xref: /dragonfly/sys/dev/disk/sym/sym_hipd.c (revision f9a239ec)
1 /*
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /* $FreeBSD: src/sys/dev/sym/sym_hipd.c,v 1.6.2.12 2001/12/02 19:01:10 groudier Exp $ */
59 /* $DragonFly: src/sys/dev/disk/sym/sym_hipd.c,v 1.11 2005/01/06 08:33:11 asmodai Exp $ */
60 
61 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62 
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64 /* #define CAM_NEW_TRAN_CODE */
65 
66 #include "use_pci.h"
67 #include <sys/param.h>
68 
69 /*
70  *  Only use the BUS stuff for PCI under FreeBSD 4 and later versions.
71  *  Note that the old BUS stuff also works for FreeBSD 4 and spares
72  *  about 1 KB for the driver object file.
73  */
74 #if 	defined(__DragonFly__) || __FreeBSD_version >= 400000
75 #define	FreeBSD_Bus_Dma_Abstraction
76 #define	FreeBSD_Bus_Io_Abstraction
77 #define	FreeBSD_Bus_Space_Abstraction
78 #endif
79 
80 /*
81  *  Driver configuration options.
82  */
83 #include "opt_sym.h"
84 #include "sym_conf.h"
85 
86 #ifndef FreeBSD_Bus_Io_Abstraction
87 #include "use_ncr.h"	/* To know if the ncr has been configured */
88 #endif
89 
90 #include <sys/systm.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #ifdef FreeBSD_Bus_Io_Abstraction
94 #include <sys/module.h>
95 #include <sys/bus.h>
96 #endif
97 
98 #include <sys/proc.h>
99 
100 #include <bus/pci/pcireg.h>
101 #include <bus/pci/pcivar.h>
102 
103 #ifdef	FreeBSD_Bus_Space_Abstraction
104 #include <machine/bus_memio.h>
105 /*
106  *  Only include bus_pio if needed.
107  *  This avoids bus space primitives to be uselessly bloated
108  *  by out-of-age PIO operations.
109  */
110 #ifdef	SYM_CONF_IOMAPPED
111 #include <machine/bus_pio.h>
112 #endif
113 #endif
114 #include <machine/bus.h>
115 
116 #ifdef FreeBSD_Bus_Io_Abstraction
117 #include <machine/resource.h>
118 #include <sys/rman.h>
119 #endif
120 #include <machine/clock.h>
121 
122 #include <bus/cam/cam.h>
123 #include <bus/cam/cam_ccb.h>
124 #include <bus/cam/cam_sim.h>
125 #include <bus/cam/cam_xpt_sim.h>
126 #include <bus/cam/cam_debug.h>
127 
128 #include <bus/cam/scsi/scsi_all.h>
129 #include <bus/cam/scsi/scsi_message.h>
130 
131 #include <vm/vm.h>
132 #include <vm/vm_param.h>
133 #include <vm/pmap.h>
134 
135 /* Short and quite clear integer types */
136 typedef int8_t    s8;
137 typedef int16_t   s16;
138 typedef	int32_t   s32;
139 typedef u_int8_t  u8;
140 typedef u_int16_t u16;
141 typedef	u_int32_t u32;
142 
143 /*
144  *  From 'cam.error_recovery_diffs.20010313.context' patch.
145  */
146 #ifdef  CAM_NEW_TRAN_CODE
147 #define FreeBSD_New_Tran_Settings
148 #endif  /* CAM_NEW_TRAN_CODE */
149 
150 /*
151  *  Driver definitions.
152  */
153 #include "sym_defs.h"
154 #include "sym_fw.h"
155 
156 /*
157  *  IA32 architecture does not reorder STORES and prevents
158  *  LOADS from passing STORES. It is called `program order'
159  *  by Intel and allows device drivers to deal with memory
160  *  ordering by only ensuring that the code is not reordered
161  *  by the compiler when ordering is required.
162  *  Other architectures implement a weaker ordering that
163  *  requires memory barriers (and also IO barriers when they
164  *  make sense) to be used.
165  */
166 
167 #if	defined	__i386__
168 #define MEMORY_BARRIER()	do { ; } while(0)
169 #elif	defined	__alpha__
170 #define MEMORY_BARRIER()	alpha_mb()
171 #elif	defined	__powerpc__
172 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
173 #elif	defined	__ia64__
174 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
175 #elif	defined	__sparc64__
176 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
177 #else
178 #error	"Not supported platform"
179 #endif
180 
181 /*
182  *  Portable but silly implemented byte order primitives.
183  *  We define the primitives we need, since FreeBSD doesn't
184  *  seem to have them yet.
185  */
186 #if	BYTE_ORDER == BIG_ENDIAN
187 
188 #define __revb16(x) (	(((u16)(x) & (u16)0x00ffU) << 8) | \
189 			(((u16)(x) & (u16)0xff00U) >> 8) 	)
190 #define __revb32(x) (	(((u32)(x) & 0x000000ffU) << 24) | \
191 			(((u32)(x) & 0x0000ff00U) <<  8) | \
192 			(((u32)(x) & 0x00ff0000U) >>  8) | \
193 			(((u32)(x) & 0xff000000U) >> 24)	)
194 
195 #define __htole16(v)	__revb16(v)
196 #define __htole32(v)	__revb32(v)
197 #define __le16toh(v)	__htole16(v)
198 #define __le32toh(v)	__htole32(v)
199 
200 static __inline u16	_htole16(u16 v) { return __htole16(v); }
201 static __inline u32	_htole32(u32 v) { return __htole32(v); }
202 #define _le16toh	_htole16
203 #define _le32toh	_htole32
204 
205 #else	/* LITTLE ENDIAN */
206 
207 #define __htole16(v)	(v)
208 #define __htole32(v)	(v)
209 #define __le16toh(v)	(v)
210 #define __le32toh(v)	(v)
211 
212 #define _htole16(v)	(v)
213 #define _htole32(v)	(v)
214 #define _le16toh(v)	(v)
215 #define _le32toh(v)	(v)
216 
217 #endif	/* BYTE_ORDER */
218 
219 /*
220  *  A la VMS/CAM-3 queue management.
221  */
222 
223 typedef struct sym_quehead {
224 	struct sym_quehead *flink;	/* Forward  pointer */
225 	struct sym_quehead *blink;	/* Backward pointer */
226 } SYM_QUEHEAD;
227 
228 #define sym_que_init(ptr) do { \
229 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
230 } while (0)
231 
232 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
233 {
234 	return (head->flink == head) ? 0 : head->flink;
235 }
236 
237 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
238 {
239 	return (head->blink == head) ? 0 : head->blink;
240 }
241 
242 static __inline void __sym_que_add(struct sym_quehead * new,
243 	struct sym_quehead * blink,
244 	struct sym_quehead * flink)
245 {
246 	flink->blink	= new;
247 	new->flink	= flink;
248 	new->blink	= blink;
249 	blink->flink	= new;
250 }
251 
252 static __inline void __sym_que_del(struct sym_quehead * blink,
253 	struct sym_quehead * flink)
254 {
255 	flink->blink = blink;
256 	blink->flink = flink;
257 }
258 
259 static __inline int sym_que_empty(struct sym_quehead *head)
260 {
261 	return head->flink == head;
262 }
263 
264 static __inline void sym_que_splice(struct sym_quehead *list,
265 	struct sym_quehead *head)
266 {
267 	struct sym_quehead *first = list->flink;
268 
269 	if (first != list) {
270 		struct sym_quehead *last = list->blink;
271 		struct sym_quehead *at   = head->flink;
272 
273 		first->blink = head;
274 		head->flink  = first;
275 
276 		last->flink = at;
277 		at->blink   = last;
278 	}
279 }
280 
281 #define sym_que_entry(ptr, type, member) \
282 	((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))
283 
284 
285 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
286 
287 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
288 
289 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
290 
291 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
292 {
293 	struct sym_quehead *elem = head->flink;
294 
295 	if (elem != head)
296 		__sym_que_del(head, elem->flink);
297 	else
298 		elem = 0;
299 	return elem;
300 }
301 
302 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
303 
304 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
305 {
306 	struct sym_quehead *elem = head->blink;
307 
308 	if (elem != head)
309 		__sym_que_del(elem->blink, head);
310 	else
311 		elem = 0;
312 	return elem;
313 }
314 
315 /*
316  *  This one may be useful.
317  */
318 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
319 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
320 /*
321  *  FreeBSD does not offer our kind of queue in the CAM CCB.
322  *  So, we have to cast.
323  */
324 #define sym_qptr(p)	((struct sym_quehead *) (p))
325 
326 /*
327  *  Simple bitmap operations.
328  */
329 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
330 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
331 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
332 
333 /*
334  *  Number of tasks per device we want to handle.
335  */
336 #if	SYM_CONF_MAX_TAG_ORDER > 8
337 #error	"more than 256 tags per logical unit not allowed."
338 #endif
339 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
340 
341 /*
342  *  Donnot use more tasks that we can handle.
343  */
344 #ifndef	SYM_CONF_MAX_TAG
345 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
346 #endif
347 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
348 #undef	SYM_CONF_MAX_TAG
349 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
350 #endif
351 
352 /*
353  *    This one means 'NO TAG for this job'
354  */
355 #define NO_TAG	(256)
356 
357 /*
358  *  Number of SCSI targets.
359  */
360 #if	SYM_CONF_MAX_TARGET > 16
361 #error	"more than 16 targets not allowed."
362 #endif
363 
364 /*
365  *  Number of logical units per target.
366  */
367 #if	SYM_CONF_MAX_LUN > 64
368 #error	"more than 64 logical units per target not allowed."
369 #endif
370 
371 /*
372  *    Asynchronous pre-scaler (ns). Shall be 40 for
373  *    the SCSI timings to be compliant.
374  */
375 #define	SYM_CONF_MIN_ASYNC (40)
376 
377 /*
378  *  Number of entries in the START and DONE queues.
379  *
380  *  We limit to 1 PAGE in order to succeed allocation of
381  *  these queues. Each entry is 8 bytes long (2 DWORDS).
382  */
383 #ifdef	SYM_CONF_MAX_START
384 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
385 #else
386 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
387 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
388 #endif
389 
390 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
391 #undef	SYM_CONF_MAX_QUEUE
392 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
393 #undef	SYM_CONF_MAX_START
394 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
395 #endif
396 
397 /*
398  *  For this one, we want a short name :-)
399  */
400 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
401 
402 /*
403  *  Active debugging tags and verbosity.
404  */
405 #define DEBUG_ALLOC	(0x0001)
406 #define DEBUG_PHASE	(0x0002)
407 #define DEBUG_POLL	(0x0004)
408 #define DEBUG_QUEUE	(0x0008)
409 #define DEBUG_RESULT	(0x0010)
410 #define DEBUG_SCATTER	(0x0020)
411 #define DEBUG_SCRIPT	(0x0040)
412 #define DEBUG_TINY	(0x0080)
413 #define DEBUG_TIMING	(0x0100)
414 #define DEBUG_NEGO	(0x0200)
415 #define DEBUG_TAGS	(0x0400)
416 #define DEBUG_POINTER	(0x0800)
417 
418 #if 0
419 static int sym_debug = 0;
420 	#define DEBUG_FLAGS sym_debug
421 #else
422 /*	#define DEBUG_FLAGS (0x0631) */
423 	#define DEBUG_FLAGS (0x0000)
424 
425 #endif
426 #define sym_verbose	(np->verbose)
427 
428 /*
429  *  Insert a delay in micro-seconds and milli-seconds.
430  */
431 static void UDELAY(int us) { DELAY(us); }
432 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
433 
434 /*
435  *  Simple power of two buddy-like allocator.
436  *
437  *  This simple code is not intended to be fast, but to
438  *  provide power of 2 aligned memory allocations.
439  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
440  *  this allocator allows simple and fast address calculations
441  *  from the SCRIPTS code. In addition, cache line alignment
442  *  is guaranteed for power of 2 cache line size.
443  *
444  *  This allocator has been developped for the Linux sym53c8xx
445  *  driver, since this O/S does not provide naturally aligned
446  *  allocations.
447  *  It has the advantage of allowing the driver to use private
448  *  pages of memory that will be useful if we ever need to deal
449  *  with IO MMUs for PCI.
450  */
451 
452 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
453 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
454 #if 0
455 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
456 #endif
457 #define MEMO_WARN	1
458 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
459 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
460 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
461 
462 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_INTWAIT)
463 #define free_pages(p)		free((p), M_DEVBUF)
464 
465 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
466 
467 typedef struct m_link {		/* Link between free memory chunks */
468 	struct m_link *next;
469 } m_link_s;
470 
471 #ifdef	FreeBSD_Bus_Dma_Abstraction
472 typedef struct m_vtob {		/* Virtual to Bus address translation */
473 	struct m_vtob	*next;
474 	bus_dmamap_t	dmamap;	/* Map for this chunk */
475 	m_addr_t	vaddr;	/* Virtual address */
476 	m_addr_t	baddr;	/* Bus physical address */
477 } m_vtob_s;
478 /* Hash this stuff a bit to speed up translations */
479 #define VTOB_HASH_SHIFT		5
480 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
481 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
482 #define VTOB_HASH_CODE(m)	\
483 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
484 #endif
485 
486 typedef struct m_pool {		/* Memory pool of a given kind */
487 #ifdef	FreeBSD_Bus_Dma_Abstraction
488 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
489 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
490 	m_addr_t (*getp)(struct m_pool *);
491 #ifdef	MEMO_FREE_UNUSED
492 	void (*freep)(struct m_pool *, m_addr_t);
493 #endif
494 #define M_GETP()		mp->getp(mp)
495 #define M_FREEP(p)		mp->freep(mp, p)
496 	int nump;
497 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
498 	struct m_pool *next;
499 #else
500 #define M_GETP()		get_pages()
501 #define M_FREEP(p)		free_pages(p)
502 #endif	/* FreeBSD_Bus_Dma_Abstraction */
503 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
504 } m_pool_s;
505 
506 static void *___sym_malloc(m_pool_s *mp, int size)
507 {
508 	int i = 0;
509 	int s = (1 << MEMO_SHIFT);
510 	int j;
511 	m_addr_t a;
512 	m_link_s *h = mp->h;
513 
514 	if (size > MEMO_CLUSTER_SIZE)
515 		return 0;
516 
517 	while (size > s) {
518 		s <<= 1;
519 		++i;
520 	}
521 
522 	j = i;
523 	while (!h[j].next) {
524 		if (s == MEMO_CLUSTER_SIZE) {
525 			h[j].next = (m_link_s *) M_GETP();
526 			if (h[j].next)
527 				h[j].next->next = 0;
528 			break;
529 		}
530 		++j;
531 		s <<= 1;
532 	}
533 	a = (m_addr_t) h[j].next;
534 	if (a) {
535 		h[j].next = h[j].next->next;
536 		while (j > i) {
537 			j -= 1;
538 			s >>= 1;
539 			h[j].next = (m_link_s *) (a+s);
540 			h[j].next->next = 0;
541 		}
542 	}
543 #ifdef DEBUG
544 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
545 #endif
546 	return (void *) a;
547 }
548 
549 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
550 {
551 	int i = 0;
552 	int s = (1 << MEMO_SHIFT);
553 	m_link_s *q;
554 	m_addr_t a, b;
555 	m_link_s *h = mp->h;
556 
557 #ifdef DEBUG
558 	printf("___sym_mfree(%p, %d)\n", ptr, size);
559 #endif
560 
561 	if (size > MEMO_CLUSTER_SIZE)
562 		return;
563 
564 	while (size > s) {
565 		s <<= 1;
566 		++i;
567 	}
568 
569 	a = (m_addr_t) ptr;
570 
571 	while (1) {
572 #ifdef MEMO_FREE_UNUSED
573 		if (s == MEMO_CLUSTER_SIZE) {
574 			M_FREEP(a);
575 			break;
576 		}
577 #endif
578 		b = a ^ s;
579 		q = &h[i];
580 		while (q->next && q->next != (m_link_s *) b) {
581 			q = q->next;
582 		}
583 		if (!q->next) {
584 			((m_link_s *) a)->next = h[i].next;
585 			h[i].next = (m_link_s *) a;
586 			break;
587 		}
588 		q->next = q->next->next;
589 		a = a & b;
590 		s <<= 1;
591 		++i;
592 	}
593 }
594 
595 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
596 {
597 	void *p;
598 
599 	p = ___sym_malloc(mp, size);
600 
601 	if (DEBUG_FLAGS & DEBUG_ALLOC)
602 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
603 
604 	if (p)
605 		bzero(p, size);
606 	else if (uflags & MEMO_WARN)
607 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
608 
609 	return p;
610 }
611 
612 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
613 
614 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
615 {
616 	if (DEBUG_FLAGS & DEBUG_ALLOC)
617 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
618 
619 	___sym_mfree(mp, ptr, size);
620 
621 }
622 
623 /*
624  * Default memory pool we donnot need to involve in DMA.
625  */
626 #ifndef	FreeBSD_Bus_Dma_Abstraction
627 /*
628  * Without the `bus dma abstraction', all the memory is assumed
629  * DMAable and a single pool is all what we need.
630  */
631 static m_pool_s mp0;
632 
633 #else
634 /*
635  * With the `bus dma abstraction', we use a separate pool for
636  * memory we donnot need to involve in DMA.
637  */
638 static m_addr_t ___mp0_getp(m_pool_s *mp)
639 {
640 	m_addr_t m = (m_addr_t) get_pages();
641 	if (m)
642 		++mp->nump;
643 	return m;
644 }
645 
646 #ifdef	MEMO_FREE_UNUSED
647 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
648 {
649 	free_pages(m);
650 	--mp->nump;
651 }
652 #endif
653 
654 #ifdef	MEMO_FREE_UNUSED
655 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
656 #else
657 static m_pool_s mp0 = {0, 0, ___mp0_getp};
658 #endif
659 
660 #endif	/* FreeBSD_Bus_Dma_Abstraction */
661 
662 /*
663  * Actual memory allocation routine for non-DMAed memory.
664  */
665 static void *sym_calloc(int size, char *name)
666 {
667 	void *m;
668 	/* Lock */
669 	m = __sym_calloc(&mp0, size, name);
670 	/* Unlock */
671 	return m;
672 }
673 
674 /*
675  * Actual memory allocation routine for non-DMAed memory.
676  */
677 static void sym_mfree(void *ptr, int size, char *name)
678 {
679 	/* Lock */
680 	__sym_mfree(&mp0, ptr, size, name);
681 	/* Unlock */
682 }
683 
684 /*
685  * DMAable pools.
686  */
687 #ifndef	FreeBSD_Bus_Dma_Abstraction
688 /*
689  * Without `bus dma abstraction', all the memory is DMAable, and
690  * only a single pool is needed (vtophys() is our friend).
691  */
692 #define __sym_calloc_dma(b, s, n)	sym_calloc(s, n)
693 #define __sym_mfree_dma(b, p, s, n)	sym_mfree(p, s, n)
694 #ifdef	__alpha__
695 #define	__vtobus(b, p)	alpha_XXX_dmamap((vm_offset_t)(p))
696 #else /*__i386__, __sparc64__*/
697 #define __vtobus(b, p)	vtophys(p)
698 #endif
699 
700 #else
701 /*
702  * With `bus dma abstraction', we use a separate pool per parent
703  * BUS handle. A reverse table (hashed) is maintained for virtual
704  * to BUS address translation.
705  */
706 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
707 {
708 	bus_addr_t *baddr;
709 	baddr = (bus_addr_t *)arg;
710 	*baddr = segs->ds_addr;
711 }
712 
713 static m_addr_t ___dma_getp(m_pool_s *mp)
714 {
715 	m_vtob_s *vbp;
716 	void *vaddr = 0;
717 	bus_addr_t baddr = 0;
718 
719 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
720 	if (!vbp)
721 		goto out_err;
722 
723 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
724 			      BUS_DMA_NOWAIT, &vbp->dmamap))
725 		goto out_err;
726 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
727 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0);
728 	if (baddr) {
729 		int hc = VTOB_HASH_CODE(vaddr);
730 		vbp->vaddr = (m_addr_t) vaddr;
731 		vbp->baddr = (m_addr_t) baddr;
732 		vbp->next = mp->vtob[hc];
733 		mp->vtob[hc] = vbp;
734 		++mp->nump;
735 		return (m_addr_t) vaddr;
736 	}
737 out_err:
738 	if (baddr)
739 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
740 	if (vaddr)
741 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
742 	if (vbp->dmamap)
743 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
744 	if (vbp)
745 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
746 	return 0;
747 }
748 
749 #ifdef	MEMO_FREE_UNUSED
750 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
751 {
752 	m_vtob_s **vbpp, *vbp;
753 	int hc = VTOB_HASH_CODE(m);
754 
755 	vbpp = &mp->vtob[hc];
756 	while (*vbpp && (*vbpp)->vaddr != m)
757 		vbpp = &(*vbpp)->next;
758 	if (*vbpp) {
759 		vbp = *vbpp;
760 		*vbpp = (*vbpp)->next;
761 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
762 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
763 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
764 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
765 		--mp->nump;
766 	}
767 }
768 #endif
769 
770 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
771 {
772 	m_pool_s *mp;
773 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
774 	return mp;
775 }
776 
777 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
778 {
779 	m_pool_s *mp = 0;
780 
781 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
782 	if (mp) {
783 		mp->dev_dmat = dev_dmat;
784 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
785 			       BUS_SPACE_MAXADDR_32BIT,
786 			       BUS_SPACE_MAXADDR_32BIT,
787 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
788 			       MEMO_CLUSTER_SIZE, 0, &mp->dmat)) {
789 			mp->getp = ___dma_getp;
790 #ifdef	MEMO_FREE_UNUSED
791 			mp->freep = ___dma_freep;
792 #endif
793 			mp->next = mp0.next;
794 			mp0.next = mp;
795 			return mp;
796 		}
797 	}
798 	if (mp)
799 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
800 	return 0;
801 }
802 
803 #ifdef	MEMO_FREE_UNUSED
804 static void ___del_dma_pool(m_pool_s *p)
805 {
806 	struct m_pool **pp = &mp0.next;
807 
808 	while (*pp && *pp != p)
809 		pp = &(*pp)->next;
810 	if (*pp) {
811 		*pp = (*pp)->next;
812 		bus_dma_tag_destroy(p->dmat);
813 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
814 	}
815 }
816 #endif
817 
818 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
819 {
820 	struct m_pool *mp;
821 	void *m = 0;
822 
823 	/* Lock */
824 	mp = ___get_dma_pool(dev_dmat);
825 	if (!mp)
826 		mp = ___cre_dma_pool(dev_dmat);
827 	if (mp)
828 		m = __sym_calloc(mp, size, name);
829 #ifdef	MEMO_FREE_UNUSED
830 	if (mp && !mp->nump)
831 		___del_dma_pool(mp);
832 #endif
833 	/* Unlock */
834 
835 	return m;
836 }
837 
838 static void
839 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
840 {
841 	struct m_pool *mp;
842 
843 	/* Lock */
844 	mp = ___get_dma_pool(dev_dmat);
845 	if (mp)
846 		__sym_mfree(mp, m, size, name);
847 #ifdef	MEMO_FREE_UNUSED
848 	if (mp && !mp->nump)
849 		___del_dma_pool(mp);
850 #endif
851 	/* Unlock */
852 }
853 
854 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
855 {
856 	m_pool_s *mp;
857 	int hc = VTOB_HASH_CODE(m);
858 	m_vtob_s *vp = 0;
859 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
860 
861 	/* Lock */
862 	mp = ___get_dma_pool(dev_dmat);
863 	if (mp) {
864 		vp = mp->vtob[hc];
865 		while (vp && (m_addr_t) vp->vaddr != a)
866 			vp = vp->next;
867 	}
868 	/* Unlock */
869 	if (!vp)
870 		panic("sym: VTOBUS FAILED!\n");
871 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
872 }
873 
874 #endif	/* FreeBSD_Bus_Dma_Abstraction */
875 
876 /*
877  * Verbs for DMAable memory handling.
878  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
879  * being discarded.
880  */
881 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
882 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
883 #define _sym_mfree_dma(np, p, s, n)	\
884 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
885 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
886 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
887 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
888 #define vtobus(p)			_vtobus(np, p)
889 
890 
891 /*
892  *  Print a buffer in hexadecimal format.
893  */
894 static void sym_printb_hex (u_char *p, int n)
895 {
896 	while (n-- > 0)
897 		printf (" %x", *p++);
898 }
899 
900 /*
901  *  Same with a label at beginning and .\n at end.
902  */
903 static void sym_printl_hex (char *label, u_char *p, int n)
904 {
905 	printf ("%s", label);
906 	sym_printb_hex (p, n);
907 	printf (".\n");
908 }
909 
910 /*
911  *  Return a string for SCSI BUS mode.
912  */
913 static char *sym_scsi_bus_mode(int mode)
914 {
915 	switch(mode) {
916 	case SMODE_HVD:	return "HVD";
917 	case SMODE_SE:	return "SE";
918 	case SMODE_LVD: return "LVD";
919 	}
920 	return "??";
921 }
922 
923 /*
924  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
925  */
926 #ifdef SYM_CONF_NVRAM_SUPPORT
927 static u_char Tekram_sync[16] =
928 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
929 #endif
930 
931 /*
932  *  Union of supported NVRAM formats.
933  */
934 struct sym_nvram {
935 	int type;
936 #define	SYM_SYMBIOS_NVRAM	(1)
937 #define	SYM_TEKRAM_NVRAM	(2)
938 #ifdef	SYM_CONF_NVRAM_SUPPORT
939 	union {
940 		Symbios_nvram Symbios;
941 		Tekram_nvram Tekram;
942 	} data;
943 #endif
944 };
945 
946 /*
947  *  This one is hopefully useless, but actually useful. :-)
948  */
949 #ifndef assert
950 #define	assert(expression) { \
951 	if (!(expression)) { \
952 		(void)panic( \
953 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
954 			#expression, \
955 			__FILE__, __LINE__); \
956 	} \
957 }
958 #endif
959 
960 /*
961  *  Some provision for a possible big endian mode supported by
962  *  Symbios chips (never seen, by the way).
963  *  For now, this stuff does not deserve any comments. :)
964  */
965 
966 #define sym_offb(o)	(o)
967 #define sym_offw(o)	(o)
968 
969 /*
970  *  Some provision for support for BIG ENDIAN CPU.
971  *  Btw, FreeBSD does not seem to be ready yet for big endian.
972  */
973 
974 #if	BYTE_ORDER == BIG_ENDIAN
975 #define cpu_to_scr(dw)	_htole32(dw)
976 #define scr_to_cpu(dw)	_le32toh(dw)
977 #else
978 #define cpu_to_scr(dw)	(dw)
979 #define scr_to_cpu(dw)	(dw)
980 #endif
981 
982 /*
983  *  Access to the chip IO registers and on-chip RAM.
984  *  We use the `bus space' interface under FreeBSD-4 and
985  *  later kernel versions.
986  */
987 
988 #ifdef	FreeBSD_Bus_Space_Abstraction
989 
990 #if defined(SYM_CONF_IOMAPPED)
991 
992 #define INB_OFF(o)	bus_space_read_1(np->io_tag, np->io_bsh, o)
993 #define INW_OFF(o)	bus_space_read_2(np->io_tag, np->io_bsh, o)
994 #define INL_OFF(o)	bus_space_read_4(np->io_tag, np->io_bsh, o)
995 
996 #define OUTB_OFF(o, v)	bus_space_write_1(np->io_tag, np->io_bsh, o, (v))
997 #define OUTW_OFF(o, v)	bus_space_write_2(np->io_tag, np->io_bsh, o, (v))
998 #define OUTL_OFF(o, v)	bus_space_write_4(np->io_tag, np->io_bsh, o, (v))
999 
1000 #else	/* Memory mapped IO */
1001 
1002 #define INB_OFF(o)	bus_space_read_1(np->mmio_tag, np->mmio_bsh, o)
1003 #define INW_OFF(o)	bus_space_read_2(np->mmio_tag, np->mmio_bsh, o)
1004 #define INL_OFF(o)	bus_space_read_4(np->mmio_tag, np->mmio_bsh, o)
1005 
1006 #define OUTB_OFF(o, v)	bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v))
1007 #define OUTW_OFF(o, v)	bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v))
1008 #define OUTL_OFF(o, v)	bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v))
1009 
1010 #endif	/* SYM_CONF_IOMAPPED */
1011 
1012 #define OUTRAM_OFF(o, a, l)	\
1013 	bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l))
1014 
1015 #else	/* not defined FreeBSD_Bus_Space_Abstraction */
1016 
1017 #if	BYTE_ORDER == BIG_ENDIAN
1018 #error	"BIG ENDIAN support requires bus space kernel interface"
1019 #endif
1020 
1021 /*
1022  *  Access to the chip IO registers and on-chip RAM.
1023  *  We use legacy MMIO and IO interface for FreeBSD 3.X versions.
1024  */
1025 
1026 /*
1027  *  Define some understable verbs for IO and MMIO.
1028  */
1029 #define io_read8(p)	 scr_to_cpu(inb((p)))
1030 #define	io_read16(p)	 scr_to_cpu(inw((p)))
1031 #define io_read32(p)	 scr_to_cpu(inl((p)))
1032 #define	io_write8(p, v)	 outb((p), cpu_to_scr(v))
1033 #define io_write16(p, v) outw((p), cpu_to_scr(v))
1034 #define io_write32(p, v) outl((p), cpu_to_scr(v))
1035 
1036 #ifdef	__alpha__
1037 
1038 #define mmio_read8(a)	     readb(a)
1039 #define mmio_read16(a)	     readw(a)
1040 #define mmio_read32(a)	     readl(a)
1041 #define mmio_write8(a, b)    writeb(a, b)
1042 #define mmio_write16(a, b)   writew(a, b)
1043 #define mmio_write32(a, b)   writel(a, b)
1044 #define memcpy_to_pci(d, s, n)	memcpy_toio((u32)(d), (void *)(s), (n))
1045 
1046 #else /*__i386__, __sparc64__*/
1047 
1048 #define mmio_read8(a)	     scr_to_cpu((*(volatile unsigned char *) (a)))
1049 #define mmio_read16(a)	     scr_to_cpu((*(volatile unsigned short *) (a)))
1050 #define mmio_read32(a)	     scr_to_cpu((*(volatile unsigned int *) (a)))
1051 #define mmio_write8(a, b)   (*(volatile unsigned char *) (a)) = cpu_to_scr(b)
1052 #define mmio_write16(a, b)  (*(volatile unsigned short *) (a)) = cpu_to_scr(b)
1053 #define mmio_write32(a, b)  (*(volatile unsigned int *) (a)) = cpu_to_scr(b)
1054 #define memcpy_to_pci(d, s, n)	bcopy((s), (void *)(d), (n))
1055 
1056 #endif
1057 
1058 /*
1059  *  Normal IO
1060  */
1061 #if defined(SYM_CONF_IOMAPPED)
1062 
1063 #define	INB_OFF(o)	io_read8(np->io_port + sym_offb(o))
1064 #define	OUTB_OFF(o, v)	io_write8(np->io_port + sym_offb(o), (v))
1065 
1066 #define	INW_OFF(o)	io_read16(np->io_port + sym_offw(o))
1067 #define	OUTW_OFF(o, v)	io_write16(np->io_port + sym_offw(o), (v))
1068 
1069 #define	INL_OFF(o)	io_read32(np->io_port + (o))
1070 #define	OUTL_OFF(o, v)	io_write32(np->io_port + (o), (v))
1071 
1072 #else	/* Memory mapped IO */
1073 
1074 #define	INB_OFF(o)	mmio_read8(np->mmio_va + sym_offb(o))
1075 #define	OUTB_OFF(o, v)	mmio_write8(np->mmio_va + sym_offb(o), (v))
1076 
1077 #define	INW_OFF(o)	mmio_read16(np->mmio_va + sym_offw(o))
1078 #define	OUTW_OFF(o, v)	mmio_write16(np->mmio_va + sym_offw(o), (v))
1079 
1080 #define	INL_OFF(o)	mmio_read32(np->mmio_va + (o))
1081 #define	OUTL_OFF(o, v)	mmio_write32(np->mmio_va + (o), (v))
1082 
1083 #endif
1084 
1085 #define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l))
1086 
1087 #endif	/* FreeBSD_Bus_Space_Abstraction */
1088 
1089 /*
1090  *  Common definitions for both bus space and legacy IO methods.
1091  */
1092 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
1093 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
1094 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
1095 
1096 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
1097 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
1098 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
1099 
1100 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
1101 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
1102 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
1103 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
1104 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
1105 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
1106 
1107 /*
1108  *  We normally want the chip to have a consistent view
1109  *  of driver internal data structures when we restart it.
1110  *  Thus these macros.
1111  */
1112 #define OUTL_DSP(v)				\
1113 	do {					\
1114 		MEMORY_BARRIER();		\
1115 		OUTL (nc_dsp, (v));		\
1116 	} while (0)
1117 
1118 #define OUTONB_STD()				\
1119 	do {					\
1120 		MEMORY_BARRIER();		\
1121 		OUTONB (nc_dcntl, (STD|NOCOM));	\
1122 	} while (0)
1123 
1124 /*
1125  *  Command control block states.
1126  */
1127 #define HS_IDLE		(0)
1128 #define HS_BUSY		(1)
1129 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
1130 #define HS_DISCONNECT	(3)	/* Disconnected by target */
1131 #define HS_WAIT		(4)	/* waiting for resource	  */
1132 
1133 #define HS_DONEMASK	(0x80)
1134 #define HS_COMPLETE	(4|HS_DONEMASK)
1135 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
1136 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
1137 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
1138 
1139 /*
1140  *  Software Interrupt Codes
1141  */
1142 #define	SIR_BAD_SCSI_STATUS	(1)
1143 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
1144 #define	SIR_MSG_RECEIVED	(3)
1145 #define	SIR_MSG_WEIRD		(4)
1146 #define	SIR_NEGO_FAILED		(5)
1147 #define	SIR_NEGO_PROTO		(6)
1148 #define	SIR_SCRIPT_STOPPED	(7)
1149 #define	SIR_REJECT_TO_SEND	(8)
1150 #define	SIR_SWIDE_OVERRUN	(9)
1151 #define	SIR_SODL_UNDERRUN	(10)
1152 #define	SIR_RESEL_NO_MSG_IN	(11)
1153 #define	SIR_RESEL_NO_IDENTIFY	(12)
1154 #define	SIR_RESEL_BAD_LUN	(13)
1155 #define	SIR_TARGET_SELECTED	(14)
1156 #define	SIR_RESEL_BAD_I_T_L	(15)
1157 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
1158 #define	SIR_ABORT_SENT		(17)
1159 #define	SIR_RESEL_ABORTED	(18)
1160 #define	SIR_MSG_OUT_DONE	(19)
1161 #define	SIR_COMPLETE_ERROR	(20)
1162 #define	SIR_DATA_OVERRUN	(21)
1163 #define	SIR_BAD_PHASE		(22)
1164 #define	SIR_MAX			(22)
1165 
1166 /*
1167  *  Extended error bit codes.
1168  *  xerr_status field of struct sym_ccb.
1169  */
1170 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
1171 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
1172 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
1173 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
1174 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
1175 
1176 /*
1177  *  Negotiation status.
1178  *  nego_status field of struct sym_ccb.
1179  */
1180 #define NS_SYNC		(1)
1181 #define NS_WIDE		(2)
1182 #define NS_PPR		(3)
1183 
1184 /*
1185  *  A CCB hashed table is used to retrieve CCB address
1186  *  from DSA value.
1187  */
1188 #define CCB_HASH_SHIFT		8
1189 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
1190 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
1191 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
1192 
1193 /*
1194  *  Device flags.
1195  */
1196 #define SYM_DISC_ENABLED	(1)
1197 #define SYM_TAGS_ENABLED	(1<<1)
1198 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1199 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1200 
1201 /*
1202  *  Host adapter miscellaneous flags.
1203  */
1204 #define SYM_AVOID_BUS_RESET	(1)
1205 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1206 
1207 /*
1208  *  Device quirks.
1209  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1210  *  saving the DATA POINTER then reselects and terminates the IO.
1211  *  On reselection, the automatic RESTORE DATA POINTER makes the
1212  *  CURRENT DATA POINTER not point at the end of the IO.
1213  *  This behaviour just breaks our calculation of the residual.
1214  *  For now, we just force an AUTO SAVE on disconnection and will
1215  *  fix that in a further driver version.
1216  */
1217 #define SYM_QUIRK_AUTOSAVE 1
1218 
1219 /*
1220  *  Misc.
1221  */
1222 #define SYM_SNOOP_TIMEOUT (10000000)
1223 #define SYM_PCI_IO	PCIR_MAPS
1224 #define SYM_PCI_MMIO	(PCIR_MAPS + 4)
1225 #define SYM_PCI_RAM	(PCIR_MAPS + 8)
1226 #define SYM_PCI_RAM64	(PCIR_MAPS + 12)
1227 
1228 /*
1229  *  Back-pointer from the CAM CCB to our data structures.
1230  */
1231 #define sym_hcb_ptr	spriv_ptr0
1232 /* #define sym_ccb_ptr	spriv_ptr1 */
1233 
1234 /*
1235  *  We mostly have to deal with pointers.
1236  *  Thus these typedef's.
1237  */
1238 typedef struct sym_tcb *tcb_p;
1239 typedef struct sym_lcb *lcb_p;
1240 typedef struct sym_ccb *ccb_p;
1241 typedef struct sym_hcb *hcb_p;
1242 
1243 /*
1244  *  Gather negotiable parameters value
1245  */
1246 struct sym_trans {
1247 #ifdef	FreeBSD_New_Tran_Settings
1248 	u8 scsi_version;
1249 	u8 spi_version;
1250 #endif
1251 	u8 period;
1252 	u8 offset;
1253 	u8 width;
1254 	u8 options;	/* PPR options */
1255 };
1256 
1257 struct sym_tinfo {
1258 	struct sym_trans current;
1259 	struct sym_trans goal;
1260 	struct sym_trans user;
1261 };
1262 
1263 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1264 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1265 
1266 /*
1267  *  Global TCB HEADER.
1268  *
1269  *  Due to lack of indirect addressing on earlier NCR chips,
1270  *  this substructure is copied from the TCB to a global
1271  *  address after selection.
1272  *  For SYMBIOS chips that support LOAD/STORE this copy is
1273  *  not needed and thus not performed.
1274  */
1275 struct sym_tcbh {
1276 	/*
1277 	 *  Scripts bus addresses of LUN table accessed from scripts.
1278 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1279 	 *  and we we want to speed-up the general case and not waste
1280 	 *  resources.
1281 	 */
1282 	u32	luntbl_sa;	/* bus address of this table	*/
1283 	u32	lun0_sa;	/* bus address of LCB #0	*/
1284 	/*
1285 	 *  Actual SYNC/WIDE IO registers value for this target.
1286 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1287 	 *  so have alignment constraints.
1288 	 */
1289 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1290 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1291 /*2*/	u_char	filler1;
1292 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1293 };
1294 
1295 /*
1296  *  Target Control Block
1297  */
1298 struct sym_tcb {
1299 	/*
1300 	 *  TCB header.
1301 	 *  Assumed at offset 0.
1302 	 */
1303 /*0*/	struct sym_tcbh head;
1304 
1305 	/*
1306 	 *  LUN table used by the SCRIPTS processor.
1307 	 *  An array of bus addresses is used on reselection.
1308 	 */
1309 	u32	*luntbl;	/* LCBs bus address table	*/
1310 
1311 	/*
1312 	 *  LUN table used by the C code.
1313 	 */
1314 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1315 #if SYM_CONF_MAX_LUN > 1
1316 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1317 #endif
1318 
1319 	/*
1320 	 *  Bitmap that tells about LUNs that succeeded at least
1321 	 *  1 IO and therefore assumed to be a real device.
1322 	 *  Avoid useless allocation of the LCB structure.
