1 /* 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 /* $FreeBSD: src/sys/dev/sym/sym_hipd.c,v 1.6.2.12 2001/12/02 19:01:10 groudier Exp $ */ 59 /* $DragonFly: src/sys/dev/disk/sym/sym_hipd.c,v 1.11 2005/01/06 08:33:11 asmodai Exp $ */ 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 /* #define CAM_NEW_TRAN_CODE */ 65 66 #include "use_pci.h" 67 #include <sys/param.h> 68 69 /* 70 * Only use the BUS stuff for PCI under FreeBSD 4 and later versions. 71 * Note that the old BUS stuff also works for FreeBSD 4 and spares 72 * about 1 KB for the driver object file. 73 */ 74 #if defined(__DragonFly__) || __FreeBSD_version >= 400000 75 #define FreeBSD_Bus_Dma_Abstraction 76 #define FreeBSD_Bus_Io_Abstraction 77 #define FreeBSD_Bus_Space_Abstraction 78 #endif 79 80 /* 81 * Driver configuration options. 82 */ 83 #include "opt_sym.h" 84 #include "sym_conf.h" 85 86 #ifndef FreeBSD_Bus_Io_Abstraction 87 #include "use_ncr.h" /* To know if the ncr has been configured */ 88 #endif 89 90 #include <sys/systm.h> 91 #include <sys/malloc.h> 92 #include <sys/kernel.h> 93 #ifdef FreeBSD_Bus_Io_Abstraction 94 #include <sys/module.h> 95 #include <sys/bus.h> 96 #endif 97 98 #include <sys/proc.h> 99 100 #include <bus/pci/pcireg.h> 101 #include <bus/pci/pcivar.h> 102 103 #ifdef FreeBSD_Bus_Space_Abstraction 104 #include <machine/bus_memio.h> 105 /* 106 * Only include bus_pio if needed. 107 * This avoids bus space primitives to be uselessly bloated 108 * by out-of-age PIO operations. 109 */ 110 #ifdef SYM_CONF_IOMAPPED 111 #include <machine/bus_pio.h> 112 #endif 113 #endif 114 #include <machine/bus.h> 115 116 #ifdef FreeBSD_Bus_Io_Abstraction 117 #include <machine/resource.h> 118 #include <sys/rman.h> 119 #endif 120 #include <machine/clock.h> 121 122 #include <bus/cam/cam.h> 123 #include <bus/cam/cam_ccb.h> 124 #include <bus/cam/cam_sim.h> 125 #include <bus/cam/cam_xpt_sim.h> 126 #include <bus/cam/cam_debug.h> 127 128 #include <bus/cam/scsi/scsi_all.h> 129 #include <bus/cam/scsi/scsi_message.h> 130 131 #include <vm/vm.h> 132 #include <vm/vm_param.h> 133 #include <vm/pmap.h> 134 135 /* Short and quite clear integer types */ 136 typedef int8_t s8; 137 typedef int16_t s16; 138 typedef int32_t s32; 139 typedef u_int8_t u8; 140 typedef u_int16_t u16; 141 typedef u_int32_t u32; 142 143 /* 144 * From 'cam.error_recovery_diffs.20010313.context' patch. 145 */ 146 #ifdef CAM_NEW_TRAN_CODE 147 #define FreeBSD_New_Tran_Settings 148 #endif /* CAM_NEW_TRAN_CODE */ 149 150 /* 151 * Driver definitions. 152 */ 153 #include "sym_defs.h" 154 #include "sym_fw.h" 155 156 /* 157 * IA32 architecture does not reorder STORES and prevents 158 * LOADS from passing STORES. It is called `program order' 159 * by Intel and allows device drivers to deal with memory 160 * ordering by only ensuring that the code is not reordered 161 * by the compiler when ordering is required. 162 * Other architectures implement a weaker ordering that 163 * requires memory barriers (and also IO barriers when they 164 * make sense) to be used. 165 */ 166 167 #if defined __i386__ 168 #define MEMORY_BARRIER() do { ; } while(0) 169 #elif defined __alpha__ 170 #define MEMORY_BARRIER() alpha_mb() 171 #elif defined __powerpc__ 172 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 173 #elif defined __ia64__ 174 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 175 #elif defined __sparc64__ 176 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 177 #else 178 #error "Not supported platform" 179 #endif 180 181 /* 182 * Portable but silly implemented byte order primitives. 183 * We define the primitives we need, since FreeBSD doesn't 184 * seem to have them yet. 185 */ 186 #if BYTE_ORDER == BIG_ENDIAN 187 188 #define __revb16(x) ( (((u16)(x) & (u16)0x00ffU) << 8) | \ 189 (((u16)(x) & (u16)0xff00U) >> 8) ) 190 #define __revb32(x) ( (((u32)(x) & 0x000000ffU) << 24) | \ 191 (((u32)(x) & 0x0000ff00U) << 8) | \ 192 (((u32)(x) & 0x00ff0000U) >> 8) | \ 193 (((u32)(x) & 0xff000000U) >> 24) ) 194 195 #define __htole16(v) __revb16(v) 196 #define __htole32(v) __revb32(v) 197 #define __le16toh(v) __htole16(v) 198 #define __le32toh(v) __htole32(v) 199 200 static __inline u16 _htole16(u16 v) { return __htole16(v); } 201 static __inline u32 _htole32(u32 v) { return __htole32(v); } 202 #define _le16toh _htole16 203 #define _le32toh _htole32 204 205 #else /* LITTLE ENDIAN */ 206 207 #define __htole16(v) (v) 208 #define __htole32(v) (v) 209 #define __le16toh(v) (v) 210 #define __le32toh(v) (v) 211 212 #define _htole16(v) (v) 213 #define _htole32(v) (v) 214 #define _le16toh(v) (v) 215 #define _le32toh(v) (v) 216 217 #endif /* BYTE_ORDER */ 218 219 /* 220 * A la VMS/CAM-3 queue management. 221 */ 222 223 typedef struct sym_quehead { 224 struct sym_quehead *flink; /* Forward pointer */ 225 struct sym_quehead *blink; /* Backward pointer */ 226 } SYM_QUEHEAD; 227 228 #define sym_que_init(ptr) do { \ 229 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 230 } while (0) 231 232 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 233 { 234 return (head->flink == head) ? 0 : head->flink; 235 } 236 237 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 238 { 239 return (head->blink == head) ? 0 : head->blink; 240 } 241 242 static __inline void __sym_que_add(struct sym_quehead * new, 243 struct sym_quehead * blink, 244 struct sym_quehead * flink) 245 { 246 flink->blink = new; 247 new->flink = flink; 248 new->blink = blink; 249 blink->flink = new; 250 } 251 252 static __inline void __sym_que_del(struct sym_quehead * blink, 253 struct sym_quehead * flink) 254 { 255 flink->blink = blink; 256 blink->flink = flink; 257 } 258 259 static __inline int sym_que_empty(struct sym_quehead *head) 260 { 261 return head->flink == head; 262 } 263 264 static __inline void sym_que_splice(struct sym_quehead *list, 265 struct sym_quehead *head) 266 { 267 struct sym_quehead *first = list->flink; 268 269 if (first != list) { 270 struct sym_quehead *last = list->blink; 271 struct sym_quehead *at = head->flink; 272 273 first->blink = head; 274 head->flink = first; 275 276 last->flink = at; 277 at->blink = last; 278 } 279 } 280 281 #define sym_que_entry(ptr, type, member) \ 282 ((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member))) 283 284 285 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 286 287 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 288 289 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 290 291 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 292 { 293 struct sym_quehead *elem = head->flink; 294 295 if (elem != head) 296 __sym_que_del(head, elem->flink); 297 else 298 elem = 0; 299 return elem; 300 } 301 302 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 303 304 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 305 { 306 struct sym_quehead *elem = head->blink; 307 308 if (elem != head) 309 __sym_que_del(elem->blink, head); 310 else 311 elem = 0; 312 return elem; 313 } 314 315 /* 316 * This one may be useful. 317 */ 318 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 319 for (qp = (head)->flink; qp != (head); qp = qp->flink) 320 /* 321 * FreeBSD does not offer our kind of queue in the CAM CCB. 322 * So, we have to cast. 323 */ 324 #define sym_qptr(p) ((struct sym_quehead *) (p)) 325 326 /* 327 * Simple bitmap operations. 328 */ 329 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 330 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 331 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 332 333 /* 334 * Number of tasks per device we want to handle. 335 */ 336 #if SYM_CONF_MAX_TAG_ORDER > 8 337 #error "more than 256 tags per logical unit not allowed." 338 #endif 339 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 340 341 /* 342 * Donnot use more tasks that we can handle. 343 */ 344 #ifndef SYM_CONF_MAX_TAG 345 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 346 #endif 347 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 348 #undef SYM_CONF_MAX_TAG 349 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 350 #endif 351 352 /* 353 * This one means 'NO TAG for this job' 354 */ 355 #define NO_TAG (256) 356 357 /* 358 * Number of SCSI targets. 359 */ 360 #if SYM_CONF_MAX_TARGET > 16 361 #error "more than 16 targets not allowed." 362 #endif 363 364 /* 365 * Number of logical units per target. 366 */ 367 #if SYM_CONF_MAX_LUN > 64 368 #error "more than 64 logical units per target not allowed." 369 #endif 370 371 /* 372 * Asynchronous pre-scaler (ns). Shall be 40 for 373 * the SCSI timings to be compliant. 374 */ 375 #define SYM_CONF_MIN_ASYNC (40) 376 377 /* 378 * Number of entries in the START and DONE queues. 379 * 380 * We limit to 1 PAGE in order to succeed allocation of 381 * these queues. Each entry is 8 bytes long (2 DWORDS). 382 */ 383 #ifdef SYM_CONF_MAX_START 384 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 385 #else 386 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 387 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 388 #endif 389 390 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 391 #undef SYM_CONF_MAX_QUEUE 392 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 393 #undef SYM_CONF_MAX_START 394 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 395 #endif 396 397 /* 398 * For this one, we want a short name :-) 399 */ 400 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 401 402 /* 403 * Active debugging tags and verbosity. 404 */ 405 #define DEBUG_ALLOC (0x0001) 406 #define DEBUG_PHASE (0x0002) 407 #define DEBUG_POLL (0x0004) 408 #define DEBUG_QUEUE (0x0008) 409 #define DEBUG_RESULT (0x0010) 410 #define DEBUG_SCATTER (0x0020) 411 #define DEBUG_SCRIPT (0x0040) 412 #define DEBUG_TINY (0x0080) 413 #define DEBUG_TIMING (0x0100) 414 #define DEBUG_NEGO (0x0200) 415 #define DEBUG_TAGS (0x0400) 416 #define DEBUG_POINTER (0x0800) 417 418 #if 0 419 static int sym_debug = 0; 420 #define DEBUG_FLAGS sym_debug 421 #else 422 /* #define DEBUG_FLAGS (0x0631) */ 423 #define DEBUG_FLAGS (0x0000) 424 425 #endif 426 #define sym_verbose (np->verbose) 427 428 /* 429 * Insert a delay in micro-seconds and milli-seconds. 430 */ 431 static void UDELAY(int us) { DELAY(us); } 432 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 433 434 /* 435 * Simple power of two buddy-like allocator. 436 * 437 * This simple code is not intended to be fast, but to 438 * provide power of 2 aligned memory allocations. 439 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 440 * this allocator allows simple and fast address calculations 441 * from the SCRIPTS code. In addition, cache line alignment 442 * is guaranteed for power of 2 cache line size. 443 * 444 * This allocator has been developped for the Linux sym53c8xx 445 * driver, since this O/S does not provide naturally aligned 446 * allocations. 447 * It has the advantage of allowing the driver to use private 448 * pages of memory that will be useful if we ever need to deal 449 * with IO MMUs for PCI. 450 */ 451 452 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 453 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 454 #if 0 455 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 456 #endif 457 #define MEMO_WARN 1 458 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 459 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 460 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 461 462 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_INTWAIT) 463 #define free_pages(p) free((p), M_DEVBUF) 464 465 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 466 467 typedef struct m_link { /* Link between free memory chunks */ 468 struct m_link *next; 469 } m_link_s; 470 471 #ifdef FreeBSD_Bus_Dma_Abstraction 472 typedef struct m_vtob { /* Virtual to Bus address translation */ 473 struct m_vtob *next; 474 bus_dmamap_t dmamap; /* Map for this chunk */ 475 m_addr_t vaddr; /* Virtual address */ 476 m_addr_t baddr; /* Bus physical address */ 477 } m_vtob_s; 478 /* Hash this stuff a bit to speed up translations */ 479 #define VTOB_HASH_SHIFT 5 480 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 481 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 482 #define VTOB_HASH_CODE(m) \ 483 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 484 #endif 485 486 typedef struct m_pool { /* Memory pool of a given kind */ 487 #ifdef FreeBSD_Bus_Dma_Abstraction 488 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 489 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 490 m_addr_t (*getp)(struct m_pool *); 491 #ifdef MEMO_FREE_UNUSED 492 void (*freep)(struct m_pool *, m_addr_t); 493 #endif 494 #define M_GETP() mp->getp(mp) 495 #define M_FREEP(p) mp->freep(mp, p) 496 int nump; 497 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 498 struct m_pool *next; 499 #else 500 #define M_GETP() get_pages() 501 #define M_FREEP(p) free_pages(p) 502 #endif /* FreeBSD_Bus_Dma_Abstraction */ 503 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 504 } m_pool_s; 505 506 static void *___sym_malloc(m_pool_s *mp, int size) 507 { 508 int i = 0; 509 int s = (1 << MEMO_SHIFT); 510 int j; 511 m_addr_t a; 512 m_link_s *h = mp->h; 513 514 if (size > MEMO_CLUSTER_SIZE) 515 return 0; 516 517 while (size > s) { 518 s <<= 1; 519 ++i; 520 } 521 522 j = i; 523 while (!h[j].next) { 524 if (s == MEMO_CLUSTER_SIZE) { 525 h[j].next = (m_link_s *) M_GETP(); 526 if (h[j].next) 527 h[j].next->next = 0; 528 break; 529 } 530 ++j; 531 s <<= 1; 532 } 533 a = (m_addr_t) h[j].next; 534 if (a) { 535 h[j].next = h[j].next->next; 536 while (j > i) { 537 j -= 1; 538 s >>= 1; 539 h[j].next = (m_link_s *) (a+s); 540 h[j].next->next = 0; 541 } 542 } 543 #ifdef DEBUG 544 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 545 #endif 546 return (void *) a; 547 } 548 549 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 550 { 551 int i = 0; 552 int s = (1 << MEMO_SHIFT); 553 m_link_s *q; 554 m_addr_t a, b; 555 m_link_s *h = mp->h; 556 557 #ifdef DEBUG 558 printf("___sym_mfree(%p, %d)\n", ptr, size); 559 #endif 560 561 if (size > MEMO_CLUSTER_SIZE) 562 return; 563 564 while (size > s) { 565 s <<= 1; 566 ++i; 567 } 568 569 a = (m_addr_t) ptr; 570 571 while (1) { 572 #ifdef MEMO_FREE_UNUSED 573 if (s == MEMO_CLUSTER_SIZE) { 574 M_FREEP(a); 575 break; 576 } 577 #endif 578 b = a ^ s; 579 q = &h[i]; 580 while (q->next && q->next != (m_link_s *) b) { 581 q = q->next; 582 } 583 if (!q->next) { 584 ((m_link_s *) a)->next = h[i].next; 585 h[i].next = (m_link_s *) a; 586 break; 587 } 588 q->next = q->next->next; 589 a = a & b; 590 s <<= 1; 591 ++i; 592 } 593 } 594 595 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 596 { 597 void *p; 598 599 p = ___sym_malloc(mp, size); 600 601 if (DEBUG_FLAGS & DEBUG_ALLOC) 602 printf ("new %-10s[%4d] @%p.\n", name, size, p); 603 604 if (p) 605 bzero(p, size); 606 else if (uflags & MEMO_WARN) 607 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 608 609 return p; 610 } 611 612 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 613 614 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 615 { 616 if (DEBUG_FLAGS & DEBUG_ALLOC) 617 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 618 619 ___sym_mfree(mp, ptr, size); 620 621 } 622 623 /* 624 * Default memory pool we donnot need to involve in DMA. 625 */ 626 #ifndef FreeBSD_Bus_Dma_Abstraction 627 /* 628 * Without the `bus dma abstraction', all the memory is assumed 629 * DMAable and a single pool is all what we need. 630 */ 631 static m_pool_s mp0; 632 633 #else 634 /* 635 * With the `bus dma abstraction', we use a separate pool for 636 * memory we donnot need to involve in DMA. 637 */ 638 static m_addr_t ___mp0_getp(m_pool_s *mp) 639 { 640 m_addr_t m = (m_addr_t) get_pages(); 641 if (m) 642 ++mp->nump; 643 return m; 644 } 645 646 #ifdef MEMO_FREE_UNUSED 647 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 648 { 649 free_pages(m); 650 --mp->nump; 651 } 652 #endif 653 654 #ifdef MEMO_FREE_UNUSED 655 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 656 #else 657 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 658 #endif 659 660 #endif /* FreeBSD_Bus_Dma_Abstraction */ 661 662 /* 663 * Actual memory allocation routine for non-DMAed memory. 664 */ 665 static void *sym_calloc(int size, char *name) 666 { 667 void *m; 668 /* Lock */ 669 m = __sym_calloc(&mp0, size, name); 670 /* Unlock */ 671 return m; 672 } 673 674 /* 675 * Actual memory allocation routine for non-DMAed memory. 676 */ 677 static void sym_mfree(void *ptr, int size, char *name) 678 { 679 /* Lock */ 680 __sym_mfree(&mp0, ptr, size, name); 681 /* Unlock */ 682 } 683 684 /* 685 * DMAable pools. 686 */ 687 #ifndef FreeBSD_Bus_Dma_Abstraction 688 /* 689 * Without `bus dma abstraction', all the memory is DMAable, and 690 * only a single pool is needed (vtophys() is our friend). 691 */ 692 #define __sym_calloc_dma(b, s, n) sym_calloc(s, n) 693 #define __sym_mfree_dma(b, p, s, n) sym_mfree(p, s, n) 694 #ifdef __alpha__ 695 #define __vtobus(b, p) alpha_XXX_dmamap((vm_offset_t)(p)) 696 #else /*__i386__, __sparc64__*/ 697 #define __vtobus(b, p) vtophys(p) 698 #endif 699 700 #else 701 /* 702 * With `bus dma abstraction', we use a separate pool per parent 703 * BUS handle. A reverse table (hashed) is maintained for virtual 704 * to BUS address translation. 705 */ 706 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 707 { 708 bus_addr_t *baddr; 709 baddr = (bus_addr_t *)arg; 710 *baddr = segs->ds_addr; 711 } 712 713 static m_addr_t ___dma_getp(m_pool_s *mp) 714 { 715 m_vtob_s *vbp; 716 void *vaddr = 0; 717 bus_addr_t baddr = 0; 718 719 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 720 if (!vbp) 721 goto out_err; 722 723 if (bus_dmamem_alloc(mp->dmat, &vaddr, 724 BUS_DMA_NOWAIT, &vbp->dmamap)) 725 goto out_err; 726 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 727 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0); 728 if (baddr) { 729 int hc = VTOB_HASH_CODE(vaddr); 730 vbp->vaddr = (m_addr_t) vaddr; 731 vbp->baddr = (m_addr_t) baddr; 732 vbp->next = mp->vtob[hc]; 733 mp->vtob[hc] = vbp; 734 ++mp->nump; 735 return (m_addr_t) vaddr; 736 } 737 out_err: 738 if (baddr) 739 bus_dmamap_unload(mp->dmat, vbp->dmamap); 740 if (vaddr) 741 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 742 if (vbp->dmamap) 743 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 744 if (vbp) 745 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 746 return 0; 747 } 748 749 #ifdef MEMO_FREE_UNUSED 750 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 751 { 752 m_vtob_s **vbpp, *vbp; 753 int hc = VTOB_HASH_CODE(m); 754 755 vbpp = &mp->vtob[hc]; 756 while (*vbpp && (*vbpp)->vaddr != m) 757 vbpp = &(*vbpp)->next; 758 if (*vbpp) { 759 vbp = *vbpp; 760 *vbpp = (*vbpp)->next; 761 bus_dmamap_unload(mp->dmat, vbp->dmamap); 762 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 763 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 764 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 765 --mp->nump; 766 } 767 } 768 #endif 769 770 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 771 { 772 m_pool_s *mp; 773 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 774 return mp; 775 } 776 777 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 778 { 779 m_pool_s *mp = 0; 780 781 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 782 if (mp) { 783 mp->dev_dmat = dev_dmat; 784 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 785 BUS_SPACE_MAXADDR_32BIT, 786 BUS_SPACE_MAXADDR_32BIT, 787 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 788 MEMO_CLUSTER_SIZE, 0, &mp->dmat)) { 789 mp->getp = ___dma_getp; 790 #ifdef MEMO_FREE_UNUSED 791 mp->freep = ___dma_freep; 792 #endif 793 mp->next = mp0.next; 794 mp0.next = mp; 795 return mp; 796 } 797 } 798 if (mp) 799 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 800 return 0; 801 } 802 803 #ifdef MEMO_FREE_UNUSED 804 static void ___del_dma_pool(m_pool_s *p) 805 { 806 struct m_pool **pp = &mp0.next; 807 808 while (*pp && *pp != p) 809 pp = &(*pp)->next; 810 if (*pp) { 811 *pp = (*pp)->next; 812 bus_dma_tag_destroy(p->dmat); 813 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 814 } 815 } 816 #endif 817 818 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 819 { 820 struct m_pool *mp; 821 void *m = 0; 822 823 /* Lock */ 824 mp = ___get_dma_pool(dev_dmat); 825 if (!mp) 826 mp = ___cre_dma_pool(dev_dmat); 827 if (mp) 828 m = __sym_calloc(mp, size, name); 829 #ifdef MEMO_FREE_UNUSED 830 if (mp && !mp->nump) 831 ___del_dma_pool(mp); 832 #endif 833 /* Unlock */ 834 835 return m; 836 } 837 838 static void 839 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 840 { 841 struct m_pool *mp; 842 843 /* Lock */ 844 mp = ___get_dma_pool(dev_dmat); 845 if (mp) 846 __sym_mfree(mp, m, size, name); 847 #ifdef MEMO_FREE_UNUSED 848 if (mp && !mp->nump) 849 ___del_dma_pool(mp); 850 #endif 851 /* Unlock */ 852 } 853 854 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 855 { 856 m_pool_s *mp; 857 int hc = VTOB_HASH_CODE(m); 858 m_vtob_s *vp = 0; 859 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 860 861 /* Lock */ 862 mp = ___get_dma_pool(dev_dmat); 863 if (mp) { 864 vp = mp->vtob[hc]; 865 while (vp && (m_addr_t) vp->vaddr != a) 866 vp = vp->next; 867 } 868 /* Unlock */ 869 if (!vp) 870 panic("sym: VTOBUS FAILED!\n"); 871 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 872 } 873 874 #endif /* FreeBSD_Bus_Dma_Abstraction */ 875 876 /* 877 * Verbs for DMAable memory handling. 878 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 879 * being discarded. 880 */ 881 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 882 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 883 #define _sym_mfree_dma(np, p, s, n) \ 884 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 885 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 886 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 887 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 888 #define vtobus(p) _vtobus(np, p) 889 890 891 /* 892 * Print a buffer in hexadecimal format. 893 */ 894 static void sym_printb_hex (u_char *p, int n) 895 { 896 while (n-- > 0) 897 printf (" %x", *p++); 898 } 899 900 /* 901 * Same with a label at beginning and .\n at end. 902 */ 903 static void sym_printl_hex (char *label, u_char *p, int n) 904 { 905 printf ("%s", label); 906 sym_printb_hex (p, n); 907 printf (".\n"); 908 } 909 910 /* 911 * Return a string for SCSI BUS mode. 912 */ 913 static char *sym_scsi_bus_mode(int mode) 914 { 915 switch(mode) { 916 case SMODE_HVD: return "HVD"; 917 case SMODE_SE: return "SE"; 918 case SMODE_LVD: return "LVD"; 919 } 920 return "??"; 921 } 922 923 /* 924 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 925 */ 926 #ifdef SYM_CONF_NVRAM_SUPPORT 927 static u_char Tekram_sync[16] = 928 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 929 #endif 930 931 /* 932 * Union of supported NVRAM formats. 933 */ 934 struct sym_nvram { 935 int type; 936 #define SYM_SYMBIOS_NVRAM (1) 937 #define SYM_TEKRAM_NVRAM (2) 938 #ifdef SYM_CONF_NVRAM_SUPPORT 939 union { 940 Symbios_nvram Symbios; 941 Tekram_nvram Tekram; 942 } data; 943 #endif 944 }; 945 946 /* 947 * This one is hopefully useless, but actually useful. :-) 948 */ 949 #ifndef assert 950 #define assert(expression) { \ 951 if (!(expression)) { \ 952 (void)panic( \ 953 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 954 #expression, \ 955 __FILE__, __LINE__); \ 956 } \ 957 } 958 #endif 959 960 /* 961 * Some provision for a possible big endian mode supported by 962 * Symbios chips (never seen, by the way). 963 * For now, this stuff does not deserve any comments. :) 964 */ 965 966 #define sym_offb(o) (o) 967 #define sym_offw(o) (o) 968 969 /* 970 * Some provision for support for BIG ENDIAN CPU. 971 * Btw, FreeBSD does not seem to be ready yet for big endian. 972 */ 973 974 #if BYTE_ORDER == BIG_ENDIAN 975 #define cpu_to_scr(dw) _htole32(dw) 976 #define scr_to_cpu(dw) _le32toh(dw) 977 #else 978 #define cpu_to_scr(dw) (dw) 979 #define scr_to_cpu(dw) (dw) 980 #endif 981 982 /* 983 * Access to the chip IO registers and on-chip RAM. 984 * We use the `bus space' interface under FreeBSD-4 and 985 * later kernel versions. 986 */ 987 988 #ifdef FreeBSD_Bus_Space_Abstraction 989 990 #if defined(SYM_CONF_IOMAPPED) 991 992 #define INB_OFF(o) bus_space_read_1(np->io_tag, np->io_bsh, o) 993 #define INW_OFF(o) bus_space_read_2(np->io_tag, np->io_bsh, o) 994 #define INL_OFF(o) bus_space_read_4(np->io_tag, np->io_bsh, o) 995 996 #define OUTB_OFF(o, v) bus_space_write_1(np->io_tag, np->io_bsh, o, (v)) 997 #define OUTW_OFF(o, v) bus_space_write_2(np->io_tag, np->io_bsh, o, (v)) 998 #define OUTL_OFF(o, v) bus_space_write_4(np->io_tag, np->io_bsh, o, (v)) 999 1000 #else /* Memory mapped IO */ 1001 1002 #define INB_OFF(o) bus_space_read_1(np->mmio_tag, np->mmio_bsh, o) 1003 #define INW_OFF(o) bus_space_read_2(np->mmio_tag, np->mmio_bsh, o) 1004 #define INL_OFF(o) bus_space_read_4(np->mmio_tag, np->mmio_bsh, o) 1005 1006 #define OUTB_OFF(o, v) bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v)) 1007 #define OUTW_OFF(o, v) bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v)) 1008 #define OUTL_OFF(o, v) bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v)) 1009 1010 #endif /* SYM_CONF_IOMAPPED */ 1011 1012 #define OUTRAM_OFF(o, a, l) \ 1013 bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l)) 1014 1015 #else /* not defined FreeBSD_Bus_Space_Abstraction */ 1016 1017 #if BYTE_ORDER == BIG_ENDIAN 1018 #error "BIG ENDIAN support requires bus space kernel interface" 1019 #endif 1020 1021 /* 1022 * Access to the chip IO registers and on-chip RAM. 1023 * We use legacy MMIO and IO interface for FreeBSD 3.X versions. 1024 */ 1025 1026 /* 1027 * Define some understable verbs for IO and MMIO. 1028 */ 1029 #define io_read8(p) scr_to_cpu(inb((p))) 1030 #define io_read16(p) scr_to_cpu(inw((p))) 1031 #define io_read32(p) scr_to_cpu(inl((p))) 1032 #define io_write8(p, v) outb((p), cpu_to_scr(v)) 1033 #define io_write16(p, v) outw((p), cpu_to_scr(v)) 1034 #define io_write32(p, v) outl((p), cpu_to_scr(v)) 1035 1036 #ifdef __alpha__ 1037 1038 #define mmio_read8(a) readb(a) 1039 #define mmio_read16(a) readw(a) 1040 #define mmio_read32(a) readl(a) 1041 #define mmio_write8(a, b) writeb(a, b) 1042 #define mmio_write16(a, b) writew(a, b) 1043 #define mmio_write32(a, b) writel(a, b) 1044 #define memcpy_to_pci(d, s, n) memcpy_toio((u32)(d), (void *)(s), (n)) 1045 1046 #else /*__i386__, __sparc64__*/ 1047 1048 #define mmio_read8(a) scr_to_cpu((*(volatile unsigned char *) (a))) 1049 #define mmio_read16(a) scr_to_cpu((*(volatile unsigned short *) (a))) 1050 #define mmio_read32(a) scr_to_cpu((*(volatile unsigned int *) (a))) 1051 #define mmio_write8(a, b) (*(volatile unsigned char *) (a)) = cpu_to_scr(b) 1052 #define mmio_write16(a, b) (*(volatile unsigned short *) (a)) = cpu_to_scr(b) 1053 #define mmio_write32(a, b) (*(volatile unsigned int *) (a)) = cpu_to_scr(b) 1054 #define memcpy_to_pci(d, s, n) bcopy((s), (void *)(d), (n)) 1055 1056 #endif 1057 1058 /* 1059 * Normal IO 1060 */ 1061 #if defined(SYM_CONF_IOMAPPED) 1062 1063 #define INB_OFF(o) io_read8(np->io_port + sym_offb(o)) 1064 #define OUTB_OFF(o, v) io_write8(np->io_port + sym_offb(o), (v)) 1065 1066 #define INW_OFF(o) io_read16(np->io_port + sym_offw(o)) 1067 #define OUTW_OFF(o, v) io_write16(np->io_port + sym_offw(o), (v)) 1068 1069 #define INL_OFF(o) io_read32(np->io_port + (o)) 1070 #define OUTL_OFF(o, v) io_write32(np->io_port + (o), (v)) 1071 1072 #else /* Memory mapped IO */ 1073 1074 #define INB_OFF(o) mmio_read8(np->mmio_va + sym_offb(o)) 1075 #define OUTB_OFF(o, v) mmio_write8(np->mmio_va + sym_offb(o), (v)) 1076 1077 #define INW_OFF(o) mmio_read16(np->mmio_va + sym_offw(o)) 1078 #define OUTW_OFF(o, v) mmio_write16(np->mmio_va + sym_offw(o), (v)) 1079 1080 #define INL_OFF(o) mmio_read32(np->mmio_va + (o)) 1081 #define OUTL_OFF(o, v) mmio_write32(np->mmio_va + (o), (v)) 1082 1083 #endif 1084 1085 #define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l)) 1086 1087 #endif /* FreeBSD_Bus_Space_Abstraction */ 1088 1089 /* 1090 * Common definitions for both bus space and legacy IO methods. 1091 */ 1092 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 1093 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 1094 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 1095 1096 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 1097 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 1098 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 1099 1100 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 1101 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 1102 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 1103 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 1104 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 1105 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 1106 1107 /* 1108 * We normally want the chip to have a consistent view 1109 * of driver internal data structures when we restart it. 1110 * Thus these macros. 1111 */ 1112 #define OUTL_DSP(v) \ 1113 do { \ 1114 MEMORY_BARRIER(); \ 1115 OUTL (nc_dsp, (v)); \ 1116 } while (0) 1117 1118 #define OUTONB_STD() \ 1119 do { \ 1120 MEMORY_BARRIER(); \ 1121 OUTONB (nc_dcntl, (STD|NOCOM)); \ 1122 } while (0) 1123 1124 /* 1125 * Command control block states. 1126 */ 1127 #define HS_IDLE (0) 1128 #define HS_BUSY (1) 1129 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 1130 #define HS_DISCONNECT (3) /* Disconnected by target */ 1131 #define HS_WAIT (4) /* waiting for resource */ 1132 1133 #define HS_DONEMASK (0x80) 1134 #define HS_COMPLETE (4|HS_DONEMASK) 1135 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 1136 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 1137 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 1138 1139 /* 1140 * Software Interrupt Codes 1141 */ 1142 #define SIR_BAD_SCSI_STATUS (1) 1143 #define SIR_SEL_ATN_NO_MSG_OUT (2) 1144 #define SIR_MSG_RECEIVED (3) 1145 #define SIR_MSG_WEIRD (4) 1146 #define SIR_NEGO_FAILED (5) 1147 #define SIR_NEGO_PROTO (6) 1148 #define SIR_SCRIPT_STOPPED (7) 1149 #define SIR_REJECT_TO_SEND (8) 1150 #define SIR_SWIDE_OVERRUN (9) 1151 #define SIR_SODL_UNDERRUN (10) 1152 #define SIR_RESEL_NO_MSG_IN (11) 1153 #define SIR_RESEL_NO_IDENTIFY (12) 1154 #define SIR_RESEL_BAD_LUN (13) 1155 #define SIR_TARGET_SELECTED (14) 1156 #define SIR_RESEL_BAD_I_T_L (15) 1157 #define SIR_RESEL_BAD_I_T_L_Q (16) 1158 #define SIR_ABORT_SENT (17) 1159 #define SIR_RESEL_ABORTED (18) 1160 #define SIR_MSG_OUT_DONE (19) 1161 #define SIR_COMPLETE_ERROR (20) 1162 #define SIR_DATA_OVERRUN (21) 1163 #define SIR_BAD_PHASE (22) 1164 #define SIR_MAX (22) 1165 1166 /* 1167 * Extended error bit codes. 1168 * xerr_status field of struct sym_ccb. 1169 */ 1170 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 1171 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 1172 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 1173 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 1174 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 1175 1176 /* 1177 * Negotiation status. 1178 * nego_status field of struct sym_ccb. 1179 */ 1180 #define NS_SYNC (1) 1181 #define NS_WIDE (2) 1182 #define NS_PPR (3) 1183 1184 /* 1185 * A CCB hashed table is used to retrieve CCB address 1186 * from DSA value. 1187 */ 1188 #define CCB_HASH_SHIFT 8 1189 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1190 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1191 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1192 1193 /* 1194 * Device flags. 