronous factor period.
3506  */
3507 static int
3508 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3509 {
3510 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3511 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3512 	u32	fak;			/* Sync factor in sxfer		*/
3513 	u32	per;			/* Period in tenths of ns	*/
3514 	u32	kpc;			/* (per * clk)			*/
3515 	int	ret;
3516 
3517 	/*
3518 	 *  Compute the synchronous period in tenths of nano-seconds
3519 	 */
3520 	if (dt && sfac <= 9)	per = 125;
3521 	else if	(sfac <= 10)	per = 250;
3522 	else if	(sfac == 11)	per = 303;
3523 	else if	(sfac == 12)	per = 500;
3524 	else			per = 40 * sfac;
3525 	ret = per;
3526 
3527 	kpc = per * clk;
3528 	if (dt)
3529 		kpc <<= 1;
3530 
3531 	/*
3532 	 *  For earliest C10 revision 0, we cannot use extra
3533 	 *  clocks for the setting of the SCSI clocking.
3534 	 *  Note that this limits the lowest sync data transfer
3535 	 *  to 5 Mega-transfers per second and may result in
3536 	 *  using higher clock divisors.
3537 	 */
3538 #if 1
3539 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3540 		/*
3541 		 *  Look for the lowest clock divisor that allows an
3542 		 *  output speed not faster than the period.
3543 		 */
3544 		while (div > 0) {
3545 			--div;
3546 			if (kpc > (div_10M[div] << 2)) {
3547 				++div;
3548 				break;
3549 			}
3550 		}
3551 		fak = 0;			/* No extra clocks */
3552 		if (div == np->clock_divn) {	/* Are we too fast ? */
3553 			ret = -1;
3554 		}
3555 		*divp = div;
3556 		*fakp = fak;
3557 		return ret;
3558 	}
3559 #endif
3560 
3561 	/*
3562 	 *  Look for the greatest clock divisor that allows an
3563 	 *  input speed faster than the period.
3564 	 */
3565 	while (div-- > 0)
3566 		if (kpc >= (div_10M[div] << 2)) break;
3567 
3568 	/*
3569 	 *  Calculate the lowest clock factor that allows an output
3570 	 *  speed not faster than the period, and the max output speed.
3571 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3572 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3573 	 */
3574 	if (dt) {
3575 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3576 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3577 	}
3578 	else {
3579 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3580 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3581 	}
3582 
3583 	/*
3584 	 *  Check against our hardware limits, or bugs :).
3585 	 */
3586 	if (fak < 0)	{fak = 0; ret = -1;}
3587 	if (fak > 2)	{fak = 2; ret = -1;}
3588 
3589 	/*
3590 	 *  Compute and return sync parameters.
3591 	 */
3592 	*divp = div;
3593 	*fakp = fak;
3594 
3595 	return ret;
3596 }
3597 
3598 /*
3599  *  Tell the SCSI layer about the new transfer parameters.
3600  */
3601 static void
3602 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3603 {
3604 	struct ccb_trans_settings cts;
3605 	struct cam_path *path;
3606 	int sts;
3607 	tcb_p tp = &np->target[target];
3608 
3609 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3610 	                      CAM_LUN_WILDCARD);
3611 	if (sts != CAM_REQ_CMP)
3612 		return;
3613 
3614 	bzero(&cts, sizeof(cts));
3615 
3616 #define	cts__scsi (cts.proto_specific.scsi)
3617 #define	cts__spi  (cts.xport_specific.spi)
3618 
3619 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3620 	cts.protocol  = PROTO_SCSI;
3621 	cts.transport = XPORT_SPI;
3622 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3623 	cts.transport_version = tp->tinfo.current.spi_version;
3624 
3625 	cts__spi.valid = spi_valid;
3626 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3627 		cts__spi.sync_period = tp->tinfo.current.period;
3628 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3629 		cts__spi.sync_offset = tp->tinfo.current.offset;
3630 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3631 		cts__spi.bus_width   = tp->tinfo.current.width;
3632 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3633 		cts__spi.ppr_options = tp->tinfo.current.options;
3634 #undef cts__spi
3635 #undef cts__scsi
3636 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3637 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3638 	xpt_free_path(path);
3639 }
3640 
3641 #define SYM_SPI_VALID_WDTR		\
3642 	CTS_SPI_VALID_BUS_WIDTH |	\
3643 	CTS_SPI_VALID_SYNC_RATE |	\
3644 	CTS_SPI_VALID_SYNC_OFFSET
3645 #define SYM_SPI_VALID_SDTR		\
3646 	CTS_SPI_VALID_SYNC_RATE |	\
3647 	CTS_SPI_VALID_SYNC_OFFSET
3648 #define SYM_SPI_VALID_PPR		\
3649 	CTS_SPI_VALID_PPR_OPTIONS |	\
3650 	CTS_SPI_VALID_BUS_WIDTH |	\
3651 	CTS_SPI_VALID_SYNC_RATE |	\
3652 	CTS_SPI_VALID_SYNC_OFFSET
3653 
3654 /*
3655  *  We received a WDTR.
3656  *  Let everything be aware of the changes.
3657  */
3658 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3659 {
3660 	tcb_p tp = &np->target[cp->target];
3661 
3662 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3663 
3664 	/*
3665 	 *  Tell the SCSI layer about the new transfer parameters.
3666 	 */
3667 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3668 	tp->tinfo.current.offset = 0;
3669 	tp->tinfo.current.period = 0;
3670 	tp->tinfo.current.options = 0;
3671 
3672 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3673 }
3674 
3675 /*
3676  *  We received a SDTR.
3677  *  Let everything be aware of the changes.
3678  */
3679 static void
3680 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3681 {
3682 	tcb_p tp = &np->target[cp->target];
3683 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3684 
3685 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3686 
3687 	/*
3688 	 *  Tell the SCSI layer about the new transfer parameters.
3689 	 */
3690 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3691 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3692 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3693 
3694 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3695 }
3696 
3697 /*
3698  *  We received a PPR.
3699  *  Let everything be aware of the changes.
3700  */
3701 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3702 			 u_char per, u_char wide, u_char div, u_char fak)
3703 {
3704 	tcb_p tp = &np->target[cp->target];
3705 
3706 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3707 
3708 	/*
3709 	 *  Tell the SCSI layer about the new transfer parameters.
3710 	 */
3711 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3712 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3713 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3714 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3715 
3716 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3717 }
3718 
3719 /*
3720  *  Switch trans mode for current job and it's target.
3721  */
3722 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3723 			 u_char per, u_char wide, u_char div, u_char fak)
3724 {
3725 	SYM_QUEHEAD *qp;
3726 	union	ccb *ccb;
3727 	tcb_p tp;
3728 	u_char target = INB (nc_sdid) & 0x0f;
3729 	u_char sval, wval, uval;
3730 
3731 	assert (cp);
3732 	if (!cp) return;
3733 	ccb = cp->cam_ccb;
3734 	assert (ccb);
3735 	if (!ccb) return;
3736 	assert (target == (cp->target & 0xf));
3737 	tp = &np->target[target];
3738 
3739 	sval = tp->head.sval;
3740 	wval = tp->head.wval;
3741 	uval = tp->head.uval;
3742 
3743 #if 0
3744 	kprintf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3745 		sval, wval, uval, np->rv_scntl3);
3746 #endif
3747 	/*
3748 	 *  Set the offset.
3749 	 */
3750 	if (!(np->features & FE_C10))
3751 		sval = (sval & ~0x1f) | ofs;
3752 	else
3753 		sval = (sval & ~0x3f) | ofs;
3754 
3755 	/*
3756 	 *  Set the sync divisor and extra clock factor.
3757 	 */
3758 	if (ofs != 0) {
3759 		wval = (wval & ~0x70) | ((div+1) << 4);
3760 		if (!(np->features & FE_C10))
3761 			sval = (sval & ~0xe0) | (fak << 5);
3762 		else {
3763 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3764 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3765 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3766 		}
3767 	}
3768 
3769 	/*
3770 	 *  Set the bus width.
3771 	 */
3772 	wval = wval & ~EWS;
3773 	if (wide != 0)
3774 		wval |= EWS;
3775 
3776 	/*
3777 	 *  Set misc. ultra enable bits.
3778 	 */
3779 	if (np->features & FE_C10) {
3780 		uval = uval & ~(U3EN|AIPCKEN);
3781 		if (dt)	{
3782 			assert(np->features & FE_U3EN);
3783 			uval |= U3EN;
3784 		}
3785 	}
3786 	else {
3787 		wval = wval & ~ULTRA;
3788 		if (per <= 12)	wval |= ULTRA;
3789 	}
3790 
3791 	/*
3792 	 *   Stop there if sync parameters are unchanged.
3793 	 */
3794 	if (tp->head.sval == sval &&
3795 	    tp->head.wval == wval &&
3796 	    tp->head.uval == uval)
3797 		return;
3798 	tp->head.sval = sval;
3799 	tp->head.wval = wval;
3800 	tp->head.uval = uval;
3801 
3802 	/*
3803 	 *  Disable extended Sreq/Sack filtering if per < 50.
3804 	 *  Not supported on the C1010.
3805 	 */
3806 	if (per < 50 && !(np->features & FE_C10))
3807 		OUTOFFB (nc_stest2, EXT);
3808 
3809 	/*
3810 	 *  set actual value and sync_status
3811 	 */
3812 	OUTB (nc_sxfer,  tp->head.sval);
3813 	OUTB (nc_scntl3, tp->head.wval);
3814 
3815 	if (np->features & FE_C10) {
3816 		OUTB (nc_scntl4, tp->head.uval);
3817 	}
3818 
3819 	/*
3820 	 *  patch ALL busy ccbs of this target.
3821 	 */
3822 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3823 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3824 		if (cp->target != target)
3825 			continue;
3826 		cp->phys.select.sel_scntl3 = tp->head.wval;
3827 		cp->phys.select.sel_sxfer  = tp->head.sval;
3828 		if (np->features & FE_C10) {
3829 			cp->phys.select.sel_scntl4 = tp->head.uval;
3830 		}
3831 	}
3832 }
3833 
3834 /*
3835  *  log message for real hard errors
3836  *
3837  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3838  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3839  *
3840  *  exception register:
3841  *  	ds:	dstat
3842  *  	si:	sist
3843  *
3844  *  SCSI bus lines:
3845  *  	so:	control lines as driven by chip.
3846  *  	si:	control lines as seen by chip.
3847  *  	sd:	scsi data lines as seen by chip.
3848  *
3849  *  wide/fastmode:
3850  *  	sxfer:	(see the manual)
3851  *  	scntl3:	(see the manual)
3852  *
3853  *  current script command:
3854  *  	dsp:	script adress (relative to start of script).
3855  *  	dbc:	first word of script command.
3856  *
3857  *  First 24 register of the chip:
3858  *  	r0..rf
3859  */
3860 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3861 {
3862 	u32	dsp;
3863 	int	script_ofs;
3864 	int	script_size;
3865 	char	*script_name;
3866 	u_char	*script_base;
3867 	int	i;
3868 
3869 	dsp	= INL (nc_dsp);
3870 
3871 	if	(dsp > np->scripta_ba &&
3872 		 dsp <= np->scripta_ba + np->scripta_sz) {
3873 		script_ofs	= dsp - np->scripta_ba;
3874 		script_size	= np->scripta_sz;
3875 		script_base	= (u_char *) np->scripta0;
3876 		script_name	= "scripta";
3877 	}
3878 	else if (np->scriptb_ba < dsp &&
3879 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3880 		script_ofs	= dsp - np->scriptb_ba;
3881 		script_size	= np->scriptb_sz;
3882 		script_base	= (u_char *) np->scriptb0;
3883 		script_name	= "scriptb";
3884 	} else {
3885 		script_ofs	= dsp;
3886 		script_size	= 0;
3887 		script_base	= 0;
3888 		script_name	= "mem";
3889 	}
3890 
3891 	kprintf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3892 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3893 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3894 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3895 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3896 		(unsigned)INL (nc_dbc));
3897 
3898 	if (((script_ofs & 3) == 0) &&
3899 	    (unsigned)script_ofs < script_size) {
3900 		kprintf ("%s: script cmd = %08x\n", sym_name(np),
3901 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3902 	}
3903 
3904         kprintf ("%s: regdump:", sym_name(np));
3905         for (i=0; i<24;i++)
3906             kprintf (" %02x", (unsigned)INB_OFF(i));
3907         kprintf (".\n");
3908 
3909 	/*
3910 	 *  PCI BUS error, read the PCI ststus register.
3911 	 */
3912 	if (dstat & (MDPE|BF)) {
3913 		u_short pci_sts;
3914 #ifdef FreeBSD_Bus_Io_Abstraction
3915 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3916 #else
3917 		pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2);
3918 #endif
3919 		if (pci_sts & 0xf900) {
3920 #ifdef FreeBSD_Bus_Io_Abstraction
3921 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3922 #else
3923 			pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2);
3924 #endif
3925 			kprintf("%s: PCI STATUS = 0x%04x\n",
3926 				sym_name(np), pci_sts & 0xf900);
3927 		}
3928 	}
3929 }
3930 
3931 /*
3932  *  chip interrupt handler
3933  *
3934  *  In normal situations, interrupt conditions occur one at
3935  *  a time. But when something bad happens on the SCSI BUS,
3936  *  the chip may raise several interrupt flags before
3937  *  stopping and interrupting the CPU. The additionnal
3938  *  interrupt flags are stacked in some extra registers
3939  *  after the SIP and/or DIP flag has been raised in the
3940  *  ISTAT. After the CPU has read the interrupt condition
3941  *  flag from SIST or DSTAT, the chip unstacks the other
3942  *  interrupt flags and sets the corresponding bits in
3943  *  SIST or DSTAT. Since the chip starts stacking once the
3944  *  SIP or DIP flag is set, there is a small window of time
3945  *  where the stacking does not occur.
3946  *
3947  *  Typically, multiple interrupt conditions may happen in
3948  *  the following situations:
3949  *
3950  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3951  *    When an parity error is detected in input phase
3952  *    and the device switches to msg-in phase inside a
3953  *    block MOV.
3954  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3955  *    When a stupid device does not want to handle the
3956  *    recovery of an SCSI parity error.
3957  *  - Some combinations of STO, PAR, UDC, ...
3958  *    When using non compliant SCSI stuff, when user is
3959  *    doing non compliant hot tampering on the BUS, when
3960  *    something really bad happens to a device, etc ...
3961  *
3962  *  The heuristic suggested by SYMBIOS to handle
3963  *  multiple interrupts is to try unstacking all
3964  *  interrupts conditions and to handle them on some
3965  *  priority based on error severity.
3966  *  This will work when the unstacking has been
3967  *  successful, but we cannot be 100 % sure of that,
3968  *  since the CPU may have been faster to unstack than
3969  *  the chip is able to stack. Hmmm ... But it seems that
3970  *  such a situation is very unlikely to happen.
3971  *
3972  *  If this happen, for example STO caught by the CPU
3973  *  then UDC happenning before the CPU have restarted
3974  *  the SCRIPTS, the driver may wrongly complete the
3975  *  same command on UDC, since the SCRIPTS didn't restart
3976  *  and the DSA still points to the same command.
3977  *  We avoid this situation by setting the DSA to an
3978  *  invalid value when the CCB is completed and before
3979  *  restarting the SCRIPTS.
3980  *
3981  *  Another issue is that we need some section of our
3982  *  recovery procedures to be somehow uninterruptible but
3983  *  the SCRIPTS processor does not provides such a
3984  *  feature. For this reason, we handle recovery preferently
3985  *  from the C code and check against some SCRIPTS critical
3986  *  sections from the C code.
3987  *
3988  *  Hopefully, the interrupt handling of the driver is now
3989  *  able to resist to weird BUS error conditions, but donnot
3990  *  ask me for any guarantee that it will never fail. :-)
3991  *  Use at your own decision and risk.
3992  */
3993 
3994 static void sym_intr1 (hcb_p np)
3995 {
3996 	u_char	istat, istatc;
3997 	u_char	dstat;
3998 	u_short	sist;
3999 
4000 	/*
4001 	 *  interrupt on the fly ?
4002 	 *
4003 	 *  A `dummy read' is needed to ensure that the
4004 	 *  clear of the INTF flag reaches the device
4005 	 *  before the scanning of the DONE queue.
4006 	 */
4007 	istat = INB (nc_istat);
4008 	if (istat & INTF) {
4009 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
4010 		istat = INB (nc_istat);		/* DUMMY READ */
4011 		if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("F ");
4012 		(void)sym_wakeup_done (np);
4013 	};
4014 
4015 	if (!(istat & (SIP|DIP)))
4016 		return;
4017 
4018 #if 0	/* We should never get this one */
4019 	if (istat & CABRT)
4020 		OUTB (nc_istat, CABRT);
4021 #endif
4022 
4023 	/*
4024 	 *  PAR and MA interrupts may occur at the same time,
4025 	 *  and we need to know of both in order to handle
4026 	 *  this situation properly. We try to unstack SCSI
4027 	 *  interrupts for that reason. BTW, I dislike a LOT
4028 	 *  such a loop inside the interrupt routine.
4029 	 *  Even if DMA interrupt stacking is very unlikely to
4030 	 *  happen, we also try unstacking these ones, since
4031 	 *  this has no performance impact.
4032 	 */
4033 	sist	= 0;
4034 	dstat	= 0;
4035 	istatc	= istat;
4036 	do {
4037 		if (istatc & SIP)
4038 			sist  |= INW (nc_sist);
4039 		if (istatc & DIP)
4040 			dstat |= INB (nc_dstat);
4041 		istatc = INB (nc_istat);
4042 		istat |= istatc;
4043 	} while (istatc & (SIP|DIP));
4044 
4045 	if (DEBUG_FLAGS & DEBUG_TINY)
4046 		kprintf ("<%d|%x:%x|%x:%x>",
4047 			(int)INB(nc_scr0),
4048 			dstat,sist,
4049 			(unsigned)INL(nc_dsp),
4050 			(unsigned)INL(nc_dbc));
4051 	/*
4052 	 *  On paper, a memory barrier may be needed here.
4053 	 *  And since we are paranoid ... :)
4054 	 */
4055 	MEMORY_BARRIER();
4056 
4057 	/*
4058 	 *  First, interrupts we want to service cleanly.
4059 	 *
4060 	 *  Phase mismatch (MA) is the most frequent interrupt
4061 	 *  for chip earlier than the 896 and so we have to service
4062 	 *  it as quickly as possible.
4063 	 *  A SCSI parity error (PAR) may be combined with a phase
4064 	 *  mismatch condition (MA).
4065 	 *  Programmed interrupts (SIR) are used to call the C code
4066 	 *  from SCRIPTS.
4067 	 *  The single step interrupt (SSI) is not used in this
4068 	 *  driver.
4069 	 */
4070 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
4071 	    !(dstat & (MDPE|BF|ABRT|IID))) {
4072 		if	(sist & PAR)	sym_int_par (np, sist);
4073 		else if (sist & MA)	sym_int_ma (np);
4074 		else if (dstat & SIR)	sym_int_sir (np);
4075 		else if (dstat & SSI)	OUTONB_STD ();
4076 		else			goto unknown_int;
4077 		return;
4078 	};
4079 
4080 	/*
4081 	 *  Now, interrupts that donnot happen in normal
4082 	 *  situations and that we may need to recover from.
4083 	 *
4084 	 *  On SCSI RESET (RST), we reset everything.
4085 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
4086 	 *  active CCBs with RESET status, prepare all devices
4087 	 *  for negotiating again and restart the SCRIPTS.
4088 	 *  On STO and UDC, we complete the CCB with the corres-
4089 	 *  ponding status and restart the SCRIPTS.
4090 	 */
4091 	if (sist & RST) {
4092 		xpt_print_path(np->path);
4093 		kprintf("SCSI BUS reset detected.\n");
4094 		sym_init (np, 1);
4095 		return;
4096 	};
4097 
4098 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4099 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4100 
4101 	if (!(sist  & (GEN|HTH|SGE)) &&
4102 	    !(dstat & (MDPE|BF|ABRT|IID))) {
4103 		if	(sist & SBMC)	sym_int_sbmc (np);
4104 		else if (sist & STO)	sym_int_sto (np);
4105 		else if (sist & UDC)	sym_int_udc (np);
4106 		else			goto unknown_int;
4107 		return;
4108 	};
4109 
4110 	/*
4111 	 *  Now, interrupts we are not able to recover cleanly.
4112 	 *
4113 	 *  Log message for hard errors.
4114 	 *  Reset everything.
4115 	 */
4116 
4117 	sym_log_hard_error(np, sist, dstat);
4118 
4119 	if ((sist & (GEN|HTH|SGE)) ||
4120 		(dstat & (MDPE|BF|ABRT|IID))) {
4121 		sym_start_reset(np);
4122 		return;
4123 	};
4124 
4125 unknown_int:
4126 	/*
4127 	 *  We just miss the cause of the interrupt. :(
4128 	 *  Print a message. The timeout will do the real work.
4129 	 */
4130 	kprintf(	"%s: unknown interrupt(s) ignored, "
4131 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
4132 		sym_name(np), istat, dstat, sist);
4133 }
4134 
4135 static void sym_intr(void *arg)
4136 {
4137 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("[");
4138 	sym_intr1((hcb_p) arg);
4139 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("]");
4140 	return;
4141 }
4142 
4143 static void sym_poll(struct cam_sim *sim)
4144 {
4145 	crit_enter();
4146 	sym_intr(cam_sim_softc(sim));
4147 	crit_exit();
4148 }
4149 
4150 
4151 /*
4152  *  generic recovery from scsi interrupt
4153  *
4154  *  The doc says that when the chip gets an SCSI interrupt,
4155  *  it tries to stop in an orderly fashion, by completing
4156  *  an instruction fetch that had started or by flushing
4157  *  the DMA fifo for a write to memory that was executing.
4158  *  Such a fashion is not enough to know if the instruction
4159  *  that was just before the current DSP value has been
4160  *  executed or not.
4161  *
4162  *  There are some small SCRIPTS sections that deal with
4163  *  the start queue and the done queue that may break any
4164  *  assomption from the C code if we are interrupted
4165  *  inside, so we reset if this happens. Btw, since these
4166  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4167  *  started SCSI operations, it is very unlikely to happen.
4168  *
4169  *  All the driver data structures are supposed to be
4170  *  allocated from the same 4 GB memory window, so there
4171  *  is a 1 to 1 relationship between DSA and driver data
4172  *  structures. Since we are careful :) to invalidate the
4173  *  DSA when we complete a command or when the SCRIPTS
4174  *  pushes a DSA into a queue, we can trust it when it
4175  *  points to a CCB.
4176  */
4177 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4178 {
4179 	u32	dsp	= INL (nc_dsp);
4180 	u32	dsa	= INL (nc_dsa);
4181 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4182 
4183 	/*
4184 	 *  If we haven't been interrupted inside the SCRIPTS
4185 	 *  critical pathes, we can safely restart the SCRIPTS
4186 	 *  and trust the DSA value if it matches a CCB.
4187 	 */
4188 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4189 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4190 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4191 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4192 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4193 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4194 	    (!(dsp > SCRIPTA_BA (np, done) &&
4195 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4196 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4197 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4198 		/*
4199 		 *  If we have a CCB, let the SCRIPTS call us back for
4200 		 *  the handling of the error with SCRATCHA filled with
4201 		 *  STARTPOS. This way, we will be able to freeze the
4202 		 *  device queue and requeue awaiting IOs.
4203 		 */
4204 		if (cp) {
4205 			cp->host_status = hsts;
4206 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4207 		}
4208 		/*
4209 		 *  Otherwise just restart the SCRIPTS.
4210 		 */
4211 		else {
4212 			OUTL (nc_dsa, 0xffffff);
4213 			OUTL_DSP (SCRIPTA_BA (np, start));
4214 		}
4215 	}
4216 	else
4217 		goto reset_all;
4218 
4219 	return;
4220 
4221 reset_all:
4222 	sym_start_reset(np);
4223 }
4224 
4225 /*
4226  *  chip exception handler for selection timeout
4227  */
4228 void sym_int_sto (hcb_p np)
4229 {
4230 	u32 dsp	= INL (nc_dsp);
4231 
4232 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("T");
4233 
4234 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4235 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4236 	else
4237 		sym_start_reset(np);
4238 }
4239 
4240 /*
4241  *  chip exception handler for unexpected disconnect
4242  */
4243 void sym_int_udc (hcb_p np)
4244 {
4245 	kprintf ("%s: unexpected disconnect\n", sym_name(np));
4246 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4247 }
4248 
4249 /*
4250  *  chip exception handler for SCSI bus mode change
4251  *
4252  *  spi2-r12 11.2.3 says a transceiver mode change must
4253  *  generate a reset event and a device that detects a reset
4254  *  event shall initiate a hard reset. It says also that a
4255  *  device that detects a mode change shall set data transfer
4256  *  mode to eight bit asynchronous, etc...
4257  *  So, just reinitializing all except chip should be enough.
4258  */
4259 static void sym_int_sbmc (hcb_p np)
4260 {
4261 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4262 
4263 	/*
4264 	 *  Notify user.
4265 	 */
4266 	xpt_print_path(np->path);
4267 	kprintf("SCSI BUS mode change from %s to %s.\n",
4268 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4269 
4270 	/*
4271 	 *  Should suspend command processing for a few seconds and
4272 	 *  reinitialize all except the chip.
4273 	 */
4274 	sym_init (np, 2);
4275 }
4276 
4277 /*
4278  *  chip exception handler for SCSI parity error.
4279  *
4280  *  When the chip detects a SCSI parity error and is
4281  *  currently executing a (CH)MOV instruction, it does
4282  *  not interrupt immediately, but tries to finish the
4283  *  transfer of the current scatter entry before
4284  *  interrupting. The following situations may occur:
4285  *
4286  *  - The complete scatter entry has been transferred
4287  *    without the device having changed phase.
4288  *    The chip will then interrupt with the DSP pointing
4289  *    to the instruction that follows the MOV.