1323 	 */
1324 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1325 
1326 	/*
1327 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1328 	 *  allocated (not discovered or LCB allocation failed).
1329 	 */
1330 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1331 
1332 	/*
1333 	 *  Transfer capabilities (SIP)
1334 	 */
1335 	struct sym_tinfo tinfo;
1336 
1337 	/*
1338 	 * Keep track of the CCB used for the negotiation in order
1339 	 * to ensure that only 1 negotiation is queued at a time.
1340 	 */
1341 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1342 
1343 	/*
1344 	 *  Set when we want to reset the device.
1345 	 */
1346 	u_char	to_reset;
1347 
1348 	/*
1349 	 *  Other user settable limits and options.
1350 	 *  These limits are read from the NVRAM if present.
1351 	 */
1352 	u_char	usrflags;
1353 	u_short	usrtags;
1354 };
1355 
1356 /*
1357  *  Global LCB HEADER.
1358  *
1359  *  Due to lack of indirect addressing on earlier NCR chips,
1360  *  this substructure is copied from the LCB to a global
1361  *  address after selection.
1362  *  For SYMBIOS chips that support LOAD/STORE this copy is
1363  *  not needed and thus not performed.
1364  */
1365 struct sym_lcbh {
1366 	/*
1367 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1368 	 *  For not probed logical units, this address points to
1369 	 *  SCRIPTS that deal with bad LU handling (must be at
1370 	 *  offset zero of the LCB for that reason).
1371 	 */
1372 /*0*/	u32	resel_sa;
1373 
1374 	/*
1375 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1376 	 *  to the unique ITL nexus allowed to be disconnected.
1377 	 */
1378 	u32	itl_task_sa;
1379 
1380 	/*
1381 	 *  Task table bus address (read from SCRIPTS).
1382 	 */
1383 	u32	itlq_tbl_sa;
1384 };
1385 
1386 /*
1387  *  Logical Unit Control Block
1388  */
1389 struct sym_lcb {
1390 	/*
1391 	 *  TCB header.
1392 	 *  Assumed at offset 0.
1393 	 */
1394 /*0*/	struct sym_lcbh head;
1395 
1396 	/*
1397 	 *  Task table read from SCRIPTS that contains pointers to
1398 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1399 	 *  inside the header.
1400 	 */
1401 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1402 
1403 	/*
1404 	 *  Busy CCBs management.
1405 	 */
1406 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1407 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1408 
1409 	/*
1410 	 *  Circular tag allocation buffer.
1411 	 */
1412 	u_short	ia_tag;		/* Tag allocation index		*/
1413 	u_short	if_tag;		/* Tag release index		*/
1414 	u_char	*cb_tags;	/* Circular tags buffer		*/
1415 
1416 	/*
1417 	 *  Set when we want to clear all tasks.
1418 	 */
1419 	u_char to_clear;
1420 
1421 	/*
1422 	 *  Capabilities.
1423 	 */
1424 	u_char	user_flags;
1425 	u_char	current_flags;
1426 };
1427 
1428 /*
1429  *  Action from SCRIPTS on a task.
1430  *  Is part of the CCB, but is also used separately to plug
1431  *  error handling action to perform from SCRIPTS.
1432  */
1433 struct sym_actscr {
1434 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1435 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1436 };
1437 
1438 /*
1439  *  Phase mismatch context.
1440  *
1441  *  It is part of the CCB and is used as parameters for the
1442  *  DATA pointer. We need two contexts to handle correctly the
1443  *  SAVED DATA POINTER.
1444  */
1445 struct sym_pmc {
1446 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1447 	u32	ret;		/* SCRIPT return address	*/
1448 };
1449 
1450 /*
1451  *  LUN control block lookup.
1452  *  We use a direct pointer for LUN #0, and a table of
1453  *  pointers which is only allocated for devices that support
1454  *  LUN(s) > 0.
1455  */
1456 #if SYM_CONF_MAX_LUN <= 1
1457 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1458 #else
1459 #define sym_lp(np, tp, lun) \
1460 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1461 #endif
1462 
1463 /*
1464  *  Status are used by the host and the script processor.
1465  *
1466  *  The last four bytes (status[4]) are copied to the
1467  *  scratchb register (declared as scr0..scr3) just after the
1468  *  select/reselect, and copied back just after disconnecting.
1469  *  Inside the script the XX_REG are used.
1470  */
1471 
1472 /*
1473  *  Last four bytes (script)
1474  */
1475 #define  QU_REG	scr0
1476 #define  HS_REG	scr1
1477 #define  HS_PRT	nc_scr1
1478 #define  SS_REG	scr2
1479 #define  SS_PRT	nc_scr2
1480 #define  HF_REG	scr3
1481 #define  HF_PRT	nc_scr3
1482 
1483 /*
1484  *  Last four bytes (host)
1485  */
1486 #define  actualquirks  phys.head.status[0]
1487 #define  host_status   phys.head.status[1]
1488 #define  ssss_status   phys.head.status[2]
1489 #define  host_flags    phys.head.status[3]
1490 
1491 /*
1492  *  Host flags
1493  */
1494 #define HF_IN_PM0	1u
1495 #define HF_IN_PM1	(1u<<1)
1496 #define HF_ACT_PM	(1u<<2)
1497 #define HF_DP_SAVED	(1u<<3)
1498 #define HF_SENSE	(1u<<4)
1499 #define HF_EXT_ERR	(1u<<5)
1500 #define HF_DATA_IN	(1u<<6)
1501 #ifdef SYM_CONF_IARB_SUPPORT
1502 #define HF_HINT_IARB	(1u<<7)
1503 #endif
1504 
1505 /*
1506  *  Global CCB HEADER.
1507  *
1508  *  Due to lack of indirect addressing on earlier NCR chips,
1509  *  this substructure is copied from the ccb to a global
1510  *  address after selection (or reselection) and copied back
1511  *  before disconnect.
1512  *  For SYMBIOS chips that support LOAD/STORE this copy is
1513  *  not needed and thus not performed.
1514  */
1515 
1516 struct sym_ccbh {
1517 	/*
1518 	 *  Start and restart SCRIPTS addresses (must be at 0).
1519 	 */
1520 /*0*/	struct sym_actscr go;
1521 
1522 	/*
1523 	 *  SCRIPTS jump address that deal with data pointers.
1524 	 *  'savep' points to the position in the script responsible
1525 	 *  for the actual transfer of data.
1526 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1527 	 */
1528 	u32	savep;		/* Jump address to saved data pointer	*/
1529 	u32	lastp;		/* SCRIPTS address at end of data	*/
1530 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1531 
1532 	/*
1533 	 *  Status fields.
1534 	 */
1535 	u8	status[4];
1536 };
1537 
1538 /*
1539  *  Data Structure Block
1540  *
1541  *  During execution of a ccb by the script processor, the
1542  *  DSA (data structure address) register points to this
1543  *  substructure of the ccb.
1544  */
1545 struct sym_dsb {
1546 	/*
1547 	 *  CCB header.
1548 	 *  Also assumed at offset 0 of the sym_ccb structure.
1549 	 */
1550 /*0*/	struct sym_ccbh head;
1551 
1552 	/*
1553 	 *  Phase mismatch contexts.
1554 	 *  We need two to handle correctly the SAVED DATA POINTER.
1555 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1556 	 *  for address calculation from SCRIPTS.
1557 	 */
1558 	struct sym_pmc pm0;
1559 	struct sym_pmc pm1;
1560 
1561 	/*
1562 	 *  Table data for Script
1563 	 */
1564 	struct sym_tblsel  select;
1565 	struct sym_tblmove smsg;
1566 	struct sym_tblmove smsg_ext;
1567 	struct sym_tblmove cmd;
1568 	struct sym_tblmove sense;
1569 	struct sym_tblmove wresid;
1570 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1571 };
1572 
1573 /*
1574  *  Our Command Control Block
1575  */
1576 struct sym_ccb {
1577 	/*
1578 	 *  This is the data structure which is pointed by the DSA
1579 	 *  register when it is executed by the script processor.
1580 	 *  It must be the first entry.
1581 	 */
1582 	struct sym_dsb phys;
1583 
1584 	/*
1585 	 *  Pointer to CAM ccb and related stuff.
1586 	 */
1587 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1588 	u8	cdb_buf[16];	/* Copy of CDB			*/
1589 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1590 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1591 	int	data_len;	/* Total data length		*/
1592 	int	segments;	/* Number of SG segments	*/
1593 
1594 	/*
1595 	 *  Miscellaneous status'.
1596 	 */
1597 	u_char	nego_status;	/* Negotiation status		*/
1598 	u_char	xerr_status;	/* Extended error flags		*/
1599 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1600 
1601 	/*
1602 	 *  Message areas.
1603 	 *  We prepare a message to be sent after selection.
1604 	 *  We may use a second one if the command is rescheduled
1605 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1606 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1607 	 *  While negotiating sync or wide transfer,
1608 	 *  a SDTR or WDTR message is appended.
1609 	 */
1610 	u_char	scsi_smsg [12];
1611 	u_char	scsi_smsg2[12];
1612 
1613 	/*
1614 	 *  Auto request sense related fields.
1615 	 */
1616 	u_char	sensecmd[6];	/* Request Sense command	*/
1617 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1618 	u_char	sv_xerr_status;	/* Saved extended status	*/
1619 	int	sv_resid;	/* Saved residual		*/
1620 
1621 	/*
1622 	 *  Map for the DMA of user data.
1623 	 */
1624 #ifdef	FreeBSD_Bus_Dma_Abstraction
1625 	void		*arg;	/* Argument for some callback	*/
1626 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1627 	u_char		dmamapped;
1628 #define SYM_DMA_NONE	0
1629 #define SYM_DMA_READ	1
1630 #define SYM_DMA_WRITE	2
1631 #endif
1632 	/*
1633 	 *  Other fields.
1634 	 */
1635 	u32	ccb_ba;		/* BUS address of this CCB	*/
1636 	u_short	tag;		/* Tag for this transfer	*/
1637 				/*  NO_TAG means no tag		*/
1638 	u_char	target;
1639 	u_char	lun;
1640 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1641 	SYM_QUEHEAD
1642 		link_ccbq;	/* Link to free/busy CCB queue	*/
1643 	u32	startp;		/* Initial data pointer		*/
1644 	int	ext_sg;		/* Extreme data pointer, used	*/
1645 	int	ext_ofs;	/*  to calculate the residual.	*/
1646 	u_char	to_abort;	/* Want this IO to be aborted	*/
1647 };
1648 
1649 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1650 
1651 /*
1652  *  Host Control Block
1653  */
1654 struct sym_hcb {
1655 	/*
1656 	 *  Global headers.
1657 	 *  Due to poorness of addressing capabilities, earlier
1658 	 *  chips (810, 815, 825) copy part of the data structures
1659 	 *  (CCB, TCB and LCB) in fixed areas.
1660 	 */
1661 #ifdef	SYM_CONF_GENERIC_SUPPORT
1662 	struct sym_ccbh	ccb_head;
1663 	struct sym_tcbh	tcb_head;
1664 	struct sym_lcbh	lcb_head;
1665 #endif
1666 	/*
1667 	 *  Idle task and invalid task actions and
1668 	 *  their bus addresses.
1669 	 */
1670 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1671 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1672 
1673 	/*
1674 	 *  Dummy lun table to protect us against target
1675 	 *  returning bad lun number on reselection.
1676 	 */
1677 	u32	*badluntbl;	/* Table physical address	*/
1678 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1679 
1680 	/*
1681 	 *  Bus address of this host control block.
1682 	 */
1683 	u32	hcb_ba;
1684 
1685 	/*
1686 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1687 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1688 	 *  field.
1689 	 */
1690 	u32	scr_ram_seg;
1691 
1692 	/*
1693 	 *  Chip and controller indentification.
1694 	 */
1695 #ifdef FreeBSD_Bus_Io_Abstraction
1696 	device_t device;
1697 #else
1698 	pcici_t	pci_tag;
1699 #endif
1700 	int	unit;
1701 	char	inst_name[8];
1702 
1703 	/*
1704 	 *  Initial value of some IO register bits.
1705 	 *  These values are assumed to have been set by BIOS, and may
1706 	 *  be used to probe adapter implementation differences.
1707 	 */
1708 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1709 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1710 		sv_stest1;
1711 
1712 	/*
1713 	 *  Actual initial value of IO register bits used by the
1714 	 *  driver. They are loaded at initialisation according to
1715 	 *  features that are to be enabled/disabled.
1716 	 */
1717 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1718 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1719 
1720 	/*
1721 	 *  Target data.
1722 	 */
1723 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1724 
1725 	/*
1726 	 *  Target control block bus address array used by the SCRIPT
1727 	 *  on reselection.
1728 	 */
1729 	u32		*targtbl;
1730 	u32		targtbl_ba;
1731 
1732 	/*
1733 	 *  CAM SIM information for this instance.
1734 	 */
1735 	struct		cam_sim  *sim;
1736 	struct		cam_path *path;
1737 
1738 	/*
1739 	 *  Allocated hardware resources.
1740 	 */
1741 #ifdef FreeBSD_Bus_Io_Abstraction
1742 	struct resource	*irq_res;
1743 	struct resource	*io_res;
1744 	struct resource	*mmio_res;
1745 	struct resource	*ram_res;
1746 	int		ram_id;
1747 	void *intr;
1748 #endif
1749 
1750 	/*
1751 	 *  Bus stuff.
1752 	 *
1753 	 *  My understanding of PCI is that all agents must share the
1754 	 *  same addressing range and model.
1755 	 *  But some hardware architecture guys provide complex and
1756 	 *  brain-deaded stuff that makes shit.
1757 	 *  This driver only support PCI compliant implementations and
1758 	 *  deals with part of the BUS stuff complexity only to fit O/S
1759 	 *  requirements.
1760 	 */
1761 #ifdef FreeBSD_Bus_Io_Abstraction
1762 	bus_space_handle_t	io_bsh;
1763 	bus_space_tag_t		io_tag;
1764 	bus_space_handle_t	mmio_bsh;
1765 	bus_space_tag_t		mmio_tag;
1766 	bus_space_handle_t	ram_bsh;
1767 	bus_space_tag_t		ram_tag;
1768 #endif
1769 
1770 	/*
1771 	 *  DMA stuff.
1772 	 */
1773 #ifdef	FreeBSD_Bus_Dma_Abstraction
1774 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1775 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1776 #endif
1777 	/*
1778 	 *  Virtual and physical bus addresses of the chip.
1779 	 */
1780 	vm_offset_t	mmio_va;	/* MMIO kernel virtual address	*/
1781 	vm_offset_t	mmio_pa;	/* MMIO CPU physical address	*/
1782 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1783 	int		mmio_ws;	/* MMIO Window size		*/
1784 
1785 	vm_offset_t	ram_va;		/* RAM kernel virtual address	*/
1786 	vm_offset_t	ram_pa;		/* RAM CPU physical address	*/
1787 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1788 	int		ram_ws;		/* RAM window size		*/
1789 	u32		io_port;	/* IO port address		*/
1790 
1791 	/*
1792 	 *  SCRIPTS virtual and physical bus addresses.
1793 	 *  'script'  is loaded in the on-chip RAM if present.
1794 	 *  'scripth' stays in main memory for all chips except the
1795 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1796 	 */
1797 	u_char		*scripta0;	/* Copies of script and scripth	*/
1798 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1799 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1800 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1801 	vm_offset_t	scriptb0_ba;
1802 	u_short		scripta_sz;	/* Actual size of script A	*/
1803 	u_short		scriptb_sz;	/* Actual size of script B	*/
1804 
1805 	/*
1806 	 *  Bus addresses, setup and patch methods for
1807 	 *  the selected firmware.
1808 	 */
1809 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1810 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1811 	void		(*fw_setup)(hcb_p np, struct sym_fw *fw);
1812 	void		(*fw_patch)(hcb_p np);
1813 	char		*fw_name;
1814 
1815 	/*
1816 	 *  General controller parameters and configuration.
1817 	 */
1818 	u_short	device_id;	/* PCI device id		*/
1819 	u_char	revision_id;	/* PCI device revision id	*/
1820 	u_int	features;	/* Chip features map		*/
1821 	u_char	myaddr;		/* SCSI id of the adapter	*/
1822 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1823 	u_char	maxwide;	/* Maximum transfer width	*/
1824 	u_char	minsync;	/* Min sync period factor (ST)	*/
1825 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1826 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1827 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1828 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1829 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1830 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1831 	u_char	clock_divn;	/* Number of clock divisors	*/
1832 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1833 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1834 	/*
1835 	 *  Start queue management.
1836 	 *  It is filled up by the host processor and accessed by the
1837 	 *  SCRIPTS processor in order to start SCSI commands.
1838 	 */
1839 	volatile		/* Prevent code optimizations	*/
1840 	u32	*squeue;	/* Start queue virtual address	*/
1841 	u32	squeue_ba;	/* Start queue BUS address	*/
1842 	u_short	squeueput;	/* Next free slot of the queue	*/
1843 	u_short	actccbs;	/* Number of allocated CCBs	*/
1844 
1845 	/*
1846 	 *  Command completion queue.
1847 	 *  It is the same size as the start queue to avoid overflow.
1848 	 */
1849 	u_short	dqueueget;	/* Next position to scan	*/
1850 	volatile		/* Prevent code optimizations	*/
1851 	u32	*dqueue;	/* Completion (done) queue	*/
1852 	u32	dqueue_ba;	/* Done queue BUS address	*/
1853 
1854 	/*
1855 	 *  Miscellaneous buffers accessed by the scripts-processor.
1856 	 *  They shall be DWORD aligned, because they may be read or
1857 	 *  written with a script command.
1858 	 */
1859 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1860 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1861 	u32		lastmsg;	/* Last SCSI message sent	*/
1862 	u_char		scratch;	/* Scratch for SCSI receive	*/
1863 
1864 	/*
1865 	 *  Miscellaneous configuration and status parameters.
1866 	 */
1867 	u_char		usrflags;	/* Miscellaneous user flags	*/
1868 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1869 	u_char		verbose;	/* Verbosity for this controller*/
1870 	u32		cache;		/* Used for cache test at init.	*/
1871 
1872 	/*
1873 	 *  CCB lists and queue.
1874 	 */
1875 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1876 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1877 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1878 
1879 	/*
1880 	 *  During error handling and/or recovery,
1881 	 *  active CCBs that are to be completed with
1882 	 *  error or requeued are moved from the busy_ccbq
1883 	 *  to the comp_ccbq prior to completion.
1884 	 */
1885 	SYM_QUEHEAD	comp_ccbq;
1886 
1887 	/*
1888 	 *  CAM CCB pending queue.
1889 	 */
1890 	SYM_QUEHEAD	cam_ccbq;
1891 
1892 	/*
1893 	 *  IMMEDIATE ARBITRATION (IARB) control.
1894 	 *
1895 	 *  We keep track in 'last_cp' of the last CCB that has been
1896 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1897 	 *  this CCB completes. If last_cp is not zero at the moment
1898 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1899 	 *  used by the SCRIPTS as a hint for setting IARB.
1900 	 *  We donnot set more than 'iarb_max' consecutive hints for
1901 	 *  IARB in order to leave devices a chance to reselect.
1902 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1903 	 */
1904 #ifdef SYM_CONF_IARB_SUPPORT
1905 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1906 	u_short		iarb_count;	/* Actual # of these hints	*/
1907 	ccb_p		last_cp;
1908 #endif
1909 
1910 	/*
1911 	 *  Command abort handling.
1912 	 *  We need to synchronize tightly with the SCRIPTS
1913 	 *  processor in order to handle things correctly.
1914 	 */
1915 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1916 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1917 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1918 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1919 };
1920 
1921 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1922 
1923 /*
1924  *  Return the name of the controller.
1925  */
1926 static __inline char *sym_name(hcb_p np)
1927 {
1928 	return np->inst_name;
1929 }
1930 
1931 /*--------------------------------------------------------------------------*/
1932 /*------------------------------ FIRMWARES ---------------------------------*/
1933 /*--------------------------------------------------------------------------*/
1934 
1935 /*
1936  *  This stuff will be moved to a separate source file when
1937  *  the driver will be broken into several source modules.
1938  */
1939 
1940 /*
1941  *  Macros used for all firmwares.
1942  */
1943 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1944 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1945 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1946 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1947 
1948 
1949 #ifdef	SYM_CONF_GENERIC_SUPPORT
1950 /*
1951  *  Allocate firmware #1 script area.
1952  */
1953 #define	SYM_FWA_SCR		sym_fw1a_scr
1954 #define	SYM_FWB_SCR		sym_fw1b_scr
1955 #include "sym_fw1.h"
1956 struct sym_fwa_ofs sym_fw1a_ofs = {
1957 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1958 };
1959 struct sym_fwb_ofs sym_fw1b_ofs = {
1960 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1961 };
1962 #undef	SYM_FWA_SCR
1963 #undef	SYM_FWB_SCR
1964 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1965 
1966 /*
1967  *  Allocate firmware #2 script area.
1968  */
1969 #define	SYM_FWA_SCR		sym_fw2a_scr
1970 #define	SYM_FWB_SCR		sym_fw2b_scr
1971 #include "sym_fw2.h"
1972 struct sym_fwa_ofs sym_fw2a_ofs = {
1973 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1974 };
1975 struct sym_fwb_ofs sym_fw2b_ofs = {
1976 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1977 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1978 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1979 };
1980 #undef	SYM_FWA_SCR
1981 #undef	SYM_FWB_SCR
1982 
1983 #undef	SYM_GEN_A
1984 #undef	SYM_GEN_B
1985 #undef	PADDR_A
1986 #undef	PADDR_B
1987 
1988 #ifdef	SYM_CONF_GENERIC_SUPPORT
1989 /*
1990  *  Patch routine for firmware #1.
1991  */
1992 static void
1993 sym_fw1_patch(hcb_p np)
1994 {
1995 	struct sym_fw1a_scr *scripta0;
1996 	struct sym_fw1b_scr *scriptb0;
1997 
1998 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1999 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
2000 
2001 	/*
2002 	 *  Remove LED support if not needed.
2003 	 */
2004 	if (!(np->features & FE_LED0)) {
2005 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
2006 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
2007 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
2008 	}
2009 
2010 #ifdef SYM_CONF_IARB_SUPPORT
2011 	/*
2012 	 *    If user does not want to use IMMEDIATE ARBITRATION
2013 	 *    when we are reselected while attempting to arbitrate,
2014 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
2015 	 */
2016 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
2017 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
2018 #endif
2019 	/*
2020 	 *  Patch some data in SCRIPTS.
2021 	 *  - start and done queue initial bus address.
2022 	 *  - target bus address table bus address.
2023 	 */
2024 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
2025 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
2026 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
2027 }
2028 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2029 
2030 /*
2031  *  Patch routine for firmware #2.
2032  */
2033 static void
2034 sym_fw2_patch(hcb_p np)
2035 {
2036 	struct sym_fw2a_scr *scripta0;
2037 	struct sym_fw2b_scr *scriptb0;
2038 
2039 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
2040 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
2041 
2042 	/*
2043 	 *  Remove LED support if not needed.
2044 	 */
2045 	if (!(np->features & FE_LED0)) {
2046 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
2047 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
2048 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
2049 	}
2050 
2051 #ifdef SYM_CONF_IARB_SUPPORT
2052 	/*
2053 	 *    If user does not want to use IMMEDIATE ARBITRATION
2054 	 *    when we are reselected while attempting to arbitrate,
2055 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
2056 	 */
2057 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
2058 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
2059 #endif
2060 	/*
2061 	 *  Patch some variable in SCRIPTS.
2062 	 *  - start and done queue initial bus address.
2063 	 *  - target bus address table bus address.
2064 	 */
2065 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
2066 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
2067 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
2068 
2069 	/*
2070 	 *  Remove the load of SCNTL4 on reselection if not a C10.
2071 	 */
2072 	if (!(np->features & FE_C10)) {
2073 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
2074 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
2075 	}
2076 
2077 	/*
2078 	 *  Remove a couple of work-arounds specific to C1010 if
2079 	 *  they are not desirable. See `sym_fw2.h' for more details.
2080 	 */
2081 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
2082 	      np->revision_id < 0x1 &&
2083 	      np->pciclk_khz < 60000)) {
2084 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
2085 		scripta0->datao_phase[1] = cpu_to_scr(0);
2086 	}
2087 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
2088 	      /* np->revision_id < 0xff */ 1)) {
2089 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
2090 		scripta0->sel_done[1] = cpu_to_scr(0);
2091 	}
2092 
2093 	/*
2094 	 *  Patch some other variables in SCRIPTS.
2095 	 *  These ones are loaded by the SCRIPTS processor.
2096 	 */
2097 	scriptb0->pm0_data_addr[0] =
2098 		cpu_to_scr(np->scripta_ba +
2099 			   offsetof(struct sym_fw2a_scr, pm0_data));
2100 	scriptb0->pm1_data_addr[0] =
2101 		cpu_to_scr(np->scripta_ba +
2102 			   offsetof(struct sym_fw2a_scr, pm1_data));
2103 }
2104 
2105 /*
2106  *  Fill the data area in scripts.
2107  *  To be done for all firmwares.
2108  */
2109 static void
2110 sym_fw_fill_data (u32 *in, u32 *out)
2111 {
2112 	int	i;
2113 
2114 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
2115 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
2116 		*in++  = offsetof (struct sym_dsb, data[i]);
2117 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
2118 		*out++ = offsetof (struct sym_dsb, data[i]);
2119 	}
2120 }
2121 
2122 /*
2123  *  Setup useful script bus addresses.
2124  *  To be done for all firmwares.
2125  */
2126 static void
2127 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw)
2128 {
2129 	u32 *pa;
2130 	u_short *po;
2131 	int i;
2132 
2133 	/*
2134 	 *  Build the bus address table for script A
2135 	 *  from the script A offset table.
2136 	 */
2137 	po = (u_short *) fw->a_ofs;
2138 	pa = (u32 *) &np->fwa_bas;
2139 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
2140 		pa[i] = np->scripta_ba + po[i];
2141 
2142 	/*
2143 	 *  Same for script B.
2144 	 */
2145 	po = (u_short *) fw->b_ofs;
2146 	pa = (u32 *) &np->fwb_bas;
2147 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
2148 		pa[i] = np->scriptb_ba + po[i];
2149 }
2150 
2151 #ifdef	SYM_CONF_GENERIC_SUPPORT
2152 /*
2153  *  Setup routine for firmware #1.
2154  */
2155 static void
2156 sym_fw1_setup(hcb_p np, struct sym_fw *fw)
2157 {
2158 	struct sym_fw1a_scr *scripta0;
2159 	struct sym_fw1b_scr *scriptb0;
2160 
2161 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
2162 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
2163 
2164 	/*
2165 	 *  Fill variable parts in scripts.
2166 	 */
2167 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2168 
2169 	/*
2170 	 *  Setup bus addresses used from the C code..
2171 	 */
2172 	sym_fw_setup_bus_addresses(np, fw);
2173 }
2174 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2175 
2176 /*
2177  *  Setup routine for firmware #2.
2178  */
2179 static void
2180 sym_fw2_setup(hcb_p np, struct sym_fw *fw)
2181 {
2182 	struct sym_fw2a_scr *scripta0;
2183 	struct sym_fw2b_scr *scriptb0;
2184 
2185 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
2186 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
2187 
2188 	/*
2189 	 *  Fill variable parts in scripts.
2190 	 */
2191 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2192 
2193 	/*
2194 	 *  Setup bus addresses used from the C code..
2195 	 */
2196 	sym_fw_setup_bus_addresses(np, fw);
2197 }
2198 
2199 /*
2200  *  Allocate firmware descriptors.
2201  */
2202 #ifdef	SYM_CONF_GENERIC_SUPPORT
2203 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2204 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2205 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2206 
2207 /*
2208  *  Find the most appropriate firmware for a chip.
2209  */
2210 static struct sym_fw *
2211 sym_find_firmware(struct sym_pci_chip *chip)
2212 {
2213 	if (chip->features & FE_LDSTR)
2214 		return &sym_fw2;
2215 #ifdef	SYM_CONF_GENERIC_SUPPORT
2216 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2217 		return &sym_fw1;
2218 #endif
2219 	else
2220 		return 0;
2221 }
2222 
2223 /*
2224  *  Bind a script to physical addresses.
2225  */
2226 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2227 {
2228 	u32 opcode, new, old, tmp1, tmp2;
2229 	u32 *end, *cur;
2230 	int relocs;
2231 
2232 	cur = start;
2233 	end = start + len/4;
2234 
2235 	while (cur < end) {
2236 
2237 		opcode = *cur;
2238 
2239 		/*
2240 		 *  If we forget to change the length
2241 		 *  in scripts, a field will be
2242 		 *  padded with 0. This is an illegal
2243 		 *  command.
2244 		 */
2245 		if (opcode == 0) {
2246 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2247 				sym_name(np), (int) (cur-start));
2248 			MDELAY (10000);
2249 			++cur;
2250 			continue;
2251 		};
2252 
2253 		/*
2254 		 *  We use the bogus value 0xf00ff00f ;-)
2255 		 *  to reserve data area in SCRIPTS.
2256 		 */
2257 		if (opcode == SCR_DATA_ZERO) {
2258 			*cur++ = 0;
2259 			continue;
2260 		}
2261 
2262 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2263 			printf ("%d:  <%x>\n", (int) (cur-start),
2264 				(unsigned)opcode);
2265 
2266 		/*
2267 		 *  We don't have to decode ALL commands
2268 		 */
2269 		switch (opcode >> 28) {
2270 		case 0xf:
2271 			/*
2272 			 *  LOAD / STORE DSA relative, don't relocate.
2273 			 */
2274 			relocs = 0;
2275 			break;
2276 		case 0xe:
2277 			/*
2278 			 *  LOAD / STORE absolute.
2279 			 */
2280 			relocs = 1;
2281 			break;
2282 		case 0xc:
2283 			/*
2284 			 *  COPY has TWO arguments.
2285 			 */
2286 			relocs = 2;
2287 			tmp1 = cur[1];
2288 			tmp2 = cur[2];
2289 			if ((tmp1 ^ tmp2) & 3) {
2290 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2291 					sym_name(np), (int) (cur-start));
2292 				MDELAY (10000);
2293 			}
2294 			/*
2295 			 *  If PREFETCH feature not enabled, remove
2296 			 *  the NO FLUSH bit if present.
2297 			 */
2298 			if ((opcode & SCR_NO_FLUSH) &&
2299 			    !(np->features & FE_PFEN)) {
2300 				opcode = (opcode & ~SCR_NO_FLUSH);
2301 			}
2302 			break;
2303 		case 0x0:
2304 			/*
2305 			 *  MOVE/CHMOV (absolute address)
2306 			 */
2307 			if (!(np->features & FE_WIDE))
2308 				opcode = (opcode | OPC_MOVE);
2309 			relocs = 1;
2310 			break;
2311 		case 0x1:
2312 			/*
2313 			 *  MOVE/CHMOV (table indirect)
2314 			 */
2315 			if (!(np->features & FE_WIDE))
2316 				opcode = (opcode | OPC_MOVE);
2317 			relocs = 0;
2318 			break;
2319 		case 0x8:
2320 			/*
2321 			 *  JUMP / CALL
2322 			 *  dont't relocate if relative :-)
2323 			 */
2324 			if (opcode & 0x00800000)
2325 				relocs = 0;
2326 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2327 				relocs = 2;
2328 			else
2329 				relocs = 1;
2330 			break;
2331 		case 0x4:
2332 		case 0x5:
2333 		case 0x6:
2334 		case 0x7:
2335 			relocs = 1;
2336 			break;
2337 		default:
2338 			relocs = 0;
2339 			break;
2340 		};
2341 
2342 		/*
2343 		 *  Scriptify:) the opcode.
2344 		 */
2345 		*cur++ = cpu_to_scr(opcode);
2346 
2347 		/*
2348 		 *  If no relocation, assume 1 argument
2349 		 *  and just scriptize:) it.
2350 		 */
2351 		if (!relocs) {
2352 			*cur = cpu_to_scr(*cur);
2353 			++cur;
2354 			continue;
2355 		}
2356 
2357 		/*
2358 		 *  Otherwise performs all needed relocations.
2359 		 */
2360 		while (relocs--) {
2361 			old = *cur;
2362 
2363 			switch (old & RELOC_MASK) {
2364 			case RELOC_REGISTER:
2365 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2366 				break;
2367 			case RELOC_LABEL_A:
2368 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2369 				break;
2370 			case RELOC_LABEL_B:
2371 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2372 				break;
2373 			case RELOC_SOFTC:
2374 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2375 				break;
2376 			case 0:
2377 				/*
2378 				 *  Don't relocate a 0 address.
2379 				 *  They are mostly used for patched or
2380 				 *  script self-modified areas.
2381 				 */
2382 				if (old == 0) {
2383 					new = old;
2384 					break;
2385 				}
2386 				/* fall through */
2387 			default:
2388 				new = 0;
2389 				panic("sym_fw_bind_script: "
2390 				      "weird relocation %x\n", old);
2391 				break;
2392 			}
2393 
2394 			*cur++ = cpu_to_scr(new);
2395 		}
2396 	};
2397 }
2398 
2399 /*--------------------------------------------------------------------------*/
2400 /*--------------------------- END OF FIRMARES  -----------------------------*/
2401 /*--------------------------------------------------------------------------*/
2402 
2403 /*
2404  *  Function prototypes.
2405  */
2406 static void sym_save_initial_setting (hcb_p np);
2407 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2408 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2409 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2410 static void sym_chip_reset (hcb_p np);
2411 static void sym_soft_reset (hcb_p np);
2412 static void sym_start_reset (hcb_p np);
2413 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2414 static int  sym_wakeup_done (hcb_p np);
2415 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2416 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2417 static void sym_init (hcb_p np, int reason);
2418 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2419 		        u_char *fakp);
2420 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2421 			 u_char div, u_char fak);
2422 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2423 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2424 			 u_char per, u_char wide, u_char div, u_char fak);
2425 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2426 			 u_char per, u_char wide, u_char div, u_char fak);
2427 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2428 static void sym_intr (void *arg);
2429 static void sym_poll (struct cam_sim *sim);
2430 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2431 static void sym_int_sto (hcb_p np);
2432 static void sym_int_udc (hcb_p np);
2433 static void sym_int_sbmc (hcb_p np);
2434 static void sym_int_par (hcb_p np, u_short sist);
2435 static void sym_int_ma (hcb_p np);
2436 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2437 				    int task);
2438 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2439 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2440 static void sym_sir_task_recovery (hcb_p np, int num);
2441 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2442 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2443 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2444 static int  sym_show_msg (u_char * msg);
2445 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2446 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2447 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2448 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2449 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2450 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2451 static void sym_int_sir (hcb_p np);
2452 static void sym_free_ccb (hcb_p np, ccb_p cp);
2453 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2454 static ccb_p sym_alloc_ccb (hcb_p np);
2455 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2456 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2457 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2458 static int  sym_snooptest (hcb_p np);
2459 static void sym_selectclock(hcb_p np, u_char scntl3);
2460 static void sym_getclock (hcb_p np, int mult);
2461 static int  sym_getpciclock (hcb_p np);
2462 static void sym_complete_ok (hcb_p np, ccb_p cp);
2463 static void sym_complete_error (hcb_p np, ccb_p cp);
2464 static void sym_timeout (void *arg);
2465 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2466 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2467 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2468 static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
2469 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2470 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2471 				      ccb_p cp);
2472 #ifdef	FreeBSD_Bus_Dma_Abstraction
2473 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2474 					bus_dma_segment_t *psegs, int nsegs);
2475 #else
2476 static int  sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr,
2477 				 vm_size_t len);
2478 static int  sym_scatter_sg_virtual (hcb_p np, ccb_p cp,
2479 				    bus_dma_segment_t *psegs, int nsegs);
2480 static int  sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr,
2481 				  vm_size_t len);
2482 #endif
2483 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2484 				    bus_dma_segment_t *psegs, int nsegs);
2485 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2486 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2487 			      struct ccb_trans_settings *cts);
2488 static void sym_update_dflags(hcb_p np, u_char *flags,
2489 			      struct ccb_trans_settings *cts);
2490 
2491 #ifdef FreeBSD_Bus_Io_Abstraction
2492 static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2493 static int  sym_pci_probe (device_t dev);
2494 static int  sym_pci_attach (device_t dev);
2495 #else
2496 static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag);
2497 static const char *sym_pci_probe (pcici_t tag, pcidi_t type);
2498 static void sym_pci_attach (pcici_t tag, int unit);
2499 static int sym_pci_attach2 (pcici_t tag, int unit);
2500 #endif
2501 
2502 static void sym_pci_free (hcb_p np);
2503 static int  sym_cam_attach (hcb_p np);
2504 static void sym_cam_free (hcb_p np);
2505 
2506 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2507 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2508 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2509 
2510 /*
2511  *  Print something which allows to retrieve the controler type,
2512  *  unit, target, lun concerned by a kernel message.
2513  */
2514 static void PRINT_TARGET (hcb_p np, int target)
2515 {
2516 	printf ("%s:%d:", sym_name(np), target);
2517 }
2518 
2519 static void PRINT_LUN(hcb_p np, int target, int lun)
2520 {
2521 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2522 }
2523 
2524 static void PRINT_ADDR (ccb_p cp)
2525 {
2526 	if (cp && cp->cam_ccb)
2527 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2528 }
2529 
2530 /*
2531  *  Take into account this ccb in the freeze count.
2532  */
2533 static void sym_freeze_cam_ccb(union ccb *ccb)
2534 {
2535 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2536 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2537 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2538 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2539 		}
2540 	}
2541 }
2542 
2543 /*
2544  *  Set the status field of a CAM CCB.
2545  */
2546 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2547 {
2548 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2549 	ccb->ccb_h.status |= status;
2550 }
2551 
2552 /*
2553  *  Get the status field of a CAM CCB.
2554  */
2555 static __inline int sym_get_cam_status(union ccb *ccb)
2556 {
2557 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2558 }
2559 
2560 /*
2561  *  Enqueue a CAM CCB.
2562  */
2563 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
2564 {
2565 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2566 	ccb->ccb_h.status = CAM_REQ_INPROG;
2567 
2568 	callout_reset(&ccb->ccb_h.timeout_ch, ccb->ccb_h.timeout*hz/1000,
2569 		      sym_timeout, ccb);
2570 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2571 	ccb->ccb_h.sym_hcb_ptr = np;
2572 
2573 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2574 }
2575 
2576 /*
2577  *  Complete a pending CAM CCB.
2578  */
2579 static void sym_xpt_done(hcb_p np, union ccb *ccb)
2580 {
2581 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2582 		callout_stop(&ccb->ccb_h.timeout_ch);
2583 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2584 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2585 		ccb->ccb_h.sym_hcb_ptr = 0;
2586 	}
2587 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2588 		sym_freeze_cam_ccb(ccb);
2589 	xpt_done(ccb);
2590 }
2591 
2592 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2593 {
2594 	sym_set_cam_status(ccb, cam_status);
2595 	sym_xpt_done(np, ccb);
2596 }
2597 
2598 /*
2599  *  SYMBIOS chip clock divisor table.
2600  *
2601  *  Divisors are multiplied by 10,000,000 in order to make
2602  *  calculations more simple.
2603  */
2604 #define _5M 5000000
2605 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2606 
2607 /*
2608  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2609  *  128 transfers. All chips support at least 16 transfers
2610  *  bursts. The 825A, 875 and 895 chips support bursts of up
2611  *  to 128 transfers and the 895A and 896 support bursts of up
2612  *  to 64 transfers. All other chips support up to 16
2613  *  transfers bursts.
2614  *
2615  *  For PCI 32 bit data transfers each transfer is a DWORD.
2616  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2617  *
2618  *  We use log base 2 (burst length) as internal code, with
2619  *  value 0 meaning "burst disabled".
2620  */
2621 
2622 /*
2623  *  Burst length from burst code.