1195 */ 1196 #define SYM_DISC_ENABLED (1) 1197 #define SYM_TAGS_ENABLED (1<<1) 1198 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1199 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1200 1201 /* 1202 * Host adapter miscellaneous flags. 1203 */ 1204 #define SYM_AVOID_BUS_RESET (1) 1205 #define SYM_SCAN_TARGETS_HILO (1<<1) 1206 1207 /* 1208 * Device quirks. 1209 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1210 * saving the DATA POINTER then reselects and terminates the IO. 1211 * On reselection, the automatic RESTORE DATA POINTER makes the 1212 * CURRENT DATA POINTER not point at the end of the IO. 1213 * This behaviour just breaks our calculation of the residual. 1214 * For now, we just force an AUTO SAVE on disconnection and will 1215 * fix that in a further driver version. 1216 */ 1217 #define SYM_QUIRK_AUTOSAVE 1 1218 1219 /* 1220 * Misc. 1221 */ 1222 #define SYM_SNOOP_TIMEOUT (10000000) 1223 #define SYM_PCI_IO PCIR_MAPS 1224 #define SYM_PCI_MMIO (PCIR_MAPS + 4) 1225 #define SYM_PCI_RAM (PCIR_MAPS + 8) 1226 #define SYM_PCI_RAM64 (PCIR_MAPS + 12) 1227 1228 /* 1229 * Back-pointer from the CAM CCB to our data structures. 1230 */ 1231 #define sym_hcb_ptr spriv_ptr0 1232 /* #define sym_ccb_ptr spriv_ptr1 */ 1233 1234 /* 1235 * We mostly have to deal with pointers. 1236 * Thus these typedef's. 1237 */ 1238 typedef struct sym_tcb *tcb_p; 1239 typedef struct sym_lcb *lcb_p; 1240 typedef struct sym_ccb *ccb_p; 1241 typedef struct sym_hcb *hcb_p; 1242 1243 /* 1244 * Gather negotiable parameters value 1245 */ 1246 struct sym_trans { 1247 #ifdef FreeBSD_New_Tran_Settings 1248 u8 scsi_version; 1249 u8 spi_version; 1250 #endif 1251 u8 period; 1252 u8 offset; 1253 u8 width; 1254 u8 options; /* PPR options */ 1255 }; 1256 1257 struct sym_tinfo { 1258 struct sym_trans current; 1259 struct sym_trans goal; 1260 struct sym_trans user; 1261 }; 1262 1263 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1264 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1265 1266 /* 1267 * Global TCB HEADER. 1268 * 1269 * Due to lack of indirect addressing on earlier NCR chips, 1270 * this substructure is copied from the TCB to a global 1271 * address after selection. 1272 * For SYMBIOS chips that support LOAD/STORE this copy is 1273 * not needed and thus not performed. 1274 */ 1275 struct sym_tcbh { 1276 /* 1277 * Scripts bus addresses of LUN table accessed from scripts. 1278 * LUN #0 is a special case, since multi-lun devices are rare, 1279 * and we we want to speed-up the general case and not waste 1280 * resources. 1281 */ 1282 u32 luntbl_sa; /* bus address of this table */ 1283 u32 lun0_sa; /* bus address of LCB #0 */ 1284 /* 1285 * Actual SYNC/WIDE IO registers value for this target. 1286 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1287 * so have alignment constraints. 1288 */ 1289 /*0*/ u_char uval; /* -> SCNTL4 register */ 1290 /*1*/ u_char sval; /* -> SXFER io register */ 1291 /*2*/ u_char filler1; 1292 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1293 }; 1294 1295 /* 1296 * Target Control Block 1297 */ 1298 struct sym_tcb { 1299 /* 1300 * TCB header. 1301 * Assumed at offset 0. 1302 */ 1303 /*0*/ struct sym_tcbh head; 1304 1305 /* 1306 * LUN table used by the SCRIPTS processor. 1307 * An array of bus addresses is used on reselection. 1308 */ 1309 u32 *luntbl; /* LCBs bus address table */ 1310 1311 /* 1312 * LUN table used by the C code. 1313 */ 1314 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1315 #if SYM_CONF_MAX_LUN > 1 1316 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1317 #endif 1318 1319 /* 1320 * Bitmap that tells about LUNs that succeeded at least 1321 * 1 IO and therefore assumed to be a real device. 1322 * Avoid useless allocation of the LCB structure. 1323 */ 1324 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1325 1326 /* 1327 * Bitmap that tells about LUNs that haven't yet an LCB 1328 * allocated (not discovered or LCB allocation failed). 1329 */ 1330 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1331 1332 /* 1333 * Transfer capabilities (SIP) 1334 */ 1335 struct sym_tinfo tinfo; 1336 1337 /* 1338 * Keep track of the CCB used for the negotiation in order 1339 * to ensure that only 1 negotiation is queued at a time. 1340 */ 1341 ccb_p nego_cp; /* CCB used for the nego */ 1342 1343 /* 1344 * Set when we want to reset the device. 1345 */ 1346 u_char to_reset; 1347 1348 /* 1349 * Other user settable limits and options. 1350 * These limits are read from the NVRAM if present. 1351 */ 1352 u_char usrflags; 1353 u_short usrtags; 1354 }; 1355 1356 /* 1357 * Global LCB HEADER. 1358 * 1359 * Due to lack of indirect addressing on earlier NCR chips, 1360 * this substructure is copied from the LCB to a global 1361 * address after selection. 1362 * For SYMBIOS chips that support LOAD/STORE this copy is 1363 * not needed and thus not performed. 1364 */ 1365 struct sym_lcbh { 1366 /* 1367 * SCRIPTS address jumped by SCRIPTS on reselection. 1368 * For not probed logical units, this address points to 1369 * SCRIPTS that deal with bad LU handling (must be at 1370 * offset zero of the LCB for that reason). 1371 */ 1372 /*0*/ u32 resel_sa; 1373 1374 /* 1375 * Task (bus address of a CCB) read from SCRIPTS that points 1376 * to the unique ITL nexus allowed to be disconnected. 1377 */ 1378 u32 itl_task_sa; 1379 1380 /* 1381 * Task table bus address (read from SCRIPTS). 1382 */ 1383 u32 itlq_tbl_sa; 1384 }; 1385 1386 /* 1387 * Logical Unit Control Block 1388 */ 1389 struct sym_lcb { 1390 /* 1391 * TCB header. 1392 * Assumed at offset 0. 1393 */ 1394 /*0*/ struct sym_lcbh head; 1395 1396 /* 1397 * Task table read from SCRIPTS that contains pointers to 1398 * ITLQ nexuses. The bus address read from SCRIPTS is 1399 * inside the header. 1400 */ 1401 u32 *itlq_tbl; /* Kernel virtual address */ 1402 1403 /* 1404 * Busy CCBs management. 1405 */ 1406 u_short busy_itlq; /* Number of busy tagged CCBs */ 1407 u_short busy_itl; /* Number of busy untagged CCBs */ 1408 1409 /* 1410 * Circular tag allocation buffer. 1411 */ 1412 u_short ia_tag; /* Tag allocation index */ 1413 u_short if_tag; /* Tag release index */ 1414 u_char *cb_tags; /* Circular tags buffer */ 1415 1416 /* 1417 * Set when we want to clear all tasks. 1418 */ 1419 u_char to_clear; 1420 1421 /* 1422 * Capabilities. 1423 */ 1424 u_char user_flags; 1425 u_char current_flags; 1426 }; 1427 1428 /* 1429 * Action from SCRIPTS on a task. 1430 * Is part of the CCB, but is also used separately to plug 1431 * error handling action to perform from SCRIPTS. 1432 */ 1433 struct sym_actscr { 1434 u32 start; /* Jumped by SCRIPTS after selection */ 1435 u32 restart; /* Jumped by SCRIPTS on relection */ 1436 }; 1437 1438 /* 1439 * Phase mismatch context. 1440 * 1441 * It is part of the CCB and is used as parameters for the 1442 * DATA pointer. We need two contexts to handle correctly the 1443 * SAVED DATA POINTER. 1444 */ 1445 struct sym_pmc { 1446 struct sym_tblmove sg; /* Updated interrupted SG block */ 1447 u32 ret; /* SCRIPT return address */ 1448 }; 1449 1450 /* 1451 * LUN control block lookup. 1452 * We use a direct pointer for LUN #0, and a table of 1453 * pointers which is only allocated for devices that support 1454 * LUN(s) > 0. 1455 */ 1456 #if SYM_CONF_MAX_LUN <= 1 1457 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1458 #else 1459 #define sym_lp(np, tp, lun) \ 1460 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1461 #endif 1462 1463 /* 1464 * Status are used by the host and the script processor. 1465 * 1466 * The last four bytes (status[4]) are copied to the 1467 * scratchb register (declared as scr0..scr3) just after the 1468 * select/reselect, and copied back just after disconnecting. 1469 * Inside the script the XX_REG are used. 1470 */ 1471 1472 /* 1473 * Last four bytes (script) 1474 */ 1475 #define QU_REG scr0 1476 #define HS_REG scr1 1477 #define HS_PRT nc_scr1 1478 #define SS_REG scr2 1479 #define SS_PRT nc_scr2 1480 #define HF_REG scr3 1481 #define HF_PRT nc_scr3 1482 1483 /* 1484 * Last four bytes (host) 1485 */ 1486 #define actualquirks phys.head.status[0] 1487 #define host_status phys.head.status[1] 1488 #define ssss_status phys.head.status[2] 1489 #define host_flags phys.head.status[3] 1490 1491 /* 1492 * Host flags 1493 */ 1494 #define HF_IN_PM0 1u 1495 #define HF_IN_PM1 (1u<<1) 1496 #define HF_ACT_PM (1u<<2) 1497 #define HF_DP_SAVED (1u<<3) 1498 #define HF_SENSE (1u<<4) 1499 #define HF_EXT_ERR (1u<<5) 1500 #define HF_DATA_IN (1u<<6) 1501 #ifdef SYM_CONF_IARB_SUPPORT 1502 #define HF_HINT_IARB (1u<<7) 1503 #endif 1504 1505 /* 1506 * Global CCB HEADER. 1507 * 1508 * Due to lack of indirect addressing on earlier NCR chips, 1509 * this substructure is copied from the ccb to a global 1510 * address after selection (or reselection) and copied back 1511 * before disconnect. 1512 * For SYMBIOS chips that support LOAD/STORE this copy is 1513 * not needed and thus not performed. 1514 */ 1515 1516 struct sym_ccbh { 1517 /* 1518 * Start and restart SCRIPTS addresses (must be at 0). 1519 */ 1520 /*0*/ struct sym_actscr go; 1521 1522 /* 1523 * SCRIPTS jump address that deal with data pointers. 1524 * 'savep' points to the position in the script responsible 1525 * for the actual transfer of data. 1526 * It's written on reception of a SAVE_DATA_POINTER message. 1527 */ 1528 u32 savep; /* Jump address to saved data pointer */ 1529 u32 lastp; /* SCRIPTS address at end of data */ 1530 u32 goalp; /* Not accessed for now from SCRIPTS */ 1531 1532 /* 1533 * Status fields. 1534 */ 1535 u8 status[4]; 1536 }; 1537 1538 /* 1539 * Data Structure Block 1540 * 1541 * During execution of a ccb by the script processor, the 1542 * DSA (data structure address) register points to this 1543 * substructure of the ccb. 1544 */ 1545 struct sym_dsb { 1546 /* 1547 * CCB header. 1548 * Also assumed at offset 0 of the sym_ccb structure. 1549 */ 1550 /*0*/ struct sym_ccbh head; 1551 1552 /* 1553 * Phase mismatch contexts. 1554 * We need two to handle correctly the SAVED DATA POINTER. 1555 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1556 * for address calculation from SCRIPTS. 1557 */ 1558 struct sym_pmc pm0; 1559 struct sym_pmc pm1; 1560 1561 /* 1562 * Table data for Script 1563 */ 1564 struct sym_tblsel select; 1565 struct sym_tblmove smsg; 1566 struct sym_tblmove smsg_ext; 1567 struct sym_tblmove cmd; 1568 struct sym_tblmove sense; 1569 struct sym_tblmove wresid; 1570 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1571 }; 1572 1573 /* 1574 * Our Command Control Block 1575 */ 1576 struct sym_ccb { 1577 /* 1578 * This is the data structure which is pointed by the DSA 1579 * register when it is executed by the script processor. 1580 * It must be the first entry. 1581 */ 1582 struct sym_dsb phys; 1583 1584 /* 1585 * Pointer to CAM ccb and related stuff. 1586 */ 1587 union ccb *cam_ccb; /* CAM scsiio ccb */ 1588 u8 cdb_buf[16]; /* Copy of CDB */ 1589 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1590 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1591 int data_len; /* Total data length */ 1592 int segments; /* Number of SG segments */ 1593 1594 /* 1595 * Miscellaneous status'. 1596 */ 1597 u_char nego_status; /* Negotiation status */ 1598 u_char xerr_status; /* Extended error flags */ 1599 u32 extra_bytes; /* Extraneous bytes transferred */ 1600 1601 /* 1602 * Message areas. 1603 * We prepare a message to be sent after selection. 1604 * We may use a second one if the command is rescheduled 1605 * due to CHECK_CONDITION or COMMAND TERMINATED. 1606 * Contents are IDENTIFY and SIMPLE_TAG. 1607 * While negotiating sync or wide transfer, 1608 * a SDTR or WDTR message is appended. 1609 */ 1610 u_char scsi_smsg [12]; 1611 u_char scsi_smsg2[12]; 1612 1613 /* 1614 * Auto request sense related fields. 1615 */ 1616 u_char sensecmd[6]; /* Request Sense command */ 1617 u_char sv_scsi_status; /* Saved SCSI status */ 1618 u_char sv_xerr_status; /* Saved extended status */ 1619 int sv_resid; /* Saved residual */ 1620 1621 /* 1622 * Map for the DMA of user data. 1623 */ 1624 #ifdef FreeBSD_Bus_Dma_Abstraction 1625 void *arg; /* Argument for some callback */ 1626 bus_dmamap_t dmamap; /* DMA map for user data */ 1627 u_char dmamapped; 1628 #define SYM_DMA_NONE 0 1629 #define SYM_DMA_READ 1 1630 #define SYM_DMA_WRITE 2 1631 #endif 1632 /* 1633 * Other fields. 1634 */ 1635 u32 ccb_ba; /* BUS address of this CCB */ 1636 u_short tag; /* Tag for this transfer */ 1637 /* NO_TAG means no tag */ 1638 u_char target; 1639 u_char lun; 1640 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1641 SYM_QUEHEAD 1642 link_ccbq; /* Link to free/busy CCB queue */ 1643 u32 startp; /* Initial data pointer */ 1644 int ext_sg; /* Extreme data pointer, used */ 1645 int ext_ofs; /* to calculate the residual. */ 1646 u_char to_abort; /* Want this IO to be aborted */ 1647 }; 1648 1649 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1650 1651 /* 1652 * Host Control Block 1653 */ 1654 struct sym_hcb { 1655 /* 1656 * Global headers. 1657 * Due to poorness of addressing capabilities, earlier 1658 * chips (810, 815, 825) copy part of the data structures 1659 * (CCB, TCB and LCB) in fixed areas. 1660 */ 1661 #ifdef SYM_CONF_GENERIC_SUPPORT 1662 struct sym_ccbh ccb_head; 1663 struct sym_tcbh tcb_head; 1664 struct sym_lcbh lcb_head; 1665 #endif 1666 /* 1667 * Idle task and invalid task actions and 1668 * their bus addresses. 1669 */ 1670 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1671 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1672 1673 /* 1674 * Dummy lun table to protect us against target 1675 * returning bad lun number on reselection. 1676 */ 1677 u32 *badluntbl; /* Table physical address */ 1678 u32 badlun_sa; /* SCRIPT handler BUS address */ 1679 1680 /* 1681 * Bus address of this host control block. 1682 */ 1683 u32 hcb_ba; 1684 1685 /* 1686 * Bit 32-63 of the on-chip RAM bus address in LE format. 1687 * The START_RAM64 script loads the MMRS and MMWS from this 1688 * field. 1689 */ 1690 u32 scr_ram_seg; 1691 1692 /* 1693 * Chip and controller indentification. 1694 */ 1695 #ifdef FreeBSD_Bus_Io_Abstraction 1696 device_t device; 1697 #else 1698 pcici_t pci_tag; 1699 #endif 1700 int unit; 1701 char inst_name[8]; 1702 1703 /* 1704 * Initial value of some IO register bits. 1705 * These values are assumed to have been set by BIOS, and may 1706 * be used to probe adapter implementation differences. 1707 */ 1708 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1709 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1710 sv_stest1; 1711 1712 /* 1713 * Actual initial value of IO register bits used by the 1714 * driver. They are loaded at initialisation according to 1715 * features that are to be enabled/disabled. 1716 */ 1717 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1718 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1719 1720 /* 1721 * Target data. 1722 */ 1723 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1724 1725 /* 1726 * Target control block bus address array used by the SCRIPT 1727 * on reselection. 1728 */ 1729 u32 *targtbl; 1730 u32 targtbl_ba; 1731 1732 /* 1733 * CAM SIM information for this instance. 1734 */ 1735 struct cam_sim *sim; 1736 struct cam_path *path; 1737 1738 /* 1739 * Allocated hardware resources. 1740 */ 1741 #ifdef FreeBSD_Bus_Io_Abstraction 1742 struct resource *irq_res; 1743 struct resource *io_res; 1744 struct resource *mmio_res; 1745 struct resource *ram_res; 1746 int ram_id; 1747 void *intr; 1748 #endif 1749 1750 /* 1751 * Bus stuff. 1752 * 1753 * My understanding of PCI is that all agents must share the 1754 * same addressing range and model. 1755 * But some hardware architecture guys provide complex and 1756 * brain-deaded stuff that makes shit. 1757 * This driver only support PCI compliant implementations and 1758 * deals with part of the BUS stuff complexity only to fit O/S 1759 * requirements. 1760 */ 1761 #ifdef FreeBSD_Bus_Io_Abstraction 1762 bus_space_handle_t io_bsh; 1763 bus_space_tag_t io_tag; 1764 bus_space_handle_t mmio_bsh; 1765 bus_space_tag_t mmio_tag; 1766 bus_space_handle_t ram_bsh; 1767 bus_space_tag_t ram_tag; 1768 #endif 1769 1770 /* 1771 * DMA stuff. 1772 */ 1773 #ifdef FreeBSD_Bus_Dma_Abstraction 1774 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1775 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1776 #endif 1777 /* 1778 * Virtual and physical bus addresses of the chip. 1779 */ 1780 vm_offset_t mmio_va; /* MMIO kernel virtual address */ 1781 vm_offset_t mmio_pa; /* MMIO CPU physical address */ 1782 vm_offset_t mmio_ba; /* MMIO BUS address */ 1783 int mmio_ws; /* MMIO Window size */ 1784 1785 vm_offset_t ram_va; /* RAM kernel virtual address */ 1786 vm_offset_t ram_pa; /* RAM CPU physical address */ 1787 vm_offset_t ram_ba; /* RAM BUS address */ 1788 int ram_ws; /* RAM window size */ 1789 u32 io_port; /* IO port address */ 1790 1791 /* 1792 * SCRIPTS virtual and physical bus addresses. 1793 * 'script' is loaded in the on-chip RAM if present. 1794 * 'scripth' stays in main memory for all chips except the 1795 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1796 */ 1797 u_char *scripta0; /* Copies of script and scripth */ 1798 u_char *scriptb0; /* Copies of script and scripth */ 1799 vm_offset_t scripta_ba; /* Actual script and scripth */ 1800 vm_offset_t scriptb_ba; /* bus addresses. */ 1801 vm_offset_t scriptb0_ba; 1802 u_short scripta_sz; /* Actual size of script A */ 1803 u_short scriptb_sz; /* Actual size of script B */ 1804 1805 /* 1806 * Bus addresses, setup and patch methods for 1807 * the selected firmware. 1808 */ 1809 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1810 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1811 void (*fw_setup)(hcb_p np, struct sym_fw *fw); 1812 void (*fw_patch)(hcb_p np); 1813 char *fw_name; 1814 1815 /* 1816 * General controller parameters and configuration. 1817 */ 1818 u_short device_id; /* PCI device id */ 1819 u_char revision_id; /* PCI device revision id */ 1820 u_int features; /* Chip features map */ 1821 u_char myaddr; /* SCSI id of the adapter */ 1822 u_char maxburst; /* log base 2 of dwords burst */ 1823 u_char maxwide; /* Maximum transfer width */ 1824 u_char minsync; /* Min sync period factor (ST) */ 1825 u_char maxsync; /* Max sync period factor (ST) */ 1826 u_char maxoffs; /* Max scsi offset (ST) */ 1827 u_char minsync_dt; /* Min sync period factor (DT) */ 1828 u_char maxsync_dt; /* Max sync period factor (DT) */ 1829 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1830 u_char multiplier; /* Clock multiplier (1,2,4) */ 1831 u_char clock_divn; /* Number of clock divisors */ 1832 u32 clock_khz; /* SCSI clock frequency in KHz */ 1833 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1834 /* 1835 * Start queue management. 1836 * It is filled up by the host processor and accessed by the 1837 * SCRIPTS processor in order to start SCSI commands. 1838 */ 1839 volatile /* Prevent code optimizations */ 1840 u32 *squeue; /* Start queue virtual address */ 1841 u32 squeue_ba; /* Start queue BUS address */ 1842 u_short squeueput; /* Next free slot of the queue */ 1843 u_short actccbs; /* Number of allocated CCBs */ 1844 1845 /* 1846 * Command completion queue. 1847 * It is the same size as the start queue to avoid overflow. 1848 */ 1849 u_short dqueueget; /* Next position to scan */ 1850 volatile /* Prevent code optimizations */ 1851 u32 *dqueue; /* Completion (done) queue */ 1852 u32 dqueue_ba; /* Done queue BUS address */ 1853 1854 /* 1855 * Miscellaneous buffers accessed by the scripts-processor. 1856 * They shall be DWORD aligned, because they may be read or 1857 * written with a script command. 1858 */ 1859 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1860 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1861 u32 lastmsg; /* Last SCSI message sent */ 1862 u_char scratch; /* Scratch for SCSI receive */ 1863 1864 /* 1865 * Miscellaneous configuration and status parameters. 1866 */ 1867 u_char usrflags; /* Miscellaneous user flags */ 1868 u_char scsi_mode; /* Current SCSI BUS mode */ 1869 u_char verbose; /* Verbosity for this controller*/ 1870 u32 cache; /* Used for cache test at init. */ 1871 1872 /* 1873 * CCB lists and queue. 1874 */ 1875 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1876 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1877 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1878 1879 /* 1880 * During error handling and/or recovery, 1881 * active CCBs that are to be completed with 1882 * error or requeued are moved from the busy_ccbq 1883 * to the comp_ccbq prior to completion. 1884 */ 1885 SYM_QUEHEAD comp_ccbq; 1886 1887 /* 1888 * CAM CCB pending queue. 1889 */ 1890 SYM_QUEHEAD cam_ccbq; 1891 1892 /* 1893 * IMMEDIATE ARBITRATION (IARB) control. 1894 * 1895 * We keep track in 'last_cp' of the last CCB that has been 1896 * queued to the SCRIPTS processor and clear 'last_cp' when 1897 * this CCB completes. If last_cp is not zero at the moment 1898 * we queue a new CCB, we set a flag in 'last_cp' that is 1899 * used by the SCRIPTS as a hint for setting IARB. 1900 * We donnot set more than 'iarb_max' consecutive hints for 1901 * IARB in order to leave devices a chance to reselect. 1902 * By the way, any non zero value of 'iarb_max' is unfair. :) 1903 */ 1904 #ifdef SYM_CONF_IARB_SUPPORT 1905 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1906 u_short iarb_count; /* Actual # of these hints */ 1907 ccb_p last_cp; 1908 #endif 1909 1910 /* 1911 * Command abort handling. 1912 * We need to synchronize tightly with the SCRIPTS 1913 * processor in order to handle things correctly. 1914 */ 1915 u_char abrt_msg[4]; /* Message to send buffer */ 1916 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1917 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1918 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1919 }; 1920 1921 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1922 1923 /* 1924 * Return the name of the controller. 1925 */ 1926 static __inline char *sym_name(hcb_p np) 1927 { 1928 return np->inst_name; 1929 } 1930 1931 /*--------------------------------------------------------------------------*/ 1932 /*------------------------------ FIRMWARES ---------------------------------*/ 1933 /*--------------------------------------------------------------------------*/ 1934 1935 /* 1936 * This stuff will be moved to a separate source file when 1937 * the driver will be broken into several source modules. 1938 */ 1939 1940 /* 1941 * Macros used for all firmwares. 1942 */ 1943 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1944 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1945 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1946 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1947 1948 1949 #ifdef SYM_CONF_GENERIC_SUPPORT 1950 /* 1951 * Allocate firmware #1 script area. 1952 */ 1953 #define SYM_FWA_SCR sym_fw1a_scr 1954 #define SYM_FWB_SCR sym_fw1b_scr 1955 #include "sym_fw1.h" 1956 struct sym_fwa_ofs sym_fw1a_ofs = { 1957 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1958 }; 1959 struct sym_fwb_ofs sym_fw1b_ofs = { 1960 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1961 }; 1962 #undef SYM_FWA_SCR 1963 #undef SYM_FWB_SCR 1964 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1965 1966 /* 1967 * Allocate firmware #2 script area. 1968 */ 1969 #define SYM_FWA_SCR sym_fw2a_scr 1970 #define SYM_FWB_SCR sym_fw2b_scr 1971 #include "sym_fw2.h" 1972 struct sym_fwa_ofs sym_fw2a_ofs = { 1973 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1974 }; 1975 struct sym_fwb_ofs sym_fw2b_ofs = { 1976 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1977 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1978 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1979 }; 1980 #undef SYM_FWA_SCR 1981 #undef SYM_FWB_SCR 1982 1983 #undef SYM_GEN_A 1984 #undef SYM_GEN_B 1985 #undef PADDR_A 1986 #undef PADDR_B 1987 1988 #ifdef SYM_CONF_GENERIC_SUPPORT 1989 /* 1990 * Patch routine for firmware #1. 1991 */ 1992 static void 1993 sym_fw1_patch(hcb_p np) 1994 { 1995 struct sym_fw1a_scr *scripta0; 1996 struct sym_fw1b_scr *scriptb0; 1997 1998 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1999 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 2000 2001 /* 2002 * Remove LED support if not needed. 2003 */ 2004 if (!(np->features & FE_LED0)) { 2005 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 2006 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 2007 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 2008 } 2009 2010 #ifdef SYM_CONF_IARB_SUPPORT 2011 /* 2012 * If user does not want to use IMMEDIATE ARBITRATION 2013 * when we are reselected while attempting to arbitrate, 2014 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 2015 */ 2016 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 2017 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 2018 #endif 2019 /* 2020 * Patch some data in SCRIPTS. 2021 * - start and done queue initial bus address. 2022 * - target bus address table bus address. 2023 */ 2024 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 2025 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 2026 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 2027 } 2028 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2029 2030 /* 2031 * Patch routine for firmware #2. 2032 */ 2033 static void 2034 sym_fw2_patch(hcb_p np) 2035 { 2036 struct sym_fw2a_scr *scripta0; 2037 struct sym_fw2b_scr *scriptb0; 2038 2039 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 2040 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 2041 2042 /* 2043 * Remove LED support if not needed. 2044 */ 2045 if (!(np->features & FE_LED0)) { 2046 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 2047 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 2048 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 2049 } 2050 2051 #ifdef SYM_CONF_IARB_SUPPORT 2052 /* 2053 * If user does not want to use IMMEDIATE ARBITRATION 2054 * when we are reselected while attempting to arbitrate, 2055 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 2056 */ 2057 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 2058 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 2059 #endif 2060 /* 2061 * Patch some variable in SCRIPTS. 2062 * - start and done queue initial bus address. 2063 * - target bus address table bus address. 2064 */ 2065 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 2066 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 2067 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 2068 2069 /* 2070 * Remove the load of SCNTL4 on reselection if not a C10. 2071 */ 2072 if (!(np->features & FE_C10)) { 2073 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 2074 scripta0->resel_scntl4[1] = cpu_to_scr(0); 2075 } 2076 2077 /* 2078 * Remove a couple of work-arounds specific to C1010 if 2079 * they are not desirable. See `sym_fw2.h' for more details. 2080 */ 2081 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 2082 np->revision_id < 0x1 && 2083 np->pciclk_khz < 60000)) { 2084 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 2085 scripta0->datao_phase[1] = cpu_to_scr(0); 2086 } 2087 if (!(np->device_id == PCI_ID_LSI53C1010 && 2088 /* np->revision_id < 0xff */ 1)) { 2089 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 2090 scripta0->sel_done[1] = cpu_to_scr(0); 2091 } 2092 2093 /* 2094 * Patch some other variables in SCRIPTS. 2095 * These ones are loaded by the SCRIPTS processor. 2096 */ 2097 scriptb0->pm0_data_addr[0] = 2098 cpu_to_scr(np->scripta_ba + 2099 offsetof(struct sym_fw2a_scr, pm0_data)); 2100 scriptb0->pm1_data_addr[0] = 2101 cpu_to_scr(np->scripta_ba + 2102 offsetof(struct sym_fw2a_scr, pm1_data)); 2103 } 2104 2105 /* 2106 * Fill the data area in scripts. 2107 * To be done for all firmwares. 2108 */ 2109 static void 2110 sym_fw_fill_data (u32 *in, u32 *out) 2111 { 2112 int i; 2113 2114 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 2115 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 2116 *in++ = offsetof (struct sym_dsb, data[i]); 2117 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 2118 *out++ = offsetof (struct sym_dsb, data[i]); 2119 } 2120 } 2121 2122 /* 2123 * Setup useful script bus addresses. 2124 * To be done for all firmwares. 2125 */ 2126 static void 2127 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw) 2128 { 2129 u32 *pa; 2130 u_short *po; 2131 int i; 2132 2133 /* 2134 * Build the bus address table for script A 2135 * from the script A offset table. 2136 */ 2137 po = (u_short *) fw->a_ofs; 2138 pa = (u32 *) &np->fwa_bas; 2139 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 2140 pa[i] = np->scripta_ba + po[i]; 2141 2142 /* 2143 * Same for script B. 2144 */ 2145 po = (u_short *) fw->b_ofs; 2146 pa = (u32 *) &np->fwb_bas; 2147 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 2148 pa[i] = np->scriptb_ba + po[i]; 2149 } 2150 2151 #ifdef SYM_CONF_GENERIC_SUPPORT 2152 /* 2153 * Setup routine for firmware #1. 2154 */ 2155 static void 2156 sym_fw1_setup(hcb_p np, struct sym_fw *fw) 2157 { 2158 struct sym_fw1a_scr *scripta0; 2159 struct sym_fw1b_scr *scriptb0; 2160 2161 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 2162 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 2163 2164 /* 2165 * Fill variable parts in scripts. 2166 */ 2167 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2168 2169 /* 2170 * Setup bus addresses used from the C code.. 2171 */ 2172 sym_fw_setup_bus_addresses(np, fw); 2173 } 2174 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2175 2176 /* 2177 * Setup routine for firmware #2. 2178 */ 2179 static void 2180 sym_fw2_setup(hcb_p np, struct sym_fw *fw) 2181 { 2182 struct sym_fw2a_scr *scripta0; 2183 struct sym_fw2b_scr *scriptb0; 2184 2185 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 2186 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 2187 2188 /* 2189 * Fill variable parts in scripts. 2190 */ 2191 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2192 2193 /* 2194 * Setup bus addresses used from the C code.. 2195 */ 2196 sym_fw_setup_bus_addresses(np, fw); 2197 } 2198 2199 /* 2200 * Allocate firmware descriptors. 2201 */ 2202 #ifdef SYM_CONF_GENERIC_SUPPORT 2203 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2204 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2205 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2206 2207 /* 2208 * Find the most appropriate firmware for a chip. 2209 */ 2210 static struct sym_fw * 2211 sym_find_firmware(struct sym_pci_chip *chip) 2212 { 2213 if (chip->features & FE_LDSTR) 2214 return &sym_fw2; 2215 #ifdef SYM_CONF_GENERIC_SUPPORT 2216 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2217 return &sym_fw1; 2218 #endif 2219 else 2220 return 0; 2221 } 2222 2223 /* 2224 * Bind a script to physical addresses. 2225 */ 2226 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2227 { 2228 u32 opcode, new, old, tmp1, tmp2; 2229 u32 *end, *cur; 2230 int relocs; 2231 2232 cur = start; 2233 end = start + len/4; 2234 2235 while (cur < end) { 2236 2237 opcode = *cur; 2238 2239 /* 2240 * If we forget to change the length 2241 * in scripts, a field will be 2242 * padded with 0. This is an illegal 2243 * command. 2244 */ 2245 if (opcode == 0) { 2246 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2247 sym_name(np), (int) (cur-start)); 2248 MDELAY (10000); 2249 ++cur; 2250 continue; 2251 }; 2252 2253 /* 2254 * We use the bogus value 0xf00ff00f ;-) 2255 * to reserve data area in SCRIPTS. 