4290  *
4291  *  - A phase mismatch occurs before the MOV finished
4292  *    and phase errors are to be handled by the C code.
4293  *    The chip will then interrupt with both PAR and MA
4294  *    conditions set.
4295  *
4296  *  - A phase mismatch occurs before the MOV finished and
4297  *    phase errors are to be handled by SCRIPTS.
4298  *    The chip will load the DSP with the phase mismatch
4299  *    JUMP address and interrupt the host processor.
4300  */
4301 static void sym_int_par (hcb_p np, u_short sist)
4302 {
4303 	u_char	hsts	= INB (HS_PRT);
4304 	u32	dsp	= INL (nc_dsp);
4305 	u32	dbc	= INL (nc_dbc);
4306 	u32	dsa	= INL (nc_dsa);
4307 	u_char	sbcl	= INB (nc_sbcl);
4308 	u_char	cmd	= dbc >> 24;
4309 	int phase	= cmd & 7;
4310 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4311 
4312 	kprintf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4313 		sym_name(np), hsts, dbc, sbcl);
4314 
4315 	/*
4316 	 *  Check that the chip is connected to the SCSI BUS.
4317 	 */
4318 	if (!(INB (nc_scntl1) & ISCON)) {
4319 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4320 		return;
4321 	}
4322 
4323 	/*
4324 	 *  If the nexus is not clearly identified, reset the bus.
4325 	 *  We will try to do better later.
4326 	 */
4327 	if (!cp)
4328 		goto reset_all;
4329 
4330 	/*
4331 	 *  Check instruction was a MOV, direction was INPUT and
4332 	 *  ATN is asserted.
4333 	 */
4334 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4335 		goto reset_all;
4336 
4337 	/*
4338 	 *  Keep track of the parity error.
4339 	 */
4340 	OUTONB (HF_PRT, HF_EXT_ERR);
4341 	cp->xerr_status |= XE_PARITY_ERR;
4342 
4343 	/*
4344 	 *  Prepare the message to send to the device.
4345 	 */
4346 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4347 
4348 	/*
4349 	 *  If the old phase was DATA IN phase, we have to deal with
4350 	 *  the 3 situations described above.
4351 	 *  For other input phases (MSG IN and STATUS), the device
4352 	 *  must resend the whole thing that failed parity checking
4353 	 *  or signal error. So, jumping to dispatcher should be OK.
4354 	 */
4355 	if (phase == 1 || phase == 5) {
4356 		/* Phase mismatch handled by SCRIPTS */
4357 		if (dsp == SCRIPTB_BA (np, pm_handle))
4358 			OUTL_DSP (dsp);
4359 		/* Phase mismatch handled by the C code */
4360 		else if (sist & MA)
4361 			sym_int_ma (np);
4362 		/* No phase mismatch occurred */
4363 		else {
4364 			OUTL (nc_temp, dsp);
4365 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4366 		}
4367 	}
4368 	else
4369 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4370 	return;
4371 
4372 reset_all:
4373 	sym_start_reset(np);
4374 	return;
4375 }
4376 
4377 /*
4378  *  chip exception handler for phase errors.
4379  *
4380  *  We have to construct a new transfer descriptor,
4381  *  to transfer the rest of the current block.
4382  */
4383 static void sym_int_ma (hcb_p np)
4384 {
4385 	u32	dbc;
4386 	u32	rest;
4387 	u32	dsp;
4388 	u32	dsa;
4389 	u32	nxtdsp;
4390 	u32	*vdsp;
4391 	u32	oadr, olen;
4392 	u32	*tblp;
4393         u32	newcmd;
4394 	u_int	delta;
4395 	u_char	cmd;
4396 	u_char	hflags, hflags0;
4397 	struct	sym_pmc *pm;
4398 	ccb_p	cp;
4399 
4400 	dsp	= INL (nc_dsp);
4401 	dbc	= INL (nc_dbc);
4402 	dsa	= INL (nc_dsa);
4403 
4404 	cmd	= dbc >> 24;
4405 	rest	= dbc & 0xffffff;
4406 	delta	= 0;
4407 
4408 	/*
4409 	 *  locate matching cp if any.
4410 	 */
4411 	cp = sym_ccb_from_dsa(np, dsa);
4412 
4413 	/*
4414 	 *  Donnot take into account dma fifo and various buffers in
4415 	 *  INPUT phase since the chip flushes everything before
4416 	 *  raising the MA interrupt for interrupted INPUT phases.
4417 	 *  For DATA IN phase, we will check for the SWIDE later.
4418 	 */
4419 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4420 		u_char ss0, ss2;
4421 
4422 		if (np->features & FE_DFBC)
4423 			delta = INW (nc_dfbc);
4424 		else {
4425 			u32 dfifo;
4426 
4427 			/*
4428 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4429 			 */
4430 			dfifo = INL(nc_dfifo);
4431 
4432 			/*
4433 			 *  Calculate remaining bytes in DMA fifo.
4434 			 *  (CTEST5 = dfifo >> 16)
4435 			 */
4436 			if (dfifo & (DFS << 16))
4437 				delta = ((((dfifo >> 8) & 0x300) |
4438 				          (dfifo & 0xff)) - rest) & 0x3ff;
4439 			else
4440 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4441 		}
4442 
4443 		/*
4444 		 *  The data in the dma fifo has not been transfered to
4445 		 *  the target -> add the amount to the rest
4446 		 *  and clear the data.
4447 		 *  Check the sstat2 register in case of wide transfer.
4448 		 */
4449 		rest += delta;
4450 		ss0  = INB (nc_sstat0);
4451 		if (ss0 & OLF) rest++;
4452 		if (!(np->features & FE_C10))
4453 			if (ss0 & ORF) rest++;
4454 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4455 			ss2 = INB (nc_sstat2);
4456 			if (ss2 & OLF1) rest++;
4457 			if (!(np->features & FE_C10))
4458 				if (ss2 & ORF1) rest++;
4459 		};
4460 
4461 		/*
4462 		 *  Clear fifos.
4463 		 */
4464 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4465 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4466 	}
4467 
4468 	/*
4469 	 *  log the information
4470 	 */
4471 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4472 		kprintf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4473 			(unsigned) rest, (unsigned) delta);
4474 
4475 	/*
4476 	 *  try to find the interrupted script command,
4477 	 *  and the address at which to continue.
4478 	 */
4479 	vdsp	= 0;
4480 	nxtdsp	= 0;
4481 	if	(dsp >  np->scripta_ba &&
4482 		 dsp <= np->scripta_ba + np->scripta_sz) {
4483 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4484 		nxtdsp = dsp;
4485 	}
4486 	else if	(dsp >  np->scriptb_ba &&
4487 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4488 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4489 		nxtdsp = dsp;
4490 	}
4491 
4492 	/*
4493 	 *  log the information
4494 	 */
4495 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4496 		kprintf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4497 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4498 	};
4499 
4500 	if (!vdsp) {
4501 		kprintf ("%s: interrupted SCRIPT address not found.\n",
4502 			sym_name (np));
4503 		goto reset_all;
4504 	}
4505 
4506 	if (!cp) {
4507 		kprintf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4508 			sym_name (np));
4509 		goto reset_all;
4510 	}
4511 
4512 	/*
4513 	 *  get old startaddress and old length.
4514 	 */
4515 	oadr = scr_to_cpu(vdsp[1]);
4516 
4517 	if (cmd & 0x10) {	/* Table indirect */
4518 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4519 		olen = scr_to_cpu(tblp[0]);
4520 		oadr = scr_to_cpu(tblp[1]);
4521 	} else {
4522 		tblp = NULL;
4523 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4524 	};
4525 
4526 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4527 		kprintf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4528 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4529 			tblp,
4530 			(unsigned) olen,
4531 			(unsigned) oadr);
4532 	};
4533 
4534 	/*
4535 	 *  check cmd against assumed interrupted script command.
4536 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4537 	 *  the phase.
4538 	 */
4539 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4540 		PRINT_ADDR(cp);
4541 		kprintf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4542 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4543 
4544 		goto reset_all;
4545 	};
4546 
4547 	/*
4548 	 *  if old phase not dataphase, leave here.
4549 	 */
4550 	if (cmd & 2) {
4551 		PRINT_ADDR(cp);
4552 		kprintf ("phase change %x-%x %d@%08x resid=%d.\n",
4553 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4554 			(unsigned)oadr, (unsigned)rest);
4555 		goto unexpected_phase;
4556 	};
4557 
4558 	/*
4559 	 *  Choose the correct PM save area.
4560 	 *
4561 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4562 	 *  this stuff. The equivalent code is implemented in
4563 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4564 	 *  handle PM from the SCRIPTS processor.
4565 	 */
4566 	hflags0 = INB (HF_PRT);
4567 	hflags = hflags0;
4568 
4569 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4570 		if (hflags & HF_IN_PM0)
4571 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4572 		else if	(hflags & HF_IN_PM1)
4573 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4574 
4575 		if (hflags & HF_DP_SAVED)
4576 			hflags ^= HF_ACT_PM;
4577 	}
4578 
4579 	if (!(hflags & HF_ACT_PM)) {
4580 		pm = &cp->phys.pm0;
4581 		newcmd = SCRIPTA_BA (np, pm0_data);
4582 	}
4583 	else {
4584 		pm = &cp->phys.pm1;
4585 		newcmd = SCRIPTA_BA (np, pm1_data);
4586 	}
4587 
4588 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4589 	if (hflags != hflags0)
4590 		OUTB (HF_PRT, hflags);
4591 
4592 	/*
4593 	 *  fillin the phase mismatch context
4594 	 */
4595 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4596 	pm->sg.size = cpu_to_scr(rest);
4597 	pm->ret     = cpu_to_scr(nxtdsp);
4598 
4599 	/*
4600 	 *  If we have a SWIDE,
4601 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4602 	 *  - compute the SCRIPTS address to restart from,
4603 	 *  - move current data pointer context by one byte.
4604 	 */
4605 	nxtdsp = SCRIPTA_BA (np, dispatch);
4606 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4607 	    (INB (nc_scntl2) & WSR)) {
4608 		u32 tmp;
4609 
4610 		/*
4611 		 *  Set up the table indirect for the MOVE
4612 		 *  of the residual byte and adjust the data
4613 		 *  pointer context.
4614 		 */
4615 		tmp = scr_to_cpu(pm->sg.addr);
4616 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4617 		pm->sg.addr = cpu_to_scr(tmp + 1);
4618 		tmp = scr_to_cpu(pm->sg.size);
4619 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4620 		pm->sg.size = cpu_to_scr(tmp - 1);
4621 
4622 		/*
4623 		 *  If only the residual byte is to be moved,
4624 		 *  no PM context is needed.
4625 		 */
4626 		if ((tmp&0xffffff) == 1)
4627 			newcmd = pm->ret;
4628 
4629 		/*
4630 		 *  Prepare the address of SCRIPTS that will
4631 		 *  move the residual byte to memory.
4632 		 */
4633 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4634 	}
4635 
4636 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4637 		PRINT_ADDR(cp);
4638 		kprintf ("PM %x %x %x / %x %x %x.\n",
4639 			hflags0, hflags, newcmd,
4640 			(unsigned)scr_to_cpu(pm->sg.addr),
4641 			(unsigned)scr_to_cpu(pm->sg.size),
4642 			(unsigned)scr_to_cpu(pm->ret));
4643 	}
4644 
4645 	/*
4646 	 *  Restart the SCRIPTS processor.
4647 	 */
4648 	OUTL (nc_temp, newcmd);
4649 	OUTL_DSP (nxtdsp);
4650 	return;
4651 
4652 	/*
4653 	 *  Unexpected phase changes that occurs when the current phase
4654 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4655 	 *  Such event may only happen when the SCRIPTS is using a
4656 	 *  multibyte SCSI MOVE.
4657 	 *
4658 	 *  Phase change		Some possible cause
4659 	 *
4660 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4661 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4662 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4663 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4664 	 *  			negotiation messages.
4665 	 *
4666 	 *  The code below does not care of the new phase and so
4667 	 *  trusts the target. Why to annoy it ?
4668 	 *  If the interrupted phase is COMMAND phase, we restart at
4669 	 *  dispatcher.
4670 	 *  If a target does not get all the messages after selection,
4671 	 *  the code assumes blindly that the target discards extended
4672 	 *  messages and clears the negotiation status.
4673 	 *  If the target does not want all our response to negotiation,
4674 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4675 	 *  bloat for such a should_not_happen situation).
4676 	 *  In all other situation, we reset the BUS.
4677 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4678 	 */
4679 unexpected_phase:
4680 	dsp -= 8;
4681 	nxtdsp = 0;
4682 
4683 	switch (cmd & 7) {
4684 	case 2:	/* COMMAND phase */
4685 		nxtdsp = SCRIPTA_BA (np, dispatch);
4686 		break;
4687 #if 0
4688 	case 3:	/* STATUS  phase */
4689 		nxtdsp = SCRIPTA_BA (np, dispatch);
4690 		break;
4691 #endif
4692 	case 6:	/* MSG OUT phase */
4693 		/*
4694 		 *  If the device may want to use untagged when we want
4695 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4696 		 *  since we will not be able to handle reselect.
4697 		 *  Otherwise, we just don't care.
4698 		 */
4699 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4700 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4701 				cp->host_status = HS_BUSY;
4702 				np->msgout[0] = M_IDENTIFY | cp->lun;
4703 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4704 			}
4705 			else
4706 				nxtdsp = SCRIPTB_BA (np, ident_break);
4707 		}
4708 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4709 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4710 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4711 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4712 		}
4713 		break;
4714 #if 0
4715 	case 7:	/* MSG IN  phase */
4716 		nxtdsp = SCRIPTA_BA (np, clrack);
4717 		break;
4718 #endif
4719 	}
4720 
4721 	if (nxtdsp) {
4722 		OUTL_DSP (nxtdsp);
4723 		return;
4724 	}
4725 
4726 reset_all:
4727 	sym_start_reset(np);
4728 }
4729 
4730 /*
4731  *  Dequeue from the START queue all CCBs that match
4732  *  a given target/lun/task condition (-1 means all),
4733  *  and move them from the BUSY queue to the COMP queue
4734  *  with CAM_REQUEUE_REQ status condition.
4735  *  This function is used during error handling/recovery.
4736  *  It is called with SCRIPTS not running.
4737  */
4738 static int
4739 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4740 {
4741 	int j;
4742 	ccb_p cp;
4743 
4744 	/*
4745 	 *  Make sure the starting index is within range.
4746 	 */
4747 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4748 
4749 	/*
4750 	 *  Walk until end of START queue and dequeue every job
4751 	 *  that matches the target/lun/task condition.
4752 	 */
4753 	j = i;
4754 	while (i != np->squeueput) {
4755 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4756 		assert(cp);
4757 #ifdef SYM_CONF_IARB_SUPPORT
4758 		/* Forget hints for IARB, they may be no longer relevant */
4759 		cp->host_flags &= ~HF_HINT_IARB;
4760 #endif
4761 		if ((target == -1 || cp->target == target) &&
4762 		    (lun    == -1 || cp->lun    == lun)    &&
4763 		    (task   == -1 || cp->tag    == task)) {
4764 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4765 			sym_remque(&cp->link_ccbq);
4766 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4767 		}
4768 		else {
4769 			if (i != j)
4770 				np->squeue[j] = np->squeue[i];
4771 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4772 		}
4773 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4774 	}
4775 	if (i != j)		/* Copy back the idle task if needed */
4776 		np->squeue[j] = np->squeue[i];
4777 	np->squeueput = j;	/* Update our current start queue pointer */
4778 
4779 	return (i - j) / 2;
4780 }
4781 
4782 /*
4783  *  Complete all CCBs queued to the COMP queue.
4784  *
4785  *  These CCBs are assumed:
4786  *  - Not to be referenced either by devices or
4787  *    SCRIPTS-related queues and datas.
4788  *  - To have to be completed with an error condition
4789  *    or requeued.
4790  *
4791  *  The device queue freeze count is incremented
4792  *  for each CCB that does not prevent this.
4793  *  This function is called when all CCBs involved
4794  *  in error handling/recovery have been reaped.
4795  */
4796 static void
4797 sym_flush_comp_queue(hcb_p np, int cam_status)
4798 {
4799 	SYM_QUEHEAD *qp;
4800 	ccb_p cp;
4801 
4802 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
4803 		union ccb *ccb;
4804 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4805 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4806 		/* Leave quiet CCBs waiting for resources */
4807 		if (cp->host_status == HS_WAIT)
4808 			continue;
4809 		ccb = cp->cam_ccb;
4810 		if (cam_status)
4811 			sym_set_cam_status(ccb, cam_status);
4812 		sym_free_ccb(np, cp);
4813 		sym_freeze_cam_ccb(ccb);
4814 		sym_xpt_done(np, ccb);
4815 	}
4816 }
4817 
4818 /*
4819  *  chip handler for bad SCSI status condition
4820  *
4821  *  In case of bad SCSI status, we unqueue all the tasks
4822  *  currently queued to the controller but not yet started
4823  *  and then restart the SCRIPTS processor immediately.
4824  *
4825  *  QUEUE FULL and BUSY conditions are handled the same way.
4826  *  Basically all the not yet started tasks are requeued in
4827  *  device queue and the queue is frozen until a completion.
4828  *
4829  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4830  *  the CCB of the failed command to prepare a REQUEST SENSE
4831  *  SCSI command and queue it to the controller queue.
4832  *
4833  *  SCRATCHA is assumed to have been loaded with STARTPOS
4834  *  before the SCRIPTS called the C code.
4835  */
4836 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4837 {
4838 	tcb_p tp	= &np->target[cp->target];
4839 	u32		startp;
4840 	u_char		s_status = cp->ssss_status;
4841 	u_char		h_flags  = cp->host_flags;
4842 	int		msglen;
4843 	int		nego;
4844 	int		i;
4845 
4846 	/*
4847 	 *  Compute the index of the next job to start from SCRIPTS.
4848 	 */
4849 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4850 
4851 	/*
4852 	 *  The last CCB queued used for IARB hint may be
4853 	 *  no longer relevant. Forget it.
4854 	 */
4855 #ifdef SYM_CONF_IARB_SUPPORT
4856 	if (np->last_cp)
4857 		np->last_cp = 0;
4858 #endif
4859 
4860 	/*
4861 	 *  Now deal with the SCSI status.
4862 	 */
4863 	switch(s_status) {
4864 	case S_BUSY:
4865 	case S_QUEUE_FULL:
4866 		if (sym_verbose >= 2) {
4867 			PRINT_ADDR(cp);
4868 			kprintf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4869 		}
4870 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4871 		sym_complete_error (np, cp);
4872 		break;
4873 	case S_TERMINATED:
4874 	case S_CHECK_COND:
4875 		/*
4876 		 *  If we get an SCSI error when requesting sense, give up.
4877 		 */
4878 		if (h_flags & HF_SENSE) {
4879 			sym_complete_error (np, cp);
4880 			break;
4881 		}
4882 
4883 		/*
4884 		 *  Dequeue all queued CCBs for that device not yet started,
4885 		 *  and restart the SCRIPTS processor immediately.
4886 		 */
4887 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4888 		OUTL_DSP (SCRIPTA_BA (np, start));
4889 
4890  		/*
4891 		 *  Save some info of the actual IO.
4892 		 *  Compute the data residual.
4893 		 */
4894 		cp->sv_scsi_status = cp->ssss_status;
4895 		cp->sv_xerr_status = cp->xerr_status;
4896 		cp->sv_resid = sym_compute_residual(np, cp);
4897 
4898 		/*
4899 		 *  Prepare all needed data structures for
4900 		 *  requesting sense data.
4901 		 */
4902 
4903 		/*
4904 		 *  identify message
4905 		 */
4906 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4907 		msglen = 1;
4908 
4909 		/*
4910 		 *  If we are currently using anything different from
4911 		 *  async. 8 bit data transfers with that target,
4912 		 *  start a negotiation, since the device may want
4913 		 *  to report us a UNIT ATTENTION condition due to
4914 		 *  a cause we currently ignore, and we donnot want
4915 		 *  to be stuck with WIDE and/or SYNC data transfer.
4916 		 *
4917 		 *  cp->nego_status is filled by sym_prepare_nego().
4918 		 */
4919 		cp->nego_status = 0;
4920 		nego = 0;
4921 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4922 			nego = NS_PPR;
4923 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4924 			nego = NS_WIDE;
4925 		else if (tp->tinfo.current.offset != 0)
4926 			nego = NS_SYNC;
4927 		if (nego)
4928 			msglen +=
4929 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4930 		/*
4931 		 *  Message table indirect structure.
4932 		 */
4933 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4934 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4935 
4936 		/*
4937 		 *  sense command
4938 		 */
4939 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4940 		cp->phys.cmd.size	= cpu_to_scr(6);
4941 
4942 		/*
4943 		 *  patch requested size into sense command
4944 		 */
4945 		cp->sensecmd[0]		= 0x03;
4946 		cp->sensecmd[1]		= cp->lun << 5;
4947 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4948 			cp->sensecmd[1]	= 0;
4949 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4950 		cp->data_len		= SYM_SNS_BBUF_LEN;
4951 
4952 		/*
4953 		 *  sense data
4954 		 */
4955 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4956 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4957 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4958 
4959 		/*
4960 		 *  requeue the command.
4961 		 */
4962 		startp = SCRIPTB_BA (np, sdata_in);
4963 
4964 		cp->phys.head.savep	= cpu_to_scr(startp);
4965 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4966 		cp->phys.head.lastp	= cpu_to_scr(startp);
4967 		cp->startp	= cpu_to_scr(startp);
4968 
4969 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4970 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4971 		cp->ssss_status = S_ILLEGAL;
4972 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4973 		cp->xerr_status = 0;
4974 		cp->extra_bytes = 0;
4975 
4976 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4977 
4978 		/*
4979 		 *  Requeue the command.
4980 		 */
4981 		sym_put_start_queue(np, cp);
4982 
4983 		/*
4984 		 *  Give back to upper layer everything we have dequeued.
4985 		 */
4986 		sym_flush_comp_queue(np, 0);
4987 		break;
4988 	}
4989 }
4990 
4991 /*
4992  *  After a device has accepted some management message
4993  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4994  *  a device signals a UNIT ATTENTION condition, some
4995  *  tasks are thrown away by the device. We are required
4996  *  to reflect that on our tasks list since the device
4997  *  will never complete these tasks.
4998  *
4999  *  This function move from the BUSY queue to the COMP
5000  *  queue all disconnected CCBs for a given target that
5001  *  match the following criteria:
5002  *  - lun=-1  means any logical UNIT otherwise a given one.
5003  *  - task=-1 means any task, otherwise a given one.
5004  */
5005 static int
5006 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
5007 {
5008 	SYM_QUEHEAD qtmp, *qp;
5009 	int i = 0;
5010 	ccb_p cp;
5011 
5012 	/*
5013 	 *  Move the entire BUSY queue to our temporary queue.
5014 	 */
5015 	sym_que_init(&qtmp);
5016 	sym_que_splice(&np->busy_ccbq, &qtmp);
5017 	sym_que_init(&np->busy_ccbq);
5018 
5019 	/*
5020 	 *  Put all CCBs that matches our criteria into
5021 	 *  the COMP queue and put back other ones into
5022 	 *  the BUSY queue.
5023 	 */
5024 	while ((qp = sym_remque_head(&qtmp)) != 0) {
5025 		union ccb *ccb;
5026 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5027 		ccb = cp->cam_ccb;
5028 		if (cp->host_status != HS_DISCONNECT ||
5029 		    cp->target != target	     ||
5030 		    (lun  != -1 && cp->lun != lun)   ||
5031 		    (task != -1 &&
5032 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
5033 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
5034 			continue;
5035 		}
5036 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
5037 
5038 		/* Preserve the software timeout condition */
5039 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
5040 			sym_set_cam_status(ccb, cam_status);
5041 		++i;
5042 #if 0
5043 kprintf("XXXX TASK @%p CLEARED\n", cp);
5044 #endif
5045 	}
5046 	return i;
5047 }
5048 
5049 /*
5050  *  chip handler for TASKS recovery
5051  *
5052  *  We cannot safely abort a command, while the SCRIPTS
5053  *  processor is running, since we just would be in race
5054  *  with it.
5055  *
5056  *  As long as we have tasks to abort, we keep the SEM
5057  *  bit set in the ISTAT. When this bit is set, the
5058  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
5059  *  each time it enters the scheduler.
5060  *
5061  *  If we have to reset a target, clear tasks of a unit,
5062  *  or to perform the abort of a disconnected job, we
5063  *  restart the SCRIPTS for selecting the target. Once
5064  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
5065  *  If it loses arbitration, the SCRIPTS will interrupt again
5066  *  the next time it will enter its scheduler, and so on ...
5067  *
5068  *  On SIR_TARGET_SELECTED, we scan for the more
5069  *  appropriate thing to do:
5070  *
5071  *  - If nothing, we just sent a M_ABORT message to the
5072  *    target to get rid of the useless SCSI bus ownership.
5073  *    According to the specs, no tasks shall be affected.
5074  *  - If the target is to be reset, we send it a M_RESET
5075  *    message.
5076  *  - If a logical UNIT is to be cleared , we send the
5077  *    IDENTIFY(lun) + M_ABORT.
5078  *  - If an untagged task is to be aborted, we send the
5079  *    IDENTIFY(lun) + M_ABORT.
5080  *  - If a tagged task is to be aborted, we send the
5081  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
5082  *
5083  *  Once our 'kiss of death' :) message has been accepted
5084  *  by the target, the SCRIPTS interrupts again
5085  *  (SIR_ABORT_SENT). On this interrupt, we complete
5086  *  all the CCBs that should have been aborted by the
5087  *  target according to our message.