2624  */
2625 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2626 
2627 /*
2628  *  Burst code from io register bits.
2629  */
2630 #define burst_code(dmode, ctest4, ctest5) \
2631 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2632 
2633 /*
2634  *  Set initial io register bits from burst code.
2635  */
2636 static __inline void sym_init_burst(hcb_p np, u_char bc)
2637 {
2638 	np->rv_ctest4	&= ~0x80;
2639 	np->rv_dmode	&= ~(0x3 << 6);
2640 	np->rv_ctest5	&= ~0x4;
2641 
2642 	if (!bc) {
2643 		np->rv_ctest4	|= 0x80;
2644 	}
2645 	else {
2646 		--bc;
2647 		np->rv_dmode	|= ((bc & 0x3) << 6);
2648 		np->rv_ctest5	|= (bc & 0x4);
2649 	}
2650 }
2651 
2652 
2653 /*
2654  * Print out the list of targets that have some flag disabled by user.
2655  */
2656 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2657 {
2658 	int cnt;
2659 	int i;
2660 
2661 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2662 		if (i == np->myaddr)
2663 			continue;
2664 		if (np->target[i].usrflags & mask) {
2665 			if (!cnt++)
2666 				printf("%s: %s disabled for targets",
2667 					sym_name(np), msg);
2668 			printf(" %d", i);
2669 		}
2670 	}
2671 	if (cnt)
2672 		printf(".\n");
2673 }
2674 
2675 /*
2676  *  Save initial settings of some IO registers.
2677  *  Assumed to have been set by BIOS.
2678  *  We cannot reset the chip prior to reading the
2679  *  IO registers, since informations will be lost.
2680  *  Since the SCRIPTS processor may be running, this
2681  *  is not safe on paper, but it seems to work quite
2682  *  well. :)
2683  */
2684 static void sym_save_initial_setting (hcb_p np)
2685 {
2686 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2687 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2688 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2689 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2690 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2691 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2692 	np->sv_gpcntl	= INB(nc_gpcntl);
2693 	np->sv_stest1	= INB(nc_stest1);
2694 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2695 	np->sv_stest4	= INB(nc_stest4);
2696 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2697 		np->sv_scntl4	= INB(nc_scntl4);
2698 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2699 	}
2700 	else
2701 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2702 }
2703 
2704 /*
2705  *  Prepare io register values used by sym_init() according
2706  *  to selected and supported features.
2707  */
2708 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2709 {
2710 	u_char	burst_max;
2711 	u32	period;
2712 	int i;
2713 
2714 	/*
2715 	 *  Wide ?
2716 	 */
2717 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2718 
2719 	/*
2720 	 *  Get the frequency of the chip's clock.
2721 	 */
2722 	if	(np->features & FE_QUAD)
2723 		np->multiplier	= 4;
2724 	else if	(np->features & FE_DBLR)
2725 		np->multiplier	= 2;
2726 	else
2727 		np->multiplier	= 1;
2728 
2729 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2730 	np->clock_khz	*= np->multiplier;
2731 
2732 	if (np->clock_khz != 40000)
2733 		sym_getclock(np, np->multiplier);
2734 
2735 	/*
2736 	 * Divisor to be used for async (timer pre-scaler).
2737 	 */
2738 	i = np->clock_divn - 1;
2739 	while (--i >= 0) {
2740 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2741 			++i;
2742 			break;
2743 		}
2744 	}
2745 	np->rv_scntl3 = i+1;
2746 
2747 	/*
2748 	 * The C1010 uses hardwired divisors for async.
2749 	 * So, we just throw away, the async. divisor.:-)
2750 	 */
2751 	if (np->features & FE_C10)
2752 		np->rv_scntl3 = 0;
2753 
2754 	/*
2755 	 * Minimum synchronous period factor supported by the chip.
2756 	 * Btw, 'period' is in tenths of nanoseconds.
2757 	 */
2758 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2759 	if	(period <= 250)		np->minsync = 10;
2760 	else if	(period <= 303)		np->minsync = 11;
2761 	else if	(period <= 500)		np->minsync = 12;
2762 	else				np->minsync = (period + 40 - 1) / 40;
2763 
2764 	/*
2765 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2766 	 */
2767 	if	(np->minsync < 25 &&
2768 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2769 		np->minsync = 25;
2770 	else if	(np->minsync < 12 &&
2771 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2772 		np->minsync = 12;
2773 
2774 	/*
2775 	 * Maximum synchronous period factor supported by the chip.
2776 	 */
2777 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2778 	np->maxsync = period > 2540 ? 254 : period / 10;
2779 
2780 	/*
2781 	 * If chip is a C1010, guess the sync limits in DT mode.
2782 	 */
2783 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2784 		if (np->clock_khz == 160000) {
2785 			np->minsync_dt = 9;
2786 			np->maxsync_dt = 50;
2787 			np->maxoffs_dt = 62;
2788 		}
2789 	}
2790 
2791 	/*
2792 	 *  64 bit addressing  (895A/896/1010) ?
2793 	 */
2794 	if (np->features & FE_DAC)
2795 #if BITS_PER_LONG > 32
2796 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2797 #else
2798 		np->rv_ccntl1	|= (DDAC);
2799 #endif
2800 
2801 	/*
2802 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2803   	 */
2804 	if (np->features & FE_NOPM)
2805 		np->rv_ccntl0	|= (ENPMJ);
2806 
2807  	/*
2808 	 *  C1010 Errata.
2809 	 *  In dual channel mode, contention occurs if internal cycles
2810 	 *  are used. Disable internal cycles.
2811 	 */
2812 	if (np->device_id == PCI_ID_LSI53C1010 &&
2813 	    np->revision_id < 0x2)
2814 		np->rv_ccntl0	|=  DILS;
2815 
2816 	/*
2817 	 *  Select burst length (dwords)
2818 	 */
2819 	burst_max	= SYM_SETUP_BURST_ORDER;
2820 	if (burst_max == 255)
2821 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2822 				       np->sv_ctest5);
2823 	if (burst_max > 7)
2824 		burst_max = 7;
2825 	if (burst_max > np->maxburst)
2826 		burst_max = np->maxburst;
2827 
2828 	/*
2829 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2830 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2831 	 *  based transactions on LOAD/STORE instructions. So we have
2832 	 *  to prevent these chips from using such PCI transactions in
2833 	 *  this driver. The generic ncr driver that does not use
2834 	 *  LOAD/STORE instructions does not need this work-around.
2835 	 */
2836 	if ((np->device_id == PCI_ID_SYM53C810 &&
2837 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2838 	    (np->device_id == PCI_ID_SYM53C860 &&
2839 	     np->revision_id <= 0x1))
2840 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2841 
2842 	/*
2843 	 *  Select all supported special features.
2844 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2845 	 *  does not help, but burst op fetch (BOF) does.
2846 	 *  Disabling PFEN makes sure BOF will be used.
2847 	 */
2848 	if (np->features & FE_ERL)
2849 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2850 	if (np->features & FE_BOF)
2851 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2852 	if (np->features & FE_ERMP)
2853 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2854 #if 1
2855 	if ((np->features & FE_PFEN) && !np->ram_ba)
2856 #else
2857 	if (np->features & FE_PFEN)
2858 #endif
2859 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2860 	if (np->features & FE_CLSE)
2861 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2862 	if (np->features & FE_WRIE)
2863 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2864 	if (np->features & FE_DFS)
2865 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2866 
2867 	/*
2868 	 *  Select some other
2869 	 */
2870 	if (SYM_SETUP_PCI_PARITY)
2871 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2872 	if (SYM_SETUP_SCSI_PARITY)
2873 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2874 
2875 	/*
2876 	 *  Get parity checking, host ID and verbose mode from NVRAM
2877 	 */
2878 	np->myaddr = 255;
2879 	sym_nvram_setup_host (np, nvram);
2880 
2881 	/*
2882 	 *  Get SCSI addr of host adapter (set by bios?).
2883 	 */
2884 	if (np->myaddr == 255) {
2885 		np->myaddr = INB(nc_scid) & 0x07;
2886 		if (!np->myaddr)
2887 			np->myaddr = SYM_SETUP_HOST_ID;
2888 	}
2889 
2890 	/*
2891 	 *  Prepare initial io register bits for burst length
2892 	 */
2893 	sym_init_burst(np, burst_max);
2894 
2895 	/*
2896 	 *  Set SCSI BUS mode.
2897 	 *  - LVD capable chips (895/895A/896/1010) report the
2898 	 *    current BUS mode through the STEST4 IO register.
2899 	 *  - For previous generation chips (825/825A/875),
2900 	 *    user has to tell us how to check against HVD,
2901 	 *    since a 100% safe algorithm is not possible.
2902 	 */
2903 	np->scsi_mode = SMODE_SE;
2904 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2905 		np->scsi_mode = (np->sv_stest4 & SMODE);
2906 	else if	(np->features & FE_DIFF) {
2907 		if (SYM_SETUP_SCSI_DIFF == 1) {
2908 			if (np->sv_scntl3) {
2909 				if (np->sv_stest2 & 0x20)
2910 					np->scsi_mode = SMODE_HVD;
2911 			}
2912 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2913 				if (!(INB(nc_gpreg) & 0x08))
2914 					np->scsi_mode = SMODE_HVD;
2915 			}
2916 		}
2917 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2918 			np->scsi_mode = SMODE_HVD;
2919 	}
2920 	if (np->scsi_mode == SMODE_HVD)
2921 		np->rv_stest2 |= 0x20;
2922 
2923 	/*
2924 	 *  Set LED support from SCRIPTS.
2925 	 *  Ignore this feature for boards known to use a
2926 	 *  specific GPIO wiring and for the 895A, 896
2927 	 *  and 1010 that drive the LED directly.
2928 	 */
2929 	if ((SYM_SETUP_SCSI_LED ||
2930 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2931 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2932 	       np->device_id == PCI_ID_SYM53C895))) &&
2933 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2934 		np->features |= FE_LED0;
2935 
2936 	/*
2937 	 *  Set irq mode.
2938 	 */
2939 	switch(SYM_SETUP_IRQ_MODE & 3) {
2940 	case 2:
2941 		np->rv_dcntl	|= IRQM;
2942 		break;
2943 	case 1:
2944 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2945 		break;
2946 	default:
2947 		break;
2948 	}
2949 
2950 	/*
2951 	 *  Configure targets according to driver setup.
2952 	 *  If NVRAM present get targets setup from NVRAM.
2953 	 */
2954 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2955 		tcb_p tp = &np->target[i];
2956 
2957 #ifdef	FreeBSD_New_Tran_Settings
2958 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2959 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2960 #endif
2961 		tp->tinfo.user.period = np->minsync;
2962 		tp->tinfo.user.offset = np->maxoffs;
2963 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2964 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2965 		tp->usrtags = SYM_SETUP_MAX_TAG;
2966 
2967 		sym_nvram_setup_target (np, i, nvram);
2968 
2969 		/*
2970 		 *  For now, guess PPR/DT support from the period
2971 		 *  and BUS width.
2972 		 */
2973 		if (np->features & FE_ULTRA3) {
2974 			if (tp->tinfo.user.period <= 9	&&
2975 			    tp->tinfo.user.width == BUS_16_BIT) {
2976 				tp->tinfo.user.options |= PPR_OPT_DT;
2977 				tp->tinfo.user.offset   = np->maxoffs_dt;
2978 #ifdef	FreeBSD_New_Tran_Settings
2979 				tp->tinfo.user.spi_version = 3;
2980 #endif
2981 			}
2982 		}
2983 
2984 		if (!tp->usrtags)
2985 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2986 	}
2987 
2988 	/*
2989 	 *  Let user know about the settings.
2990 	 */
2991 	i = nvram->type;
2992 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2993 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2994 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2995 		np->myaddr,
2996 		(np->features & FE_ULTRA3) ? 80 :
2997 		(np->features & FE_ULTRA2) ? 40 :
2998 		(np->features & FE_ULTRA)  ? 20 : 10,
2999 		sym_scsi_bus_mode(np->scsi_mode),
3000 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
3001 	/*
3002 	 *  Tell him more on demand.
3003 	 */
3004 	if (sym_verbose) {
3005 		printf("%s: %s IRQ line driver%s\n",
3006 			sym_name(np),
3007 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
3008 			np->ram_ba ? ", using on-chip SRAM" : "");
3009 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
3010 		if (np->features & FE_NOPM)
3011 			printf("%s: handling phase mismatch from SCRIPTS.\n",
3012 			       sym_name(np));
3013 	}
3014 	/*
3015 	 *  And still more.
3016 	 */
3017 	if (sym_verbose > 1) {
3018 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3019 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3020 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3021 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3022 
3023 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3024 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3025 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
3026 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
3027 	}
3028 	/*
3029 	 *  Let user be aware of targets that have some disable flags set.
3030 	 */
3031 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
3032 	if (sym_verbose)
3033 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
3034 				       "SCAN FOR LUNS");
3035 
3036 	return 0;
3037 }
3038 
3039 /*
3040  *  Prepare the next negotiation message if needed.
3041  *
3042  *  Fill in the part of message buffer that contains the
3043  *  negotiation and the nego_status field of the CCB.
3044  *  Returns the size of the message in bytes.
3045  */
3046 
3047 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
3048 {
3049 	tcb_p tp = &np->target[cp->target];
3050 	int msglen = 0;
3051 
3052 	/*
3053 	 *  Early C1010 chips need a work-around for DT
3054 	 *  data transfer to work.
3055 	 */
3056 	if (!(np->features & FE_U3EN))
3057 		tp->tinfo.goal.options = 0;
3058 	/*
3059 	 *  negotiate using PPR ?
3060 	 */
3061 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
3062 		nego = NS_PPR;
3063 	/*
3064 	 *  negotiate wide transfers ?
3065 	 */
3066 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
3067 		nego = NS_WIDE;
3068 	/*
3069 	 *  negotiate synchronous transfers?
3070 	 */
3071 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
3072 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
3073 		nego = NS_SYNC;
3074 
3075 	switch (nego) {
3076 	case NS_SYNC:
3077 		msgptr[msglen++] = M_EXTENDED;
3078 		msgptr[msglen++] = 3;
3079 		msgptr[msglen++] = M_X_SYNC_REQ;
3080 		msgptr[msglen++] = tp->tinfo.goal.period;
3081 		msgptr[msglen++] = tp->tinfo.goal.offset;
3082 		break;
3083 	case NS_WIDE:
3084 		msgptr[msglen++] = M_EXTENDED;
3085 		msgptr[msglen++] = 2;
3086 		msgptr[msglen++] = M_X_WIDE_REQ;
3087 		msgptr[msglen++] = tp->tinfo.goal.width;
3088 		break;
3089 	case NS_PPR:
3090 		msgptr[msglen++] = M_EXTENDED;
3091 		msgptr[msglen++] = 6;
3092 		msgptr[msglen++] = M_X_PPR_REQ;
3093 		msgptr[msglen++] = tp->tinfo.goal.period;
3094 		msgptr[msglen++] = 0;
3095 		msgptr[msglen++] = tp->tinfo.goal.offset;
3096 		msgptr[msglen++] = tp->tinfo.goal.width;
3097 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
3098 		break;
3099 	};
3100 
3101 	cp->nego_status = nego;
3102 
3103 	if (nego) {
3104 		tp->nego_cp = cp; /* Keep track a nego will be performed */
3105 		if (DEBUG_FLAGS & DEBUG_NEGO) {
3106 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
3107 					  nego == NS_WIDE ? "wide msgout" :
3108 					  "ppr msgout", msgptr);
3109 		};
3110 	};
3111 
3112 	return msglen;
3113 }
3114 
3115 /*
3116  *  Insert a job into the start queue.
3117  */
3118 static void sym_put_start_queue(hcb_p np, ccb_p cp)
3119 {
3120 	u_short	qidx;
3121 
3122 #ifdef SYM_CONF_IARB_SUPPORT
3123 	/*
3124 	 *  If the previously queued CCB is not yet done,
3125 	 *  set the IARB hint. The SCRIPTS will go with IARB
3126 	 *  for this job when starting the previous one.
3127 	 *  We leave devices a chance to win arbitration by
3128 	 *  not using more than 'iarb_max' consecutive
3129 	 *  immediate arbitrations.
3130 	 */
3131 	if (np->last_cp && np->iarb_count < np->iarb_max) {
3132 		np->last_cp->host_flags |= HF_HINT_IARB;
3133 		++np->iarb_count;
3134 	}
3135 	else
3136 		np->iarb_count = 0;
3137 	np->last_cp = cp;
3138 #endif
3139 
3140 	/*
3141 	 *  Insert first the idle task and then our job.
3142 	 *  The MB should ensure proper ordering.
3143 	 */
3144 	qidx = np->squeueput + 2;
3145 	if (qidx >= MAX_QUEUE*2) qidx = 0;
3146 
3147 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
3148 	MEMORY_BARRIER();
3149 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
3150 
3151 	np->squeueput = qidx;
3152 
3153 	if (DEBUG_FLAGS & DEBUG_QUEUE)
3154 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
3155 
3156 	/*
3157 	 *  Script processor may be waiting for reselect.
3158 	 *  Wake it up.
3159 	 */
3160 	MEMORY_BARRIER();
3161 	OUTB (nc_istat, SIGP|np->istat_sem);
3162 }
3163 
3164 
3165 /*
3166  *  Soft reset the chip.
3167  *
3168  *  Raising SRST when the chip is running may cause
3169  *  problems on dual function chips (see below).
3170  *  On the other hand, LVD devices need some delay
3171  *  to settle and report actual BUS mode in STEST4.
3172  */
3173 static void sym_chip_reset (hcb_p np)
3174 {
3175 	OUTB (nc_istat, SRST);
3176 	UDELAY (10);
3177 	OUTB (nc_istat, 0);
3178 	UDELAY(2000);	/* For BUS MODE to settle */
3179 }
3180 
3181 /*
3182  *  Soft reset the chip.
3183  *
3184  *  Some 896 and 876 chip revisions may hang-up if we set
3185  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
3186  *  are running.
3187  *  So, we need to abort the current operation prior to
3188  *  soft resetting the chip.
3189  */
3190 static void sym_soft_reset (hcb_p np)
3191 {
3192 	u_char istat;
3193 	int i;
3194 
3195 	OUTB (nc_istat, CABRT);
3196 	for (i = 1000000 ; i ; --i) {
3197 		istat = INB (nc_istat);
3198 		if (istat & SIP) {
3199 			INW (nc_sist);
3200 			continue;
3201 		}
3202 		if (istat & DIP) {
3203 			OUTB (nc_istat, 0);
3204 			INB (nc_dstat);
3205 			break;
3206 		}
3207 	}
3208 	if (!i)
3209 		printf("%s: unable to abort current chip operation.\n",
3210 			sym_name(np));
3211 	sym_chip_reset (np);
3212 }
3213 
3214 /*
3215  *  Start reset process.
3216  *
3217  *  The interrupt handler will reinitialize the chip.
3218  */
3219 static void sym_start_reset(hcb_p np)
3220 {
3221 	(void) sym_reset_scsi_bus(np, 1);
3222 }
3223 
3224 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3225 {
3226 	u32 term;
3227 	int retv = 0;
3228 
3229 	sym_soft_reset(np);	/* Soft reset the chip */
3230 	if (enab_int)
3231 		OUTW (nc_sien, RST);
3232 	/*
3233 	 *  Enable Tolerant, reset IRQD if present and
3234 	 *  properly set IRQ mode, prior to resetting the bus.
3235 	 */
3236 	OUTB (nc_stest3, TE);
3237 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3238 	OUTB (nc_scntl1, CRST);
3239 	UDELAY (200);
3240 
3241 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3242 		goto out;
3243 	/*
3244 	 *  Check for no terminators or SCSI bus shorts to ground.
3245 	 *  Read SCSI data bus, data parity bits and control signals.
3246 	 *  We are expecting RESET to be TRUE and other signals to be
3247 	 *  FALSE.
3248 	 */
3249 	term =	INB(nc_sstat0);
3250 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3251 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3252 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3253 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3254 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3255 
3256 	if (!(np->features & FE_WIDE))
3257 		term &= 0x3ffff;
3258 
3259 	if (term != (2<<7)) {
3260 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3261 			sym_name(np));
3262 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3263 			"0x%lx, expecting 0x%lx\n",
3264 			sym_name(np),
3265 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3266 			(u_long)term, (u_long)(2<<7));
3267 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3268 			retv = 1;
3269 	}
3270 out:
3271 	OUTB (nc_scntl1, 0);
3272 	/* MDELAY(100); */
3273 	return retv;
3274 }
3275 
3276 /*
3277  *  The chip may have completed jobs. Look at the DONE QUEUE.
3278  *
3279  *  On architectures that may reorder LOAD/STORE operations,
3280  *  a memory barrier may be needed after the reading of the
3281  *  so-called `flag' and prior to dealing with the data.
3282  */
3283 static int sym_wakeup_done (hcb_p np)
3284 {
3285 	ccb_p cp;
3286 	int i, n;
3287 	u32 dsa;
3288 
3289 	n = 0;
3290 	i = np->dqueueget;
3291 	while (1) {
3292 		dsa = scr_to_cpu(np->dqueue[i]);
3293 		if (!dsa)
3294 			break;
3295 		np->dqueue[i] = 0;
3296 		if ((i = i+2) >= MAX_QUEUE*2)
3297 			i = 0;
3298 
3299 		cp = sym_ccb_from_dsa(np, dsa);
3300 		if (cp) {
3301 			MEMORY_BARRIER();
3302 			sym_complete_ok (np, cp);
3303 			++n;
3304 		}
3305 		else
3306 			printf ("%s: bad DSA (%x) in done queue.\n",
3307 				sym_name(np), (u_int) dsa);
3308 	}
3309 	np->dqueueget = i;
3310 
3311 	return n;
3312 }
3313 
3314 /*
3315  *  Complete all active CCBs with error.
3316  *  Used on CHIP/SCSI RESET.
3317  */
3318 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3319 {
3320 	/*
3321 	 *  Move all active CCBs to the COMP queue
3322 	 *  and flush this queue.
3323 	 */
3324 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3325 	sym_que_init(&np->busy_ccbq);
3326 	sym_flush_comp_queue(np, cam_status);
3327 }
3328 
3329 /*
3330  *  Start chip.
3331  *
3332  *  'reason' means:
3333  *     0: initialisation.
3334  *     1: SCSI BUS RESET delivered or received.
3335  *     2: SCSI BUS MODE changed.
3336  */
3337 static void sym_init (hcb_p np, int reason)
3338 {
3339  	int	i;
3340 	u32	phys;
3341 
3342  	/*
3343 	 *  Reset chip if asked, otherwise just clear fifos.
3344  	 */
3345 	if (reason == 1)
3346 		sym_soft_reset(np);
3347 	else {
3348 		OUTB (nc_stest3, TE|CSF);
3349 		OUTONB (nc_ctest3, CLF);
3350 	}
3351 
3352 	/*
3353 	 *  Clear Start Queue
3354 	 */
3355 	phys = np->squeue_ba;
3356 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3357 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3358 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3359 	}
3360 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3361 
3362 	/*
3363 	 *  Start at first entry.
3364 	 */
3365 	np->squeueput = 0;
3366 
3367 	/*
3368 	 *  Clear Done Queue
3369 	 */
3370 	phys = np->dqueue_ba;
3371 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3372 		np->dqueue[i]   = 0;
3373 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3374 	}
3375 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3376 
3377 	/*
3378 	 *  Start at first entry.
3379 	 */
3380 	np->dqueueget = 0;
3381 
3382 	/*
3383 	 *  Install patches in scripts.
3384 	 *  This also let point to first position the start
3385 	 *  and done queue pointers used from SCRIPTS.
3386 	 */
3387 	np->fw_patch(np);
3388 
3389 	/*
3390 	 *  Wakeup all pending jobs.
3391 	 */
3392 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3393 
3394 	/*
3395 	 *  Init chip.
3396 	 */
3397 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3398 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3399 
3400 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3401 					/*  full arb., ena parity, par->ATN  */
3402 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3403 
3404 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3405 
3406 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3407 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3408 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3409 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3410 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3411 
3412 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3413 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3414 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3415 
3416 	/* Extended Sreq/Sack filtering not supported on the C10 */
3417 	if (np->features & FE_C10)
3418 		OUTB (nc_stest2, np->rv_stest2);
3419 	else
3420 		OUTB (nc_stest2, EXT|np->rv_stest2);
3421 
3422 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3423 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3424 
3425 	/*
3426 	 *  For now, disable AIP generation on C1010-66.
3427 	 */
3428 	if (np->device_id == PCI_ID_LSI53C1010_2)
3429 		OUTB (nc_aipcntl1, DISAIP);
3430 
3431 	/*
3432 	 *  C10101 Errata.
3433 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3434 	 *  STEST1 register to disable SGE. We probably should do
3435 	 *  that from SCRIPTS for each selection/reselection, but
3436 	 *  I just don't want. :)
3437 	 */
3438 	if (np->device_id == PCI_ID_LSI53C1010 &&
3439 	    /* np->revision_id < 0xff */ 1)
3440 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3441 
3442 	/*
3443 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3444 	 *  Disable overlapped arbitration for some dual function devices,
3445 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3446 	 */
3447 	if (np->device_id == PCI_ID_SYM53C875)
3448 		OUTB (nc_ctest0, (1<<5));
3449 	else if (np->device_id == PCI_ID_SYM53C896)
3450 		np->rv_ccntl0 |= DPR;
3451 
3452 	/*
3453 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3454 	 *  and/or hardware phase mismatch, since only such chips
3455 	 *  seem to support those IO registers.
3456 	 */
3457 	if (np->features & (FE_DAC|FE_NOPM)) {
3458 		OUTB (nc_ccntl0, np->rv_ccntl0);
3459 		OUTB (nc_ccntl1, np->rv_ccntl1);
3460 	}
3461 
3462 	/*
3463 	 *  If phase mismatch handled by scripts (895A/896/1010),
3464 	 *  set PM jump addresses.
3465 	 */
3466 	if (np->features & FE_NOPM) {
3467 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3468 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3469 	}
3470 
3471 	/*
3472 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3473 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3474 	 */
3475 	if (np->features & FE_LED0)
3476 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3477 	else if (np->features & FE_LEDC)
3478 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3479 
3480 	/*
3481 	 *      enable ints
3482 	 */
3483 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3484 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3485 
3486 	/*
3487 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3488 	 *  Try to eat the spurious SBMC interrupt that may occur when
3489 	 *  we reset the chip but not the SCSI BUS (at initialization).
3490 	 */
3491 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3492 		OUTONW (nc_sien, SBMC);
3493 		if (reason == 0) {
3494 			MDELAY(100);
3495 			INW (nc_sist);
3496 		}
3497 		np->scsi_mode = INB (nc_stest4) & SMODE;
3498 	}
3499 
3500 	/*
3501 	 *  Fill in target structure.
3502 	 *  Reinitialize usrsync.
3503 	 *  Reinitialize usrwide.
3504 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3505 	 */
3506 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3507 		tcb_p tp = &np->target[i];
3508 
3509 		tp->to_reset  = 0;
3510 		tp->head.sval = 0;
3511 		tp->head.wval = np->rv_scntl3;
3512 		tp->head.uval = 0;
3513 
3514 		tp->tinfo.current.period = 0;
3515 		tp->tinfo.current.offset = 0;
3516 		tp->tinfo.current.width  = BUS_8_BIT;
3517 		tp->tinfo.current.options = 0;
3518 	}
3519 
3520 	/*
3521 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3522 	 *  and start script processor.
3523 	 */
3524 	if (np->ram_ba) {
3525 		if (sym_verbose > 1)
3526 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3527 				sym_name(np));
3528 		if (np->ram_ws == 8192) {
3529 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3530 			OUTL (nc_mmws, np->scr_ram_seg);
3531 			OUTL (nc_mmrs, np->scr_ram_seg);
3532 			OUTL (nc_sfs,  np->scr_ram_seg);
3533 			phys = SCRIPTB_BA (np, start64);
3534 		}
3535 		else
3536 			phys = SCRIPTA_BA (np, init);
3537 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3538 	}
3539 	else
3540 		phys = SCRIPTA_BA (np, init);
3541 
3542 	np->istat_sem = 0;
3543 
3544 	OUTL (nc_dsa, np->hcb_ba);
3545 	OUTL_DSP (phys);
3546 
3547 	/*
3548 	 *  Notify the XPT about the RESET condition.
3549 	 */
3550 	if (reason != 0)
3551 		xpt_async(AC_BUS_RESET, np->path, NULL);
3552 }
3553 
3554 /*
3555  *  Get clock factor and sync divisor for a given
3556  *  synchronous factor period.
3557  */
3558 static int
3559 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3560 {
3561 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3562 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3563 	u32	fak;			/* Sync factor in sxfer		*/
3564 	u32	per;			/* Period in tenths of ns	*/
3565 	u32	kpc;			/* (per * clk)			*/
3566 	int	ret;
3567 
3568 	/*
3569 	 *  Compute the synchronous period in tenths of nano-seconds
3570 	 */
3571 	if (dt && sfac <= 9)	per = 125;
3572 	else if	(sfac <= 10)	per = 250;
3573 	else if	(sfac == 11)	per = 303;
3574 	else if	(sfac == 12)	per = 500;
3575 	else			per = 40 * sfac;
3576 	ret = per;
3577 
3578 	kpc = per * clk;
3579 	if (dt)
3580 		kpc <<= 1;
3581 
3582 	/*
3583 	 *  For earliest C10 revision 0, we cannot use extra
3584 	 *  clocks for the setting of the SCSI clocking.
3585 	 *  Note that this limits the lowest sync data transfer
3586 	 *  to 5 Mega-transfers per second and may result in
3587 	 *  using higher clock divisors.
3588 	 */
3589 #if 1
3590 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3591 		/*
3592 		 *  Look for the lowest clock divisor that allows an
3593 		 *  output speed not faster than the period.
3594 		 */
3595 		while (div > 0) {
3596 			--div;
3597 			if (kpc > (div_10M[div] << 2)) {
3598 				++div;
3599 				break;
3600 			}
3601 		}
3602 		fak = 0;			/* No extra clocks */
3603 		if (div == np->clock_divn) {	/* Are we too fast ? */
3604 			ret = -1;
3605 		}
3606 		*divp = div;
3607 		*fakp = fak;
3608 		return ret;
3609 	}
3610 #endif
3611 
3612 	/*
3613 	 *  Look for the greatest clock divisor that allows an
3614 	 *  input speed faster than the period.
3615 	 */
3616 	while (div-- > 0)
3617 		if (kpc >= (div_10M[div] << 2)) break;
3618 
3619 	/*
3620 	 *  Calculate the lowest clock factor that allows an output
3621 	 *  speed not faster than the period, and the max output speed.
3622 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3623 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3624 	 */
3625 	if (dt) {
3626 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3627 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3628 	}
3629 	else {
3630 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3631 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3632 	}
3633 
3634 	/*
3635 	 *  Check against our hardware limits, or bugs :).
3636 	 */
3637 	if (fak < 0)	{fak = 0; ret = -1;}
3638 	if (fak > 2)	{fak = 2; ret = -1;}
3639 
3640 	/*
3641 	 *  Compute and return sync parameters.
3642 	 */
3643 	*divp = div;
3644 	*fakp = fak;
3645 
3646 	return ret;
3647 }
3648 
3649 /*
3650  *  Tell the SCSI layer about the new transfer parameters.
3651  */
3652 static void
3653 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3654 {
3655 	struct ccb_trans_settings cts;
3656 	struct cam_path *path;
3657 	int sts;
3658 	tcb_p tp = &np->target[target];
3659 
3660 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3661 	                      CAM_LUN_WILDCARD);
3662 	if (sts != CAM_REQ_CMP)
3663 		return;
3664 
3665 	bzero(&cts, sizeof(cts));
3666 
3667 #ifdef	FreeBSD_New_Tran_Settings
3668 #define	cts__scsi (cts.proto_specific.scsi)
3669 #define	cts__spi  (cts.xport_specific.spi)
3670 
3671 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3672 	cts.protocol  = PROTO_SCSI;
3673 	cts.transport = XPORT_SPI;
3674 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3675 	cts.transport_version = tp->tinfo.current.spi_version;
3676 
3677 	cts__spi.valid = spi_valid;
3678 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3679 		cts__spi.sync_period = tp->tinfo.current.period;
3680 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3681 		cts__spi.sync_offset = tp->tinfo.current.offset;
3682 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3683 		cts__spi.bus_width   = tp->tinfo.current.width;
3684 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3685 		cts__spi.ppr_options = tp->tinfo.current.options;
3686 #undef cts__spi
3687 #undef cts__scsi
3688 #else
3689 	cts.valid = spi_valid;
3690 	if (spi_valid & CCB_TRANS_SYNC_RATE_VALID)
3691 		cts.sync_period = tp->tinfo.current.period;
3692 	if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID)
3693 		cts.sync_offset = tp->tinfo.current.offset;
3694 	if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID)
3695 		cts.bus_width   = tp->tinfo.current.width;
3696 #endif
3697 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3698 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3699 	xpt_free_path(path);
3700 }
3701 
3702 #ifdef	FreeBSD_New_Tran_Settings
3703 #define SYM_SPI_VALID_WDTR		\
3704 	CTS_SPI_VALID_BUS_WIDTH |	\
3705 	CTS_SPI_VALID_SYNC_RATE |	\
3706 	CTS_SPI_VALID_SYNC_OFFSET
3707 #define SYM_SPI_VALID_SDTR		\
3708 	CTS_SPI_VALID_SYNC_RATE |	\
3709 	CTS_SPI_VALID_SYNC_OFFSET
3710 #define SYM_SPI_VALID_PPR		\
3711 	CTS_SPI_VALID_PPR_OPTIONS |	\
3712 	CTS_SPI_VALID_BUS_WIDTH |	\
3713 	CTS_SPI_VALID_SYNC_RATE |	\
3714 	CTS_SPI_VALID_SYNC_OFFSET
3715 #else
3716 #define SYM_SPI_VALID_WDTR		\
3717 	CCB_TRANS_BUS_WIDTH_VALID |	\
3718 	CCB_TRANS_SYNC_RATE_VALID |	\
3719 	CCB_TRANS_SYNC_OFFSET_VALID
3720 #define SYM_SPI_VALID_SDTR		\
3721 	CCB_TRANS_SYNC_RATE_VALID |	\
3722 	CCB_TRANS_SYNC_OFFSET_VALID
3723 #define SYM_SPI_VALID_PPR		\
3724 	CCB_TRANS_BUS_WIDTH_VALID |	\
3725 	CCB_TRANS_SYNC_RATE_VALID |	\
3726 	CCB_TRANS_SYNC_OFFSET_VALID
3727 #endif
3728 
3729 /*
3730  *  We received a WDTR.
3731  *  Let everything be aware of the changes.
3732  */
3733 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3734 {
3735 	tcb_p tp = &np->target[cp->target];
3736 
3737 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3738 
3739 	/*
3740 	 *  Tell the SCSI layer about the new transfer parameters.
3741 	 */
3742 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3743 	tp->tinfo.current.offset = 0;
3744 	tp->tinfo.current.period = 0;
3745 	tp->tinfo.current.options = 0;
3746 
3747 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3748 }
3749 
3750 /*
3751  *  We received a SDTR.
3752  *  Let everything be aware of the changes.
3753  */
3754 static void
3755 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3756 {
3757 	tcb_p tp = &np->target[cp->target];
3758 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3759 
3760 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3761 
3762 	/*
3763 	 *  Tell the SCSI layer about the new transfer parameters.
3764 	 */
3765 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3766 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3767 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3768 
3769 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3770 }
3771 
3772 /*
3773  *  We received a PPR.
3774  *  Let everything be aware of the changes.
3775  */
3776 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3777 			 u_char per, u_char wide, u_char div, u_char fak)
3778 {
3779 	tcb_p tp = &np->target[cp->target];
3780 
3781 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3782 
3783 	/*
3784 	 *  Tell the SCSI layer about the new transfer parameters.
3785 	 */
3786 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3787 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3788 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3789 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3790 
3791 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3792 }
3793 
3794 /*
3795  *  Switch trans mode for current job and it's target.
3796  */
3797 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3798 			 u_char per, u_char wide, u_char div, u_char fak)
3799 {
3800 	SYM_QUEHEAD *qp;
3801 	union	ccb *ccb;
3802 	tcb_p tp;
3803 	u_char target = INB (nc_sdid) & 0x0f;
3804 	u_char sval, wval, uval;
3805 
3806 	assert (cp);
3807 	if (!cp) return;
3808 	ccb = cp->cam_ccb;
3809 	assert (ccb);
3810 	if (!ccb) return;
3811 	assert (target == (cp->target & 0xf));
3812 	tp = &np->target[target];
3813 
3814 	sval = tp->head.sval;
3815 	wval = tp->head.wval;
3816 	uval = tp->head.uval;
3817 
3818 #if 0
3819 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3820 		sval, wval, uval, np->rv_scntl3);
3821 #endif
3822 	/*
3823 	 *  Set the offset.
3824 	 */
3825 	if (!(np->features & FE_C10))
3826 		sval = (sval & ~0x1f) | ofs;
3827 	else
3828 		sval = (sval & ~0x3f) | ofs;
3829 
3830 	/*
3831 	 *  Set the sync divisor and extra clock factor.
3832 	 */
3833 	if (ofs != 0) {
3834 		wval = (wval & ~0x70) | ((div+1) << 4);
3835 		if (!(np->features & FE_C10))
3836 			sval = (sval & ~0xe0) | (fak << 5);
3837 		else {
3838 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3839 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3840 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3841 		}
3842 	}
3843 
3844 	/*
3845 	 *  Set the bus width.
3846 	 */
3847 	wval = wval & ~EWS;
3848 	if (wide != 0)
3849 		wval |= EWS;
3850 
3851 	/*
3852 	 *  Set misc. ultra enable bits.
3853 	 */
3854 	if (np->features & FE_C10) {
3855 		uval = uval & ~(U3EN|AIPCKEN);
3856 		if (dt)	{
3857 			assert(np->features & FE_U3EN);
3858 			uval |= U3EN;
3859 		}
3860 	}
3861 	else {
3862 		wval = wval & ~ULTRA;
3863 		if (per <= 12)	wval |= ULTRA;
3864 	}
3865 
3866 	/*
3867 	 *   Stop there if sync parameters are unchanged.
3868 	 */
3869 	if (tp->head.sval == sval &&
3870 	    tp->head.wval == wval &&
3871 	    tp->head.uval == uval)
3872 		return;
3873 	tp->head.sval = sval;
3874 	tp->head.wval = wval;
3875 	tp->head.uval = uval;
3876 
3877 	/*
3878 	 *  Disable extended Sreq/Sack filtering if per < 50.
3879 	 *  Not supported on the C1010.
3880 	 */
3881 	if (per < 50 && !(np->features & FE_C10))
3882 		OUTOFFB (nc_stest2, EXT);
3883 
3884 	/*
3885 	 *  set actual value and sync_status
3886 	 */
3887 	OUTB (nc_sxfer,  tp->head.sval);
3888 	OUTB (nc_scntl3, tp->head.wval);
3889 
3890 	if (np->features & FE_C10) {
3891 		OUTB (nc_scntl4, tp->head.uval);
3892 	}
3893 
3894 	/*
3895 	 *  patch ALL busy ccbs of this target.
3896 	 */
3897 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3898 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3899 		if (cp->target != target)
3900 			continue;
3901 		cp->phys.select.sel_scntl3 = tp->head.wval;
3902 		cp->phys.select.sel_sxfer  = tp->head.sval;
3903 		if (np->features & FE_C10) {
3904 			cp->phys.select.sel_scntl4 = tp->head.uval;
3905 		}
3906 	}
3907 }
3908 
3909 /*
3910  *  log message for real hard errors
3911  *
3912  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3913  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3914  *
3915  *  exception register:
3916  *  	ds:	dstat
3917  *  	si:	sist
3918  *
3919  *  SCSI bus lines:
3920  *  	so:	control lines as driven by chip.