2256 */ 2257 if (opcode == SCR_DATA_ZERO) { 2258 *cur++ = 0; 2259 continue; 2260 } 2261 2262 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2263 printf ("%d: <%x>\n", (int) (cur-start), 2264 (unsigned)opcode); 2265 2266 /* 2267 * We don't have to decode ALL commands 2268 */ 2269 switch (opcode >> 28) { 2270 case 0xf: 2271 /* 2272 * LOAD / STORE DSA relative, don't relocate. 2273 */ 2274 relocs = 0; 2275 break; 2276 case 0xe: 2277 /* 2278 * LOAD / STORE absolute. 2279 */ 2280 relocs = 1; 2281 break; 2282 case 0xc: 2283 /* 2284 * COPY has TWO arguments. 2285 */ 2286 relocs = 2; 2287 tmp1 = cur[1]; 2288 tmp2 = cur[2]; 2289 if ((tmp1 ^ tmp2) & 3) { 2290 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2291 sym_name(np), (int) (cur-start)); 2292 MDELAY (10000); 2293 } 2294 /* 2295 * If PREFETCH feature not enabled, remove 2296 * the NO FLUSH bit if present. 2297 */ 2298 if ((opcode & SCR_NO_FLUSH) && 2299 !(np->features & FE_PFEN)) { 2300 opcode = (opcode & ~SCR_NO_FLUSH); 2301 } 2302 break; 2303 case 0x0: 2304 /* 2305 * MOVE/CHMOV (absolute address) 2306 */ 2307 if (!(np->features & FE_WIDE)) 2308 opcode = (opcode | OPC_MOVE); 2309 relocs = 1; 2310 break; 2311 case 0x1: 2312 /* 2313 * MOVE/CHMOV (table indirect) 2314 */ 2315 if (!(np->features & FE_WIDE)) 2316 opcode = (opcode | OPC_MOVE); 2317 relocs = 0; 2318 break; 2319 case 0x8: 2320 /* 2321 * JUMP / CALL 2322 * dont't relocate if relative :-) 2323 */ 2324 if (opcode & 0x00800000) 2325 relocs = 0; 2326 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2327 relocs = 2; 2328 else 2329 relocs = 1; 2330 break; 2331 case 0x4: 2332 case 0x5: 2333 case 0x6: 2334 case 0x7: 2335 relocs = 1; 2336 break; 2337 default: 2338 relocs = 0; 2339 break; 2340 }; 2341 2342 /* 2343 * Scriptify:) the opcode. 2344 */ 2345 *cur++ = cpu_to_scr(opcode); 2346 2347 /* 2348 * If no relocation, assume 1 argument 2349 * and just scriptize:) it. 2350 */ 2351 if (!relocs) { 2352 *cur = cpu_to_scr(*cur); 2353 ++cur; 2354 continue; 2355 } 2356 2357 /* 2358 * Otherwise performs all needed relocations. 2359 */ 2360 while (relocs--) { 2361 old = *cur; 2362 2363 switch (old & RELOC_MASK) { 2364 case RELOC_REGISTER: 2365 new = (old & ~RELOC_MASK) + np->mmio_ba; 2366 break; 2367 case RELOC_LABEL_A: 2368 new = (old & ~RELOC_MASK) + np->scripta_ba; 2369 break; 2370 case RELOC_LABEL_B: 2371 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2372 break; 2373 case RELOC_SOFTC: 2374 new = (old & ~RELOC_MASK) + np->hcb_ba; 2375 break; 2376 case 0: 2377 /* 2378 * Don't relocate a 0 address. 2379 * They are mostly used for patched or 2380 * script self-modified areas. 2381 */ 2382 if (old == 0) { 2383 new = old; 2384 break; 2385 } 2386 /* fall through */ 2387 default: 2388 new = 0; 2389 panic("sym_fw_bind_script: " 2390 "weird relocation %x\n", old); 2391 break; 2392 } 2393 2394 *cur++ = cpu_to_scr(new); 2395 } 2396 }; 2397 } 2398 2399 /*--------------------------------------------------------------------------*/ 2400 /*--------------------------- END OF FIRMARES -----------------------------*/ 2401 /*--------------------------------------------------------------------------*/ 2402 2403 /* 2404 * Function prototypes. 2405 */ 2406 static void sym_save_initial_setting (hcb_p np); 2407 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2408 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2409 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2410 static void sym_chip_reset (hcb_p np); 2411 static void sym_soft_reset (hcb_p np); 2412 static void sym_start_reset (hcb_p np); 2413 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2414 static int sym_wakeup_done (hcb_p np); 2415 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2416 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2417 static void sym_init (hcb_p np, int reason); 2418 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2419 u_char *fakp); 2420 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2421 u_char div, u_char fak); 2422 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2423 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2424 u_char per, u_char wide, u_char div, u_char fak); 2425 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2426 u_char per, u_char wide, u_char div, u_char fak); 2427 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2428 static void sym_intr (void *arg); 2429 static void sym_poll (struct cam_sim *sim); 2430 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2431 static void sym_int_sto (hcb_p np); 2432 static void sym_int_udc (hcb_p np); 2433 static void sym_int_sbmc (hcb_p np); 2434 static void sym_int_par (hcb_p np, u_short sist); 2435 static void sym_int_ma (hcb_p np); 2436 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2437 int task); 2438 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2439 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2440 static void sym_sir_task_recovery (hcb_p np, int num); 2441 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2442 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2443 static int sym_compute_residual (hcb_p np, ccb_p cp); 2444 static int sym_show_msg (u_char * msg); 2445 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2446 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2447 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2448 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2449 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2450 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2451 static void sym_int_sir (hcb_p np); 2452 static void sym_free_ccb (hcb_p np, ccb_p cp); 2453 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2454 static ccb_p sym_alloc_ccb (hcb_p np); 2455 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2456 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2457 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2458 static int sym_snooptest (hcb_p np); 2459 static void sym_selectclock(hcb_p np, u_char scntl3); 2460 static void sym_getclock (hcb_p np, int mult); 2461 static int sym_getpciclock (hcb_p np); 2462 static void sym_complete_ok (hcb_p np, ccb_p cp); 2463 static void sym_complete_error (hcb_p np, ccb_p cp); 2464 static void sym_timeout (void *arg); 2465 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2466 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2467 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2468 static void sym_action1 (struct cam_sim *sim, union ccb *ccb); 2469 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2470 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2471 ccb_p cp); 2472 #ifdef FreeBSD_Bus_Dma_Abstraction 2473 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2474 bus_dma_segment_t *psegs, int nsegs); 2475 #else 2476 static int sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr, 2477 vm_size_t len); 2478 static int sym_scatter_sg_virtual (hcb_p np, ccb_p cp, 2479 bus_dma_segment_t *psegs, int nsegs); 2480 static int sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr, 2481 vm_size_t len); 2482 #endif 2483 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2484 bus_dma_segment_t *psegs, int nsegs); 2485 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2486 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2487 struct ccb_trans_settings *cts); 2488 static void sym_update_dflags(hcb_p np, u_char *flags, 2489 struct ccb_trans_settings *cts); 2490 2491 #ifdef FreeBSD_Bus_Io_Abstraction 2492 static struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2493 static int sym_pci_probe (device_t dev); 2494 static int sym_pci_attach (device_t dev); 2495 #else 2496 static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag); 2497 static const char *sym_pci_probe (pcici_t tag, pcidi_t type); 2498 static void sym_pci_attach (pcici_t tag, int unit); 2499 static int sym_pci_attach2 (pcici_t tag, int unit); 2500 #endif 2501 2502 static void sym_pci_free (hcb_p np); 2503 static int sym_cam_attach (hcb_p np); 2504 static void sym_cam_free (hcb_p np); 2505 2506 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2507 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2508 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2509 2510 /* 2511 * Print something which allows to retrieve the controler type, 2512 * unit, target, lun concerned by a kernel message. 2513 */ 2514 static void PRINT_TARGET (hcb_p np, int target) 2515 { 2516 printf ("%s:%d:", sym_name(np), target); 2517 } 2518 2519 static void PRINT_LUN(hcb_p np, int target, int lun) 2520 { 2521 printf ("%s:%d:%d:", sym_name(np), target, lun); 2522 } 2523 2524 static void PRINT_ADDR (ccb_p cp) 2525 { 2526 if (cp && cp->cam_ccb) 2527 xpt_print_path(cp->cam_ccb->ccb_h.path); 2528 } 2529 2530 /* 2531 * Take into account this ccb in the freeze count. 2532 */ 2533 static void sym_freeze_cam_ccb(union ccb *ccb) 2534 { 2535 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2536 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2537 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2538 xpt_freeze_devq(ccb->ccb_h.path, 1); 2539 } 2540 } 2541 } 2542 2543 /* 2544 * Set the status field of a CAM CCB. 2545 */ 2546 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2547 { 2548 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2549 ccb->ccb_h.status |= status; 2550 } 2551 2552 /* 2553 * Get the status field of a CAM CCB. 2554 */ 2555 static __inline int sym_get_cam_status(union ccb *ccb) 2556 { 2557 return ccb->ccb_h.status & CAM_STATUS_MASK; 2558 } 2559 2560 /* 2561 * Enqueue a CAM CCB. 2562 */ 2563 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb) 2564 { 2565 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2566 ccb->ccb_h.status = CAM_REQ_INPROG; 2567 2568 callout_reset(&ccb->ccb_h.timeout_ch, ccb->ccb_h.timeout*hz/1000, 2569 sym_timeout, ccb); 2570 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2571 ccb->ccb_h.sym_hcb_ptr = np; 2572 2573 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2574 } 2575 2576 /* 2577 * Complete a pending CAM CCB. 2578 */ 2579 static void sym_xpt_done(hcb_p np, union ccb *ccb) 2580 { 2581 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2582 callout_stop(&ccb->ccb_h.timeout_ch); 2583 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2584 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2585 ccb->ccb_h.sym_hcb_ptr = 0; 2586 } 2587 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2588 sym_freeze_cam_ccb(ccb); 2589 xpt_done(ccb); 2590 } 2591 2592 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2593 { 2594 sym_set_cam_status(ccb, cam_status); 2595 sym_xpt_done(np, ccb); 2596 } 2597 2598 /* 2599 * SYMBIOS chip clock divisor table. 2600 * 2601 * Divisors are multiplied by 10,000,000 in order to make 2602 * calculations more simple. 2603 */ 2604 #define _5M 5000000 2605 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2606 2607 /* 2608 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2609 * 128 transfers. All chips support at least 16 transfers 2610 * bursts. The 825A, 875 and 895 chips support bursts of up 2611 * to 128 transfers and the 895A and 896 support bursts of up 2612 * to 64 transfers. All other chips support up to 16 2613 * transfers bursts. 2614 * 2615 * For PCI 32 bit data transfers each transfer is a DWORD. 2616 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2617 * 2618 * We use log base 2 (burst length) as internal code, with 2619 * value 0 meaning "burst disabled". 2620 */ 2621 2622 /* 2623 * Burst length from burst code. 2624 */ 2625 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2626 2627 /* 2628 * Burst code from io register bits. 2629 */ 2630 #define burst_code(dmode, ctest4, ctest5) \ 2631 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2632 2633 /* 2634 * Set initial io register bits from burst code. 2635 */ 2636 static __inline void sym_init_burst(hcb_p np, u_char bc) 2637 { 2638 np->rv_ctest4 &= ~0x80; 2639 np->rv_dmode &= ~(0x3 << 6); 2640 np->rv_ctest5 &= ~0x4; 2641 2642 if (!bc) { 2643 np->rv_ctest4 |= 0x80; 2644 } 2645 else { 2646 --bc; 2647 np->rv_dmode |= ((bc & 0x3) << 6); 2648 np->rv_ctest5 |= (bc & 0x4); 2649 } 2650 } 2651 2652 2653 /* 2654 * Print out the list of targets that have some flag disabled by user. 2655 */ 2656 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2657 { 2658 int cnt; 2659 int i; 2660 2661 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2662 if (i == np->myaddr) 2663 continue; 2664 if (np->target[i].usrflags & mask) { 2665 if (!cnt++) 2666 printf("%s: %s disabled for targets", 2667 sym_name(np), msg); 2668 printf(" %d", i); 2669 } 2670 } 2671 if (cnt) 2672 printf(".\n"); 2673 } 2674 2675 /* 2676 * Save initial settings of some IO registers. 2677 * Assumed to have been set by BIOS. 2678 * We cannot reset the chip prior to reading the 2679 * IO registers, since informations will be lost. 2680 * Since the SCRIPTS processor may be running, this 2681 * is not safe on paper, but it seems to work quite 2682 * well. :) 2683 */ 2684 static void sym_save_initial_setting (hcb_p np) 2685 { 2686 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2687 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2688 np->sv_dmode = INB(nc_dmode) & 0xce; 2689 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2690 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2691 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2692 np->sv_gpcntl = INB(nc_gpcntl); 2693 np->sv_stest1 = INB(nc_stest1); 2694 np->sv_stest2 = INB(nc_stest2) & 0x20; 2695 np->sv_stest4 = INB(nc_stest4); 2696 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2697 np->sv_scntl4 = INB(nc_scntl4); 2698 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2699 } 2700 else 2701 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2702 } 2703 2704 /* 2705 * Prepare io register values used by sym_init() according 2706 * to selected and supported features. 2707 */ 2708 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2709 { 2710 u_char burst_max; 2711 u32 period; 2712 int i; 2713 2714 /* 2715 * Wide ? 2716 */ 2717 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2718 2719 /* 2720 * Get the frequency of the chip's clock. 2721 */ 2722 if (np->features & FE_QUAD) 2723 np->multiplier = 4; 2724 else if (np->features & FE_DBLR) 2725 np->multiplier = 2; 2726 else 2727 np->multiplier = 1; 2728 2729 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2730 np->clock_khz *= np->multiplier; 2731 2732 if (np->clock_khz != 40000) 2733 sym_getclock(np, np->multiplier); 2734 2735 /* 2736 * Divisor to be used for async (timer pre-scaler). 2737 */ 2738 i = np->clock_divn - 1; 2739 while (--i >= 0) { 2740 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2741 ++i; 2742 break; 2743 } 2744 } 2745 np->rv_scntl3 = i+1; 2746 2747 /* 2748 * The C1010 uses hardwired divisors for async. 2749 * So, we just throw away, the async. divisor.:-) 2750 */ 2751 if (np->features & FE_C10) 2752 np->rv_scntl3 = 0; 2753 2754 /* 2755 * Minimum synchronous period factor supported by the chip. 2756 * Btw, 'period' is in tenths of nanoseconds. 2757 */ 2758 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2759 if (period <= 250) np->minsync = 10; 2760 else if (period <= 303) np->minsync = 11; 2761 else if (period <= 500) np->minsync = 12; 2762 else np->minsync = (period + 40 - 1) / 40; 2763 2764 /* 2765 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2766 */ 2767 if (np->minsync < 25 && 2768 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2769 np->minsync = 25; 2770 else if (np->minsync < 12 && 2771 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2772 np->minsync = 12; 2773 2774 /* 2775 * Maximum synchronous period factor supported by the chip. 2776 */ 2777 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2778 np->maxsync = period > 2540 ? 254 : period / 10; 2779 2780 /* 2781 * If chip is a C1010, guess the sync limits in DT mode. 2782 */ 2783 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2784 if (np->clock_khz == 160000) { 2785 np->minsync_dt = 9; 2786 np->maxsync_dt = 50; 2787 np->maxoffs_dt = 62; 2788 } 2789 } 2790 2791 /* 2792 * 64 bit addressing (895A/896/1010) ? 2793 */ 2794 if (np->features & FE_DAC) 2795 #if BITS_PER_LONG > 32 2796 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2797 #else 2798 np->rv_ccntl1 |= (DDAC); 2799 #endif 2800 2801 /* 2802 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2803 */ 2804 if (np->features & FE_NOPM) 2805 np->rv_ccntl0 |= (ENPMJ); 2806 2807 /* 2808 * C1010 Errata. 2809 * In dual channel mode, contention occurs if internal cycles 2810 * are used. Disable internal cycles. 2811 */ 2812 if (np->device_id == PCI_ID_LSI53C1010 && 2813 np->revision_id < 0x2) 2814 np->rv_ccntl0 |= DILS; 2815 2816 /* 2817 * Select burst length (dwords) 2818 */ 2819 burst_max = SYM_SETUP_BURST_ORDER; 2820 if (burst_max == 255) 2821 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2822 np->sv_ctest5); 2823 if (burst_max > 7) 2824 burst_max = 7; 2825 if (burst_max > np->maxburst) 2826 burst_max = np->maxburst; 2827 2828 /* 2829 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2830 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2831 * based transactions on LOAD/STORE instructions. So we have 2832 * to prevent these chips from using such PCI transactions in 2833 * this driver. The generic ncr driver that does not use 2834 * LOAD/STORE instructions does not need this work-around. 2835 */ 2836 if ((np->device_id == PCI_ID_SYM53C810 && 2837 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2838 (np->device_id == PCI_ID_SYM53C860 && 2839 np->revision_id <= 0x1)) 2840 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2841 2842 /* 2843 * Select all supported special features. 2844 * If we are using on-board RAM for scripts, prefetch (PFEN) 2845 * does not help, but burst op fetch (BOF) does. 2846 * Disabling PFEN makes sure BOF will be used. 2847 */ 2848 if (np->features & FE_ERL) 2849 np->rv_dmode |= ERL; /* Enable Read Line */ 2850 if (np->features & FE_BOF) 2851 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2852 if (np->features & FE_ERMP) 2853 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2854 #if 1 2855 if ((np->features & FE_PFEN) && !np->ram_ba) 2856 #else 2857 if (np->features & FE_PFEN) 2858 #endif 2859 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2860 if (np->features & FE_CLSE) 2861 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2862 if (np->features & FE_WRIE) 2863 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2864 if (np->features & FE_DFS) 2865 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2866 2867 /* 2868 * Select some other 2869 */ 2870 if (SYM_SETUP_PCI_PARITY) 2871 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2872 if (SYM_SETUP_SCSI_PARITY) 2873 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2874 2875 /* 2876 * Get parity checking, host ID and verbose mode from NVRAM 2877 */ 2878 np->myaddr = 255; 2879 sym_nvram_setup_host (np, nvram); 2880 2881 /* 2882 * Get SCSI addr of host adapter (set by bios?). 2883 */ 2884 if (np->myaddr == 255) { 2885 np->myaddr = INB(nc_scid) & 0x07; 2886 if (!np->myaddr) 2887 np->myaddr = SYM_SETUP_HOST_ID; 2888 } 2889 2890 /* 2891 * Prepare initial io register bits for burst length 2892 */ 2893 sym_init_burst(np, burst_max); 2894 2895 /* 2896 * Set SCSI BUS mode. 2897 * - LVD capable chips (895/895A/896/1010) report the 2898 * current BUS mode through the STEST4 IO register. 2899 * - For previous generation chips (825/825A/875), 2900 * user has to tell us how to check against HVD, 2901 * since a 100% safe algorithm is not possible. 2902 */ 2903 np->scsi_mode = SMODE_SE; 2904 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2905 np->scsi_mode = (np->sv_stest4 & SMODE); 2906 else if (np->features & FE_DIFF) { 2907 if (SYM_SETUP_SCSI_DIFF == 1) { 2908 if (np->sv_scntl3) { 2909 if (np->sv_stest2 & 0x20) 2910 np->scsi_mode = SMODE_HVD; 2911 } 2912 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2913 if (!(INB(nc_gpreg) & 0x08)) 2914 np->scsi_mode = SMODE_HVD; 2915 } 2916 } 2917 else if (SYM_SETUP_SCSI_DIFF == 2) 2918 np->scsi_mode = SMODE_HVD; 2919 } 2920 if (np->scsi_mode == SMODE_HVD) 2921 np->rv_stest2 |= 0x20; 2922 2923 /* 2924 * Set LED support from SCRIPTS. 2925 * Ignore this feature for boards known to use a 2926 * specific GPIO wiring and for the 895A, 896 2927 * and 1010 that drive the LED directly. 2928 */ 2929 if ((SYM_SETUP_SCSI_LED || 2930 (nvram->type == SYM_SYMBIOS_NVRAM || 2931 (nvram->type == SYM_TEKRAM_NVRAM && 2932 np->device_id == PCI_ID_SYM53C895))) && 2933 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2934 np->features |= FE_LED0; 2935 2936 /* 2937 * Set irq mode. 2938 */ 2939 switch(SYM_SETUP_IRQ_MODE & 3) { 2940 case 2: 2941 np->rv_dcntl |= IRQM; 2942 break; 2943 case 1: 2944 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2945 break; 2946 default: 2947 break; 2948 } 2949 2950 /* 2951 * Configure targets according to driver setup. 2952 * If NVRAM present get targets setup from NVRAM. 2953 */ 2954 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2955 tcb_p tp = &np->target[i]; 2956 2957 #ifdef FreeBSD_New_Tran_Settings 2958 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2959 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2960 #endif 2961 tp->tinfo.user.period = np->minsync; 2962 tp->tinfo.user.offset = np->maxoffs; 2963 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2964 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2965 tp->usrtags = SYM_SETUP_MAX_TAG; 2966 2967 sym_nvram_setup_target (np, i, nvram); 2968 2969 /* 2970 * For now, guess PPR/DT support from the period 2971 * and BUS width. 2972 */ 2973 if (np->features & FE_ULTRA3) { 2974 if (tp->tinfo.user.period <= 9 && 2975 tp->tinfo.user.width == BUS_16_BIT) { 2976 tp->tinfo.user.options |= PPR_OPT_DT; 2977 tp->tinfo.user.offset = np->maxoffs_dt; 2978 #ifdef FreeBSD_New_Tran_Settings 2979 tp->tinfo.user.spi_version = 3; 2980 #endif 2981 } 2982 } 2983 2984 if (!tp->usrtags) 2985 tp->usrflags &= ~SYM_TAGS_ENABLED; 2986 } 2987 2988 /* 2989 * Let user know about the settings. 2990 */ 2991 i = nvram->type; 2992 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2993 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2994 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2995 np->myaddr, 2996 (np->features & FE_ULTRA3) ? 80 : 2997 (np->features & FE_ULTRA2) ? 40 : 2998 (np->features & FE_ULTRA) ? 20 : 10, 2999 sym_scsi_bus_mode(np->scsi_mode), 3000 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 3001 /* 3002 * Tell him more on demand. 3003 */ 3004 if (sym_verbose) { 3005 printf("%s: %s IRQ line driver%s\n", 3006 sym_name(np), 3007 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 3008 np->ram_ba ? ", using on-chip SRAM" : ""); 3009 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 3010 if (np->features & FE_NOPM) 3011 printf("%s: handling phase mismatch from SCRIPTS.\n", 3012 sym_name(np)); 3013 } 3014 /* 3015 * And still more. 3016 */ 3017 if (sym_verbose > 1) { 3018 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3019 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3020 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 3021 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 3022 3023 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3024 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3025 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 3026 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 3027 } 3028 /* 3029 * Let user be aware of targets that have some disable flags set. 3030 */ 3031 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 3032 if (sym_verbose) 3033 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 3034 "SCAN FOR LUNS"); 3035 3036 return 0; 3037 } 3038 3039 /* 3040 * Prepare the next negotiation message if needed. 3041 * 3042 * Fill in the part of message buffer that contains the 3043 * negotiation and the nego_status field of the CCB. 3044 * Returns the size of the message in bytes. 3045 */ 3046 3047 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 3048 { 3049 tcb_p tp = &np->target[cp->target]; 3050 int msglen = 0; 3051 3052 /* 3053 * Early C1010 chips need a work-around for DT 3054 * data transfer to work. 3055 */ 3056 if (!(np->features & FE_U3EN)) 3057 tp->tinfo.goal.options = 0; 3058 /* 3059 * negotiate using PPR ? 3060 */ 3061 if (tp->tinfo.goal.options & PPR_OPT_MASK) 3062 nego = NS_PPR; 3063 /* 3064 * negotiate wide transfers ? 3065 */ 3066 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 3067 nego = NS_WIDE; 3068 /* 3069 * negotiate synchronous transfers? 3070 */ 3071 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 3072 tp->tinfo.current.offset != tp->tinfo.goal.offset) 3073 nego = NS_SYNC; 3074 3075 switch (nego) { 3076 case NS_SYNC: 3077 msgptr[msglen++] = M_EXTENDED; 3078 msgptr[msglen++] = 3; 3079 msgptr[msglen++] = M_X_SYNC_REQ; 3080 msgptr[msglen++] = tp->tinfo.goal.period; 3081 msgptr[msglen++] = tp->tinfo.goal.offset; 3082 break; 3083 case NS_WIDE: 3084 msgptr[msglen++] = M_EXTENDED; 3085 msgptr[msglen++] = 2; 3086 msgptr[msglen++] = M_X_WIDE_REQ; 3087 msgptr[msglen++] = tp->tinfo.goal.width; 3088 break; 3089 case NS_PPR: 3090 msgptr[msglen++] = M_EXTENDED; 3091 msgptr[msglen++] = 6; 3092 msgptr[msglen++] = M_X_PPR_REQ; 3093 msgptr[msglen++] = tp->tinfo.goal.period; 3094 msgptr[msglen++] = 0; 3095 msgptr[msglen++] = tp->tinfo.goal.offset; 3096 msgptr[msglen++] = tp->tinfo.goal.width; 3097 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 3098 break; 3099 }; 3100 3101 cp->nego_status = nego; 3102 3103 if (nego) { 3104 tp->nego_cp = cp; /* Keep track a nego will be performed */ 3105 if (DEBUG_FLAGS & DEBUG_NEGO) { 3106 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 3107 nego == NS_WIDE ? "wide msgout" : 3108 "ppr msgout", msgptr); 3109 }; 3110 }; 3111 3112 return msglen; 3113 } 3114 3115 /* 3116 * Insert a job into the start queue. 3117 */ 3118 static void sym_put_start_queue(hcb_p np, ccb_p cp) 3119 { 3120 u_short qidx; 3121 3122 #ifdef SYM_CONF_IARB_SUPPORT 3123 /* 3124 * If the previously queued CCB is not yet done, 3125 * set the IARB hint. The SCRIPTS will go with IARB 3126 * for this job when starting the previous one. 3127 * We leave devices a chance to win arbitration by 3128 * not using more than 'iarb_max' consecutive 3129 * immediate arbitrations. 3130 */ 3131 if (np->last_cp && np->iarb_count < np->iarb_max) { 3132 np->last_cp->host_flags |= HF_HINT_IARB; 3133 ++np->iarb_count; 3134 } 3135 else 3136 np->iarb_count = 0; 3137 np->last_cp = cp; 3138 #endif 3139 3140 /* 3141 * Insert first the idle task and then our job. 3142 * The MB should ensure proper ordering. 3143 */ 3144 qidx = np->squeueput + 2; 3145 if (qidx >= MAX_QUEUE*2) qidx = 0; 3146 3147 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 3148 MEMORY_BARRIER(); 3149 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 3150 3151 np->squeueput = qidx; 3152 3153 if (DEBUG_FLAGS & DEBUG_QUEUE) 3154 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 3155 3156 /* 3157 * Script processor may be waiting for reselect. 3158 * Wake it up. 3159 */ 3160 MEMORY_BARRIER(); 3161 OUTB (nc_istat, SIGP|np->istat_sem); 3162 } 3163 3164 3165 /* 3166 * Soft reset the chip. 3167 * 3168 * Raising SRST when the chip is running may cause 3169 * problems on dual function chips (see below). 3170 * On the other hand, LVD devices need some delay 3171 * to settle and report actual BUS mode in STEST4. 3172 */ 3173 static void sym_chip_reset (hcb_p np) 3174 { 3175 OUTB (nc_istat, SRST); 3176 UDELAY (10); 3177 OUTB (nc_istat, 0); 3178 UDELAY(2000); /* For BUS MODE to settle */ 3179 } 3180 3181 /* 3182 * Soft reset the chip. 3183 * 3184 * Some 896 and 876 chip revisions may hang-up if we set 3185 * the SRST (soft reset) bit at the wrong time when SCRIPTS 3186 * are running. 3187 * So, we need to abort the current operation prior to 3188 * soft resetting the chip. 3189 */ 3190 static void sym_soft_reset (hcb_p np) 3191 { 3192 u_char istat; 3193 int i; 3194 3195 OUTB (nc_istat, CABRT); 3196 for (i = 1000000 ; i ; --i) { 3197 istat = INB (nc_istat); 3198 if (istat & SIP) { 3199 INW (nc_sist); 3200 continue; 3201 } 3202 if (istat & DIP) { 3203 OUTB (nc_istat, 0); 3204 INB (nc_dstat); 3205 break; 3206 } 3207 } 3208 if (!i) 3209 printf("%s: unable to abort current chip operation.\n", 3210 sym_name(np)); 3211 sym_chip_reset (np); 3212 } 3213 3214 /* 3215 * Start reset process. 3216 * 3217 * The interrupt handler will reinitialize the chip. 3218 */ 3219 static void sym_start_reset(hcb_p np) 3220 { 3221 (void) sym_reset_scsi_bus(np, 1); 3222 } 3223 3224 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3225 { 3226 u32 term; 3227 int retv = 0; 3228 3229 sym_soft_reset(np); /* Soft reset the chip */ 3230 if (enab_int) 3231 OUTW (nc_sien, RST); 3232 /* 3233 * Enable Tolerant, reset IRQD if present and 3234 * properly set IRQ mode, prior to resetting the bus. 3235 */ 3236 OUTB (nc_stest3, TE); 3237 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3238 OUTB (nc_scntl1, CRST); 3239 UDELAY (200); 3240 3241 if (!SYM_SETUP_SCSI_BUS_CHECK) 3242 goto out; 3243 /* 3244 * Check for no terminators or SCSI bus shorts to ground. 3245 * Read SCSI data bus, data parity bits and control signals. 3246 * We are expecting RESET to be TRUE and other signals to be 3247 * FALSE. 3248 */ 3249 term = INB(nc_sstat0); 3250 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3251 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3252 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3253 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3254 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3255 3256 if (!(np->features & FE_WIDE)) 3257 term &= 0x3ffff; 3258 3259 if (term != (2<<7)) { 3260 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3261 sym_name(np)); 3262 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3263 "0x%lx, expecting 0x%lx\n", 3264 sym_name(np), 3265 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3266 (u_long)term, (u_long)(2<<7)); 3267 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3268 retv = 1; 3269 } 3270 out: 3271 OUTB (nc_scntl1, 0); 3272 /* MDELAY(100); */ 3273 return retv; 3274 } 3275 3276 /* 3277 * The chip may have completed jobs. Look at the DONE QUEUE. 3278 * 3279 * On architectures that may reorder LOAD/STORE operations, 3280 * a memory barrier may be needed after the reading of the 3281 * so-called `flag' and prior to dealing with the data. 3282 */ 3283 static int sym_wakeup_done (hcb_p np) 3284 { 3285 ccb_p cp; 3286 int i, n; 3287 u32 dsa; 3288 3289 n = 0; 3290 i = np->dqueueget; 3291 while (1) { 3292 dsa = scr_to_cpu(np->dqueue[i]); 3293 if (!dsa) 3294 break; 3295 np->dqueue[i] = 0; 3296 if ((i = i+2) >= MAX_QUEUE*2) 3297 i = 0; 3298 3299 cp = sym_ccb_from_dsa(np, dsa); 3300 if (cp) { 3301 MEMORY_BARRIER(); 3302 sym_complete_ok (np, cp); 3303 ++n; 3304 } 3305 else 3306 printf ("%s: bad DSA (%x) in done queue.\n", 3307 sym_name(np), (u_int) dsa); 3308 } 3309 np->dqueueget = i; 3310 3311 return n; 3312 } 3313 3314 /* 3315 * Complete all active CCBs with error. 3316 * Used on CHIP/SCSI RESET. 3317 */ 3318 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3319 { 3320 /* 3321 * Move all active CCBs to the COMP queue 3322 * and flush this queue. 