5088  */
5089 static void sym_sir_task_recovery(hcb_p np, int num)
5090 {
5091 	SYM_QUEHEAD *qp;
5092 	ccb_p cp;
5093 	tcb_p tp;
5094 	int target=-1, lun=-1, task;
5095 	int i, k;
5096 
5097 	switch(num) {
5098 	/*
5099 	 *  The SCRIPTS processor stopped before starting
5100 	 *  the next command in order to allow us to perform
5101 	 *  some task recovery.
5102 	 */
5103 	case SIR_SCRIPT_STOPPED:
5104 		/*
5105 		 *  Do we have any target to reset or unit to clear ?
5106 		 */
5107 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5108 			tp = &np->target[i];
5109 			if (tp->to_reset ||
5110 			    (tp->lun0p && tp->lun0p->to_clear)) {
5111 				target = i;
5112 				break;
5113 			}
5114 			if (!tp->lunmp)
5115 				continue;
5116 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5117 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5118 					target	= i;
5119 					break;
5120 				}
5121 			}
5122 			if (target != -1)
5123 				break;
5124 		}
5125 
5126 		/*
5127 		 *  If not, walk the busy queue for any
5128 		 *  disconnected CCB to be aborted.
5129 		 */
5130 		if (target == -1) {
5131 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5132 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
5133 				if (cp->host_status != HS_DISCONNECT)
5134 					continue;
5135 				if (cp->to_abort) {
5136 					target = cp->target;
5137 					break;
5138 				}
5139 			}
5140 		}
5141 
5142 		/*
5143 		 *  If some target is to be selected,
5144 		 *  prepare and start the selection.
5145 		 */
5146 		if (target != -1) {
5147 			tp = &np->target[target];
5148 			np->abrt_sel.sel_id	= target;
5149 			np->abrt_sel.sel_scntl3 = tp->head.wval;
5150 			np->abrt_sel.sel_sxfer  = tp->head.sval;
5151 			OUTL(nc_dsa, np->hcb_ba);
5152 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
5153 			return;
5154 		}
5155 
5156 		/*
5157 		 *  Now look for a CCB to abort that haven't started yet.
5158 		 *  Btw, the SCRIPTS processor is still stopped, so
5159 		 *  we are not in race.
5160 		 */
5161 		i = 0;
5162 		cp = 0;
5163 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5164 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5165 			if (cp->host_status != HS_BUSY &&
5166 			    cp->host_status != HS_NEGOTIATE)
5167 				continue;
5168 			if (!cp->to_abort)
5169 				continue;
5170 #ifdef SYM_CONF_IARB_SUPPORT
5171 			/*
5172 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5173 			 *    want to cancel the last queued CCB, since the
5174 			 *    SCRIPTS may have anticipated the selection.
5175 			 */
5176 			if (cp == np->last_cp) {
5177 				cp->to_abort = 0;
5178 				continue;
5179 			}
5180 #endif
5181 			i = 1;	/* Means we have found some */
5182 			break;
5183 		}
5184 		if (!i) {
5185 			/*
5186 			 *  We are done, so we donnot need
5187 			 *  to synchronize with the SCRIPTS anylonger.
5188 			 *  Remove the SEM flag from the ISTAT.
5189 			 */
5190 			np->istat_sem = 0;
5191 			OUTB (nc_istat, SIGP);
5192 			break;
5193 		}
5194 		/*
5195 		 *  Compute index of next position in the start
5196 		 *  queue the SCRIPTS intends to start and dequeue
5197 		 *  all CCBs for that device that haven't been started.
5198 		 */
5199 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5200 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5201 
5202 		/*
5203 		 *  Make sure at least our IO to abort has been dequeued.
5204 		 */
5205 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5206 
5207 		/*
5208 		 *  Keep track in cam status of the reason of the abort.
5209 		 */
5210 		if (cp->to_abort == 2)
5211 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5212 		else
5213 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5214 
5215 		/*
5216 		 *  Complete with error everything that we have dequeued.
5217 	 	 */
5218 		sym_flush_comp_queue(np, 0);
5219 		break;
5220 	/*
5221 	 *  The SCRIPTS processor has selected a target
5222 	 *  we may have some manual recovery to perform for.
5223 	 */
5224 	case SIR_TARGET_SELECTED:
5225 		target = (INB (nc_sdid) & 0xf);
5226 		tp = &np->target[target];
5227 
5228 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5229 
5230 		/*
5231 		 *  If the target is to be reset, prepare a
5232 		 *  M_RESET message and clear the to_reset flag
5233 		 *  since we donnot expect this operation to fail.
5234 		 */
5235 		if (tp->to_reset) {
5236 			np->abrt_msg[0] = M_RESET;
5237 			np->abrt_tbl.size = 1;
5238 			tp->to_reset = 0;
5239 			break;
5240 		}
5241 
5242 		/*
5243 		 *  Otherwise, look for some logical unit to be cleared.
5244 		 */
5245 		if (tp->lun0p && tp->lun0p->to_clear)
5246 			lun = 0;
5247 		else if (tp->lunmp) {
5248 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5249 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5250 					lun = k;
5251 					break;
5252 				}
5253 			}
5254 		}
5255 
5256 		/*
5257 		 *  If a logical unit is to be cleared, prepare
5258 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5259 		 */
5260 		if (lun != -1) {
5261 			lcb_p lp = sym_lp(np, tp, lun);
5262 			lp->to_clear = 0; /* We donnot expect to fail here */
5263 			np->abrt_msg[0] = M_IDENTIFY | lun;
5264 			np->abrt_msg[1] = M_ABORT;
5265 			np->abrt_tbl.size = 2;
5266 			break;
5267 		}
5268 
5269 		/*
5270 		 *  Otherwise, look for some disconnected job to
5271 		 *  abort for this target.
5272 		 */
5273 		i = 0;
5274 		cp = 0;
5275 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5276 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5277 			if (cp->host_status != HS_DISCONNECT)
5278 				continue;
5279 			if (cp->target != target)
5280 				continue;
5281 			if (!cp->to_abort)
5282 				continue;
5283 			i = 1;	/* Means we have some */
5284 			break;
5285 		}
5286 
5287 		/*
5288 		 *  If we have none, probably since the device has
5289 		 *  completed the command before we won abitration,
5290 		 *  send a M_ABORT message without IDENTIFY.
5291 		 *  According to the specs, the device must just
5292 		 *  disconnect the BUS and not abort any task.
5293 		 */
5294 		if (!i) {
5295 			np->abrt_msg[0] = M_ABORT;
5296 			np->abrt_tbl.size = 1;
5297 			break;
5298 		}
5299 
5300 		/*
5301 		 *  We have some task to abort.
5302 		 *  Set the IDENTIFY(lun)
5303 		 */
5304 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5305 
5306 		/*
5307 		 *  If we want to abort an untagged command, we
5308 		 *  will send a IDENTIFY + M_ABORT.
5309 		 *  Otherwise (tagged command), we will send
5310 		 *  a IDENTITFY + task attributes + ABORT TAG.
5311 		 */
5312 		if (cp->tag == NO_TAG) {
5313 			np->abrt_msg[1] = M_ABORT;
5314 			np->abrt_tbl.size = 2;
5315 		}
5316 		else {
5317 			np->abrt_msg[1] = cp->scsi_smsg[1];
5318 			np->abrt_msg[2] = cp->scsi_smsg[2];
5319 			np->abrt_msg[3] = M_ABORT_TAG;
5320 			np->abrt_tbl.size = 4;
5321 		}
5322 		/*
5323 		 *  Keep track of software timeout condition, since the
5324 		 *  peripheral driver may not count retries on abort
5325 		 *  conditions not due to timeout.
5326 		 */
5327 		if (cp->to_abort == 2)
5328 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5329 		cp->to_abort = 0; /* We donnot expect to fail here */
5330 		break;
5331 
5332 	/*
5333 	 *  The target has accepted our message and switched
5334 	 *  to BUS FREE phase as we expected.
5335 	 */
5336 	case SIR_ABORT_SENT:
5337 		target = (INB (nc_sdid) & 0xf);
5338 		tp = &np->target[target];
5339 
5340 		/*
5341 		**  If we didn't abort anything, leave here.
5342 		*/
5343 		if (np->abrt_msg[0] == M_ABORT)
5344 			break;
5345 
5346 		/*
5347 		 *  If we sent a M_RESET, then a hardware reset has
5348 		 *  been performed by the target.
5349 		 *  - Reset everything to async 8 bit
5350 		 *  - Tell ourself to negotiate next time :-)
5351 		 *  - Prepare to clear all disconnected CCBs for
5352 		 *    this target from our task list (lun=task=-1)
5353 		 */
5354 		lun = -1;
5355 		task = -1;
5356 		if (np->abrt_msg[0] == M_RESET) {
5357 			tp->head.sval = 0;
5358 			tp->head.wval = np->rv_scntl3;
5359 			tp->head.uval = 0;
5360 			tp->tinfo.current.period = 0;
5361 			tp->tinfo.current.offset = 0;
5362 			tp->tinfo.current.width  = BUS_8_BIT;
5363 			tp->tinfo.current.options = 0;
5364 		}
5365 
5366 		/*
5367 		 *  Otherwise, check for the LUN and TASK(s)
5368 		 *  concerned by the cancelation.
5369 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5370 		 *  or an ABORT message :-)
5371 		 */
5372 		else {
5373 			lun = np->abrt_msg[0] & 0x3f;
5374 			if (np->abrt_msg[1] == M_ABORT_TAG)
5375 				task = np->abrt_msg[2];
5376 		}
5377 
5378 		/*
5379 		 *  Complete all the CCBs the device should have
5380 		 *  aborted due to our 'kiss of death' message.
5381 		 */
5382 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5383 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5384 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5385 		sym_flush_comp_queue(np, 0);
5386 
5387 		/*
5388 		 *  If we sent a BDR, make uper layer aware of that.
5389 		 */
5390 		if (np->abrt_msg[0] == M_RESET)
5391 			xpt_async(AC_SENT_BDR, np->path, NULL);
5392 		break;
5393 	}
5394 
5395 	/*
5396 	 *  Print to the log the message we intend to send.
5397 	 */
5398 	if (num == SIR_TARGET_SELECTED) {
5399 		PRINT_TARGET(np, target);
5400 		sym_printl_hex("control msgout:", np->abrt_msg,
5401 			      np->abrt_tbl.size);
5402 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5403 	}
5404 
5405 	/*
5406 	 *  Let the SCRIPTS processor continue.
5407 	 */
5408 	OUTONB_STD ();
5409 }
5410 
5411 /*
5412  *  Gerard's alchemy:) that deals with with the data
5413  *  pointer for both MDP and the residual calculation.
5414  *
5415  *  I didn't want to bloat the code by more than 200
5416  *  lignes for the handling of both MDP and the residual.
5417  *  This has been achieved by using a data pointer
5418  *  representation consisting in an index in the data
5419  *  array (dp_sg) and a negative offset (dp_ofs) that
5420  *  have the following meaning:
5421  *
5422  *  - dp_sg = SYM_CONF_MAX_SG
5423  *    we are at the end of the data script.
5424  *  - dp_sg < SYM_CONF_MAX_SG
5425  *    dp_sg points to the next entry of the scatter array
5426  *    we want to transfer.
5427  *  - dp_ofs < 0
5428  *    dp_ofs represents the residual of bytes of the
5429  *    previous entry scatter entry we will send first.
5430  *  - dp_ofs = 0
5431  *    no residual to send first.
5432  *
5433  *  The function sym_evaluate_dp() accepts an arbitray
5434  *  offset (basically from the MDP message) and returns
5435  *  the corresponding values of dp_sg and dp_ofs.
5436  */
5437 
5438 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5439 {
5440 	u32	dp_scr;
5441 	int	dp_ofs, dp_sg, dp_sgmin;
5442 	int	tmp;
5443 	struct sym_pmc *pm;
5444 
5445 	/*
5446 	 *  Compute the resulted data pointer in term of a script
5447 	 *  address within some DATA script and a signed byte offset.
5448 	 */
5449 	dp_scr = scr;
5450 	dp_ofs = *ofs;
5451 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5452 		pm = &cp->phys.pm0;
5453 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5454 		pm = &cp->phys.pm1;
5455 	else
5456 		pm = 0;
5457 
5458 	if (pm) {
5459 		dp_scr  = scr_to_cpu(pm->ret);
5460 		dp_ofs -= scr_to_cpu(pm->sg.size);
5461 	}
5462 
5463 	/*
5464 	 *  If we are auto-sensing, then we are done.
5465 	 */
5466 	if (cp->host_flags & HF_SENSE) {
5467 		*ofs = dp_ofs;
5468 		return 0;
5469 	}
5470 
5471 	/*
5472 	 *  Deduce the index of the sg entry.
5473 	 *  Keep track of the index of the first valid entry.
5474 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5475 	 *  end of the data.
5476 	 */
5477 	tmp = scr_to_cpu(cp->phys.head.goalp);
5478 	dp_sg = SYM_CONF_MAX_SG;
5479 	if (dp_scr != tmp)
5480 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5481 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5482 
5483 	/*
5484 	 *  Move to the sg entry the data pointer belongs to.
5485 	 *
5486 	 *  If we are inside the data area, we expect result to be:
5487 	 *
5488 	 *  Either,
5489 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5490 	 *      the data pointer belongs to (or the end of the data)
5491 	 *  Or,
5492 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5493 	 *      the data pointer belongs to + 1.
5494 	 */
5495 	if (dp_ofs < 0) {
5496 		int n;
5497 		while (dp_sg > dp_sgmin) {
5498 			--dp_sg;
5499 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5500 			n = dp_ofs + (tmp & 0xffffff);
5501 			if (n > 0) {
5502 				++dp_sg;
5503 				break;
5504 			}
5505 			dp_ofs = n;
5506 		}
5507 	}
5508 	else if (dp_ofs > 0) {
5509 		while (dp_sg < SYM_CONF_MAX_SG) {
5510 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5511 			dp_ofs -= (tmp & 0xffffff);
5512 			++dp_sg;
5513 			if (dp_ofs <= 0)
5514 				break;
5515 		}
5516 	}
5517 
5518 	/*
5519 	 *  Make sure the data pointer is inside the data area.
5520 	 *  If not, return some error.
5521 	 */
5522 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5523 		goto out_err;
5524 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5525 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5526 		goto out_err;
5527 
5528 	/*
5529 	 *  Save the extreme pointer if needed.
5530 	 */
5531 	if (dp_sg > cp->ext_sg ||
5532             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5533 		cp->ext_sg  = dp_sg;
5534 		cp->ext_ofs = dp_ofs;
5535 	}
5536 
5537 	/*
5538 	 *  Return data.
5539 	 */
5540 	*ofs = dp_ofs;
5541 	return dp_sg;
5542 
5543 out_err:
5544 	return -1;
5545 }
5546 
5547 /*
5548  *  chip handler for MODIFY DATA POINTER MESSAGE
5549  *
5550  *  We also call this function on IGNORE WIDE RESIDUE
5551  *  messages that do not match a SWIDE full condition.
5552  *  Btw, we assume in that situation that such a message
5553  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5554  */
5555 
5556 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5557 {
5558 	int dp_ofs	= ofs;
5559 	u32	dp_scr	= INL (nc_temp);
5560 	u32	dp_ret;
5561 	u32	tmp;
5562 	u_char	hflags;
5563 	int	dp_sg;
5564 	struct	sym_pmc *pm;
5565 
5566 	/*
5567 	 *  Not supported for auto-sense.
5568 	 */
5569 	if (cp->host_flags & HF_SENSE)
5570 		goto out_reject;
5571 
5572 	/*
5573 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5574 	 *  to the resulted data pointer.
5575 	 */
5576 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5577 	if (dp_sg < 0)
5578 		goto out_reject;
5579 
5580 	/*
5581 	 *  And our alchemy:) allows to easily calculate the data
5582 	 *  script address we want to return for the next data phase.
5583 	 */
5584 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5585 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5586 
5587 	/*
5588 	 *  If offset / scatter entry is zero we donnot need
5589 	 *  a context for the new current data pointer.
5590 	 */
5591 	if (dp_ofs == 0) {
5592 		dp_scr = dp_ret;
5593 		goto out_ok;
5594 	}
5595 
5596 	/*
5597 	 *  Get a context for the new current data pointer.
5598 	 */
5599 	hflags = INB (HF_PRT);
5600 
5601 	if (hflags & HF_DP_SAVED)
5602 		hflags ^= HF_ACT_PM;
5603 
5604 	if (!(hflags & HF_ACT_PM)) {
5605 		pm  = &cp->phys.pm0;
5606 		dp_scr = SCRIPTA_BA (np, pm0_data);
5607 	}
5608 	else {
5609 		pm = &cp->phys.pm1;
5610 		dp_scr = SCRIPTA_BA (np, pm1_data);
5611 	}
5612 
5613 	hflags &= ~(HF_DP_SAVED);
5614 
5615 	OUTB (HF_PRT, hflags);
5616 
5617 	/*
5618 	 *  Set up the new current data pointer.
5619 	 *  ofs < 0 there, and for the next data phase, we
5620 	 *  want to transfer part of the data of the sg entry
5621 	 *  corresponding to index dp_sg-1 prior to returning
5622 	 *  to the main data script.
5623 	 */
5624 	pm->ret = cpu_to_scr(dp_ret);
5625 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5626 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5627 	pm->sg.addr = cpu_to_scr(tmp);
5628 	pm->sg.size = cpu_to_scr(-dp_ofs);
5629 
5630 out_ok:
5631 	OUTL (nc_temp, dp_scr);
5632 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5633 	return;
5634 
5635 out_reject:
5636 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5637 }
5638 
5639 
5640 /*
5641  *  chip calculation of the data residual.
5642  *
5643  *  As I used to say, the requirement of data residual
5644  *  in SCSI is broken, useless and cannot be achieved
5645  *  without huge complexity.
5646  *  But most OSes and even the official CAM require it.
5647  *  When stupidity happens to be so widely spread inside
5648  *  a community, it gets hard to convince.
5649  *
5650  *  Anyway, I don't care, since I am not going to use
5651  *  any software that considers this data residual as
5652  *  a relevant information. :)
5653  */
5654 
5655 static int sym_compute_residual(hcb_p np, ccb_p cp)
5656 {
5657 	int dp_sg, dp_sgmin, resid = 0;
5658 	int dp_ofs = 0;
5659 
5660 	/*
5661 	 *  Check for some data lost or just thrown away.
5662 	 *  We are not required to be quite accurate in this
5663 	 *  situation. Btw, if we are odd for output and the
5664 	 *  device claims some more data, it may well happen
5665 	 *  than our residual be zero. :-)
5666 	 */
5667 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5668 		if (cp->xerr_status & XE_EXTRA_DATA)
5669 			resid -= cp->extra_bytes;
5670 		if (cp->xerr_status & XE_SODL_UNRUN)
5671 			++resid;
5672 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5673 			--resid;
5674 	}
5675 
5676 	/*
5677 	 *  If all data has been transferred,
5678 	 *  there is no residual.
5679 	 */
5680 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5681 		return resid;
5682 
5683 	/*
5684 	 *  If no data transfer occurs, or if the data
5685 	 *  pointer is weird, return full residual.
5686 	 */
5687 	if (cp->startp == cp->phys.head.lastp ||
5688 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5689 			    &dp_ofs) < 0) {
5690 		return cp->data_len;
5691 	}
5692 
5693 	/*
5694 	 *  If we were auto-sensing, then we are done.
5695 	 */
5696 	if (cp->host_flags & HF_SENSE) {
5697 		return -dp_ofs;
5698 	}
5699 
5700 	/*
5701 	 *  We are now full comfortable in the computation
5702 	 *  of the data residual (2's complement).
5703 	 */
5704 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5705 	resid = -cp->ext_ofs;
5706 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5707 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5708 		resid += (tmp & 0xffffff);
5709 	}
5710 
5711 	/*
5712 	 *  Hopefully, the result is not too wrong.
5713 	 */
5714 	return resid;
5715 }
5716 
5717 /*
5718  *  Print out the content of a SCSI message.
5719  */
5720 
5721 static int sym_show_msg (u_char * msg)
5722 {
5723 	u_char i;
5724 	kprintf ("%x",*msg);
5725 	if (*msg==M_EXTENDED) {
5726 		for (i=1;i<8;i++) {
5727 			if (i-1>msg[1]) break;
5728 			kprintf ("-%x",msg[i]);
5729 		};
5730 		return (i+1);
5731 	} else if ((*msg & 0xf0) == 0x20) {
5732 		kprintf ("-%x",msg[1]);
5733 		return (2);
5734 	};
5735 	return (1);
5736 }
5737 
5738 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5739 {
5740 	PRINT_ADDR(cp);
5741 	if (label)
5742 		kprintf ("%s: ", label);
5743 
5744 	(void) sym_show_msg (msg);
5745 	kprintf (".\n");
5746 }
5747 
5748 /*
5749  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5750  *
5751  *  When we try to negotiate, we append the negotiation message
5752  *  to the identify and (maybe) simple tag message.
5753  *  The host status field is set to HS_NEGOTIATE to mark this
5754  *  situation.
5755  *
5756  *  If the target doesn't answer this message immediately
5757  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5758  *  will be raised eventually.
5759  *  The handler removes the HS_NEGOTIATE status, and sets the
5760  *  negotiated value to the default (async / nowide).
5761  *
5762  *  If we receive a matching answer immediately, we check it
5763  *  for validity, and set the values.
5764  *
5765  *  If we receive a Reject message immediately, we assume the
5766  *  negotiation has failed, and fall back to standard values.
5767  *
5768  *  If we receive a negotiation message while not in HS_NEGOTIATE
5769  *  state, it's a target initiated negotiation. We prepare a
5770  *  (hopefully) valid answer, set our parameters, and send back
5771  *  this answer to the target.
5772  *
5773  *  If the target doesn't fetch the answer (no message out phase),
5774  *  we assume the negotiation has failed, and fall back to default
5775  *  settings (SIR_NEGO_PROTO interrupt).
5776  *
5777  *  When we set the values, we adjust them in all ccbs belonging
5778  *  to this target, in the controller's register, and in the "phys"
5779  *  field of the controller's struct sym_hcb.
5780  */
5781 
5782 /*
5783  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5784  */
5785 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5786 {
5787 	u_char	chg, ofs, per, fak, div;
5788 	int	req = 1;
5789 
5790 	/*
5791 	 *  Synchronous request message received.
5792 	 */
5793 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5794 		sym_print_msg(cp, "sync msgin", np->msgin);
5795 	};
5796 
5797 	/*
5798 	 * request or answer ?
5799 	 */
5800 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5801 		OUTB (HS_PRT, HS_BUSY);
5802 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5803 			goto reject_it;
5804 		req = 0;
5805 	}
5806 
5807 	/*
5808 	 *  get requested values.
5809 	 */
5810 	chg = 0;
5811 	per = np->msgin[3];
5812 	ofs = np->msgin[4];
5813 
5814 	/*
5815 	 *  check values against our limits.
5816 	 */
5817 	if (ofs) {
5818 		if (ofs > np->maxoffs)
5819 			{chg = 1; ofs = np->maxoffs;}
5820 		if (req) {
5821 			if (ofs > tp->tinfo.user.offset)
5822 				{chg = 1; ofs = tp->tinfo.user.offset;}
5823 		}
5824 	}
5825 
5826 	if (ofs) {
5827 		if (per < np->minsync)
5828 			{chg = 1; per = np->minsync;}
5829 		if (req) {
5830 			if (per < tp->tinfo.user.period)
5831 				{chg = 1; per = tp->tinfo.user.period;}
5832 		}
5833 	}
5834 
5835 	div = fak = 0;
5836 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5837 		goto reject_it;
5838 
5839 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5840 		PRINT_ADDR(cp);
5841 		kprintf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5842 			ofs, per, div, fak, chg);
5843 	}
5844 
5845 	/*
5846 	 *  This was an answer message
5847 	 */
5848 	if (req == 0) {
5849 		if (chg) 	/* Answer wasn't acceptable. */
5850 			goto reject_it;
5851 		sym_setsync (np, cp, ofs, per, div, fak);
5852 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5853 		return;
5854 	}
5855 
5856 	/*
5857 	 *  It was a request. Set value and
5858 	 *  prepare an answer message
5859 	 */
5860 	sym_setsync (np, cp, ofs, per, div, fak);
5861 
5862 	np->msgout[0] = M_EXTENDED;
5863 	np->msgout[1] = 3;
5864 	np->msgout[2] = M_X_SYNC_REQ;
5865 	np->msgout[3] = per;
5866 	np->msgout[4] = ofs;
5867 
5868 	cp->nego_status = NS_SYNC;
5869 
5870 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5871 		sym_print_msg(cp, "sync msgout", np->msgout);
5872 	}
5873 
5874 	np->msgin [0] = M_NOOP;
5875 
5876 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5877 	return;
5878 reject_it:
5879 	sym_setsync (np, cp, 0, 0, 0, 0);
5880 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5881 }
5882 
5883 /*
5884  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5885  */
5886 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5887 {
5888 	u_char	chg, ofs, per, fak, dt, div, wide;
5889 	int	req = 1;
5890 
5891 	/*
5892 	 * Synchronous request message received.
5893 	 */
5894 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5895 		sym_print_msg(cp, "ppr msgin", np->msgin);
5896 	};
5897 
5898 	/*
5899 	 *  get requested values.
5900 	 */
5901 	chg  = 0;
5902 	per  = np->msgin[3];
5903 	ofs  = np->msgin[5];
5904 	wide = np->msgin[6];
5905 	dt   = np->msgin[7] & PPR_OPT_DT;
5906 
5907 	/*
5908 	 * request or answer ?
5909 	 */
5910 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5911 		OUTB (HS_PRT, HS_BUSY);
5912 		if (cp->nego_status && cp->nego_status != NS_PPR)
5913 			goto reject_it;
5914 		req = 0;
5915 	}
5916 
5917 	/*
5918 	 *  check values against our limits.