3921  *  	si:	control lines as seen by chip.
3922  *  	sd:	scsi data lines as seen by chip.
3923  *
3924  *  wide/fastmode:
3925  *  	sxfer:	(see the manual)
3926  *  	scntl3:	(see the manual)
3927  *
3928  *  current script command:
3929  *  	dsp:	script adress (relative to start of script).
3930  *  	dbc:	first word of script command.
3931  *
3932  *  First 24 register of the chip:
3933  *  	r0..rf
3934  */
3935 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3936 {
3937 	u32	dsp;
3938 	int	script_ofs;
3939 	int	script_size;
3940 	char	*script_name;
3941 	u_char	*script_base;
3942 	int	i;
3943 
3944 	dsp	= INL (nc_dsp);
3945 
3946 	if	(dsp > np->scripta_ba &&
3947 		 dsp <= np->scripta_ba + np->scripta_sz) {
3948 		script_ofs	= dsp - np->scripta_ba;
3949 		script_size	= np->scripta_sz;
3950 		script_base	= (u_char *) np->scripta0;
3951 		script_name	= "scripta";
3952 	}
3953 	else if (np->scriptb_ba < dsp &&
3954 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3955 		script_ofs	= dsp - np->scriptb_ba;
3956 		script_size	= np->scriptb_sz;
3957 		script_base	= (u_char *) np->scriptb0;
3958 		script_name	= "scriptb";
3959 	} else {
3960 		script_ofs	= dsp;
3961 		script_size	= 0;
3962 		script_base	= 0;
3963 		script_name	= "mem";
3964 	}
3965 
3966 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3967 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3968 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3969 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3970 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3971 		(unsigned)INL (nc_dbc));
3972 
3973 	if (((script_ofs & 3) == 0) &&
3974 	    (unsigned)script_ofs < script_size) {
3975 		printf ("%s: script cmd = %08x\n", sym_name(np),
3976 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3977 	}
3978 
3979         printf ("%s: regdump:", sym_name(np));
3980         for (i=0; i<24;i++)
3981             printf (" %02x", (unsigned)INB_OFF(i));
3982         printf (".\n");
3983 
3984 	/*
3985 	 *  PCI BUS error, read the PCI ststus register.
3986 	 */
3987 	if (dstat & (MDPE|BF)) {
3988 		u_short pci_sts;
3989 #ifdef FreeBSD_Bus_Io_Abstraction
3990 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3991 #else
3992 		pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2);
3993 #endif
3994 		if (pci_sts & 0xf900) {
3995 #ifdef FreeBSD_Bus_Io_Abstraction
3996 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3997 #else
3998 			pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2);
3999 #endif
4000 			printf("%s: PCI STATUS = 0x%04x\n",
4001 				sym_name(np), pci_sts & 0xf900);
4002 		}
4003 	}
4004 }
4005 
4006 /*
4007  *  chip interrupt handler
4008  *
4009  *  In normal situations, interrupt conditions occur one at
4010  *  a time. But when something bad happens on the SCSI BUS,
4011  *  the chip may raise several interrupt flags before
4012  *  stopping and interrupting the CPU. The additionnal
4013  *  interrupt flags are stacked in some extra registers
4014  *  after the SIP and/or DIP flag has been raised in the
4015  *  ISTAT. After the CPU has read the interrupt condition
4016  *  flag from SIST or DSTAT, the chip unstacks the other
4017  *  interrupt flags and sets the corresponding bits in
4018  *  SIST or DSTAT. Since the chip starts stacking once the
4019  *  SIP or DIP flag is set, there is a small window of time
4020  *  where the stacking does not occur.
4021  *
4022  *  Typically, multiple interrupt conditions may happen in
4023  *  the following situations:
4024  *
4025  *  - SCSI parity error + Phase mismatch  (PAR|MA)
4026  *    When an parity error is detected in input phase
4027  *    and the device switches to msg-in phase inside a
4028  *    block MOV.
4029  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
4030  *    When a stupid device does not want to handle the
4031  *    recovery of an SCSI parity error.
4032  *  - Some combinations of STO, PAR, UDC, ...
4033  *    When using non compliant SCSI stuff, when user is
4034  *    doing non compliant hot tampering on the BUS, when
4035  *    something really bad happens to a device, etc ...
4036  *
4037  *  The heuristic suggested by SYMBIOS to handle
4038  *  multiple interrupts is to try unstacking all
4039  *  interrupts conditions and to handle them on some
4040  *  priority based on error severity.
4041  *  This will work when the unstacking has been
4042  *  successful, but we cannot be 100 % sure of that,
4043  *  since the CPU may have been faster to unstack than
4044  *  the chip is able to stack. Hmmm ... But it seems that
4045  *  such a situation is very unlikely to happen.
4046  *
4047  *  If this happen, for example STO caught by the CPU
4048  *  then UDC happenning before the CPU have restarted
4049  *  the SCRIPTS, the driver may wrongly complete the
4050  *  same command on UDC, since the SCRIPTS didn't restart
4051  *  and the DSA still points to the same command.
4052  *  We avoid this situation by setting the DSA to an
4053  *  invalid value when the CCB is completed and before
4054  *  restarting the SCRIPTS.
4055  *
4056  *  Another issue is that we need some section of our
4057  *  recovery procedures to be somehow uninterruptible but
4058  *  the SCRIPTS processor does not provides such a
4059  *  feature. For this reason, we handle recovery preferently
4060  *  from the C code and check against some SCRIPTS critical
4061  *  sections from the C code.
4062  *
4063  *  Hopefully, the interrupt handling of the driver is now
4064  *  able to resist to weird BUS error conditions, but donnot
4065  *  ask me for any guarantee that it will never fail. :-)
4066  *  Use at your own decision and risk.
4067  */
4068 
4069 static void sym_intr1 (hcb_p np)
4070 {
4071 	u_char	istat, istatc;
4072 	u_char	dstat;
4073 	u_short	sist;
4074 
4075 	/*
4076 	 *  interrupt on the fly ?
4077 	 *
4078 	 *  A `dummy read' is needed to ensure that the
4079 	 *  clear of the INTF flag reaches the device
4080 	 *  before the scanning of the DONE queue.
4081 	 */
4082 	istat = INB (nc_istat);
4083 	if (istat & INTF) {
4084 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
4085 		istat = INB (nc_istat);		/* DUMMY READ */
4086 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
4087 		(void)sym_wakeup_done (np);
4088 	};
4089 
4090 	if (!(istat & (SIP|DIP)))
4091 		return;
4092 
4093 #if 0	/* We should never get this one */
4094 	if (istat & CABRT)
4095 		OUTB (nc_istat, CABRT);
4096 #endif
4097 
4098 	/*
4099 	 *  PAR and MA interrupts may occur at the same time,
4100 	 *  and we need to know of both in order to handle
4101 	 *  this situation properly. We try to unstack SCSI
4102 	 *  interrupts for that reason. BTW, I dislike a LOT
4103 	 *  such a loop inside the interrupt routine.
4104 	 *  Even if DMA interrupt stacking is very unlikely to
4105 	 *  happen, we also try unstacking these ones, since
4106 	 *  this has no performance impact.
4107 	 */
4108 	sist	= 0;
4109 	dstat	= 0;
4110 	istatc	= istat;
4111 	do {
4112 		if (istatc & SIP)
4113 			sist  |= INW (nc_sist);
4114 		if (istatc & DIP)
4115 			dstat |= INB (nc_dstat);
4116 		istatc = INB (nc_istat);
4117 		istat |= istatc;
4118 	} while (istatc & (SIP|DIP));
4119 
4120 	if (DEBUG_FLAGS & DEBUG_TINY)
4121 		printf ("<%d|%x:%x|%x:%x>",
4122 			(int)INB(nc_scr0),
4123 			dstat,sist,
4124 			(unsigned)INL(nc_dsp),
4125 			(unsigned)INL(nc_dbc));
4126 	/*
4127 	 *  On paper, a memory barrier may be needed here.
4128 	 *  And since we are paranoid ... :)
4129 	 */
4130 	MEMORY_BARRIER();
4131 
4132 	/*
4133 	 *  First, interrupts we want to service cleanly.
4134 	 *
4135 	 *  Phase mismatch (MA) is the most frequent interrupt
4136 	 *  for chip earlier than the 896 and so we have to service
4137 	 *  it as quickly as possible.
4138 	 *  A SCSI parity error (PAR) may be combined with a phase
4139 	 *  mismatch condition (MA).
4140 	 *  Programmed interrupts (SIR) are used to call the C code
4141 	 *  from SCRIPTS.
4142 	 *  The single step interrupt (SSI) is not used in this
4143 	 *  driver.
4144 	 */
4145 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
4146 	    !(dstat & (MDPE|BF|ABRT|IID))) {
4147 		if	(sist & PAR)	sym_int_par (np, sist);
4148 		else if (sist & MA)	sym_int_ma (np);
4149 		else if (dstat & SIR)	sym_int_sir (np);
4150 		else if (dstat & SSI)	OUTONB_STD ();
4151 		else			goto unknown_int;
4152 		return;
4153 	};
4154 
4155 	/*
4156 	 *  Now, interrupts that donnot happen in normal
4157 	 *  situations and that we may need to recover from.
4158 	 *
4159 	 *  On SCSI RESET (RST), we reset everything.
4160 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
4161 	 *  active CCBs with RESET status, prepare all devices
4162 	 *  for negotiating again and restart the SCRIPTS.
4163 	 *  On STO and UDC, we complete the CCB with the corres-
4164 	 *  ponding status and restart the SCRIPTS.
4165 	 */
4166 	if (sist & RST) {
4167 		xpt_print_path(np->path);
4168 		printf("SCSI BUS reset detected.\n");
4169 		sym_init (np, 1);
4170 		return;
4171 	};
4172 
4173 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4174 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4175 
4176 	if (!(sist  & (GEN|HTH|SGE)) &&
4177 	    !(dstat & (MDPE|BF|ABRT|IID))) {
4178 		if	(sist & SBMC)	sym_int_sbmc (np);
4179 		else if (sist & STO)	sym_int_sto (np);
4180 		else if (sist & UDC)	sym_int_udc (np);
4181 		else			goto unknown_int;
4182 		return;
4183 	};
4184 
4185 	/*
4186 	 *  Now, interrupts we are not able to recover cleanly.
4187 	 *
4188 	 *  Log message for hard errors.
4189 	 *  Reset everything.
4190 	 */
4191 
4192 	sym_log_hard_error(np, sist, dstat);
4193 
4194 	if ((sist & (GEN|HTH|SGE)) ||
4195 		(dstat & (MDPE|BF|ABRT|IID))) {
4196 		sym_start_reset(np);
4197 		return;
4198 	};
4199 
4200 unknown_int:
4201 	/*
4202 	 *  We just miss the cause of the interrupt. :(
4203 	 *  Print a message. The timeout will do the real work.
4204 	 */
4205 	printf(	"%s: unknown interrupt(s) ignored, "
4206 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
4207 		sym_name(np), istat, dstat, sist);
4208 }
4209 
4210 static void sym_intr(void *arg)
4211 {
4212 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
4213 	sym_intr1((hcb_p) arg);
4214 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
4215 	return;
4216 }
4217 
4218 static void sym_poll(struct cam_sim *sim)
4219 {
4220 	int s = splcam();
4221 	sym_intr(cam_sim_softc(sim));
4222 	splx(s);
4223 }
4224 
4225 
4226 /*
4227  *  generic recovery from scsi interrupt
4228  *
4229  *  The doc says that when the chip gets an SCSI interrupt,
4230  *  it tries to stop in an orderly fashion, by completing
4231  *  an instruction fetch that had started or by flushing
4232  *  the DMA fifo for a write to memory that was executing.
4233  *  Such a fashion is not enough to know if the instruction
4234  *  that was just before the current DSP value has been
4235  *  executed or not.
4236  *
4237  *  There are some small SCRIPTS sections that deal with
4238  *  the start queue and the done queue that may break any
4239  *  assomption from the C code if we are interrupted
4240  *  inside, so we reset if this happens. Btw, since these
4241  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4242  *  started SCSI operations, it is very unlikely to happen.
4243  *
4244  *  All the driver data structures are supposed to be
4245  *  allocated from the same 4 GB memory window, so there
4246  *  is a 1 to 1 relationship between DSA and driver data
4247  *  structures. Since we are careful :) to invalidate the
4248  *  DSA when we complete a command or when the SCRIPTS
4249  *  pushes a DSA into a queue, we can trust it when it
4250  *  points to a CCB.
4251  */
4252 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4253 {
4254 	u32	dsp	= INL (nc_dsp);
4255 	u32	dsa	= INL (nc_dsa);
4256 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4257 
4258 	/*
4259 	 *  If we haven't been interrupted inside the SCRIPTS
4260 	 *  critical pathes, we can safely restart the SCRIPTS
4261 	 *  and trust the DSA value if it matches a CCB.
4262 	 */
4263 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4264 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4265 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4266 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4267 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4268 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4269 	    (!(dsp > SCRIPTA_BA (np, done) &&
4270 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4271 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4272 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4273 		/*
4274 		 *  If we have a CCB, let the SCRIPTS call us back for
4275 		 *  the handling of the error with SCRATCHA filled with
4276 		 *  STARTPOS. This way, we will be able to freeze the
4277 		 *  device queue and requeue awaiting IOs.
4278 		 */
4279 		if (cp) {
4280 			cp->host_status = hsts;
4281 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4282 		}
4283 		/*
4284 		 *  Otherwise just restart the SCRIPTS.
4285 		 */
4286 		else {
4287 			OUTL (nc_dsa, 0xffffff);
4288 			OUTL_DSP (SCRIPTA_BA (np, start));
4289 		}
4290 	}
4291 	else
4292 		goto reset_all;
4293 
4294 	return;
4295 
4296 reset_all:
4297 	sym_start_reset(np);
4298 }
4299 
4300 /*
4301  *  chip exception handler for selection timeout
4302  */
4303 void sym_int_sto (hcb_p np)
4304 {
4305 	u32 dsp	= INL (nc_dsp);
4306 
4307 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4308 
4309 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4310 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4311 	else
4312 		sym_start_reset(np);
4313 }
4314 
4315 /*
4316  *  chip exception handler for unexpected disconnect
4317  */
4318 void sym_int_udc (hcb_p np)
4319 {
4320 	printf ("%s: unexpected disconnect\n", sym_name(np));
4321 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4322 }
4323 
4324 /*
4325  *  chip exception handler for SCSI bus mode change
4326  *
4327  *  spi2-r12 11.2.3 says a transceiver mode change must
4328  *  generate a reset event and a device that detects a reset
4329  *  event shall initiate a hard reset. It says also that a
4330  *  device that detects a mode change shall set data transfer
4331  *  mode to eight bit asynchronous, etc...
4332  *  So, just reinitializing all except chip should be enough.
4333  */
4334 static void sym_int_sbmc (hcb_p np)
4335 {
4336 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4337 
4338 	/*
4339 	 *  Notify user.
4340 	 */
4341 	xpt_print_path(np->path);
4342 	printf("SCSI BUS mode change from %s to %s.\n",
4343 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4344 
4345 	/*
4346 	 *  Should suspend command processing for a few seconds and
4347 	 *  reinitialize all except the chip.
4348 	 */
4349 	sym_init (np, 2);
4350 }
4351 
4352 /*
4353  *  chip exception handler for SCSI parity error.
4354  *
4355  *  When the chip detects a SCSI parity error and is
4356  *  currently executing a (CH)MOV instruction, it does
4357  *  not interrupt immediately, but tries to finish the
4358  *  transfer of the current scatter entry before
4359  *  interrupting. The following situations may occur:
4360  *
4361  *  - The complete scatter entry has been transferred
4362  *    without the device having changed phase.
4363  *    The chip will then interrupt with the DSP pointing
4364  *    to the instruction that follows the MOV.
4365  *
4366  *  - A phase mismatch occurs before the MOV finished
4367  *    and phase errors are to be handled by the C code.
4368  *    The chip will then interrupt with both PAR and MA
4369  *    conditions set.
4370  *
4371  *  - A phase mismatch occurs before the MOV finished and
4372  *    phase errors are to be handled by SCRIPTS.
4373  *    The chip will load the DSP with the phase mismatch
4374  *    JUMP address and interrupt the host processor.
4375  */
4376 static void sym_int_par (hcb_p np, u_short sist)
4377 {
4378 	u_char	hsts	= INB (HS_PRT);
4379 	u32	dsp	= INL (nc_dsp);
4380 	u32	dbc	= INL (nc_dbc);
4381 	u32	dsa	= INL (nc_dsa);
4382 	u_char	sbcl	= INB (nc_sbcl);
4383 	u_char	cmd	= dbc >> 24;
4384 	int phase	= cmd & 7;
4385 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4386 
4387 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4388 		sym_name(np), hsts, dbc, sbcl);
4389 
4390 	/*
4391 	 *  Check that the chip is connected to the SCSI BUS.
4392 	 */
4393 	if (!(INB (nc_scntl1) & ISCON)) {
4394 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4395 		return;
4396 	}
4397 
4398 	/*
4399 	 *  If the nexus is not clearly identified, reset the bus.
4400 	 *  We will try to do better later.
4401 	 */
4402 	if (!cp)
4403 		goto reset_all;
4404 
4405 	/*
4406 	 *  Check instruction was a MOV, direction was INPUT and
4407 	 *  ATN is asserted.
4408 	 */
4409 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4410 		goto reset_all;
4411 
4412 	/*
4413 	 *  Keep track of the parity error.
4414 	 */
4415 	OUTONB (HF_PRT, HF_EXT_ERR);
4416 	cp->xerr_status |= XE_PARITY_ERR;
4417 
4418 	/*
4419 	 *  Prepare the message to send to the device.
4420 	 */
4421 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4422 
4423 	/*
4424 	 *  If the old phase was DATA IN phase, we have to deal with
4425 	 *  the 3 situations described above.
4426 	 *  For other input phases (MSG IN and STATUS), the device
4427 	 *  must resend the whole thing that failed parity checking
4428 	 *  or signal error. So, jumping to dispatcher should be OK.
4429 	 */
4430 	if (phase == 1 || phase == 5) {
4431 		/* Phase mismatch handled by SCRIPTS */
4432 		if (dsp == SCRIPTB_BA (np, pm_handle))
4433 			OUTL_DSP (dsp);
4434 		/* Phase mismatch handled by the C code */
4435 		else if (sist & MA)
4436 			sym_int_ma (np);
4437 		/* No phase mismatch occurred */
4438 		else {
4439 			OUTL (nc_temp, dsp);
4440 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4441 		}
4442 	}
4443 	else
4444 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4445 	return;
4446 
4447 reset_all:
4448 	sym_start_reset(np);
4449 	return;
4450 }
4451 
4452 /*
4453  *  chip exception handler for phase errors.
4454  *
4455  *  We have to construct a new transfer descriptor,
4456  *  to transfer the rest of the current block.
4457  */
4458 static void sym_int_ma (hcb_p np)
4459 {
4460 	u32	dbc;
4461 	u32	rest;
4462 	u32	dsp;
4463 	u32	dsa;
4464 	u32	nxtdsp;
4465 	u32	*vdsp;
4466 	u32	oadr, olen;
4467 	u32	*tblp;
4468         u32	newcmd;
4469 	u_int	delta;
4470 	u_char	cmd;
4471 	u_char	hflags, hflags0;
4472 	struct	sym_pmc *pm;
4473 	ccb_p	cp;
4474 
4475 	dsp	= INL (nc_dsp);
4476 	dbc	= INL (nc_dbc);
4477 	dsa	= INL (nc_dsa);
4478 
4479 	cmd	= dbc >> 24;
4480 	rest	= dbc & 0xffffff;
4481 	delta	= 0;
4482 
4483 	/*
4484 	 *  locate matching cp if any.
4485 	 */
4486 	cp = sym_ccb_from_dsa(np, dsa);
4487 
4488 	/*
4489 	 *  Donnot take into account dma fifo and various buffers in
4490 	 *  INPUT phase since the chip flushes everything before
4491 	 *  raising the MA interrupt for interrupted INPUT phases.
4492 	 *  For DATA IN phase, we will check for the SWIDE later.
4493 	 */
4494 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4495 		u_char ss0, ss2;
4496 
4497 		if (np->features & FE_DFBC)
4498 			delta = INW (nc_dfbc);
4499 		else {
4500 			u32 dfifo;
4501 
4502 			/*
4503 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4504 			 */
4505 			dfifo = INL(nc_dfifo);
4506 
4507 			/*
4508 			 *  Calculate remaining bytes in DMA fifo.
4509 			 *  (CTEST5 = dfifo >> 16)
4510 			 */
4511 			if (dfifo & (DFS << 16))
4512 				delta = ((((dfifo >> 8) & 0x300) |
4513 				          (dfifo & 0xff)) - rest) & 0x3ff;
4514 			else
4515 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4516 		}
4517 
4518 		/*
4519 		 *  The data in the dma fifo has not been transfered to
4520 		 *  the target -> add the amount to the rest
4521 		 *  and clear the data.
4522 		 *  Check the sstat2 register in case of wide transfer.
4523 		 */
4524 		rest += delta;
4525 		ss0  = INB (nc_sstat0);
4526 		if (ss0 & OLF) rest++;
4527 		if (!(np->features & FE_C10))
4528 			if (ss0 & ORF) rest++;
4529 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4530 			ss2 = INB (nc_sstat2);
4531 			if (ss2 & OLF1) rest++;
4532 			if (!(np->features & FE_C10))
4533 				if (ss2 & ORF1) rest++;
4534 		};
4535 
4536 		/*
4537 		 *  Clear fifos.
4538 		 */
4539 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4540 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4541 	}
4542 
4543 	/*
4544 	 *  log the information
4545 	 */
4546 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4547 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4548 			(unsigned) rest, (unsigned) delta);
4549 
4550 	/*
4551 	 *  try to find the interrupted script command,
4552 	 *  and the address at which to continue.
4553 	 */
4554 	vdsp	= 0;
4555 	nxtdsp	= 0;
4556 	if	(dsp >  np->scripta_ba &&
4557 		 dsp <= np->scripta_ba + np->scripta_sz) {
4558 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4559 		nxtdsp = dsp;
4560 	}
4561 	else if	(dsp >  np->scriptb_ba &&
4562 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4563 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4564 		nxtdsp = dsp;
4565 	}
4566 
4567 	/*
4568 	 *  log the information
4569 	 */
4570 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4571 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4572 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4573 	};
4574 
4575 	if (!vdsp) {
4576 		printf ("%s: interrupted SCRIPT address not found.\n",
4577 			sym_name (np));
4578 		goto reset_all;
4579 	}
4580 
4581 	if (!cp) {
4582 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4583 			sym_name (np));
4584 		goto reset_all;
4585 	}
4586 
4587 	/*
4588 	 *  get old startaddress and old length.
4589 	 */
4590 	oadr = scr_to_cpu(vdsp[1]);
4591 
4592 	if (cmd & 0x10) {	/* Table indirect */
4593 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4594 		olen = scr_to_cpu(tblp[0]);
4595 		oadr = scr_to_cpu(tblp[1]);
4596 	} else {
4597 		tblp = (u32 *) 0;
4598 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4599 	};
4600 
4601 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4602 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4603 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4604 			tblp,
4605 			(unsigned) olen,
4606 			(unsigned) oadr);
4607 	};
4608 
4609 	/*
4610 	 *  check cmd against assumed interrupted script command.
4611 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4612 	 *  the phase.
4613 	 */
4614 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4615 		PRINT_ADDR(cp);
4616 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4617 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4618 
4619 		goto reset_all;
4620 	};
4621 
4622 	/*
4623 	 *  if old phase not dataphase, leave here.
4624 	 */
4625 	if (cmd & 2) {
4626 		PRINT_ADDR(cp);
4627 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4628 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4629 			(unsigned)oadr, (unsigned)rest);
4630 		goto unexpected_phase;
4631 	};
4632 
4633 	/*
4634 	 *  Choose the correct PM save area.
4635 	 *
4636 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4637 	 *  this stuff. The equivalent code is implemented in
4638 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4639 	 *  handle PM from the SCRIPTS processor.
4640 	 */
4641 	hflags0 = INB (HF_PRT);
4642 	hflags = hflags0;
4643 
4644 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4645 		if (hflags & HF_IN_PM0)
4646 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4647 		else if	(hflags & HF_IN_PM1)
4648 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4649 
4650 		if (hflags & HF_DP_SAVED)
4651 			hflags ^= HF_ACT_PM;
4652 	}
4653 
4654 	if (!(hflags & HF_ACT_PM)) {
4655 		pm = &cp->phys.pm0;
4656 		newcmd = SCRIPTA_BA (np, pm0_data);
4657 	}
4658 	else {
4659 		pm = &cp->phys.pm1;
4660 		newcmd = SCRIPTA_BA (np, pm1_data);
4661 	}
4662 
4663 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4664 	if (hflags != hflags0)
4665 		OUTB (HF_PRT, hflags);
4666 
4667 	/*
4668 	 *  fillin the phase mismatch context
4669 	 */
4670 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4671 	pm->sg.size = cpu_to_scr(rest);
4672 	pm->ret     = cpu_to_scr(nxtdsp);
4673 
4674 	/*
4675 	 *  If we have a SWIDE,
4676 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4677 	 *  - compute the SCRIPTS address to restart from,
4678 	 *  - move current data pointer context by one byte.
4679 	 */
4680 	nxtdsp = SCRIPTA_BA (np, dispatch);
4681 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4682 	    (INB (nc_scntl2) & WSR)) {
4683 		u32 tmp;
4684 
4685 		/*
4686 		 *  Set up the table indirect for the MOVE
4687 		 *  of the residual byte and adjust the data
4688 		 *  pointer context.
4689 		 */
4690 		tmp = scr_to_cpu(pm->sg.addr);
4691 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4692 		pm->sg.addr = cpu_to_scr(tmp + 1);
4693 		tmp = scr_to_cpu(pm->sg.size);
4694 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4695 		pm->sg.size = cpu_to_scr(tmp - 1);
4696 
4697 		/*
4698 		 *  If only the residual byte is to be moved,
4699 		 *  no PM context is needed.
4700 		 */
4701 		if ((tmp&0xffffff) == 1)
4702 			newcmd = pm->ret;
4703 
4704 		/*
4705 		 *  Prepare the address of SCRIPTS that will
4706 		 *  move the residual byte to memory.
4707 		 */
4708 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4709 	}
4710 
4711 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4712 		PRINT_ADDR(cp);
4713 		printf ("PM %x %x %x / %x %x %x.\n",
4714 			hflags0, hflags, newcmd,
4715 			(unsigned)scr_to_cpu(pm->sg.addr),
4716 			(unsigned)scr_to_cpu(pm->sg.size),
4717 			(unsigned)scr_to_cpu(pm->ret));
4718 	}
4719 
4720 	/*
4721 	 *  Restart the SCRIPTS processor.
4722 	 */
4723 	OUTL (nc_temp, newcmd);
4724 	OUTL_DSP (nxtdsp);
4725 	return;
4726 
4727 	/*
4728 	 *  Unexpected phase changes that occurs when the current phase
4729 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4730 	 *  Such event may only happen when the SCRIPTS is using a
4731 	 *  multibyte SCSI MOVE.
4732 	 *
4733 	 *  Phase change		Some possible cause
4734 	 *
4735 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4736 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4737 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4738 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4739 	 *  			negotiation messages.
4740 	 *
4741 	 *  The code below does not care of the new phase and so
4742 	 *  trusts the target. Why to annoy it ?
4743 	 *  If the interrupted phase is COMMAND phase, we restart at
4744 	 *  dispatcher.
4745 	 *  If a target does not get all the messages after selection,
4746 	 *  the code assumes blindly that the target discards extended
4747 	 *  messages and clears the negotiation status.
4748 	 *  If the target does not want all our response to negotiation,
4749 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4750 	 *  bloat for such a should_not_happen situation).
4751 	 *  In all other situation, we reset the BUS.
4752 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4753 	 */
4754 unexpected_phase:
4755 	dsp -= 8;
4756 	nxtdsp = 0;
4757 
4758 	switch (cmd & 7) {
4759 	case 2:	/* COMMAND phase */
4760 		nxtdsp = SCRIPTA_BA (np, dispatch);
4761 		break;
4762 #if 0
4763 	case 3:	/* STATUS  phase */
4764 		nxtdsp = SCRIPTA_BA (np, dispatch);
4765 		break;
4766 #endif
4767 	case 6:	/* MSG OUT phase */
4768 		/*
4769 		 *  If the device may want to use untagged when we want
4770 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4771 		 *  since we will not be able to handle reselect.
4772 		 *  Otherwise, we just don't care.
4773 		 */
4774 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4775 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4776 				cp->host_status = HS_BUSY;
4777 				np->msgout[0] = M_IDENTIFY | cp->lun;
4778 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4779 			}
4780 			else
4781 				nxtdsp = SCRIPTB_BA (np, ident_break);
4782 		}
4783 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4784 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4785 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4786 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4787 		}
4788 		break;
4789 #if 0
4790 	case 7:	/* MSG IN  phase */
4791 		nxtdsp = SCRIPTA_BA (np, clrack);
4792 		break;
4793 #endif
4794 	}
4795 
4796 	if (nxtdsp) {
4797 		OUTL_DSP (nxtdsp);
4798 		return;
4799 	}
4800 
4801 reset_all:
4802 	sym_start_reset(np);
4803 }
4804 
4805 /*
4806  *  Dequeue from the START queue all CCBs that match
4807  *  a given target/lun/task condition (-1 means all),
4808  *  and move them from the BUSY queue to the COMP queue
4809  *  with CAM_REQUEUE_REQ status condition.
4810  *  This function is used during error handling/recovery.
4811  *  It is called with SCRIPTS not running.
4812  */
4813 static int
4814 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4815 {
4816 	int j;
4817 	ccb_p cp;
4818 
4819 	/*
4820 	 *  Make sure the starting index is within range.
4821 	 */
4822 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4823 
4824 	/*
4825 	 *  Walk until end of START queue and dequeue every job
4826 	 *  that matches the target/lun/task condition.
4827 	 */
4828 	j = i;
4829 	while (i != np->squeueput) {
4830 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4831 		assert(cp);
4832 #ifdef SYM_CONF_IARB_SUPPORT
4833 		/* Forget hints for IARB, they may be no longer relevant */
4834 		cp->host_flags &= ~HF_HINT_IARB;
4835 #endif
4836 		if ((target == -1 || cp->target == target) &&
4837 		    (lun    == -1 || cp->lun    == lun)    &&
4838 		    (task   == -1 || cp->tag    == task)) {
4839 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4840 			sym_remque(&cp->link_ccbq);
4841 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4842 		}
4843 		else {
4844 			if (i != j)
4845 				np->squeue[j] = np->squeue[i];
4846 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4847 		}
4848 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4849 	}
4850 	if (i != j)		/* Copy back the idle task if needed */
4851 		np->squeue[j] = np->squeue[i];
4852 	np->squeueput = j;	/* Update our current start queue pointer */
4853 
4854 	return (i - j) / 2;
4855 }
4856 
4857 /*
4858  *  Complete all CCBs queued to the COMP queue.
4859  *
4860  *  These CCBs are assumed:
4861  *  - Not to be referenced either by devices or
4862  *    SCRIPTS-related queues and datas.
4863  *  - To have to be completed with an error condition
4864  *    or requeued.
4865  *
4866  *  The device queue freeze count is incremented
4867  *  for each CCB that does not prevent this.
4868  *  This function is called when all CCBs involved
4869  *  in error handling/recovery have been reaped.
4870  */
4871 static void
4872 sym_flush_comp_queue(hcb_p np, int cam_status)
4873 {
4874 	SYM_QUEHEAD *qp;
4875 	ccb_p cp;
4876 
4877 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
4878 		union ccb *ccb;
4879 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4880 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4881 		/* Leave quiet CCBs waiting for resources */
4882 		if (cp->host_status == HS_WAIT)
4883 			continue;
4884 		ccb = cp->cam_ccb;
4885 		if (cam_status)
4886 			sym_set_cam_status(ccb, cam_status);
4887 		sym_free_ccb(np, cp);
4888 		sym_freeze_cam_ccb(ccb);
4889 		sym_xpt_done(np, ccb);
4890 	}
4891 }
4892 
4893 /*
4894  *  chip handler for bad SCSI status condition
4895  *
4896  *  In case of bad SCSI status, we unqueue all the tasks
4897  *  currently queued to the controller but not yet started
4898  *  and then restart the SCRIPTS processor immediately.
4899  *
4900  *  QUEUE FULL and BUSY conditions are handled the same way.
4901  *  Basically all the not yet started tasks are requeued in
4902  *  device queue and the queue is frozen until a completion.
4903  *
4904  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4905  *  the CCB of the failed command to prepare a REQUEST SENSE
4906  *  SCSI command and queue it to the controller queue.
4907  *
4908  *  SCRATCHA is assumed to have been loaded with STARTPOS
4909  *  before the SCRIPTS called the C code.
4910  */
4911 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4912 {
4913 	tcb_p tp	= &np->target[cp->target];
4914 	u32		startp;
4915 	u_char		s_status = cp->ssss_status;
4916 	u_char		h_flags  = cp->host_flags;
4917 	int		msglen;
4918 	int		nego;
4919 	int		i;
4920 
4921 	/*
4922 	 *  Compute the index of the next job to start from SCRIPTS.
4923 	 */
4924 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4925 
4926 	/*
4927 	 *  The last CCB queued used for IARB hint may be
4928 	 *  no longer relevant. Forget it.
4929 	 */
4930 #ifdef SYM_CONF_IARB_SUPPORT
4931 	if (np->last_cp)
4932 		np->last_cp = 0;
4933 #endif
4934 
4935 	/*
4936 	 *  Now deal with the SCSI status.
4937 	 */
4938 	switch(s_status) {
4939 	case S_BUSY:
4940 	case S_QUEUE_FULL:
4941 		if (sym_verbose >= 2) {
4942 			PRINT_ADDR(cp);
4943 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4944 		}
4945 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4946 		sym_complete_error (np, cp);
4947 		break;
4948 	case S_TERMINATED:
4949 	case S_CHECK_COND:
4950 		/*
4951 		 *  If we get an SCSI error when requesting sense, give up.
4952 		 */
4953 		if (h_flags & HF_SENSE) {
4954 			sym_complete_error (np, cp);
4955 			break;
4956 		}
4957 
4958 		/*
4959 		 *  Dequeue all queued CCBs for that device not yet started,
4960 		 *  and restart the SCRIPTS processor immediately.
4961 		 */
4962 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4963 		OUTL_DSP (SCRIPTA_BA (np, start));
4964 
4965  		/*
4966 		 *  Save some info of the actual IO.
4967 		 *  Compute the data residual.
4968 		 */
4969 		cp->sv_scsi_status = cp->ssss_status;
4970 		cp->sv_xerr_status = cp->xerr_status;
4971 		cp->sv_resid = sym_compute_residual(np, cp);
4972 
4973 		/*
4974 		 *  Prepare all needed data structures for
4975 		 *  requesting sense data.
4976 		 */
4977 
4978 		/*
4979 		 *  identify message
4980 		 */
4981 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4982 		msglen = 1;
4983 
4984 		/*
4985 		 *  If we are currently using anything different from
4986 		 *  async. 8 bit data transfers with that target,
4987 		 *  start a negotiation, since the device may want
4988 		 *  to report us a UNIT ATTENTION condition due to
4989 		 *  a cause we currently ignore, and we donnot want
4990 		 *  to be stuck with WIDE and/or SYNC data transfer.
4991 		 *
4992 		 *  cp->nego_status is filled by sym_prepare_nego().
4993 		 */
4994 		cp->nego_status = 0;
4995 		nego = 0;
4996 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4997 			nego = NS_PPR;
4998 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4999 			nego = NS_WIDE;
5000 		else if (tp->tinfo.current.offset != 0)
5001 			nego = NS_SYNC;
5002 		if (nego)
5003 			msglen +=
5004 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
5005 		/*
5006 		 *  Message table indirect structure.
5007 		 */
5008 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
5009 		cp->phys.smsg.size	= cpu_to_scr(msglen);
5010 
5011 		/*
5012 		 *  sense command
5013 		 */
5014 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
5015 		cp->phys.cmd.size	= cpu_to_scr(6);
5016 
5017 		/*
5018 		 *  patch requested size into sense command
5019 		 */
5020 		cp->sensecmd[0]		= 0x03;
5021 		cp->sensecmd[1]		= cp->lun << 5;
5022 #ifdef	FreeBSD_New_Tran_Settings
5023 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
5024 			cp->sensecmd[1]	= 0;
5025 #endif
5026 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
5027 		cp->data_len		= SYM_SNS_BBUF_LEN;
5028 
5029 		/*
5030 		 *  sense data
5031 		 */
5032 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
5033 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
5034 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
5035 
5036 		/*
5037 		 *  requeue the command.
5038 		 */
5039 		startp = SCRIPTB_BA (np, sdata_in);
5040 
5041 		cp->phys.head.savep	= cpu_to_scr(startp);
5042 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
5043 		cp->phys.head.lastp	= cpu_to_scr(startp);
5044 		cp->startp	= cpu_to_scr(startp);
5045 
5046 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
5047 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5048 		cp->ssss_status = S_ILLEGAL;
5049 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
5050 		cp->xerr_status = 0;
5051 		cp->extra_bytes = 0;
5052 
5053 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
5054 
5055 		/*
5056 		 *  Requeue the command.
5057 		 */
5058 		sym_put_start_queue(np, cp);
5059 
5060 		/*
5061 		 *  Give back to upper layer everything we have dequeued.
5062 		 */
5063 		sym_flush_comp_queue(np, 0);
5064 		break;
5065 	}
5066 }
5067 
5068 /*
5069  *  After a device has accepted some management message
5070  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
5071  *  a device signals a UNIT ATTENTION condition, some
5072  *  tasks are thrown away by the device. We are required
5073  *  to reflect that on our tasks list since the device
5074  *  will never complete these tasks.
5075  *
5076  *  This function move from the BUSY queue to the COMP
5077  *  queue all disconnected CCBs for a given target that
5078  *  match the following criteria:
5079  *  - lun=-1  means any logical UNIT otherwise a given one.
5080  *  - task=-1 means any task, otherwise a given one.
5081  */
5082 static int
5083 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
5084 {
5085 	SYM_QUEHEAD qtmp, *qp;
5086 	int i = 0;
5087 	ccb_p cp;
5088 
5089 	/*
5090 	 *  Move the entire BUSY queue to our temporary queue.
5091 	 */
5092 	sym_que_init(&qtmp);
5093 	sym_que_splice(&np->busy_ccbq, &qtmp);
5094 	sym_que_init(&np->busy_ccbq);
5095 
5096 	/*
5097 	 *  Put all CCBs that matches our criteria into
5098 	 *  the COMP queue and put back other ones into
5099 	 *  the BUSY queue.
5100 	 */
5101 	while ((qp = sym_remque_head(&qtmp)) != 0) {
5102 		union ccb *ccb;
5103 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5104 		ccb = cp->cam_ccb;
5105 		if (cp->host_status != HS_DISCONNECT ||
5106 		    cp->target != target	     ||
5107 		    (lun  != -1 && cp->lun != lun)   ||
5108 		    (task != -1 &&
5109 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
5110 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
5111 			continue;
5112 		}
5113 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
5114 
5115 		/* Preserve the software timeout condition */
5116 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
5117 			sym_set_cam_status(ccb, cam_status);
5118 		++i;
5119 #if 0
5120 printf("XXXX TASK @%p CLEARED\n", cp);
5121 #endif
5122 	}
5123 	return i;
5124 }
5125 
5126 /*
5127  *  chip handler for TASKS recovery
5128  *
5129  *  We cannot safely abort a command, while the SCRIPTS
5130  *  processor is running, since we just would be in race
5131  *  with it.