3323 */ 3324 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3325 sym_que_init(&np->busy_ccbq); 3326 sym_flush_comp_queue(np, cam_status); 3327 } 3328 3329 /* 3330 * Start chip. 3331 * 3332 * 'reason' means: 3333 * 0: initialisation. 3334 * 1: SCSI BUS RESET delivered or received. 3335 * 2: SCSI BUS MODE changed. 3336 */ 3337 static void sym_init (hcb_p np, int reason) 3338 { 3339 int i; 3340 u32 phys; 3341 3342 /* 3343 * Reset chip if asked, otherwise just clear fifos. 3344 */ 3345 if (reason == 1) 3346 sym_soft_reset(np); 3347 else { 3348 OUTB (nc_stest3, TE|CSF); 3349 OUTONB (nc_ctest3, CLF); 3350 } 3351 3352 /* 3353 * Clear Start Queue 3354 */ 3355 phys = np->squeue_ba; 3356 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3357 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3358 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3359 } 3360 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3361 3362 /* 3363 * Start at first entry. 3364 */ 3365 np->squeueput = 0; 3366 3367 /* 3368 * Clear Done Queue 3369 */ 3370 phys = np->dqueue_ba; 3371 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3372 np->dqueue[i] = 0; 3373 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3374 } 3375 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3376 3377 /* 3378 * Start at first entry. 3379 */ 3380 np->dqueueget = 0; 3381 3382 /* 3383 * Install patches in scripts. 3384 * This also let point to first position the start 3385 * and done queue pointers used from SCRIPTS. 3386 */ 3387 np->fw_patch(np); 3388 3389 /* 3390 * Wakeup all pending jobs. 3391 */ 3392 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3393 3394 /* 3395 * Init chip. 3396 */ 3397 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3398 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3399 3400 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3401 /* full arb., ena parity, par->ATN */ 3402 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3403 3404 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3405 3406 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3407 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3408 OUTB (nc_istat , SIGP ); /* Signal Process */ 3409 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3410 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3411 3412 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3413 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3414 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3415 3416 /* Extended Sreq/Sack filtering not supported on the C10 */ 3417 if (np->features & FE_C10) 3418 OUTB (nc_stest2, np->rv_stest2); 3419 else 3420 OUTB (nc_stest2, EXT|np->rv_stest2); 3421 3422 OUTB (nc_stest3, TE); /* TolerANT enable */ 3423 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3424 3425 /* 3426 * For now, disable AIP generation on C1010-66. 3427 */ 3428 if (np->device_id == PCI_ID_LSI53C1010_2) 3429 OUTB (nc_aipcntl1, DISAIP); 3430 3431 /* 3432 * C10101 Errata. 3433 * Errant SGE's when in narrow. Write bits 4 & 5 of 3434 * STEST1 register to disable SGE. We probably should do 3435 * that from SCRIPTS for each selection/reselection, but 3436 * I just don't want. :) 3437 */ 3438 if (np->device_id == PCI_ID_LSI53C1010 && 3439 /* np->revision_id < 0xff */ 1) 3440 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3441 3442 /* 3443 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3444 * Disable overlapped arbitration for some dual function devices, 3445 * regardless revision id (kind of post-chip-design feature. ;-)) 3446 */ 3447 if (np->device_id == PCI_ID_SYM53C875) 3448 OUTB (nc_ctest0, (1<<5)); 3449 else if (np->device_id == PCI_ID_SYM53C896) 3450 np->rv_ccntl0 |= DPR; 3451 3452 /* 3453 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3454 * and/or hardware phase mismatch, since only such chips 3455 * seem to support those IO registers. 3456 */ 3457 if (np->features & (FE_DAC|FE_NOPM)) { 3458 OUTB (nc_ccntl0, np->rv_ccntl0); 3459 OUTB (nc_ccntl1, np->rv_ccntl1); 3460 } 3461 3462 /* 3463 * If phase mismatch handled by scripts (895A/896/1010), 3464 * set PM jump addresses. 3465 */ 3466 if (np->features & FE_NOPM) { 3467 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3468 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3469 } 3470 3471 /* 3472 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3473 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3474 */ 3475 if (np->features & FE_LED0) 3476 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3477 else if (np->features & FE_LEDC) 3478 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3479 3480 /* 3481 * enable ints 3482 */ 3483 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3484 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3485 3486 /* 3487 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3488 * Try to eat the spurious SBMC interrupt that may occur when 3489 * we reset the chip but not the SCSI BUS (at initialization). 3490 */ 3491 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3492 OUTONW (nc_sien, SBMC); 3493 if (reason == 0) { 3494 MDELAY(100); 3495 INW (nc_sist); 3496 } 3497 np->scsi_mode = INB (nc_stest4) & SMODE; 3498 } 3499 3500 /* 3501 * Fill in target structure. 3502 * Reinitialize usrsync. 3503 * Reinitialize usrwide. 3504 * Prepare sync negotiation according to actual SCSI bus mode. 3505 */ 3506 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3507 tcb_p tp = &np->target[i]; 3508 3509 tp->to_reset = 0; 3510 tp->head.sval = 0; 3511 tp->head.wval = np->rv_scntl3; 3512 tp->head.uval = 0; 3513 3514 tp->tinfo.current.period = 0; 3515 tp->tinfo.current.offset = 0; 3516 tp->tinfo.current.width = BUS_8_BIT; 3517 tp->tinfo.current.options = 0; 3518 } 3519 3520 /* 3521 * Download SCSI SCRIPTS to on-chip RAM if present, 3522 * and start script processor. 3523 */ 3524 if (np->ram_ba) { 3525 if (sym_verbose > 1) 3526 printf ("%s: Downloading SCSI SCRIPTS.\n", 3527 sym_name(np)); 3528 if (np->ram_ws == 8192) { 3529 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3530 OUTL (nc_mmws, np->scr_ram_seg); 3531 OUTL (nc_mmrs, np->scr_ram_seg); 3532 OUTL (nc_sfs, np->scr_ram_seg); 3533 phys = SCRIPTB_BA (np, start64); 3534 } 3535 else 3536 phys = SCRIPTA_BA (np, init); 3537 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3538 } 3539 else 3540 phys = SCRIPTA_BA (np, init); 3541 3542 np->istat_sem = 0; 3543 3544 OUTL (nc_dsa, np->hcb_ba); 3545 OUTL_DSP (phys); 3546 3547 /* 3548 * Notify the XPT about the RESET condition. 3549 */ 3550 if (reason != 0) 3551 xpt_async(AC_BUS_RESET, np->path, NULL); 3552 } 3553 3554 /* 3555 * Get clock factor and sync divisor for a given 3556 * synchronous factor period. 3557 */ 3558 static int 3559 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3560 { 3561 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3562 int div = np->clock_divn; /* Number of divisors supported */ 3563 u32 fak; /* Sync factor in sxfer */ 3564 u32 per; /* Period in tenths of ns */ 3565 u32 kpc; /* (per * clk) */ 3566 int ret; 3567 3568 /* 3569 * Compute the synchronous period in tenths of nano-seconds 3570 */ 3571 if (dt && sfac <= 9) per = 125; 3572 else if (sfac <= 10) per = 250; 3573 else if (sfac == 11) per = 303; 3574 else if (sfac == 12) per = 500; 3575 else per = 40 * sfac; 3576 ret = per; 3577 3578 kpc = per * clk; 3579 if (dt) 3580 kpc <<= 1; 3581 3582 /* 3583 * For earliest C10 revision 0, we cannot use extra 3584 * clocks for the setting of the SCSI clocking. 3585 * Note that this limits the lowest sync data transfer 3586 * to 5 Mega-transfers per second and may result in 3587 * using higher clock divisors. 3588 */ 3589 #if 1 3590 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3591 /* 3592 * Look for the lowest clock divisor that allows an 3593 * output speed not faster than the period. 3594 */ 3595 while (div > 0) { 3596 --div; 3597 if (kpc > (div_10M[div] << 2)) { 3598 ++div; 3599 break; 3600 } 3601 } 3602 fak = 0; /* No extra clocks */ 3603 if (div == np->clock_divn) { /* Are we too fast ? */ 3604 ret = -1; 3605 } 3606 *divp = div; 3607 *fakp = fak; 3608 return ret; 3609 } 3610 #endif 3611 3612 /* 3613 * Look for the greatest clock divisor that allows an 3614 * input speed faster than the period. 3615 */ 3616 while (div-- > 0) 3617 if (kpc >= (div_10M[div] << 2)) break; 3618 3619 /* 3620 * Calculate the lowest clock factor that allows an output 3621 * speed not faster than the period, and the max output speed. 3622 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3623 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3624 */ 3625 if (dt) { 3626 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3627 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3628 } 3629 else { 3630 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3631 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3632 } 3633 3634 /* 3635 * Check against our hardware limits, or bugs :). 3636 */ 3637 if (fak < 0) {fak = 0; ret = -1;} 3638 if (fak > 2) {fak = 2; ret = -1;} 3639 3640 /* 3641 * Compute and return sync parameters. 3642 */ 3643 *divp = div; 3644 *fakp = fak; 3645 3646 return ret; 3647 } 3648 3649 /* 3650 * Tell the SCSI layer about the new transfer parameters. 3651 */ 3652 static void 3653 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3654 { 3655 struct ccb_trans_settings cts; 3656 struct cam_path *path; 3657 int sts; 3658 tcb_p tp = &np->target[target]; 3659 3660 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3661 CAM_LUN_WILDCARD); 3662 if (sts != CAM_REQ_CMP) 3663 return; 3664 3665 bzero(&cts, sizeof(cts)); 3666 3667 #ifdef FreeBSD_New_Tran_Settings 3668 #define cts__scsi (cts.proto_specific.scsi) 3669 #define cts__spi (cts.xport_specific.spi) 3670 3671 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3672 cts.protocol = PROTO_SCSI; 3673 cts.transport = XPORT_SPI; 3674 cts.protocol_version = tp->tinfo.current.scsi_version; 3675 cts.transport_version = tp->tinfo.current.spi_version; 3676 3677 cts__spi.valid = spi_valid; 3678 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3679 cts__spi.sync_period = tp->tinfo.current.period; 3680 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3681 cts__spi.sync_offset = tp->tinfo.current.offset; 3682 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3683 cts__spi.bus_width = tp->tinfo.current.width; 3684 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3685 cts__spi.ppr_options = tp->tinfo.current.options; 3686 #undef cts__spi 3687 #undef cts__scsi 3688 #else 3689 cts.valid = spi_valid; 3690 if (spi_valid & CCB_TRANS_SYNC_RATE_VALID) 3691 cts.sync_period = tp->tinfo.current.period; 3692 if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID) 3693 cts.sync_offset = tp->tinfo.current.offset; 3694 if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID) 3695 cts.bus_width = tp->tinfo.current.width; 3696 #endif 3697 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3698 xpt_async(AC_TRANSFER_NEG, path, &cts); 3699 xpt_free_path(path); 3700 } 3701 3702 #ifdef FreeBSD_New_Tran_Settings 3703 #define SYM_SPI_VALID_WDTR \ 3704 CTS_SPI_VALID_BUS_WIDTH | \ 3705 CTS_SPI_VALID_SYNC_RATE | \ 3706 CTS_SPI_VALID_SYNC_OFFSET 3707 #define SYM_SPI_VALID_SDTR \ 3708 CTS_SPI_VALID_SYNC_RATE | \ 3709 CTS_SPI_VALID_SYNC_OFFSET 3710 #define SYM_SPI_VALID_PPR \ 3711 CTS_SPI_VALID_PPR_OPTIONS | \ 3712 CTS_SPI_VALID_BUS_WIDTH | \ 3713 CTS_SPI_VALID_SYNC_RATE | \ 3714 CTS_SPI_VALID_SYNC_OFFSET 3715 #else 3716 #define SYM_SPI_VALID_WDTR \ 3717 CCB_TRANS_BUS_WIDTH_VALID | \ 3718 CCB_TRANS_SYNC_RATE_VALID | \ 3719 CCB_TRANS_SYNC_OFFSET_VALID 3720 #define SYM_SPI_VALID_SDTR \ 3721 CCB_TRANS_SYNC_RATE_VALID | \ 3722 CCB_TRANS_SYNC_OFFSET_VALID 3723 #define SYM_SPI_VALID_PPR \ 3724 CCB_TRANS_BUS_WIDTH_VALID | \ 3725 CCB_TRANS_SYNC_RATE_VALID | \ 3726 CCB_TRANS_SYNC_OFFSET_VALID 3727 #endif 3728 3729 /* 3730 * We received a WDTR. 3731 * Let everything be aware of the changes. 3732 */ 3733 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3734 { 3735 tcb_p tp = &np->target[cp->target]; 3736 3737 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3738 3739 /* 3740 * Tell the SCSI layer about the new transfer parameters. 3741 */ 3742 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3743 tp->tinfo.current.offset = 0; 3744 tp->tinfo.current.period = 0; 3745 tp->tinfo.current.options = 0; 3746 3747 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3748 } 3749 3750 /* 3751 * We received a SDTR. 3752 * Let everything be aware of the changes. 3753 */ 3754 static void 3755 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3756 { 3757 tcb_p tp = &np->target[cp->target]; 3758 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3759 3760 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3761 3762 /* 3763 * Tell the SCSI layer about the new transfer parameters. 3764 */ 3765 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3766 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3767 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3768 3769 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3770 } 3771 3772 /* 3773 * We received a PPR. 3774 * Let everything be aware of the changes. 3775 */ 3776 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3777 u_char per, u_char wide, u_char div, u_char fak) 3778 { 3779 tcb_p tp = &np->target[cp->target]; 3780 3781 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3782 3783 /* 3784 * Tell the SCSI layer about the new transfer parameters. 3785 */ 3786 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3787 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3788 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3789 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3790 3791 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3792 } 3793 3794 /* 3795 * Switch trans mode for current job and it's target. 3796 */ 3797 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3798 u_char per, u_char wide, u_char div, u_char fak) 3799 { 3800 SYM_QUEHEAD *qp; 3801 union ccb *ccb; 3802 tcb_p tp; 3803 u_char target = INB (nc_sdid) & 0x0f; 3804 u_char sval, wval, uval; 3805 3806 assert (cp); 3807 if (!cp) return; 3808 ccb = cp->cam_ccb; 3809 assert (ccb); 3810 if (!ccb) return; 3811 assert (target == (cp->target & 0xf)); 3812 tp = &np->target[target]; 3813 3814 sval = tp->head.sval; 3815 wval = tp->head.wval; 3816 uval = tp->head.uval; 3817 3818 #if 0 3819 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3820 sval, wval, uval, np->rv_scntl3); 3821 #endif 3822 /* 3823 * Set the offset. 3824 */ 3825 if (!(np->features & FE_C10)) 3826 sval = (sval & ~0x1f) | ofs; 3827 else 3828 sval = (sval & ~0x3f) | ofs; 3829 3830 /* 3831 * Set the sync divisor and extra clock factor. 3832 */ 3833 if (ofs != 0) { 3834 wval = (wval & ~0x70) | ((div+1) << 4); 3835 if (!(np->features & FE_C10)) 3836 sval = (sval & ~0xe0) | (fak << 5); 3837 else { 3838 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3839 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3840 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3841 } 3842 } 3843 3844 /* 3845 * Set the bus width. 3846 */ 3847 wval = wval & ~EWS; 3848 if (wide != 0) 3849 wval |= EWS; 3850 3851 /* 3852 * Set misc. ultra enable bits. 3853 */ 3854 if (np->features & FE_C10) { 3855 uval = uval & ~(U3EN|AIPCKEN); 3856 if (dt) { 3857 assert(np->features & FE_U3EN); 3858 uval |= U3EN; 3859 } 3860 } 3861 else { 3862 wval = wval & ~ULTRA; 3863 if (per <= 12) wval |= ULTRA; 3864 } 3865 3866 /* 3867 * Stop there if sync parameters are unchanged. 3868 */ 3869 if (tp->head.sval == sval && 3870 tp->head.wval == wval && 3871 tp->head.uval == uval) 3872 return; 3873 tp->head.sval = sval; 3874 tp->head.wval = wval; 3875 tp->head.uval = uval; 3876 3877 /* 3878 * Disable extended Sreq/Sack filtering if per < 50. 3879 * Not supported on the C1010. 3880 */ 3881 if (per < 50 && !(np->features & FE_C10)) 3882 OUTOFFB (nc_stest2, EXT); 3883 3884 /* 3885 * set actual value and sync_status 3886 */ 3887 OUTB (nc_sxfer, tp->head.sval); 3888 OUTB (nc_scntl3, tp->head.wval); 3889 3890 if (np->features & FE_C10) { 3891 OUTB (nc_scntl4, tp->head.uval); 3892 } 3893 3894 /* 3895 * patch ALL busy ccbs of this target. 3896 */ 3897 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3898 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3899 if (cp->target != target) 3900 continue; 3901 cp->phys.select.sel_scntl3 = tp->head.wval; 3902 cp->phys.select.sel_sxfer = tp->head.sval; 3903 if (np->features & FE_C10) { 3904 cp->phys.select.sel_scntl4 = tp->head.uval; 3905 } 3906 } 3907 } 3908 3909 /* 3910 * log message for real hard errors 3911 * 3912 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3913 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3914 * 3915 * exception register: 3916 * ds: dstat 3917 * si: sist 3918 * 3919 * SCSI bus lines: 3920 * so: control lines as driven by chip. 3921 * si: control lines as seen by chip. 3922 * sd: scsi data lines as seen by chip. 3923 * 3924 * wide/fastmode: 3925 * sxfer: (see the manual) 3926 * scntl3: (see the manual) 3927 * 3928 * current script command: 3929 * dsp: script adress (relative to start of script). 3930 * dbc: first word of script command. 3931 * 3932 * First 24 register of the chip: 3933 * r0..rf 3934 */ 3935 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3936 { 3937 u32 dsp; 3938 int script_ofs; 3939 int script_size; 3940 char *script_name; 3941 u_char *script_base; 3942 int i; 3943 3944 dsp = INL (nc_dsp); 3945 3946 if (dsp > np->scripta_ba && 3947 dsp <= np->scripta_ba + np->scripta_sz) { 3948 script_ofs = dsp - np->scripta_ba; 3949 script_size = np->scripta_sz; 3950 script_base = (u_char *) np->scripta0; 3951 script_name = "scripta"; 3952 } 3953 else if (np->scriptb_ba < dsp && 3954 dsp <= np->scriptb_ba + np->scriptb_sz) { 3955 script_ofs = dsp - np->scriptb_ba; 3956 script_size = np->scriptb_sz; 3957 script_base = (u_char *) np->scriptb0; 3958 script_name = "scriptb"; 3959 } else { 3960 script_ofs = dsp; 3961 script_size = 0; 3962 script_base = 0; 3963 script_name = "mem"; 3964 } 3965 3966 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3967 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3968 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3969 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3970 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3971 (unsigned)INL (nc_dbc)); 3972 3973 if (((script_ofs & 3) == 0) && 3974 (unsigned)script_ofs < script_size) { 3975 printf ("%s: script cmd = %08x\n", sym_name(np), 3976 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3977 } 3978 3979 printf ("%s: regdump:", sym_name(np)); 3980 for (i=0; i<24;i++) 3981 printf (" %02x", (unsigned)INB_OFF(i)); 3982 printf (".\n"); 3983 3984 /* 3985 * PCI BUS error, read the PCI ststus register. 3986 */ 3987 if (dstat & (MDPE|BF)) { 3988 u_short pci_sts; 3989 #ifdef FreeBSD_Bus_Io_Abstraction 3990 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3991 #else 3992 pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2); 3993 #endif 3994 if (pci_sts & 0xf900) { 3995 #ifdef FreeBSD_Bus_Io_Abstraction 3996 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3997 #else 3998 pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2); 3999 #endif 4000 printf("%s: PCI STATUS = 0x%04x\n", 4001 sym_name(np), pci_sts & 0xf900); 4002 } 4003 } 4004 } 4005 4006 /* 4007 * chip interrupt handler 4008 * 4009 * In normal situations, interrupt conditions occur one at 4010 * a time. But when something bad happens on the SCSI BUS, 4011 * the chip may raise several interrupt flags before 4012 * stopping and interrupting the CPU. The additionnal 4013 * interrupt flags are stacked in some extra registers 4014 * after the SIP and/or DIP flag has been raised in the 4015 * ISTAT. After the CPU has read the interrupt condition 4016 * flag from SIST or DSTAT, the chip unstacks the other 4017 * interrupt flags and sets the corresponding bits in 4018 * SIST or DSTAT. Since the chip starts stacking once the 4019 * SIP or DIP flag is set, there is a small window of time 4020 * where the stacking does not occur. 4021 * 4022 * Typically, multiple interrupt conditions may happen in 4023 * the following situations: 4024 * 4025 * - SCSI parity error + Phase mismatch (PAR|MA) 4026 * When an parity error is detected in input phase 4027 * and the device switches to msg-in phase inside a 4028 * block MOV. 4029 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 4030 * When a stupid device does not want to handle the 4031 * recovery of an SCSI parity error. 4032 * - Some combinations of STO, PAR, UDC, ... 4033 * When using non compliant SCSI stuff, when user is 4034 * doing non compliant hot tampering on the BUS, when 4035 * something really bad happens to a device, etc ... 4036 * 4037 * The heuristic suggested by SYMBIOS to handle 4038 * multiple interrupts is to try unstacking all 4039 * interrupts conditions and to handle them on some 4040 * priority based on error severity. 4041 * This will work when the unstacking has been 4042 * successful, but we cannot be 100 % sure of that, 4043 * since the CPU may have been faster to unstack than 4044 * the chip is able to stack. Hmmm ... But it seems that 4045 * such a situation is very unlikely to happen. 4046 * 4047 * If this happen, for example STO caught by the CPU 4048 * then UDC happenning before the CPU have restarted 4049 * the SCRIPTS, the driver may wrongly complete the 4050 * same command on UDC, since the SCRIPTS didn't restart 4051 * and the DSA still points to the same command. 4052 * We avoid this situation by setting the DSA to an 4053 * invalid value when the CCB is completed and before 4054 * restarting the SCRIPTS. 4055 * 4056 * Another issue is that we need some section of our 4057 * recovery procedures to be somehow uninterruptible but 4058 * the SCRIPTS processor does not provides such a 4059 * feature. For this reason, we handle recovery preferently 4060 * from the C code and check against some SCRIPTS critical 4061 * sections from the C code. 4062 * 4063 * Hopefully, the interrupt handling of the driver is now 4064 * able to resist to weird BUS error conditions, but donnot 4065 * ask me for any guarantee that it will never fail. :-) 4066 * Use at your own decision and risk. 4067 */ 4068 4069 static void sym_intr1 (hcb_p np) 4070 { 4071 u_char istat, istatc; 4072 u_char dstat; 4073 u_short sist; 4074 4075 /* 4076 * interrupt on the fly ? 4077 * 4078 * A `dummy read' is needed to ensure that the 4079 * clear of the INTF flag reaches the device 4080 * before the scanning of the DONE queue. 4081 */ 4082 istat = INB (nc_istat); 4083 if (istat & INTF) { 4084 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 4085 istat = INB (nc_istat); /* DUMMY READ */ 4086 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 4087 (void)sym_wakeup_done (np); 4088 }; 4089 4090 if (!(istat & (SIP|DIP))) 4091 return; 4092 4093 #if 0 /* We should never get this one */ 4094 if (istat & CABRT) 4095 OUTB (nc_istat, CABRT); 4096 #endif 4097 4098 /* 4099 * PAR and MA interrupts may occur at the same time, 4100 * and we need to know of both in order to handle 4101 * this situation properly. We try to unstack SCSI 4102 * interrupts for that reason. BTW, I dislike a LOT 4103 * such a loop inside the interrupt routine. 4104 * Even if DMA interrupt stacking is very unlikely to 4105 * happen, we also try unstacking these ones, since 4106 * this has no performance impact. 4107 */ 4108 sist = 0; 4109 dstat = 0; 4110 istatc = istat; 4111 do { 4112 if (istatc & SIP) 4113 sist |= INW (nc_sist); 4114 if (istatc & DIP) 4115 dstat |= INB (nc_dstat); 4116 istatc = INB (nc_istat); 4117 istat |= istatc; 4118 } while (istatc & (SIP|DIP)); 4119 4120 if (DEBUG_FLAGS & DEBUG_TINY) 4121 printf ("<%d|%x:%x|%x:%x>", 4122 (int)INB(nc_scr0), 4123 dstat,sist, 4124 (unsigned)INL(nc_dsp), 4125 (unsigned)INL(nc_dbc)); 4126 /* 4127 * On paper, a memory barrier may be needed here. 4128 * And since we are paranoid ... :) 4129 */ 4130 MEMORY_BARRIER(); 4131 4132 /* 4133 * First, interrupts we want to service cleanly. 4134 * 4135 * Phase mismatch (MA) is the most frequent interrupt 4136 * for chip earlier than the 896 and so we have to service 4137 * it as quickly as possible. 4138 * A SCSI parity error (PAR) may be combined with a phase 4139 * mismatch condition (MA). 4140 * Programmed interrupts (SIR) are used to call the C code 4141 * from SCRIPTS. 4142 * The single step interrupt (SSI) is not used in this 4143 * driver. 4144 */ 4145 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 4146 !(dstat & (MDPE|BF|ABRT|IID))) { 4147 if (sist & PAR) sym_int_par (np, sist); 4148 else if (sist & MA) sym_int_ma (np); 4149 else if (dstat & SIR) sym_int_sir (np); 4150 else if (dstat & SSI) OUTONB_STD (); 4151 else goto unknown_int; 4152 return; 4153 }; 4154 4155 /* 4156 * Now, interrupts that donnot happen in normal 4157 * situations and that we may need to recover from. 4158 * 4159 * On SCSI RESET (RST), we reset everything. 4160 * On SCSI BUS MODE CHANGE (SBMC), we complete all 4161 * active CCBs with RESET status, prepare all devices 4162 * for negotiating again and restart the SCRIPTS. 4163 * On STO and UDC, we complete the CCB with the corres- 4164 * ponding status and restart the SCRIPTS. 4165 */ 4166 if (sist & RST) { 4167 xpt_print_path(np->path); 4168 printf("SCSI BUS reset detected.\n"); 4169 sym_init (np, 1); 4170 return; 4171 }; 4172 4173 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4174 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4175 4176 if (!(sist & (GEN|HTH|SGE)) && 4177 !(dstat & (MDPE|BF|ABRT|IID))) { 4178 if (sist & SBMC) sym_int_sbmc (np); 4179 else if (sist & STO) sym_int_sto (np); 4180 else if (sist & UDC) sym_int_udc (np); 4181 else goto unknown_int; 4182 return; 4183 }; 4184 4185 /* 4186 * Now, interrupts we are not able to recover cleanly. 4187 * 4188 * Log message for hard errors. 4189 * Reset everything. 4190 */ 4191 4192 sym_log_hard_error(np, sist, dstat); 4193 4194 if ((sist & (GEN|HTH|SGE)) || 4195 (dstat & (MDPE|BF|ABRT|IID))) { 4196 sym_start_reset(np); 4197 return; 4198 }; 4199 4200 unknown_int: 4201 /* 4202 * We just miss the cause of the interrupt. :( 4203 * Print a message. The timeout will do the real work. 4204 */ 4205 printf( "%s: unknown interrupt(s) ignored, " 4206 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 4207 sym_name(np), istat, dstat, sist); 4208 } 4209 4210 static void sym_intr(void *arg) 4211 { 4212 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 4213 sym_intr1((hcb_p) arg); 4214 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 4215 return; 4216 } 4217 4218 static void sym_poll(struct cam_sim *sim) 4219 { 4220 int s = splcam(); 4221 sym_intr(cam_sim_softc(sim)); 4222 splx(s); 4223 } 4224 4225 4226 /* 4227 * generic recovery from scsi interrupt 4228 * 4229 * The doc says that when the chip gets an SCSI interrupt, 4230 * it tries to stop in an orderly fashion, by completing 4231 * an instruction fetch that had started or by flushing 4232 * the DMA fifo for a write to memory that was executing. 4233 * Such a fashion is not enough to know if the instruction 4234 * that was just before the current DSP value has been 4235 * executed or not. 4236 * 4237 * There are some small SCRIPTS sections that deal with 4238 * the start queue and the done queue that may break any 4239 * assomption from the C code if we are interrupted 4240 * inside, so we reset if this happens. Btw, since these 4241 * SCRIPTS sections are executed while the SCRIPTS hasn't 4242 * started SCSI operations, it is very unlikely to happen. 4243 * 4244 * All the driver data structures are supposed to be 4245 * allocated from the same 4 GB memory window, so there 4246 * is a 1 to 1 relationship between DSA and driver data 4247 * structures. Since we are careful :) to invalidate the 4248 * DSA when we complete a command or when the SCRIPTS 4249 * pushes a DSA into a queue, we can trust it when it 4250 * points to a CCB. 4251 */ 4252 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4253 { 4254 u32 dsp = INL (nc_dsp); 4255 u32 dsa = INL (nc_dsa); 4256 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4257 4258 /* 4259 * If we haven't been interrupted inside the SCRIPTS 4260 * critical pathes, we can safely restart the SCRIPTS 4261 * and trust the DSA value if it matches a CCB. 4262 */ 4263 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4264 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4265 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4266 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4267 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4268 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4269 (!(dsp > SCRIPTA_BA (np, done) && 4270 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4271 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4272 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4273 /* 4274 * If we have a CCB, let the SCRIPTS call us back for 4275 * the handling of the error with SCRATCHA filled with 4276 * STARTPOS. This way, we will be able to freeze the 4277 * device queue and requeue awaiting IOs. 4278 */ 4279 if (cp) { 4280 cp->host_status = hsts; 4281 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4282 } 4283 /* 4284 * Otherwise just restart the SCRIPTS. 4285 */ 4286 else { 4287 OUTL (nc_dsa, 0xffffff); 4288 OUTL_DSP (SCRIPTA_BA (np, start)); 4289 } 4290 } 4291 else 4292 goto reset_all; 4293 4294 return; 4295 4296 reset_all: 4297 sym_start_reset(np); 4298 } 4299 4300 /* 4301 * chip exception handler for selection timeout 4302 */ 4303 void sym_int_sto (hcb_p np) 4304 { 4305 u32 dsp = INL (nc_dsp); 4306 4307 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4308 4309 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4310 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4311 else 4312 sym_start_reset(np); 4313 } 4314 4315 /* 4316 * chip exception handler for unexpected disconnect 4317 */ 4318 void sym_int_udc (hcb_p np) 4319 { 4320 printf ("%s: unexpected disconnect\n", sym_name(np)); 4321 sym_recover_scsi_int(np, HS_UNEXPECTED); 4322 } 4323 4324 /* 4325 * chip exception handler for SCSI bus mode change 4326 * 4327 * spi2-r12 11.2.3 says a transceiver mode change must 4328 * generate a reset event and a device that detects a reset 4329 * event shall initiate a hard reset. It says also that a 4330 * device that detects a mode change shall set data transfer 4331 * mode to eight bit asynchronous, etc... 4332 * So, just reinitializing all except chip should be enough. 4333 */ 4334 static void sym_int_sbmc (hcb_p np) 4335 { 4336 u_char scsi_mode = INB (nc_stest4) & SMODE; 4337 4338 /* 4339 * Notify user. 4340 */ 4341 xpt_print_path(np->path); 4342 printf("SCSI BUS mode change from %s to %s.\n", 4343 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4344 4345 /* 4346 * Should suspend command processing for a few seconds and 4347 * reinitialize all except the chip. 4348 */ 4349 sym_init (np, 2); 4350 } 4351 4352 /* 4353 * chip exception handler for SCSI parity error. 4354 * 4355 * When the chip detects a SCSI parity error and is 4356 * currently executing a (CH)MOV instruction, it does 4357 * not interrupt immediately, but tries to finish the 4358 * transfer of the current scatter entry before 4359 * interrupting. The following situations may occur: 4360 * 4361 * - The complete scatter entry has been transferred 4362 * without the device having changed phase. 