5919 	 */
5920 	if (wide > np->maxwide)
5921 		{chg = 1; wide = np->maxwide;}
5922 	if (!wide || !(np->features & FE_ULTRA3))
5923 		dt &= ~PPR_OPT_DT;
5924 	if (req) {
5925 		if (wide > tp->tinfo.user.width)
5926 			{chg = 1; wide = tp->tinfo.user.width;}
5927 	}
5928 
5929 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5930 		dt &= ~PPR_OPT_DT;
5931 
5932 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5933 
5934 	if (ofs) {
5935 		if (dt) {
5936 			if (ofs > np->maxoffs_dt)
5937 				{chg = 1; ofs = np->maxoffs_dt;}
5938 		}
5939 		else if (ofs > np->maxoffs)
5940 			{chg = 1; ofs = np->maxoffs;}
5941 		if (req) {
5942 			if (ofs > tp->tinfo.user.offset)
5943 				{chg = 1; ofs = tp->tinfo.user.offset;}
5944 		}
5945 	}
5946 
5947 	if (ofs) {
5948 		if (dt) {
5949 			if (per < np->minsync_dt)
5950 				{chg = 1; per = np->minsync_dt;}
5951 		}
5952 		else if (per < np->minsync)
5953 			{chg = 1; per = np->minsync;}
5954 		if (req) {
5955 			if (per < tp->tinfo.user.period)
5956 				{chg = 1; per = tp->tinfo.user.period;}
5957 		}
5958 	}
5959 
5960 	div = fak = 0;
5961 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5962 		goto reject_it;
5963 
5964 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5965 		PRINT_ADDR(cp);
5966 		kprintf ("ppr: "
5967 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5968 			dt, ofs, per, wide, div, fak, chg);
5969 	}
5970 
5971 	/*
5972 	 *  It was an answer.
5973 	 */
5974 	if (req == 0) {
5975 		if (chg) 	/* Answer wasn't acceptable */
5976 			goto reject_it;
5977 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5978 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5979 		return;
5980 	}
5981 
5982 	/*
5983 	 *  It was a request. Set value and
5984 	 *  prepare an answer message
5985 	 */
5986 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5987 
5988 	np->msgout[0] = M_EXTENDED;
5989 	np->msgout[1] = 6;
5990 	np->msgout[2] = M_X_PPR_REQ;
5991 	np->msgout[3] = per;
5992 	np->msgout[4] = 0;
5993 	np->msgout[5] = ofs;
5994 	np->msgout[6] = wide;
5995 	np->msgout[7] = dt;
5996 
5997 	cp->nego_status = NS_PPR;
5998 
5999 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6000 		sym_print_msg(cp, "ppr msgout", np->msgout);
6001 	}
6002 
6003 	np->msgin [0] = M_NOOP;
6004 
6005 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
6006 	return;
6007 reject_it:
6008 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6009 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6010 	/*
6011 	 *  If it was a device response that should result in
6012 	 *  ST, we may want to try a legacy negotiation later.
6013 	 */
6014 	if (!req && !dt) {
6015 		tp->tinfo.goal.options = 0;
6016 		tp->tinfo.goal.width   = wide;
6017 		tp->tinfo.goal.period  = per;
6018 		tp->tinfo.goal.offset  = ofs;
6019 	}
6020 	return;
6021 }
6022 
6023 /*
6024  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
6025  */
6026 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
6027 {
6028 	u_char	chg, wide;
6029 	int	req = 1;
6030 
6031 	/*
6032 	 *  Wide request message received.
6033 	 */
6034 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6035 		sym_print_msg(cp, "wide msgin", np->msgin);
6036 	};
6037 
6038 	/*
6039 	 * Is it an request from the device?
6040 	 */
6041 	if (INB (HS_PRT) == HS_NEGOTIATE) {
6042 		OUTB (HS_PRT, HS_BUSY);
6043 		if (cp->nego_status && cp->nego_status != NS_WIDE)
6044 			goto reject_it;
6045 		req = 0;
6046 	}
6047 
6048 	/*
6049 	 *  get requested values.
6050 	 */
6051 	chg  = 0;
6052 	wide = np->msgin[3];
6053 
6054 	/*
6055 	 *  check values against driver limits.
6056 	 */
6057 	if (wide > np->maxwide)
6058 		{chg = 1; wide = np->maxwide;}
6059 	if (req) {
6060 		if (wide > tp->tinfo.user.width)
6061 			{chg = 1; wide = tp->tinfo.user.width;}
6062 	}
6063 
6064 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6065 		PRINT_ADDR(cp);
6066 		kprintf ("wdtr: wide=%d chg=%d.\n", wide, chg);
6067 	}
6068 
6069 	/*
6070 	 * This was an answer message
6071 	 */
6072 	if (req == 0) {
6073 		if (chg)	/*  Answer wasn't acceptable. */
6074 			goto reject_it;
6075 		sym_setwide (np, cp, wide);
6076 
6077 		/*
6078 		 * Negotiate for SYNC immediately after WIDE response.
6079 		 * This allows to negotiate for both WIDE and SYNC on
6080 		 * a single SCSI command (Suggested by Justin Gibbs).
6081 		 */
6082 		if (tp->tinfo.goal.offset) {
6083 			np->msgout[0] = M_EXTENDED;
6084 			np->msgout[1] = 3;
6085 			np->msgout[2] = M_X_SYNC_REQ;
6086 			np->msgout[3] = tp->tinfo.goal.period;
6087 			np->msgout[4] = tp->tinfo.goal.offset;
6088 
6089 			if (DEBUG_FLAGS & DEBUG_NEGO) {
6090 				sym_print_msg(cp, "sync msgout", np->msgout);
6091 			}
6092 
6093 			cp->nego_status = NS_SYNC;
6094 			OUTB (HS_PRT, HS_NEGOTIATE);
6095 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
6096 			return;
6097 		}
6098 
6099 		OUTL_DSP (SCRIPTA_BA (np, clrack));
6100 		return;
6101 	};
6102 
6103 	/*
6104 	 *  It was a request, set value and
6105 	 *  prepare an answer message
6106 	 */
6107 	sym_setwide (np, cp, wide);
6108 
6109 	np->msgout[0] = M_EXTENDED;
6110 	np->msgout[1] = 2;
6111 	np->msgout[2] = M_X_WIDE_REQ;
6112 	np->msgout[3] = wide;
6113 
6114 	np->msgin [0] = M_NOOP;
6115 
6116 	cp->nego_status = NS_WIDE;
6117 
6118 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6119 		sym_print_msg(cp, "wide msgout", np->msgout);
6120 	}
6121 
6122 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
6123 	return;
6124 reject_it:
6125 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6126 }
6127 
6128 /*
6129  *  Reset SYNC or WIDE to default settings.
6130  *
6131  *  Called when a negotiation does not succeed either
6132  *  on rejection or on protocol error.
6133  *
6134  *  If it was a PPR that made problems, we may want to
6135  *  try a legacy negotiation later.
6136  */
6137 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
6138 {
6139 	/*
6140 	 *  any error in negotiation:
6141 	 *  fall back to default mode.
6142 	 */
6143 	switch (cp->nego_status) {
6144 	case NS_PPR:
6145 #if 0
6146 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6147 #else
6148 		tp->tinfo.goal.options = 0;
6149 		if (tp->tinfo.goal.period < np->minsync)
6150 			tp->tinfo.goal.period = np->minsync;
6151 		if (tp->tinfo.goal.offset > np->maxoffs)
6152 			tp->tinfo.goal.offset = np->maxoffs;
6153 #endif
6154 		break;
6155 	case NS_SYNC:
6156 		sym_setsync (np, cp, 0, 0, 0, 0);
6157 		break;
6158 	case NS_WIDE:
6159 		sym_setwide (np, cp, 0);
6160 		break;
6161 	};
6162 	np->msgin [0] = M_NOOP;
6163 	np->msgout[0] = M_NOOP;
6164 	cp->nego_status = 0;
6165 }
6166 
6167 /*
6168  *  chip handler for MESSAGE REJECT received in response to
6169  *  a WIDE or SYNCHRONOUS negotiation.
6170  */
6171 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6172 {
6173 	sym_nego_default(np, tp, cp);
6174 	OUTB (HS_PRT, HS_BUSY);
6175 }
6176 
6177 /*
6178  *  chip exception handler for programmed interrupts.
6179  */
6180 void sym_int_sir (hcb_p np)
6181 {
6182 	u_char	num	= INB (nc_dsps);
6183 	u32	dsa	= INL (nc_dsa);
6184 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6185 	u_char	target	= INB (nc_sdid) & 0x0f;
6186 	tcb_p	tp	= &np->target[target];
6187 	int	tmp;
6188 
6189 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("I#%d", num);
6190 
6191 	switch (num) {
6192 	/*
6193 	 *  Command has been completed with error condition
6194 	 *  or has been auto-sensed.
6195 	 */
6196 	case SIR_COMPLETE_ERROR:
6197 		sym_complete_error(np, cp);
6198 		return;
6199 	/*
6200 	 *  The C code is currently trying to recover from something.
6201 	 *  Typically, user want to abort some command.
6202 	 */
6203 	case SIR_SCRIPT_STOPPED:
6204 	case SIR_TARGET_SELECTED:
6205 	case SIR_ABORT_SENT:
6206 		sym_sir_task_recovery(np, num);
6207 		return;
6208 	/*
6209 	 *  The device didn't go to MSG OUT phase after having
6210 	 *  been selected with ATN. We donnot want to handle
6211 	 *  that.
6212 	 */
6213 	case SIR_SEL_ATN_NO_MSG_OUT:
6214 		kprintf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6215 			sym_name (np), target);
6216 		goto out_stuck;
6217 	/*
6218 	 *  The device didn't switch to MSG IN phase after
6219 	 *  having reseleted the initiator.
6220 	 */
6221 	case SIR_RESEL_NO_MSG_IN:
6222 		kprintf ("%s:%d: No MSG IN phase after reselection.\n",
6223 			sym_name (np), target);
6224 		goto out_stuck;
6225 	/*
6226 	 *  After reselection, the device sent a message that wasn't
6227 	 *  an IDENTIFY.
6228 	 */
6229 	case SIR_RESEL_NO_IDENTIFY:
6230 		kprintf ("%s:%d: No IDENTIFY after reselection.\n",
6231 			sym_name (np), target);
6232 		goto out_stuck;
6233 	/*
6234 	 *  The device reselected a LUN we donnot know about.
6235 	 */
6236 	case SIR_RESEL_BAD_LUN:
6237 		np->msgout[0] = M_RESET;
6238 		goto out;
6239 	/*
6240 	 *  The device reselected for an untagged nexus and we
6241 	 *  haven't any.
6242 	 */
6243 	case SIR_RESEL_BAD_I_T_L:
6244 		np->msgout[0] = M_ABORT;
6245 		goto out;
6246 	/*
6247 	 *  The device reselected for a tagged nexus that we donnot
6248 	 *  have.
6249 	 */
6250 	case SIR_RESEL_BAD_I_T_L_Q:
6251 		np->msgout[0] = M_ABORT_TAG;
6252 		goto out;
6253 	/*
6254 	 *  The SCRIPTS let us know that the device has grabbed
6255 	 *  our message and will abort the job.
6256 	 */
6257 	case SIR_RESEL_ABORTED:
6258 		np->lastmsg = np->msgout[0];
6259 		np->msgout[0] = M_NOOP;
6260 		kprintf ("%s:%d: message %x sent on bad reselection.\n",
6261 			sym_name (np), target, np->lastmsg);
6262 		goto out;
6263 	/*
6264 	 *  The SCRIPTS let us know that a message has been
6265 	 *  successfully sent to the device.
6266 	 */
6267 	case SIR_MSG_OUT_DONE:
6268 		np->lastmsg = np->msgout[0];
6269 		np->msgout[0] = M_NOOP;
6270 		/* Should we really care of that */
6271 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6272 			if (cp) {
6273 				cp->xerr_status &= ~XE_PARITY_ERR;
6274 				if (!cp->xerr_status)
6275 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6276 			}
6277 		}
6278 		goto out;
6279 	/*
6280 	 *  The device didn't send a GOOD SCSI status.
6281 	 *  We may have some work to do prior to allow
6282 	 *  the SCRIPTS processor to continue.
6283 	 */
6284 	case SIR_BAD_SCSI_STATUS:
6285 		if (!cp)
6286 			goto out;
6287 		sym_sir_bad_scsi_status(np, num, cp);
6288 		return;
6289 	/*
6290 	 *  We are asked by the SCRIPTS to prepare a
6291 	 *  REJECT message.
6292 	 */
6293 	case SIR_REJECT_TO_SEND:
6294 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6295 		np->msgout[0] = M_REJECT;
6296 		goto out;
6297 	/*
6298 	 *  We have been ODD at the end of a DATA IN
6299 	 *  transfer and the device didn't send a
6300 	 *  IGNORE WIDE RESIDUE message.
6301 	 *  It is a data overrun condition.
6302 	 */
6303 	case SIR_SWIDE_OVERRUN:
6304 		if (cp) {
6305 			OUTONB (HF_PRT, HF_EXT_ERR);
6306 			cp->xerr_status |= XE_SWIDE_OVRUN;
6307 		}
6308 		goto out;
6309 	/*
6310 	 *  We have been ODD at the end of a DATA OUT
6311 	 *  transfer.
6312 	 *  It is a data underrun condition.
6313 	 */
6314 	case SIR_SODL_UNDERRUN:
6315 		if (cp) {
6316 			OUTONB (HF_PRT, HF_EXT_ERR);
6317 			cp->xerr_status |= XE_SODL_UNRUN;
6318 		}
6319 		goto out;
6320 	/*
6321 	 *  The device wants us to tranfer more data than
6322 	 *  expected or in the wrong direction.
6323 	 *  The number of extra bytes is in scratcha.
6324 	 *  It is a data overrun condition.
6325 	 */
6326 	case SIR_DATA_OVERRUN:
6327 		if (cp) {
6328 			OUTONB (HF_PRT, HF_EXT_ERR);
6329 			cp->xerr_status |= XE_EXTRA_DATA;
6330 			cp->extra_bytes += INL (nc_scratcha);
6331 		}
6332 		goto out;
6333 	/*
6334 	 *  The device switched to an illegal phase (4/5).
6335 	 */
6336 	case SIR_BAD_PHASE:
6337 		if (cp) {
6338 			OUTONB (HF_PRT, HF_EXT_ERR);
6339 			cp->xerr_status |= XE_BAD_PHASE;
6340 		}
6341 		goto out;
6342 	/*
6343 	 *  We received a message.
6344 	 */
6345 	case SIR_MSG_RECEIVED:
6346 		if (!cp)
6347 			goto out_stuck;
6348 		switch (np->msgin [0]) {
6349 		/*
6350 		 *  We received an extended message.
6351 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6352 		 *  and reject all other extended messages.
6353 		 */
6354 		case M_EXTENDED:
6355 			switch (np->msgin [2]) {
6356 			case M_X_MODIFY_DP:
6357 				if (DEBUG_FLAGS & DEBUG_POINTER)
6358 					sym_print_msg(cp,"modify DP",np->msgin);
6359 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6360 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6361 				sym_modify_dp(np, tp, cp, tmp);
6362 				return;
6363 			case M_X_SYNC_REQ:
6364 				sym_sync_nego(np, tp, cp);
6365 				return;
6366 			case M_X_PPR_REQ:
6367 				sym_ppr_nego(np, tp, cp);
6368 				return;
6369 			case M_X_WIDE_REQ:
6370 				sym_wide_nego(np, tp, cp);
6371 				return;
6372 			default:
6373 				goto out_reject;
6374 			}
6375 			break;
6376 		/*
6377 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6378 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6379 		 *  RESIDUE messages that haven't been anticipated by
6380 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6381 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6382 		 */
6383 		case M_IGN_RESIDUE:
6384 			if (DEBUG_FLAGS & DEBUG_POINTER)
6385 				sym_print_msg(cp,"ign wide residue", np->msgin);
6386 			sym_modify_dp(np, tp, cp, -1);
6387 			return;
6388 		case M_REJECT:
6389 			if (INB (HS_PRT) == HS_NEGOTIATE)
6390 				sym_nego_rejected(np, tp, cp);
6391 			else {
6392 				PRINT_ADDR(cp);
6393 				kprintf ("M_REJECT received (%x:%x).\n",
6394 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6395 			}
6396 			goto out_clrack;
6397 			break;
6398 		default:
6399 			goto out_reject;
6400 		}
6401 		break;
6402 	/*
6403 	 *  We received an unknown message.
6404 	 *  Ignore all MSG IN phases and reject it.
6405 	 */
6406 	case SIR_MSG_WEIRD:
6407 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6408 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6409 		return;
6410 	/*
6411 	 *  Negotiation failed.
6412 	 *  Target does not send us the reply.
6413 	 *  Remove the HS_NEGOTIATE status.
6414 	 */
6415 	case SIR_NEGO_FAILED:
6416 		OUTB (HS_PRT, HS_BUSY);
6417 	/*
6418 	 *  Negotiation failed.
6419 	 *  Target does not want answer message.
6420 	 */
6421 	case SIR_NEGO_PROTO:
6422 		sym_nego_default(np, tp, cp);
6423 		goto out;
6424 	};
6425 
6426 out:
6427 	OUTONB_STD ();
6428 	return;
6429 out_reject:
6430 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6431 	return;
6432 out_clrack:
6433 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6434 	return;
6435 out_stuck:
6436 	;
6437 }
6438 
6439 /*
6440  *  Acquire a control block
6441  */
6442 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6443 {
6444 	tcb_p tp = &np->target[tn];
6445 	lcb_p lp = sym_lp(np, tp, ln);
6446 	u_short tag = NO_TAG;
6447 	SYM_QUEHEAD *qp;
6448 	ccb_p cp = (ccb_p) 0;
6449 
6450 	/*
6451 	 *  Look for a free CCB
6452 	 */
6453 	if (sym_que_empty(&np->free_ccbq))
6454 		(void) sym_alloc_ccb(np);
6455 	qp = sym_remque_head(&np->free_ccbq);
6456 	if (!qp)
6457 		goto out;
6458 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6459 
6460 	/*
6461 	 *  If the LCB is not yet available and the LUN
6462 	 *  has been probed ok, try to allocate the LCB.
6463 	 */
6464 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6465 		lp = sym_alloc_lcb(np, tn, ln);
6466 		if (!lp)
6467 			goto out_free;
6468 	}
6469 
6470 	/*
6471 	 *  If the LCB is not available here, then the
6472 	 *  logical unit is not yet discovered. For those
6473 	 *  ones only accept 1 SCSI IO per logical unit,
6474 	 *  since we cannot allow disconnections.
6475 	 */
6476 	if (!lp) {
6477 		if (!sym_is_bit(tp->busy0_map, ln))
6478 			sym_set_bit(tp->busy0_map, ln);
6479 		else
6480 			goto out_free;
6481 	} else {
6482 		/*
6483 		 *  If we have been asked for a tagged command.
6484 		 */
6485 		if (tag_order) {
6486 			/*
6487 			 *  Debugging purpose.
6488 			 */
6489 			assert(lp->busy_itl == 0);
6490 			/*
6491 			 *  Allocate resources for tags if not yet.
6492 			 */
6493 			if (!lp->cb_tags) {
6494 				sym_alloc_lcb_tags(np, tn, ln);
6495 				if (!lp->cb_tags)
6496 					goto out_free;
6497 			}
6498 			/*
6499 			 *  Get a tag for this SCSI IO and set up
6500 			 *  the CCB bus address for reselection,
6501 			 *  and count it for this LUN.
6502 			 *  Toggle reselect path to tagged.
6503 			 */
6504 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6505 				tag = lp->cb_tags[lp->ia_tag];
6506 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6507 					lp->ia_tag = 0;
6508 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6509 				++lp->busy_itlq;
6510 				lp->head.resel_sa =
6511 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6512 			}
6513 			else
6514 				goto out_free;
6515 		}
6516 		/*
6517 		 *  This command will not be tagged.
6518 		 *  If we already have either a tagged or untagged
6519 		 *  one, refuse to overlap this untagged one.
6520 		 */
6521 		else {
6522 			/*
6523 			 *  Debugging purpose.
6524 			 */
6525 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6526 			/*
6527 			 *  Count this nexus for this LUN.
6528 			 *  Set up the CCB bus address for reselection.
6529 			 *  Toggle reselect path to untagged.
6530 			 */
6531 			if (++lp->busy_itl == 1) {
6532 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6533 				lp->head.resel_sa =
6534 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6535 			}
6536 			else
6537 				goto out_free;
6538 		}
6539 	}
6540 	/*
6541 	 *  Put the CCB into the busy queue.
6542 	 */
6543 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6544 
6545 	/*
6546 	 *  Remember all informations needed to free this CCB.
6547 	 */
6548 	cp->to_abort = 0;
6549 	cp->tag	   = tag;
6550 	cp->target = tn;
6551 	cp->lun    = ln;
6552 
6553 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6554 		PRINT_LUN(np, tn, ln);
6555 		kprintf ("ccb @%p using tag %d.\n", cp, tag);
6556 	}
6557 
6558 out:
6559 	return cp;
6560 out_free:
6561 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6562 	return (ccb_p) 0;
6563 }
6564 
6565 /*
6566  *  Release one control block
6567  */
6568 static void sym_free_ccb (hcb_p np, ccb_p cp)
6569 {
6570 	tcb_p tp = &np->target[cp->target];
6571 	lcb_p lp = sym_lp(np, tp, cp->lun);
6572 
6573 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6574 		PRINT_LUN(np, cp->target, cp->lun);
6575 		kprintf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6576 	}
6577 
6578 	/*
6579 	 *  If LCB available,
6580 	 */
6581 	if (lp) {
6582 		/*
6583 		 *  If tagged, release the tag, set the relect path
6584 		 */
6585 		if (cp->tag != NO_TAG) {
6586 			/*
6587 			 *  Free the tag value.
6588 			 */
6589 			lp->cb_tags[lp->if_tag] = cp->tag;
6590 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6591 				lp->if_tag = 0;
6592 			/*
6593 			 *  Make the reselect path invalid,
6594 			 *  and uncount this CCB.
6595 			 */
6596 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6597 			--lp->busy_itlq;
6598 		} else {	/* Untagged */
6599 			/*
6600 			 *  Make the reselect path invalid,
6601 			 *  and uncount this CCB.
6602 			 */
6603 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6604 			--lp->busy_itl;
6605 		}
6606 		/*
6607 		 *  If no JOB active, make the LUN reselect path invalid.
6608 		 */
6609 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6610 			lp->head.resel_sa =
6611 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6612 	}
6613 	/*
6614 	 *  Otherwise, we only accept 1 IO per LUN.
6615 	 *  Clear the bit that keeps track of this IO.
6616 	 */
6617 	else
6618 		sym_clr_bit(tp->busy0_map, cp->lun);
6619 
6620 	/*
6621 	 *  We donnot queue more than 1 ccb per target
6622 	 *  with negotiation at any time. If this ccb was
6623 	 *  used for negotiation, clear this info in the tcb.
6624 	 */
6625 	if (cp == tp->nego_cp)
6626 		tp->nego_cp = 0;
6627 
6628 #ifdef SYM_CONF_IARB_SUPPORT
6629 	/*
6630 	 *  If we just complete the last queued CCB,
6631 	 *  clear this info that is no longer relevant.
6632 	 */
6633 	if (cp == np->last_cp)
6634 		np->last_cp = 0;
6635 #endif
6636 
6637 #ifdef	FreeBSD_Bus_Dma_Abstraction
6638 	/*
6639 	 *  Unmap user data from DMA map if needed.
6640 	 */
6641 	if (cp->dmamapped) {
6642 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6643 		cp->dmamapped = 0;
6644 	}
6645 #endif
6646 
6647 	/*
6648 	 *  Make this CCB available.
6649 	 */
6650 	cp->cam_ccb = 0;
6651 	cp->host_status = HS_IDLE;
6652 	sym_remque(&cp->link_ccbq);
6653 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6654 }
6655 
6656 /*
6657  *  Allocate a CCB from memory and initialize its fixed part.
6658  */
6659 static ccb_p sym_alloc_ccb(hcb_p np)
6660 {
6661 	ccb_p cp = 0;
6662 	int hcode;
6663 
6664 	/*
6665 	 *  Prevent from allocating more CCBs than we can
6666 	 *  queue to the controller.
6667 	 */
6668 	if (np->actccbs >= SYM_CONF_MAX_START)
6669 		return 0;
6670 
6671 	/*
6672 	 *  Allocate memory for this CCB.
6673 	 */
6674 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6675 	if (!cp)
6676 		goto out_free;
6677 
6678 	/*
6679 	 *  Allocate a bounce buffer for sense data.
6680 	 */
6681 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6682 	if (!cp->sns_bbuf)
6683 		goto out_free;
6684 
6685 	/*
6686 	 *  Allocate a map for the DMA of user data.
6687 	 */
6688 #ifdef	FreeBSD_Bus_Dma_Abstraction
6689 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6690 		goto out_free;
6691 #endif
6692 	/*
6693 	 *  Count it.
6694 	 */
6695 	np->actccbs++;
6696 
6697 	/*
6698 	 *  Compute the bus address of this ccb.
6699 	 */
6700 	cp->ccb_ba = vtobus(cp);
6701 
6702 	/*
6703 	 *  Insert this ccb into the hashed list.
6704 	 */
6705 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6706 	cp->link_ccbh = np->ccbh[hcode];
6707 	np->ccbh[hcode] = cp;
6708 
6709 	/*
6710 	 *  Initialyze the start and restart actions.
6711 	 */
6712 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6713 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6714 
6715  	/*
6716 	 *  Initilialyze some other fields.
6717 	 */
6718 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6719 
6720 	/*
6721 	 *  Chain into free ccb queue.
6722 	 */
6723 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6724 
6725 	return cp;
6726 out_free:
6727 	if (cp) {
6728 		if (cp->sns_bbuf)
6729 			sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
6730 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
6731 	}
6732 	return 0;
6733 }
6734 
6735 /*
6736  *  Look up a CCB from a DSA value.