5132  *
5133  *  As long as we have tasks to abort, we keep the SEM
5134  *  bit set in the ISTAT. When this bit is set, the
5135  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
5136  *  each time it enters the scheduler.
5137  *
5138  *  If we have to reset a target, clear tasks of a unit,
5139  *  or to perform the abort of a disconnected job, we
5140  *  restart the SCRIPTS for selecting the target. Once
5141  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
5142  *  If it loses arbitration, the SCRIPTS will interrupt again
5143  *  the next time it will enter its scheduler, and so on ...
5144  *
5145  *  On SIR_TARGET_SELECTED, we scan for the more
5146  *  appropriate thing to do:
5147  *
5148  *  - If nothing, we just sent a M_ABORT message to the
5149  *    target to get rid of the useless SCSI bus ownership.
5150  *    According to the specs, no tasks shall be affected.
5151  *  - If the target is to be reset, we send it a M_RESET
5152  *    message.
5153  *  - If a logical UNIT is to be cleared , we send the
5154  *    IDENTIFY(lun) + M_ABORT.
5155  *  - If an untagged task is to be aborted, we send the
5156  *    IDENTIFY(lun) + M_ABORT.
5157  *  - If a tagged task is to be aborted, we send the
5158  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
5159  *
5160  *  Once our 'kiss of death' :) message has been accepted
5161  *  by the target, the SCRIPTS interrupts again
5162  *  (SIR_ABORT_SENT). On this interrupt, we complete
5163  *  all the CCBs that should have been aborted by the
5164  *  target according to our message.
5165  */
5166 static void sym_sir_task_recovery(hcb_p np, int num)
5167 {
5168 	SYM_QUEHEAD *qp;
5169 	ccb_p cp;
5170 	tcb_p tp;
5171 	int target=-1, lun=-1, task;
5172 	int i, k;
5173 
5174 	switch(num) {
5175 	/*
5176 	 *  The SCRIPTS processor stopped before starting
5177 	 *  the next command in order to allow us to perform
5178 	 *  some task recovery.
5179 	 */
5180 	case SIR_SCRIPT_STOPPED:
5181 		/*
5182 		 *  Do we have any target to reset or unit to clear ?
5183 		 */
5184 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5185 			tp = &np->target[i];
5186 			if (tp->to_reset ||
5187 			    (tp->lun0p && tp->lun0p->to_clear)) {
5188 				target = i;
5189 				break;
5190 			}
5191 			if (!tp->lunmp)
5192 				continue;
5193 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5194 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5195 					target	= i;
5196 					break;
5197 				}
5198 			}
5199 			if (target != -1)
5200 				break;
5201 		}
5202 
5203 		/*
5204 		 *  If not, walk the busy queue for any
5205 		 *  disconnected CCB to be aborted.
5206 		 */
5207 		if (target == -1) {
5208 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5209 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
5210 				if (cp->host_status != HS_DISCONNECT)
5211 					continue;
5212 				if (cp->to_abort) {
5213 					target = cp->target;
5214 					break;
5215 				}
5216 			}
5217 		}
5218 
5219 		/*
5220 		 *  If some target is to be selected,
5221 		 *  prepare and start the selection.
5222 		 */
5223 		if (target != -1) {
5224 			tp = &np->target[target];
5225 			np->abrt_sel.sel_id	= target;
5226 			np->abrt_sel.sel_scntl3 = tp->head.wval;
5227 			np->abrt_sel.sel_sxfer  = tp->head.sval;
5228 			OUTL(nc_dsa, np->hcb_ba);
5229 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
5230 			return;
5231 		}
5232 
5233 		/*
5234 		 *  Now look for a CCB to abort that haven't started yet.
5235 		 *  Btw, the SCRIPTS processor is still stopped, so
5236 		 *  we are not in race.
5237 		 */
5238 		i = 0;
5239 		cp = 0;
5240 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5241 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5242 			if (cp->host_status != HS_BUSY &&
5243 			    cp->host_status != HS_NEGOTIATE)
5244 				continue;
5245 			if (!cp->to_abort)
5246 				continue;
5247 #ifdef SYM_CONF_IARB_SUPPORT
5248 			/*
5249 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5250 			 *    want to cancel the last queued CCB, since the
5251 			 *    SCRIPTS may have anticipated the selection.
5252 			 */
5253 			if (cp == np->last_cp) {
5254 				cp->to_abort = 0;
5255 				continue;
5256 			}
5257 #endif
5258 			i = 1;	/* Means we have found some */
5259 			break;
5260 		}
5261 		if (!i) {
5262 			/*
5263 			 *  We are done, so we donnot need
5264 			 *  to synchronize with the SCRIPTS anylonger.
5265 			 *  Remove the SEM flag from the ISTAT.
5266 			 */
5267 			np->istat_sem = 0;
5268 			OUTB (nc_istat, SIGP);
5269 			break;
5270 		}
5271 		/*
5272 		 *  Compute index of next position in the start
5273 		 *  queue the SCRIPTS intends to start and dequeue
5274 		 *  all CCBs for that device that haven't been started.
5275 		 */
5276 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5277 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5278 
5279 		/*
5280 		 *  Make sure at least our IO to abort has been dequeued.
5281 		 */
5282 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5283 
5284 		/*
5285 		 *  Keep track in cam status of the reason of the abort.
5286 		 */
5287 		if (cp->to_abort == 2)
5288 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5289 		else
5290 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5291 
5292 		/*
5293 		 *  Complete with error everything that we have dequeued.
5294 	 	 */
5295 		sym_flush_comp_queue(np, 0);
5296 		break;
5297 	/*
5298 	 *  The SCRIPTS processor has selected a target
5299 	 *  we may have some manual recovery to perform for.
5300 	 */
5301 	case SIR_TARGET_SELECTED:
5302 		target = (INB (nc_sdid) & 0xf);
5303 		tp = &np->target[target];
5304 
5305 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5306 
5307 		/*
5308 		 *  If the target is to be reset, prepare a
5309 		 *  M_RESET message and clear the to_reset flag
5310 		 *  since we donnot expect this operation to fail.
5311 		 */
5312 		if (tp->to_reset) {
5313 			np->abrt_msg[0] = M_RESET;
5314 			np->abrt_tbl.size = 1;
5315 			tp->to_reset = 0;
5316 			break;
5317 		}
5318 
5319 		/*
5320 		 *  Otherwise, look for some logical unit to be cleared.
5321 		 */
5322 		if (tp->lun0p && tp->lun0p->to_clear)
5323 			lun = 0;
5324 		else if (tp->lunmp) {
5325 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5326 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5327 					lun = k;
5328 					break;
5329 				}
5330 			}
5331 		}
5332 
5333 		/*
5334 		 *  If a logical unit is to be cleared, prepare
5335 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5336 		 */
5337 		if (lun != -1) {
5338 			lcb_p lp = sym_lp(np, tp, lun);
5339 			lp->to_clear = 0; /* We donnot expect to fail here */
5340 			np->abrt_msg[0] = M_IDENTIFY | lun;
5341 			np->abrt_msg[1] = M_ABORT;
5342 			np->abrt_tbl.size = 2;
5343 			break;
5344 		}
5345 
5346 		/*
5347 		 *  Otherwise, look for some disconnected job to
5348 		 *  abort for this target.
5349 		 */
5350 		i = 0;
5351 		cp = 0;
5352 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5353 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5354 			if (cp->host_status != HS_DISCONNECT)
5355 				continue;
5356 			if (cp->target != target)
5357 				continue;
5358 			if (!cp->to_abort)
5359 				continue;
5360 			i = 1;	/* Means we have some */
5361 			break;
5362 		}
5363 
5364 		/*
5365 		 *  If we have none, probably since the device has
5366 		 *  completed the command before we won abitration,
5367 		 *  send a M_ABORT message without IDENTIFY.
5368 		 *  According to the specs, the device must just
5369 		 *  disconnect the BUS and not abort any task.
5370 		 */
5371 		if (!i) {
5372 			np->abrt_msg[0] = M_ABORT;
5373 			np->abrt_tbl.size = 1;
5374 			break;
5375 		}
5376 
5377 		/*
5378 		 *  We have some task to abort.
5379 		 *  Set the IDENTIFY(lun)
5380 		 */
5381 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5382 
5383 		/*
5384 		 *  If we want to abort an untagged command, we
5385 		 *  will send a IDENTIFY + M_ABORT.
5386 		 *  Otherwise (tagged command), we will send
5387 		 *  a IDENTITFY + task attributes + ABORT TAG.
5388 		 */
5389 		if (cp->tag == NO_TAG) {
5390 			np->abrt_msg[1] = M_ABORT;
5391 			np->abrt_tbl.size = 2;
5392 		}
5393 		else {
5394 			np->abrt_msg[1] = cp->scsi_smsg[1];
5395 			np->abrt_msg[2] = cp->scsi_smsg[2];
5396 			np->abrt_msg[3] = M_ABORT_TAG;
5397 			np->abrt_tbl.size = 4;
5398 		}
5399 		/*
5400 		 *  Keep track of software timeout condition, since the
5401 		 *  peripheral driver may not count retries on abort
5402 		 *  conditions not due to timeout.
5403 		 */
5404 		if (cp->to_abort == 2)
5405 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5406 		cp->to_abort = 0; /* We donnot expect to fail here */
5407 		break;
5408 
5409 	/*
5410 	 *  The target has accepted our message and switched
5411 	 *  to BUS FREE phase as we expected.
5412 	 */
5413 	case SIR_ABORT_SENT:
5414 		target = (INB (nc_sdid) & 0xf);
5415 		tp = &np->target[target];
5416 
5417 		/*
5418 		**  If we didn't abort anything, leave here.
5419 		*/
5420 		if (np->abrt_msg[0] == M_ABORT)
5421 			break;
5422 
5423 		/*
5424 		 *  If we sent a M_RESET, then a hardware reset has
5425 		 *  been performed by the target.
5426 		 *  - Reset everything to async 8 bit
5427 		 *  - Tell ourself to negotiate next time :-)
5428 		 *  - Prepare to clear all disconnected CCBs for
5429 		 *    this target from our task list (lun=task=-1)
5430 		 */
5431 		lun = -1;
5432 		task = -1;
5433 		if (np->abrt_msg[0] == M_RESET) {
5434 			tp->head.sval = 0;
5435 			tp->head.wval = np->rv_scntl3;
5436 			tp->head.uval = 0;
5437 			tp->tinfo.current.period = 0;
5438 			tp->tinfo.current.offset = 0;
5439 			tp->tinfo.current.width  = BUS_8_BIT;
5440 			tp->tinfo.current.options = 0;
5441 		}
5442 
5443 		/*
5444 		 *  Otherwise, check for the LUN and TASK(s)
5445 		 *  concerned by the cancelation.
5446 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5447 		 *  or an ABORT message :-)
5448 		 */
5449 		else {
5450 			lun = np->abrt_msg[0] & 0x3f;
5451 			if (np->abrt_msg[1] == M_ABORT_TAG)
5452 				task = np->abrt_msg[2];
5453 		}
5454 
5455 		/*
5456 		 *  Complete all the CCBs the device should have
5457 		 *  aborted due to our 'kiss of death' message.
5458 		 */
5459 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5460 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5461 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5462 		sym_flush_comp_queue(np, 0);
5463 
5464 		/*
5465 		 *  If we sent a BDR, make uper layer aware of that.
5466 		 */
5467 		if (np->abrt_msg[0] == M_RESET)
5468 			xpt_async(AC_SENT_BDR, np->path, NULL);
5469 		break;
5470 	}
5471 
5472 	/*
5473 	 *  Print to the log the message we intend to send.
5474 	 */
5475 	if (num == SIR_TARGET_SELECTED) {
5476 		PRINT_TARGET(np, target);
5477 		sym_printl_hex("control msgout:", np->abrt_msg,
5478 			      np->abrt_tbl.size);
5479 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5480 	}
5481 
5482 	/*
5483 	 *  Let the SCRIPTS processor continue.
5484 	 */
5485 	OUTONB_STD ();
5486 }
5487 
5488 /*
5489  *  Gerard's alchemy:) that deals with with the data
5490  *  pointer for both MDP and the residual calculation.
5491  *
5492  *  I didn't want to bloat the code by more than 200
5493  *  lignes for the handling of both MDP and the residual.
5494  *  This has been achieved by using a data pointer
5495  *  representation consisting in an index in the data
5496  *  array (dp_sg) and a negative offset (dp_ofs) that
5497  *  have the following meaning:
5498  *
5499  *  - dp_sg = SYM_CONF_MAX_SG
5500  *    we are at the end of the data script.
5501  *  - dp_sg < SYM_CONF_MAX_SG
5502  *    dp_sg points to the next entry of the scatter array
5503  *    we want to transfer.
5504  *  - dp_ofs < 0
5505  *    dp_ofs represents the residual of bytes of the
5506  *    previous entry scatter entry we will send first.
5507  *  - dp_ofs = 0
5508  *    no residual to send first.
5509  *
5510  *  The function sym_evaluate_dp() accepts an arbitray
5511  *  offset (basically from the MDP message) and returns
5512  *  the corresponding values of dp_sg and dp_ofs.
5513  */
5514 
5515 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5516 {
5517 	u32	dp_scr;
5518 	int	dp_ofs, dp_sg, dp_sgmin;
5519 	int	tmp;
5520 	struct sym_pmc *pm;
5521 
5522 	/*
5523 	 *  Compute the resulted data pointer in term of a script
5524 	 *  address within some DATA script and a signed byte offset.
5525 	 */
5526 	dp_scr = scr;
5527 	dp_ofs = *ofs;
5528 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5529 		pm = &cp->phys.pm0;
5530 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5531 		pm = &cp->phys.pm1;
5532 	else
5533 		pm = 0;
5534 
5535 	if (pm) {
5536 		dp_scr  = scr_to_cpu(pm->ret);
5537 		dp_ofs -= scr_to_cpu(pm->sg.size);
5538 	}
5539 
5540 	/*
5541 	 *  If we are auto-sensing, then we are done.
5542 	 */
5543 	if (cp->host_flags & HF_SENSE) {
5544 		*ofs = dp_ofs;
5545 		return 0;
5546 	}
5547 
5548 	/*
5549 	 *  Deduce the index of the sg entry.
5550 	 *  Keep track of the index of the first valid entry.
5551 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5552 	 *  end of the data.
5553 	 */
5554 	tmp = scr_to_cpu(cp->phys.head.goalp);
5555 	dp_sg = SYM_CONF_MAX_SG;
5556 	if (dp_scr != tmp)
5557 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5558 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5559 
5560 	/*
5561 	 *  Move to the sg entry the data pointer belongs to.
5562 	 *
5563 	 *  If we are inside the data area, we expect result to be:
5564 	 *
5565 	 *  Either,
5566 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5567 	 *      the data pointer belongs to (or the end of the data)
5568 	 *  Or,
5569 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5570 	 *      the data pointer belongs to + 1.
5571 	 */
5572 	if (dp_ofs < 0) {
5573 		int n;
5574 		while (dp_sg > dp_sgmin) {
5575 			--dp_sg;
5576 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5577 			n = dp_ofs + (tmp & 0xffffff);
5578 			if (n > 0) {
5579 				++dp_sg;
5580 				break;
5581 			}
5582 			dp_ofs = n;
5583 		}
5584 	}
5585 	else if (dp_ofs > 0) {
5586 		while (dp_sg < SYM_CONF_MAX_SG) {
5587 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5588 			dp_ofs -= (tmp & 0xffffff);
5589 			++dp_sg;
5590 			if (dp_ofs <= 0)
5591 				break;
5592 		}
5593 	}
5594 
5595 	/*
5596 	 *  Make sure the data pointer is inside the data area.
5597 	 *  If not, return some error.
5598 	 */
5599 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5600 		goto out_err;
5601 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5602 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5603 		goto out_err;
5604 
5605 	/*
5606 	 *  Save the extreme pointer if needed.
5607 	 */
5608 	if (dp_sg > cp->ext_sg ||
5609             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5610 		cp->ext_sg  = dp_sg;
5611 		cp->ext_ofs = dp_ofs;
5612 	}
5613 
5614 	/*
5615 	 *  Return data.
5616 	 */
5617 	*ofs = dp_ofs;
5618 	return dp_sg;
5619 
5620 out_err:
5621 	return -1;
5622 }
5623 
5624 /*
5625  *  chip handler for MODIFY DATA POINTER MESSAGE
5626  *
5627  *  We also call this function on IGNORE WIDE RESIDUE
5628  *  messages that do not match a SWIDE full condition.
5629  *  Btw, we assume in that situation that such a message
5630  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5631  */
5632 
5633 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5634 {
5635 	int dp_ofs	= ofs;
5636 	u32	dp_scr	= INL (nc_temp);
5637 	u32	dp_ret;
5638 	u32	tmp;
5639 	u_char	hflags;
5640 	int	dp_sg;
5641 	struct	sym_pmc *pm;
5642 
5643 	/*
5644 	 *  Not supported for auto-sense.
5645 	 */
5646 	if (cp->host_flags & HF_SENSE)
5647 		goto out_reject;
5648 
5649 	/*
5650 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5651 	 *  to the resulted data pointer.
5652 	 */
5653 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5654 	if (dp_sg < 0)
5655 		goto out_reject;
5656 
5657 	/*
5658 	 *  And our alchemy:) allows to easily calculate the data
5659 	 *  script address we want to return for the next data phase.
5660 	 */
5661 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5662 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5663 
5664 	/*
5665 	 *  If offset / scatter entry is zero we donnot need
5666 	 *  a context for the new current data pointer.
5667 	 */
5668 	if (dp_ofs == 0) {
5669 		dp_scr = dp_ret;
5670 		goto out_ok;
5671 	}
5672 
5673 	/*
5674 	 *  Get a context for the new current data pointer.
5675 	 */
5676 	hflags = INB (HF_PRT);
5677 
5678 	if (hflags & HF_DP_SAVED)
5679 		hflags ^= HF_ACT_PM;
5680 
5681 	if (!(hflags & HF_ACT_PM)) {
5682 		pm  = &cp->phys.pm0;
5683 		dp_scr = SCRIPTA_BA (np, pm0_data);
5684 	}
5685 	else {
5686 		pm = &cp->phys.pm1;
5687 		dp_scr = SCRIPTA_BA (np, pm1_data);
5688 	}
5689 
5690 	hflags &= ~(HF_DP_SAVED);
5691 
5692 	OUTB (HF_PRT, hflags);
5693 
5694 	/*
5695 	 *  Set up the new current data pointer.
5696 	 *  ofs < 0 there, and for the next data phase, we
5697 	 *  want to transfer part of the data of the sg entry
5698 	 *  corresponding to index dp_sg-1 prior to returning
5699 	 *  to the main data script.
5700 	 */
5701 	pm->ret = cpu_to_scr(dp_ret);
5702 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5703 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5704 	pm->sg.addr = cpu_to_scr(tmp);
5705 	pm->sg.size = cpu_to_scr(-dp_ofs);
5706 
5707 out_ok:
5708 	OUTL (nc_temp, dp_scr);
5709 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5710 	return;
5711 
5712 out_reject:
5713 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5714 }
5715 
5716 
5717 /*
5718  *  chip calculation of the data residual.
5719  *
5720  *  As I used to say, the requirement of data residual
5721  *  in SCSI is broken, useless and cannot be achieved
5722  *  without huge complexity.
5723  *  But most OSes and even the official CAM require it.
5724  *  When stupidity happens to be so widely spread inside
5725  *  a community, it gets hard to convince.
5726  *
5727  *  Anyway, I don't care, since I am not going to use
5728  *  any software that considers this data residual as
5729  *  a relevant information. :)
5730  */
5731 
5732 static int sym_compute_residual(hcb_p np, ccb_p cp)
5733 {
5734 	int dp_sg, dp_sgmin, resid = 0;
5735 	int dp_ofs = 0;
5736 
5737 	/*
5738 	 *  Check for some data lost or just thrown away.
5739 	 *  We are not required to be quite accurate in this
5740 	 *  situation. Btw, if we are odd for output and the
5741 	 *  device claims some more data, it may well happen
5742 	 *  than our residual be zero. :-)
5743 	 */
5744 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5745 		if (cp->xerr_status & XE_EXTRA_DATA)
5746 			resid -= cp->extra_bytes;
5747 		if (cp->xerr_status & XE_SODL_UNRUN)
5748 			++resid;
5749 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5750 			--resid;
5751 	}
5752 
5753 	/*
5754 	 *  If all data has been transferred,
5755 	 *  there is no residual.
5756 	 */
5757 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5758 		return resid;
5759 
5760 	/*
5761 	 *  If no data transfer occurs, or if the data
5762 	 *  pointer is weird, return full residual.
5763 	 */
5764 	if (cp->startp == cp->phys.head.lastp ||
5765 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5766 			    &dp_ofs) < 0) {
5767 		return cp->data_len;
5768 	}
5769 
5770 	/*
5771 	 *  If we were auto-sensing, then we are done.
5772 	 */
5773 	if (cp->host_flags & HF_SENSE) {
5774 		return -dp_ofs;
5775 	}
5776 
5777 	/*
5778 	 *  We are now full comfortable in the computation
5779 	 *  of the data residual (2's complement).
5780 	 */
5781 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5782 	resid = -cp->ext_ofs;
5783 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5784 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5785 		resid += (tmp & 0xffffff);
5786 	}
5787 
5788 	/*
5789 	 *  Hopefully, the result is not too wrong.
5790 	 */
5791 	return resid;
5792 }
5793 
5794 /*
5795  *  Print out the content of a SCSI message.
5796  */
5797 
5798 static int sym_show_msg (u_char * msg)
5799 {
5800 	u_char i;
5801 	printf ("%x",*msg);
5802 	if (*msg==M_EXTENDED) {
5803 		for (i=1;i<8;i++) {
5804 			if (i-1>msg[1]) break;
5805 			printf ("-%x",msg[i]);
5806 		};
5807 		return (i+1);
5808 	} else if ((*msg & 0xf0) == 0x20) {
5809 		printf ("-%x",msg[1]);
5810 		return (2);
5811 	};
5812 	return (1);
5813 }
5814 
5815 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5816 {
5817 	PRINT_ADDR(cp);
5818 	if (label)
5819 		printf ("%s: ", label);
5820 
5821 	(void) sym_show_msg (msg);
5822 	printf (".\n");
5823 }
5824 
5825 /*
5826  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5827  *
5828  *  When we try to negotiate, we append the negotiation message
5829  *  to the identify and (maybe) simple tag message.
5830  *  The host status field is set to HS_NEGOTIATE to mark this
5831  *  situation.
5832  *
5833  *  If the target doesn't answer this message immediately
5834  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5835  *  will be raised eventually.
5836  *  The handler removes the HS_NEGOTIATE status, and sets the
5837  *  negotiated value to the default (async / nowide).
5838  *
5839  *  If we receive a matching answer immediately, we check it
5840  *  for validity, and set the values.
5841  *
5842  *  If we receive a Reject message immediately, we assume the
5843  *  negotiation has failed, and fall back to standard values.
5844  *
5845  *  If we receive a negotiation message while not in HS_NEGOTIATE
5846  *  state, it's a target initiated negotiation. We prepare a
5847  *  (hopefully) valid answer, set our parameters, and send back
5848  *  this answer to the target.
5849  *
5850  *  If the target doesn't fetch the answer (no message out phase),
5851  *  we assume the negotiation has failed, and fall back to default
5852  *  settings (SIR_NEGO_PROTO interrupt).
5853  *
5854  *  When we set the values, we adjust them in all ccbs belonging
5855  *  to this target, in the controller's register, and in the "phys"
5856  *  field of the controller's struct sym_hcb.
5857  */
5858 
5859 /*
5860  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5861  */
5862 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5863 {
5864 	u_char	chg, ofs, per, fak, div;
5865 	int	req = 1;
5866 
5867 	/*
5868 	 *  Synchronous request message received.
5869 	 */
5870 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5871 		sym_print_msg(cp, "sync msgin", np->msgin);
5872 	};
5873 
5874 	/*
5875 	 * request or answer ?
5876 	 */
5877 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5878 		OUTB (HS_PRT, HS_BUSY);
5879 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5880 			goto reject_it;
5881 		req = 0;
5882 	}
5883 
5884 	/*
5885 	 *  get requested values.
5886 	 */
5887 	chg = 0;
5888 	per = np->msgin[3];
5889 	ofs = np->msgin[4];
5890 
5891 	/*
5892 	 *  check values against our limits.
5893 	 */
5894 	if (ofs) {
5895 		if (ofs > np->maxoffs)
5896 			{chg = 1; ofs = np->maxoffs;}
5897 		if (req) {
5898 			if (ofs > tp->tinfo.user.offset)
5899 				{chg = 1; ofs = tp->tinfo.user.offset;}
5900 		}
5901 	}
5902 
5903 	if (ofs) {
5904 		if (per < np->minsync)
5905 			{chg = 1; per = np->minsync;}
5906 		if (req) {
5907 			if (per < tp->tinfo.user.period)
5908 				{chg = 1; per = tp->tinfo.user.period;}
5909 		}
5910 	}
5911 
5912 	div = fak = 0;
5913 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5914 		goto reject_it;
5915 
5916 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5917 		PRINT_ADDR(cp);
5918 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5919 			ofs, per, div, fak, chg);
5920 	}
5921 
5922 	/*
5923 	 *  This was an answer message
5924 	 */
5925 	if (req == 0) {
5926 		if (chg) 	/* Answer wasn't acceptable. */
5927 			goto reject_it;
5928 		sym_setsync (np, cp, ofs, per, div, fak);
5929 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5930 		return;
5931 	}
5932 
5933 	/*
5934 	 *  It was a request. Set value and
5935 	 *  prepare an answer message
5936 	 */
5937 	sym_setsync (np, cp, ofs, per, div, fak);
5938 
5939 	np->msgout[0] = M_EXTENDED;
5940 	np->msgout[1] = 3;
5941 	np->msgout[2] = M_X_SYNC_REQ;
5942 	np->msgout[3] = per;
5943 	np->msgout[4] = ofs;
5944 
5945 	cp->nego_status = NS_SYNC;
5946 
5947 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5948 		sym_print_msg(cp, "sync msgout", np->msgout);
5949 	}
5950 
5951 	np->msgin [0] = M_NOOP;
5952 
5953 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5954 	return;
5955 reject_it:
5956 	sym_setsync (np, cp, 0, 0, 0, 0);
5957 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5958 }
5959 
5960 /*
5961  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5962  */
5963 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5964 {
5965 	u_char	chg, ofs, per, fak, dt, div, wide;
5966 	int	req = 1;
5967 
5968 	/*
5969 	 * Synchronous request message received.
5970 	 */
5971 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5972 		sym_print_msg(cp, "ppr msgin", np->msgin);
5973 	};
5974 
5975 	/*
5976 	 *  get requested values.
5977 	 */
5978 	chg  = 0;
5979 	per  = np->msgin[3];
5980 	ofs  = np->msgin[5];
5981 	wide = np->msgin[6];
5982 	dt   = np->msgin[7] & PPR_OPT_DT;
5983 
5984 	/*
5985 	 * request or answer ?
5986 	 */
5987 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5988 		OUTB (HS_PRT, HS_BUSY);
5989 		if (cp->nego_status && cp->nego_status != NS_PPR)
5990 			goto reject_it;
5991 		req = 0;
5992 	}
5993 
5994 	/*
5995 	 *  check values against our limits.
5996 	 */
5997 	if (wide > np->maxwide)
5998 		{chg = 1; wide = np->maxwide;}
5999 	if (!wide || !(np->features & FE_ULTRA3))
6000 		dt &= ~PPR_OPT_DT;
6001 	if (req) {
6002 		if (wide > tp->tinfo.user.width)
6003 			{chg = 1; wide = tp->tinfo.user.width;}
6004 	}
6005 
6006 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
6007 		dt &= ~PPR_OPT_DT;
6008 
6009 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
6010 
6011 	if (ofs) {
6012 		if (dt) {
6013 			if (ofs > np->maxoffs_dt)
6014 				{chg = 1; ofs = np->maxoffs_dt;}
6015 		}
6016 		else if (ofs > np->maxoffs)
6017 			{chg = 1; ofs = np->maxoffs;}
6018 		if (req) {
6019 			if (ofs > tp->tinfo.user.offset)
6020 				{chg = 1; ofs = tp->tinfo.user.offset;}
6021 		}
6022 	}
6023 
6024 	if (ofs) {
6025 		if (dt) {
6026 			if (per < np->minsync_dt)
6027 				{chg = 1; per = np->minsync_dt;}
6028 		}
6029 		else if (per < np->minsync)
6030 			{chg = 1; per = np->minsync;}
6031 		if (req) {
6032 			if (per < tp->tinfo.user.period)
6033 				{chg = 1; per = tp->tinfo.user.period;}
6034 		}
6035 	}
6036 
6037 	div = fak = 0;
6038 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
6039 		goto reject_it;
6040 
6041 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6042 		PRINT_ADDR(cp);
6043 		printf ("ppr: "
6044 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
6045 			dt, ofs, per, wide, div, fak, chg);
6046 	}
6047 
6048 	/*
6049 	 *  It was an answer.
6050 	 */
6051 	if (req == 0) {
6052 		if (chg) 	/* Answer wasn't acceptable */
6053 			goto reject_it;
6054 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
6055 		OUTL_DSP (SCRIPTA_BA (np, clrack));
6056 		return;
6057 	}
6058 
6059 	/*
6060 	 *  It was a request. Set value and
6061 	 *  prepare an answer message
6062 	 */
6063 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
6064 
6065 	np->msgout[0] = M_EXTENDED;
6066 	np->msgout[1] = 6;
6067 	np->msgout[2] = M_X_PPR_REQ;
6068 	np->msgout[3] = per;
6069 	np->msgout[4] = 0;
6070 	np->msgout[5] = ofs;
6071 	np->msgout[6] = wide;
6072 	np->msgout[7] = dt;
6073 
6074 	cp->nego_status = NS_PPR;
6075 
6076 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6077 		sym_print_msg(cp, "ppr msgout", np->msgout);
6078 	}
6079 
6080 	np->msgin [0] = M_NOOP;
6081 
6082 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
6083 	return;
6084 reject_it:
6085 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6086 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6087 	/*
6088 	 *  If it was a device response that should result in
6089 	 *  ST, we may want to try a legacy negotiation later.
6090 	 */
6091 	if (!req && !dt) {
6092 		tp->tinfo.goal.options = 0;
6093 		tp->tinfo.goal.width   = wide;
6094 		tp->tinfo.goal.period  = per;
6095 		tp->tinfo.goal.offset  = ofs;
6096 	}
6097 	return;
6098 }
6099 
6100 /*
6101  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
6102  */
6103 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
6104 {
6105 	u_char	chg, wide;
6106 	int	req = 1;
6107 
6108 	/*
6109 	 *  Wide request message received.
6110 	 */
6111 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6112 		sym_print_msg(cp, "wide msgin", np->msgin);
6113 	};
6114 
6115 	/*
6116 	 * Is it an request from the device?
6117 	 */
6118 	if (INB (HS_PRT) == HS_NEGOTIATE) {
6119 		OUTB (HS_PRT, HS_BUSY);
6120 		if (cp->nego_status && cp->nego_status != NS_WIDE)
6121 			goto reject_it;
6122 		req = 0;
6123 	}
6124 
6125 	/*
6126 	 *  get requested values.
6127 	 */
6128 	chg  = 0;
6129 	wide = np->msgin[3];
6130 
6131 	/*
6132 	 *  check values against driver limits.
6133 	 */
6134 	if (wide > np->maxwide)
6135 		{chg = 1; wide = np->maxwide;}
6136 	if (req) {
6137 		if (wide > tp->tinfo.user.width)
6138 			{chg = 1; wide = tp->tinfo.user.width;}
6139 	}
6140 
6141 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6142 		PRINT_ADDR(cp);
6143 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
6144 	}
6145 
6146 	/*
6147 	 * This was an answer message
6148 	 */
6149 	if (req == 0) {
6150 		if (chg)	/*  Answer wasn't acceptable. */
6151 			goto reject_it;
6152 		sym_setwide (np, cp, wide);
6153 
6154 		/*
6155 		 * Negotiate for SYNC immediately after WIDE response.
6156 		 * This allows to negotiate for both WIDE and SYNC on
6157 		 * a single SCSI command (Suggested by Justin Gibbs).
6158 		 */
6159 		if (tp->tinfo.goal.offset) {
6160 			np->msgout[0] = M_EXTENDED;
6161 			np->msgout[1] = 3;
6162 			np->msgout[2] = M_X_SYNC_REQ;
6163 			np->msgout[3] = tp->tinfo.goal.period;
6164 			np->msgout[4] = tp->tinfo.goal.offset;
6165 
6166 			if (DEBUG_FLAGS & DEBUG_NEGO) {
6167 				sym_print_msg(cp, "sync msgout", np->msgout);
6168 			}
6169 
6170 			cp->nego_status = NS_SYNC;
6171 			OUTB (HS_PRT, HS_NEGOTIATE);
6172 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
6173 			return;
6174 		}
6175 
6176 		OUTL_DSP (SCRIPTA_BA (np, clrack));
6177 		return;
6178 	};
6179 
6180 	/*
6181 	 *  It was a request, set value and
6182 	 *  prepare an answer message
6183 	 */
6184 	sym_setwide (np, cp, wide);
6185 
6186 	np->msgout[0] = M_EXTENDED;
6187 	np->msgout[1] = 2;
6188 	np->msgout[2] = M_X_WIDE_REQ;
6189 	np->msgout[3] = wide;
6190 
6191 	np->msgin [0] = M_NOOP;
6192 
6193 	cp->nego_status = NS_WIDE;
6194 
6195 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6196 		sym_print_msg(cp, "wide msgout", np->msgout);
6197 	}
6198 
6199 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
6200 	return;
6201 reject_it:
6202 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6203 }
6204 
6205 /*
6206  *  Reset SYNC or WIDE to default settings.
6207  *
6208  *  Called when a negotiation does not succeed either
6209  *  on rejection or on protocol error.
6210  *
6211  *  If it was a PPR that made problems, we may want to
6212  *  try a legacy negotiation later.
6213  */
6214 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
6215 {
6216 	/*
6217 	 *  any error in negotiation:
6218 	 *  fall back to default mode.
6219 	 */
6220 	switch (cp->nego_status) {
6221 	case NS_PPR:
6222 #if 0
6223 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6224 #else
6225 		tp->tinfo.goal.options = 0;
6226 		if (tp->tinfo.goal.period < np->minsync)
6227 			tp->tinfo.goal.period = np->minsync;
6228 		if (tp->tinfo.goal.offset > np->maxoffs)
6229 			tp->tinfo.goal.offset = np->maxoffs;
6230 #endif
6231 		break;
6232 	case NS_SYNC:
6233 		sym_setsync (np, cp, 0, 0, 0, 0);
6234 		break;
6235 	case NS_WIDE:
6236 		sym_setwide (np, cp, 0);
6237 		break;
6238 	};
6239 	np->msgin [0] = M_NOOP;
6240 	np->msgout[0] = M_NOOP;
6241 	cp->nego_status = 0;
6242 }
6243 
6244 /*
6245  *  chip handler for MESSAGE REJECT received in response to
6246  *  a WIDE or SYNCHRONOUS negotiation.
6247  */
6248 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6249 {
6250 	sym_nego_default(np, tp, cp);
6251 	OUTB (HS_PRT, HS_BUSY);
6252 }
6253 
6254 /*
6255  *  chip exception handler for programmed interrupts.
6256  */
6257 void sym_int_sir (hcb_p np)
6258 {
6259 	u_char	num	= INB (nc_dsps);
6260 	u32	dsa	= INL (nc_dsa);
6261 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6262 	u_char	target	= INB (nc_sdid) & 0x0f;
6263 	tcb_p	tp	= &np->target[target];
6264 	int	tmp;
6265 
6266 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6267 
6268 	switch (num) {
6269 	/*
6270 	 *  Command has been completed with error condition
6271 	 *  or has been auto-sensed.
6272 	 */
6273 	case SIR_COMPLETE_ERROR:
6274 		sym_complete_error(np, cp);
6275 		return;
6276 	/*
6277 	 *  The C code is currently trying to recover from something.
6278 	 *  Typically, user want to abort some command.
6279 	 */
6280 	case SIR_SCRIPT_STOPPED:
6281 	case SIR_TARGET_SELECTED:
6282 	case SIR_ABORT_SENT:
6283 		sym_sir_task_recovery(np, num);
6284 		return;
6285 	/*
6286 	 *  The device didn't go to MSG OUT phase after having
6287 	 *  been selected with ATN. We donnot want to handle
6288 	 *  that.
6289 	 */
6290 	case SIR_SEL_ATN_NO_MSG_OUT:
6291 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6292 			sym_name (np), target);
6293 		goto out_stuck;
6294 	/*
6295 	 *  The device didn't switch to MSG IN phase after
6296 	 *  having reseleted the initiator.
6297 	 */
6298 	case SIR_RESEL_NO_MSG_IN:
6299 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6300 			sym_name (np), target);
6301 		goto out_stuck;
6302 	/*
6303 	 *  After reselection, the device sent a message that wasn't
6304 	 *  an IDENTIFY.
6305 	 */
6306 	case SIR_RESEL_NO_IDENTIFY:
6307 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6308 			sym_name (np), target);
6309 		goto out_stuck;
6310 	/*
6311 	 *  The device reselected a LUN we donnot know about.
6312 	 */
6313 	case SIR_RESEL_BAD_LUN:
6314 		np->msgout[0] = M_RESET;
6315 		goto out;
6316 	/*
6317 	 *  The device reselected for an untagged nexus and we
6318 	 *  haven't any.
6319 	 */
6320 	case SIR_RESEL_BAD_I_T_L:
6321 		np->msgout[0] = M_ABORT;
6322 		goto out;
6323 	/*
6324 	 *  The device reselected for a tagged nexus that we donnot
6325 	 *  have.
6326 	 */
6327 	case SIR_RESEL_BAD_I_T_L_Q:
6328 		np->msgout[0] = M_ABORT_TAG;
6329 		goto out;
6330 	/*
6331 	 *  The SCRIPTS let us know that the device has grabbed
6332 	 *  our message and will abort the job.
6333 	 */
6334 	case SIR_RESEL_ABORTED:
6335 		np->lastmsg = np->msgout[0];
6336 		np->msgout[0] = M_NOOP;
6337 		printf ("%s:%d: message %x sent on bad reselection.\n",
6338 			sym_name (np), target, np->lastmsg);
6339 		goto out;
6340 	/*
6341 	 *  The SCRIPTS let us know that a message has been
6342 	 *  successfully sent to the device.
6343 	 */
6344 	case SIR_MSG_OUT_DONE:
6345 		np->lastmsg = np->msgout[0];
6346 		np->msgout[0] = M_NOOP;
6347 		/* Should we really care of that */
6348 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6349 			if (cp) {
6350 				cp->xerr_status &= ~XE_PARITY_ERR;
6351 				if (!cp->xerr_status)
6352 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6353 			}
6354 		}
6355 		goto out;
6356 	/*
6357 	 *  The device didn't send a GOOD SCSI status.
6358 	 *  We may have some work to do prior to allow
6359 	 *  the SCRIPTS processor to continue.
6360 	 */
6361 	case SIR_BAD_SCSI_STATUS:
6362 		if (!cp)
6363 			goto out;
6364 		sym_sir_bad_scsi_status(np, num, cp);
6365 		return;
6366 	/*
6367 	 *  We are asked by the SCRIPTS to prepare a
6368 	 *  REJECT message.
6369 	 */
6370 	case SIR_REJECT_TO_SEND:
6371 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6372 		np->msgout[0] = M_REJECT;
6373 		goto out;
6374 	/*
6375 	 *  We have been ODD at the end of a DATA IN
6376 	 *  transfer and the device didn't send a
6377 	 *  IGNORE WIDE RESIDUE message.
6378 	 *  It is a data overrun condition.