4363 * The chip will then interrupt with the DSP pointing 4364 * to the instruction that follows the MOV. 4365 * 4366 * - A phase mismatch occurs before the MOV finished 4367 * and phase errors are to be handled by the C code. 4368 * The chip will then interrupt with both PAR and MA 4369 * conditions set. 4370 * 4371 * - A phase mismatch occurs before the MOV finished and 4372 * phase errors are to be handled by SCRIPTS. 4373 * The chip will load the DSP with the phase mismatch 4374 * JUMP address and interrupt the host processor. 4375 */ 4376 static void sym_int_par (hcb_p np, u_short sist) 4377 { 4378 u_char hsts = INB (HS_PRT); 4379 u32 dsp = INL (nc_dsp); 4380 u32 dbc = INL (nc_dbc); 4381 u32 dsa = INL (nc_dsa); 4382 u_char sbcl = INB (nc_sbcl); 4383 u_char cmd = dbc >> 24; 4384 int phase = cmd & 7; 4385 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4386 4387 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4388 sym_name(np), hsts, dbc, sbcl); 4389 4390 /* 4391 * Check that the chip is connected to the SCSI BUS. 4392 */ 4393 if (!(INB (nc_scntl1) & ISCON)) { 4394 sym_recover_scsi_int(np, HS_UNEXPECTED); 4395 return; 4396 } 4397 4398 /* 4399 * If the nexus is not clearly identified, reset the bus. 4400 * We will try to do better later. 4401 */ 4402 if (!cp) 4403 goto reset_all; 4404 4405 /* 4406 * Check instruction was a MOV, direction was INPUT and 4407 * ATN is asserted. 4408 */ 4409 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4410 goto reset_all; 4411 4412 /* 4413 * Keep track of the parity error. 4414 */ 4415 OUTONB (HF_PRT, HF_EXT_ERR); 4416 cp->xerr_status |= XE_PARITY_ERR; 4417 4418 /* 4419 * Prepare the message to send to the device. 4420 */ 4421 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4422 4423 /* 4424 * If the old phase was DATA IN phase, we have to deal with 4425 * the 3 situations described above. 4426 * For other input phases (MSG IN and STATUS), the device 4427 * must resend the whole thing that failed parity checking 4428 * or signal error. So, jumping to dispatcher should be OK. 4429 */ 4430 if (phase == 1 || phase == 5) { 4431 /* Phase mismatch handled by SCRIPTS */ 4432 if (dsp == SCRIPTB_BA (np, pm_handle)) 4433 OUTL_DSP (dsp); 4434 /* Phase mismatch handled by the C code */ 4435 else if (sist & MA) 4436 sym_int_ma (np); 4437 /* No phase mismatch occurred */ 4438 else { 4439 OUTL (nc_temp, dsp); 4440 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4441 } 4442 } 4443 else 4444 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4445 return; 4446 4447 reset_all: 4448 sym_start_reset(np); 4449 return; 4450 } 4451 4452 /* 4453 * chip exception handler for phase errors. 4454 * 4455 * We have to construct a new transfer descriptor, 4456 * to transfer the rest of the current block. 4457 */ 4458 static void sym_int_ma (hcb_p np) 4459 { 4460 u32 dbc; 4461 u32 rest; 4462 u32 dsp; 4463 u32 dsa; 4464 u32 nxtdsp; 4465 u32 *vdsp; 4466 u32 oadr, olen; 4467 u32 *tblp; 4468 u32 newcmd; 4469 u_int delta; 4470 u_char cmd; 4471 u_char hflags, hflags0; 4472 struct sym_pmc *pm; 4473 ccb_p cp; 4474 4475 dsp = INL (nc_dsp); 4476 dbc = INL (nc_dbc); 4477 dsa = INL (nc_dsa); 4478 4479 cmd = dbc >> 24; 4480 rest = dbc & 0xffffff; 4481 delta = 0; 4482 4483 /* 4484 * locate matching cp if any. 4485 */ 4486 cp = sym_ccb_from_dsa(np, dsa); 4487 4488 /* 4489 * Donnot take into account dma fifo and various buffers in 4490 * INPUT phase since the chip flushes everything before 4491 * raising the MA interrupt for interrupted INPUT phases. 4492 * For DATA IN phase, we will check for the SWIDE later. 4493 */ 4494 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4495 u_char ss0, ss2; 4496 4497 if (np->features & FE_DFBC) 4498 delta = INW (nc_dfbc); 4499 else { 4500 u32 dfifo; 4501 4502 /* 4503 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4504 */ 4505 dfifo = INL(nc_dfifo); 4506 4507 /* 4508 * Calculate remaining bytes in DMA fifo. 4509 * (CTEST5 = dfifo >> 16) 4510 */ 4511 if (dfifo & (DFS << 16)) 4512 delta = ((((dfifo >> 8) & 0x300) | 4513 (dfifo & 0xff)) - rest) & 0x3ff; 4514 else 4515 delta = ((dfifo & 0xff) - rest) & 0x7f; 4516 } 4517 4518 /* 4519 * The data in the dma fifo has not been transfered to 4520 * the target -> add the amount to the rest 4521 * and clear the data. 4522 * Check the sstat2 register in case of wide transfer. 4523 */ 4524 rest += delta; 4525 ss0 = INB (nc_sstat0); 4526 if (ss0 & OLF) rest++; 4527 if (!(np->features & FE_C10)) 4528 if (ss0 & ORF) rest++; 4529 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4530 ss2 = INB (nc_sstat2); 4531 if (ss2 & OLF1) rest++; 4532 if (!(np->features & FE_C10)) 4533 if (ss2 & ORF1) rest++; 4534 }; 4535 4536 /* 4537 * Clear fifos. 4538 */ 4539 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4540 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4541 } 4542 4543 /* 4544 * log the information 4545 */ 4546 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4547 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4548 (unsigned) rest, (unsigned) delta); 4549 4550 /* 4551 * try to find the interrupted script command, 4552 * and the address at which to continue. 4553 */ 4554 vdsp = 0; 4555 nxtdsp = 0; 4556 if (dsp > np->scripta_ba && 4557 dsp <= np->scripta_ba + np->scripta_sz) { 4558 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4559 nxtdsp = dsp; 4560 } 4561 else if (dsp > np->scriptb_ba && 4562 dsp <= np->scriptb_ba + np->scriptb_sz) { 4563 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4564 nxtdsp = dsp; 4565 } 4566 4567 /* 4568 * log the information 4569 */ 4570 if (DEBUG_FLAGS & DEBUG_PHASE) { 4571 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4572 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4573 }; 4574 4575 if (!vdsp) { 4576 printf ("%s: interrupted SCRIPT address not found.\n", 4577 sym_name (np)); 4578 goto reset_all; 4579 } 4580 4581 if (!cp) { 4582 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4583 sym_name (np)); 4584 goto reset_all; 4585 } 4586 4587 /* 4588 * get old startaddress and old length. 4589 */ 4590 oadr = scr_to_cpu(vdsp[1]); 4591 4592 if (cmd & 0x10) { /* Table indirect */ 4593 tblp = (u32 *) ((char*) &cp->phys + oadr); 4594 olen = scr_to_cpu(tblp[0]); 4595 oadr = scr_to_cpu(tblp[1]); 4596 } else { 4597 tblp = (u32 *) 0; 4598 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4599 }; 4600 4601 if (DEBUG_FLAGS & DEBUG_PHASE) { 4602 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4603 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4604 tblp, 4605 (unsigned) olen, 4606 (unsigned) oadr); 4607 }; 4608 4609 /* 4610 * check cmd against assumed interrupted script command. 4611 * If dt data phase, the MOVE instruction hasn't bit 4 of 4612 * the phase. 4613 */ 4614 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4615 PRINT_ADDR(cp); 4616 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4617 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4618 4619 goto reset_all; 4620 }; 4621 4622 /* 4623 * if old phase not dataphase, leave here. 4624 */ 4625 if (cmd & 2) { 4626 PRINT_ADDR(cp); 4627 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4628 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4629 (unsigned)oadr, (unsigned)rest); 4630 goto unexpected_phase; 4631 }; 4632 4633 /* 4634 * Choose the correct PM save area. 4635 * 4636 * Look at the PM_SAVE SCRIPT if you want to understand 4637 * this stuff. The equivalent code is implemented in 4638 * SCRIPTS for the 895A, 896 and 1010 that are able to 4639 * handle PM from the SCRIPTS processor. 4640 */ 4641 hflags0 = INB (HF_PRT); 4642 hflags = hflags0; 4643 4644 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4645 if (hflags & HF_IN_PM0) 4646 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4647 else if (hflags & HF_IN_PM1) 4648 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4649 4650 if (hflags & HF_DP_SAVED) 4651 hflags ^= HF_ACT_PM; 4652 } 4653 4654 if (!(hflags & HF_ACT_PM)) { 4655 pm = &cp->phys.pm0; 4656 newcmd = SCRIPTA_BA (np, pm0_data); 4657 } 4658 else { 4659 pm = &cp->phys.pm1; 4660 newcmd = SCRIPTA_BA (np, pm1_data); 4661 } 4662 4663 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4664 if (hflags != hflags0) 4665 OUTB (HF_PRT, hflags); 4666 4667 /* 4668 * fillin the phase mismatch context 4669 */ 4670 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4671 pm->sg.size = cpu_to_scr(rest); 4672 pm->ret = cpu_to_scr(nxtdsp); 4673 4674 /* 4675 * If we have a SWIDE, 4676 * - prepare the address to write the SWIDE from SCRIPTS, 4677 * - compute the SCRIPTS address to restart from, 4678 * - move current data pointer context by one byte. 4679 */ 4680 nxtdsp = SCRIPTA_BA (np, dispatch); 4681 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4682 (INB (nc_scntl2) & WSR)) { 4683 u32 tmp; 4684 4685 /* 4686 * Set up the table indirect for the MOVE 4687 * of the residual byte and adjust the data 4688 * pointer context. 4689 */ 4690 tmp = scr_to_cpu(pm->sg.addr); 4691 cp->phys.wresid.addr = cpu_to_scr(tmp); 4692 pm->sg.addr = cpu_to_scr(tmp + 1); 4693 tmp = scr_to_cpu(pm->sg.size); 4694 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4695 pm->sg.size = cpu_to_scr(tmp - 1); 4696 4697 /* 4698 * If only the residual byte is to be moved, 4699 * no PM context is needed. 4700 */ 4701 if ((tmp&0xffffff) == 1) 4702 newcmd = pm->ret; 4703 4704 /* 4705 * Prepare the address of SCRIPTS that will 4706 * move the residual byte to memory. 4707 */ 4708 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4709 } 4710 4711 if (DEBUG_FLAGS & DEBUG_PHASE) { 4712 PRINT_ADDR(cp); 4713 printf ("PM %x %x %x / %x %x %x.\n", 4714 hflags0, hflags, newcmd, 4715 (unsigned)scr_to_cpu(pm->sg.addr), 4716 (unsigned)scr_to_cpu(pm->sg.size), 4717 (unsigned)scr_to_cpu(pm->ret)); 4718 } 4719 4720 /* 4721 * Restart the SCRIPTS processor. 4722 */ 4723 OUTL (nc_temp, newcmd); 4724 OUTL_DSP (nxtdsp); 4725 return; 4726 4727 /* 4728 * Unexpected phase changes that occurs when the current phase 4729 * is not a DATA IN or DATA OUT phase are due to error conditions. 4730 * Such event may only happen when the SCRIPTS is using a 4731 * multibyte SCSI MOVE. 4732 * 4733 * Phase change Some possible cause 4734 * 4735 * COMMAND --> MSG IN SCSI parity error detected by target. 4736 * COMMAND --> STATUS Bad command or refused by target. 4737 * MSG OUT --> MSG IN Message rejected by target. 4738 * MSG OUT --> COMMAND Bogus target that discards extended 4739 * negotiation messages. 4740 * 4741 * The code below does not care of the new phase and so 4742 * trusts the target. Why to annoy it ? 4743 * If the interrupted phase is COMMAND phase, we restart at 4744 * dispatcher. 4745 * If a target does not get all the messages after selection, 4746 * the code assumes blindly that the target discards extended 4747 * messages and clears the negotiation status. 4748 * If the target does not want all our response to negotiation, 4749 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4750 * bloat for such a should_not_happen situation). 4751 * In all other situation, we reset the BUS. 4752 * Are these assumptions reasonnable ? (Wait and see ...) 4753 */ 4754 unexpected_phase: 4755 dsp -= 8; 4756 nxtdsp = 0; 4757 4758 switch (cmd & 7) { 4759 case 2: /* COMMAND phase */ 4760 nxtdsp = SCRIPTA_BA (np, dispatch); 4761 break; 4762 #if 0 4763 case 3: /* STATUS phase */ 4764 nxtdsp = SCRIPTA_BA (np, dispatch); 4765 break; 4766 #endif 4767 case 6: /* MSG OUT phase */ 4768 /* 4769 * If the device may want to use untagged when we want 4770 * tagged, we prepare an IDENTIFY without disc. granted, 4771 * since we will not be able to handle reselect. 4772 * Otherwise, we just don't care. 4773 */ 4774 if (dsp == SCRIPTA_BA (np, send_ident)) { 4775 if (cp->tag != NO_TAG && olen - rest <= 3) { 4776 cp->host_status = HS_BUSY; 4777 np->msgout[0] = M_IDENTIFY | cp->lun; 4778 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4779 } 4780 else 4781 nxtdsp = SCRIPTB_BA (np, ident_break); 4782 } 4783 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4784 dsp == SCRIPTB_BA (np, send_sdtr) || 4785 dsp == SCRIPTB_BA (np, send_ppr)) { 4786 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4787 } 4788 break; 4789 #if 0 4790 case 7: /* MSG IN phase */ 4791 nxtdsp = SCRIPTA_BA (np, clrack); 4792 break; 4793 #endif 4794 } 4795 4796 if (nxtdsp) { 4797 OUTL_DSP (nxtdsp); 4798 return; 4799 } 4800 4801 reset_all: 4802 sym_start_reset(np); 4803 } 4804 4805 /* 4806 * Dequeue from the START queue all CCBs that match 4807 * a given target/lun/task condition (-1 means all), 4808 * and move them from the BUSY queue to the COMP queue 4809 * with CAM_REQUEUE_REQ status condition. 4810 * This function is used during error handling/recovery. 4811 * It is called with SCRIPTS not running. 4812 */ 4813 static int 4814 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4815 { 4816 int j; 4817 ccb_p cp; 4818 4819 /* 4820 * Make sure the starting index is within range. 4821 */ 4822 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4823 4824 /* 4825 * Walk until end of START queue and dequeue every job 4826 * that matches the target/lun/task condition. 4827 */ 4828 j = i; 4829 while (i != np->squeueput) { 4830 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4831 assert(cp); 4832 #ifdef SYM_CONF_IARB_SUPPORT 4833 /* Forget hints for IARB, they may be no longer relevant */ 4834 cp->host_flags &= ~HF_HINT_IARB; 4835 #endif 4836 if ((target == -1 || cp->target == target) && 4837 (lun == -1 || cp->lun == lun) && 4838 (task == -1 || cp->tag == task)) { 4839 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4840 sym_remque(&cp->link_ccbq); 4841 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4842 } 4843 else { 4844 if (i != j) 4845 np->squeue[j] = np->squeue[i]; 4846 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4847 } 4848 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4849 } 4850 if (i != j) /* Copy back the idle task if needed */ 4851 np->squeue[j] = np->squeue[i]; 4852 np->squeueput = j; /* Update our current start queue pointer */ 4853 4854 return (i - j) / 2; 4855 } 4856 4857 /* 4858 * Complete all CCBs queued to the COMP queue. 4859 * 4860 * These CCBs are assumed: 4861 * - Not to be referenced either by devices or 4862 * SCRIPTS-related queues and datas. 4863 * - To have to be completed with an error condition 4864 * or requeued. 4865 * 4866 * The device queue freeze count is incremented 4867 * for each CCB that does not prevent this. 4868 * This function is called when all CCBs involved 4869 * in error handling/recovery have been reaped. 4870 */ 4871 static void 4872 sym_flush_comp_queue(hcb_p np, int cam_status) 4873 { 4874 SYM_QUEHEAD *qp; 4875 ccb_p cp; 4876 4877 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { 4878 union ccb *ccb; 4879 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4880 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4881 /* Leave quiet CCBs waiting for resources */ 4882 if (cp->host_status == HS_WAIT) 4883 continue; 4884 ccb = cp->cam_ccb; 4885 if (cam_status) 4886 sym_set_cam_status(ccb, cam_status); 4887 sym_free_ccb(np, cp); 4888 sym_freeze_cam_ccb(ccb); 4889 sym_xpt_done(np, ccb); 4890 } 4891 } 4892 4893 /* 4894 * chip handler for bad SCSI status condition 4895 * 4896 * In case of bad SCSI status, we unqueue all the tasks 4897 * currently queued to the controller but not yet started 4898 * and then restart the SCRIPTS processor immediately. 4899 * 4900 * QUEUE FULL and BUSY conditions are handled the same way. 4901 * Basically all the not yet started tasks are requeued in 4902 * device queue and the queue is frozen until a completion. 4903 * 4904 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4905 * the CCB of the failed command to prepare a REQUEST SENSE 4906 * SCSI command and queue it to the controller queue. 4907 * 4908 * SCRATCHA is assumed to have been loaded with STARTPOS 4909 * before the SCRIPTS called the C code. 4910 */ 4911 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4912 { 4913 tcb_p tp = &np->target[cp->target]; 4914 u32 startp; 4915 u_char s_status = cp->ssss_status; 4916 u_char h_flags = cp->host_flags; 4917 int msglen; 4918 int nego; 4919 int i; 4920 4921 /* 4922 * Compute the index of the next job to start from SCRIPTS. 4923 */ 4924 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4925 4926 /* 4927 * The last CCB queued used for IARB hint may be 4928 * no longer relevant. Forget it. 4929 */ 4930 #ifdef SYM_CONF_IARB_SUPPORT 4931 if (np->last_cp) 4932 np->last_cp = 0; 4933 #endif 4934 4935 /* 4936 * Now deal with the SCSI status. 4937 */ 4938 switch(s_status) { 4939 case S_BUSY: 4940 case S_QUEUE_FULL: 4941 if (sym_verbose >= 2) { 4942 PRINT_ADDR(cp); 4943 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4944 } 4945 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4946 sym_complete_error (np, cp); 4947 break; 4948 case S_TERMINATED: 4949 case S_CHECK_COND: 4950 /* 4951 * If we get an SCSI error when requesting sense, give up. 4952 */ 4953 if (h_flags & HF_SENSE) { 4954 sym_complete_error (np, cp); 4955 break; 4956 } 4957 4958 /* 4959 * Dequeue all queued CCBs for that device not yet started, 4960 * and restart the SCRIPTS processor immediately. 4961 */ 4962 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4963 OUTL_DSP (SCRIPTA_BA (np, start)); 4964 4965 /* 4966 * Save some info of the actual IO. 4967 * Compute the data residual. 4968 */ 4969 cp->sv_scsi_status = cp->ssss_status; 4970 cp->sv_xerr_status = cp->xerr_status; 4971 cp->sv_resid = sym_compute_residual(np, cp); 4972 4973 /* 4974 * Prepare all needed data structures for 4975 * requesting sense data. 4976 */ 4977 4978 /* 4979 * identify message 4980 */ 4981 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4982 msglen = 1; 4983 4984 /* 4985 * If we are currently using anything different from 4986 * async. 8 bit data transfers with that target, 4987 * start a negotiation, since the device may want 4988 * to report us a UNIT ATTENTION condition due to 4989 * a cause we currently ignore, and we donnot want 4990 * to be stuck with WIDE and/or SYNC data transfer. 4991 * 4992 * cp->nego_status is filled by sym_prepare_nego(). 4993 */ 4994 cp->nego_status = 0; 4995 nego = 0; 4996 if (tp->tinfo.current.options & PPR_OPT_MASK) 4997 nego = NS_PPR; 4998 else if (tp->tinfo.current.width != BUS_8_BIT) 4999 nego = NS_WIDE; 5000 else if (tp->tinfo.current.offset != 0) 5001 nego = NS_SYNC; 5002 if (nego) 5003 msglen += 5004 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 5005 /* 5006 * Message table indirect structure. 5007 */ 5008 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 5009 cp->phys.smsg.size = cpu_to_scr(msglen); 5010 5011 /* 5012 * sense command 5013 */ 5014 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 5015 cp->phys.cmd.size = cpu_to_scr(6); 5016 5017 /* 5018 * patch requested size into sense command 5019 */ 5020 cp->sensecmd[0] = 0x03; 5021 cp->sensecmd[1] = cp->lun << 5; 5022 #ifdef FreeBSD_New_Tran_Settings 5023 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 5024 cp->sensecmd[1] = 0; 5025 #endif 5026 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 5027 cp->data_len = SYM_SNS_BBUF_LEN; 5028 5029 /* 5030 * sense data 5031 */ 5032 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 5033 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 5034 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 5035 5036 /* 5037 * requeue the command. 5038 */ 5039 startp = SCRIPTB_BA (np, sdata_in); 5040 5041 cp->phys.head.savep = cpu_to_scr(startp); 5042 cp->phys.head.goalp = cpu_to_scr(startp + 16); 5043 cp->phys.head.lastp = cpu_to_scr(startp); 5044 cp->startp = cpu_to_scr(startp); 5045 5046 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 5047 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 5048 cp->ssss_status = S_ILLEGAL; 5049 cp->host_flags = (HF_SENSE|HF_DATA_IN); 5050 cp->xerr_status = 0; 5051 cp->extra_bytes = 0; 5052 5053 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 5054 5055 /* 5056 * Requeue the command. 5057 */ 5058 sym_put_start_queue(np, cp); 5059 5060 /* 5061 * Give back to upper layer everything we have dequeued. 5062 */ 5063 sym_flush_comp_queue(np, 0); 5064 break; 5065 } 5066 } 5067 5068 /* 5069 * After a device has accepted some management message 5070 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 5071 * a device signals a UNIT ATTENTION condition, some 5072 * tasks are thrown away by the device. We are required 5073 * to reflect that on our tasks list since the device 5074 * will never complete these tasks. 5075 * 5076 * This function move from the BUSY queue to the COMP 5077 * queue all disconnected CCBs for a given target that 5078 * match the following criteria: 5079 * - lun=-1 means any logical UNIT otherwise a given one. 5080 * - task=-1 means any task, otherwise a given one. 5081 */ 5082 static int 5083 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 5084 { 5085 SYM_QUEHEAD qtmp, *qp; 5086 int i = 0; 5087 ccb_p cp; 5088 5089 /* 5090 * Move the entire BUSY queue to our temporary queue. 5091 */ 5092 sym_que_init(&qtmp); 5093 sym_que_splice(&np->busy_ccbq, &qtmp); 5094 sym_que_init(&np->busy_ccbq); 5095 5096 /* 5097 * Put all CCBs that matches our criteria into 5098 * the COMP queue and put back other ones into 5099 * the BUSY queue. 5100 */ 5101 while ((qp = sym_remque_head(&qtmp)) != 0) { 5102 union ccb *ccb; 5103 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5104 ccb = cp->cam_ccb; 5105 if (cp->host_status != HS_DISCONNECT || 5106 cp->target != target || 5107 (lun != -1 && cp->lun != lun) || 5108 (task != -1 && 5109 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 5110 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 5111 continue; 5112 } 5113 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 5114 5115 /* Preserve the software timeout condition */ 5116 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 5117 sym_set_cam_status(ccb, cam_status); 5118 ++i; 5119 #if 0 5120 printf("XXXX TASK @%p CLEARED\n", cp); 5121 #endif 5122 } 5123 return i; 5124 } 5125 5126 /* 5127 * chip handler for TASKS recovery 5128 * 5129 * We cannot safely abort a command, while the SCRIPTS 5130 * processor is running, since we just would be in race 5131 * with it. 5132 * 5133 * As long as we have tasks to abort, we keep the SEM 5134 * bit set in the ISTAT. When this bit is set, the 5135 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 5136 * each time it enters the scheduler. 5137 * 5138 * If we have to reset a target, clear tasks of a unit, 5139 * or to perform the abort of a disconnected job, we 5140 * restart the SCRIPTS for selecting the target. Once 5141 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 5142 * If it loses arbitration, the SCRIPTS will interrupt again 5143 * the next time it will enter its scheduler, and so on ... 5144 * 5145 * On SIR_TARGET_SELECTED, we scan for the more 5146 * appropriate thing to do: 5147 * 5148 * - If nothing, we just sent a M_ABORT message to the 5149 * target to get rid of the useless SCSI bus ownership. 5150 * According to the specs, no tasks shall be affected. 5151 * - If the target is to be reset, we send it a M_RESET 5152 * message. 5153 * - If a logical UNIT is to be cleared , we send the 5154 * IDENTIFY(lun) + M_ABORT. 5155 * - If an untagged task is to be aborted, we send the 5156 * IDENTIFY(lun) + M_ABORT. 5157 * - If a tagged task is to be aborted, we send the 5158 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 5159 * 5160 * Once our 'kiss of death' :) message has been accepted 5161 * by the target, the SCRIPTS interrupts again 5162 * (SIR_ABORT_SENT). On this interrupt, we complete 5163 * all the CCBs that should have been aborted by the 5164 * target according to our message. 5165 */ 5166 static void sym_sir_task_recovery(hcb_p np, int num) 5167 { 5168 SYM_QUEHEAD *qp; 5169 ccb_p cp; 5170 tcb_p tp; 5171 int target=-1, lun=-1, task; 5172 int i, k; 5173 5174 switch(num) { 5175 /* 5176 * The SCRIPTS processor stopped before starting 5177 * the next command in order to allow us to perform 5178 * some task recovery. 5179 */ 5180 case SIR_SCRIPT_STOPPED: 5181 /* 5182 * Do we have any target to reset or unit to clear ? 5183 */ 5184 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 5185 tp = &np->target[i]; 5186 if (tp->to_reset || 5187 (tp->lun0p && tp->lun0p->to_clear)) { 5188 target = i; 5189 break; 5190 } 5191 if (!tp->lunmp) 5192 continue; 5193 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5194 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5195 target = i; 5196 break; 5197 } 5198 } 5199 if (target != -1) 5200 break; 5201 } 5202 5203 /* 5204 * If not, walk the busy queue for any 5205 * disconnected CCB to be aborted. 5206 */ 5207 if (target == -1) { 5208 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5209 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 5210 if (cp->host_status != HS_DISCONNECT) 5211 continue; 5212 if (cp->to_abort) { 5213 target = cp->target; 5214 break; 5215 } 5216 } 5217 } 5218 5219 /* 5220 * If some target is to be selected, 5221 * prepare and start the selection. 5222 */ 5223 if (target != -1) { 5224 tp = &np->target[target]; 5225 np->abrt_sel.sel_id = target; 5226 np->abrt_sel.sel_scntl3 = tp->head.wval; 5227 np->abrt_sel.sel_sxfer = tp->head.sval; 5228 OUTL(nc_dsa, np->hcb_ba); 5229 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 5230 return; 5231 } 5232 5233 /* 5234 * Now look for a CCB to abort that haven't started yet. 5235 * Btw, the SCRIPTS processor is still stopped, so 5236 * we are not in race. 5237 */ 5238 i = 0; 5239 cp = 0; 5240 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5241 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5242 if (cp->host_status != HS_BUSY && 5243 cp->host_status != HS_NEGOTIATE) 5244 continue; 5245 if (!cp->to_abort) 5246 continue; 5247 #ifdef SYM_CONF_IARB_SUPPORT 5248 /* 5249 * If we are using IMMEDIATE ARBITRATION, we donnot 5250 * want to cancel the last queued CCB, since the 5251 * SCRIPTS may have anticipated the selection. 5252 */ 5253 if (cp == np->last_cp) { 5254 cp->to_abort = 0; 5255 continue; 5256 } 5257 #endif 5258 i = 1; /* Means we have found some */ 5259 break; 5260 } 5261 if (!i) { 5262 /* 5263 * We are done, so we donnot need 5264 * to synchronize with the SCRIPTS anylonger. 5265 * Remove the SEM flag from the ISTAT. 5266 */ 5267 np->istat_sem = 0; 5268 OUTB (nc_istat, SIGP); 5269 break; 5270 } 5271 /* 5272 * Compute index of next position in the start 5273 * queue the SCRIPTS intends to start and dequeue 5274 * all CCBs for that device that haven't been started. 5275 */ 5276 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5277 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5278 5279 /* 5280 * Make sure at least our IO to abort has been dequeued. 5281 */ 5282 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5283 5284 /* 5285 * Keep track in cam status of the reason of the abort. 5286 */ 5287 if (cp->to_abort == 2) 5288 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5289 else 5290 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5291 5292 /* 5293 * Complete with error everything that we have dequeued. 5294 */ 5295 sym_flush_comp_queue(np, 0); 5296 break; 5297 /* 5298 * The SCRIPTS processor has selected a target 5299 * we may have some manual recovery to perform for. 5300 */ 5301 case SIR_TARGET_SELECTED: 5302 target = (INB (nc_sdid) & 0xf); 5303 tp = &np->target[target]; 5304 5305 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5306 5307 /* 5308 * If the target is to be reset, prepare a 5309 * M_RESET message and clear the to_reset flag 5310 * since we donnot expect this operation to fail. 5311 */ 5312 if (tp->to_reset) { 5313 np->abrt_msg[0] = M_RESET; 5314 np->abrt_tbl.size = 1; 5315 tp->to_reset = 0; 5316 break; 5317 } 5318 5319 /* 5320 * Otherwise, look for some logical unit to be cleared. 5321 */ 5322 if (tp->lun0p && tp->lun0p->to_clear) 5323 lun = 0; 5324 else if (tp->lunmp) { 5325 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5326 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5327 lun = k; 5328 break; 5329 } 5330 } 5331 } 5332 5333 /* 5334 * If a logical unit is to be cleared, prepare 5335 * an IDENTIFY(lun) + ABORT MESSAGE. 5336 */ 5337 if (lun != -1) { 5338 lcb_p lp = sym_lp(np, tp, lun); 5339 lp->to_clear = 0; /* We donnot expect to fail here */ 5340 np->abrt_msg[0] = M_IDENTIFY | lun; 5341 np->abrt_msg[1] = M_ABORT; 5342 np->abrt_tbl.size = 2; 5343 break; 5344 } 5345 5346 /* 5347 * Otherwise, look for some disconnected job to 5348 * abort for this target. 5349 */ 5350 i = 0; 5351 cp = 0; 5352 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5353 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5354 if (cp->host_status != HS_DISCONNECT) 5355 continue; 5356 if (cp->target != target) 5357 continue; 5358 if (!cp->to_abort) 5359 continue; 5360 i = 1; /* Means we have some */ 5361 break; 5362 } 5363 5364 /* 5365 * If we have none, probably since the device has 5366 * completed the command before we won abitration, 5367 * send a M_ABORT message without IDENTIFY. 5368 * According to the specs, the device must just 5369 * disconnect the BUS and not abort any task. 5370 */ 5371 if (!i) { 5372 np->abrt_msg[0] = M_ABORT; 5373 np->abrt_tbl.size = 1; 5374 break; 5375 } 5376 5377 /* 5378 * We have some task to abort. 5379 * Set the IDENTIFY(lun) 5380 */ 5381 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5382 5383 /* 5384 * If we want to abort an untagged command, we 5385 * will send a IDENTIFY + M_ABORT. 5386 * Otherwise (tagged command), we will send 5387 * a IDENTITFY + task attributes + ABORT TAG. 5388 */ 5389 if (cp->tag == NO_TAG) { 5390 np->abrt_msg[1] = M_ABORT; 5391 np->abrt_tbl.size = 2; 5392 } 5393 else { 5394 np->abrt_msg[1] = cp->scsi_smsg[1]; 5395 np->abrt_msg[2] = cp->scsi_smsg[2]; 5396 np->abrt_msg[3] = M_ABORT_TAG; 5397 np->abrt_tbl.size = 4; 5398 } 5399 /* 5400 * Keep track of software timeout condition, since the 5401 * peripheral driver may not count retries on abort 5402 * conditions not due to timeout. 5403 */ 5404 if (cp->to_abort == 2) 5405 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5406 cp->to_abort = 0; /* We donnot expect to fail here */ 5407 break; 5408 5409 /* 5410 * The target has accepted our message and switched 5411 * to BUS FREE phase as we expected. 5412 */ 5413 case SIR_ABORT_SENT: 5414 target = (INB (nc_sdid) & 0xf); 5415 tp = &np->target[target]; 5416 5417 /* 5418 ** If we didn't abort anything, leave here. 5419 */ 5420 if (np->abrt_msg[0] == M_ABORT) 5421 break; 5422 5423 /* 5424 * If we sent a M_RESET, then a hardware reset has 5425 * been performed by the target. 5426 * - Reset everything to async 8 bit 5427 * - Tell ourself to negotiate next time :-) 5428 * - Prepare to clear all disconnected CCBs for 5429 * this target from our task list (lun=task=-1) 5430 */ 5431 lun = -1; 5432 task = -1; 5433 if (np->abrt_msg[0] == M_RESET) { 5434 tp->head.sval = 0; 5435 tp->head.wval = np->rv_scntl3; 5436 tp->head.uval = 0; 5437 tp->tinfo.current.period = 0; 5438 tp->tinfo.current.offset = 0; 5439 tp->tinfo.current.width = BUS_8_BIT; 5440 tp->tinfo.current.options = 0; 5441 } 5442 5443 /* 5444 * Otherwise, check for the LUN and TASK(s) 5445 * concerned by the cancelation. 5446 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5447 * or an ABORT message :-) 5448 */ 5449 else { 5450 lun = np->abrt_msg[0] & 0x3f; 5451 if (np->abrt_msg[1] == M_ABORT_TAG) 5452 task = np->abrt_msg[2]; 5453 } 5454 5455 /* 5456 * Complete all the CCBs the device should have 5457 * aborted due to our 'kiss of death' message. 