6737  */
6738 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6739 {
6740 	int hcode;
6741 	ccb_p cp;
6742 
6743 	hcode = CCB_HASH_CODE(dsa);
6744 	cp = np->ccbh[hcode];
6745 	while (cp) {
6746 		if (cp->ccb_ba == dsa)
6747 			break;
6748 		cp = cp->link_ccbh;
6749 	}
6750 
6751 	return cp;
6752 }
6753 
6754 /*
6755  *  Target control block initialisation.
6756  *  Nothing important to do at the moment.
6757  */
6758 static void sym_init_tcb (hcb_p np, u_char tn)
6759 {
6760 	/*
6761 	 *  Check some alignments required by the chip.
6762 	 */
6763 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6764 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6765 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6766 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6767 }
6768 
6769 /*
6770  *  Lun control block allocation and initialization.
6771  */
6772 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6773 {
6774 	tcb_p tp = &np->target[tn];
6775 	lcb_p lp = sym_lp(np, tp, ln);
6776 
6777 	/*
6778 	 *  Already done, just return.
6779 	 */
6780 	if (lp)
6781 		return lp;
6782 	/*
6783 	 *  Check against some race.
6784 	 */
6785 	assert(!sym_is_bit(tp->busy0_map, ln));
6786 
6787 	/*
6788 	 *  Initialize the target control block if not yet.
6789 	 */
6790 	sym_init_tcb (np, tn);
6791 
6792 	/*
6793 	 *  Allocate the LCB bus address array.
6794 	 *  Compute the bus address of this table.
6795 	 */
6796 	if (ln && !tp->luntbl) {
6797 		int i;
6798 
6799 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6800 		if (!tp->luntbl)
6801 			goto fail;
6802 		for (i = 0 ; i < 64 ; i++)
6803 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6804 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6805 	}
6806 
6807 	/*
6808 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6809 	 */
6810 	if (ln && !tp->lunmp) {
6811 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6812 				   "LUNMP");
6813 		if (!tp->lunmp)
6814 			goto fail;
6815 	}
6816 
6817 	/*
6818 	 *  Allocate the lcb.
6819 	 *  Make it available to the chip.
6820 	 */
6821 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6822 	if (!lp)
6823 		goto fail;
6824 	if (ln) {
6825 		tp->lunmp[ln] = lp;
6826 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6827 	}
6828 	else {
6829 		tp->lun0p = lp;
6830 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6831 	}
6832 
6833 	/*
6834 	 *  Let the itl task point to error handling.
6835 	 */
6836 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6837 
6838 	/*
6839 	 *  Set the reselect pattern to our default. :)
6840 	 */
6841 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6842 
6843 	/*
6844 	 *  Set user capabilities.
6845 	 */
6846 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6847 
6848 fail:
6849 	return lp;
6850 }
6851 
6852 /*
6853  *  Allocate LCB resources for tagged command queuing.
6854  */
6855 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6856 {
6857 	tcb_p tp = &np->target[tn];
6858 	lcb_p lp = sym_lp(np, tp, ln);
6859 	int i;
6860 
6861 	/*
6862 	 *  If LCB not available, try to allocate it.
6863 	 */
6864 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6865 		goto fail;
6866 
6867 	/*
6868 	 *  Allocate the task table and and the tag allocation
6869 	 *  circular buffer. We want both or none.
6870 	 */
6871 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6872 	if (!lp->itlq_tbl)
6873 		goto fail;
6874 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6875 	if (!lp->cb_tags) {
6876 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6877 		lp->itlq_tbl = 0;
6878 		goto fail;
6879 	}
6880 
6881 	/*
6882 	 *  Initialize the task table with invalid entries.
6883 	 */
6884 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6885 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6886 
6887 	/*
6888 	 *  Fill up the tag buffer with tag numbers.
6889 	 */
6890 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6891 		lp->cb_tags[i] = i;
6892 
6893 	/*
6894 	 *  Make the task table available to SCRIPTS,
6895 	 *  And accept tagged commands now.
6896 	 */
6897 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6898 fail:
6899 	;
6900 }
6901 
6902 /*
6903  *  Test the pci bus snoop logic :-(
6904  *
6905  *  Has to be called with interrupts disabled.
6906  */
6907 #ifndef SYM_CONF_IOMAPPED
6908 static int sym_regtest (hcb_p np)
6909 {
6910 	volatile u32 data;
6911 	/*
6912 	 *  chip registers may NOT be cached.
6913 	 *  write 0xffffffff to a read only register area,
6914 	 *  and try to read it back.
6915 	 */
6916 	data = 0xffffffff;
6917 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6918 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6919 #if 1
6920 	if (data == 0xffffffff) {
6921 #else
6922 	if ((data & 0xe2f0fffd) != 0x02000080) {
6923 #endif
6924 		kprintf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6925 			(unsigned) data);
6926 		return (0x10);
6927 	};
6928 	return (0);
6929 }
6930 #endif
6931 
6932 static int sym_snooptest (hcb_p np)
6933 {
6934 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6935 	int	i, err=0;
6936 #ifndef SYM_CONF_IOMAPPED
6937 	err |= sym_regtest (np);
6938 	if (err) return (err);
6939 #endif
6940 restart_test:
6941 	/*
6942 	 *  Enable Master Parity Checking as we intend
6943 	 *  to enable it for normal operations.
6944 	 */
6945 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6946 	/*
6947 	 *  init
6948 	 */
6949 	pc  = SCRIPTB0_BA (np, snooptest);
6950 	host_wr = 1;
6951 	sym_wr  = 2;
6952 	/*
6953 	 *  Set memory and register.
6954 	 */
6955 	np->cache = cpu_to_scr(host_wr);
6956 	OUTL (nc_temp, sym_wr);
6957 	/*
6958 	 *  Start script (exchange values)
6959 	 */
6960 	OUTL (nc_dsa, np->hcb_ba);
6961 	OUTL_DSP (pc);
6962 	/*
6963 	 *  Wait 'til done (with timeout)
6964 	 */
6965 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6966 		if (INB(nc_istat) & (INTF|SIP|DIP))
6967 			break;
6968 	if (i>=SYM_SNOOP_TIMEOUT) {
6969 		kprintf ("CACHE TEST FAILED: timeout.\n");
6970 		return (0x20);
6971 	};
6972 	/*
6973 	 *  Check for fatal DMA errors.
6974 	 */
6975 	dstat = INB (nc_dstat);
6976 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6977 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6978 		kprintf ("%s: PCI DATA PARITY ERROR DETECTED - "
6979 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6980 			sym_name(np));
6981 		np->rv_ctest4 &= ~MPEE;
6982 		goto restart_test;
6983 	}
6984 #endif
6985 	if (dstat & (MDPE|BF|IID)) {
6986 		kprintf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6987 		return (0x80);
6988 	}
6989 	/*
6990 	 *  Save termination position.
6991 	 */
6992 	pc = INL (nc_dsp);
6993 	/*
6994 	 *  Read memory and register.
6995 	 */
6996 	host_rd = scr_to_cpu(np->cache);
6997 	sym_rd  = INL (nc_scratcha);
6998 	sym_bk  = INL (nc_temp);
6999 
7000 	/*
7001 	 *  Check termination position.
7002 	 */
7003 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
7004 		kprintf ("CACHE TEST FAILED: script execution failed.\n");
7005 		kprintf ("start=%08lx, pc=%08lx, end=%08lx\n",
7006 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
7007 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
7008 		return (0x40);
7009 	};
7010 	/*
7011 	 *  Show results.
7012 	 */
7013 	if (host_wr != sym_rd) {
7014 		kprintf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
7015 			(int) host_wr, (int) sym_rd);
7016 		err |= 1;
7017 	};
7018 	if (host_rd != sym_wr) {
7019 		kprintf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
7020 			(int) sym_wr, (int) host_rd);
7021 		err |= 2;
7022 	};
7023 	if (sym_bk != sym_wr) {
7024 		kprintf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
7025 			(int) sym_wr, (int) sym_bk);
7026 		err |= 4;
7027 	};
7028 
7029 	return (err);
7030 }
7031 
7032 /*
7033  *  Determine the chip's clock frequency.
7034  *
7035  *  This is essential for the negotiation of the synchronous
7036  *  transfer rate.
7037  *
7038  *  Note: we have to return the correct value.
7039  *  THERE IS NO SAFE DEFAULT VALUE.
7040  *
7041  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7042  *  53C860 and 53C875 rev. 1 support fast20 transfers but
7043  *  do not have a clock doubler and so are provided with a
7044  *  80 MHz clock. All other fast20 boards incorporate a doubler
7045  *  and so should be delivered with a 40 MHz clock.
7046  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
7047  *  clock and provide a clock quadrupler (160 Mhz).
7048  */
7049 
7050 /*
7051  *  Select SCSI clock frequency
7052  */
7053 static void sym_selectclock(hcb_p np, u_char scntl3)
7054 {
7055 	/*
7056 	 *  If multiplier not present or not selected, leave here.
7057 	 */
7058 	if (np->multiplier <= 1) {
7059 		OUTB(nc_scntl3,	scntl3);
7060 		return;
7061 	}
7062 
7063 	if (sym_verbose >= 2)
7064 		kprintf ("%s: enabling clock multiplier\n", sym_name(np));
7065 
7066 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
7067 	/*
7068 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
7069 	 *  Otherwise wait 20 micro-seconds.
7070 	 */
7071 	if (np->features & FE_LCKFRQ) {
7072 		int i = 20;
7073 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7074 			UDELAY (20);
7075 		if (!i)
7076 			kprintf("%s: the chip cannot lock the frequency\n",
7077 				sym_name(np));
7078 	} else
7079 		UDELAY (20);
7080 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
7081 	OUTB(nc_scntl3,	scntl3);
7082 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
7083 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
7084 }
7085 
7086 /*
7087  *  calculate SCSI clock frequency (in KHz)
7088  */
7089 static unsigned getfreq (hcb_p np, int gen)
7090 {
7091 	unsigned int ms = 0;
7092 	unsigned int f;
7093 
7094 	/*
7095 	 * Measure GEN timer delay in order
7096 	 * to calculate SCSI clock frequency
7097 	 *
7098 	 * This code will never execute too
7099 	 * many loop iterations (if DELAY is
7100 	 * reasonably correct). It could get
7101 	 * too low a delay (too high a freq.)
7102 	 * if the CPU is slow executing the
7103 	 * loop for some reason (an NMI, for
7104 	 * example). For this reason we will
7105 	 * if multiple measurements are to be
7106 	 * performed trust the higher delay
7107 	 * (lower frequency returned).
7108 	 */
7109 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
7110 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
7111 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
7112 	(void) INW (nc_sist);	/* another one, just to be sure :) */
7113 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
7114 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7115 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
7116 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
7117 		UDELAY (1000);	/* count ms */
7118 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7119  	/*
7120  	 * set prescaler to divide by whatever 0 means
7121  	 * 0 ought to choose divide by 2, but appears
7122  	 * to set divide by 3.5 mode in my 53c810 ...
7123  	 */
7124  	OUTB (nc_scntl3, 0);
7125 
7126   	/*
7127  	 * adjust for prescaler, and convert into KHz
7128   	 */
7129 	f = ms ? ((1 << gen) * 4340) / ms : 0;
7130 
7131 	if (sym_verbose >= 2)
7132 		kprintf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
7133 			sym_name(np), gen, ms, f);
7134 
7135 	return f;
7136 }
7137 
7138 static unsigned sym_getfreq (hcb_p np)
7139 {
7140 	u_int f1, f2;
7141 	int gen = 11;
7142 
7143 	(void) getfreq (np, gen);	/* throw away first result */
7144 	f1 = getfreq (np, gen);
7145 	f2 = getfreq (np, gen);
7146 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
7147 	return f1;
7148 }
7149 
7150 /*
7151  *  Get/probe chip SCSI clock frequency
7152  */
7153 static void sym_getclock (hcb_p np, int mult)
7154 {
7155 	unsigned char scntl3 = np->sv_scntl3;
7156 	unsigned char stest1 = np->sv_stest1;
7157 	unsigned f1;
7158 
7159 	/*
7160 	 *  For the C10 core, assume 40 MHz.
7161 	 */
7162 	if (np->features & FE_C10) {
7163 		np->multiplier = mult;
7164 		np->clock_khz = 40000 * mult;
7165 		return;
7166 	}
7167 
7168 	np->multiplier = 1;
7169 	f1 = 40000;
7170 	/*
7171 	 *  True with 875/895/896/895A with clock multiplier selected
7172 	 */
7173 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7174 		if (sym_verbose >= 2)
7175 			kprintf ("%s: clock multiplier found\n", sym_name(np));
7176 		np->multiplier = mult;
7177 	}
7178 
7179 	/*
7180 	 *  If multiplier not found or scntl3 not 7,5,3,
7181 	 *  reset chip and get frequency from general purpose timer.
7182 	 *  Otherwise trust scntl3 BIOS setting.
7183 	 */
7184 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7185 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7186 		f1 = sym_getfreq (np);
7187 
7188 		if (sym_verbose)
7189 			kprintf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7190 
7191 		if	(f1 <	45000)		f1 =  40000;
7192 		else if (f1 <	55000)		f1 =  50000;
7193 		else				f1 =  80000;
7194 
7195 		if (f1 < 80000 && mult > 1) {
7196 			if (sym_verbose >= 2)
7197 				kprintf ("%s: clock multiplier assumed\n",
7198 					sym_name(np));
7199 			np->multiplier	= mult;
7200 		}
7201 	} else {
7202 		if	((scntl3 & 7) == 3)	f1 =  40000;
7203 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7204 		else 				f1 = 160000;
7205 
7206 		f1 /= np->multiplier;
7207 	}
7208 
7209 	/*
7210 	 *  Compute controller synchronous parameters.
7211 	 */
7212 	f1		*= np->multiplier;
7213 	np->clock_khz	= f1;
7214 }
7215 
7216 /*
7217  *  Get/probe PCI clock frequency
7218  */
7219 static int sym_getpciclock (hcb_p np)
7220 {
7221 	int f = 0;
7222 
7223 	/*
7224 	 *  For the C1010-33, this doesn't work.
7225 	 *  For the C1010-66, this will be tested when I'll have
7226 	 *  such a beast to play with.
7227 	 */
7228 	if (!(np->features & FE_C10)) {
7229 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7230 		f = (int) sym_getfreq (np);
7231 		OUTB (nc_stest1, 0);
7232 	}
7233 	np->pciclk_khz = f;
7234 
7235 	return f;
7236 }
7237 
7238 /*============= DRIVER ACTION/COMPLETION ====================*/
7239 
7240 /*
7241  *  Print something that tells about extended errors.
7242  */
7243 static void sym_print_xerr(ccb_p cp, int x_status)
7244 {
7245 	if (x_status & XE_PARITY_ERR) {
7246 		PRINT_ADDR(cp);
7247 		kprintf ("unrecovered SCSI parity error.\n");
7248 	}
7249 	if (x_status & XE_EXTRA_DATA) {
7250 		PRINT_ADDR(cp);
7251 		kprintf ("extraneous data discarded.\n");
7252 	}
7253 	if (x_status & XE_BAD_PHASE) {
7254 		PRINT_ADDR(cp);
7255 		kprintf ("illegal scsi phase (4/5).\n");
7256 	}
7257 	if (x_status & XE_SODL_UNRUN) {
7258 		PRINT_ADDR(cp);
7259 		kprintf ("ODD transfer in DATA OUT phase.\n");
7260 	}
7261 	if (x_status & XE_SWIDE_OVRUN) {
7262 		PRINT_ADDR(cp);
7263 		kprintf ("ODD transfer in DATA IN phase.\n");
7264 	}
7265 }
7266 
7267 /*
7268  *  Choose the more appropriate CAM status if
7269  *  the IO encountered an extended error.
7270  */
7271 static int sym_xerr_cam_status(int cam_status, int x_status)
7272 {
7273 	if (x_status) {
7274 		if	(x_status & XE_PARITY_ERR)
7275 			cam_status = CAM_UNCOR_PARITY;
7276 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7277 			cam_status = CAM_DATA_RUN_ERR;
7278 		else if	(x_status & XE_BAD_PHASE)
7279 			cam_status = CAM_REQ_CMP_ERR;
7280 		else
7281 			cam_status = CAM_REQ_CMP_ERR;
7282 	}
7283 	return cam_status;
7284 }
7285 
7286 /*
7287  *  Complete execution of a SCSI command with extented
7288  *  error, SCSI status error, or having been auto-sensed.
7289  *
7290  *  The SCRIPTS processor is not running there, so we
7291  *  can safely access IO registers and remove JOBs from
7292  *  the START queue.
7293  *  SCRATCHA is assumed to have been loaded with STARTPOS
7294  *  before the SCRIPTS called the C code.
7295  */
7296 static void sym_complete_error (hcb_p np, ccb_p cp)
7297 {
7298 	struct ccb_scsiio *csio;
7299 	u_int cam_status;
7300 	int i;
7301 
7302 	/*
7303 	 *  Paranoid check. :)
7304 	 */
7305 	if (!cp || !cp->cam_ccb)
7306 		return;
7307 
7308 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7309 		kprintf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7310 			cp->host_status, cp->ssss_status, cp->host_flags,
7311 			cp->target, cp->lun);
7312 		MDELAY(100);
7313 	}
7314 
7315 	/*
7316 	 *  Get CAM command pointer.
7317 	 */
7318 	csio = &cp->cam_ccb->csio;
7319 
7320 	/*
7321 	 *  Check for extended errors.
7322 	 */
7323 	if (cp->xerr_status) {
7324 		if (sym_verbose)
7325 			sym_print_xerr(cp, cp->xerr_status);
7326 		if (cp->host_status == HS_COMPLETE)
7327 			cp->host_status = HS_COMP_ERR;
7328 	}
7329 
7330 	/*
7331 	 *  Calculate the residual.
7332 	 */
7333 	csio->sense_resid = 0;
7334 	csio->resid = sym_compute_residual(np, cp);
7335 
7336 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7337 		csio->resid  = 0;	/* throw them away. :)		   */
7338 		cp->sv_resid = 0;
7339 	}
7340 
7341 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7342 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7343 		csio->sense_resid = csio->resid;	/* Swap residuals */
7344 		csio->resid       = cp->sv_resid;
7345 		cp->sv_resid	  = 0;
7346 		if (sym_verbose && cp->sv_xerr_status)
7347 			sym_print_xerr(cp, cp->sv_xerr_status);
7348 		if (cp->host_status == HS_COMPLETE &&
7349 		    cp->ssss_status == S_GOOD &&
7350 		    cp->xerr_status == 0) {
7351 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7352 							 cp->sv_xerr_status);
7353 			cam_status |= CAM_AUTOSNS_VALID;
7354 			/*
7355 			 *  Bounce back the sense data to user and
7356 			 *  fix the residual.
7357 			 */
7358 			bzero(&csio->sense_data, csio->sense_len);
7359 			bcopy(cp->sns_bbuf, &csio->sense_data,
7360 			      MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
7361 			csio->sense_resid += csio->sense_len;
7362 			csio->sense_resid -= SYM_SNS_BBUF_LEN;
7363 #if 0
7364 			/*
7365 			 *  If the device reports a UNIT ATTENTION condition
7366 			 *  due to a RESET condition, we should consider all
7367 			 *  disconnect CCBs for this unit as aborted.
7368 			 */
7369 			if (1) {
7370 				u_char *p;
7371 				p  = (u_char *) csio->sense_data;
7372 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7373 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7374 							cp->target,cp->lun, -1);
7375 			}
7376 #endif
7377 		}
7378 		else
7379 			cam_status = CAM_AUTOSENSE_FAIL;
7380 	}
7381 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7382 		csio->scsi_status = cp->ssss_status;
7383 		cam_status = CAM_SCSI_STATUS_ERROR;
7384 	}
7385 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7386 		cam_status = CAM_SEL_TIMEOUT;
7387 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7388 		cam_status = CAM_UNEXP_BUSFREE;
7389 	else {						/* Extended error */
7390 		if (sym_verbose) {
7391 			PRINT_ADDR(cp);
7392 			kprintf ("COMMAND FAILED (%x %x %x).\n",
7393 				cp->host_status, cp->ssss_status,
7394 				cp->xerr_status);
7395 		}
7396 		csio->scsi_status = cp->ssss_status;
7397 		/*
7398 		 *  Set the most appropriate value for CAM status.
7399 		 */
7400 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7401 						 cp->xerr_status);
7402 	}
7403 
7404 	/*
7405 	 *  Dequeue all queued CCBs for that device
7406 	 *  not yet started by SCRIPTS.
7407 	 */
7408 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7409 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7410 
7411 	/*
7412 	 *  Restart the SCRIPTS processor.
7413 	 */
7414 	OUTL_DSP (SCRIPTA_BA (np, start));
7415 
7416 #ifdef	FreeBSD_Bus_Dma_Abstraction
7417 	/*
7418 	 *  Synchronize DMA map if needed.
7419 	 */
7420 	if (cp->dmamapped) {
7421 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7422 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7423 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7424 	}
7425 #endif
7426 	/*
7427 	 *  Add this one to the COMP queue.
7428 	 *  Complete all those commands with either error
7429 	 *  or requeue condition.
7430 	 */
7431 	sym_set_cam_status((union ccb *) csio, cam_status);
7432 	sym_remque(&cp->link_ccbq);
7433 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7434 	sym_flush_comp_queue(np, 0);
7435 }
7436 
7437 /*
7438  *  Complete execution of a successful SCSI command.
7439  *
7440  *  Only successful commands go to the DONE queue,
7441  *  since we need to have the SCRIPTS processor
7442  *  stopped on any error condition.
7443  *  The SCRIPTS processor is running while we are
7444  *  completing successful commands.
7445  */
7446 static void sym_complete_ok (hcb_p np, ccb_p cp)
7447 {
7448 	struct ccb_scsiio *csio;
7449 	tcb_p tp;
7450 	lcb_p lp;
7451 
7452 	/*
7453 	 *  Paranoid check. :)
7454 	 */
7455 	if (!cp || !cp->cam_ccb)
7456 		return;
7457 	assert (cp->host_status == HS_COMPLETE);
7458 
7459 	/*
7460 	 *  Get command, target and lun pointers.
7461 	 */
7462 	csio = &cp->cam_ccb->csio;
7463 	tp = &np->target[cp->target];
7464 	lp = sym_lp(np, tp, cp->lun);
7465 
7466 	/*
7467 	 *  Assume device discovered on first success.
7468 	 */
7469 	if (!lp)
7470 		sym_set_bit(tp->lun_map, cp->lun);
7471 
7472 	/*
7473 	 *  If all data have been transferred, given than no
7474 	 *  extended error did occur, there is no residual.
7475 	 */
7476 	csio->resid = 0;
7477 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7478 		csio->resid = sym_compute_residual(np, cp);
7479 
7480 	/*
7481 	 *  Wrong transfer residuals may be worse than just always
7482 	 *  returning zero. User can disable this feature from
7483 	 *  sym_conf.h. Residual support is enabled by default.
7484 	 */
7485 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7486 		csio->resid  = 0;
7487 
7488 #ifdef	FreeBSD_Bus_Dma_Abstraction
7489 	/*
7490 	 *  Synchronize DMA map if needed.
7491 	 */
7492 	if (cp->dmamapped) {
7493 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7494 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7495 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7496 	}
7497 #endif
7498 	/*
7499 	 *  Set status and complete the command.
7500 	 */
7501 	csio->scsi_status = cp->ssss_status;
7502 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7503 	sym_free_ccb (np, cp);
7504 	sym_xpt_done(np, (union ccb *) csio);
7505 }
7506 
7507 /*
7508  *  Our timeout handler.
7509  */
7510 static void sym_timeout1(void *arg)
7511 {
7512 	union ccb *ccb = (union ccb *) arg;
7513 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7514 
7515 	/*
7516 	 *  Check that the CAM CCB is still queued.
7517 	 */
7518 	if (!np)
7519 		return;
7520 
7521 	switch(ccb->ccb_h.func_code) {
7522 	case XPT_SCSI_IO:
7523 		(void) sym_abort_scsiio(np, ccb, 1);
7524 		break;
7525 	default:
7526 		break;
7527 	}
7528 }
7529 
7530 static void sym_timeout(void *arg)
7531 {
7532 	crit_enter();
7533 	sym_timeout1(arg);
7534 	crit_exit();
7535 }
7536 
7537 /*
7538  *  Abort an SCSI IO.
7539  */
7540 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7541 {
7542 	ccb_p cp;
7543 	SYM_QUEHEAD *qp;
7544 
7545 	/*
7546 	 *  Look up our CCB control block.
7547 	 */
7548 	cp = 0;
7549 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7550 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7551 		if (cp2->cam_ccb == ccb) {
7552 			cp = cp2;
7553 			break;
7554 		}
7555 	}
7556 	if (!cp || cp->host_status == HS_WAIT)
7557 		return -1;
7558 
7559 	/*
7560 	 *  If a previous abort didn't succeed in time,
7561 	 *  perform a BUS reset.
7562 	 */
7563 	if (cp->to_abort) {
7564 		sym_reset_scsi_bus(np, 1);
7565 		return 0;
7566 	}
7567 
7568 	/*
7569 	 *  Mark the CCB for abort and allow time for.
7570 	 */
7571 	cp->to_abort = timed_out ? 2 : 1;
7572 	callout_reset(&ccb->ccb_h.timeout_ch, 10 * hz, sym_timeout, ccb);
7573 
7574 	/*
7575 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7576 	 */
7577 	np->istat_sem = SEM;
7578 	OUTB (nc_istat, SIGP|SEM);
7579 	return 0;
7580 }
7581 
7582 /*
7583  *  Reset a SCSI device (all LUNs of a target).
7584  */
7585 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7586 {
7587 	tcb_p tp;
7588 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7589 
7590 	if (ccb_h->target_id   == np->myaddr ||
7591 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7592 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7593 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7594 		return;
7595 	}
7596 
7597 	tp = &np->target[ccb_h->target_id];
7598 
7599 	tp->to_reset = 1;
7600 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7601 
7602 	np->istat_sem = SEM;
7603 	OUTB (nc_istat, SIGP|SEM);
7604 	return;
7605 }
7606 
7607 /*
7608  *  SIM action entry point.