6379 	 */
6380 	case SIR_SWIDE_OVERRUN:
6381 		if (cp) {
6382 			OUTONB (HF_PRT, HF_EXT_ERR);
6383 			cp->xerr_status |= XE_SWIDE_OVRUN;
6384 		}
6385 		goto out;
6386 	/*
6387 	 *  We have been ODD at the end of a DATA OUT
6388 	 *  transfer.
6389 	 *  It is a data underrun condition.
6390 	 */
6391 	case SIR_SODL_UNDERRUN:
6392 		if (cp) {
6393 			OUTONB (HF_PRT, HF_EXT_ERR);
6394 			cp->xerr_status |= XE_SODL_UNRUN;
6395 		}
6396 		goto out;
6397 	/*
6398 	 *  The device wants us to tranfer more data than
6399 	 *  expected or in the wrong direction.
6400 	 *  The number of extra bytes is in scratcha.
6401 	 *  It is a data overrun condition.
6402 	 */
6403 	case SIR_DATA_OVERRUN:
6404 		if (cp) {
6405 			OUTONB (HF_PRT, HF_EXT_ERR);
6406 			cp->xerr_status |= XE_EXTRA_DATA;
6407 			cp->extra_bytes += INL (nc_scratcha);
6408 		}
6409 		goto out;
6410 	/*
6411 	 *  The device switched to an illegal phase (4/5).
6412 	 */
6413 	case SIR_BAD_PHASE:
6414 		if (cp) {
6415 			OUTONB (HF_PRT, HF_EXT_ERR);
6416 			cp->xerr_status |= XE_BAD_PHASE;
6417 		}
6418 		goto out;
6419 	/*
6420 	 *  We received a message.
6421 	 */
6422 	case SIR_MSG_RECEIVED:
6423 		if (!cp)
6424 			goto out_stuck;
6425 		switch (np->msgin [0]) {
6426 		/*
6427 		 *  We received an extended message.
6428 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6429 		 *  and reject all other extended messages.
6430 		 */
6431 		case M_EXTENDED:
6432 			switch (np->msgin [2]) {
6433 			case M_X_MODIFY_DP:
6434 				if (DEBUG_FLAGS & DEBUG_POINTER)
6435 					sym_print_msg(cp,"modify DP",np->msgin);
6436 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6437 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6438 				sym_modify_dp(np, tp, cp, tmp);
6439 				return;
6440 			case M_X_SYNC_REQ:
6441 				sym_sync_nego(np, tp, cp);
6442 				return;
6443 			case M_X_PPR_REQ:
6444 				sym_ppr_nego(np, tp, cp);
6445 				return;
6446 			case M_X_WIDE_REQ:
6447 				sym_wide_nego(np, tp, cp);
6448 				return;
6449 			default:
6450 				goto out_reject;
6451 			}
6452 			break;
6453 		/*
6454 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6455 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6456 		 *  RESIDUE messages that haven't been anticipated by
6457 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6458 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6459 		 */
6460 		case M_IGN_RESIDUE:
6461 			if (DEBUG_FLAGS & DEBUG_POINTER)
6462 				sym_print_msg(cp,"ign wide residue", np->msgin);
6463 			sym_modify_dp(np, tp, cp, -1);
6464 			return;
6465 		case M_REJECT:
6466 			if (INB (HS_PRT) == HS_NEGOTIATE)
6467 				sym_nego_rejected(np, tp, cp);
6468 			else {
6469 				PRINT_ADDR(cp);
6470 				printf ("M_REJECT received (%x:%x).\n",
6471 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6472 			}
6473 			goto out_clrack;
6474 			break;
6475 		default:
6476 			goto out_reject;
6477 		}
6478 		break;
6479 	/*
6480 	 *  We received an unknown message.
6481 	 *  Ignore all MSG IN phases and reject it.
6482 	 */
6483 	case SIR_MSG_WEIRD:
6484 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6485 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6486 		return;
6487 	/*
6488 	 *  Negotiation failed.
6489 	 *  Target does not send us the reply.
6490 	 *  Remove the HS_NEGOTIATE status.
6491 	 */
6492 	case SIR_NEGO_FAILED:
6493 		OUTB (HS_PRT, HS_BUSY);
6494 	/*
6495 	 *  Negotiation failed.
6496 	 *  Target does not want answer message.
6497 	 */
6498 	case SIR_NEGO_PROTO:
6499 		sym_nego_default(np, tp, cp);
6500 		goto out;
6501 	};
6502 
6503 out:
6504 	OUTONB_STD ();
6505 	return;
6506 out_reject:
6507 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6508 	return;
6509 out_clrack:
6510 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6511 	return;
6512 out_stuck:
6513 	;
6514 }
6515 
6516 /*
6517  *  Acquire a control block
6518  */
6519 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6520 {
6521 	tcb_p tp = &np->target[tn];
6522 	lcb_p lp = sym_lp(np, tp, ln);
6523 	u_short tag = NO_TAG;
6524 	SYM_QUEHEAD *qp;
6525 	ccb_p cp = (ccb_p) 0;
6526 
6527 	/*
6528 	 *  Look for a free CCB
6529 	 */
6530 	if (sym_que_empty(&np->free_ccbq))
6531 		(void) sym_alloc_ccb(np);
6532 	qp = sym_remque_head(&np->free_ccbq);
6533 	if (!qp)
6534 		goto out;
6535 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6536 
6537 	/*
6538 	 *  If the LCB is not yet available and the LUN
6539 	 *  has been probed ok, try to allocate the LCB.
6540 	 */
6541 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6542 		lp = sym_alloc_lcb(np, tn, ln);
6543 		if (!lp)
6544 			goto out_free;
6545 	}
6546 
6547 	/*
6548 	 *  If the LCB is not available here, then the
6549 	 *  logical unit is not yet discovered. For those
6550 	 *  ones only accept 1 SCSI IO per logical unit,
6551 	 *  since we cannot allow disconnections.
6552 	 */
6553 	if (!lp) {
6554 		if (!sym_is_bit(tp->busy0_map, ln))
6555 			sym_set_bit(tp->busy0_map, ln);
6556 		else
6557 			goto out_free;
6558 	} else {
6559 		/*
6560 		 *  If we have been asked for a tagged command.
6561 		 */
6562 		if (tag_order) {
6563 			/*
6564 			 *  Debugging purpose.
6565 			 */
6566 			assert(lp->busy_itl == 0);
6567 			/*
6568 			 *  Allocate resources for tags if not yet.
6569 			 */
6570 			if (!lp->cb_tags) {
6571 				sym_alloc_lcb_tags(np, tn, ln);
6572 				if (!lp->cb_tags)
6573 					goto out_free;
6574 			}
6575 			/*
6576 			 *  Get a tag for this SCSI IO and set up
6577 			 *  the CCB bus address for reselection,
6578 			 *  and count it for this LUN.
6579 			 *  Toggle reselect path to tagged.
6580 			 */
6581 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6582 				tag = lp->cb_tags[lp->ia_tag];
6583 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6584 					lp->ia_tag = 0;
6585 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6586 				++lp->busy_itlq;
6587 				lp->head.resel_sa =
6588 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6589 			}
6590 			else
6591 				goto out_free;
6592 		}
6593 		/*
6594 		 *  This command will not be tagged.
6595 		 *  If we already have either a tagged or untagged
6596 		 *  one, refuse to overlap this untagged one.
6597 		 */
6598 		else {
6599 			/*
6600 			 *  Debugging purpose.
6601 			 */
6602 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6603 			/*
6604 			 *  Count this nexus for this LUN.
6605 			 *  Set up the CCB bus address for reselection.
6606 			 *  Toggle reselect path to untagged.
6607 			 */
6608 			if (++lp->busy_itl == 1) {
6609 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6610 				lp->head.resel_sa =
6611 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6612 			}
6613 			else
6614 				goto out_free;
6615 		}
6616 	}
6617 	/*
6618 	 *  Put the CCB into the busy queue.
6619 	 */
6620 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6621 
6622 	/*
6623 	 *  Remember all informations needed to free this CCB.
6624 	 */
6625 	cp->to_abort = 0;
6626 	cp->tag	   = tag;
6627 	cp->target = tn;
6628 	cp->lun    = ln;
6629 
6630 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6631 		PRINT_LUN(np, tn, ln);
6632 		printf ("ccb @%p using tag %d.\n", cp, tag);
6633 	}
6634 
6635 out:
6636 	return cp;
6637 out_free:
6638 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6639 	return (ccb_p) 0;
6640 }
6641 
6642 /*
6643  *  Release one control block
6644  */
6645 static void sym_free_ccb (hcb_p np, ccb_p cp)
6646 {
6647 	tcb_p tp = &np->target[cp->target];
6648 	lcb_p lp = sym_lp(np, tp, cp->lun);
6649 
6650 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6651 		PRINT_LUN(np, cp->target, cp->lun);
6652 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6653 	}
6654 
6655 	/*
6656 	 *  If LCB available,
6657 	 */
6658 	if (lp) {
6659 		/*
6660 		 *  If tagged, release the tag, set the relect path
6661 		 */
6662 		if (cp->tag != NO_TAG) {
6663 			/*
6664 			 *  Free the tag value.
6665 			 */
6666 			lp->cb_tags[lp->if_tag] = cp->tag;
6667 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6668 				lp->if_tag = 0;
6669 			/*
6670 			 *  Make the reselect path invalid,
6671 			 *  and uncount this CCB.
6672 			 */
6673 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6674 			--lp->busy_itlq;
6675 		} else {	/* Untagged */
6676 			/*
6677 			 *  Make the reselect path invalid,
6678 			 *  and uncount this CCB.
6679 			 */
6680 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6681 			--lp->busy_itl;
6682 		}
6683 		/*
6684 		 *  If no JOB active, make the LUN reselect path invalid.
6685 		 */
6686 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6687 			lp->head.resel_sa =
6688 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6689 	}
6690 	/*
6691 	 *  Otherwise, we only accept 1 IO per LUN.
6692 	 *  Clear the bit that keeps track of this IO.
6693 	 */
6694 	else
6695 		sym_clr_bit(tp->busy0_map, cp->lun);
6696 
6697 	/*
6698 	 *  We donnot queue more than 1 ccb per target
6699 	 *  with negotiation at any time. If this ccb was
6700 	 *  used for negotiation, clear this info in the tcb.
6701 	 */
6702 	if (cp == tp->nego_cp)
6703 		tp->nego_cp = 0;
6704 
6705 #ifdef SYM_CONF_IARB_SUPPORT
6706 	/*
6707 	 *  If we just complete the last queued CCB,
6708 	 *  clear this info that is no longer relevant.
6709 	 */
6710 	if (cp == np->last_cp)
6711 		np->last_cp = 0;
6712 #endif
6713 
6714 #ifdef	FreeBSD_Bus_Dma_Abstraction
6715 	/*
6716 	 *  Unmap user data from DMA map if needed.
6717 	 */
6718 	if (cp->dmamapped) {
6719 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6720 		cp->dmamapped = 0;
6721 	}
6722 #endif
6723 
6724 	/*
6725 	 *  Make this CCB available.
6726 	 */
6727 	cp->cam_ccb = 0;
6728 	cp->host_status = HS_IDLE;
6729 	sym_remque(&cp->link_ccbq);
6730 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6731 }
6732 
6733 /*
6734  *  Allocate a CCB from memory and initialize its fixed part.
6735  */
6736 static ccb_p sym_alloc_ccb(hcb_p np)
6737 {
6738 	ccb_p cp = 0;
6739 	int hcode;
6740 
6741 	/*
6742 	 *  Prevent from allocating more CCBs than we can
6743 	 *  queue to the controller.
6744 	 */
6745 	if (np->actccbs >= SYM_CONF_MAX_START)
6746 		return 0;
6747 
6748 	/*
6749 	 *  Allocate memory for this CCB.
6750 	 */
6751 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6752 	if (!cp)
6753 		goto out_free;
6754 
6755 	/*
6756 	 *  Allocate a bounce buffer for sense data.
6757 	 */
6758 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6759 	if (!cp->sns_bbuf)
6760 		goto out_free;
6761 
6762 	/*
6763 	 *  Allocate a map for the DMA of user data.
6764 	 */
6765 #ifdef	FreeBSD_Bus_Dma_Abstraction
6766 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6767 		goto out_free;
6768 #endif
6769 	/*
6770 	 *  Count it.
6771 	 */
6772 	np->actccbs++;
6773 
6774 	/*
6775 	 *  Compute the bus address of this ccb.
6776 	 */
6777 	cp->ccb_ba = vtobus(cp);
6778 
6779 	/*
6780 	 *  Insert this ccb into the hashed list.
6781 	 */
6782 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6783 	cp->link_ccbh = np->ccbh[hcode];
6784 	np->ccbh[hcode] = cp;
6785 
6786 	/*
6787 	 *  Initialyze the start and restart actions.
6788 	 */
6789 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6790 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6791 
6792  	/*
6793 	 *  Initilialyze some other fields.
6794 	 */
6795 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6796 
6797 	/*
6798 	 *  Chain into free ccb queue.
6799 	 */
6800 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6801 
6802 	return cp;
6803 out_free:
6804 	if (cp) {
6805 		if (cp->sns_bbuf)
6806 			sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
6807 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
6808 	}
6809 	return 0;
6810 }
6811 
6812 /*
6813  *  Look up a CCB from a DSA value.
6814  */
6815 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6816 {
6817 	int hcode;
6818 	ccb_p cp;
6819 
6820 	hcode = CCB_HASH_CODE(dsa);
6821 	cp = np->ccbh[hcode];
6822 	while (cp) {
6823 		if (cp->ccb_ba == dsa)
6824 			break;
6825 		cp = cp->link_ccbh;
6826 	}
6827 
6828 	return cp;
6829 }
6830 
6831 /*
6832  *  Target control block initialisation.
6833  *  Nothing important to do at the moment.
6834  */
6835 static void sym_init_tcb (hcb_p np, u_char tn)
6836 {
6837 	/*
6838 	 *  Check some alignments required by the chip.
6839 	 */
6840 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6841 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6842 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6843 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6844 }
6845 
6846 /*
6847  *  Lun control block allocation and initialization.
6848  */
6849 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6850 {
6851 	tcb_p tp = &np->target[tn];
6852 	lcb_p lp = sym_lp(np, tp, ln);
6853 
6854 	/*
6855 	 *  Already done, just return.
6856 	 */
6857 	if (lp)
6858 		return lp;
6859 	/*
6860 	 *  Check against some race.
6861 	 */
6862 	assert(!sym_is_bit(tp->busy0_map, ln));
6863 
6864 	/*
6865 	 *  Initialize the target control block if not yet.
6866 	 */
6867 	sym_init_tcb (np, tn);
6868 
6869 	/*
6870 	 *  Allocate the LCB bus address array.
6871 	 *  Compute the bus address of this table.
6872 	 */
6873 	if (ln && !tp->luntbl) {
6874 		int i;
6875 
6876 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6877 		if (!tp->luntbl)
6878 			goto fail;
6879 		for (i = 0 ; i < 64 ; i++)
6880 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6881 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6882 	}
6883 
6884 	/*
6885 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6886 	 */
6887 	if (ln && !tp->lunmp) {
6888 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6889 				   "LUNMP");
6890 		if (!tp->lunmp)
6891 			goto fail;
6892 	}
6893 
6894 	/*
6895 	 *  Allocate the lcb.
6896 	 *  Make it available to the chip.
6897 	 */
6898 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6899 	if (!lp)
6900 		goto fail;
6901 	if (ln) {
6902 		tp->lunmp[ln] = lp;
6903 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6904 	}
6905 	else {
6906 		tp->lun0p = lp;
6907 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6908 	}
6909 
6910 	/*
6911 	 *  Let the itl task point to error handling.
6912 	 */
6913 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6914 
6915 	/*
6916 	 *  Set the reselect pattern to our default. :)
6917 	 */
6918 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6919 
6920 	/*
6921 	 *  Set user capabilities.
6922 	 */
6923 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6924 
6925 fail:
6926 	return lp;
6927 }
6928 
6929 /*
6930  *  Allocate LCB resources for tagged command queuing.
6931  */
6932 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6933 {
6934 	tcb_p tp = &np->target[tn];
6935 	lcb_p lp = sym_lp(np, tp, ln);
6936 	int i;
6937 
6938 	/*
6939 	 *  If LCB not available, try to allocate it.
6940 	 */
6941 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6942 		goto fail;
6943 
6944 	/*
6945 	 *  Allocate the task table and and the tag allocation
6946 	 *  circular buffer. We want both or none.
6947 	 */
6948 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6949 	if (!lp->itlq_tbl)
6950 		goto fail;
6951 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6952 	if (!lp->cb_tags) {
6953 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6954 		lp->itlq_tbl = 0;
6955 		goto fail;
6956 	}
6957 
6958 	/*
6959 	 *  Initialize the task table with invalid entries.
6960 	 */
6961 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6962 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6963 
6964 	/*
6965 	 *  Fill up the tag buffer with tag numbers.
6966 	 */
6967 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6968 		lp->cb_tags[i] = i;
6969 
6970 	/*
6971 	 *  Make the task table available to SCRIPTS,
6972 	 *  And accept tagged commands now.
6973 	 */
6974 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6975 fail:
6976 	;
6977 }
6978 
6979 /*
6980  *  Test the pci bus snoop logic :-(
6981  *
6982  *  Has to be called with interrupts disabled.
6983  */
6984 #ifndef SYM_CONF_IOMAPPED
6985 static int sym_regtest (hcb_p np)
6986 {
6987 	volatile u32 data;
6988 	/*
6989 	 *  chip registers may NOT be cached.
6990 	 *  write 0xffffffff to a read only register area,
6991 	 *  and try to read it back.
6992 	 */
6993 	data = 0xffffffff;
6994 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6995 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6996 #if 1
6997 	if (data == 0xffffffff) {
6998 #else
6999 	if ((data & 0xe2f0fffd) != 0x02000080) {
7000 #endif
7001 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7002 			(unsigned) data);
7003 		return (0x10);
7004 	};
7005 	return (0);
7006 }
7007 #endif
7008 
7009 static int sym_snooptest (hcb_p np)
7010 {
7011 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
7012 	int	i, err=0;
7013 #ifndef SYM_CONF_IOMAPPED
7014 	err |= sym_regtest (np);
7015 	if (err) return (err);
7016 #endif
7017 restart_test:
7018 	/*
7019 	 *  Enable Master Parity Checking as we intend
7020 	 *  to enable it for normal operations.
7021 	 */
7022 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
7023 	/*
7024 	 *  init
7025 	 */
7026 	pc  = SCRIPTB0_BA (np, snooptest);
7027 	host_wr = 1;
7028 	sym_wr  = 2;
7029 	/*
7030 	 *  Set memory and register.
7031 	 */
7032 	np->cache = cpu_to_scr(host_wr);
7033 	OUTL (nc_temp, sym_wr);
7034 	/*
7035 	 *  Start script (exchange values)
7036 	 */
7037 	OUTL (nc_dsa, np->hcb_ba);
7038 	OUTL_DSP (pc);
7039 	/*
7040 	 *  Wait 'til done (with timeout)
7041 	 */
7042 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
7043 		if (INB(nc_istat) & (INTF|SIP|DIP))
7044 			break;
7045 	if (i>=SYM_SNOOP_TIMEOUT) {
7046 		printf ("CACHE TEST FAILED: timeout.\n");
7047 		return (0x20);
7048 	};
7049 	/*
7050 	 *  Check for fatal DMA errors.
7051 	 */
7052 	dstat = INB (nc_dstat);
7053 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
7054 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
7055 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
7056 			"DISABLING MASTER DATA PARITY CHECKING.\n",
7057 			sym_name(np));
7058 		np->rv_ctest4 &= ~MPEE;
7059 		goto restart_test;
7060 	}
7061 #endif
7062 	if (dstat & (MDPE|BF|IID)) {
7063 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
7064 		return (0x80);
7065 	}
7066 	/*
7067 	 *  Save termination position.
7068 	 */
7069 	pc = INL (nc_dsp);
7070 	/*
7071 	 *  Read memory and register.
7072 	 */
7073 	host_rd = scr_to_cpu(np->cache);
7074 	sym_rd  = INL (nc_scratcha);
7075 	sym_bk  = INL (nc_temp);
7076 
7077 	/*
7078 	 *  Check termination position.
7079 	 */
7080 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
7081 		printf ("CACHE TEST FAILED: script execution failed.\n");
7082 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
7083 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
7084 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
7085 		return (0x40);
7086 	};
7087 	/*
7088 	 *  Show results.
7089 	 */
7090 	if (host_wr != sym_rd) {
7091 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
7092 			(int) host_wr, (int) sym_rd);
7093 		err |= 1;
7094 	};
7095 	if (host_rd != sym_wr) {
7096 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
7097 			(int) sym_wr, (int) host_rd);
7098 		err |= 2;
7099 	};
7100 	if (sym_bk != sym_wr) {
7101 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
7102 			(int) sym_wr, (int) sym_bk);
7103 		err |= 4;
7104 	};
7105 
7106 	return (err);
7107 }
7108 
7109 /*
7110  *  Determine the chip's clock frequency.
7111  *
7112  *  This is essential for the negotiation of the synchronous
7113  *  transfer rate.
7114  *
7115  *  Note: we have to return the correct value.
7116  *  THERE IS NO SAFE DEFAULT VALUE.
7117  *
7118  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7119  *  53C860 and 53C875 rev. 1 support fast20 transfers but
7120  *  do not have a clock doubler and so are provided with a
7121  *  80 MHz clock. All other fast20 boards incorporate a doubler
7122  *  and so should be delivered with a 40 MHz clock.
7123  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
7124  *  clock and provide a clock quadrupler (160 Mhz).
7125  */
7126 
7127 /*
7128  *  Select SCSI clock frequency
7129  */
7130 static void sym_selectclock(hcb_p np, u_char scntl3)
7131 {
7132 	/*
7133 	 *  If multiplier not present or not selected, leave here.
7134 	 */
7135 	if (np->multiplier <= 1) {
7136 		OUTB(nc_scntl3,	scntl3);
7137 		return;
7138 	}
7139 
7140 	if (sym_verbose >= 2)
7141 		printf ("%s: enabling clock multiplier\n", sym_name(np));
7142 
7143 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
7144 	/*
7145 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
7146 	 *  Otherwise wait 20 micro-seconds.
7147 	 */
7148 	if (np->features & FE_LCKFRQ) {
7149 		int i = 20;
7150 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7151 			UDELAY (20);
7152 		if (!i)
7153 			printf("%s: the chip cannot lock the frequency\n",
7154 				sym_name(np));
7155 	} else
7156 		UDELAY (20);
7157 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
7158 	OUTB(nc_scntl3,	scntl3);
7159 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
7160 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
7161 }
7162 
7163 /*
7164  *  calculate SCSI clock frequency (in KHz)
7165  */
7166 static unsigned getfreq (hcb_p np, int gen)
7167 {
7168 	unsigned int ms = 0;
7169 	unsigned int f;
7170 
7171 	/*
7172 	 * Measure GEN timer delay in order
7173 	 * to calculate SCSI clock frequency
7174 	 *
7175 	 * This code will never execute too
7176 	 * many loop iterations (if DELAY is
7177 	 * reasonably correct). It could get
7178 	 * too low a delay (too high a freq.)
7179 	 * if the CPU is slow executing the
7180 	 * loop for some reason (an NMI, for
7181 	 * example). For this reason we will
7182 	 * if multiple measurements are to be
7183 	 * performed trust the higher delay
7184 	 * (lower frequency returned).
7185 	 */
7186 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
7187 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
7188 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
7189 	(void) INW (nc_sist);	/* another one, just to be sure :) */
7190 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
7191 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7192 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
7193 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
7194 		UDELAY (1000);	/* count ms */
7195 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7196  	/*
7197  	 * set prescaler to divide by whatever 0 means
7198  	 * 0 ought to choose divide by 2, but appears
7199  	 * to set divide by 3.5 mode in my 53c810 ...
7200  	 */
7201  	OUTB (nc_scntl3, 0);
7202 
7203   	/*
7204  	 * adjust for prescaler, and convert into KHz
7205   	 */
7206 	f = ms ? ((1 << gen) * 4340) / ms : 0;
7207 
7208 	if (sym_verbose >= 2)
7209 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
7210 			sym_name(np), gen, ms, f);
7211 
7212 	return f;
7213 }
7214 
7215 static unsigned sym_getfreq (hcb_p np)
7216 {
7217 	u_int f1, f2;
7218 	int gen = 11;
7219 
7220 	(void) getfreq (np, gen);	/* throw away first result */
7221 	f1 = getfreq (np, gen);
7222 	f2 = getfreq (np, gen);
7223 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
7224 	return f1;
7225 }
7226 
7227 /*
7228  *  Get/probe chip SCSI clock frequency
7229  */
7230 static void sym_getclock (hcb_p np, int mult)
7231 {
7232 	unsigned char scntl3 = np->sv_scntl3;
7233 	unsigned char stest1 = np->sv_stest1;
7234 	unsigned f1;
7235 
7236 	/*
7237 	 *  For the C10 core, assume 40 MHz.
7238 	 */
7239 	if (np->features & FE_C10) {
7240 		np->multiplier = mult;
7241 		np->clock_khz = 40000 * mult;
7242 		return;
7243 	}
7244 
7245 	np->multiplier = 1;
7246 	f1 = 40000;
7247 	/*
7248 	 *  True with 875/895/896/895A with clock multiplier selected
7249 	 */
7250 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7251 		if (sym_verbose >= 2)
7252 			printf ("%s: clock multiplier found\n", sym_name(np));
7253 		np->multiplier = mult;
7254 	}
7255 
7256 	/*
7257 	 *  If multiplier not found or scntl3 not 7,5,3,
7258 	 *  reset chip and get frequency from general purpose timer.
7259 	 *  Otherwise trust scntl3 BIOS setting.
7260 	 */
7261 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7262 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7263 		f1 = sym_getfreq (np);
7264 
7265 		if (sym_verbose)
7266 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7267 
7268 		if	(f1 <	45000)		f1 =  40000;
7269 		else if (f1 <	55000)		f1 =  50000;
7270 		else				f1 =  80000;
7271 
7272 		if (f1 < 80000 && mult > 1) {
7273 			if (sym_verbose >= 2)
7274 				printf ("%s: clock multiplier assumed\n",
7275 					sym_name(np));
7276 			np->multiplier	= mult;
7277 		}
7278 	} else {
7279 		if	((scntl3 & 7) == 3)	f1 =  40000;
7280 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7281 		else 				f1 = 160000;
7282 
7283 		f1 /= np->multiplier;
7284 	}
7285 
7286 	/*
7287 	 *  Compute controller synchronous parameters.
7288 	 */
7289 	f1		*= np->multiplier;
7290 	np->clock_khz	= f1;
7291 }
7292 
7293 /*
7294  *  Get/probe PCI clock frequency
7295  */
7296 static int sym_getpciclock (hcb_p np)
7297 {
7298 	int f = 0;
7299 
7300 	/*
7301 	 *  For the C1010-33, this doesn't work.
7302 	 *  For the C1010-66, this will be tested when I'll have
7303 	 *  such a beast to play with.
7304 	 */
7305 	if (!(np->features & FE_C10)) {
7306 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7307 		f = (int) sym_getfreq (np);
7308 		OUTB (nc_stest1, 0);
7309 	}
7310 	np->pciclk_khz = f;
7311 
7312 	return f;
7313 }
7314 
7315 /*============= DRIVER ACTION/COMPLETION ====================*/
7316 
7317 /*
7318  *  Print something that tells about extended errors.
7319  */
7320 static void sym_print_xerr(ccb_p cp, int x_status)
7321 {
7322 	if (x_status & XE_PARITY_ERR) {
7323 		PRINT_ADDR(cp);
7324 		printf ("unrecovered SCSI parity error.\n");
7325 	}
7326 	if (x_status & XE_EXTRA_DATA) {
7327 		PRINT_ADDR(cp);
7328 		printf ("extraneous data discarded.\n");
7329 	}
7330 	if (x_status & XE_BAD_PHASE) {
7331 		PRINT_ADDR(cp);
7332 		printf ("illegal scsi phase (4/5).\n");
7333 	}
7334 	if (x_status & XE_SODL_UNRUN) {
7335 		PRINT_ADDR(cp);
7336 		printf ("ODD transfer in DATA OUT phase.\n");
7337 	}
7338 	if (x_status & XE_SWIDE_OVRUN) {
7339 		PRINT_ADDR(cp);
7340 		printf ("ODD transfer in DATA IN phase.\n");
7341 	}
7342 }
7343 
7344 /*
7345  *  Choose the more appropriate CAM status if
7346  *  the IO encountered an extended error.
7347  */
7348 static int sym_xerr_cam_status(int cam_status, int x_status)
7349 {
7350 	if (x_status) {
7351 		if	(x_status & XE_PARITY_ERR)
7352 			cam_status = CAM_UNCOR_PARITY;
7353 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7354 			cam_status = CAM_DATA_RUN_ERR;
7355 		else if	(x_status & XE_BAD_PHASE)
7356 			cam_status = CAM_REQ_CMP_ERR;
7357 		else
7358 			cam_status = CAM_REQ_CMP_ERR;
7359 	}
7360 	return cam_status;
7361 }
7362 
7363 /*
7364  *  Complete execution of a SCSI command with extented
7365  *  error, SCSI status error, or having been auto-sensed.
7366  *
7367  *  The SCRIPTS processor is not running there, so we
7368  *  can safely access IO registers and remove JOBs from
7369  *  the START queue.
7370  *  SCRATCHA is assumed to have been loaded with STARTPOS
7371  *  before the SCRIPTS called the C code.
7372  */
7373 static void sym_complete_error (hcb_p np, ccb_p cp)
7374 {
7375 	struct ccb_scsiio *csio;
7376 	u_int cam_status;
7377 	int i;
7378 
7379 	/*
7380 	 *  Paranoid check. :)
7381 	 */
7382 	if (!cp || !cp->cam_ccb)
7383 		return;
7384 
7385 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7386 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7387 			cp->host_status, cp->ssss_status, cp->host_flags,
7388 			cp->target, cp->lun);
7389 		MDELAY(100);
7390 	}
7391 
7392 	/*
7393 	 *  Get CAM command pointer.
7394 	 */
7395 	csio = &cp->cam_ccb->csio;
7396 
7397 	/*
7398 	 *  Check for extended errors.
7399 	 */
7400 	if (cp->xerr_status) {
7401 		if (sym_verbose)
7402 			sym_print_xerr(cp, cp->xerr_status);
7403 		if (cp->host_status == HS_COMPLETE)
7404 			cp->host_status = HS_COMP_ERR;
7405 	}
7406 
7407 	/*
7408 	 *  Calculate the residual.
7409 	 */
7410 	csio->sense_resid = 0;
7411 	csio->resid = sym_compute_residual(np, cp);
7412 
7413 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7414 		csio->resid  = 0;	/* throw them away. :)		   */
7415 		cp->sv_resid = 0;
7416 	}
7417 
7418 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7419 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7420 		csio->sense_resid = csio->resid;	/* Swap residuals */
7421 		csio->resid       = cp->sv_resid;
7422 		cp->sv_resid	  = 0;
7423 		if (sym_verbose && cp->sv_xerr_status)
7424 			sym_print_xerr(cp, cp->sv_xerr_status);
7425 		if (cp->host_status == HS_COMPLETE &&
7426 		    cp->ssss_status == S_GOOD &&
7427 		    cp->xerr_status == 0) {
7428 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7429 							 cp->sv_xerr_status);
7430 			cam_status |= CAM_AUTOSNS_VALID;
7431 			/*
7432 			 *  Bounce back the sense data to user and
7433 			 *  fix the residual.
7434 			 */
7435 			bzero(&csio->sense_data, csio->sense_len);
7436 			bcopy(cp->sns_bbuf, &csio->sense_data,
7437 			      MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
7438 			csio->sense_resid += csio->sense_len;
7439 			csio->sense_resid -= SYM_SNS_BBUF_LEN;
7440 #if 0
7441 			/*
7442 			 *  If the device reports a UNIT ATTENTION condition
7443 			 *  due to a RESET condition, we should consider all
7444 			 *  disconnect CCBs for this unit as aborted.
7445 			 */
7446 			if (1) {
7447 				u_char *p;
7448 				p  = (u_char *) csio->sense_data;
7449 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7450 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7451 							cp->target,cp->lun, -1);
7452 			}
7453 #endif
7454 		}
7455 		else
7456 			cam_status = CAM_AUTOSENSE_FAIL;
7457 	}
7458 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7459 		csio->scsi_status = cp->ssss_status;
7460 		cam_status = CAM_SCSI_STATUS_ERROR;
7461 	}
7462 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7463 		cam_status = CAM_SEL_TIMEOUT;
7464 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7465 		cam_status = CAM_UNEXP_BUSFREE;
7466 	else {						/* Extended error */
7467 		if (sym_verbose) {
7468 			PRINT_ADDR(cp);
7469 			printf ("COMMAND FAILED (%x %x %x).\n",
7470 				cp->host_status, cp->ssss_status,
7471 				cp->xerr_status);
7472 		}
7473 		csio->scsi_status = cp->ssss_status;
7474 		/*
7475 		 *  Set the most appropriate value for CAM status.
7476 		 */
7477 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7478 						 cp->xerr_status);
7479 	}
7480 
7481 	/*
7482 	 *  Dequeue all queued CCBs for that device
7483 	 *  not yet started by SCRIPTS.
7484 	 */
7485 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7486 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7487 
7488 	/*
7489 	 *  Restart the SCRIPTS processor.
7490 	 */
7491 	OUTL_DSP (SCRIPTA_BA (np, start));
7492 
7493 #ifdef	FreeBSD_Bus_Dma_Abstraction
7494 	/*
7495 	 *  Synchronize DMA map if needed.
7496 	 */
7497 	if (cp->dmamapped) {
7498 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7499 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7500 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7501 	}
7502 #endif
7503 	/*
7504 	 *  Add this one to the COMP queue.
7505 	 *  Complete all those commands with either error
7506 	 *  or requeue condition.
7507 	 */
7508 	sym_set_cam_status((union ccb *) csio, cam_status);
7509 	sym_remque(&cp->link_ccbq);
7510 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7511 	sym_flush_comp_queue(np, 0);
7512 }
7513 
7514 /*
7515  *  Complete execution of a successful SCSI command.
7516  *
7517  *  Only successful commands go to the DONE queue,
7518  *  since we need to have the SCRIPTS processor
7519  *  stopped on any error condition.
7520  *  The SCRIPTS processor is running while we are
7521  *  completing successful commands.
7522  */
7523 static void sym_complete_ok (hcb_p np, ccb_p cp)
7524 {
7525 	struct ccb_scsiio *csio;
7526 	tcb_p tp;
7527 	lcb_p lp;
7528 
7529 	/*
7530 	 *  Paranoid check. :)
7531 	 */
7532 	if (!cp || !cp->cam_ccb)
7533 		return;
7534 	assert (cp->host_status == HS_COMPLETE);
7535 
7536 	/*
7537 	 *  Get command, target and lun pointers.
7538 	 */
7539 	csio = &cp->cam_ccb->csio;
7540 	tp = &np->target[cp->target];
7541 	lp = sym_lp(np, tp, cp->lun);
7542 
7543 	/*
7544 	 *  Assume device discovered on first success.
7545 	 */
7546 	if (!lp)
7547 		sym_set_bit(tp->lun_map, cp->lun);
7548 
7549 	/*
7550 	 *  If all data have been transferred, given than no
7551 	 *  extended error did occur, there is no residual.
7552 	 */
7553 	csio->resid = 0;
7554 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7555 		csio->resid = sym_compute_residual(np, cp);
7556 
7557 	/*
7558 	 *  Wrong transfer residuals may be worse than just always
7559 	 *  returning zero. User can disable this feature from
7560 	 *  sym_conf.h. Residual support is enabled by default.
7561 	 */
7562 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7563 		csio->resid  = 0;
7564 
7565 #ifdef	FreeBSD_Bus_Dma_Abstraction
7566 	/*
7567 	 *  Synchronize DMA map if needed.
7568 	 */
7569 	if (cp->dmamapped) {
7570 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7571 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7572 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7573 	}
7574 #endif
7575 	/*
7576 	 *  Set status and complete the command.
7577 	 */
7578 	csio->scsi_status = cp->ssss_status;
7579 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7580 	sym_free_ccb (np, cp);
7581 	sym_xpt_done(np, (union ccb *) csio);
7582 }
7583 
7584 /*
7585  *  Our timeout handler.
7586  */
7587 static void sym_timeout1(void *arg)
7588 {
7589 	union ccb *ccb = (union ccb *) arg;
7590 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7591 
7592 	/*
7593 	 *  Check that the CAM CCB is still queued.
7594 	 */
7595 	if (!np)
7596 		return;
7597 
7598 	switch(ccb->ccb_h.func_code) {
7599 	case XPT_SCSI_IO:
7600 		(void) sym_abort_scsiio(np, ccb, 1);
7601 		break;
7602 	default:
7603 		break;
7604 	}
7605 }
7606 
7607 static void sym_timeout(void *arg)
7608 {
7609 	int s = splcam();
7610 	sym_timeout1(arg);
7611 	splx(s);
7612 }
7613 
7614 /*
7615  *  Abort an SCSI IO.
7616  */
7617 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7618 {
7619 	ccb_p cp;
7620 	SYM_QUEHEAD *qp;
7621 
7622 	/*
7623 	 *  Look up our CCB control block.
7624 	 */
7625 	cp = 0;
7626 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7627 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7628 		if (cp2->cam_ccb == ccb) {
7629 			cp = cp2;
7630 			break;
7631 		}
7632 	}
7633 	if (!cp || cp->host_status == HS_WAIT)
7634 		return -1;
7635 
7636 	/*
7637 	 *  If a previous abort didn't succeed in time,
7638 	 *  perform a BUS reset.
7639 	 */
7640 	if (cp->to_abort) {
7641 		sym_reset_scsi_bus(np, 1);
7642 		return 0;
7643 	}
7644 
7645 	/*
7646 	 *  Mark the CCB for abort and allow time for.
7647 	 */
7648 	cp->to_abort = timed_out ? 2 : 1;
7649 	callout_reset(&ccb->ccb_h.timeout_ch, 10 * hz, sym_timeout, ccb);
7650 
7651 	/*
7652 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7653 	 */
7654 	np->istat_sem = SEM;
7655 	OUTB (nc_istat, SIGP|SEM);
7656 	return 0;
7657 }
7658 
7659 /*
7660  *  Reset a SCSI device (all LUNs of a target).
7661  */
7662 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7663 {
7664 	tcb_p tp;
7665 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7666 
7667 	if (ccb_h->target_id   == np->myaddr ||
7668 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7669 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7670 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7671 		return;
7672 	}
7673 
7674 	tp = &np->target[ccb_h->target_id];
7675 
7676 	tp->to_reset = 1;
7677 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7678 
7679 	np->istat_sem = SEM;
7680 	OUTB (nc_istat, SIGP|SEM);
7681 	return;
7682 }
7683 
7684 /*
7685  *  SIM action entry point.
7686  */
7687 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7688 {
7689 	int s = splcam();
7690 	sym_action1(sim, ccb);
7691 	splx(s);
7692 }
7693 
7694 static void sym_action1(struct cam_sim *sim, union ccb *ccb)
7695 {
7696 	hcb_p	np;
7697 	tcb_p	tp;
7698 	lcb_p	lp;
7699 	ccb_p	cp;
7700 	int 	tmp;
7701 	u_char	idmsg, *msgptr;
7702 	u_int   msglen;
7703 	struct	ccb_scsiio *csio;
7704 	struct	ccb_hdr  *ccb_h;
7705 
7706 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7707 
7708 	/*
7709 	 *  Retrieve our controller data structure.
7710 	 */
7711 	np = (hcb_p) cam_sim_softc(sim);
7712 
7713 	/*
7714 	 *  The common case is SCSI IO.