5458 */ 5459 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5460 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5461 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5462 sym_flush_comp_queue(np, 0); 5463 5464 /* 5465 * If we sent a BDR, make uper layer aware of that. 5466 */ 5467 if (np->abrt_msg[0] == M_RESET) 5468 xpt_async(AC_SENT_BDR, np->path, NULL); 5469 break; 5470 } 5471 5472 /* 5473 * Print to the log the message we intend to send. 5474 */ 5475 if (num == SIR_TARGET_SELECTED) { 5476 PRINT_TARGET(np, target); 5477 sym_printl_hex("control msgout:", np->abrt_msg, 5478 np->abrt_tbl.size); 5479 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5480 } 5481 5482 /* 5483 * Let the SCRIPTS processor continue. 5484 */ 5485 OUTONB_STD (); 5486 } 5487 5488 /* 5489 * Gerard's alchemy:) that deals with with the data 5490 * pointer for both MDP and the residual calculation. 5491 * 5492 * I didn't want to bloat the code by more than 200 5493 * lignes for the handling of both MDP and the residual. 5494 * This has been achieved by using a data pointer 5495 * representation consisting in an index in the data 5496 * array (dp_sg) and a negative offset (dp_ofs) that 5497 * have the following meaning: 5498 * 5499 * - dp_sg = SYM_CONF_MAX_SG 5500 * we are at the end of the data script. 5501 * - dp_sg < SYM_CONF_MAX_SG 5502 * dp_sg points to the next entry of the scatter array 5503 * we want to transfer. 5504 * - dp_ofs < 0 5505 * dp_ofs represents the residual of bytes of the 5506 * previous entry scatter entry we will send first. 5507 * - dp_ofs = 0 5508 * no residual to send first. 5509 * 5510 * The function sym_evaluate_dp() accepts an arbitray 5511 * offset (basically from the MDP message) and returns 5512 * the corresponding values of dp_sg and dp_ofs. 5513 */ 5514 5515 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5516 { 5517 u32 dp_scr; 5518 int dp_ofs, dp_sg, dp_sgmin; 5519 int tmp; 5520 struct sym_pmc *pm; 5521 5522 /* 5523 * Compute the resulted data pointer in term of a script 5524 * address within some DATA script and a signed byte offset. 5525 */ 5526 dp_scr = scr; 5527 dp_ofs = *ofs; 5528 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5529 pm = &cp->phys.pm0; 5530 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5531 pm = &cp->phys.pm1; 5532 else 5533 pm = 0; 5534 5535 if (pm) { 5536 dp_scr = scr_to_cpu(pm->ret); 5537 dp_ofs -= scr_to_cpu(pm->sg.size); 5538 } 5539 5540 /* 5541 * If we are auto-sensing, then we are done. 5542 */ 5543 if (cp->host_flags & HF_SENSE) { 5544 *ofs = dp_ofs; 5545 return 0; 5546 } 5547 5548 /* 5549 * Deduce the index of the sg entry. 5550 * Keep track of the index of the first valid entry. 5551 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5552 * end of the data. 5553 */ 5554 tmp = scr_to_cpu(cp->phys.head.goalp); 5555 dp_sg = SYM_CONF_MAX_SG; 5556 if (dp_scr != tmp) 5557 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5558 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5559 5560 /* 5561 * Move to the sg entry the data pointer belongs to. 5562 * 5563 * If we are inside the data area, we expect result to be: 5564 * 5565 * Either, 5566 * dp_ofs = 0 and dp_sg is the index of the sg entry 5567 * the data pointer belongs to (or the end of the data) 5568 * Or, 5569 * dp_ofs < 0 and dp_sg is the index of the sg entry 5570 * the data pointer belongs to + 1. 5571 */ 5572 if (dp_ofs < 0) { 5573 int n; 5574 while (dp_sg > dp_sgmin) { 5575 --dp_sg; 5576 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5577 n = dp_ofs + (tmp & 0xffffff); 5578 if (n > 0) { 5579 ++dp_sg; 5580 break; 5581 } 5582 dp_ofs = n; 5583 } 5584 } 5585 else if (dp_ofs > 0) { 5586 while (dp_sg < SYM_CONF_MAX_SG) { 5587 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5588 dp_ofs -= (tmp & 0xffffff); 5589 ++dp_sg; 5590 if (dp_ofs <= 0) 5591 break; 5592 } 5593 } 5594 5595 /* 5596 * Make sure the data pointer is inside the data area. 5597 * If not, return some error. 5598 */ 5599 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5600 goto out_err; 5601 else if (dp_sg > SYM_CONF_MAX_SG || 5602 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5603 goto out_err; 5604 5605 /* 5606 * Save the extreme pointer if needed. 5607 */ 5608 if (dp_sg > cp->ext_sg || 5609 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5610 cp->ext_sg = dp_sg; 5611 cp->ext_ofs = dp_ofs; 5612 } 5613 5614 /* 5615 * Return data. 5616 */ 5617 *ofs = dp_ofs; 5618 return dp_sg; 5619 5620 out_err: 5621 return -1; 5622 } 5623 5624 /* 5625 * chip handler for MODIFY DATA POINTER MESSAGE 5626 * 5627 * We also call this function on IGNORE WIDE RESIDUE 5628 * messages that do not match a SWIDE full condition. 5629 * Btw, we assume in that situation that such a message 5630 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5631 */ 5632 5633 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5634 { 5635 int dp_ofs = ofs; 5636 u32 dp_scr = INL (nc_temp); 5637 u32 dp_ret; 5638 u32 tmp; 5639 u_char hflags; 5640 int dp_sg; 5641 struct sym_pmc *pm; 5642 5643 /* 5644 * Not supported for auto-sense. 5645 */ 5646 if (cp->host_flags & HF_SENSE) 5647 goto out_reject; 5648 5649 /* 5650 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5651 * to the resulted data pointer. 5652 */ 5653 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5654 if (dp_sg < 0) 5655 goto out_reject; 5656 5657 /* 5658 * And our alchemy:) allows to easily calculate the data 5659 * script address we want to return for the next data phase. 5660 */ 5661 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5662 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5663 5664 /* 5665 * If offset / scatter entry is zero we donnot need 5666 * a context for the new current data pointer. 5667 */ 5668 if (dp_ofs == 0) { 5669 dp_scr = dp_ret; 5670 goto out_ok; 5671 } 5672 5673 /* 5674 * Get a context for the new current data pointer. 5675 */ 5676 hflags = INB (HF_PRT); 5677 5678 if (hflags & HF_DP_SAVED) 5679 hflags ^= HF_ACT_PM; 5680 5681 if (!(hflags & HF_ACT_PM)) { 5682 pm = &cp->phys.pm0; 5683 dp_scr = SCRIPTA_BA (np, pm0_data); 5684 } 5685 else { 5686 pm = &cp->phys.pm1; 5687 dp_scr = SCRIPTA_BA (np, pm1_data); 5688 } 5689 5690 hflags &= ~(HF_DP_SAVED); 5691 5692 OUTB (HF_PRT, hflags); 5693 5694 /* 5695 * Set up the new current data pointer. 5696 * ofs < 0 there, and for the next data phase, we 5697 * want to transfer part of the data of the sg entry 5698 * corresponding to index dp_sg-1 prior to returning 5699 * to the main data script. 5700 */ 5701 pm->ret = cpu_to_scr(dp_ret); 5702 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5703 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5704 pm->sg.addr = cpu_to_scr(tmp); 5705 pm->sg.size = cpu_to_scr(-dp_ofs); 5706 5707 out_ok: 5708 OUTL (nc_temp, dp_scr); 5709 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5710 return; 5711 5712 out_reject: 5713 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5714 } 5715 5716 5717 /* 5718 * chip calculation of the data residual. 5719 * 5720 * As I used to say, the requirement of data residual 5721 * in SCSI is broken, useless and cannot be achieved 5722 * without huge complexity. 5723 * But most OSes and even the official CAM require it. 5724 * When stupidity happens to be so widely spread inside 5725 * a community, it gets hard to convince. 5726 * 5727 * Anyway, I don't care, since I am not going to use 5728 * any software that considers this data residual as 5729 * a relevant information. :) 5730 */ 5731 5732 static int sym_compute_residual(hcb_p np, ccb_p cp) 5733 { 5734 int dp_sg, dp_sgmin, resid = 0; 5735 int dp_ofs = 0; 5736 5737 /* 5738 * Check for some data lost or just thrown away. 5739 * We are not required to be quite accurate in this 5740 * situation. Btw, if we are odd for output and the 5741 * device claims some more data, it may well happen 5742 * than our residual be zero. :-) 5743 */ 5744 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5745 if (cp->xerr_status & XE_EXTRA_DATA) 5746 resid -= cp->extra_bytes; 5747 if (cp->xerr_status & XE_SODL_UNRUN) 5748 ++resid; 5749 if (cp->xerr_status & XE_SWIDE_OVRUN) 5750 --resid; 5751 } 5752 5753 /* 5754 * If all data has been transferred, 5755 * there is no residual. 5756 */ 5757 if (cp->phys.head.lastp == cp->phys.head.goalp) 5758 return resid; 5759 5760 /* 5761 * If no data transfer occurs, or if the data 5762 * pointer is weird, return full residual. 5763 */ 5764 if (cp->startp == cp->phys.head.lastp || 5765 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5766 &dp_ofs) < 0) { 5767 return cp->data_len; 5768 } 5769 5770 /* 5771 * If we were auto-sensing, then we are done. 5772 */ 5773 if (cp->host_flags & HF_SENSE) { 5774 return -dp_ofs; 5775 } 5776 5777 /* 5778 * We are now full comfortable in the computation 5779 * of the data residual (2's complement). 5780 */ 5781 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5782 resid = -cp->ext_ofs; 5783 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5784 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5785 resid += (tmp & 0xffffff); 5786 } 5787 5788 /* 5789 * Hopefully, the result is not too wrong. 5790 */ 5791 return resid; 5792 } 5793 5794 /* 5795 * Print out the content of a SCSI message. 5796 */ 5797 5798 static int sym_show_msg (u_char * msg) 5799 { 5800 u_char i; 5801 printf ("%x",*msg); 5802 if (*msg==M_EXTENDED) { 5803 for (i=1;i<8;i++) { 5804 if (i-1>msg[1]) break; 5805 printf ("-%x",msg[i]); 5806 }; 5807 return (i+1); 5808 } else if ((*msg & 0xf0) == 0x20) { 5809 printf ("-%x",msg[1]); 5810 return (2); 5811 }; 5812 return (1); 5813 } 5814 5815 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5816 { 5817 PRINT_ADDR(cp); 5818 if (label) 5819 printf ("%s: ", label); 5820 5821 (void) sym_show_msg (msg); 5822 printf (".\n"); 5823 } 5824 5825 /* 5826 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5827 * 5828 * When we try to negotiate, we append the negotiation message 5829 * to the identify and (maybe) simple tag message. 5830 * The host status field is set to HS_NEGOTIATE to mark this 5831 * situation. 5832 * 5833 * If the target doesn't answer this message immediately 5834 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5835 * will be raised eventually. 5836 * The handler removes the HS_NEGOTIATE status, and sets the 5837 * negotiated value to the default (async / nowide). 5838 * 5839 * If we receive a matching answer immediately, we check it 5840 * for validity, and set the values. 5841 * 5842 * If we receive a Reject message immediately, we assume the 5843 * negotiation has failed, and fall back to standard values. 5844 * 5845 * If we receive a negotiation message while not in HS_NEGOTIATE 5846 * state, it's a target initiated negotiation. We prepare a 5847 * (hopefully) valid answer, set our parameters, and send back 5848 * this answer to the target. 5849 * 5850 * If the target doesn't fetch the answer (no message out phase), 5851 * we assume the negotiation has failed, and fall back to default 5852 * settings (SIR_NEGO_PROTO interrupt). 5853 * 5854 * When we set the values, we adjust them in all ccbs belonging 5855 * to this target, in the controller's register, and in the "phys" 5856 * field of the controller's struct sym_hcb. 5857 */ 5858 5859 /* 5860 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5861 */ 5862 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5863 { 5864 u_char chg, ofs, per, fak, div; 5865 int req = 1; 5866 5867 /* 5868 * Synchronous request message received. 5869 */ 5870 if (DEBUG_FLAGS & DEBUG_NEGO) { 5871 sym_print_msg(cp, "sync msgin", np->msgin); 5872 }; 5873 5874 /* 5875 * request or answer ? 5876 */ 5877 if (INB (HS_PRT) == HS_NEGOTIATE) { 5878 OUTB (HS_PRT, HS_BUSY); 5879 if (cp->nego_status && cp->nego_status != NS_SYNC) 5880 goto reject_it; 5881 req = 0; 5882 } 5883 5884 /* 5885 * get requested values. 5886 */ 5887 chg = 0; 5888 per = np->msgin[3]; 5889 ofs = np->msgin[4]; 5890 5891 /* 5892 * check values against our limits. 5893 */ 5894 if (ofs) { 5895 if (ofs > np->maxoffs) 5896 {chg = 1; ofs = np->maxoffs;} 5897 if (req) { 5898 if (ofs > tp->tinfo.user.offset) 5899 {chg = 1; ofs = tp->tinfo.user.offset;} 5900 } 5901 } 5902 5903 if (ofs) { 5904 if (per < np->minsync) 5905 {chg = 1; per = np->minsync;} 5906 if (req) { 5907 if (per < tp->tinfo.user.period) 5908 {chg = 1; per = tp->tinfo.user.period;} 5909 } 5910 } 5911 5912 div = fak = 0; 5913 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5914 goto reject_it; 5915 5916 if (DEBUG_FLAGS & DEBUG_NEGO) { 5917 PRINT_ADDR(cp); 5918 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5919 ofs, per, div, fak, chg); 5920 } 5921 5922 /* 5923 * This was an answer message 5924 */ 5925 if (req == 0) { 5926 if (chg) /* Answer wasn't acceptable. */ 5927 goto reject_it; 5928 sym_setsync (np, cp, ofs, per, div, fak); 5929 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5930 return; 5931 } 5932 5933 /* 5934 * It was a request. Set value and 5935 * prepare an answer message 5936 */ 5937 sym_setsync (np, cp, ofs, per, div, fak); 5938 5939 np->msgout[0] = M_EXTENDED; 5940 np->msgout[1] = 3; 5941 np->msgout[2] = M_X_SYNC_REQ; 5942 np->msgout[3] = per; 5943 np->msgout[4] = ofs; 5944 5945 cp->nego_status = NS_SYNC; 5946 5947 if (DEBUG_FLAGS & DEBUG_NEGO) { 5948 sym_print_msg(cp, "sync msgout", np->msgout); 5949 } 5950 5951 np->msgin [0] = M_NOOP; 5952 5953 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5954 return; 5955 reject_it: 5956 sym_setsync (np, cp, 0, 0, 0, 0); 5957 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5958 } 5959 5960 /* 5961 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5962 */ 5963 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5964 { 5965 u_char chg, ofs, per, fak, dt, div, wide; 5966 int req = 1; 5967 5968 /* 5969 * Synchronous request message received. 5970 */ 5971 if (DEBUG_FLAGS & DEBUG_NEGO) { 5972 sym_print_msg(cp, "ppr msgin", np->msgin); 5973 }; 5974 5975 /* 5976 * get requested values. 5977 */ 5978 chg = 0; 5979 per = np->msgin[3]; 5980 ofs = np->msgin[5]; 5981 wide = np->msgin[6]; 5982 dt = np->msgin[7] & PPR_OPT_DT; 5983 5984 /* 5985 * request or answer ? 5986 */ 5987 if (INB (HS_PRT) == HS_NEGOTIATE) { 5988 OUTB (HS_PRT, HS_BUSY); 5989 if (cp->nego_status && cp->nego_status != NS_PPR) 5990 goto reject_it; 5991 req = 0; 5992 } 5993 5994 /* 5995 * check values against our limits. 5996 */ 5997 if (wide > np->maxwide) 5998 {chg = 1; wide = np->maxwide;} 5999 if (!wide || !(np->features & FE_ULTRA3)) 6000 dt &= ~PPR_OPT_DT; 6001 if (req) { 6002 if (wide > tp->tinfo.user.width) 6003 {chg = 1; wide = tp->tinfo.user.width;} 6004 } 6005 6006 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 6007 dt &= ~PPR_OPT_DT; 6008 6009 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 6010 6011 if (ofs) { 6012 if (dt) { 6013 if (ofs > np->maxoffs_dt) 6014 {chg = 1; ofs = np->maxoffs_dt;} 6015 } 6016 else if (ofs > np->maxoffs) 6017 {chg = 1; ofs = np->maxoffs;} 6018 if (req) { 6019 if (ofs > tp->tinfo.user.offset) 6020 {chg = 1; ofs = tp->tinfo.user.offset;} 6021 } 6022 } 6023 6024 if (ofs) { 6025 if (dt) { 6026 if (per < np->minsync_dt) 6027 {chg = 1; per = np->minsync_dt;} 6028 } 6029 else if (per < np->minsync) 6030 {chg = 1; per = np->minsync;} 6031 if (req) { 6032 if (per < tp->tinfo.user.period) 6033 {chg = 1; per = tp->tinfo.user.period;} 6034 } 6035 } 6036 6037 div = fak = 0; 6038 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 6039 goto reject_it; 6040 6041 if (DEBUG_FLAGS & DEBUG_NEGO) { 6042 PRINT_ADDR(cp); 6043 printf ("ppr: " 6044 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 6045 dt, ofs, per, wide, div, fak, chg); 6046 } 6047 6048 /* 6049 * It was an answer. 6050 */ 6051 if (req == 0) { 6052 if (chg) /* Answer wasn't acceptable */ 6053 goto reject_it; 6054 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 6055 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6056 return; 6057 } 6058 6059 /* 6060 * It was a request. Set value and 6061 * prepare an answer message 6062 */ 6063 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 6064 6065 np->msgout[0] = M_EXTENDED; 6066 np->msgout[1] = 6; 6067 np->msgout[2] = M_X_PPR_REQ; 6068 np->msgout[3] = per; 6069 np->msgout[4] = 0; 6070 np->msgout[5] = ofs; 6071 np->msgout[6] = wide; 6072 np->msgout[7] = dt; 6073 6074 cp->nego_status = NS_PPR; 6075 6076 if (DEBUG_FLAGS & DEBUG_NEGO) { 6077 sym_print_msg(cp, "ppr msgout", np->msgout); 6078 } 6079 6080 np->msgin [0] = M_NOOP; 6081 6082 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 6083 return; 6084 reject_it: 6085 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6086 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6087 /* 6088 * If it was a device response that should result in 6089 * ST, we may want to try a legacy negotiation later. 6090 */ 6091 if (!req && !dt) { 6092 tp->tinfo.goal.options = 0; 6093 tp->tinfo.goal.width = wide; 6094 tp->tinfo.goal.period = per; 6095 tp->tinfo.goal.offset = ofs; 6096 } 6097 return; 6098 } 6099 6100 /* 6101 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 6102 */ 6103 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 6104 { 6105 u_char chg, wide; 6106 int req = 1; 6107 6108 /* 6109 * Wide request message received. 6110 */ 6111 if (DEBUG_FLAGS & DEBUG_NEGO) { 6112 sym_print_msg(cp, "wide msgin", np->msgin); 6113 }; 6114 6115 /* 6116 * Is it an request from the device? 6117 */ 6118 if (INB (HS_PRT) == HS_NEGOTIATE) { 6119 OUTB (HS_PRT, HS_BUSY); 6120 if (cp->nego_status && cp->nego_status != NS_WIDE) 6121 goto reject_it; 6122 req = 0; 6123 } 6124 6125 /* 6126 * get requested values. 6127 */ 6128 chg = 0; 6129 wide = np->msgin[3]; 6130 6131 /* 6132 * check values against driver limits. 6133 */ 6134 if (wide > np->maxwide) 6135 {chg = 1; wide = np->maxwide;} 6136 if (req) { 6137 if (wide > tp->tinfo.user.width) 6138 {chg = 1; wide = tp->tinfo.user.width;} 6139 } 6140 6141 if (DEBUG_FLAGS & DEBUG_NEGO) { 6142 PRINT_ADDR(cp); 6143 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 6144 } 6145 6146 /* 6147 * This was an answer message 6148 */ 6149 if (req == 0) { 6150 if (chg) /* Answer wasn't acceptable. */ 6151 goto reject_it; 6152 sym_setwide (np, cp, wide); 6153 6154 /* 6155 * Negotiate for SYNC immediately after WIDE response. 6156 * This allows to negotiate for both WIDE and SYNC on 6157 * a single SCSI command (Suggested by Justin Gibbs). 6158 */ 6159 if (tp->tinfo.goal.offset) { 6160 np->msgout[0] = M_EXTENDED; 6161 np->msgout[1] = 3; 6162 np->msgout[2] = M_X_SYNC_REQ; 6163 np->msgout[3] = tp->tinfo.goal.period; 6164 np->msgout[4] = tp->tinfo.goal.offset; 6165 6166 if (DEBUG_FLAGS & DEBUG_NEGO) { 6167 sym_print_msg(cp, "sync msgout", np->msgout); 6168 } 6169 6170 cp->nego_status = NS_SYNC; 6171 OUTB (HS_PRT, HS_NEGOTIATE); 6172 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 6173 return; 6174 } 6175 6176 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6177 return; 6178 }; 6179 6180 /* 6181 * It was a request, set value and 6182 * prepare an answer message 6183 */ 6184 sym_setwide (np, cp, wide); 6185 6186 np->msgout[0] = M_EXTENDED; 6187 np->msgout[1] = 2; 6188 np->msgout[2] = M_X_WIDE_REQ; 6189 np->msgout[3] = wide; 6190 6191 np->msgin [0] = M_NOOP; 6192 6193 cp->nego_status = NS_WIDE; 6194 6195 if (DEBUG_FLAGS & DEBUG_NEGO) { 6196 sym_print_msg(cp, "wide msgout", np->msgout); 6197 } 6198 6199 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 6200 return; 6201 reject_it: 6202 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6203 } 6204 6205 /* 6206 * Reset SYNC or WIDE to default settings. 6207 * 6208 * Called when a negotiation does not succeed either 6209 * on rejection or on protocol error. 6210 * 6211 * If it was a PPR that made problems, we may want to 6212 * try a legacy negotiation later. 6213 */ 6214 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 6215 { 6216 /* 6217 * any error in negotiation: 6218 * fall back to default mode. 6219 */ 6220 switch (cp->nego_status) { 6221 case NS_PPR: 6222 #if 0 6223 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6224 #else 6225 tp->tinfo.goal.options = 0; 6226 if (tp->tinfo.goal.period < np->minsync) 6227 tp->tinfo.goal.period = np->minsync; 6228 if (tp->tinfo.goal.offset > np->maxoffs) 6229 tp->tinfo.goal.offset = np->maxoffs; 6230 #endif 6231 break; 6232 case NS_SYNC: 6233 sym_setsync (np, cp, 0, 0, 0, 0); 6234 break; 6235 case NS_WIDE: 6236 sym_setwide (np, cp, 0); 6237 break; 6238 }; 6239 np->msgin [0] = M_NOOP; 6240 np->msgout[0] = M_NOOP; 6241 cp->nego_status = 0; 6242 } 6243 6244 /* 6245 * chip handler for MESSAGE REJECT received in response to 6246 * a WIDE or SYNCHRONOUS negotiation. 6247 */ 6248 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6249 { 6250 sym_nego_default(np, tp, cp); 6251 OUTB (HS_PRT, HS_BUSY); 6252 } 6253 6254 /* 6255 * chip exception handler for programmed interrupts. 6256 */ 6257 void sym_int_sir (hcb_p np) 6258 { 6259 u_char num = INB (nc_dsps); 6260 u32 dsa = INL (nc_dsa); 6261 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6262 u_char target = INB (nc_sdid) & 0x0f; 6263 tcb_p tp = &np->target[target]; 6264 int tmp; 6265 6266 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6267 6268 switch (num) { 6269 /* 6270 * Command has been completed with error condition 6271 * or has been auto-sensed. 6272 */ 6273 case SIR_COMPLETE_ERROR: 6274 sym_complete_error(np, cp); 6275 return; 6276 /* 6277 * The C code is currently trying to recover from something. 6278 * Typically, user want to abort some command. 6279 */ 6280 case SIR_SCRIPT_STOPPED: 6281 case SIR_TARGET_SELECTED: 6282 case SIR_ABORT_SENT: 6283 sym_sir_task_recovery(np, num); 6284 return; 6285 /* 6286 * The device didn't go to MSG OUT phase after having 6287 * been selected with ATN. We donnot want to handle 6288 * that. 6289 */ 6290 case SIR_SEL_ATN_NO_MSG_OUT: 6291 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6292 sym_name (np), target); 6293 goto out_stuck; 6294 /* 6295 * The device didn't switch to MSG IN phase after 6296 * having reseleted the initiator. 6297 */ 6298 case SIR_RESEL_NO_MSG_IN: 6299 printf ("%s:%d: No MSG IN phase after reselection.\n", 6300 sym_name (np), target); 6301 goto out_stuck; 6302 /* 6303 * After reselection, the device sent a message that wasn't 6304 * an IDENTIFY. 6305 */ 6306 case SIR_RESEL_NO_IDENTIFY: 6307 printf ("%s:%d: No IDENTIFY after reselection.\n", 6308 sym_name (np), target); 6309 goto out_stuck; 6310 /* 6311 * The device reselected a LUN we donnot know about. 6312 */ 6313 case SIR_RESEL_BAD_LUN: 6314 np->msgout[0] = M_RESET; 6315 goto out; 6316 /* 6317 * The device reselected for an untagged nexus and we 6318 * haven't any. 6319 */ 6320 case SIR_RESEL_BAD_I_T_L: 6321 np->msgout[0] = M_ABORT; 6322 goto out; 6323 /* 6324 * The device reselected for a tagged nexus that we donnot 6325 * have. 6326 */ 6327 case SIR_RESEL_BAD_I_T_L_Q: 6328 np->msgout[0] = M_ABORT_TAG; 6329 goto out; 6330 /* 6331 * The SCRIPTS let us know that the device has grabbed 6332 * our message and will abort the job. 6333 */ 6334 case SIR_RESEL_ABORTED: 6335 np->lastmsg = np->msgout[0]; 6336 np->msgout[0] = M_NOOP; 6337 printf ("%s:%d: message %x sent on bad reselection.\n", 6338 sym_name (np), target, np->lastmsg); 6339 goto out; 6340 /* 6341 * The SCRIPTS let us know that a message has been 6342 * successfully sent to the device. 6343 */ 6344 case SIR_MSG_OUT_DONE: 6345 np->lastmsg = np->msgout[0]; 6346 np->msgout[0] = M_NOOP; 6347 /* Should we really care of that */ 6348 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6349 if (cp) { 6350 cp->xerr_status &= ~XE_PARITY_ERR; 6351 if (!cp->xerr_status) 6352 OUTOFFB (HF_PRT, HF_EXT_ERR); 6353 } 6354 } 6355 goto out; 6356 /* 6357 * The device didn't send a GOOD SCSI status. 6358 * We may have some work to do prior to allow 6359 * the SCRIPTS processor to continue. 6360 */ 6361 case SIR_BAD_SCSI_STATUS: 6362 if (!cp) 6363 goto out; 6364 sym_sir_bad_scsi_status(np, num, cp); 6365 return; 6366 /* 6367 * We are asked by the SCRIPTS to prepare a 6368 * REJECT message. 6369 */ 6370 case SIR_REJECT_TO_SEND: 6371 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6372 np->msgout[0] = M_REJECT; 6373 goto out; 6374 /* 6375 * We have been ODD at the end of a DATA IN 6376 * transfer and the device didn't send a 6377 * IGNORE WIDE RESIDUE message. 6378 * It is a data overrun condition. 6379 */ 6380 case SIR_SWIDE_OVERRUN: 6381 if (cp) { 6382 OUTONB (HF_PRT, HF_EXT_ERR); 6383 cp->xerr_status |= XE_SWIDE_OVRUN; 6384 } 6385 goto out; 6386 /* 6387 * We have been ODD at the end of a DATA OUT 6388 * transfer. 6389 * It is a data underrun condition. 6390 */ 6391 case SIR_SODL_UNDERRUN: 6392 if (cp) { 6393 OUTONB (HF_PRT, HF_EXT_ERR); 6394 cp->xerr_status |= XE_SODL_UNRUN; 6395 } 6396 goto out; 6397 /* 6398 * The device wants us to tranfer more data than 6399 * expected or in the wrong direction. 6400 * The number of extra bytes is in scratcha. 6401 * It is a data overrun condition. 6402 */ 6403 case SIR_DATA_OVERRUN: 6404 if (cp) { 6405 OUTONB (HF_PRT, HF_EXT_ERR); 6406 cp->xerr_status |= XE_EXTRA_DATA; 6407 cp->extra_bytes += INL (nc_scratcha); 6408 } 6409 goto out; 6410 /* 6411 * The device switched to an illegal phase (4/5). 6412 */ 6413 case SIR_BAD_PHASE: 6414 if (cp) { 6415 OUTONB (HF_PRT, HF_EXT_ERR); 6416 cp->xerr_status |= XE_BAD_PHASE; 6417 } 6418 goto out; 6419 /* 6420 * We received a message. 6421 */ 6422 case SIR_MSG_RECEIVED: 6423 if (!cp) 6424 goto out_stuck; 6425 switch (np->msgin [0]) { 6426 /* 6427 * We received an extended message. 6428 * We handle MODIFY DATA POINTER, SDTR, WDTR 6429 * and reject all other extended messages. 6430 */ 6431 case M_EXTENDED: 6432 switch (np->msgin [2]) { 6433 case M_X_MODIFY_DP: 6434 if (DEBUG_FLAGS & DEBUG_POINTER) 6435 sym_print_msg(cp,"modify DP",np->msgin); 6436 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6437 (np->msgin[5]<<8) + (np->msgin[6]); 6438 sym_modify_dp(np, tp, cp, tmp); 6439 return; 6440 case M_X_SYNC_REQ: 6441 sym_sync_nego(np, tp, cp); 6442 return; 6443 case M_X_PPR_REQ: 6444 sym_ppr_nego(np, tp, cp); 6445 return; 6446 case M_X_WIDE_REQ: 6447 sym_wide_nego(np, tp, cp); 6448 return; 6449 default: 6450 goto out_reject; 6451 } 6452 break; 6453 /* 6454 * We received a 1/2 byte message not handled from SCRIPTS. 6455 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6456 * RESIDUE messages that haven't been anticipated by 6457 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6458 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6459 */ 6460 case M_IGN_RESIDUE: 6461 if (DEBUG_FLAGS & DEBUG_POINTER) 6462 sym_print_msg(cp,"ign wide residue", np->msgin); 6463 sym_modify_dp(np, tp, cp, -1); 6464 return; 6465 case M_REJECT: 6466 if (INB (HS_PRT) == HS_NEGOTIATE) 6467 sym_nego_rejected(np, tp, cp); 6468 else { 6469 PRINT_ADDR(cp); 6470 printf ("M_REJECT received (%x:%x).\n", 6471 scr_to_cpu(np->lastmsg), np->msgout[0]); 6472 } 6473 goto out_clrack; 6474 break; 6475 default: 6476 goto out_reject; 6477 } 6478 break; 6479 /* 6480 * We received an unknown message. 6481 * Ignore all MSG IN phases and reject it. 6482 */ 6483 case SIR_MSG_WEIRD: 6484 sym_print_msg(cp, "WEIRD message received", np->msgin); 6485 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6486 return; 6487 /* 6488 * Negotiation failed. 6489 * Target does not send us the reply. 6490 * Remove the HS_NEGOTIATE status. 6491 */ 6492 case SIR_NEGO_FAILED: 6493 OUTB (HS_PRT, HS_BUSY); 6494 /* 6495 * Negotiation failed. 6496 * Target does not want answer message. 6497 */ 6498 case SIR_NEGO_PROTO: 6499 sym_nego_default(np, tp, cp); 6500 goto out; 6501 }; 6502 6503 out: 6504 OUTONB_STD (); 6505 return; 6506 out_reject: 6507 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6508 return; 6509 out_clrack: 6510 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6511 return; 6512 out_stuck: 6513 ; 6514 } 6515 6516 /* 6517 * Acquire a control block 6518 */ 6519 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6520 { 6521 tcb_p tp = &np->target[tn]; 6522 lcb_p lp = sym_lp(np, tp, ln); 6523 u_short tag = NO_TAG; 6524 SYM_QUEHEAD *qp; 6525 ccb_p cp = (ccb_p) 0; 6526 6527 /* 6528 * Look for a free CCB 6529 */ 6530 if (sym_que_empty(&np->free_ccbq)) 6531 (void) sym_alloc_ccb(np); 6532 qp = sym_remque_head(&np->free_ccbq); 6533 if (!qp) 6534 goto out; 6535 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6536 6537 /* 6538 * If the LCB is not yet available and the LUN 6539 * has been probed ok, try to allocate the LCB. 6540 */ 6541 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6542 lp = sym_alloc_lcb(np, tn, ln); 6543 if (!lp) 6544 goto out_free; 6545 } 6546 6547 /* 6548 * If the LCB is not available here, then the 6549 * logical unit is not yet discovered. For those 6550 * ones only accept 1 SCSI IO per logical unit, 6551 * since we cannot allow disconnections. 6552 */ 6553 if (!lp) { 6554 if (!sym_is_bit(tp->busy0_map, ln)) 6555 sym_set_bit(tp->busy0_map, ln); 6556 else 6557 goto out_free; 6558 } else { 6559 /* 6560 * If we have been asked for a tagged command. 6561 */ 6562 if (tag_order) { 6563 /* 6564 * Debugging purpose. 6565 */ 6566 assert(lp->busy_itl == 0); 6567 /* 6568 * Allocate resources for tags if not yet. 6569 */ 6570 if (!lp->cb_tags) { 6571 sym_alloc_lcb_tags(np, tn, ln); 6572 if (!lp->cb_tags) 6573 goto out_free; 6574 } 6575 /* 6576 * Get a tag for this SCSI IO and set up 6577 * the CCB bus address for reselection, 6578 * and count it for this LUN. 6579 * Toggle reselect path to tagged. 6580 */ 6581 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6582 tag = lp->cb_tags[lp->ia_tag]; 6583 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6584 lp->ia_tag = 0; 6585 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6586 ++lp->busy_itlq; 6587 lp->head.resel_sa = 6588 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6589 } 6590 else 6591 goto out_free; 6592 } 6593 /* 6594 * This command will not be tagged. 6595 * If we already have either a tagged or untagged 6596 * one, refuse to overlap this untagged one. 6597 */ 6598 else { 6599 /* 6600 * Debugging purpose. 6601 */ 6602 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6603 /* 6604 * Count this nexus for this LUN. 6605 * Set up the CCB bus address for reselection. 6606 * Toggle reselect path to untagged. 6607 */ 6608 if (++lp->busy_itl == 1) { 6609 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6610 lp->head.resel_sa = 6611 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6612 } 6613 else 6614 goto out_free; 6615 } 6616 } 6617 /* 6618 * Put the CCB into the busy queue. 6619 */ 6620 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6621 6622 /* 6623 * Remember all informations needed to free this CCB. 6624 */ 6625 cp->to_abort = 0; 6626 cp->tag = tag; 6627 cp->target = tn; 6628 cp->lun = ln; 6629 6630 if (DEBUG_FLAGS & DEBUG_TAGS) { 6631 PRINT_LUN(np, tn, ln); 6632 printf ("ccb @%p using tag %d.\n", cp, tag); 6633 } 6634 6635 out: 6636 return cp; 6637 out_free: 6638 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6639 return (ccb_p) 0; 6640 } 6641 6642 /* 6643 * Release one control block 6644 */ 6645 static void sym_free_ccb (hcb_p np, ccb_p cp) 6646 { 6647 tcb_p tp = &np->target[cp->target]; 6648 lcb_p lp = sym_lp(np, tp, cp->lun); 6649 6650 if (DEBUG_FLAGS & DEBUG_TAGS) { 6651 PRINT_LUN(np, cp->target, cp->lun); 6652 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6653 } 6654 6655 /* 6656 * If LCB available, 6657 */ 6658 if (lp) { 6659 /* 6660 * If tagged, release the tag, set the relect path 6661 */ 6662 if (cp->tag != NO_TAG) { 6663 /* 6664 * Free the tag value. 