7609  */
7610 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7611 {
7612 	crit_enter();
7613 	sym_action1(sim, ccb);
7614 	crit_exit();
7615 }
7616 
7617 static void sym_action1(struct cam_sim *sim, union ccb *ccb)
7618 {
7619 	hcb_p	np;
7620 	tcb_p	tp;
7621 	lcb_p	lp;
7622 	ccb_p	cp;
7623 	int 	tmp;
7624 	u_char	idmsg, *msgptr;
7625 	u_int   msglen;
7626 	struct	ccb_scsiio *csio;
7627 	struct	ccb_hdr  *ccb_h;
7628 
7629 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7630 
7631 	/*
7632 	 *  Retrieve our controller data structure.
7633 	 */
7634 	np = (hcb_p) cam_sim_softc(sim);
7635 
7636 	/*
7637 	 *  The common case is SCSI IO.
7638 	 *  We deal with other ones elsewhere.
7639 	 */
7640 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7641 		sym_action2(sim, ccb);
7642 		return;
7643 	}
7644 	csio  = &ccb->csio;
7645 	ccb_h = &csio->ccb_h;
7646 
7647 	/*
7648 	 *  Work around races.
7649 	 */
7650 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7651 		xpt_done(ccb);
7652 		return;
7653 	}
7654 
7655 	/*
7656 	 *  Minimal checkings, so that we will not
7657 	 *  go outside our tables.
7658 	 */
7659 	if (ccb_h->target_id   == np->myaddr ||
7660 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7661 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7662 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7663 		return;
7664         }
7665 
7666 	/*
7667 	 *  Retreive the target and lun descriptors.
7668 	 */
7669 	tp = &np->target[ccb_h->target_id];
7670 	lp = sym_lp(np, tp, ccb_h->target_lun);
7671 
7672 	/*
7673 	 *  Complete the 1st INQUIRY command with error
7674 	 *  condition if the device is flagged NOSCAN
7675 	 *  at BOOT in the NVRAM. This may speed up
7676 	 *  the boot and maintain coherency with BIOS
7677 	 *  device numbering. Clearing the flag allows
7678 	 *  user to rescan skipped devices later.
7679 	 *  We also return error for devices not flagged
7680 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7681 	 *  devices behave badly when asked for some non
7682 	 *  zero LUN. Btw, this is an absolute hack.:-)
7683 	 */
7684 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7685 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7686 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7687 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7688 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7689 		     ccb_h->target_lun != 0)) {
7690 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7691 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7692 			return;
7693 		}
7694 	}
7695 
7696 	/*
7697 	 *  Get a control block for this IO.
7698 	 */
7699 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7700 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7701 	if (!cp) {
7702 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7703 		return;
7704 	}
7705 
7706 	/*
7707 	 *  Keep track of the IO in our CCB.
7708 	 */
7709 	cp->cam_ccb = ccb;
7710 
7711 	/*
7712 	 *  Build the IDENTIFY message.
7713 	 */
7714 	idmsg = M_IDENTIFY | cp->lun;
7715 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7716 		idmsg |= 0x40;
7717 
7718 	msgptr = cp->scsi_smsg;
7719 	msglen = 0;
7720 	msgptr[msglen++] = idmsg;
7721 
7722 	/*
7723 	 *  Build the tag message if present.
7724 	 */
7725 	if (cp->tag != NO_TAG) {
7726 		u_char order = csio->tag_action;
7727 
7728 		switch(order) {
7729 		case M_ORDERED_TAG:
7730 			break;
7731 		case M_HEAD_TAG:
7732 			break;
7733 		default:
7734 			order = M_SIMPLE_TAG;
7735 		}
7736 		msgptr[msglen++] = order;
7737 
7738 		/*
7739 		 *  For less than 128 tags, actual tags are numbered
7740 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7741 		 *  with devices that have problems with #TAG 0 or too
7742 		 *  great #TAG numbers. For more tags (up to 256),
7743 		 *  we use directly our tag number.
7744 		 */
7745 #if SYM_CONF_MAX_TASK > (512/4)
7746 		msgptr[msglen++] = cp->tag;
7747 #else
7748 		msgptr[msglen++] = (cp->tag << 1) + 1;
7749 #endif
7750 	}
7751 
7752 	/*
7753 	 *  Build a negotiation message if needed.
7754 	 *  (nego_status is filled by sym_prepare_nego())
7755 	 */
7756 	cp->nego_status = 0;
7757 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7758 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7759 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7760 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7761 		if (!tp->nego_cp && lp)
7762 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7763 	}
7764 
7765 	/*
7766 	 *  Fill in our ccb
7767 	 */
7768 
7769 	/*
7770 	 *  Startqueue
7771 	 */
7772 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7773 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7774 
7775 	/*
7776 	 *  select
7777 	 */
7778 	cp->phys.select.sel_id		= cp->target;
7779 	cp->phys.select.sel_scntl3	= tp->head.wval;
7780 	cp->phys.select.sel_sxfer	= tp->head.sval;
7781 	cp->phys.select.sel_scntl4	= tp->head.uval;
7782 
7783 	/*
7784 	 *  message
7785 	 */
7786 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7787 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7788 
7789 	/*
7790 	 *  command
7791 	 */
7792 	if (sym_setup_cdb(np, csio, cp) < 0) {
7793 		sym_free_ccb(np, cp);
7794 		sym_xpt_done(np, ccb);
7795 		return;
7796 	}
7797 
7798 	/*
7799 	 *  status
7800 	 */
7801 #if	0	/* Provision */
7802 	cp->actualquirks	= tp->quirks;
7803 #endif
7804 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7805 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7806 	cp->ssss_status		= S_ILLEGAL;
7807 	cp->xerr_status		= 0;
7808 	cp->host_flags		= 0;
7809 	cp->extra_bytes		= 0;
7810 
7811 	/*
7812 	 *  extreme data pointer.
7813 	 *  shall be positive, so -1 is lower than lowest.:)
7814 	 */
7815 	cp->ext_sg  = -1;
7816 	cp->ext_ofs = 0;
7817 
7818 	/*
7819 	 *  Build the data descriptor block
7820 	 *  and start the IO.
7821 	 */
7822 	sym_setup_data_and_start(np, csio, cp);
7823 }
7824 
7825 /*
7826  *  Setup buffers and pointers that address the CDB.
7827  *  I bet, physical CDBs will never be used on the planet,
7828  *  since they can be bounced without significant overhead.
7829  */
7830 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7831 {
7832 	struct ccb_hdr *ccb_h;
7833 	u32	cmd_ba;
7834 	int	cmd_len;
7835 
7836 	ccb_h = &csio->ccb_h;
7837 
7838 	/*
7839 	 *  CDB is 16 bytes max.
7840 	 */
7841 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7842 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7843 		return -1;
7844 	}
7845 	cmd_len = csio->cdb_len;
7846 
7847 	if (ccb_h->flags & CAM_CDB_POINTER) {
7848 		/* CDB is a pointer */
7849 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7850 			/* CDB pointer is virtual */
7851 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7852 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7853 		} else {
7854 			/* CDB pointer is physical */
7855 #if 0
7856 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7857 #else
7858 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7859 			return -1;
7860 #endif
7861 		}
7862 	} else {
7863 		/* CDB is in the CAM ccb (buffer) */
7864 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7865 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7866 	}
7867 
7868 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7869 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7870 
7871 	return 0;
7872 }
7873 
7874 /*
7875  *  Set up data pointers used by SCRIPTS.
7876  */
7877 static void __inline
7878 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7879 {
7880 	u32 lastp, goalp;
7881 
7882 	/*
7883 	 *  No segments means no data.
7884 	 */
7885 	if (!cp->segments)
7886 		dir = CAM_DIR_NONE;
7887 
7888 	/*
7889 	 *  Set the data pointer.
7890 	 */
7891 	switch(dir) {
7892 	case CAM_DIR_OUT:
7893 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7894 		lastp = goalp - 8 - (cp->segments * (2*4));
7895 		break;
7896 	case CAM_DIR_IN:
7897 		cp->host_flags |= HF_DATA_IN;
7898 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7899 		lastp = goalp - 8 - (cp->segments * (2*4));
7900 		break;
7901 	case CAM_DIR_NONE:
7902 	default:
7903 		lastp = goalp = SCRIPTB_BA (np, no_data);
7904 		break;
7905 	}
7906 
7907 	cp->phys.head.lastp = cpu_to_scr(lastp);
7908 	cp->phys.head.goalp = cpu_to_scr(goalp);
7909 	cp->phys.head.savep = cpu_to_scr(lastp);
7910 	cp->startp	    = cp->phys.head.savep;
7911 }
7912 
7913 
7914 #ifdef	FreeBSD_Bus_Dma_Abstraction
7915 /*
7916  *  Call back routine for the DMA map service.
7917  *  If bounce buffers are used (why ?), we may sleep and then
7918  *  be called there in another context.
7919  */
7920 static void
7921 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7922 {
7923 	ccb_p	cp;
7924 	hcb_p	np;
7925 	union	ccb *ccb;
7926 
7927 	crit_enter();
7928 
7929 	cp  = (ccb_p) arg;
7930 	ccb = cp->cam_ccb;
7931 	np  = (hcb_p) cp->arg;
7932 
7933 	/*
7934 	 *  Deal with weird races.
7935 	 */
7936 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7937 		goto out_abort;
7938 
7939 	/*
7940 	 *  Deal with weird errors.
7941 	 */
7942 	if (error) {
7943 		cp->dmamapped = 0;
7944 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7945 		goto out_abort;
7946 	}
7947 
7948 	/*
7949 	 *  Build the data descriptor for the chip.
7950 	 */
7951 	if (nsegs) {
7952 		int retv;
7953 		/* 896 rev 1 requires to be careful about boundaries */
7954 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7955 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7956 		else
7957 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7958 		if (retv < 0) {
7959 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7960 			goto out_abort;
7961 		}
7962 	}
7963 
7964 	/*
7965 	 *  Synchronize the DMA map only if we have
7966 	 *  actually mapped the data.
7967 	 */
7968 	if (cp->dmamapped) {
7969 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7970 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7971 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7972 	}
7973 
7974 	/*
7975 	 *  Set host status to busy state.
7976 	 *  May have been set back to HS_WAIT to avoid a race.
7977 	 */
7978 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7979 
7980 	/*
7981 	 *  Set data pointers.
7982 	 */
7983 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7984 
7985 	/*
7986 	 *  Enqueue this IO in our pending queue.
7987 	 */
7988 	sym_enqueue_cam_ccb(np, ccb);
7989 
7990 	/*
7991 	 *  When `#ifed 1', the code below makes the driver
7992 	 *  panic on the first attempt to write to a SCSI device.
7993 	 *  It is the first test we want to do after a driver
7994 	 *  change that does not seem obviously safe. :)
7995 	 */
7996 #if 0
7997 	switch (cp->cdb_buf[0]) {
7998 	case 0x0A: case 0x2A: case 0xAA:
7999 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
8000 		MDELAY(10000);
8001 		break;
8002 	default:
8003 		break;
8004 	}
8005 #endif
8006 	/*
8007 	 *  Activate this job.
8008 	 */
8009 	sym_put_start_queue(np, cp);
8010 out:
8011 	crit_exit();
8012 	return;
8013 out_abort:
8014 	sym_free_ccb(np, cp);
8015 	sym_xpt_done(np, ccb);
8016 	goto out;
8017 }
8018 
8019 /*
8020  *  How complex it gets to deal with the data in CAM.
8021  *  The Bus Dma stuff makes things still more complex.
8022  */
8023 static void
8024 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8025 {
8026 	struct ccb_hdr *ccb_h;
8027 	int dir, retv;
8028 
8029 	ccb_h = &csio->ccb_h;
8030 
8031 	/*
8032 	 *  Now deal with the data.
8033 	 */
8034 	cp->data_len = csio->dxfer_len;
8035 	cp->arg      = np;
8036 
8037 	/*
8038 	 *  No direction means no data.
8039 	 */
8040 	dir = (ccb_h->flags & CAM_DIR_MASK);
8041 	if (dir == CAM_DIR_NONE) {
8042 		sym_execute_ccb(cp, NULL, 0, 0);
8043 		return;
8044 	}
8045 
8046 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8047 		/* Single buffer */
8048 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8049 			/* Buffer is virtual */
8050 			cp->dmamapped = (dir == CAM_DIR_IN) ?
8051 						SYM_DMA_READ : SYM_DMA_WRITE;
8052 			crit_enter();
8053 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
8054 					       csio->data_ptr, csio->dxfer_len,
8055 					       sym_execute_ccb, cp, 0);
8056 			if (retv == EINPROGRESS) {
8057 				cp->host_status	= HS_WAIT;
8058 				xpt_freeze_simq(np->sim, 1);
8059 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
8060 			}
8061 			crit_exit();
8062 		} else {
8063 			/* Buffer is physical */
8064 			struct bus_dma_segment seg;
8065 
8066 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
8067 			sym_execute_ccb(cp, &seg, 1, 0);
8068 		}
8069 	} else {
8070 		/* Scatter/gather list */
8071 		struct bus_dma_segment *segs;
8072 
8073 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8074 			/* The SG list pointer is physical */
8075 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8076 			goto out_abort;
8077 		}
8078 
8079 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8080 			/* SG buffer pointers are virtual */
8081 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8082 			goto out_abort;
8083 		}
8084 
8085 		/* SG buffer pointers are physical */
8086 		segs  = (struct bus_dma_segment *)csio->data_ptr;
8087 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
8088 	}
8089 	return;
8090 out_abort:
8091 	sym_free_ccb(np, cp);
8092 	sym_xpt_done(np, (union ccb *) csio);
8093 }
8094 
8095 /*
8096  *  Move the scatter list to our data block.
8097  */
8098 static int
8099 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
8100 			     bus_dma_segment_t *psegs, int nsegs)
8101 {
8102 	struct sym_tblmove *data;
8103 	bus_dma_segment_t *psegs2;
8104 
8105 	if (nsegs > SYM_CONF_MAX_SG)
8106 		return -1;
8107 
8108 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
8109 	psegs2 = &psegs[nsegs-1];
8110 	cp->segments = nsegs;
8111 
8112 	while (1) {
8113 		data->addr = cpu_to_scr(psegs2->ds_addr);
8114 		data->size = cpu_to_scr(psegs2->ds_len);
8115 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8116 			kprintf ("%s scatter: paddr=%lx len=%ld\n",
8117 				sym_name(np), (long) psegs2->ds_addr,
8118 				(long) psegs2->ds_len);
8119 		}
8120 		if (psegs2 != psegs) {
8121 			--data;
8122 			--psegs2;
8123 			continue;
8124 		}
8125 		break;
8126 	}
8127 	return 0;
8128 }
8129 
8130 #else	/* FreeBSD_Bus_Dma_Abstraction */
8131 
8132 /*
8133  *  How complex it gets to deal with the data in CAM.
8134  *  Variant without the Bus Dma Abstraction option.
8135  */
8136 static void
8137 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8138 {
8139 	struct ccb_hdr *ccb_h;
8140 	int dir, retv;
8141 
8142 	ccb_h = &csio->ccb_h;
8143 
8144 	/*
8145 	 *  Now deal with the data.
8146 	 */
8147 	cp->data_len = 0;
8148 	cp->segments = 0;
8149 
8150 	/*
8151 	 *  No direction means no data.
8152 	 */
8153 	dir = (ccb_h->flags & CAM_DIR_MASK);
8154 	if (dir == CAM_DIR_NONE)
8155 		goto end_scatter;
8156 
8157 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8158 		/* Single buffer */
8159 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8160 			/* Buffer is virtual */
8161 			retv = sym_scatter_virtual(np, cp,
8162 						(vm_offset_t) csio->data_ptr,
8163 						(vm_size_t) csio->dxfer_len);
8164 		} else {
8165 			/* Buffer is physical */
8166 			retv = sym_scatter_physical(np, cp,
8167 						(vm_offset_t) csio->data_ptr,
8168 						(vm_size_t) csio->dxfer_len);
8169 		}
8170 	} else {
8171 		/* Scatter/gather list */
8172 		int nsegs;
8173 		struct bus_dma_segment *segs;
8174 		segs  = (struct bus_dma_segment *)csio->data_ptr;
8175 		nsegs = csio->sglist_cnt;
8176 
8177 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8178 			/* The SG list pointer is physical */
8179 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8180 			goto out_abort;
8181 		}
8182 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8183 			/* SG buffer pointers are virtual */
8184 			retv = sym_scatter_sg_virtual(np, cp, segs, nsegs);
8185 		} else {
8186 			/* SG buffer pointers are physical */
8187 			retv = sym_scatter_sg_physical(np, cp, segs, nsegs);
8188 		}
8189 	}
8190 	if (retv < 0) {
8191 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
8192 		goto out_abort;
8193 	}
8194 
8195 end_scatter:
8196 	/*
8197 	 *  Set data pointers.
8198 	 */
8199 	sym_setup_data_pointers(np, cp, dir);
8200 
8201 	/*
8202 	 *  Enqueue this IO in our pending queue.
8203 	 */
8204 	sym_enqueue_cam_ccb(np, (union ccb *) csio);
8205 
8206 	/*
8207 	 *  Activate this job.
8208 	 */
8209 	sym_put_start_queue(np, cp);
8210 
8211 	/*
8212 	 *  Command is successfully queued.
8213 	 */
8214 	return;
8215 out_abort:
8216 	sym_free_ccb(np, cp);
8217 	sym_xpt_done(np, (union ccb *) csio);
8218 }
8219 
8220 /*
8221  *  Scatter a virtual buffer into bus addressable chunks.
8222  */
8223 static int
8224 sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
8225 {
8226 	u_long	pe, pn;
8227 	u_long	n, k;
8228 	int s;
8229 
8230 	cp->data_len += len;
8231 
8232 	pe = vaddr + len;
8233 	n  = len;
8234 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8235 
8236 	while (n && s >= 0) {
8237 		pn = (pe - 1) & ~PAGE_MASK;
8238 		k = pe - pn;
8239 		if (k > n) {
8240 			k  = n;
8241 			pn = pe - n;
8242 		}
8243 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8244 			kprintf ("%s scatter: va=%lx pa=%lx siz=%ld\n",
8245 				sym_name(np), pn, (u_long) vtobus(pn), k);
8246 		}
8247 		cp->phys.data[s].addr = cpu_to_scr(vtobus(pn));
8248 		cp->phys.data[s].size = cpu_to_scr(k);
8249 		pe = pn;
8250 		n -= k;
8251 		--s;
8252 	}
8253 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8254 
8255 	return n ? -1 : 0;
8256 }
8257 
8258 /*
8259  *  Scatter a SG list with virtual addresses into bus addressable chunks.
8260  */
8261 static int
8262 sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8263 {
8264 	int i, retv = 0;
8265 
8266 	for (i = nsegs - 1 ;  i >= 0 ; --i) {
8267 		retv = sym_scatter_virtual(np, cp,
8268 					   psegs[i].ds_addr, psegs[i].ds_len);
8269 		if (retv < 0)
8270 			break;
8271 	}
8272 	return retv;
8273 }
8274 
8275 /*
8276  *  Scatter a physical buffer into bus addressable chunks.
8277  */
8278 static int
8279 sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len)
8280 {
8281 	struct bus_dma_segment seg;
8282 
8283 	seg.ds_addr = paddr;
8284 	seg.ds_len  = len;
8285 	return sym_scatter_sg_physical(np, cp, &seg, 1);
8286 }
8287 
8288 #endif	/* FreeBSD_Bus_Dma_Abstraction */
8289 
8290 /*
8291  *  Scatter a SG list with physical addresses into bus addressable chunks.
8292  *  We need to ensure 16MB boundaries not to be crossed during DMA of
8293  *  each segment, due to some chips being flawed.
8294  */
8295 #define BOUND_MASK ((1UL<<24)-1)
8296 static int
8297 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8298 {
8299 	u_long	ps, pe, pn;
8300 	u_long	k;
8301 	int s, t;
8302 
8303 #ifndef	FreeBSD_Bus_Dma_Abstraction
8304 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8305 #else
8306 	s  = SYM_CONF_MAX_SG - 1;
8307 #endif
8308 	t  = nsegs - 1;
8309 	ps = psegs[t].ds_addr;
8310 	pe = ps + psegs[t].ds_len;
8311 
8312 	while (s >= 0) {
8313 		pn = (pe - 1) & ~BOUND_MASK;
8314 		if (pn <= ps)
8315 			pn = ps;
8316 		k = pe - pn;
8317 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8318 			kprintf ("%s scatter: paddr=%lx len=%ld\n",
8319 				sym_name(np), pn, k);
8320 		}
8321 		cp->phys.data[s].addr = cpu_to_scr(pn);
8322 		cp->phys.data[s].size = cpu_to_scr(k);
8323 #ifndef	FreeBSD_Bus_Dma_Abstraction
8324 		cp->data_len += k;
8325 #endif
8326 		--s;
8327 		if (pn == ps) {
8328 			if (--t < 0)
8329 				break;
8330 			ps = psegs[t].ds_addr;
8331 			pe = ps + psegs[t].ds_len;
8332 		}
8333 		else
8334 			pe = pn;
8335 	}
8336 
8337 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8338 
8339 	return t >= 0 ? -1 : 0;
8340 }
8341 #undef BOUND_MASK
8342 
8343 /*
8344  *  SIM action for non performance critical stuff.
8345  */
8346 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8347 {
8348 	hcb_p	np;
8349 	tcb_p	tp;
8350 	lcb_p	lp;
8351 	struct	ccb_hdr  *ccb_h;
8352 
8353 	/*
8354 	 *  Retrieve our controller data structure.
8355 	 */
8356 	np = (hcb_p) cam_sim_softc(sim);
8357 
8358 	ccb_h = &ccb->ccb_h;
8359 
8360 	switch (ccb_h->func_code) {
8361 	case XPT_SET_TRAN_SETTINGS:
8362 	{
8363 		struct ccb_trans_settings *cts;
8364 
8365 		cts  = &ccb->cts;
8366 		tp = &np->target[ccb_h->target_id];
8367 
8368 		/*
8369 		 *  Update SPI transport settings in TARGET control block.
8370 		 *  Update SCSI device settings in LUN control block.
8371 		 */
8372 		lp = sym_lp(np, tp, ccb_h->target_lun);
8373 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8374 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8375 			if (lp)
8376 				sym_update_dflags(np, &lp->current_flags, cts);
8377 		}
8378 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8379 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8380 			if (lp)
8381 				sym_update_dflags(np, &lp->user_flags, cts);
8382 		}
8383 
8384 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8385 		break;
8386 	}
8387 	case XPT_GET_TRAN_SETTINGS:
8388 	{
8389 		struct ccb_trans_settings *cts;
8390 		struct sym_trans *tip;
8391 		u_char dflags;
8392 
8393 		cts = &ccb->cts;
8394 		tp = &np->target[ccb_h->target_id];
8395 		lp = sym_lp(np, tp, ccb_h->target_lun);
8396 
8397 #define	cts__scsi (&cts->proto_specific.scsi)
8398 #define	cts__spi  (&cts->xport_specific.spi)
8399 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8400 			tip = &tp->tinfo.current;
8401 			dflags = lp ? lp->current_flags : 0;
8402 		}
8403 		else {
8404 			tip = &tp->tinfo.user;
8405 			dflags = lp ? lp->user_flags : tp->usrflags;
8406 		}
8407 
8408 		cts->protocol  = PROTO_SCSI;
8409 		cts->transport = XPORT_SPI;
8410 		cts->protocol_version  = tip->scsi_version;
8411 		cts->transport_version = tip->spi_version;
8412 
8413 		cts__spi->sync_period = tip->period;
8414 		cts__spi->sync_offset = tip->offset;
8415 		cts__spi->bus_width   = tip->width;
8416 		cts__spi->ppr_options = tip->options;
8417 
8418 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8419 		                | CTS_SPI_VALID_SYNC_OFFSET
8420 		                | CTS_SPI_VALID_BUS_WIDTH
8421 		                | CTS_SPI_VALID_PPR_OPTIONS;
8422 
8423 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8424 		if (dflags & SYM_DISC_ENABLED)
8425 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8426 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8427 
8428 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8429 		if (dflags & SYM_TAGS_ENABLED)
8430 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8431 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8432 #undef	cts__spi
8433 #undef	cts__scsi
8434 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8435 		break;
8436 	}
8437 	case XPT_CALC_GEOMETRY:
8438 	{
8439 		struct ccb_calc_geometry *ccg;
8440 		u32 size_mb;
8441 		u32 secs_per_cylinder;
8442 		int extended;
8443 
8444 		/*
8445 		 *  Silly DOS geometry.