7715 	 *  We deal with other ones elsewhere.
7716 	 */
7717 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7718 		sym_action2(sim, ccb);
7719 		return;
7720 	}
7721 	csio  = &ccb->csio;
7722 	ccb_h = &csio->ccb_h;
7723 
7724 	/*
7725 	 *  Work around races.
7726 	 */
7727 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7728 		xpt_done(ccb);
7729 		return;
7730 	}
7731 
7732 	/*
7733 	 *  Minimal checkings, so that we will not
7734 	 *  go outside our tables.
7735 	 */
7736 	if (ccb_h->target_id   == np->myaddr ||
7737 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7738 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7739 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7740 		return;
7741         }
7742 
7743 	/*
7744 	 *  Retreive the target and lun descriptors.
7745 	 */
7746 	tp = &np->target[ccb_h->target_id];
7747 	lp = sym_lp(np, tp, ccb_h->target_lun);
7748 
7749 	/*
7750 	 *  Complete the 1st INQUIRY command with error
7751 	 *  condition if the device is flagged NOSCAN
7752 	 *  at BOOT in the NVRAM. This may speed up
7753 	 *  the boot and maintain coherency with BIOS
7754 	 *  device numbering. Clearing the flag allows
7755 	 *  user to rescan skipped devices later.
7756 	 *  We also return error for devices not flagged
7757 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7758 	 *  devices behave badly when asked for some non
7759 	 *  zero LUN. Btw, this is an absolute hack.:-)
7760 	 */
7761 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7762 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7763 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7764 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7765 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7766 		     ccb_h->target_lun != 0)) {
7767 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7768 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7769 			return;
7770 		}
7771 	}
7772 
7773 	/*
7774 	 *  Get a control block for this IO.
7775 	 */
7776 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7777 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7778 	if (!cp) {
7779 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7780 		return;
7781 	}
7782 
7783 	/*
7784 	 *  Keep track of the IO in our CCB.
7785 	 */
7786 	cp->cam_ccb = ccb;
7787 
7788 	/*
7789 	 *  Build the IDENTIFY message.
7790 	 */
7791 	idmsg = M_IDENTIFY | cp->lun;
7792 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7793 		idmsg |= 0x40;
7794 
7795 	msgptr = cp->scsi_smsg;
7796 	msglen = 0;
7797 	msgptr[msglen++] = idmsg;
7798 
7799 	/*
7800 	 *  Build the tag message if present.
7801 	 */
7802 	if (cp->tag != NO_TAG) {
7803 		u_char order = csio->tag_action;
7804 
7805 		switch(order) {
7806 		case M_ORDERED_TAG:
7807 			break;
7808 		case M_HEAD_TAG:
7809 			break;
7810 		default:
7811 			order = M_SIMPLE_TAG;
7812 		}
7813 		msgptr[msglen++] = order;
7814 
7815 		/*
7816 		 *  For less than 128 tags, actual tags are numbered
7817 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7818 		 *  with devices that have problems with #TAG 0 or too
7819 		 *  great #TAG numbers. For more tags (up to 256),
7820 		 *  we use directly our tag number.
7821 		 */
7822 #if SYM_CONF_MAX_TASK > (512/4)
7823 		msgptr[msglen++] = cp->tag;
7824 #else
7825 		msgptr[msglen++] = (cp->tag << 1) + 1;
7826 #endif
7827 	}
7828 
7829 	/*
7830 	 *  Build a negotiation message if needed.
7831 	 *  (nego_status is filled by sym_prepare_nego())
7832 	 */
7833 	cp->nego_status = 0;
7834 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7835 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7836 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7837 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7838 		if (!tp->nego_cp && lp)
7839 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7840 	}
7841 
7842 	/*
7843 	 *  Fill in our ccb
7844 	 */
7845 
7846 	/*
7847 	 *  Startqueue
7848 	 */
7849 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7850 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7851 
7852 	/*
7853 	 *  select
7854 	 */
7855 	cp->phys.select.sel_id		= cp->target;
7856 	cp->phys.select.sel_scntl3	= tp->head.wval;
7857 	cp->phys.select.sel_sxfer	= tp->head.sval;
7858 	cp->phys.select.sel_scntl4	= tp->head.uval;
7859 
7860 	/*
7861 	 *  message
7862 	 */
7863 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7864 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7865 
7866 	/*
7867 	 *  command
7868 	 */
7869 	if (sym_setup_cdb(np, csio, cp) < 0) {
7870 		sym_free_ccb(np, cp);
7871 		sym_xpt_done(np, ccb);
7872 		return;
7873 	}
7874 
7875 	/*
7876 	 *  status
7877 	 */
7878 #if	0	/* Provision */
7879 	cp->actualquirks	= tp->quirks;
7880 #endif
7881 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7882 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7883 	cp->ssss_status		= S_ILLEGAL;
7884 	cp->xerr_status		= 0;
7885 	cp->host_flags		= 0;
7886 	cp->extra_bytes		= 0;
7887 
7888 	/*
7889 	 *  extreme data pointer.
7890 	 *  shall be positive, so -1 is lower than lowest.:)
7891 	 */
7892 	cp->ext_sg  = -1;
7893 	cp->ext_ofs = 0;
7894 
7895 	/*
7896 	 *  Build the data descriptor block
7897 	 *  and start the IO.
7898 	 */
7899 	sym_setup_data_and_start(np, csio, cp);
7900 }
7901 
7902 /*
7903  *  Setup buffers and pointers that address the CDB.
7904  *  I bet, physical CDBs will never be used on the planet,
7905  *  since they can be bounced without significant overhead.
7906  */
7907 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7908 {
7909 	struct ccb_hdr *ccb_h;
7910 	u32	cmd_ba;
7911 	int	cmd_len;
7912 
7913 	ccb_h = &csio->ccb_h;
7914 
7915 	/*
7916 	 *  CDB is 16 bytes max.
7917 	 */
7918 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7919 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7920 		return -1;
7921 	}
7922 	cmd_len = csio->cdb_len;
7923 
7924 	if (ccb_h->flags & CAM_CDB_POINTER) {
7925 		/* CDB is a pointer */
7926 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7927 			/* CDB pointer is virtual */
7928 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7929 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7930 		} else {
7931 			/* CDB pointer is physical */
7932 #if 0
7933 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7934 #else
7935 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7936 			return -1;
7937 #endif
7938 		}
7939 	} else {
7940 		/* CDB is in the CAM ccb (buffer) */
7941 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7942 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7943 	}
7944 
7945 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7946 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7947 
7948 	return 0;
7949 }
7950 
7951 /*
7952  *  Set up data pointers used by SCRIPTS.
7953  */
7954 static void __inline
7955 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7956 {
7957 	u32 lastp, goalp;
7958 
7959 	/*
7960 	 *  No segments means no data.
7961 	 */
7962 	if (!cp->segments)
7963 		dir = CAM_DIR_NONE;
7964 
7965 	/*
7966 	 *  Set the data pointer.
7967 	 */
7968 	switch(dir) {
7969 	case CAM_DIR_OUT:
7970 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7971 		lastp = goalp - 8 - (cp->segments * (2*4));
7972 		break;
7973 	case CAM_DIR_IN:
7974 		cp->host_flags |= HF_DATA_IN;
7975 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7976 		lastp = goalp - 8 - (cp->segments * (2*4));
7977 		break;
7978 	case CAM_DIR_NONE:
7979 	default:
7980 		lastp = goalp = SCRIPTB_BA (np, no_data);
7981 		break;
7982 	}
7983 
7984 	cp->phys.head.lastp = cpu_to_scr(lastp);
7985 	cp->phys.head.goalp = cpu_to_scr(goalp);
7986 	cp->phys.head.savep = cpu_to_scr(lastp);
7987 	cp->startp	    = cp->phys.head.savep;
7988 }
7989 
7990 
7991 #ifdef	FreeBSD_Bus_Dma_Abstraction
7992 /*
7993  *  Call back routine for the DMA map service.
7994  *  If bounce buffers are used (why ?), we may sleep and then
7995  *  be called there in another context.
7996  */
7997 static void
7998 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7999 {
8000 	ccb_p	cp;
8001 	hcb_p	np;
8002 	union	ccb *ccb;
8003 	int	s;
8004 
8005 	s = splcam();
8006 
8007 	cp  = (ccb_p) arg;
8008 	ccb = cp->cam_ccb;
8009 	np  = (hcb_p) cp->arg;
8010 
8011 	/*
8012 	 *  Deal with weird races.
8013 	 */
8014 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
8015 		goto out_abort;
8016 
8017 	/*
8018 	 *  Deal with weird errors.
8019 	 */
8020 	if (error) {
8021 		cp->dmamapped = 0;
8022 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
8023 		goto out_abort;
8024 	}
8025 
8026 	/*
8027 	 *  Build the data descriptor for the chip.
8028 	 */
8029 	if (nsegs) {
8030 		int retv;
8031 		/* 896 rev 1 requires to be careful about boundaries */
8032 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
8033 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
8034 		else
8035 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
8036 		if (retv < 0) {
8037 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
8038 			goto out_abort;
8039 		}
8040 	}
8041 
8042 	/*
8043 	 *  Synchronize the DMA map only if we have
8044 	 *  actually mapped the data.
8045 	 */
8046 	if (cp->dmamapped) {
8047 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
8048 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
8049 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
8050 	}
8051 
8052 	/*
8053 	 *  Set host status to busy state.
8054 	 *  May have been set back to HS_WAIT to avoid a race.
8055 	 */
8056 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
8057 
8058 	/*
8059 	 *  Set data pointers.
8060 	 */
8061 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
8062 
8063 	/*
8064 	 *  Enqueue this IO in our pending queue.
8065 	 */
8066 	sym_enqueue_cam_ccb(np, ccb);
8067 
8068 	/*
8069 	 *  When `#ifed 1', the code below makes the driver
8070 	 *  panic on the first attempt to write to a SCSI device.
8071 	 *  It is the first test we want to do after a driver
8072 	 *  change that does not seem obviously safe. :)
8073 	 */
8074 #if 0
8075 	switch (cp->cdb_buf[0]) {
8076 	case 0x0A: case 0x2A: case 0xAA:
8077 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
8078 		MDELAY(10000);
8079 		break;
8080 	default:
8081 		break;
8082 	}
8083 #endif
8084 	/*
8085 	 *  Activate this job.
8086 	 */
8087 	sym_put_start_queue(np, cp);
8088 out:
8089 	splx(s);
8090 	return;
8091 out_abort:
8092 	sym_free_ccb(np, cp);
8093 	sym_xpt_done(np, ccb);
8094 	goto out;
8095 }
8096 
8097 /*
8098  *  How complex it gets to deal with the data in CAM.
8099  *  The Bus Dma stuff makes things still more complex.
8100  */
8101 static void
8102 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8103 {
8104 	struct ccb_hdr *ccb_h;
8105 	int dir, retv;
8106 
8107 	ccb_h = &csio->ccb_h;
8108 
8109 	/*
8110 	 *  Now deal with the data.
8111 	 */
8112 	cp->data_len = csio->dxfer_len;
8113 	cp->arg      = np;
8114 
8115 	/*
8116 	 *  No direction means no data.
8117 	 */
8118 	dir = (ccb_h->flags & CAM_DIR_MASK);
8119 	if (dir == CAM_DIR_NONE) {
8120 		sym_execute_ccb(cp, NULL, 0, 0);
8121 		return;
8122 	}
8123 
8124 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8125 		/* Single buffer */
8126 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8127 			/* Buffer is virtual */
8128 			int s;
8129 
8130 			cp->dmamapped = (dir == CAM_DIR_IN) ?
8131 						SYM_DMA_READ : SYM_DMA_WRITE;
8132 			s = splsoftvm();
8133 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
8134 					       csio->data_ptr, csio->dxfer_len,
8135 					       sym_execute_ccb, cp, 0);
8136 			if (retv == EINPROGRESS) {
8137 				cp->host_status	= HS_WAIT;
8138 				xpt_freeze_simq(np->sim, 1);
8139 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
8140 			}
8141 			splx(s);
8142 		} else {
8143 			/* Buffer is physical */
8144 			struct bus_dma_segment seg;
8145 
8146 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
8147 			sym_execute_ccb(cp, &seg, 1, 0);
8148 		}
8149 	} else {
8150 		/* Scatter/gather list */
8151 		struct bus_dma_segment *segs;
8152 
8153 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8154 			/* The SG list pointer is physical */
8155 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8156 			goto out_abort;
8157 		}
8158 
8159 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8160 			/* SG buffer pointers are virtual */
8161 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8162 			goto out_abort;
8163 		}
8164 
8165 		/* SG buffer pointers are physical */
8166 		segs  = (struct bus_dma_segment *)csio->data_ptr;
8167 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
8168 	}
8169 	return;
8170 out_abort:
8171 	sym_free_ccb(np, cp);
8172 	sym_xpt_done(np, (union ccb *) csio);
8173 }
8174 
8175 /*
8176  *  Move the scatter list to our data block.
8177  */
8178 static int
8179 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
8180 			     bus_dma_segment_t *psegs, int nsegs)
8181 {
8182 	struct sym_tblmove *data;
8183 	bus_dma_segment_t *psegs2;
8184 
8185 	if (nsegs > SYM_CONF_MAX_SG)
8186 		return -1;
8187 
8188 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
8189 	psegs2 = &psegs[nsegs-1];
8190 	cp->segments = nsegs;
8191 
8192 	while (1) {
8193 		data->addr = cpu_to_scr(psegs2->ds_addr);
8194 		data->size = cpu_to_scr(psegs2->ds_len);
8195 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8196 			printf ("%s scatter: paddr=%lx len=%ld\n",
8197 				sym_name(np), (long) psegs2->ds_addr,
8198 				(long) psegs2->ds_len);
8199 		}
8200 		if (psegs2 != psegs) {
8201 			--data;
8202 			--psegs2;
8203 			continue;
8204 		}
8205 		break;
8206 	}
8207 	return 0;
8208 }
8209 
8210 #else	/* FreeBSD_Bus_Dma_Abstraction */
8211 
8212 /*
8213  *  How complex it gets to deal with the data in CAM.
8214  *  Variant without the Bus Dma Abstraction option.
8215  */
8216 static void
8217 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8218 {
8219 	struct ccb_hdr *ccb_h;
8220 	int dir, retv;
8221 
8222 	ccb_h = &csio->ccb_h;
8223 
8224 	/*
8225 	 *  Now deal with the data.
8226 	 */
8227 	cp->data_len = 0;
8228 	cp->segments = 0;
8229 
8230 	/*
8231 	 *  No direction means no data.
8232 	 */
8233 	dir = (ccb_h->flags & CAM_DIR_MASK);
8234 	if (dir == CAM_DIR_NONE)
8235 		goto end_scatter;
8236 
8237 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8238 		/* Single buffer */
8239 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8240 			/* Buffer is virtual */
8241 			retv = sym_scatter_virtual(np, cp,
8242 						(vm_offset_t) csio->data_ptr,
8243 						(vm_size_t) csio->dxfer_len);
8244 		} else {
8245 			/* Buffer is physical */
8246 			retv = sym_scatter_physical(np, cp,
8247 						(vm_offset_t) csio->data_ptr,
8248 						(vm_size_t) csio->dxfer_len);
8249 		}
8250 	} else {
8251 		/* Scatter/gather list */
8252 		int nsegs;
8253 		struct bus_dma_segment *segs;
8254 		segs  = (struct bus_dma_segment *)csio->data_ptr;
8255 		nsegs = csio->sglist_cnt;
8256 
8257 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8258 			/* The SG list pointer is physical */
8259 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8260 			goto out_abort;
8261 		}
8262 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8263 			/* SG buffer pointers are virtual */
8264 			retv = sym_scatter_sg_virtual(np, cp, segs, nsegs);
8265 		} else {
8266 			/* SG buffer pointers are physical */
8267 			retv = sym_scatter_sg_physical(np, cp, segs, nsegs);
8268 		}
8269 	}
8270 	if (retv < 0) {
8271 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
8272 		goto out_abort;
8273 	}
8274 
8275 end_scatter:
8276 	/*
8277 	 *  Set data pointers.
8278 	 */
8279 	sym_setup_data_pointers(np, cp, dir);
8280 
8281 	/*
8282 	 *  Enqueue this IO in our pending queue.
8283 	 */
8284 	sym_enqueue_cam_ccb(np, (union ccb *) csio);
8285 
8286 	/*
8287 	 *  Activate this job.
8288 	 */
8289 	sym_put_start_queue(np, cp);
8290 
8291 	/*
8292 	 *  Command is successfully queued.
8293 	 */
8294 	return;
8295 out_abort:
8296 	sym_free_ccb(np, cp);
8297 	sym_xpt_done(np, (union ccb *) csio);
8298 }
8299 
8300 /*
8301  *  Scatter a virtual buffer into bus addressable chunks.
8302  */
8303 static int
8304 sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
8305 {
8306 	u_long	pe, pn;
8307 	u_long	n, k;
8308 	int s;
8309 
8310 	cp->data_len += len;
8311 
8312 	pe = vaddr + len;
8313 	n  = len;
8314 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8315 
8316 	while (n && s >= 0) {
8317 		pn = (pe - 1) & ~PAGE_MASK;
8318 		k = pe - pn;
8319 		if (k > n) {
8320 			k  = n;
8321 			pn = pe - n;
8322 		}
8323 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8324 			printf ("%s scatter: va=%lx pa=%lx siz=%ld\n",
8325 				sym_name(np), pn, (u_long) vtobus(pn), k);
8326 		}
8327 		cp->phys.data[s].addr = cpu_to_scr(vtobus(pn));
8328 		cp->phys.data[s].size = cpu_to_scr(k);
8329 		pe = pn;
8330 		n -= k;
8331 		--s;
8332 	}
8333 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8334 
8335 	return n ? -1 : 0;
8336 }
8337 
8338 /*
8339  *  Scatter a SG list with virtual addresses into bus addressable chunks.
8340  */
8341 static int
8342 sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8343 {
8344 	int i, retv = 0;
8345 
8346 	for (i = nsegs - 1 ;  i >= 0 ; --i) {
8347 		retv = sym_scatter_virtual(np, cp,
8348 					   psegs[i].ds_addr, psegs[i].ds_len);
8349 		if (retv < 0)
8350 			break;
8351 	}
8352 	return retv;
8353 }
8354 
8355 /*
8356  *  Scatter a physical buffer into bus addressable chunks.
8357  */
8358 static int
8359 sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len)
8360 {
8361 	struct bus_dma_segment seg;
8362 
8363 	seg.ds_addr = paddr;
8364 	seg.ds_len  = len;
8365 	return sym_scatter_sg_physical(np, cp, &seg, 1);
8366 }
8367 
8368 #endif	/* FreeBSD_Bus_Dma_Abstraction */
8369 
8370 /*
8371  *  Scatter a SG list with physical addresses into bus addressable chunks.
8372  *  We need to ensure 16MB boundaries not to be crossed during DMA of
8373  *  each segment, due to some chips being flawed.
8374  */
8375 #define BOUND_MASK ((1UL<<24)-1)
8376 static int
8377 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8378 {
8379 	u_long	ps, pe, pn;
8380 	u_long	k;
8381 	int s, t;
8382 
8383 #ifndef	FreeBSD_Bus_Dma_Abstraction
8384 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8385 #else
8386 	s  = SYM_CONF_MAX_SG - 1;
8387 #endif
8388 	t  = nsegs - 1;
8389 	ps = psegs[t].ds_addr;
8390 	pe = ps + psegs[t].ds_len;
8391 
8392 	while (s >= 0) {
8393 		pn = (pe - 1) & ~BOUND_MASK;
8394 		if (pn <= ps)
8395 			pn = ps;
8396 		k = pe - pn;
8397 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8398 			printf ("%s scatter: paddr=%lx len=%ld\n",
8399 				sym_name(np), pn, k);
8400 		}
8401 		cp->phys.data[s].addr = cpu_to_scr(pn);
8402 		cp->phys.data[s].size = cpu_to_scr(k);
8403 #ifndef	FreeBSD_Bus_Dma_Abstraction
8404 		cp->data_len += k;
8405 #endif
8406 		--s;
8407 		if (pn == ps) {
8408 			if (--t < 0)
8409 				break;
8410 			ps = psegs[t].ds_addr;
8411 			pe = ps + psegs[t].ds_len;
8412 		}
8413 		else
8414 			pe = pn;
8415 	}
8416 
8417 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8418 
8419 	return t >= 0 ? -1 : 0;
8420 }
8421 #undef BOUND_MASK
8422 
8423 /*
8424  *  SIM action for non performance critical stuff.
8425  */
8426 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8427 {
8428 	hcb_p	np;
8429 	tcb_p	tp;
8430 	lcb_p	lp;
8431 	struct	ccb_hdr  *ccb_h;
8432 
8433 	/*
8434 	 *  Retrieve our controller data structure.
8435 	 */
8436 	np = (hcb_p) cam_sim_softc(sim);
8437 
8438 	ccb_h = &ccb->ccb_h;
8439 
8440 	switch (ccb_h->func_code) {
8441 	case XPT_SET_TRAN_SETTINGS:
8442 	{
8443 		struct ccb_trans_settings *cts;
8444 
8445 		cts  = &ccb->cts;
8446 		tp = &np->target[ccb_h->target_id];
8447 
8448 		/*
8449 		 *  Update SPI transport settings in TARGET control block.
8450 		 *  Update SCSI device settings in LUN control block.
8451 		 */
8452 		lp = sym_lp(np, tp, ccb_h->target_lun);
8453 #ifdef	FreeBSD_New_Tran_Settings
8454 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8455 #else
8456 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
8457 #endif
8458 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8459 			if (lp)
8460 				sym_update_dflags(np, &lp->current_flags, cts);
8461 		}
8462 #ifdef	FreeBSD_New_Tran_Settings
8463 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8464 #else
8465 		if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
8466 #endif
8467 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8468 			if (lp)
8469 				sym_update_dflags(np, &lp->user_flags, cts);
8470 		}
8471 
8472 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8473 		break;
8474 	}
8475 	case XPT_GET_TRAN_SETTINGS:
8476 	{
8477 		struct ccb_trans_settings *cts;
8478 		struct sym_trans *tip;
8479 		u_char dflags;
8480 
8481 		cts = &ccb->cts;
8482 		tp = &np->target[ccb_h->target_id];
8483 		lp = sym_lp(np, tp, ccb_h->target_lun);
8484 
8485 #ifdef	FreeBSD_New_Tran_Settings
8486 #define	cts__scsi (&cts->proto_specific.scsi)
8487 #define	cts__spi  (&cts->xport_specific.spi)
8488 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8489 			tip = &tp->tinfo.current;
8490 			dflags = lp ? lp->current_flags : 0;
8491 		}
8492 		else {
8493 			tip = &tp->tinfo.user;
8494 			dflags = lp ? lp->user_flags : tp->usrflags;
8495 		}
8496 
8497 		cts->protocol  = PROTO_SCSI;
8498 		cts->transport = XPORT_SPI;
8499 		cts->protocol_version  = tip->scsi_version;
8500 		cts->transport_version = tip->spi_version;
8501 
8502 		cts__spi->sync_period = tip->period;
8503 		cts__spi->sync_offset = tip->offset;
8504 		cts__spi->bus_width   = tip->width;
8505 		cts__spi->ppr_options = tip->options;
8506 
8507 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8508 		                | CTS_SPI_VALID_SYNC_OFFSET
8509 		                | CTS_SPI_VALID_BUS_WIDTH
8510 		                | CTS_SPI_VALID_PPR_OPTIONS;
8511 
8512 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8513 		if (dflags & SYM_DISC_ENABLED)
8514 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8515 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8516 
8517 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8518 		if (dflags & SYM_TAGS_ENABLED)
8519 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8520 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8521 #undef	cts__spi
8522 #undef	cts__scsi
8523 #else
8524 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
8525 			tip = &tp->tinfo.current;
8526 			dflags = lp ? lp->current_flags : 0;
8527 		}
8528 		else {
8529 			tip = &tp->tinfo.user;
8530 			dflags = lp ? lp->user_flags : tp->usrflags;
8531 		}
8532 
8533 		cts->sync_period = tip->period;
8534 		cts->sync_offset = tip->offset;
8535 		cts->bus_width   = tip->width;
8536 
8537 		cts->valid = CCB_TRANS_SYNC_RATE_VALID
8538 			   | CCB_TRANS_SYNC_OFFSET_VALID
8539 			   | CCB_TRANS_BUS_WIDTH_VALID;
8540 
8541 		cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
8542 
8543 		if (dflags & SYM_DISC_ENABLED)
8544 			cts->flags |= CCB_TRANS_DISC_ENB;
8545 
8546 		if (dflags & SYM_TAGS_ENABLED)
8547 			cts->flags |= CCB_TRANS_TAG_ENB;
8548 
8549 		cts->valid |= CCB_TRANS_DISC_VALID;
8550 		cts->valid |= CCB_TRANS_TQ_VALID;
8551 #endif
8552 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8553 		break;
8554 	}
8555 	case XPT_CALC_GEOMETRY:
8556 	{
8557 		struct ccb_calc_geometry *ccg;
8558 		u32 size_mb;
8559 		u32 secs_per_cylinder;
8560 		int extended;
8561 
8562 		/*
8563 		 *  Silly DOS geometry.
8564 		 */
8565 		ccg = &ccb->ccg;
8566 		size_mb = ccg->volume_size
8567 			/ ((1024L * 1024L) / ccg->block_size);
8568 		extended = 1;
8569 
8570 		if (size_mb > 1024 && extended) {
8571 			ccg->heads = 255;
8572 			ccg->secs_per_track = 63;
8573 		} else {
8574 			ccg->heads = 64;
8575 			ccg->secs_per_track = 32;
8576 		}
8577 		secs_per_cylinder = ccg->heads * ccg->secs_per_track;
8578 		ccg->cylinders = ccg->volume_size / secs_per_cylinder;
8579 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8580 		break;
8581 	}
8582 	case XPT_PATH_INQ:
8583 	{
8584 		struct ccb_pathinq *cpi = &ccb->cpi;
8585 		cpi->version_num = 1;
8586 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8587 		if ((np->features & FE_WIDE) != 0)
8588 			cpi->hba_inquiry |= PI_WIDE_16;
8589 		cpi->target_sprt = 0;
8590 		cpi->hba_misc = 0;
8591 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8592 			cpi->hba_misc |= PIM_SCANHILO;
8593 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8594 			cpi->hba_misc |= PIM_NOBUSRESET;
8595 		cpi->hba_eng_cnt = 0;
8596 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8597 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8598 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8599 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8600 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8601 		cpi->bus_id = cam_sim_bus(sim);
8602 		cpi->initiator_id = np->myaddr;
8603 		cpi->base_transfer_speed = 3300;
8604 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8605 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8606 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8607 		cpi->unit_number = cam_sim_unit(sim);
8608 
8609 #ifdef	FreeBSD_New_Tran_Settings
8610 		cpi->protocol = PROTO_SCSI;
8611 		cpi->protocol_version = SCSI_REV_2;
8612 		cpi->transport = XPORT_SPI;
8613 		cpi->transport_version = 2;
8614 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8615 		if (np->features & FE_ULTRA3) {
8616 			cpi->transport_version = 3;
8617 			cpi->xport_specific.spi.ppr_options =
8618 			    SID_SPI_CLOCK_DT_ST;
8619 		}
8620 #endif
8621 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8622 		break;
8623 	}
8624 	case XPT_ABORT:
8625 	{
8626 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8627 		switch(abort_ccb->ccb_h.func_code) {
8628 		case XPT_SCSI_IO:
8629 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8630 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8631 				break;
8632 			}
8633 		default:
8634 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8635 			break;
8636 		}
8637 		break;
8638 	}
8639 	case XPT_RESET_DEV:
8640 	{
8641 		sym_reset_dev(np, ccb);
8642 		break;
8643 	}
8644 	case XPT_RESET_BUS:
8645 	{
8646 		sym_reset_scsi_bus(np, 0);
8647 		if (sym_verbose) {
8648 			xpt_print_path(np->path);
8649 			printf("SCSI BUS reset delivered.\n");
8650 		}
8651 		sym_init (np, 1);
8652 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8653 		break;
8654 	}
8655 	case XPT_ACCEPT_TARGET_IO:
8656 	case XPT_CONT_TARGET_IO:
8657 	case XPT_EN_LUN:
8658 	case XPT_NOTIFY_ACK:
8659 	case XPT_IMMED_NOTIFY:
8660 	case XPT_TERM_IO:
8661 	default:
8662 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8663 		break;
8664 	}
8665 }
8666 
8667 /*
8668  *  Asynchronous notification handler.
8669  */
8670 static void
8671 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8672 {
8673 	hcb_p np;
8674 	struct cam_sim *sim;
8675 	u_int tn;
8676 	tcb_p tp;
8677 	int s;
8678 
8679 	s = splcam();
8680 
8681 	sim = (struct cam_sim *) cb_arg;
8682 	np  = (hcb_p) cam_sim_softc(sim);
8683 
8684 	switch (code) {
8685 	case AC_LOST_DEVICE:
8686 		tn = xpt_path_target_id(path);
8687 		if (tn >= SYM_CONF_MAX_TARGET)
8688 			break;
8689 
8690 		tp = &np->target[tn];
8691 
8692 		tp->to_reset  = 0;
8693 		tp->head.sval = 0;
8694 		tp->head.wval = np->rv_scntl3;
8695 		tp->head.uval = 0;
8696 
8697 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8698 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8699 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8700 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8701 
8702 		break;
8703 	default:
8704 		break;
8705 	}
8706 
8707 	splx(s);
8708 }
8709 
8710 /*
8711  *  Update transfer settings of a target.
8712  */
8713 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8714 			    struct ccb_trans_settings *cts)
8715 {
8716 	/*
8717 	 *  Update the infos.
8718 	 */
8719 #ifdef	FreeBSD_New_Tran_Settings
8720 #define cts__spi (&cts->xport_specific.spi)
8721 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8722 		tip->width = cts__spi->bus_width;
8723 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8724 		tip->offset = cts__spi->sync_offset;
8725 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8726 		tip->period = cts__spi->sync_period;
8727 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8728 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8729 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8730 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8731 		tip->scsi_version = cts->protocol_version;
8732 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8733 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8734 		tip->spi_version = cts->transport_version;
8735 #undef cts__spi
8736 #else
8737 	if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
8738 		tip->width = cts->bus_width;
8739 	if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
8740 		tip->offset = cts->sync_offset;
8741 	if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
8742 		tip->period = cts->sync_period;
8743 #endif
8744 	/*
8745 	 *  Scale against driver configuration limits.
8746 	 */
8747 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8748 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8749 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8750 
8751 	/*
8752 	 *  Scale against actual controller BUS width.
8753 	 */
8754 	if (tip->width > np->maxwide)
8755 		tip->width  = np->maxwide;
8756 
8757 #ifdef	FreeBSD_New_Tran_Settings
8758 	/*
8759 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8760 	 */
8761 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8762 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8763 		tip->options &= ~PPR_OPT_DT;
8764 	}
8765 #else
8766 	/*
8767 	 *  For now, only assume DT if period <= 9, BUS 16 and offset != 0.
8768 	 */
8769 	tip->options = 0;
8770 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) &&
8771 	    tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) {
8772 		tip->options |= PPR_OPT_DT;
8773 	}
8774 #endif
8775 
8776 	/*
8777 	 *  Scale period factor and offset against controller limits.
8778 	 */
8779 	if (tip->options & PPR_OPT_DT) {
8780 		if (tip->period < np->minsync_dt)
8781 			tip->period = np->minsync_dt;
8782 		if (tip->period > np->maxsync_dt)
8783 			tip->period = np->maxsync_dt;
8784 		if (tip->offset > np->maxoffs_dt)
8785 			tip->offset = np->maxoffs_dt;
8786 	}
8787 	else {
8788 		if (tip->period < np->minsync)
8789 			tip->period = np->minsync;
8790 		if (tip->period > np->maxsync)
8791 			tip->period = np->maxsync;
8792 		if (tip->offset > np->maxoffs)
8793 			tip->offset = np->maxoffs;
8794 	}
8795 }
8796 
8797 /*
8798  *  Update flags for a device (logical unit).
8799  */
8800 static void
8801 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8802 {
8803 #ifdef	FreeBSD_New_Tran_Settings
8804 #define	cts__scsi (&cts->proto_specific.scsi)
8805 #define	cts__spi  (&cts->xport_specific.spi)
8806 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8807 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8808 			*flags |= SYM_DISC_ENABLED;
8809 		else
8810 			*flags &= ~SYM_DISC_ENABLED;
8811 	}
8812 
8813 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8814 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8815 			*flags |= SYM_TAGS_ENABLED;
8816 		else
8817 			*flags &= ~SYM_TAGS_ENABLED;
8818 	}
8819 #undef	cts__spi
8820 #undef	cts__scsi
8821 #else
8822 	if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
8823 		if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
8824 			*flags |= SYM_DISC_ENABLED;
8825 		else
8826 			*flags &= ~SYM_DISC_ENABLED;
8827 	}
8828 
8829 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
8830 		if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
8831 			*flags |= SYM_TAGS_ENABLED;
8832 		else
8833 			*flags &= ~SYM_TAGS_ENABLED;
8834 	}
8835 #endif
8836 }
8837 
8838 
8839 /*============= DRIVER INITIALISATION ==================*/
8840 
8841 #ifdef FreeBSD_Bus_Io_Abstraction
8842 
8843 static device_method_t sym_pci_methods[] = {
8844 	DEVMETHOD(device_probe,	 sym_pci_probe),
8845 	DEVMETHOD(device_attach, sym_pci_attach),
8846 	{ 0, 0 }
8847 };
8848 
8849 static driver_t sym_pci_driver = {
8850 	"sym",
8851 	sym_pci_methods,
8852 	sizeof(struct sym_hcb)
8853 };
8854 
8855 static devclass_t sym_devclass;
8856 
8857 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
8858 
8859 #else	/* Pre-FreeBSD_Bus_Io_Abstraction */
8860 
8861 static u_long sym_unit;
8862 
8863 static struct	pci_device sym_pci_driver = {
8864 	"sym",
8865 	sym_pci_probe,
8866 	sym_pci_attach,
8867 	&sym_unit,
8868 	NULL
8869 };
8870 
8871 #if 	defined(__DragonFly__) || __FreeBSD_version >= 400000
8872 COMPAT_PCI_DRIVER (sym, sym_pci_driver);
8873 #else
8874 DATA_SET (pcidevice_set, sym_pci_driver);
8875 #endif
8876 
8877 #endif /* FreeBSD_Bus_Io_Abstraction */
8878 
8879 static struct sym_pci_chip sym_pci_dev_table[] = {
8880  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8881  FE_ERL}
8882  ,
8883 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8884  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8885  FE_BOF}
8886  ,
8887 #else
8888  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8889  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8890  ,
8891 #endif
8892  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8893  FE_BOF|FE_ERL}
8894  ,
8895  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8896  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8897  ,
8898  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8899  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8900  ,
8901  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8902  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8903  ,
8904  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8905  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8906  FE_RAM|FE_DIFF}
8907  ,
8908  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8909  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8910  FE_RAM|FE_DIFF}
8911  ,
8912  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8913  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8914  FE_RAM|FE_DIFF}
8915  ,
8916  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8917  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8918  FE_RAM|FE_DIFF}
8919  ,
8920 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8921  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8922  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8923  FE_RAM|FE_LCKFRQ}
8924  ,
8925 #else
8926  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8927  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8928  FE_RAM|FE_LCKFRQ}
8929  ,
8930 #endif
8931  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8932  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8933  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8934  ,
8935  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8936  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8937  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8938  ,
8939  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8940  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8941  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8942  FE_C10}
8943  ,
8944  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8945  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8946  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8947  FE_C10|FE_U3EN}
8948  ,
8949  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8950  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8951  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8952  FE_C10|FE_U3EN}
8953  ,
8954  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8955  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8956  FE_RAM|FE_IO256|FE_LEDC}
8957 };
8958 
8959 #define sym_pci_num_devs \
8960 	(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
8961 
8962 /*
8963  *  Look up the chip table.
8964  *
8965  *  Return a pointer to the chip entry if found,
8966  *  zero otherwise.
8967  */
8968 static struct sym_pci_chip *
8969 #ifdef FreeBSD_Bus_Io_Abstraction
8970 sym_find_pci_chip(device_t dev)
8971 #else
8972 sym_find_pci_chip(pcici_t pci_tag)
8973 #endif
8974 {
8975 	struct	sym_pci_chip *chip;
8976 	int	i;
8977 	u_short	device_id;
8978 	u_char	revision;
8979 
8980 #ifdef FreeBSD_Bus_Io_Abstraction
8981 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8982 		return 0;
8983 
8984 	device_id = pci_get_device(dev);
8985 	revision  = pci_get_revid(dev);
8986 #else
8987 	if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR)
8988 		return 0;
8989 
8990 	device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
8991 	revision  = pci_cfgread(pci_tag, PCIR_REVID,  1);
8992 #endif
8993 
8994 	for (i = 0; i < sym_pci_num_devs; i++) {
8995 		chip = &sym_pci_dev_table[i];
8996 		if (device_id != chip->device_id)
8997 			continue;
8998 		if (revision > chip->revision_id)
8999 			continue;
9000 		return chip;
9001 	}
9002 
9003 	return 0;
9004 }
9005 
9006 /*
9007  *  Tell upper layer if the chip is supported.
9008  */
9009 #ifdef FreeBSD_Bus_Io_Abstraction
9010 static int
9011 sym_pci_probe(device_t dev)
9012 {
9013 	struct	sym_pci_chip *chip;
9014 
9015 	chip = sym_find_pci_chip(dev);
9016 	if (chip && sym_find_firmware(chip)) {
9017 		device_set_desc(dev, chip->name);
9018 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0;
9019 	}
9020 	return ENXIO;
9021 }
9022 #else /* Pre-FreeBSD_Bus_Io_Abstraction */
9023 static const char *
9024 sym_pci_probe(pcici_t pci_tag, pcidi_t type)
9025 {
9026 	struct	sym_pci_chip *chip;
9027 
9028 	chip = sym_find_pci_chip(pci_tag);
9029 	if (chip && sym_find_firmware(chip)) {
9030 #if NNCR > 0
9031 	/* Only claim chips we are allowed to take precedence over the ncr */
9032 	if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP))
9033 #else
9034 	if (1)
9035 #endif
9036 		return chip->name;
9037 	}
9038 	return 0;
9039 }
9040 #endif
9041 
9042 /*
9043  *  Attach a sym53c8xx device.
9044  */
9045 #ifdef FreeBSD_Bus_Io_Abstraction
9046 static int
9047 sym_pci_attach(device_t dev)
9048 #else
9049 static void
9050 sym_pci_attach(pcici_t pci_tag, int unit)
9051 {
9052 	int err = sym_pci_attach2(pci_tag, unit);
9053 	if (err)
9054 		printf("sym: failed to attach unit %d - err=%d.\n", unit, err);
9055 }
9056 static int
9057 sym_pci_attach2(pcici_t pci_tag, int unit)
9058 #endif
9059 {
9060 	struct	sym_pci_chip *chip;
9061 	u_short	command;
9062 	u_char	cachelnsz;
9063 	struct	sym_hcb *np = 0;
9064 	struct	sym_nvram nvram;
9065 	struct	sym_fw *fw = 0;
9066 	int 	i;
9067 #ifdef	FreeBSD_Bus_Dma_Abstraction
9068 	bus_dma_tag_t	bus_dmat;
9069 
9070 	/*
9071 	 *  I expected to be told about a parent
9072 	 *  DMA tag, but didn't find any.
9073 	 */
9074 	bus_dmat = NULL;
9075 #endif
9076 
9077 	/*
9078 	 *  Only probed devices should be attached.