6665 */ 6666 lp->cb_tags[lp->if_tag] = cp->tag; 6667 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6668 lp->if_tag = 0; 6669 /* 6670 * Make the reselect path invalid, 6671 * and uncount this CCB. 6672 */ 6673 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6674 --lp->busy_itlq; 6675 } else { /* Untagged */ 6676 /* 6677 * Make the reselect path invalid, 6678 * and uncount this CCB. 6679 */ 6680 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6681 --lp->busy_itl; 6682 } 6683 /* 6684 * If no JOB active, make the LUN reselect path invalid. 6685 */ 6686 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6687 lp->head.resel_sa = 6688 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6689 } 6690 /* 6691 * Otherwise, we only accept 1 IO per LUN. 6692 * Clear the bit that keeps track of this IO. 6693 */ 6694 else 6695 sym_clr_bit(tp->busy0_map, cp->lun); 6696 6697 /* 6698 * We donnot queue more than 1 ccb per target 6699 * with negotiation at any time. If this ccb was 6700 * used for negotiation, clear this info in the tcb. 6701 */ 6702 if (cp == tp->nego_cp) 6703 tp->nego_cp = 0; 6704 6705 #ifdef SYM_CONF_IARB_SUPPORT 6706 /* 6707 * If we just complete the last queued CCB, 6708 * clear this info that is no longer relevant. 6709 */ 6710 if (cp == np->last_cp) 6711 np->last_cp = 0; 6712 #endif 6713 6714 #ifdef FreeBSD_Bus_Dma_Abstraction 6715 /* 6716 * Unmap user data from DMA map if needed. 6717 */ 6718 if (cp->dmamapped) { 6719 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6720 cp->dmamapped = 0; 6721 } 6722 #endif 6723 6724 /* 6725 * Make this CCB available. 6726 */ 6727 cp->cam_ccb = 0; 6728 cp->host_status = HS_IDLE; 6729 sym_remque(&cp->link_ccbq); 6730 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6731 } 6732 6733 /* 6734 * Allocate a CCB from memory and initialize its fixed part. 6735 */ 6736 static ccb_p sym_alloc_ccb(hcb_p np) 6737 { 6738 ccb_p cp = 0; 6739 int hcode; 6740 6741 /* 6742 * Prevent from allocating more CCBs than we can 6743 * queue to the controller. 6744 */ 6745 if (np->actccbs >= SYM_CONF_MAX_START) 6746 return 0; 6747 6748 /* 6749 * Allocate memory for this CCB. 6750 */ 6751 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6752 if (!cp) 6753 goto out_free; 6754 6755 /* 6756 * Allocate a bounce buffer for sense data. 6757 */ 6758 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6759 if (!cp->sns_bbuf) 6760 goto out_free; 6761 6762 /* 6763 * Allocate a map for the DMA of user data. 6764 */ 6765 #ifdef FreeBSD_Bus_Dma_Abstraction 6766 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6767 goto out_free; 6768 #endif 6769 /* 6770 * Count it. 6771 */ 6772 np->actccbs++; 6773 6774 /* 6775 * Compute the bus address of this ccb. 6776 */ 6777 cp->ccb_ba = vtobus(cp); 6778 6779 /* 6780 * Insert this ccb into the hashed list. 6781 */ 6782 hcode = CCB_HASH_CODE(cp->ccb_ba); 6783 cp->link_ccbh = np->ccbh[hcode]; 6784 np->ccbh[hcode] = cp; 6785 6786 /* 6787 * Initialyze the start and restart actions. 6788 */ 6789 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6790 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6791 6792 /* 6793 * Initilialyze some other fields. 6794 */ 6795 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6796 6797 /* 6798 * Chain into free ccb queue. 6799 */ 6800 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6801 6802 return cp; 6803 out_free: 6804 if (cp) { 6805 if (cp->sns_bbuf) 6806 sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF"); 6807 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6808 } 6809 return 0; 6810 } 6811 6812 /* 6813 * Look up a CCB from a DSA value. 6814 */ 6815 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6816 { 6817 int hcode; 6818 ccb_p cp; 6819 6820 hcode = CCB_HASH_CODE(dsa); 6821 cp = np->ccbh[hcode]; 6822 while (cp) { 6823 if (cp->ccb_ba == dsa) 6824 break; 6825 cp = cp->link_ccbh; 6826 } 6827 6828 return cp; 6829 } 6830 6831 /* 6832 * Target control block initialisation. 6833 * Nothing important to do at the moment. 6834 */ 6835 static void sym_init_tcb (hcb_p np, u_char tn) 6836 { 6837 /* 6838 * Check some alignments required by the chip. 6839 */ 6840 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6841 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6842 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6843 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6844 } 6845 6846 /* 6847 * Lun control block allocation and initialization. 6848 */ 6849 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6850 { 6851 tcb_p tp = &np->target[tn]; 6852 lcb_p lp = sym_lp(np, tp, ln); 6853 6854 /* 6855 * Already done, just return. 6856 */ 6857 if (lp) 6858 return lp; 6859 /* 6860 * Check against some race. 6861 */ 6862 assert(!sym_is_bit(tp->busy0_map, ln)); 6863 6864 /* 6865 * Initialize the target control block if not yet. 6866 */ 6867 sym_init_tcb (np, tn); 6868 6869 /* 6870 * Allocate the LCB bus address array. 6871 * Compute the bus address of this table. 6872 */ 6873 if (ln && !tp->luntbl) { 6874 int i; 6875 6876 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6877 if (!tp->luntbl) 6878 goto fail; 6879 for (i = 0 ; i < 64 ; i++) 6880 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6881 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6882 } 6883 6884 /* 6885 * Allocate the table of pointers for LUN(s) > 0, if needed. 6886 */ 6887 if (ln && !tp->lunmp) { 6888 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6889 "LUNMP"); 6890 if (!tp->lunmp) 6891 goto fail; 6892 } 6893 6894 /* 6895 * Allocate the lcb. 6896 * Make it available to the chip. 6897 */ 6898 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6899 if (!lp) 6900 goto fail; 6901 if (ln) { 6902 tp->lunmp[ln] = lp; 6903 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6904 } 6905 else { 6906 tp->lun0p = lp; 6907 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6908 } 6909 6910 /* 6911 * Let the itl task point to error handling. 6912 */ 6913 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6914 6915 /* 6916 * Set the reselect pattern to our default. :) 6917 */ 6918 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6919 6920 /* 6921 * Set user capabilities. 6922 */ 6923 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6924 6925 fail: 6926 return lp; 6927 } 6928 6929 /* 6930 * Allocate LCB resources for tagged command queuing. 6931 */ 6932 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6933 { 6934 tcb_p tp = &np->target[tn]; 6935 lcb_p lp = sym_lp(np, tp, ln); 6936 int i; 6937 6938 /* 6939 * If LCB not available, try to allocate it. 6940 */ 6941 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6942 goto fail; 6943 6944 /* 6945 * Allocate the task table and and the tag allocation 6946 * circular buffer. We want both or none. 6947 */ 6948 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6949 if (!lp->itlq_tbl) 6950 goto fail; 6951 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6952 if (!lp->cb_tags) { 6953 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6954 lp->itlq_tbl = 0; 6955 goto fail; 6956 } 6957 6958 /* 6959 * Initialize the task table with invalid entries. 6960 */ 6961 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6962 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6963 6964 /* 6965 * Fill up the tag buffer with tag numbers. 6966 */ 6967 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6968 lp->cb_tags[i] = i; 6969 6970 /* 6971 * Make the task table available to SCRIPTS, 6972 * And accept tagged commands now. 6973 */ 6974 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6975 fail: 6976 ; 6977 } 6978 6979 /* 6980 * Test the pci bus snoop logic :-( 6981 * 6982 * Has to be called with interrupts disabled. 6983 */ 6984 #ifndef SYM_CONF_IOMAPPED 6985 static int sym_regtest (hcb_p np) 6986 { 6987 volatile u32 data; 6988 /* 6989 * chip registers may NOT be cached. 6990 * write 0xffffffff to a read only register area, 6991 * and try to read it back. 6992 */ 6993 data = 0xffffffff; 6994 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6995 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6996 #if 1 6997 if (data == 0xffffffff) { 6998 #else 6999 if ((data & 0xe2f0fffd) != 0x02000080) { 7000 #endif 7001 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 7002 (unsigned) data); 7003 return (0x10); 7004 }; 7005 return (0); 7006 } 7007 #endif 7008 7009 static int sym_snooptest (hcb_p np) 7010 { 7011 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 7012 int i, err=0; 7013 #ifndef SYM_CONF_IOMAPPED 7014 err |= sym_regtest (np); 7015 if (err) return (err); 7016 #endif 7017 restart_test: 7018 /* 7019 * Enable Master Parity Checking as we intend 7020 * to enable it for normal operations. 7021 */ 7022 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 7023 /* 7024 * init 7025 */ 7026 pc = SCRIPTB0_BA (np, snooptest); 7027 host_wr = 1; 7028 sym_wr = 2; 7029 /* 7030 * Set memory and register. 7031 */ 7032 np->cache = cpu_to_scr(host_wr); 7033 OUTL (nc_temp, sym_wr); 7034 /* 7035 * Start script (exchange values) 7036 */ 7037 OUTL (nc_dsa, np->hcb_ba); 7038 OUTL_DSP (pc); 7039 /* 7040 * Wait 'til done (with timeout) 7041 */ 7042 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 7043 if (INB(nc_istat) & (INTF|SIP|DIP)) 7044 break; 7045 if (i>=SYM_SNOOP_TIMEOUT) { 7046 printf ("CACHE TEST FAILED: timeout.\n"); 7047 return (0x20); 7048 }; 7049 /* 7050 * Check for fatal DMA errors. 7051 */ 7052 dstat = INB (nc_dstat); 7053 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 7054 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 7055 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 7056 "DISABLING MASTER DATA PARITY CHECKING.\n", 7057 sym_name(np)); 7058 np->rv_ctest4 &= ~MPEE; 7059 goto restart_test; 7060 } 7061 #endif 7062 if (dstat & (MDPE|BF|IID)) { 7063 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 7064 return (0x80); 7065 } 7066 /* 7067 * Save termination position. 7068 */ 7069 pc = INL (nc_dsp); 7070 /* 7071 * Read memory and register. 7072 */ 7073 host_rd = scr_to_cpu(np->cache); 7074 sym_rd = INL (nc_scratcha); 7075 sym_bk = INL (nc_temp); 7076 7077 /* 7078 * Check termination position. 7079 */ 7080 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 7081 printf ("CACHE TEST FAILED: script execution failed.\n"); 7082 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 7083 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 7084 (u_long) SCRIPTB0_BA (np, snoopend) +8); 7085 return (0x40); 7086 }; 7087 /* 7088 * Show results. 7089 */ 7090 if (host_wr != sym_rd) { 7091 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 7092 (int) host_wr, (int) sym_rd); 7093 err |= 1; 7094 }; 7095 if (host_rd != sym_wr) { 7096 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 7097 (int) sym_wr, (int) host_rd); 7098 err |= 2; 7099 }; 7100 if (sym_bk != sym_wr) { 7101 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 7102 (int) sym_wr, (int) sym_bk); 7103 err |= 4; 7104 }; 7105 7106 return (err); 7107 } 7108 7109 /* 7110 * Determine the chip's clock frequency. 7111 * 7112 * This is essential for the negotiation of the synchronous 7113 * transfer rate. 7114 * 7115 * Note: we have to return the correct value. 7116 * THERE IS NO SAFE DEFAULT VALUE. 7117 * 7118 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 7119 * 53C860 and 53C875 rev. 1 support fast20 transfers but 7120 * do not have a clock doubler and so are provided with a 7121 * 80 MHz clock. All other fast20 boards incorporate a doubler 7122 * and so should be delivered with a 40 MHz clock. 7123 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 7124 * clock and provide a clock quadrupler (160 Mhz). 7125 */ 7126 7127 /* 7128 * Select SCSI clock frequency 7129 */ 7130 static void sym_selectclock(hcb_p np, u_char scntl3) 7131 { 7132 /* 7133 * If multiplier not present or not selected, leave here. 7134 */ 7135 if (np->multiplier <= 1) { 7136 OUTB(nc_scntl3, scntl3); 7137 return; 7138 } 7139 7140 if (sym_verbose >= 2) 7141 printf ("%s: enabling clock multiplier\n", sym_name(np)); 7142 7143 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 7144 /* 7145 * Wait for the LCKFRQ bit to be set if supported by the chip. 7146 * Otherwise wait 20 micro-seconds. 7147 */ 7148 if (np->features & FE_LCKFRQ) { 7149 int i = 20; 7150 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 7151 UDELAY (20); 7152 if (!i) 7153 printf("%s: the chip cannot lock the frequency\n", 7154 sym_name(np)); 7155 } else 7156 UDELAY (20); 7157 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 7158 OUTB(nc_scntl3, scntl3); 7159 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 7160 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 7161 } 7162 7163 /* 7164 * calculate SCSI clock frequency (in KHz) 7165 */ 7166 static unsigned getfreq (hcb_p np, int gen) 7167 { 7168 unsigned int ms = 0; 7169 unsigned int f; 7170 7171 /* 7172 * Measure GEN timer delay in order 7173 * to calculate SCSI clock frequency 7174 * 7175 * This code will never execute too 7176 * many loop iterations (if DELAY is 7177 * reasonably correct). It could get 7178 * too low a delay (too high a freq.) 7179 * if the CPU is slow executing the 7180 * loop for some reason (an NMI, for 7181 * example). For this reason we will 7182 * if multiple measurements are to be 7183 * performed trust the higher delay 7184 * (lower frequency returned). 7185 */ 7186 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 7187 (void) INW (nc_sist); /* clear pending scsi interrupt */ 7188 OUTB (nc_dien , 0); /* mask all dma interrupts */ 7189 (void) INW (nc_sist); /* another one, just to be sure :) */ 7190 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 7191 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7192 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 7193 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 7194 UDELAY (1000); /* count ms */ 7195 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7196 /* 7197 * set prescaler to divide by whatever 0 means 7198 * 0 ought to choose divide by 2, but appears 7199 * to set divide by 3.5 mode in my 53c810 ... 7200 */ 7201 OUTB (nc_scntl3, 0); 7202 7203 /* 7204 * adjust for prescaler, and convert into KHz 7205 */ 7206 f = ms ? ((1 << gen) * 4340) / ms : 0; 7207 7208 if (sym_verbose >= 2) 7209 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 7210 sym_name(np), gen, ms, f); 7211 7212 return f; 7213 } 7214 7215 static unsigned sym_getfreq (hcb_p np) 7216 { 7217 u_int f1, f2; 7218 int gen = 11; 7219 7220 (void) getfreq (np, gen); /* throw away first result */ 7221 f1 = getfreq (np, gen); 7222 f2 = getfreq (np, gen); 7223 if (f1 > f2) f1 = f2; /* trust lower result */ 7224 return f1; 7225 } 7226 7227 /* 7228 * Get/probe chip SCSI clock frequency 7229 */ 7230 static void sym_getclock (hcb_p np, int mult) 7231 { 7232 unsigned char scntl3 = np->sv_scntl3; 7233 unsigned char stest1 = np->sv_stest1; 7234 unsigned f1; 7235 7236 /* 7237 * For the C10 core, assume 40 MHz. 7238 */ 7239 if (np->features & FE_C10) { 7240 np->multiplier = mult; 7241 np->clock_khz = 40000 * mult; 7242 return; 7243 } 7244 7245 np->multiplier = 1; 7246 f1 = 40000; 7247 /* 7248 * True with 875/895/896/895A with clock multiplier selected 7249 */ 7250 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7251 if (sym_verbose >= 2) 7252 printf ("%s: clock multiplier found\n", sym_name(np)); 7253 np->multiplier = mult; 7254 } 7255 7256 /* 7257 * If multiplier not found or scntl3 not 7,5,3, 7258 * reset chip and get frequency from general purpose timer. 7259 * Otherwise trust scntl3 BIOS setting. 7260 */ 7261 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7262 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7263 f1 = sym_getfreq (np); 7264 7265 if (sym_verbose) 7266 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7267 7268 if (f1 < 45000) f1 = 40000; 7269 else if (f1 < 55000) f1 = 50000; 7270 else f1 = 80000; 7271 7272 if (f1 < 80000 && mult > 1) { 7273 if (sym_verbose >= 2) 7274 printf ("%s: clock multiplier assumed\n", 7275 sym_name(np)); 7276 np->multiplier = mult; 7277 } 7278 } else { 7279 if ((scntl3 & 7) == 3) f1 = 40000; 7280 else if ((scntl3 & 7) == 5) f1 = 80000; 7281 else f1 = 160000; 7282 7283 f1 /= np->multiplier; 7284 } 7285 7286 /* 7287 * Compute controller synchronous parameters. 7288 */ 7289 f1 *= np->multiplier; 7290 np->clock_khz = f1; 7291 } 7292 7293 /* 7294 * Get/probe PCI clock frequency 7295 */ 7296 static int sym_getpciclock (hcb_p np) 7297 { 7298 int f = 0; 7299 7300 /* 7301 * For the C1010-33, this doesn't work. 7302 * For the C1010-66, this will be tested when I'll have 7303 * such a beast to play with. 7304 */ 7305 if (!(np->features & FE_C10)) { 7306 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7307 f = (int) sym_getfreq (np); 7308 OUTB (nc_stest1, 0); 7309 } 7310 np->pciclk_khz = f; 7311 7312 return f; 7313 } 7314 7315 /*============= DRIVER ACTION/COMPLETION ====================*/ 7316 7317 /* 7318 * Print something that tells about extended errors. 7319 */ 7320 static void sym_print_xerr(ccb_p cp, int x_status) 7321 { 7322 if (x_status & XE_PARITY_ERR) { 7323 PRINT_ADDR(cp); 7324 printf ("unrecovered SCSI parity error.\n"); 7325 } 7326 if (x_status & XE_EXTRA_DATA) { 7327 PRINT_ADDR(cp); 7328 printf ("extraneous data discarded.\n"); 7329 } 7330 if (x_status & XE_BAD_PHASE) { 7331 PRINT_ADDR(cp); 7332 printf ("illegal scsi phase (4/5).\n"); 7333 } 7334 if (x_status & XE_SODL_UNRUN) { 7335 PRINT_ADDR(cp); 7336 printf ("ODD transfer in DATA OUT phase.\n"); 7337 } 7338 if (x_status & XE_SWIDE_OVRUN) { 7339 PRINT_ADDR(cp); 7340 printf ("ODD transfer in DATA IN phase.\n"); 7341 } 7342 } 7343 7344 /* 7345 * Choose the more appropriate CAM status if 7346 * the IO encountered an extended error. 7347 */ 7348 static int sym_xerr_cam_status(int cam_status, int x_status) 7349 { 7350 if (x_status) { 7351 if (x_status & XE_PARITY_ERR) 7352 cam_status = CAM_UNCOR_PARITY; 7353 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7354 cam_status = CAM_DATA_RUN_ERR; 7355 else if (x_status & XE_BAD_PHASE) 7356 cam_status = CAM_REQ_CMP_ERR; 7357 else 7358 cam_status = CAM_REQ_CMP_ERR; 7359 } 7360 return cam_status; 7361 } 7362 7363 /* 7364 * Complete execution of a SCSI command with extented 7365 * error, SCSI status error, or having been auto-sensed. 7366 * 7367 * The SCRIPTS processor is not running there, so we 7368 * can safely access IO registers and remove JOBs from 7369 * the START queue. 7370 * SCRATCHA is assumed to have been loaded with STARTPOS 7371 * before the SCRIPTS called the C code. 7372 */ 7373 static void sym_complete_error (hcb_p np, ccb_p cp) 7374 { 7375 struct ccb_scsiio *csio; 7376 u_int cam_status; 7377 int i; 7378 7379 /* 7380 * Paranoid check. :) 7381 */ 7382 if (!cp || !cp->cam_ccb) 7383 return; 7384 7385 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7386 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7387 cp->host_status, cp->ssss_status, cp->host_flags, 7388 cp->target, cp->lun); 7389 MDELAY(100); 7390 } 7391 7392 /* 7393 * Get CAM command pointer. 7394 */ 7395 csio = &cp->cam_ccb->csio; 7396 7397 /* 7398 * Check for extended errors. 7399 */ 7400 if (cp->xerr_status) { 7401 if (sym_verbose) 7402 sym_print_xerr(cp, cp->xerr_status); 7403 if (cp->host_status == HS_COMPLETE) 7404 cp->host_status = HS_COMP_ERR; 7405 } 7406 7407 /* 7408 * Calculate the residual. 7409 */ 7410 csio->sense_resid = 0; 7411 csio->resid = sym_compute_residual(np, cp); 7412 7413 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7414 csio->resid = 0; /* throw them away. :) */ 7415 cp->sv_resid = 0; 7416 } 7417 7418 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7419 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7420 csio->sense_resid = csio->resid; /* Swap residuals */ 7421 csio->resid = cp->sv_resid; 7422 cp->sv_resid = 0; 7423 if (sym_verbose && cp->sv_xerr_status) 7424 sym_print_xerr(cp, cp->sv_xerr_status); 7425 if (cp->host_status == HS_COMPLETE && 7426 cp->ssss_status == S_GOOD && 7427 cp->xerr_status == 0) { 7428 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7429 cp->sv_xerr_status); 7430 cam_status |= CAM_AUTOSNS_VALID; 7431 /* 7432 * Bounce back the sense data to user and 7433 * fix the residual. 7434 */ 7435 bzero(&csio->sense_data, csio->sense_len); 7436 bcopy(cp->sns_bbuf, &csio->sense_data, 7437 MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); 7438 csio->sense_resid += csio->sense_len; 7439 csio->sense_resid -= SYM_SNS_BBUF_LEN; 7440 #if 0 7441 /* 7442 * If the device reports a UNIT ATTENTION condition 7443 * due to a RESET condition, we should consider all 7444 * disconnect CCBs for this unit as aborted. 7445 */ 7446 if (1) { 7447 u_char *p; 7448 p = (u_char *) csio->sense_data; 7449 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7450 sym_clear_tasks(np, CAM_REQ_ABORTED, 7451 cp->target,cp->lun, -1); 7452 } 7453 #endif 7454 } 7455 else 7456 cam_status = CAM_AUTOSENSE_FAIL; 7457 } 7458 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7459 csio->scsi_status = cp->ssss_status; 7460 cam_status = CAM_SCSI_STATUS_ERROR; 7461 } 7462 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7463 cam_status = CAM_SEL_TIMEOUT; 7464 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7465 cam_status = CAM_UNEXP_BUSFREE; 7466 else { /* Extended error */ 7467 if (sym_verbose) { 7468 PRINT_ADDR(cp); 7469 printf ("COMMAND FAILED (%x %x %x).\n", 7470 cp->host_status, cp->ssss_status, 7471 cp->xerr_status); 7472 } 7473 csio->scsi_status = cp->ssss_status; 7474 /* 7475 * Set the most appropriate value for CAM status. 7476 */ 7477 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7478 cp->xerr_status); 7479 } 7480 7481 /* 7482 * Dequeue all queued CCBs for that device 7483 * not yet started by SCRIPTS. 7484 */ 7485 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7486 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7487 7488 /* 7489 * Restart the SCRIPTS processor. 7490 */ 7491 OUTL_DSP (SCRIPTA_BA (np, start)); 7492 7493 #ifdef FreeBSD_Bus_Dma_Abstraction 7494 /* 7495 * Synchronize DMA map if needed. 7496 */ 7497 if (cp->dmamapped) { 7498 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7499 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 7500 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7501 } 7502 #endif 7503 /* 7504 * Add this one to the COMP queue. 7505 * Complete all those commands with either error 7506 * or requeue condition. 7507 */ 7508 sym_set_cam_status((union ccb *) csio, cam_status); 7509 sym_remque(&cp->link_ccbq); 7510 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7511 sym_flush_comp_queue(np, 0); 7512 } 7513 7514 /* 7515 * Complete execution of a successful SCSI command. 7516 * 7517 * Only successful commands go to the DONE queue, 7518 * since we need to have the SCRIPTS processor 7519 * stopped on any error condition. 7520 * The SCRIPTS processor is running while we are 7521 * completing successful commands. 7522 */ 7523 static void sym_complete_ok (hcb_p np, ccb_p cp) 7524 { 7525 struct ccb_scsiio *csio; 7526 tcb_p tp; 7527 lcb_p lp; 7528 7529 /* 7530 * Paranoid check. :) 7531 */ 7532 if (!cp || !cp->cam_ccb) 7533 return; 7534 assert (cp->host_status == HS_COMPLETE); 7535 7536 /* 7537 * Get command, target and lun pointers. 7538 */ 7539 csio = &cp->cam_ccb->csio; 7540 tp = &np->target[cp->target]; 7541 lp = sym_lp(np, tp, cp->lun); 7542 7543 /* 7544 * Assume device discovered on first success. 7545 */ 7546 if (!lp) 7547 sym_set_bit(tp->lun_map, cp->lun); 7548 7549 /* 7550 * If all data have been transferred, given than no 7551 * extended error did occur, there is no residual. 7552 */ 7553 csio->resid = 0; 7554 if (cp->phys.head.lastp != cp->phys.head.goalp) 7555 csio->resid = sym_compute_residual(np, cp); 7556 7557 /* 7558 * Wrong transfer residuals may be worse than just always 7559 * returning zero. User can disable this feature from 7560 * sym_conf.h. Residual support is enabled by default. 7561 */ 7562 if (!SYM_CONF_RESIDUAL_SUPPORT) 7563 csio->resid = 0; 7564 7565 #ifdef FreeBSD_Bus_Dma_Abstraction 7566 /* 7567 * Synchronize DMA map if needed. 7568 */ 7569 if (cp->dmamapped) { 7570 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7571 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 7572 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7573 } 7574 #endif 7575 /* 7576 * Set status and complete the command. 7577 */ 7578 csio->scsi_status = cp->ssss_status; 7579 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7580 sym_free_ccb (np, cp); 7581 sym_xpt_done(np, (union ccb *) csio); 7582 } 7583 7584 /* 7585 * Our timeout handler. 7586 */ 7587 static void sym_timeout1(void *arg) 7588 { 7589 union ccb *ccb = (union ccb *) arg; 7590 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7591 7592 /* 7593 * Check that the CAM CCB is still queued. 7594 */ 7595 if (!np) 7596 return; 7597 7598 switch(ccb->ccb_h.func_code) { 7599 case XPT_SCSI_IO: 7600 (void) sym_abort_scsiio(np, ccb, 1); 7601 break; 7602 default: 7603 break; 7604 } 7605 } 7606 7607 static void sym_timeout(void *arg) 7608 { 7609 int s = splcam(); 7610 sym_timeout1(arg); 7611 splx(s); 7612 } 7613 7614 /* 7615 * Abort an SCSI IO. 7616 */ 7617 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7618 { 7619 ccb_p cp; 7620 SYM_QUEHEAD *qp; 7621 7622 /* 7623 * Look up our CCB control block. 7624 */ 7625 cp = 0; 7626 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7627 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7628 if (cp2->cam_ccb == ccb) { 7629 cp = cp2; 7630 break; 7631 } 7632 } 7633 if (!cp || cp->host_status == HS_WAIT) 7634 return -1; 7635 7636 /* 7637 * If a previous abort didn't succeed in time, 7638 * perform a BUS reset. 7639 */ 7640 if (cp->to_abort) { 7641 sym_reset_scsi_bus(np, 1); 7642 return 0; 7643 } 7644 7645 /* 7646 * Mark the CCB for abort and allow time for. 7647 */ 7648 cp->to_abort = timed_out ? 2 : 1; 7649 callout_reset(&ccb->ccb_h.timeout_ch, 10 * hz, sym_timeout, ccb); 7650 7651 /* 7652 * Tell the SCRIPTS processor to stop and synchronize with us. 7653 */ 7654 np->istat_sem = SEM; 7655 OUTB (nc_istat, SIGP|SEM); 7656 return 0; 7657 } 7658 7659 /* 7660 * Reset a SCSI device (all LUNs of a target). 7661 */ 7662 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7663 { 7664 tcb_p tp; 7665 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7666 7667 if (ccb_h->target_id == np->myaddr || 7668 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7669 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7670 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7671 return; 7672 } 7673 7674 tp = &np->target[ccb_h->target_id]; 7675 7676 tp->to_reset = 1; 7677 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7678 7679 np->istat_sem = SEM; 7680 OUTB (nc_istat, SIGP|SEM); 7681 return; 7682 } 7683 7684 /* 7685 * SIM action entry point. 7686 */ 7687 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7688 { 7689 int s = splcam(); 7690 sym_action1(sim, ccb); 7691 splx(s); 7692 } 7693 7694 static void sym_action1(struct cam_sim *sim, union ccb *ccb) 7695 { 7696 hcb_p np; 7697 tcb_p tp; 7698 lcb_p lp; 7699 ccb_p cp; 7700 int tmp; 7701 u_char idmsg, *msgptr; 7702 u_int msglen; 7703 struct ccb_scsiio *csio; 7704 struct ccb_hdr *ccb_h; 7705 7706 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7707 7708 /* 7709 * Retrieve our controller data structure. 7710 */ 7711 np = (hcb_p) cam_sim_softc(sim); 7712 7713 /* 7714 * The common case is SCSI IO. 7715 * We deal with other ones elsewhere. 7716 */ 7717 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7718 sym_action2(sim, ccb); 7719 return; 7720 } 7721 csio = &ccb->csio; 7722 ccb_h = &csio->ccb_h; 7723 7724 /* 7725 * Work around races. 7726 */ 7727 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7728 xpt_done(ccb); 7729 return; 7730 } 7731 7732 /* 7733 * Minimal checkings, so that we will not 7734 * go outside our tables. 7735 */ 7736 if (ccb_h->target_id == np->myaddr || 7737 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7738 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7739 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7740 return; 7741 } 7742 7743 /* 7744 * Retreive the target and lun descriptors. 7745 */ 7746 tp = &np->target[ccb_h->target_id]; 7747 lp = sym_lp(np, tp, ccb_h->target_lun); 7748 7749 /* 7750 * Complete the 1st INQUIRY command with error 7751 * condition if the device is flagged NOSCAN 7752 * at BOOT in the NVRAM. This may speed up 7753 * the boot and maintain coherency with BIOS 7754 * device numbering. Clearing the flag allows 7755 * user to rescan skipped devices later. 7756 * We also return error for devices not flagged 7757 * for SCAN LUNS in the NVRAM since some mono-lun 7758 * devices behave badly when asked for some non 7759 * zero LUN. Btw, this is an absolute hack.:-) 7760 */ 7761 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7762 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7763 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7764 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7765 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7766 ccb_h->target_lun != 0)) { 7767 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7768 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7769 return; 7770 } 7771 } 7772 7773 /* 7774 * Get a control block for this IO. 7775 */ 7776 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7777 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7778 if (!cp) { 7779 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7780 return; 7781 } 7782 7783 /* 7784 * Keep track of the IO in our CCB. 7785 */ 7786 cp->cam_ccb = ccb; 7787 7788 /* 7789 * Build the IDENTIFY message. 7790 */ 7791 idmsg = M_IDENTIFY | cp->lun; 7792 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7793 idmsg |= 0x40; 7794 7795 msgptr = cp->scsi_smsg; 7796 msglen = 0; 7797 msgptr[msglen++] = idmsg; 7798 7799 /* 7800 * Build the tag message if present. 7801 */ 7802 if (cp->tag != NO_TAG) { 7803 u_char order = csio->tag_action; 7804 7805 switch(order) { 7806 case M_ORDERED_TAG: 7807 break; 7808 case M_HEAD_TAG: 7809 break; 7810 default: 7811 order = M_SIMPLE_TAG; 7812 } 7813 msgptr[msglen++] = order; 7814 7815 /* 7816 * For less than 128 tags, actual tags are numbered 7817 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7818 * with devices that have problems with #TAG 0 or too 7819 * great #TAG numbers. For more tags (up to 256), 7820 * we use directly our tag number. 7821 */ 7822 #if SYM_CONF_MAX_TASK > (512/4) 7823 msgptr[msglen++] = cp->tag; 7824 #else 7825 msgptr[msglen++] = (cp->tag << 1) + 1; 7826 #endif 7827 } 7828 7829 /* 7830 * Build a negotiation message if needed. 