8446 		 */
8447 		ccg = &ccb->ccg;
8448 		size_mb = ccg->volume_size
8449 			/ ((1024L * 1024L) / ccg->block_size);
8450 		extended = 1;
8451 
8452 		if (size_mb > 1024 && extended) {
8453 			ccg->heads = 255;
8454 			ccg->secs_per_track = 63;
8455 		} else {
8456 			ccg->heads = 64;
8457 			ccg->secs_per_track = 32;
8458 		}
8459 		secs_per_cylinder = ccg->heads * ccg->secs_per_track;
8460 		ccg->cylinders = ccg->volume_size / secs_per_cylinder;
8461 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8462 		break;
8463 	}
8464 	case XPT_PATH_INQ:
8465 	{
8466 		struct ccb_pathinq *cpi = &ccb->cpi;
8467 		cpi->version_num = 1;
8468 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8469 		if ((np->features & FE_WIDE) != 0)
8470 			cpi->hba_inquiry |= PI_WIDE_16;
8471 		cpi->target_sprt = 0;
8472 		cpi->hba_misc = 0;
8473 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8474 			cpi->hba_misc |= PIM_SCANHILO;
8475 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8476 			cpi->hba_misc |= PIM_NOBUSRESET;
8477 		cpi->hba_eng_cnt = 0;
8478 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8479 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8480 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8481 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8482 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8483 		cpi->bus_id = cam_sim_bus(sim);
8484 		cpi->initiator_id = np->myaddr;
8485 		cpi->base_transfer_speed = 3300;
8486 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8487 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8488 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8489 		cpi->unit_number = cam_sim_unit(sim);
8490 
8491 		cpi->protocol = PROTO_SCSI;
8492 		cpi->protocol_version = SCSI_REV_2;
8493 		cpi->transport = XPORT_SPI;
8494 		cpi->transport_version = 2;
8495 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8496 		if (np->features & FE_ULTRA3) {
8497 			cpi->transport_version = 3;
8498 			cpi->xport_specific.spi.ppr_options =
8499 			    SID_SPI_CLOCK_DT_ST;
8500 		}
8501 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8502 		break;
8503 	}
8504 	case XPT_ABORT:
8505 	{
8506 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8507 		switch(abort_ccb->ccb_h.func_code) {
8508 		case XPT_SCSI_IO:
8509 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8510 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8511 				break;
8512 			}
8513 		default:
8514 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8515 			break;
8516 		}
8517 		break;
8518 	}
8519 	case XPT_RESET_DEV:
8520 	{
8521 		sym_reset_dev(np, ccb);
8522 		break;
8523 	}
8524 	case XPT_RESET_BUS:
8525 	{
8526 		sym_reset_scsi_bus(np, 0);
8527 		if (sym_verbose) {
8528 			xpt_print_path(np->path);
8529 			kprintf("SCSI BUS reset delivered.\n");
8530 		}
8531 		sym_init (np, 1);
8532 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8533 		break;
8534 	}
8535 	case XPT_ACCEPT_TARGET_IO:
8536 	case XPT_CONT_TARGET_IO:
8537 	case XPT_EN_LUN:
8538 	case XPT_NOTIFY_ACK:
8539 	case XPT_IMMED_NOTIFY:
8540 	case XPT_TERM_IO:
8541 	default:
8542 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8543 		break;
8544 	}
8545 }
8546 
8547 /*
8548  *  Asynchronous notification handler.
8549  */
8550 static void
8551 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8552 {
8553 	hcb_p np;
8554 	struct cam_sim *sim;
8555 	u_int tn;
8556 	tcb_p tp;
8557 
8558 	crit_enter();
8559 
8560 	sim = (struct cam_sim *) cb_arg;
8561 	np  = (hcb_p) cam_sim_softc(sim);
8562 
8563 	switch (code) {
8564 	case AC_LOST_DEVICE:
8565 		tn = xpt_path_target_id(path);
8566 		if (tn >= SYM_CONF_MAX_TARGET)
8567 			break;
8568 
8569 		tp = &np->target[tn];
8570 
8571 		tp->to_reset  = 0;
8572 		tp->head.sval = 0;
8573 		tp->head.wval = np->rv_scntl3;
8574 		tp->head.uval = 0;
8575 
8576 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8577 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8578 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8579 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8580 
8581 		break;
8582 	default:
8583 		break;
8584 	}
8585 
8586 	crit_exit();
8587 }
8588 
8589 /*
8590  *  Update transfer settings of a target.
8591  */
8592 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8593 			    struct ccb_trans_settings *cts)
8594 {
8595 	/*
8596 	 *  Update the infos.
8597 	 */
8598 #define cts__spi (&cts->xport_specific.spi)
8599 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8600 		tip->width = cts__spi->bus_width;
8601 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8602 		tip->offset = cts__spi->sync_offset;
8603 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8604 		tip->period = cts__spi->sync_period;
8605 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8606 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8607 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8608 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8609 		tip->scsi_version = cts->protocol_version;
8610 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8611 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8612 		tip->spi_version = cts->transport_version;
8613 #undef cts__spi
8614 	/*
8615 	 *  Scale against driver configuration limits.
8616 	 */
8617 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8618 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8619 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8620 
8621 	/*
8622 	 *  Scale against actual controller BUS width.
8623 	 */
8624 	if (tip->width > np->maxwide)
8625 		tip->width  = np->maxwide;
8626 
8627 	/*
8628 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8629 	 */
8630 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8631 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8632 		tip->options &= ~PPR_OPT_DT;
8633 	}
8634 
8635 	/*
8636 	 *  Scale period factor and offset against controller limits.
8637 	 */
8638 	if (tip->options & PPR_OPT_DT) {
8639 		if (tip->period < np->minsync_dt)
8640 			tip->period = np->minsync_dt;
8641 		if (tip->period > np->maxsync_dt)
8642 			tip->period = np->maxsync_dt;
8643 		if (tip->offset > np->maxoffs_dt)
8644 			tip->offset = np->maxoffs_dt;
8645 	}
8646 	else {
8647 		if (tip->period < np->minsync)
8648 			tip->period = np->minsync;
8649 		if (tip->period > np->maxsync)
8650 			tip->period = np->maxsync;
8651 		if (tip->offset > np->maxoffs)
8652 			tip->offset = np->maxoffs;
8653 	}
8654 }
8655 
8656 /*
8657  *  Update flags for a device (logical unit).
8658  */
8659 static void
8660 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8661 {
8662 #define	cts__scsi (&cts->proto_specific.scsi)
8663 #define	cts__spi  (&cts->xport_specific.spi)
8664 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8665 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8666 			*flags |= SYM_DISC_ENABLED;
8667 		else
8668 			*flags &= ~SYM_DISC_ENABLED;
8669 	}
8670 
8671 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8672 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8673 			*flags |= SYM_TAGS_ENABLED;
8674 		else
8675 			*flags &= ~SYM_TAGS_ENABLED;
8676 	}
8677 #undef	cts__spi
8678 #undef	cts__scsi
8679 }
8680 
8681 
8682 /*============= DRIVER INITIALISATION ==================*/
8683 
8684 #ifdef FreeBSD_Bus_Io_Abstraction
8685 
8686 static device_method_t sym_pci_methods[] = {
8687 	DEVMETHOD(device_probe,	 sym_pci_probe),
8688 	DEVMETHOD(device_attach, sym_pci_attach),
8689 	{ 0, 0 }
8690 };
8691 
8692 static driver_t sym_pci_driver = {
8693 	"sym",
8694 	sym_pci_methods,
8695 	sizeof(struct sym_hcb)
8696 };
8697 
8698 static devclass_t sym_devclass;
8699 
8700 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
8701 
8702 #else	/* Pre-FreeBSD_Bus_Io_Abstraction */
8703 
8704 static u_long sym_unit;
8705 
8706 static struct	pci_device sym_pci_driver = {
8707 	"sym",
8708 	sym_pci_probe,
8709 	sym_pci_attach,
8710 	&sym_unit,
8711 	NULL
8712 };
8713 
8714 #if 	defined(__DragonFly__) || __FreeBSD_version >= 400000
8715 COMPAT_PCI_DRIVER (sym, sym_pci_driver);
8716 #else
8717 DATA_SET (pcidevice_set, sym_pci_driver);
8718 #endif
8719 
8720 #endif /* FreeBSD_Bus_Io_Abstraction */
8721 
8722 static struct sym_pci_chip sym_pci_dev_table[] = {
8723  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8724  FE_ERL}
8725  ,
8726 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8727  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8728  FE_BOF}
8729  ,
8730 #else
8731  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8732  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8733  ,
8734 #endif
8735  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8736  FE_BOF|FE_ERL}
8737  ,
8738  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8739  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8740  ,
8741  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8742  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8743  ,
8744  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8745  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8746  ,
8747  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8748  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8749  FE_RAM|FE_DIFF}
8750  ,
8751  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8752  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8753  FE_RAM|FE_DIFF}
8754  ,
8755  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8756  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8757  FE_RAM|FE_DIFF}
8758  ,
8759  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8760  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8761  FE_RAM|FE_DIFF}
8762  ,
8763 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8764  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8765  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8766  FE_RAM|FE_LCKFRQ}
8767  ,
8768 #else
8769  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8770  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8771  FE_RAM|FE_LCKFRQ}
8772  ,
8773 #endif
8774  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8775  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8776  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8777  ,
8778  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8779  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8780  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8781  ,
8782  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8783  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8784  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8785  FE_C10}
8786  ,
8787  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8788  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8789  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8790  FE_C10|FE_U3EN}
8791  ,
8792  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8793  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8794  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8795  FE_C10|FE_U3EN}
8796  ,
8797  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8798  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8799  FE_RAM|FE_IO256|FE_LEDC}
8800 };
8801 
8802 #define sym_pci_num_devs \
8803 	(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
8804 
8805 /*
8806  *  Look up the chip table.
8807  *
8808  *  Return a pointer to the chip entry if found,
8809  *  zero otherwise.
8810  */
8811 static struct sym_pci_chip *
8812 #ifdef FreeBSD_Bus_Io_Abstraction
8813 sym_find_pci_chip(device_t dev)
8814 #else
8815 sym_find_pci_chip(pcici_t pci_tag)
8816 #endif
8817 {
8818 	struct	sym_pci_chip *chip;
8819 	int	i;
8820 	u_short	device_id;
8821 	u_char	revision;
8822 
8823 #ifdef FreeBSD_Bus_Io_Abstraction
8824 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8825 		return 0;
8826 
8827 	device_id = pci_get_device(dev);
8828 	revision  = pci_get_revid(dev);
8829 #else
8830 	if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR)
8831 		return 0;
8832 
8833 	device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
8834 	revision  = pci_cfgread(pci_tag, PCIR_REVID,  1);
8835 #endif
8836 
8837 	for (i = 0; i < sym_pci_num_devs; i++) {
8838 		chip = &sym_pci_dev_table[i];
8839 		if (device_id != chip->device_id)
8840 			continue;
8841 		if (revision > chip->revision_id)
8842 			continue;
8843 		return chip;
8844 	}
8845 
8846 	return 0;
8847 }
8848 
8849 /*
8850  *  Tell upper layer if the chip is supported.
8851  */
8852 #ifdef FreeBSD_Bus_Io_Abstraction
8853 static int
8854 sym_pci_probe(device_t dev)
8855 {
8856 	struct	sym_pci_chip *chip;
8857 
8858 	chip = sym_find_pci_chip(dev);
8859 	if (chip && sym_find_firmware(chip)) {
8860 		device_set_desc(dev, chip->name);
8861 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0;
8862 	}
8863 	return ENXIO;
8864 }
8865 #else /* Pre-FreeBSD_Bus_Io_Abstraction */
8866 static const char *
8867 sym_pci_probe(pcici_t pci_tag, pcidi_t type)
8868 {
8869 	struct	sym_pci_chip *chip;
8870 
8871 	chip = sym_find_pci_chip(pci_tag);
8872 	if (chip && sym_find_firmware(chip)) {
8873 #if NNCR > 0
8874 	/* Only claim chips we are allowed to take precedence over the ncr */
8875 	if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP))
8876 #else
8877 	if (1)
8878 #endif
8879 		return chip->name;
8880 	}
8881 	return 0;
8882 }
8883 #endif
8884 
8885 /*
8886  *  Attach a sym53c8xx device.
8887  */
8888 #ifdef FreeBSD_Bus_Io_Abstraction
8889 static int
8890 sym_pci_attach(device_t dev)
8891 #else
8892 static void
8893 sym_pci_attach(pcici_t pci_tag, int unit)
8894 {
8895 	int err = sym_pci_attach2(pci_tag, unit);
8896 	if (err)
8897 		kprintf("sym: failed to attach unit %d - err=%d.\n", unit, err);
8898 }
8899 static int
8900 sym_pci_attach2(pcici_t pci_tag, int unit)
8901 #endif
8902 {
8903 	struct	sym_pci_chip *chip;
8904 	u_short	command;
8905 	u_char	cachelnsz;
8906 	struct	sym_hcb *np = 0;
8907 	struct	sym_nvram nvram;
8908 	struct	sym_fw *fw = 0;
8909 	int 	i;
8910 #ifdef	FreeBSD_Bus_Dma_Abstraction
8911 	bus_dma_tag_t	bus_dmat;
8912 
8913 	/*
8914 	 *  I expected to be told about a parent
8915 	 *  DMA tag, but didn't find any.
8916 	 */
8917 	bus_dmat = NULL;
8918 #endif
8919 
8920 	/*
8921 	 *  Only probed devices should be attached.
8922 	 *  We just enjoy being paranoid. :)
8923 	 */
8924 #ifdef FreeBSD_Bus_Io_Abstraction
8925 	chip = sym_find_pci_chip(dev);
8926 #else
8927 	chip = sym_find_pci_chip(pci_tag);
8928 #endif
8929 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8930 		return (ENXIO);
8931 
8932 	/*
8933 	 *  Allocate immediately the host control block,
8934 	 *  since we are only expecting to succeed. :)
8935 	 *  We keep track in the HCB of all the resources that
8936 	 *  are to be released on error.
8937 	 */
8938 #ifdef	FreeBSD_Bus_Dma_Abstraction
8939 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8940 	if (np)
8941 		np->bus_dmat = bus_dmat;
8942 	else
8943 		goto attach_failed;
8944 #else
8945 	np = sym_calloc_dma(sizeof(*np), "HCB");
8946 	if (!np)
8947 		goto attach_failed;
8948 #endif
8949 
8950 	/*
8951 	 *  Copy some useful infos to the HCB.
8952 	 */
8953 	np->hcb_ba	 = vtobus(np);
8954 	np->verbose	 = bootverbose;
8955 #ifdef FreeBSD_Bus_Io_Abstraction
8956 	np->device	 = dev;
8957 	np->unit	 = device_get_unit(dev);
8958 	np->device_id	 = pci_get_device(dev);
8959 	np->revision_id  = pci_get_revid(dev);
8960 #else
8961 	np->pci_tag	 = pci_tag;
8962 	np->unit	 = unit;
8963 	np->device_id	 = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
8964 	np->revision_id  = pci_cfgread(pci_tag, PCIR_REVID,  1);
8965 #endif
8966 	np->features	 = chip->features;
8967 	np->clock_divn	 = chip->nr_divisor;
8968 	np->maxoffs	 = chip->offset_max;
8969 	np->maxburst	 = chip->burst_max;
8970 	np->scripta_sz	 = fw->a_size;
8971 	np->scriptb_sz	 = fw->b_size;
8972 	np->fw_setup	 = fw->setup;
8973 	np->fw_patch	 = fw->patch;
8974 	np->fw_name	 = fw->name;
8975 
8976 	/*
8977 	 * Edit its name.
8978 	 */
8979 	ksnprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
8980 
8981 	/*
8982 	 *  Initialyze the CCB free and busy queues.
8983 	 */
8984 	sym_que_init(&np->free_ccbq);
8985 	sym_que_init(&np->busy_ccbq);
8986 	sym_que_init(&np->comp_ccbq);
8987 	sym_que_init(&np->cam_ccbq);
8988 
8989 	/*
8990 	 *  Allocate a tag for the DMA of user data.
8991 	 */
8992 #ifdef	FreeBSD_Bus_Dma_Abstraction
8993 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
8994 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
8995 				NULL, NULL,
8996 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
8997 				(1<<24), 0, &np->data_dmat)) {
8998 		device_printf(dev, "failed to create DMA tag.\n");
8999 		goto attach_failed;
9000 	}
9001 #endif
9002 	/*
9003 	 *  Read and apply some fix-ups to the PCI COMMAND
9004 	 *  register. We want the chip to be enabled for:
9005 	 *  - BUS mastering
9006 	 *  - PCI parity checking (reporting would also be fine)
9007 	 *  - Write And Invalidate.
9008 	 */
9009 #ifdef FreeBSD_Bus_Io_Abstraction
9010 	command = pci_read_config(dev, PCIR_COMMAND, 2);
9011 #else
9012 	command = pci_cfgread(pci_tag, PCIR_COMMAND, 2);
9013 #endif
9014 	command |= PCIM_CMD_BUSMASTEREN;
9015 	command |= PCIM_CMD_PERRESPEN;
9016 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
9017 #ifdef FreeBSD_Bus_Io_Abstraction
9018 	pci_write_config(dev, PCIR_COMMAND, command, 2);
9019 #else
9020 	pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2);
9021 #endif
9022 
9023 	/*
9024 	 *  Let the device know about the cache line size,
9025 	 *  if it doesn't yet.
9026 	 */
9027 #ifdef FreeBSD_Bus_Io_Abstraction
9028 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
9029 #else
9030 	cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1);
9031 #endif
9032 	if (!cachelnsz) {
9033 		cachelnsz = 8;
9034 #ifdef FreeBSD_Bus_Io_Abstraction
9035 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
9036 #else
9037 		pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1);
9038 #endif
9039 	}
9040 
9041 	/*
9042 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
9043 	 */
9044 #ifdef FreeBSD_Bus_Io_Abstraction
9045 	if ((command & PCIM_CMD_MEMEN) != 0) {
9046 		int regs_id = SYM_PCI_MMIO;
9047 		np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9048 						  0, ~0, 1, RF_ACTIVE);
9049 	}
9050 	if (!np->mmio_res) {
9051 		device_printf(dev, "failed to allocate MMIO resources\n");
9052 		goto attach_failed;
9053 	}
9054 	np->mmio_bsh = rman_get_bushandle(np->mmio_res);
9055 	np->mmio_tag = rman_get_bustag(np->mmio_res);
9056 	np->mmio_pa  = rman_get_start(np->mmio_res);
9057 	np->mmio_va  = (vm_offset_t) rman_get_virtual(np->mmio_res);
9058 	np->mmio_ba  = np->mmio_pa;
9059 #else
9060 	if ((command & PCIM_CMD_MEMEN) != 0) {
9061 		vm_offset_t vaddr, paddr;
9062 		if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) {
9063 			kprintf("%s: failed to map MMIO window\n", sym_name(np));
9064 			goto attach_failed;
9065 		}
9066 		np->mmio_va = vaddr;
9067 		np->mmio_pa = paddr;
9068 		np->mmio_ba = paddr;
9069 	}
9070 #endif
9071 
9072 	/*
9073 	 *  Allocate the IRQ.
9074 	 */
9075 #ifdef FreeBSD_Bus_Io_Abstraction
9076 	i = 0;
9077 	np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i,
9078 					 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
9079 	if (!np->irq_res) {
9080 		device_printf(dev, "failed to allocate IRQ resource\n");
9081 		goto attach_failed;
9082 	}
9083 #endif
9084 
9085 #ifdef	SYM_CONF_IOMAPPED
9086 	/*
9087 	 *  User want us to use normal IO with PCI.
9088 	 *  Alloc/get/map/retrieve everything that deals with IO.
9089 	 */
9090 #ifdef FreeBSD_Bus_Io_Abstraction
9091 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9092 		int regs_id = SYM_PCI_IO;
9093 		np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &regs_id,
9094 						0, ~0, 1, RF_ACTIVE);
9095 	}
9096 	if (!np->io_res) {
9097 		device_printf(dev, "failed to allocate IO resources\n");
9098 		goto attach_failed;
9099 	}
9100 	np->io_bsh  = rman_get_bushandle(np->io_res);
9101 	np->io_tag  = rman_get_bustag(np->io_res);
9102 	np->io_port = rman_get_start(np->io_res);
9103 #else
9104 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9105 		pci_port_t io_port;
9106 		if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) {
9107 			kprintf("%s: failed to map IO window\n", sym_name(np));
9108 			goto attach_failed;
9109 		}
9110 		np->io_port = io_port;
9111 	}
9112 #endif
9113 
9114 #endif /* SYM_CONF_IOMAPPED */
9115 
9116 	/*
9117 	 *  If the chip has RAM.
9118 	 *  Alloc/get/map/retrieve the corresponding resources.
9119 	 */
9120 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
9121 	    (command & PCIM_CMD_MEMEN) != 0) {
9122 #ifdef FreeBSD_Bus_Io_Abstraction
9123 		int regs_id = SYM_PCI_RAM;
9124 		if (np->features & FE_64BIT)
9125 			regs_id = SYM_PCI_RAM64;
9126 		np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9127 						 0, ~0, 1, RF_ACTIVE);
9128 		if (!np->ram_res) {
9129 			device_printf(dev,"failed to allocate RAM resources\n");
9130 			goto attach_failed;
9131 		}
9132 		np->ram_id  = regs_id;
9133 		np->ram_bsh = rman_get_bushandle(np->ram_res);
9134 		np->ram_tag = rman_get_bustag(np->ram_res);
9135 		np->ram_pa  = rman_get_start(np->ram_res);
9136 		np->ram_va  = (vm_offset_t) rman_get_virtual(np->ram_res);
9137 		np->ram_ba  = np->ram_pa;
9138 #else
9139 		vm_offset_t vaddr, paddr;
9140 		int regs_id = SYM_PCI_RAM;
9141 		if (np->features & FE_64BIT)
9142 			regs_id = SYM_PCI_RAM64;
9143 		if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) {
9144 			kprintf("%s: failed to map RAM window\n", sym_name(np));
9145 			goto attach_failed;
9146 		}
9147 		np->ram_va = vaddr;
9148 		np->ram_pa = paddr;
9149 		np->ram_ba = paddr;
9150 #endif
9151 	}
9152 
9153 	/*
9154 	 *  Save setting of some IO registers, so we will
9155 	 *  be able to probe specific implementations.
9156 	 */
9157 	sym_save_initial_setting (np);
9158 
9159 	/*
9160 	 *  Reset the chip now, since it has been reported
9161 	 *  that SCSI clock calibration may not work properly
9162 	 *  if the chip is currently active.
9163 	 */
9164 	sym_chip_reset (np);
9165 
9166 	/*
9167 	 *  Try to read the user set-up.
9168 	 */
9169 	(void) sym_read_nvram(np, &nvram);
9170 
9171 	/*
9172 	 *  Prepare controller and devices settings, according
9173 	 *  to chip features, user set-up and driver set-up.
9174 	 */
9175 	(void) sym_prepare_setting(np, &nvram);
9176 
9177 	/*
9178 	 *  Check the PCI clock frequency.
9179 	 *  Must be performed after prepare_setting since it destroys
9180 	 *  STEST1 that is used to probe for the clock doubler.
9181 	 */
9182 	i = sym_getpciclock(np);
9183 	if (i > 37000)
9184 #ifdef FreeBSD_Bus_Io_Abstraction
9185 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
9186 #else
9187 		kprintf("%s: PCI BUS clock seems too high: %u KHz.\n",
9188 			sym_name(np), i);
9189 #endif
9190 
9191 	/*
9192 	 *  Allocate the start queue.
9193 	 */
9194 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
9195 	if (!np->squeue)
9196 		goto attach_failed;
9197 	np->squeue_ba = vtobus(np->squeue);
9198 
9199 	/*
9200 	 *  Allocate the done queue.
9201 	 */
9202 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
9203 	if (!np->dqueue)
9204 		goto attach_failed;
9205 	np->dqueue_ba = vtobus(np->dqueue);
9206 
9207 	/*
9208 	 *  Allocate the target bus address array.
9209 	 */
9210 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
9211 	if (!np->targtbl)
9212 		goto attach_failed;
9213 	np->targtbl_ba = vtobus(np->targtbl);
9214 
9215 	/*
9216 	 *  Allocate SCRIPTS areas.
9217 	 */
9218 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
9219 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
9220 	if (!np->scripta0 || !np->scriptb0)
9221 		goto attach_failed;
9222 
9223 	/*
9224 	 *  Allocate some CCB. We need at least ONE.
9225 	 */
9226 	if (!sym_alloc_ccb(np))
9227 		goto attach_failed;
9228 
9229 	/*
9230 	 *  Calculate BUS addresses where we are going
9231 	 *  to load the SCRIPTS.
9232 	 */
9233 	np->scripta_ba	= vtobus(np->scripta0);
9234 	np->scriptb_ba	= vtobus(np->scriptb0);
9235 	np->scriptb0_ba	= np->scriptb_ba;
9236 
9237 	if (np->ram_ba) {
9238 		np->scripta_ba	= np->ram_ba;
9239 		if (np->features & FE_RAM8K) {
9240 			np->ram_ws = 8192;
9241 			np->scriptb_ba = np->scripta_ba + 4096;
9242 #if BITS_PER_LONG > 32
9243 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
9244 #endif
9245 		}
9246 		else
9247 			np->ram_ws = 4096;
9248 	}
9249 
9250 	/*
9251 	 *  Copy scripts to controller instance.
9252 	 */
9253 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
9254 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
9255 
9256 	/*
9257 	 *  Setup variable parts in scripts and compute
9258 	 *  scripts bus addresses used from the C code.
9259 	 */
9260 	np->fw_setup(np, fw);
9261 
9262 	/*
9263 	 *  Bind SCRIPTS with physical addresses usable by the
9264 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
9265 	 */
9266 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
9267 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
9268 
9269 #ifdef SYM_CONF_IARB_SUPPORT
9270 	/*
9271 	 *    If user wants IARB to be set when we win arbitration
9272 	 *    and have other jobs, compute the max number of consecutive
9273 	 *    settings of IARB hints before we leave devices a chance to
9274 	 *    arbitrate for reselection.
9275 	 */
9276 #ifdef	SYM_SETUP_IARB_MAX
9277 	np->iarb_max = SYM_SETUP_IARB_MAX;
9278 #else
9279 	np->iarb_max = 4;
9280 #endif
9281 #endif
9282 
9283 	/*
9284 	 *  Prepare the idle and invalid task actions.
9285 	 */
9286 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9287 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9288 	np->idletask_ba		= vtobus(&np->idletask);
9289 
9290 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9291 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9292 	np->notask_ba		= vtobus(&np->notask);
9293 
9294 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9295 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9296 	np->bad_itl_ba		= vtobus(&np->bad_itl);
9297 
9298 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9299 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
9300 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
9301 
9302 	/*
9303 	 *  Allocate and prepare the lun JUMP table that is used
9304 	 *  for a target prior the probing of devices (bad lun table).