9079 	 *  We just enjoy being paranoid. :)
9080 	 */
9081 #ifdef FreeBSD_Bus_Io_Abstraction
9082 	chip = sym_find_pci_chip(dev);
9083 #else
9084 	chip = sym_find_pci_chip(pci_tag);
9085 #endif
9086 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
9087 		return (ENXIO);
9088 
9089 	/*
9090 	 *  Allocate immediately the host control block,
9091 	 *  since we are only expecting to succeed. :)
9092 	 *  We keep track in the HCB of all the resources that
9093 	 *  are to be released on error.
9094 	 */
9095 #ifdef	FreeBSD_Bus_Dma_Abstraction
9096 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
9097 	if (np)
9098 		np->bus_dmat = bus_dmat;
9099 	else
9100 		goto attach_failed;
9101 #else
9102 	np = sym_calloc_dma(sizeof(*np), "HCB");
9103 	if (!np)
9104 		goto attach_failed;
9105 #endif
9106 
9107 	/*
9108 	 *  Copy some useful infos to the HCB.
9109 	 */
9110 	np->hcb_ba	 = vtobus(np);
9111 	np->verbose	 = bootverbose;
9112 #ifdef FreeBSD_Bus_Io_Abstraction
9113 	np->device	 = dev;
9114 	np->unit	 = device_get_unit(dev);
9115 	np->device_id	 = pci_get_device(dev);
9116 	np->revision_id  = pci_get_revid(dev);
9117 #else
9118 	np->pci_tag	 = pci_tag;
9119 	np->unit	 = unit;
9120 	np->device_id	 = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
9121 	np->revision_id  = pci_cfgread(pci_tag, PCIR_REVID,  1);
9122 #endif
9123 	np->features	 = chip->features;
9124 	np->clock_divn	 = chip->nr_divisor;
9125 	np->maxoffs	 = chip->offset_max;
9126 	np->maxburst	 = chip->burst_max;
9127 	np->scripta_sz	 = fw->a_size;
9128 	np->scriptb_sz	 = fw->b_size;
9129 	np->fw_setup	 = fw->setup;
9130 	np->fw_patch	 = fw->patch;
9131 	np->fw_name	 = fw->name;
9132 
9133 	/*
9134 	 * Edit its name.
9135 	 */
9136 	snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
9137 
9138 	/*
9139 	 *  Initialyze the CCB free and busy queues.
9140 	 */
9141 	sym_que_init(&np->free_ccbq);
9142 	sym_que_init(&np->busy_ccbq);
9143 	sym_que_init(&np->comp_ccbq);
9144 	sym_que_init(&np->cam_ccbq);
9145 
9146 	/*
9147 	 *  Allocate a tag for the DMA of user data.
9148 	 */
9149 #ifdef	FreeBSD_Bus_Dma_Abstraction
9150 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
9151 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
9152 				NULL, NULL,
9153 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
9154 				(1<<24), 0, &np->data_dmat)) {
9155 		device_printf(dev, "failed to create DMA tag.\n");
9156 		goto attach_failed;
9157 	}
9158 #endif
9159 	/*
9160 	 *  Read and apply some fix-ups to the PCI COMMAND
9161 	 *  register. We want the chip to be enabled for:
9162 	 *  - BUS mastering
9163 	 *  - PCI parity checking (reporting would also be fine)
9164 	 *  - Write And Invalidate.
9165 	 */
9166 #ifdef FreeBSD_Bus_Io_Abstraction
9167 	command = pci_read_config(dev, PCIR_COMMAND, 2);
9168 #else
9169 	command = pci_cfgread(pci_tag, PCIR_COMMAND, 2);
9170 #endif
9171 	command |= PCIM_CMD_BUSMASTEREN;
9172 	command |= PCIM_CMD_PERRESPEN;
9173 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
9174 #ifdef FreeBSD_Bus_Io_Abstraction
9175 	pci_write_config(dev, PCIR_COMMAND, command, 2);
9176 #else
9177 	pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2);
9178 #endif
9179 
9180 	/*
9181 	 *  Let the device know about the cache line size,
9182 	 *  if it doesn't yet.
9183 	 */
9184 #ifdef FreeBSD_Bus_Io_Abstraction
9185 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
9186 #else
9187 	cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1);
9188 #endif
9189 	if (!cachelnsz) {
9190 		cachelnsz = 8;
9191 #ifdef FreeBSD_Bus_Io_Abstraction
9192 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
9193 #else
9194 		pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1);
9195 #endif
9196 	}
9197 
9198 	/*
9199 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
9200 	 */
9201 #ifdef FreeBSD_Bus_Io_Abstraction
9202 	if ((command & PCIM_CMD_MEMEN) != 0) {
9203 		int regs_id = SYM_PCI_MMIO;
9204 		np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9205 						  0, ~0, 1, RF_ACTIVE);
9206 	}
9207 	if (!np->mmio_res) {
9208 		device_printf(dev, "failed to allocate MMIO resources\n");
9209 		goto attach_failed;
9210 	}
9211 	np->mmio_bsh = rman_get_bushandle(np->mmio_res);
9212 	np->mmio_tag = rman_get_bustag(np->mmio_res);
9213 	np->mmio_pa  = rman_get_start(np->mmio_res);
9214 	np->mmio_va  = (vm_offset_t) rman_get_virtual(np->mmio_res);
9215 	np->mmio_ba  = np->mmio_pa;
9216 #else
9217 	if ((command & PCIM_CMD_MEMEN) != 0) {
9218 		vm_offset_t vaddr, paddr;
9219 		if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) {
9220 			printf("%s: failed to map MMIO window\n", sym_name(np));
9221 			goto attach_failed;
9222 		}
9223 		np->mmio_va = vaddr;
9224 		np->mmio_pa = paddr;
9225 		np->mmio_ba = paddr;
9226 	}
9227 #endif
9228 
9229 	/*
9230 	 *  Allocate the IRQ.
9231 	 */
9232 #ifdef FreeBSD_Bus_Io_Abstraction
9233 	i = 0;
9234 	np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i,
9235 					 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
9236 	if (!np->irq_res) {
9237 		device_printf(dev, "failed to allocate IRQ resource\n");
9238 		goto attach_failed;
9239 	}
9240 #endif
9241 
9242 #ifdef	SYM_CONF_IOMAPPED
9243 	/*
9244 	 *  User want us to use normal IO with PCI.
9245 	 *  Alloc/get/map/retrieve everything that deals with IO.
9246 	 */
9247 #ifdef FreeBSD_Bus_Io_Abstraction
9248 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9249 		int regs_id = SYM_PCI_IO;
9250 		np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &regs_id,
9251 						0, ~0, 1, RF_ACTIVE);
9252 	}
9253 	if (!np->io_res) {
9254 		device_printf(dev, "failed to allocate IO resources\n");
9255 		goto attach_failed;
9256 	}
9257 	np->io_bsh  = rman_get_bushandle(np->io_res);
9258 	np->io_tag  = rman_get_bustag(np->io_res);
9259 	np->io_port = rman_get_start(np->io_res);
9260 #else
9261 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9262 		pci_port_t io_port;
9263 		if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) {
9264 			printf("%s: failed to map IO window\n", sym_name(np));
9265 			goto attach_failed;
9266 		}
9267 		np->io_port = io_port;
9268 	}
9269 #endif
9270 
9271 #endif /* SYM_CONF_IOMAPPED */
9272 
9273 	/*
9274 	 *  If the chip has RAM.
9275 	 *  Alloc/get/map/retrieve the corresponding resources.
9276 	 */
9277 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
9278 	    (command & PCIM_CMD_MEMEN) != 0) {
9279 #ifdef FreeBSD_Bus_Io_Abstraction
9280 		int regs_id = SYM_PCI_RAM;
9281 		if (np->features & FE_64BIT)
9282 			regs_id = SYM_PCI_RAM64;
9283 		np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9284 						 0, ~0, 1, RF_ACTIVE);
9285 		if (!np->ram_res) {
9286 			device_printf(dev,"failed to allocate RAM resources\n");
9287 			goto attach_failed;
9288 		}
9289 		np->ram_id  = regs_id;
9290 		np->ram_bsh = rman_get_bushandle(np->ram_res);
9291 		np->ram_tag = rman_get_bustag(np->ram_res);
9292 		np->ram_pa  = rman_get_start(np->ram_res);
9293 		np->ram_va  = (vm_offset_t) rman_get_virtual(np->ram_res);
9294 		np->ram_ba  = np->ram_pa;
9295 #else
9296 		vm_offset_t vaddr, paddr;
9297 		int regs_id = SYM_PCI_RAM;
9298 		if (np->features & FE_64BIT)
9299 			regs_id = SYM_PCI_RAM64;
9300 		if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) {
9301 			printf("%s: failed to map RAM window\n", sym_name(np));
9302 			goto attach_failed;
9303 		}
9304 		np->ram_va = vaddr;
9305 		np->ram_pa = paddr;
9306 		np->ram_ba = paddr;
9307 #endif
9308 	}
9309 
9310 	/*
9311 	 *  Save setting of some IO registers, so we will
9312 	 *  be able to probe specific implementations.
9313 	 */
9314 	sym_save_initial_setting (np);
9315 
9316 	/*
9317 	 *  Reset the chip now, since it has been reported
9318 	 *  that SCSI clock calibration may not work properly
9319 	 *  if the chip is currently active.
9320 	 */
9321 	sym_chip_reset (np);
9322 
9323 	/*
9324 	 *  Try to read the user set-up.
9325 	 */
9326 	(void) sym_read_nvram(np, &nvram);
9327 
9328 	/*
9329 	 *  Prepare controller and devices settings, according
9330 	 *  to chip features, user set-up and driver set-up.
9331 	 */
9332 	(void) sym_prepare_setting(np, &nvram);
9333 
9334 	/*
9335 	 *  Check the PCI clock frequency.
9336 	 *  Must be performed after prepare_setting since it destroys
9337 	 *  STEST1 that is used to probe for the clock doubler.
9338 	 */
9339 	i = sym_getpciclock(np);
9340 	if (i > 37000)
9341 #ifdef FreeBSD_Bus_Io_Abstraction
9342 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
9343 #else
9344 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
9345 			sym_name(np), i);
9346 #endif
9347 
9348 	/*
9349 	 *  Allocate the start queue.
9350 	 */
9351 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
9352 	if (!np->squeue)
9353 		goto attach_failed;
9354 	np->squeue_ba = vtobus(np->squeue);
9355 
9356 	/*
9357 	 *  Allocate the done queue.
9358 	 */
9359 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
9360 	if (!np->dqueue)
9361 		goto attach_failed;
9362 	np->dqueue_ba = vtobus(np->dqueue);
9363 
9364 	/*
9365 	 *  Allocate the target bus address array.
9366 	 */
9367 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
9368 	if (!np->targtbl)
9369 		goto attach_failed;
9370 	np->targtbl_ba = vtobus(np->targtbl);
9371 
9372 	/*
9373 	 *  Allocate SCRIPTS areas.
9374 	 */
9375 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
9376 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
9377 	if (!np->scripta0 || !np->scriptb0)
9378 		goto attach_failed;
9379 
9380 	/*
9381 	 *  Allocate some CCB. We need at least ONE.
9382 	 */
9383 	if (!sym_alloc_ccb(np))
9384 		goto attach_failed;
9385 
9386 	/*
9387 	 *  Calculate BUS addresses where we are going
9388 	 *  to load the SCRIPTS.
9389 	 */
9390 	np->scripta_ba	= vtobus(np->scripta0);
9391 	np->scriptb_ba	= vtobus(np->scriptb0);
9392 	np->scriptb0_ba	= np->scriptb_ba;
9393 
9394 	if (np->ram_ba) {
9395 		np->scripta_ba	= np->ram_ba;
9396 		if (np->features & FE_RAM8K) {
9397 			np->ram_ws = 8192;
9398 			np->scriptb_ba = np->scripta_ba + 4096;
9399 #if BITS_PER_LONG > 32
9400 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
9401 #endif
9402 		}
9403 		else
9404 			np->ram_ws = 4096;
9405 	}
9406 
9407 	/*
9408 	 *  Copy scripts to controller instance.
9409 	 */
9410 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
9411 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
9412 
9413 	/*
9414 	 *  Setup variable parts in scripts and compute
9415 	 *  scripts bus addresses used from the C code.
9416 	 */
9417 	np->fw_setup(np, fw);
9418 
9419 	/*
9420 	 *  Bind SCRIPTS with physical addresses usable by the
9421 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
9422 	 */
9423 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
9424 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
9425 
9426 #ifdef SYM_CONF_IARB_SUPPORT
9427 	/*
9428 	 *    If user wants IARB to be set when we win arbitration
9429 	 *    and have other jobs, compute the max number of consecutive
9430 	 *    settings of IARB hints before we leave devices a chance to
9431 	 *    arbitrate for reselection.
9432 	 */
9433 #ifdef	SYM_SETUP_IARB_MAX
9434 	np->iarb_max = SYM_SETUP_IARB_MAX;
9435 #else
9436 	np->iarb_max = 4;
9437 #endif
9438 #endif
9439 
9440 	/*
9441 	 *  Prepare the idle and invalid task actions.
9442 	 */
9443 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9444 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9445 	np->idletask_ba		= vtobus(&np->idletask);
9446 
9447 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9448 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9449 	np->notask_ba		= vtobus(&np->notask);
9450 
9451 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9452 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9453 	np->bad_itl_ba		= vtobus(&np->bad_itl);
9454 
9455 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9456 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
9457 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
9458 
9459 	/*
9460 	 *  Allocate and prepare the lun JUMP table that is used
9461 	 *  for a target prior the probing of devices (bad lun table).
9462 	 *  A private table will be allocated for the target on the
9463 	 *  first INQUIRY response received.
9464 	 */
9465 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
9466 	if (!np->badluntbl)
9467 		goto attach_failed;
9468 
9469 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
9470 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
9471 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
9472 
9473 	/*
9474 	 *  Prepare the bus address array that contains the bus
9475 	 *  address of each target control block.
9476 	 *  For now, assume all logical units are wrong. :)
9477 	 */
9478 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
9479 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
9480 		np->target[i].head.luntbl_sa =
9481 				cpu_to_scr(vtobus(np->badluntbl));
9482 		np->target[i].head.lun0_sa =
9483 				cpu_to_scr(vtobus(&np->badlun_sa));
9484 	}
9485 
9486 	/*
9487 	 *  Now check the cache handling of the pci chipset.
9488 	 */
9489 	if (sym_snooptest (np)) {
9490 #ifdef FreeBSD_Bus_Io_Abstraction
9491 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
9492 #else
9493 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
9494 #endif
9495 		goto attach_failed;
9496 	};
9497 
9498 	/*
9499 	 *  Now deal with CAM.
9500 	 *  Hopefully, we will succeed with that one.:)
9501 	 */
9502 	if (!sym_cam_attach(np))
9503 		goto attach_failed;
9504 
9505 	/*
9506 	 *  Sigh! we are done.
9507 	 */
9508 	return 0;
9509 
9510 	/*
9511 	 *  We have failed.
9512 	 *  We will try to free all the resources we have
9513 	 *  allocated, but if we are a boot device, this
9514 	 *  will not help that much.;)
9515 	 */
9516 attach_failed:
9517 	if (np)
9518 		sym_pci_free(np);
9519 	return ENXIO;
9520 }
9521 
9522 /*
9523  *  Free everything that have been allocated for this device.
9524  */
9525 static void sym_pci_free(hcb_p np)
9526 {
9527 	SYM_QUEHEAD *qp;
9528 	ccb_p cp;
9529 	tcb_p tp;
9530 	lcb_p lp;
9531 	int target, lun;
9532 	int s;
9533 
9534 	/*
9535 	 *  First free CAM resources.
9536 	 */
9537 	s = splcam();
9538 	sym_cam_free(np);
9539 	splx(s);
9540 
9541 	/*
9542 	 *  Now every should be quiet for us to
9543 	 *  free other resources.
9544 	 */
9545 #ifdef FreeBSD_Bus_Io_Abstraction
9546 	if (np->ram_res)
9547 		bus_release_resource(np->device, SYS_RES_MEMORY,
9548 				     np->ram_id, np->ram_res);
9549 	if (np->mmio_res)
9550 		bus_release_resource(np->device, SYS_RES_MEMORY,
9551 				     SYM_PCI_MMIO, np->mmio_res);
9552 	if (np->io_res)
9553 		bus_release_resource(np->device, SYS_RES_IOPORT,
9554 				     SYM_PCI_IO, np->io_res);
9555 	if (np->irq_res)
9556 		bus_release_resource(np->device, SYS_RES_IRQ,
9557 				     0, np->irq_res);
9558 #else
9559 	/*
9560 	 *  YEAH!!!
9561 	 *  It seems there is no means to free MMIO resources.
9562 	 */
9563 #endif
9564 
9565 	if (np->scriptb0)
9566 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
9567 	if (np->scripta0)
9568 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
9569 	if (np->squeue)
9570 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
9571 	if (np->dqueue)
9572 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
9573 
9574 	while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
9575 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
9576 #ifdef	FreeBSD_Bus_Dma_Abstraction
9577 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
9578 #endif
9579 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
9580 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
9581 	}
9582 
9583 	if (np->badluntbl)
9584 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
9585 
9586 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
9587 		tp = &np->target[target];
9588 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
9589 			lp = sym_lp(np, tp, lun);
9590 			if (!lp)
9591 				continue;
9592 			if (lp->itlq_tbl)
9593 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
9594 				       "ITLQ_TBL");
9595 			if (lp->cb_tags)
9596 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
9597 				       "CB_TAGS");
9598 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
9599 		}
9600 #if SYM_CONF_MAX_LUN > 1
9601 		if (tp->lunmp)
9602 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
9603 			       "LUNMP");
9604 #endif
9605 	}
9606 	if (np->targtbl)
9607 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
9608 #ifdef	FreeBSD_Bus_Dma_Abstraction
9609 	if (np->data_dmat)
9610 		bus_dma_tag_destroy(np->data_dmat);
9611 #endif
9612 	sym_mfree_dma(np, sizeof(*np), "HCB");
9613 }
9614 
9615 /*
9616  *  Allocate CAM resources and register a bus to CAM.
9617  */
9618 int sym_cam_attach(hcb_p np)
9619 {
9620 	struct cam_devq *devq = 0;
9621 	struct cam_sim *sim = 0;
9622 	struct cam_path *path = 0;
9623 	struct ccb_setasync csa;
9624 	int err, s;
9625 
9626 	s = splcam();
9627 
9628 	/*
9629 	 *  Establish our interrupt handler.
9630 	 */
9631 #ifdef FreeBSD_Bus_Io_Abstraction
9632 	err = bus_setup_intr(np->device, np->irq_res, INTR_TYPE_CAM,
9633 			     sym_intr, np, &np->intr);
9634 	if (err) {
9635 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
9636 			      err);
9637 		goto fail;
9638 	}
9639 #else
9640 	err = 0;
9641 	if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) {
9642 		printf("%s: failed to map interrupt\n", sym_name(np));
9643 		goto fail;
9644 	}
9645 #endif
9646 
9647 	/*
9648 	 *  Create the device queue for our sym SIM.
9649 	 */
9650 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
9651 	if (devq == NULL) {
9652 		goto fail;
9653 	}
9654 
9655 	/*
9656 	 *  Construct our SIM entry.
9657 	 */
9658 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
9659 			    1, SYM_SETUP_MAX_TAG, devq);
9660 	cam_simq_release(devq);
9661 	if (sim == NULL)
9662 		goto fail;
9663 
9664 	if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
9665 		goto fail;
9666 	np->sim = sim;
9667 	sim = 0;
9668 
9669 	if (xpt_create_path(&path, 0,
9670 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
9671 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
9672 		goto fail;
9673 	}
9674 	np->path = path;
9675 
9676 	/*
9677 	 *  Hmmm... This should be useful, but I donnot want to
9678 	 *  know about.
9679 	 */
9680 #if 	defined(__FreeBSD__) && __FreeBSD_version < 400000
9681 #ifdef	__alpha__
9682 #ifdef	FreeBSD_Bus_Io_Abstraction
9683 	alpha_register_pci_scsi(pci_get_bus(np->device),
9684 				pci_get_slot(np->device), np->sim);
9685 #else
9686 	alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim);
9687 #endif
9688 #endif
9689 #endif
9690 
9691 	/*
9692 	 *  Establish our async notification handler.
9693 	 */
9694 	xpt_setup_ccb(&csa.ccb_h, np->path, 5);
9695 	csa.ccb_h.func_code = XPT_SASYNC_CB;
9696 	csa.event_enable    = AC_LOST_DEVICE;
9697 	csa.callback	    = sym_async;
9698 	csa.callback_arg    = np->sim;
9699 	xpt_action((union ccb *)&csa);
9700 
9701 	/*
9702 	 *  Start the chip now, without resetting the BUS, since
9703 	 *  it seems that this must stay under control of CAM.
9704 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9705 	 *  get a spurious SMBC interrupt.
9706 	 */
9707 	sym_init (np, 0);
9708 
9709 	splx(s);
9710 	return 1;
9711 fail:
9712 	if (sim)
9713 		cam_sim_free(sim);
9714 
9715 	sym_cam_free(np);
9716 
9717 	splx(s);
9718 	return 0;
9719 }
9720 
9721 /*
9722  *  Free everything that deals with CAM.
9723  */
9724 void sym_cam_free(hcb_p np)
9725 {
9726 #ifdef FreeBSD_Bus_Io_Abstraction
9727 	if (np->intr)
9728 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9729 #else
9730 	/* pci_unmap_int(np->pci_tag); */	/* Does nothing */
9731 #endif
9732 
9733 	if (np->sim) {
9734 		xpt_bus_deregister(cam_sim_path(np->sim));
9735 		cam_sim_free(np->sim);
9736 	}
9737 	if (np->path)
9738 		xpt_free_path(np->path);
9739 }
9740 
9741 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9742 
9743 /*
9744  *  Get host setup from NVRAM.
9745  */
9746 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9747 {
9748 #ifdef SYM_CONF_NVRAM_SUPPORT
9749 	/*
9750 	 *  Get parity checking, host ID, verbose mode
9751 	 *  and miscellaneous host flags from NVRAM.
9752 	 */
9753 	switch(nvram->type) {
9754 	case SYM_SYMBIOS_NVRAM:
9755 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9756 			np->rv_scntl0  &= ~0x0a;
9757 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9758 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9759 			np->verbose += 1;
9760 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9761 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9762 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9763 			np->usrflags |= SYM_AVOID_BUS_RESET;
9764 		break;
9765 	case SYM_TEKRAM_NVRAM:
9766 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9767 		break;
9768 	default:
9769 		break;
9770 	}
9771 #endif
9772 }
9773 
9774 /*
9775  *  Get target setup from NVRAM.
9776  */
9777 #ifdef SYM_CONF_NVRAM_SUPPORT
9778 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9779 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9780 #endif
9781 
9782 static void
9783 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9784 {
9785 #ifdef SYM_CONF_NVRAM_SUPPORT
9786 	switch(nvp->type) {
9787 	case SYM_SYMBIOS_NVRAM:
9788 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9789 		break;
9790 	case SYM_TEKRAM_NVRAM:
9791 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9792 		break;
9793 	default:
9794 		break;
9795 	}
9796 #endif
9797 }
9798 
9799 #ifdef SYM_CONF_NVRAM_SUPPORT
9800 /*
9801  *  Get target set-up from Symbios format NVRAM.
9802  */
9803 static void
9804 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9805 {
9806 	tcb_p tp = &np->target[target];
9807 	Symbios_target *tn = &nvram->target[target];
9808 
9809 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9810 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9811 	tp->usrtags =
9812 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9813 
9814 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9815 		tp->usrflags &= ~SYM_DISC_ENABLED;
9816 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9817 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9818 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9819 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9820 }
9821 
9822 /*
9823  *  Get target set-up from Tekram format NVRAM.
9824  */
9825 static void
9826 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9827 {
9828 	tcb_p tp = &np->target[target];
9829 	struct Tekram_target *tn = &nvram->target[target];
9830 	int i;
9831 
9832 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9833 		i = tn->sync_index & 0xf;
9834 		tp->tinfo.user.period = Tekram_sync[i];
9835 	}
9836 
9837 	tp->tinfo.user.width =
9838 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9839 
9840 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9841 		tp->usrtags = 2 << nvram->max_tags_index;
9842 	}
9843 
9844 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9845 		tp->usrflags |= SYM_DISC_ENABLED;
9846 
9847 	/* If any device does not support parity, we will not use this option */
9848 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9849 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9850 }
9851 
9852 #ifdef	SYM_CONF_DEBUG_NVRAM
9853 /*
9854  *  Dump Symbios format NVRAM for debugging purpose.
9855  */
9856 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9857 {
9858 	int i;
9859 
9860 	/* display Symbios nvram host data */
9861 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9862 		sym_name(np), nvram->host_id & 0x0f,
9863 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9864 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9865 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9866 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9867 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9868 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9869 
9870 	/* display Symbios nvram drive data */
9871 	for (i = 0 ; i < 15 ; i++) {
9872 		struct Symbios_target *tn = &nvram->target[i];
9873 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9874 		sym_name(np), i,
9875 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9876 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9877 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9878 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9879 		tn->bus_width,
9880 		tn->sync_period / 4,
9881 		tn->timeout);
9882 	}
9883 }
9884 
9885 /*
9886  *  Dump TEKRAM format NVRAM for debugging purpose.
9887  */
9888 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9889 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9890 {
9891 	int i, tags, boot_delay;
9892 	char *rem;
9893 
9894 	/* display Tekram nvram host data */
9895 	tags = 2 << nvram->max_tags_index;
9896 	boot_delay = 0;
9897 	if (nvram->boot_delay_index < 6)
9898 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9899 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9900 	default:
9901 	case 0:	rem = "";			break;
9902 	case 1: rem = " REMOVABLE=boot device";	break;
9903 	case 2: rem = " REMOVABLE=all";		break;
9904 	}
9905 
9906 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9907 		sym_name(np), nvram->host_id & 0x0f,
9908 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9909 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9910 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9911 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9912 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9913 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9914 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9915 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9916 		rem, boot_delay, tags);
9917 
9918 	/* display Tekram nvram drive data */
9919 	for (i = 0; i <= 15; i++) {
9920 		int sync, j;
9921 		struct Tekram_target *tn = &nvram->target[i];
9922 		j = tn->sync_index & 0xf;
9923 		sync = Tekram_sync[j];
9924 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9925 		sym_name(np), i,
9926 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9927 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9928 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9929 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9930 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9931 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9932 		sync);
9933 	}
9934 }
9935 #endif	/* SYM_CONF_DEBUG_NVRAM */
9936 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9937 
9938 
9939 /*
9940  *  Try reading Symbios or Tekram NVRAM
9941  */
9942 #ifdef SYM_CONF_NVRAM_SUPPORT
9943 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9944 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9945 #endif
9946 
9947 int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9948 {
9949 #ifdef SYM_CONF_NVRAM_SUPPORT
9950 	/*
9951 	 *  Try to read SYMBIOS nvram.
9952 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9953 	 */
9954 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9955 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9956 		nvp->type = SYM_SYMBIOS_NVRAM;
9957 #ifdef SYM_CONF_DEBUG_NVRAM
9958 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9959 #endif
9960 	}
9961 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9962 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9963 		nvp->type = SYM_TEKRAM_NVRAM;
9964 #ifdef SYM_CONF_DEBUG_NVRAM
9965 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9966 #endif
9967 	}
9968 	else
9969 		nvp->type = 0;
9970 #else
9971 	nvp->type = 0;
9972 #endif
9973 	return nvp->type;
9974 }
9975 
9976 
9977 #ifdef SYM_CONF_NVRAM_SUPPORT
9978 /*
9979  *  24C16 EEPROM reading.
9980  *
9981  *  GPOI0 - data in/data out
9982  *  GPIO1 - clock
9983  *  Symbios NVRAM wiring now also used by Tekram.
9984  */
9985 
9986 #define SET_BIT 0
9987 #define CLR_BIT 1
9988 #define SET_CLK 2
9989 #define CLR_CLK 3
9990 
9991 /*
9992  *  Set/clear data/clock bit in GPIO0
9993  */
9994 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9995 			  int bit_mode)
9996 {
9997 	UDELAY (5);
9998 	switch (bit_mode){
9999 	case SET_BIT:
10000 		*gpreg |= write_bit;
10001 		break;
10002 	case CLR_BIT:
10003 		*gpreg &= 0xfe;
10004 		break;
10005 	case SET_CLK:
10006 		*gpreg |= 0x02;
10007 		break;
10008 	case CLR_CLK:
10009 		*gpreg &= 0xfd;
10010 		break;
10011 
10012 	}
10013 	OUTB (nc_gpreg, *gpreg);
10014 	UDELAY (5);
10015 }
10016 
10017 /*
10018  *  Send START condition to NVRAM to wake it up.
10019  */
10020 static void S24C16_start(hcb_p np, u_char *gpreg)
10021 {
10022 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
10023 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
10024 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
10025 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
10026 }
10027 
10028 /*
10029  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
10030  */
10031 static void S24C16_stop(hcb_p np, u_char *gpreg)
10032 {
10033 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
10034 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
10035 }
10036 
10037 /*
10038  *  Read or write a bit to the NVRAM,
10039  *  read if GPIO0 input else write if GPIO0 output
10040  */
10041 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
10042 			 u_char *gpreg)
10043 {
10044 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
10045 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
10046 	if (read_bit)
10047 		*read_bit = INB (nc_gpreg);
10048 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
10049 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
10050 }
10051 
10052 /*
10053  *  Output an ACK to the NVRAM after reading,
10054  *  change GPIO0 to output and when done back to an input
10055  */
10056 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
10057 			    u_char *gpcntl)
10058 {
10059 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
10060 	S24C16_do_bit(np, 0, write_bit, gpreg);
10061 	OUTB (nc_gpcntl, *gpcntl);
10062 }
10063 
10064 /*
10065  *  Input an ACK from NVRAM after writing,
10066  *  change GPIO0 to input and when done back to an output
10067  */
10068 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
10069 			   u_char *gpcntl)
10070 {
10071 	OUTB (nc_gpcntl, *gpcntl | 0x01);
10072 	S24C16_do_bit(np, read_bit, 1, gpreg);
10073 	OUTB (nc_gpcntl, *gpcntl);
10074 }
10075 
10076 /*
10077  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
10078  *  GPIO0 must already be set as an output
10079  */
10080 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
10081 			     u_char *gpreg, u_char *gpcntl)
10082 {
10083 	int x;
10084 
10085 	for (x = 0; x < 8; x++)
10086 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
10087 
10088 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
10089 }
10090 
10091 /*
10092  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
10093  *  GPIO0 must already be set as an input
10094  */
10095 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
10096 			    u_char *gpreg, u_char *gpcntl)
10097 {
10098 	int x;
10099 	u_char read_bit;
10100 
10101 	*read_data = 0;
10102 	for (x = 0; x < 8; x++) {
10103 		S24C16_do_bit(np, &read_bit, 1, gpreg);
10104 		*read_data |= ((read_bit & 0x01) << (7 - x));
10105 	}
10106 
10107 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
10108 }
10109 
10110 /*
10111  *  Read 'len' bytes starting at 'offset'.
10112  */
10113 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
10114 {
10115 	u_char	gpcntl, gpreg;
10116 	u_char	old_gpcntl, old_gpreg;
10117 	u_char	ack_data;
10118 	int	retv = 1;
10119 	int	x;
10120 
10121 	/* save current state of GPCNTL and GPREG */
10122 	old_gpreg	= INB (nc_gpreg);
10123 	old_gpcntl	= INB (nc_gpcntl);
10124 	gpcntl		= old_gpcntl & 0x1c;
10125 
10126 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
10127 	OUTB (nc_gpreg,  old_gpreg);
10128 	OUTB (nc_gpcntl, gpcntl);
10129 
10130 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
10131 	gpreg = old_gpreg;
10132 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
10133 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
10134 
10135 	/* now set NVRAM inactive with GPIO0/1 both high */
10136 	S24C16_stop(np, &gpreg);
10137 
10138 	/* activate NVRAM */
10139 	S24C16_start(np, &gpreg);
10140 
10141 	/* write device code and random address MSB */
10142 	S24C16_write_byte(np, &ack_data,
10143 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
10144 	if (ack_data & 0x01)
10145 		goto out;
10146 
10147 	/* write random address LSB */
10148 	S24C16_write_byte(np, &ack_data,
10149 		offset & 0xff, &gpreg, &gpcntl);
10150 	if (ack_data & 0x01)
10151 		goto out;
10152 
10153 	/* regenerate START state to set up for reading */
10154 	S24C16_start(np, &gpreg);
10155 
10156 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
10157 	S24C16_write_byte(np, &ack_data,
10158 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
10159 	if (ack_data & 0x01)
10160 		goto out;
10161 
10162 	/* now set up GPIO0 for inputting data */
10163 	gpcntl |= 0x01;
10164 	OUTB (nc_gpcntl, gpcntl);
10165 
10166 	/* input all requested data - only part of total NVRAM */
10167 	for (x = 0; x < len; x++)
10168 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
10169 
10170 	/* finally put NVRAM back in inactive mode */
10171 	gpcntl &= 0xfe;
10172 	OUTB (nc_gpcntl, gpcntl);
10173 	S24C16_stop(np, &gpreg);
10174 	retv = 0;
10175 out:
10176 	/* return GPIO0/1 to original states after having accessed NVRAM */
10177 	OUTB (nc_gpcntl, old_gpcntl);
10178 	OUTB (nc_gpreg,  old_gpreg);
10179 
10180 	return retv;
10181 }
10182 
10183 #undef SET_BIT
10184 #undef CLR_BIT
10185 #undef SET_CLK
10186 #undef CLR_CLK
10187 
10188 /*
10189  *  Try reading Symbios NVRAM.
10190  *  Return 0 if OK.
10191  */
10192 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
10193 {
10194 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
10195 	u_char *data = (u_char *) nvram;
10196 	int len  = sizeof(*nvram);
10197 	u_short	csum;
10198 	int x;
10199 
10200 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
10201 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
10202 		return 1;
10203 
10204 	/* check valid NVRAM signature, verify byte count and checksum */
10205 	if (nvram->type != 0 ||
10206 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
10207 	    nvram->byte_count != len - 12)
10208 		return 1;
10209 
10210 	/* verify checksum */
10211 	for (x = 6, csum = 0; x < len - 6; x++)
10212 		csum += data[x];
10213 	if (csum != nvram->checksum)
10214 		return 1;
10215 
10216 	return 0;
10217 }
10218 
10219 /*
10220  *  93C46 EEPROM reading.
10221  *
10222  *  GPOI0 - data in
10223  *  GPIO1 - data out
10224  *  GPIO2 - clock
10225  *  GPIO4 - chip select
10226  *
10227  *  Used by Tekram.
10228  */
10229 
10230 /*
10231  *  Pulse clock bit in GPIO0
10232  */
10233 static void T93C46_Clk(hcb_p np, u_char *gpreg)
10234 {
10235 	OUTB (nc_gpreg, *gpreg | 0x04);
10236 	UDELAY (2);
10237 	OUTB (nc_gpreg, *gpreg);
10238 }
10239 
10240 /*
10241  *  Read bit from NVRAM
10242  */
10243 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
10244 {
10245 	UDELAY (2);
10246 	T93C46_Clk(np, gpreg);
10247 	*read_bit = INB (nc_gpreg);
10248 }
10249 
10250 /*
10251  *  Write bit to GPIO0
10252  */
10253 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
10254 {
10255 	if (write_bit & 0x01)
10256 		*gpreg |= 0x02;
10257 	else
10258 		*gpreg &= 0xfd;
10259 
10260 	*gpreg |= 0x10;
10261 
10262 	OUTB (nc_gpreg, *gpreg);
10263 	UDELAY (2);
10264 
10265 	T93C46_Clk(np, gpreg);
10266 }
10267 
10268 /*
10269  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
10270  */
10271 static void T93C46_Stop(hcb_p np, u_char *gpreg)
10272 {
10273 	*gpreg &= 0xef;
10274 	OUTB (nc_gpreg, *gpreg);
10275 	UDELAY (2);
10276 
10277 	T93C46_Clk(np, gpreg);
10278 }
10279 
10280 /*
10281  *  Send read command and address to NVRAM
10282  */
10283 static void T93C46_Send_Command(hcb_p np, u_short write_data,
10284 				u_char *read_bit, u_char *gpreg)
10285 {
10286 	int x;
10287 
10288 	/* send 9 bits, start bit (1), command (2), address (6)  */
10289 	for (x = 0; x < 9; x++)
10290 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
10291 
10292 	*read_bit = INB (nc_gpreg);
10293 }
10294 
10295 /*
10296  *  READ 2 bytes from the NVRAM
10297  */
10298 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
10299 {
10300 	int x;
10301 	u_char read_bit;
10302 
10303 	*nvram_data = 0;
10304 	for (x = 0; x < 16; x++) {
10305 		T93C46_Read_Bit(np, &read_bit, gpreg);
10306 
10307 		if (read_bit & 0x01)
10308 			*nvram_data |=  (0x01 << (15 - x));
10309 		else
10310 			*nvram_data &= ~(0x01 << (15 - x));
10311 	}
10312 }
10313 
10314 /*
10315  *  Read Tekram NvRAM data.
10316  */
10317 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
10318 {
10319 	u_char	read_bit;
10320 	int	x;
10321 
10322 	for (x = 0; x < len; x++)  {
10323 
10324 		/* output read command and address */
10325 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
10326 		if (read_bit & 0x01)
10327 			return 1; /* Bad */
10328 		T93C46_Read_Word(np, &data[x], gpreg);
10329 		T93C46_Stop(np, gpreg);
10330 	}
10331 
10332 	return 0;
10333 }
10334 
10335 /*
10336  *  Try reading 93C46 Tekram NVRAM.
10337  */
10338 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
10339 {
10340 	u_char gpcntl, gpreg;
10341 	u_char old_gpcntl, old_gpreg;
10342 	int retv = 1;
10343 
10344 	/* save current state of GPCNTL and GPREG */
10345 	old_gpreg	= INB (nc_gpreg);
10346 	old_gpcntl	= INB (nc_gpcntl);
10347 
10348 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
10349 	   1/2/4 out */
10350 	gpreg = old_gpreg & 0xe9;
10351 	OUTB (nc_gpreg, gpreg);
10352 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
10353 	OUTB (nc_gpcntl, gpcntl);
10354 
10355 	/* input all of NVRAM, 64 words */
10356 	retv = T93C46_Read_Data(np, (u_short *) nvram,
10357 				sizeof(*nvram) / sizeof(short), &gpreg);
10358 
10359 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
10360 	OUTB (nc_gpcntl, old_gpcntl);
10361 	OUTB (nc_gpreg,  old_gpreg);
10362 
10363 	return retv;
10364 }
10365 
10366 /*
10367  *  Try reading Tekram NVRAM.
10368  *  Return 0 if OK.
10369  */
10370 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
10371 {
10372 	u_char *data = (u_char *) nvram;
10373 	int len = sizeof(*nvram);
10374 	u_short	csum;
10375 	int x;
10376 
10377 	switch (np->device_id) {
10378 	case PCI_ID_SYM53C885:
10379 	case PCI_ID_SYM53C895:
10380 	case PCI_ID_SYM53C896:
10381 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10382 					  data, len);
10383 		break;
10384 	case PCI_ID_SYM53C875:
10385 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10386 					  data, len);
10387 		if (!x)
10388 			break;
10389 	default:
10390 		x = sym_read_T93C46_nvram(np, nvram);
10391 		break;
10392 	}
10393 	if (x)
10394 		return 1;
10395 
10396 	/* verify checksum */
10397 	for (x = 0, csum = 0; x < len - 1; x += 2)
10398 		csum += data[x] + (data[x+1] << 8);
10399 	if (csum != 0x1234)
10400 		return 1;
10401 
10402 	return 0;
10403 }
10404 
10405 #endif	/* SYM_CONF_NVRAM_SUPPORT */
10406