9305 	 *  A private table will be allocated for the target on the
9306 	 *  first INQUIRY response received.
9307 	 */
9308 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
9309 	if (!np->badluntbl)
9310 		goto attach_failed;
9311 
9312 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
9313 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
9314 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
9315 
9316 	/*
9317 	 *  Prepare the bus address array that contains the bus
9318 	 *  address of each target control block.
9319 	 *  For now, assume all logical units are wrong. :)
9320 	 */
9321 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
9322 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
9323 		np->target[i].head.luntbl_sa =
9324 				cpu_to_scr(vtobus(np->badluntbl));
9325 		np->target[i].head.lun0_sa =
9326 				cpu_to_scr(vtobus(&np->badlun_sa));
9327 	}
9328 
9329 	/*
9330 	 *  Now check the cache handling of the pci chipset.
9331 	 */
9332 	if (sym_snooptest (np)) {
9333 #ifdef FreeBSD_Bus_Io_Abstraction
9334 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
9335 #else
9336 		kprintf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
9337 #endif
9338 		goto attach_failed;
9339 	};
9340 
9341 	/*
9342 	 *  Now deal with CAM.
9343 	 *  Hopefully, we will succeed with that one.:)
9344 	 */
9345 	if (!sym_cam_attach(np))
9346 		goto attach_failed;
9347 
9348 	/*
9349 	 *  Sigh! we are done.
9350 	 */
9351 	return 0;
9352 
9353 	/*
9354 	 *  We have failed.
9355 	 *  We will try to free all the resources we have
9356 	 *  allocated, but if we are a boot device, this
9357 	 *  will not help that much.;)
9358 	 */
9359 attach_failed:
9360 	if (np)
9361 		sym_pci_free(np);
9362 	return ENXIO;
9363 }
9364 
9365 /*
9366  *  Free everything that have been allocated for this device.
9367  */
9368 static void sym_pci_free(hcb_p np)
9369 {
9370 	SYM_QUEHEAD *qp;
9371 	ccb_p cp;
9372 	tcb_p tp;
9373 	lcb_p lp;
9374 	int target, lun;
9375 
9376 	/*
9377 	 *  First free CAM resources.
9378 	 */
9379 	crit_enter();
9380 	sym_cam_free(np);
9381 	crit_exit();
9382 
9383 	/*
9384 	 *  Now every should be quiet for us to
9385 	 *  free other resources.
9386 	 */
9387 #ifdef FreeBSD_Bus_Io_Abstraction
9388 	if (np->ram_res)
9389 		bus_release_resource(np->device, SYS_RES_MEMORY,
9390 				     np->ram_id, np->ram_res);
9391 	if (np->mmio_res)
9392 		bus_release_resource(np->device, SYS_RES_MEMORY,
9393 				     SYM_PCI_MMIO, np->mmio_res);
9394 	if (np->io_res)
9395 		bus_release_resource(np->device, SYS_RES_IOPORT,
9396 				     SYM_PCI_IO, np->io_res);
9397 	if (np->irq_res)
9398 		bus_release_resource(np->device, SYS_RES_IRQ,
9399 				     0, np->irq_res);
9400 #else
9401 	/*
9402 	 *  YEAH!!!
9403 	 *  It seems there is no means to free MMIO resources.
9404 	 */
9405 #endif
9406 
9407 	if (np->scriptb0)
9408 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
9409 	if (np->scripta0)
9410 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
9411 	if (np->squeue)
9412 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
9413 	if (np->dqueue)
9414 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
9415 
9416 	while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
9417 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
9418 #ifdef	FreeBSD_Bus_Dma_Abstraction
9419 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
9420 #endif
9421 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
9422 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
9423 	}
9424 
9425 	if (np->badluntbl)
9426 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
9427 
9428 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
9429 		tp = &np->target[target];
9430 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
9431 			lp = sym_lp(np, tp, lun);
9432 			if (!lp)
9433 				continue;
9434 			if (lp->itlq_tbl)
9435 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
9436 				       "ITLQ_TBL");
9437 			if (lp->cb_tags)
9438 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
9439 				       "CB_TAGS");
9440 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
9441 		}
9442 #if SYM_CONF_MAX_LUN > 1
9443 		if (tp->lunmp)
9444 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
9445 			       "LUNMP");
9446 #endif
9447 	}
9448 	if (np->targtbl)
9449 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
9450 #ifdef	FreeBSD_Bus_Dma_Abstraction
9451 	if (np->data_dmat)
9452 		bus_dma_tag_destroy(np->data_dmat);
9453 #endif
9454 	sym_mfree_dma(np, sizeof(*np), "HCB");
9455 }
9456 
9457 /*
9458  *  Allocate CAM resources and register a bus to CAM.
9459  */
9460 int sym_cam_attach(hcb_p np)
9461 {
9462 	struct cam_devq *devq = 0;
9463 	struct cam_sim *sim = 0;
9464 	struct cam_path *path = 0;
9465 	struct ccb_setasync csa;
9466 	int err;
9467 
9468 	crit_enter();
9469 
9470 	/*
9471 	 *  Establish our interrupt handler.
9472 	 */
9473 #ifdef FreeBSD_Bus_Io_Abstraction
9474 	err = bus_setup_intr(np->device, np->irq_res, 0,
9475 			     sym_intr, np, &np->intr, NULL);
9476 	if (err) {
9477 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
9478 			      err);
9479 		goto fail;
9480 	}
9481 #else
9482 	err = 0;
9483 	if (!pci_map_int (np->pci_tag, sym_intr, np)) {
9484 		kprintf("%s: failed to map interrupt\n", sym_name(np));
9485 		goto fail;
9486 	}
9487 #endif
9488 
9489 	/*
9490 	 *  Create the device queue for our sym SIM.
9491 	 */
9492 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
9493 	if (devq == NULL) {
9494 		goto fail;
9495 	}
9496 
9497 	/*
9498 	 *  Construct our SIM entry.
9499 	 */
9500 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
9501 			    &sim_mplock, 1, SYM_SETUP_MAX_TAG, devq);
9502 	cam_simq_release(devq);
9503 	if (sim == NULL)
9504 		goto fail;
9505 
9506 	if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
9507 		goto fail;
9508 	np->sim = sim;
9509 	sim = 0;
9510 
9511 	if (xpt_create_path(&path, 0,
9512 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
9513 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
9514 		goto fail;
9515 	}
9516 	np->path = path;
9517 
9518 	/*
9519 	 *  Establish our async notification handler.
9520 	 */
9521 	xpt_setup_ccb(&csa.ccb_h, np->path, 5);
9522 	csa.ccb_h.func_code = XPT_SASYNC_CB;
9523 	csa.event_enable    = AC_LOST_DEVICE;
9524 	csa.callback	    = sym_async;
9525 	csa.callback_arg    = np->sim;
9526 	xpt_action((union ccb *)&csa);
9527 
9528 	/*
9529 	 *  Start the chip now, without resetting the BUS, since
9530 	 *  it seems that this must stay under control of CAM.
9531 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9532 	 *  get a spurious SMBC interrupt.
9533 	 */
9534 	sym_init (np, 0);
9535 
9536 	crit_exit();
9537 	return 1;
9538 fail:
9539 	if (sim)
9540 		cam_sim_free(sim);
9541 
9542 	sym_cam_free(np);
9543 
9544 	crit_exit();
9545 	return 0;
9546 }
9547 
9548 /*
9549  *  Free everything that deals with CAM.
9550  */
9551 void sym_cam_free(hcb_p np)
9552 {
9553 #ifdef FreeBSD_Bus_Io_Abstraction
9554 	if (np->intr)
9555 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9556 #else
9557 	/* pci_unmap_int(np->pci_tag); */	/* Does nothing */
9558 #endif
9559 
9560 	if (np->sim) {
9561 		xpt_bus_deregister(cam_sim_path(np->sim));
9562 		cam_sim_free(np->sim);
9563 	}
9564 	if (np->path)
9565 		xpt_free_path(np->path);
9566 }
9567 
9568 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9569 
9570 /*
9571  *  Get host setup from NVRAM.
9572  */
9573 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9574 {
9575 #ifdef SYM_CONF_NVRAM_SUPPORT
9576 	/*
9577 	 *  Get parity checking, host ID, verbose mode
9578 	 *  and miscellaneous host flags from NVRAM.
9579 	 */
9580 	switch(nvram->type) {
9581 	case SYM_SYMBIOS_NVRAM:
9582 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9583 			np->rv_scntl0  &= ~0x0a;
9584 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9585 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9586 			np->verbose += 1;
9587 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9588 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9589 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9590 			np->usrflags |= SYM_AVOID_BUS_RESET;
9591 		break;
9592 	case SYM_TEKRAM_NVRAM:
9593 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9594 		break;
9595 	default:
9596 		break;
9597 	}
9598 #endif
9599 }
9600 
9601 /*
9602  *  Get target setup from NVRAM.
9603  */
9604 #ifdef SYM_CONF_NVRAM_SUPPORT
9605 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9606 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9607 #endif
9608 
9609 static void
9610 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9611 {
9612 #ifdef SYM_CONF_NVRAM_SUPPORT
9613 	switch(nvp->type) {
9614 	case SYM_SYMBIOS_NVRAM:
9615 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9616 		break;
9617 	case SYM_TEKRAM_NVRAM:
9618 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9619 		break;
9620 	default:
9621 		break;
9622 	}
9623 #endif
9624 }
9625 
9626 #ifdef SYM_CONF_NVRAM_SUPPORT
9627 /*
9628  *  Get target set-up from Symbios format NVRAM.
9629  */
9630 static void
9631 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9632 {
9633 	tcb_p tp = &np->target[target];
9634 	Symbios_target *tn = &nvram->target[target];
9635 
9636 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9637 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9638 	tp->usrtags =
9639 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9640 
9641 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9642 		tp->usrflags &= ~SYM_DISC_ENABLED;
9643 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9644 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9645 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9646 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9647 }
9648 
9649 /*
9650  *  Get target set-up from Tekram format NVRAM.
9651  */
9652 static void
9653 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9654 {
9655 	tcb_p tp = &np->target[target];
9656 	struct Tekram_target *tn = &nvram->target[target];
9657 	int i;
9658 
9659 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9660 		i = tn->sync_index & 0xf;
9661 		tp->tinfo.user.period = Tekram_sync[i];
9662 	}
9663 
9664 	tp->tinfo.user.width =
9665 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9666 
9667 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9668 		tp->usrtags = 2 << nvram->max_tags_index;
9669 	}
9670 
9671 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9672 		tp->usrflags |= SYM_DISC_ENABLED;
9673 
9674 	/* If any device does not support parity, we will not use this option */
9675 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9676 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9677 }
9678 
9679 #ifdef	SYM_CONF_DEBUG_NVRAM
9680 /*
9681  *  Dump Symbios format NVRAM for debugging purpose.
9682  */
9683 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9684 {
9685 	int i;
9686 
9687 	/* display Symbios nvram host data */
9688 	kprintf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9689 		sym_name(np), nvram->host_id & 0x0f,
9690 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9691 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9692 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9693 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9694 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9695 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9696 
9697 	/* display Symbios nvram drive data */
9698 	for (i = 0 ; i < 15 ; i++) {
9699 		struct Symbios_target *tn = &nvram->target[i];
9700 		kprintf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9701 		sym_name(np), i,
9702 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9703 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9704 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9705 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9706 		tn->bus_width,
9707 		tn->sync_period / 4,
9708 		tn->timeout);
9709 	}
9710 }
9711 
9712 /*
9713  *  Dump TEKRAM format NVRAM for debugging purpose.
9714  */
9715 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9716 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9717 {
9718 	int i, tags, boot_delay;
9719 	char *rem;
9720 
9721 	/* display Tekram nvram host data */
9722 	tags = 2 << nvram->max_tags_index;
9723 	boot_delay = 0;
9724 	if (nvram->boot_delay_index < 6)
9725 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9726 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9727 	default:
9728 	case 0:	rem = "";			break;
9729 	case 1: rem = " REMOVABLE=boot device";	break;
9730 	case 2: rem = " REMOVABLE=all";		break;
9731 	}
9732 
9733 	kprintf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9734 		sym_name(np), nvram->host_id & 0x0f,
9735 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9736 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9737 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9738 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9739 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9740 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9741 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9742 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9743 		rem, boot_delay, tags);
9744 
9745 	/* display Tekram nvram drive data */
9746 	for (i = 0; i <= 15; i++) {
9747 		int sync, j;
9748 		struct Tekram_target *tn = &nvram->target[i];
9749 		j = tn->sync_index & 0xf;
9750 		sync = Tekram_sync[j];
9751 		kprintf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9752 		sym_name(np), i,
9753 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9754 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9755 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9756 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9757 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9758 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9759 		sync);
9760 	}
9761 }
9762 #endif	/* SYM_CONF_DEBUG_NVRAM */
9763 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9764 
9765 
9766 /*
9767  *  Try reading Symbios or Tekram NVRAM
9768  */
9769 #ifdef SYM_CONF_NVRAM_SUPPORT
9770 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9771 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9772 #endif
9773 
9774 int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9775 {
9776 #ifdef SYM_CONF_NVRAM_SUPPORT
9777 	/*
9778 	 *  Try to read SYMBIOS nvram.
9779 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9780 	 */
9781 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9782 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9783 		nvp->type = SYM_SYMBIOS_NVRAM;
9784 #ifdef SYM_CONF_DEBUG_NVRAM
9785 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9786 #endif
9787 	}
9788 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9789 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9790 		nvp->type = SYM_TEKRAM_NVRAM;
9791 #ifdef SYM_CONF_DEBUG_NVRAM
9792 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9793 #endif
9794 	}
9795 	else
9796 		nvp->type = 0;
9797 #else
9798 	nvp->type = 0;
9799 #endif
9800 	return nvp->type;
9801 }
9802 
9803 
9804 #ifdef SYM_CONF_NVRAM_SUPPORT
9805 /*
9806  *  24C16 EEPROM reading.
9807  *
9808  *  GPOI0 - data in/data out
9809  *  GPIO1 - clock
9810  *  Symbios NVRAM wiring now also used by Tekram.
9811  */
9812 
9813 #define SET_BIT 0
9814 #define CLR_BIT 1
9815 #define SET_CLK 2
9816 #define CLR_CLK 3
9817 
9818 /*
9819  *  Set/clear data/clock bit in GPIO0
9820  */
9821 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9822 			  int bit_mode)
9823 {
9824 	UDELAY (5);
9825 	switch (bit_mode){
9826 	case SET_BIT:
9827 		*gpreg |= write_bit;
9828 		break;
9829 	case CLR_BIT:
9830 		*gpreg &= 0xfe;
9831 		break;
9832 	case SET_CLK:
9833 		*gpreg |= 0x02;
9834 		break;
9835 	case CLR_CLK:
9836 		*gpreg &= 0xfd;
9837 		break;
9838 
9839 	}
9840 	OUTB (nc_gpreg, *gpreg);
9841 	UDELAY (5);
9842 }
9843 
9844 /*
9845  *  Send START condition to NVRAM to wake it up.
9846  */
9847 static void S24C16_start(hcb_p np, u_char *gpreg)
9848 {
9849 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9850 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9851 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9852 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9853 }
9854 
9855 /*
9856  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9857  */
9858 static void S24C16_stop(hcb_p np, u_char *gpreg)
9859 {
9860 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9861 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9862 }
9863 
9864 /*
9865  *  Read or write a bit to the NVRAM,
9866  *  read if GPIO0 input else write if GPIO0 output
9867  */
9868 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9869 			 u_char *gpreg)
9870 {
9871 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9872 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9873 	if (read_bit)
9874 		*read_bit = INB (nc_gpreg);
9875 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9876 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9877 }
9878 
9879 /*
9880  *  Output an ACK to the NVRAM after reading,
9881  *  change GPIO0 to output and when done back to an input
9882  */
9883 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9884 			    u_char *gpcntl)
9885 {
9886 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9887 	S24C16_do_bit(np, 0, write_bit, gpreg);
9888 	OUTB (nc_gpcntl, *gpcntl);
9889 }
9890 
9891 /*
9892  *  Input an ACK from NVRAM after writing,
9893  *  change GPIO0 to input and when done back to an output
9894  */
9895 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9896 			   u_char *gpcntl)
9897 {
9898 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9899 	S24C16_do_bit(np, read_bit, 1, gpreg);
9900 	OUTB (nc_gpcntl, *gpcntl);
9901 }
9902 
9903 /*
9904  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9905  *  GPIO0 must already be set as an output
9906  */
9907 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9908 			     u_char *gpreg, u_char *gpcntl)
9909 {
9910 	int x;
9911 
9912 	for (x = 0; x < 8; x++)
9913 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9914 
9915 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9916 }
9917 
9918 /*
9919  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9920  *  GPIO0 must already be set as an input
9921  */
9922 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9923 			    u_char *gpreg, u_char *gpcntl)
9924 {
9925 	int x;
9926 	u_char read_bit;
9927 
9928 	*read_data = 0;
9929 	for (x = 0; x < 8; x++) {
9930 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9931 		*read_data |= ((read_bit & 0x01) << (7 - x));
9932 	}
9933 
9934 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9935 }
9936 
9937 /*
9938  *  Read 'len' bytes starting at 'offset'.
9939  */
9940 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9941 {
9942 	u_char	gpcntl, gpreg;
9943 	u_char	old_gpcntl, old_gpreg;
9944 	u_char	ack_data;
9945 	int	retv = 1;
9946 	int	x;
9947 
9948 	/* save current state of GPCNTL and GPREG */
9949 	old_gpreg	= INB (nc_gpreg);
9950 	old_gpcntl	= INB (nc_gpcntl);
9951 	gpcntl		= old_gpcntl & 0x1c;
9952 
9953 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9954 	OUTB (nc_gpreg,  old_gpreg);
9955 	OUTB (nc_gpcntl, gpcntl);
9956 
9957 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9958 	gpreg = old_gpreg;
9959 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9960 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9961 
9962 	/* now set NVRAM inactive with GPIO0/1 both high */
9963 	S24C16_stop(np, &gpreg);
9964 
9965 	/* activate NVRAM */
9966 	S24C16_start(np, &gpreg);
9967 
9968 	/* write device code and random address MSB */
9969 	S24C16_write_byte(np, &ack_data,
9970 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9971 	if (ack_data & 0x01)
9972 		goto out;
9973 
9974 	/* write random address LSB */
9975 	S24C16_write_byte(np, &ack_data,
9976 		offset & 0xff, &gpreg, &gpcntl);
9977 	if (ack_data & 0x01)
9978 		goto out;
9979 
9980 	/* regenerate START state to set up for reading */
9981 	S24C16_start(np, &gpreg);
9982 
9983 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9984 	S24C16_write_byte(np, &ack_data,
9985 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9986 	if (ack_data & 0x01)
9987 		goto out;
9988 
9989 	/* now set up GPIO0 for inputting data */
9990 	gpcntl |= 0x01;
9991 	OUTB (nc_gpcntl, gpcntl);
9992 
9993 	/* input all requested data - only part of total NVRAM */
9994 	for (x = 0; x < len; x++)
9995 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9996 
9997 	/* finally put NVRAM back in inactive mode */
9998 	gpcntl &= 0xfe;
9999 	OUTB (nc_gpcntl, gpcntl);
10000 	S24C16_stop(np, &gpreg);
10001 	retv = 0;
10002 out:
10003 	/* return GPIO0/1 to original states after having accessed NVRAM */
10004 	OUTB (nc_gpcntl, old_gpcntl);
10005 	OUTB (nc_gpreg,  old_gpreg);
10006 
10007 	return retv;
10008 }
10009 
10010 #undef SET_BIT
10011 #undef CLR_BIT
10012 #undef SET_CLK
10013 #undef CLR_CLK
10014 
10015 /*
10016  *  Try reading Symbios NVRAM.
10017  *  Return 0 if OK.
10018  */
10019 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
10020 {
10021 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
10022 	u_char *data = (u_char *) nvram;
10023 	int len  = sizeof(*nvram);
10024 	u_short	csum;
10025 	int x;
10026 
10027 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
10028 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
10029 		return 1;
10030 
10031 	/* check valid NVRAM signature, verify byte count and checksum */
10032 	if (nvram->type != 0 ||
10033 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
10034 	    nvram->byte_count != len - 12)
10035 		return 1;
10036 
10037 	/* verify checksum */
10038 	for (x = 6, csum = 0; x < len - 6; x++)
10039 		csum += data[x];
10040 	if (csum != nvram->checksum)
10041 		return 1;
10042 
10043 	return 0;
10044 }
10045 
10046 /*
10047  *  93C46 EEPROM reading.
10048  *
10049  *  GPOI0 - data in
10050  *  GPIO1 - data out
10051  *  GPIO2 - clock
10052  *  GPIO4 - chip select
10053  *
10054  *  Used by Tekram.
10055  */
10056 
10057 /*
10058  *  Pulse clock bit in GPIO0
10059  */
10060 static void T93C46_Clk(hcb_p np, u_char *gpreg)
10061 {
10062 	OUTB (nc_gpreg, *gpreg | 0x04);
10063 	UDELAY (2);
10064 	OUTB (nc_gpreg, *gpreg);
10065 }
10066 
10067 /*
10068  *  Read bit from NVRAM
10069  */
10070 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
10071 {
10072 	UDELAY (2);
10073 	T93C46_Clk(np, gpreg);
10074 	*read_bit = INB (nc_gpreg);
10075 }
10076 
10077 /*
10078  *  Write bit to GPIO0
10079  */
10080 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
10081 {
10082 	if (write_bit & 0x01)
10083 		*gpreg |= 0x02;
10084 	else
10085 		*gpreg &= 0xfd;
10086 
10087 	*gpreg |= 0x10;
10088 
10089 	OUTB (nc_gpreg, *gpreg);
10090 	UDELAY (2);
10091 
10092 	T93C46_Clk(np, gpreg);
10093 }
10094 
10095 /*
10096  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
10097  */
10098 static void T93C46_Stop(hcb_p np, u_char *gpreg)
10099 {
10100 	*gpreg &= 0xef;
10101 	OUTB (nc_gpreg, *gpreg);
10102 	UDELAY (2);
10103 
10104 	T93C46_Clk(np, gpreg);
10105 }
10106 
10107 /*
10108  *  Send read command and address to NVRAM
10109  */
10110 static void T93C46_Send_Command(hcb_p np, u_short write_data,
10111 				u_char *read_bit, u_char *gpreg)
10112 {
10113 	int x;
10114 
10115 	/* send 9 bits, start bit (1), command (2), address (6)  */
10116 	for (x = 0; x < 9; x++)
10117 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
10118 
10119 	*read_bit = INB (nc_gpreg);
10120 }
10121 
10122 /*
10123  *  READ 2 bytes from the NVRAM
10124  */
10125 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
10126 {
10127 	int x;
10128 	u_char read_bit;
10129 
10130 	*nvram_data = 0;
10131 	for (x = 0; x < 16; x++) {
10132 		T93C46_Read_Bit(np, &read_bit, gpreg);
10133 
10134 		if (read_bit & 0x01)
10135 			*nvram_data |=  (0x01 << (15 - x));
10136 		else
10137 			*nvram_data &= ~(0x01 << (15 - x));
10138 	}
10139 }
10140 
10141 /*
10142  *  Read Tekram NvRAM data.
10143  */
10144 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
10145 {
10146 	u_char	read_bit;
10147 	int	x;
10148 
10149 	for (x = 0; x < len; x++)  {
10150 
10151 		/* output read command and address */
10152 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
10153 		if (read_bit & 0x01)
10154 			return 1; /* Bad */
10155 		T93C46_Read_Word(np, &data[x], gpreg);
10156 		T93C46_Stop(np, gpreg);
10157 	}
10158 
10159 	return 0;
10160 }
10161 
10162 /*
10163  *  Try reading 93C46 Tekram NVRAM.
10164  */
10165 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
10166 {
10167 	u_char gpcntl, gpreg;
10168 	u_char old_gpcntl, old_gpreg;
10169 	int retv = 1;
10170 
10171 	/* save current state of GPCNTL and GPREG */
10172 	old_gpreg	= INB (nc_gpreg);
10173 	old_gpcntl	= INB (nc_gpcntl);
10174 
10175 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
10176 	   1/2/4 out */
10177 	gpreg = old_gpreg & 0xe9;
10178 	OUTB (nc_gpreg, gpreg);
10179 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
10180 	OUTB (nc_gpcntl, gpcntl);
10181 
10182 	/* input all of NVRAM, 64 words */
10183 	retv = T93C46_Read_Data(np, (u_short *) nvram,
10184 				sizeof(*nvram) / sizeof(short), &gpreg);
10185 
10186 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
10187 	OUTB (nc_gpcntl, old_gpcntl);
10188 	OUTB (nc_gpreg,  old_gpreg);
10189 
10190 	return retv;
10191 }
10192 
10193 /*
10194  *  Try reading Tekram NVRAM.
10195  *  Return 0 if OK.
10196  */
10197 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
10198 {
10199 	u_char *data = (u_char *) nvram;
10200 	int len = sizeof(*nvram);
10201 	u_short	csum;
10202 	int x;
10203 
10204 	switch (np->device_id) {
10205 	case PCI_ID_SYM53C885:
10206 	case PCI_ID_SYM53C895:
10207 	case PCI_ID_SYM53C896:
10208 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10209 					  data, len);
10210 		break;
10211 	case PCI_ID_SYM53C875:
10212 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10213 					  data, len);
10214 		if (!x)
10215 			break;
10216 	default:
10217 		x = sym_read_T93C46_nvram(np, nvram);
10218 		break;
10219 	}
10220 	if (x)
10221 		return 1;
10222 
10223 	/* verify checksum */
10224 	for (x = 0, csum = 0; x < len - 1; x += 2)
10225 		csum += data[x] + (data[x+1] << 8);
10226 	if (csum != 0x1234)
10227 		return 1;
10228 
10229 	return 0;
10230 }
10231 
10232 #endif	/* SYM_CONF_NVRAM_SUPPORT */
10233