7831 * (nego_status is filled by sym_prepare_nego()) 7832 */ 7833 cp->nego_status = 0; 7834 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7835 tp->tinfo.current.period != tp->tinfo.goal.period || 7836 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7837 tp->tinfo.current.options != tp->tinfo.goal.options) { 7838 if (!tp->nego_cp && lp) 7839 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7840 } 7841 7842 /* 7843 * Fill in our ccb 7844 */ 7845 7846 /* 7847 * Startqueue 7848 */ 7849 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7850 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7851 7852 /* 7853 * select 7854 */ 7855 cp->phys.select.sel_id = cp->target; 7856 cp->phys.select.sel_scntl3 = tp->head.wval; 7857 cp->phys.select.sel_sxfer = tp->head.sval; 7858 cp->phys.select.sel_scntl4 = tp->head.uval; 7859 7860 /* 7861 * message 7862 */ 7863 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7864 cp->phys.smsg.size = cpu_to_scr(msglen); 7865 7866 /* 7867 * command 7868 */ 7869 if (sym_setup_cdb(np, csio, cp) < 0) { 7870 sym_free_ccb(np, cp); 7871 sym_xpt_done(np, ccb); 7872 return; 7873 } 7874 7875 /* 7876 * status 7877 */ 7878 #if 0 /* Provision */ 7879 cp->actualquirks = tp->quirks; 7880 #endif 7881 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7882 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7883 cp->ssss_status = S_ILLEGAL; 7884 cp->xerr_status = 0; 7885 cp->host_flags = 0; 7886 cp->extra_bytes = 0; 7887 7888 /* 7889 * extreme data pointer. 7890 * shall be positive, so -1 is lower than lowest.:) 7891 */ 7892 cp->ext_sg = -1; 7893 cp->ext_ofs = 0; 7894 7895 /* 7896 * Build the data descriptor block 7897 * and start the IO. 7898 */ 7899 sym_setup_data_and_start(np, csio, cp); 7900 } 7901 7902 /* 7903 * Setup buffers and pointers that address the CDB. 7904 * I bet, physical CDBs will never be used on the planet, 7905 * since they can be bounced without significant overhead. 7906 */ 7907 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7908 { 7909 struct ccb_hdr *ccb_h; 7910 u32 cmd_ba; 7911 int cmd_len; 7912 7913 ccb_h = &csio->ccb_h; 7914 7915 /* 7916 * CDB is 16 bytes max. 7917 */ 7918 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7919 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7920 return -1; 7921 } 7922 cmd_len = csio->cdb_len; 7923 7924 if (ccb_h->flags & CAM_CDB_POINTER) { 7925 /* CDB is a pointer */ 7926 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7927 /* CDB pointer is virtual */ 7928 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7929 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7930 } else { 7931 /* CDB pointer is physical */ 7932 #if 0 7933 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7934 #else 7935 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7936 return -1; 7937 #endif 7938 } 7939 } else { 7940 /* CDB is in the CAM ccb (buffer) */ 7941 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7942 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7943 } 7944 7945 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7946 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7947 7948 return 0; 7949 } 7950 7951 /* 7952 * Set up data pointers used by SCRIPTS. 7953 */ 7954 static void __inline 7955 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7956 { 7957 u32 lastp, goalp; 7958 7959 /* 7960 * No segments means no data. 7961 */ 7962 if (!cp->segments) 7963 dir = CAM_DIR_NONE; 7964 7965 /* 7966 * Set the data pointer. 7967 */ 7968 switch(dir) { 7969 case CAM_DIR_OUT: 7970 goalp = SCRIPTA_BA (np, data_out2) + 8; 7971 lastp = goalp - 8 - (cp->segments * (2*4)); 7972 break; 7973 case CAM_DIR_IN: 7974 cp->host_flags |= HF_DATA_IN; 7975 goalp = SCRIPTA_BA (np, data_in2) + 8; 7976 lastp = goalp - 8 - (cp->segments * (2*4)); 7977 break; 7978 case CAM_DIR_NONE: 7979 default: 7980 lastp = goalp = SCRIPTB_BA (np, no_data); 7981 break; 7982 } 7983 7984 cp->phys.head.lastp = cpu_to_scr(lastp); 7985 cp->phys.head.goalp = cpu_to_scr(goalp); 7986 cp->phys.head.savep = cpu_to_scr(lastp); 7987 cp->startp = cp->phys.head.savep; 7988 } 7989 7990 7991 #ifdef FreeBSD_Bus_Dma_Abstraction 7992 /* 7993 * Call back routine for the DMA map service. 7994 * If bounce buffers are used (why ?), we may sleep and then 7995 * be called there in another context. 7996 */ 7997 static void 7998 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7999 { 8000 ccb_p cp; 8001 hcb_p np; 8002 union ccb *ccb; 8003 int s; 8004 8005 s = splcam(); 8006 8007 cp = (ccb_p) arg; 8008 ccb = cp->cam_ccb; 8009 np = (hcb_p) cp->arg; 8010 8011 /* 8012 * Deal with weird races. 8013 */ 8014 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 8015 goto out_abort; 8016 8017 /* 8018 * Deal with weird errors. 8019 */ 8020 if (error) { 8021 cp->dmamapped = 0; 8022 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 8023 goto out_abort; 8024 } 8025 8026 /* 8027 * Build the data descriptor for the chip. 8028 */ 8029 if (nsegs) { 8030 int retv; 8031 /* 896 rev 1 requires to be careful about boundaries */ 8032 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 8033 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 8034 else 8035 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 8036 if (retv < 0) { 8037 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 8038 goto out_abort; 8039 } 8040 } 8041 8042 /* 8043 * Synchronize the DMA map only if we have 8044 * actually mapped the data. 8045 */ 8046 if (cp->dmamapped) { 8047 bus_dmamap_sync(np->data_dmat, cp->dmamap, 8048 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 8049 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 8050 } 8051 8052 /* 8053 * Set host status to busy state. 8054 * May have been set back to HS_WAIT to avoid a race. 8055 */ 8056 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 8057 8058 /* 8059 * Set data pointers. 8060 */ 8061 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 8062 8063 /* 8064 * Enqueue this IO in our pending queue. 8065 */ 8066 sym_enqueue_cam_ccb(np, ccb); 8067 8068 /* 8069 * When `#ifed 1', the code below makes the driver 8070 * panic on the first attempt to write to a SCSI device. 8071 * It is the first test we want to do after a driver 8072 * change that does not seem obviously safe. :) 8073 */ 8074 #if 0 8075 switch (cp->cdb_buf[0]) { 8076 case 0x0A: case 0x2A: case 0xAA: 8077 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 8078 MDELAY(10000); 8079 break; 8080 default: 8081 break; 8082 } 8083 #endif 8084 /* 8085 * Activate this job. 8086 */ 8087 sym_put_start_queue(np, cp); 8088 out: 8089 splx(s); 8090 return; 8091 out_abort: 8092 sym_free_ccb(np, cp); 8093 sym_xpt_done(np, ccb); 8094 goto out; 8095 } 8096 8097 /* 8098 * How complex it gets to deal with the data in CAM. 8099 * The Bus Dma stuff makes things still more complex. 8100 */ 8101 static void 8102 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 8103 { 8104 struct ccb_hdr *ccb_h; 8105 int dir, retv; 8106 8107 ccb_h = &csio->ccb_h; 8108 8109 /* 8110 * Now deal with the data. 8111 */ 8112 cp->data_len = csio->dxfer_len; 8113 cp->arg = np; 8114 8115 /* 8116 * No direction means no data. 8117 */ 8118 dir = (ccb_h->flags & CAM_DIR_MASK); 8119 if (dir == CAM_DIR_NONE) { 8120 sym_execute_ccb(cp, NULL, 0, 0); 8121 return; 8122 } 8123 8124 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 8125 /* Single buffer */ 8126 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8127 /* Buffer is virtual */ 8128 int s; 8129 8130 cp->dmamapped = (dir == CAM_DIR_IN) ? 8131 SYM_DMA_READ : SYM_DMA_WRITE; 8132 s = splsoftvm(); 8133 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 8134 csio->data_ptr, csio->dxfer_len, 8135 sym_execute_ccb, cp, 0); 8136 if (retv == EINPROGRESS) { 8137 cp->host_status = HS_WAIT; 8138 xpt_freeze_simq(np->sim, 1); 8139 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 8140 } 8141 splx(s); 8142 } else { 8143 /* Buffer is physical */ 8144 struct bus_dma_segment seg; 8145 8146 seg.ds_addr = (bus_addr_t) csio->data_ptr; 8147 sym_execute_ccb(cp, &seg, 1, 0); 8148 } 8149 } else { 8150 /* Scatter/gather list */ 8151 struct bus_dma_segment *segs; 8152 8153 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 8154 /* The SG list pointer is physical */ 8155 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8156 goto out_abort; 8157 } 8158 8159 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8160 /* SG buffer pointers are virtual */ 8161 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8162 goto out_abort; 8163 } 8164 8165 /* SG buffer pointers are physical */ 8166 segs = (struct bus_dma_segment *)csio->data_ptr; 8167 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 8168 } 8169 return; 8170 out_abort: 8171 sym_free_ccb(np, cp); 8172 sym_xpt_done(np, (union ccb *) csio); 8173 } 8174 8175 /* 8176 * Move the scatter list to our data block. 8177 */ 8178 static int 8179 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 8180 bus_dma_segment_t *psegs, int nsegs) 8181 { 8182 struct sym_tblmove *data; 8183 bus_dma_segment_t *psegs2; 8184 8185 if (nsegs > SYM_CONF_MAX_SG) 8186 return -1; 8187 8188 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 8189 psegs2 = &psegs[nsegs-1]; 8190 cp->segments = nsegs; 8191 8192 while (1) { 8193 data->addr = cpu_to_scr(psegs2->ds_addr); 8194 data->size = cpu_to_scr(psegs2->ds_len); 8195 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8196 printf ("%s scatter: paddr=%lx len=%ld\n", 8197 sym_name(np), (long) psegs2->ds_addr, 8198 (long) psegs2->ds_len); 8199 } 8200 if (psegs2 != psegs) { 8201 --data; 8202 --psegs2; 8203 continue; 8204 } 8205 break; 8206 } 8207 return 0; 8208 } 8209 8210 #else /* FreeBSD_Bus_Dma_Abstraction */ 8211 8212 /* 8213 * How complex it gets to deal with the data in CAM. 8214 * Variant without the Bus Dma Abstraction option. 8215 */ 8216 static void 8217 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 8218 { 8219 struct ccb_hdr *ccb_h; 8220 int dir, retv; 8221 8222 ccb_h = &csio->ccb_h; 8223 8224 /* 8225 * Now deal with the data. 8226 */ 8227 cp->data_len = 0; 8228 cp->segments = 0; 8229 8230 /* 8231 * No direction means no data. 8232 */ 8233 dir = (ccb_h->flags & CAM_DIR_MASK); 8234 if (dir == CAM_DIR_NONE) 8235 goto end_scatter; 8236 8237 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 8238 /* Single buffer */ 8239 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8240 /* Buffer is virtual */ 8241 retv = sym_scatter_virtual(np, cp, 8242 (vm_offset_t) csio->data_ptr, 8243 (vm_size_t) csio->dxfer_len); 8244 } else { 8245 /* Buffer is physical */ 8246 retv = sym_scatter_physical(np, cp, 8247 (vm_offset_t) csio->data_ptr, 8248 (vm_size_t) csio->dxfer_len); 8249 } 8250 } else { 8251 /* Scatter/gather list */ 8252 int nsegs; 8253 struct bus_dma_segment *segs; 8254 segs = (struct bus_dma_segment *)csio->data_ptr; 8255 nsegs = csio->sglist_cnt; 8256 8257 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 8258 /* The SG list pointer is physical */ 8259 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8260 goto out_abort; 8261 } 8262 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8263 /* SG buffer pointers are virtual */ 8264 retv = sym_scatter_sg_virtual(np, cp, segs, nsegs); 8265 } else { 8266 /* SG buffer pointers are physical */ 8267 retv = sym_scatter_sg_physical(np, cp, segs, nsegs); 8268 } 8269 } 8270 if (retv < 0) { 8271 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 8272 goto out_abort; 8273 } 8274 8275 end_scatter: 8276 /* 8277 * Set data pointers. 8278 */ 8279 sym_setup_data_pointers(np, cp, dir); 8280 8281 /* 8282 * Enqueue this IO in our pending queue. 8283 */ 8284 sym_enqueue_cam_ccb(np, (union ccb *) csio); 8285 8286 /* 8287 * Activate this job. 8288 */ 8289 sym_put_start_queue(np, cp); 8290 8291 /* 8292 * Command is successfully queued. 8293 */ 8294 return; 8295 out_abort: 8296 sym_free_ccb(np, cp); 8297 sym_xpt_done(np, (union ccb *) csio); 8298 } 8299 8300 /* 8301 * Scatter a virtual buffer into bus addressable chunks. 8302 */ 8303 static int 8304 sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len) 8305 { 8306 u_long pe, pn; 8307 u_long n, k; 8308 int s; 8309 8310 cp->data_len += len; 8311 8312 pe = vaddr + len; 8313 n = len; 8314 s = SYM_CONF_MAX_SG - 1 - cp->segments; 8315 8316 while (n && s >= 0) { 8317 pn = (pe - 1) & ~PAGE_MASK; 8318 k = pe - pn; 8319 if (k > n) { 8320 k = n; 8321 pn = pe - n; 8322 } 8323 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8324 printf ("%s scatter: va=%lx pa=%lx siz=%ld\n", 8325 sym_name(np), pn, (u_long) vtobus(pn), k); 8326 } 8327 cp->phys.data[s].addr = cpu_to_scr(vtobus(pn)); 8328 cp->phys.data[s].size = cpu_to_scr(k); 8329 pe = pn; 8330 n -= k; 8331 --s; 8332 } 8333 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8334 8335 return n ? -1 : 0; 8336 } 8337 8338 /* 8339 * Scatter a SG list with virtual addresses into bus addressable chunks. 8340 */ 8341 static int 8342 sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 8343 { 8344 int i, retv = 0; 8345 8346 for (i = nsegs - 1 ; i >= 0 ; --i) { 8347 retv = sym_scatter_virtual(np, cp, 8348 psegs[i].ds_addr, psegs[i].ds_len); 8349 if (retv < 0) 8350 break; 8351 } 8352 return retv; 8353 } 8354 8355 /* 8356 * Scatter a physical buffer into bus addressable chunks. 8357 */ 8358 static int 8359 sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len) 8360 { 8361 struct bus_dma_segment seg; 8362 8363 seg.ds_addr = paddr; 8364 seg.ds_len = len; 8365 return sym_scatter_sg_physical(np, cp, &seg, 1); 8366 } 8367 8368 #endif /* FreeBSD_Bus_Dma_Abstraction */ 8369 8370 /* 8371 * Scatter a SG list with physical addresses into bus addressable chunks. 8372 * We need to ensure 16MB boundaries not to be crossed during DMA of 8373 * each segment, due to some chips being flawed. 8374 */ 8375 #define BOUND_MASK ((1UL<<24)-1) 8376 static int 8377 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 8378 { 8379 u_long ps, pe, pn; 8380 u_long k; 8381 int s, t; 8382 8383 #ifndef FreeBSD_Bus_Dma_Abstraction 8384 s = SYM_CONF_MAX_SG - 1 - cp->segments; 8385 #else 8386 s = SYM_CONF_MAX_SG - 1; 8387 #endif 8388 t = nsegs - 1; 8389 ps = psegs[t].ds_addr; 8390 pe = ps + psegs[t].ds_len; 8391 8392 while (s >= 0) { 8393 pn = (pe - 1) & ~BOUND_MASK; 8394 if (pn <= ps) 8395 pn = ps; 8396 k = pe - pn; 8397 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8398 printf ("%s scatter: paddr=%lx len=%ld\n", 8399 sym_name(np), pn, k); 8400 } 8401 cp->phys.data[s].addr = cpu_to_scr(pn); 8402 cp->phys.data[s].size = cpu_to_scr(k); 8403 #ifndef FreeBSD_Bus_Dma_Abstraction 8404 cp->data_len += k; 8405 #endif 8406 --s; 8407 if (pn == ps) { 8408 if (--t < 0) 8409 break; 8410 ps = psegs[t].ds_addr; 8411 pe = ps + psegs[t].ds_len; 8412 } 8413 else 8414 pe = pn; 8415 } 8416 8417 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8418 8419 return t >= 0 ? -1 : 0; 8420 } 8421 #undef BOUND_MASK 8422 8423 /* 8424 * SIM action for non performance critical stuff. 8425 */ 8426 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8427 { 8428 hcb_p np; 8429 tcb_p tp; 8430 lcb_p lp; 8431 struct ccb_hdr *ccb_h; 8432 8433 /* 8434 * Retrieve our controller data structure. 8435 */ 8436 np = (hcb_p) cam_sim_softc(sim); 8437 8438 ccb_h = &ccb->ccb_h; 8439 8440 switch (ccb_h->func_code) { 8441 case XPT_SET_TRAN_SETTINGS: 8442 { 8443 struct ccb_trans_settings *cts; 8444 8445 cts = &ccb->cts; 8446 tp = &np->target[ccb_h->target_id]; 8447 8448 /* 8449 * Update SPI transport settings in TARGET control block. 8450 * Update SCSI device settings in LUN control block. 8451 */ 8452 lp = sym_lp(np, tp, ccb_h->target_lun); 8453 #ifdef FreeBSD_New_Tran_Settings 8454 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8455 #else 8456 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8457 #endif 8458 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8459 if (lp) 8460 sym_update_dflags(np, &lp->current_flags, cts); 8461 } 8462 #ifdef FreeBSD_New_Tran_Settings 8463 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8464 #else 8465 if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) { 8466 #endif 8467 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8468 if (lp) 8469 sym_update_dflags(np, &lp->user_flags, cts); 8470 } 8471 8472 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8473 break; 8474 } 8475 case XPT_GET_TRAN_SETTINGS: 8476 { 8477 struct ccb_trans_settings *cts; 8478 struct sym_trans *tip; 8479 u_char dflags; 8480 8481 cts = &ccb->cts; 8482 tp = &np->target[ccb_h->target_id]; 8483 lp = sym_lp(np, tp, ccb_h->target_lun); 8484 8485 #ifdef FreeBSD_New_Tran_Settings 8486 #define cts__scsi (&cts->proto_specific.scsi) 8487 #define cts__spi (&cts->xport_specific.spi) 8488 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8489 tip = &tp->tinfo.current; 8490 dflags = lp ? lp->current_flags : 0; 8491 } 8492 else { 8493 tip = &tp->tinfo.user; 8494 dflags = lp ? lp->user_flags : tp->usrflags; 8495 } 8496 8497 cts->protocol = PROTO_SCSI; 8498 cts->transport = XPORT_SPI; 8499 cts->protocol_version = tip->scsi_version; 8500 cts->transport_version = tip->spi_version; 8501 8502 cts__spi->sync_period = tip->period; 8503 cts__spi->sync_offset = tip->offset; 8504 cts__spi->bus_width = tip->width; 8505 cts__spi->ppr_options = tip->options; 8506 8507 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8508 | CTS_SPI_VALID_SYNC_OFFSET 8509 | CTS_SPI_VALID_BUS_WIDTH 8510 | CTS_SPI_VALID_PPR_OPTIONS; 8511 8512 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8513 if (dflags & SYM_DISC_ENABLED) 8514 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8515 cts__spi->valid |= CTS_SPI_VALID_DISC; 8516 8517 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8518 if (dflags & SYM_TAGS_ENABLED) 8519 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8520 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8521 #undef cts__spi 8522 #undef cts__scsi 8523 #else 8524 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8525 tip = &tp->tinfo.current; 8526 dflags = lp ? lp->current_flags : 0; 8527 } 8528 else { 8529 tip = &tp->tinfo.user; 8530 dflags = lp ? lp->user_flags : tp->usrflags; 8531 } 8532 8533 cts->sync_period = tip->period; 8534 cts->sync_offset = tip->offset; 8535 cts->bus_width = tip->width; 8536 8537 cts->valid = CCB_TRANS_SYNC_RATE_VALID 8538 | CCB_TRANS_SYNC_OFFSET_VALID 8539 | CCB_TRANS_BUS_WIDTH_VALID; 8540 8541 cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); 8542 8543 if (dflags & SYM_DISC_ENABLED) 8544 cts->flags |= CCB_TRANS_DISC_ENB; 8545 8546 if (dflags & SYM_TAGS_ENABLED) 8547 cts->flags |= CCB_TRANS_TAG_ENB; 8548 8549 cts->valid |= CCB_TRANS_DISC_VALID; 8550 cts->valid |= CCB_TRANS_TQ_VALID; 8551 #endif 8552 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8553 break; 8554 } 8555 case XPT_CALC_GEOMETRY: 8556 { 8557 struct ccb_calc_geometry *ccg; 8558 u32 size_mb; 8559 u32 secs_per_cylinder; 8560 int extended; 8561 8562 /* 8563 * Silly DOS geometry. 8564 */ 8565 ccg = &ccb->ccg; 8566 size_mb = ccg->volume_size 8567 / ((1024L * 1024L) / ccg->block_size); 8568 extended = 1; 8569 8570 if (size_mb > 1024 && extended) { 8571 ccg->heads = 255; 8572 ccg->secs_per_track = 63; 8573 } else { 8574 ccg->heads = 64; 8575 ccg->secs_per_track = 32; 8576 } 8577 secs_per_cylinder = ccg->heads * ccg->secs_per_track; 8578 ccg->cylinders = ccg->volume_size / secs_per_cylinder; 8579 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8580 break; 8581 } 8582 case XPT_PATH_INQ: 8583 { 8584 struct ccb_pathinq *cpi = &ccb->cpi; 8585 cpi->version_num = 1; 8586 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8587 if ((np->features & FE_WIDE) != 0) 8588 cpi->hba_inquiry |= PI_WIDE_16; 8589 cpi->target_sprt = 0; 8590 cpi->hba_misc = 0; 8591 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8592 cpi->hba_misc |= PIM_SCANHILO; 8593 if (np->usrflags & SYM_AVOID_BUS_RESET) 8594 cpi->hba_misc |= PIM_NOBUSRESET; 8595 cpi->hba_eng_cnt = 0; 8596 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8597 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8598 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8599 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8600 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8601 cpi->bus_id = cam_sim_bus(sim); 8602 cpi->initiator_id = np->myaddr; 8603 cpi->base_transfer_speed = 3300; 8604 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8605 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8606 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8607 cpi->unit_number = cam_sim_unit(sim); 8608 8609 #ifdef FreeBSD_New_Tran_Settings 8610 cpi->protocol = PROTO_SCSI; 8611 cpi->protocol_version = SCSI_REV_2; 8612 cpi->transport = XPORT_SPI; 8613 cpi->transport_version = 2; 8614 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8615 if (np->features & FE_ULTRA3) { 8616 cpi->transport_version = 3; 8617 cpi->xport_specific.spi.ppr_options = 8618 SID_SPI_CLOCK_DT_ST; 8619 } 8620 #endif 8621 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8622 break; 8623 } 8624 case XPT_ABORT: 8625 { 8626 union ccb *abort_ccb = ccb->cab.abort_ccb; 8627 switch(abort_ccb->ccb_h.func_code) { 8628 case XPT_SCSI_IO: 8629 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8630 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8631 break; 8632 } 8633 default: 8634 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8635 break; 8636 } 8637 break; 8638 } 8639 case XPT_RESET_DEV: 8640 { 8641 sym_reset_dev(np, ccb); 8642 break; 8643 } 8644 case XPT_RESET_BUS: 8645 { 8646 sym_reset_scsi_bus(np, 0); 8647 if (sym_verbose) { 8648 xpt_print_path(np->path); 8649 printf("SCSI BUS reset delivered.\n"); 8650 } 8651 sym_init (np, 1); 8652 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8653 break; 8654 } 8655 case XPT_ACCEPT_TARGET_IO: 8656 case XPT_CONT_TARGET_IO: 8657 case XPT_EN_LUN: 8658 case XPT_NOTIFY_ACK: 8659 case XPT_IMMED_NOTIFY: 8660 case XPT_TERM_IO: 8661 default: 8662 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8663 break; 8664 } 8665 } 8666 8667 /* 8668 * Asynchronous notification handler. 8669 */ 8670 static void 8671 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8672 { 8673 hcb_p np; 8674 struct cam_sim *sim; 8675 u_int tn; 8676 tcb_p tp; 8677 int s; 8678 8679 s = splcam(); 8680 8681 sim = (struct cam_sim *) cb_arg; 8682 np = (hcb_p) cam_sim_softc(sim); 8683 8684 switch (code) { 8685 case AC_LOST_DEVICE: 8686 tn = xpt_path_target_id(path); 8687 if (tn >= SYM_CONF_MAX_TARGET) 8688 break; 8689 8690 tp = &np->target[tn]; 8691 8692 tp->to_reset = 0; 8693 tp->head.sval = 0; 8694 tp->head.wval = np->rv_scntl3; 8695 tp->head.uval = 0; 8696 8697 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8698 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8699 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8700 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8701 8702 break; 8703 default: 8704 break; 8705 } 8706 8707 splx(s); 8708 } 8709 8710 /* 8711 * Update transfer settings of a target. 8712 */ 8713 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8714 struct ccb_trans_settings *cts) 8715 { 8716 /* 8717 * Update the infos. 8718 */ 8719 #ifdef FreeBSD_New_Tran_Settings 8720 #define cts__spi (&cts->xport_specific.spi) 8721 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8722 tip->width = cts__spi->bus_width; 8723 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8724 tip->offset = cts__spi->sync_offset; 8725 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8726 tip->period = cts__spi->sync_period; 8727 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8728 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8729 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8730 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8731 tip->scsi_version = cts->protocol_version; 8732 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8733 cts->transport_version != XPORT_VERSION_UNKNOWN) 8734 tip->spi_version = cts->transport_version; 8735 #undef cts__spi 8736 #else 8737 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 8738 tip->width = cts->bus_width; 8739 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) 8740 tip->offset = cts->sync_offset; 8741 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) 8742 tip->period = cts->sync_period; 8743 #endif 8744 /* 8745 * Scale against driver configuration limits. 8746 */ 8747 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8748 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8749 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8750 8751 /* 8752 * Scale against actual controller BUS width. 8753 */ 8754 if (tip->width > np->maxwide) 8755 tip->width = np->maxwide; 8756 8757 #ifdef FreeBSD_New_Tran_Settings 8758 /* 8759 * Only accept DT if controller supports and SYNC/WIDE asked. 8760 */ 8761 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8762 !(tip->width == BUS_16_BIT && tip->offset)) { 8763 tip->options &= ~PPR_OPT_DT; 8764 } 8765 #else 8766 /* 8767 * For now, only assume DT if period <= 9, BUS 16 and offset != 0. 8768 */ 8769 tip->options = 0; 8770 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) && 8771 tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) { 8772 tip->options |= PPR_OPT_DT; 8773 } 8774 #endif 8775 8776 /* 8777 * Scale period factor and offset against controller limits. 8778 */ 8779 if (tip->options & PPR_OPT_DT) { 8780 if (tip->period < np->minsync_dt) 8781 tip->period = np->minsync_dt; 8782 if (tip->period > np->maxsync_dt) 8783 tip->period = np->maxsync_dt; 8784 if (tip->offset > np->maxoffs_dt) 8785 tip->offset = np->maxoffs_dt; 8786 } 8787 else { 8788 if (tip->period < np->minsync) 8789 tip->period = np->minsync; 8790 if (tip->period > np->maxsync) 8791 tip->period = np->maxsync; 8792 if (tip->offset > np->maxoffs) 8793 tip->offset = np->maxoffs; 8794 } 8795 } 8796 8797 /* 8798 * Update flags for a device (logical unit). 8799 */ 8800 static void 8801 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8802 { 8803 #ifdef FreeBSD_New_Tran_Settings 8804 #define cts__scsi (&cts->proto_specific.scsi) 8805 #define cts__spi (&cts->xport_specific.spi) 8806 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8807 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8808 *flags |= SYM_DISC_ENABLED; 8809 else 8810 *flags &= ~SYM_DISC_ENABLED; 8811 } 8812 8813 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8814 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8815 *flags |= SYM_TAGS_ENABLED; 8816 else 8817 *flags &= ~SYM_TAGS_ENABLED; 8818 } 8819 #undef cts__spi 8820 #undef cts__scsi 8821 #else 8822 if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) { 8823 if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) 8824 *flags |= SYM_DISC_ENABLED; 8825 else 8826 *flags &= ~SYM_DISC_ENABLED; 8827 } 8828 8829 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 8830 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) 8831 *flags |= SYM_TAGS_ENABLED; 8832 else 8833 *flags &= ~SYM_TAGS_ENABLED; 8834 } 8835 #endif 8836 } 8837 8838 8839 /*============= DRIVER INITIALISATION ==================*/ 8840 8841 #ifdef FreeBSD_Bus_Io_Abstraction 8842 8843 static device_method_t sym_pci_methods[] = { 8844 DEVMETHOD(device_probe, sym_pci_probe), 8845 DEVMETHOD(device_attach, sym_pci_attach), 8846 { 0, 0 } 8847 }; 8848 8849 static driver_t sym_pci_driver = { 8850 "sym", 8851 sym_pci_methods, 8852 sizeof(struct sym_hcb) 8853 }; 8854 8855 static devclass_t sym_devclass; 8856 8857 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); 8858 8859 #else /* Pre-FreeBSD_Bus_Io_Abstraction */ 8860 8861 static u_long sym_unit; 8862 8863 static struct pci_device sym_pci_driver = { 8864 "sym", 8865 sym_pci_probe, 8866 sym_pci_attach, 8867 &sym_unit, 8868 NULL 8869 }; 8870 8871 #if defined(__DragonFly__) || __FreeBSD_version >= 400000 8872 COMPAT_PCI_DRIVER (sym, sym_pci_driver); 8873 #else 8874 DATA_SET (pcidevice_set, sym_pci_driver); 8875 #endif 8876 8877 #endif /* FreeBSD_Bus_Io_Abstraction */ 8878 8879 static struct sym_pci_chip sym_pci_dev_table[] = { 8880 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8881 FE_ERL} 8882 , 8883 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8884 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8885 FE_BOF} 8886 , 8887 #else 8888 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8889 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8890 , 8891 #endif 8892 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8893 FE_BOF|FE_ERL} 8894 , 8895 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8896 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8897 , 8898 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8899 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8900 , 8901 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8902 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8903 , 8904 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8905 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8906 FE_RAM|FE_DIFF} 8907 , 8908 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8909 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8910 FE_RAM|FE_DIFF} 8911 , 8912 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8913 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8914 FE_RAM|FE_DIFF} 8915 , 8916 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8917 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8918 FE_RAM|FE_DIFF} 8919 , 8920 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8921 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8922 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8923 FE_RAM|FE_LCKFRQ} 8924 , 8925 #else 8926 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8927 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8928 FE_RAM|FE_LCKFRQ} 8929 , 8930 #endif 8931 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8932 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8933 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8934 , 8935 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8936 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8937 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8938 , 8939 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8940 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8941 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8942 FE_C10} 8943 , 8944 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8945 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8946 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8947 FE_C10|FE_U3EN} 8948 , 8949 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8950 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8951 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8952 FE_C10|FE_U3EN} 8953 , 8954 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8955 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8956 FE_RAM|FE_IO256|FE_LEDC} 8957 }; 8958 8959 #define sym_pci_num_devs \ 8960 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) 8961 8962 /* 8963 * Look up the chip table. 8964 * 8965 * Return a pointer to the chip entry if found, 8966 * zero otherwise. 8967 */ 8968 static struct sym_pci_chip * 8969 #ifdef FreeBSD_Bus_Io_Abstraction 8970 sym_find_pci_chip(device_t dev) 8971 #else 8972 sym_find_pci_chip(pcici_t pci_tag) 8973 #endif 8974 { 8975 struct sym_pci_chip *chip; 8976 int i; 8977 u_short device_id; 8978 u_char revision; 8979 8980 #ifdef FreeBSD_Bus_Io_Abstraction 8981 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8982 return 0; 8983 8984 device_id = pci_get_device(dev); 8985 revision = pci_get_revid(dev); 8986 #else 8987 if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR) 8988 return 0; 8989 8990 device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); 8991 revision = pci_cfgread(pci_tag, PCIR_REVID, 1); 8992 #endif 8993 8994 for (i = 0; i < sym_pci_num_devs; i++) { 8995 chip = &sym_pci_dev_table[i]; 8996 if (device_id != chip->device_id) 8997 continue; 8998 if (revision > chip->revision_id) 8999 continue; 9000 return chip; 9001 } 9002 9003 return 0; 9004 } 9005 9006 /* 9007 * Tell upper layer if the chip is supported. 9008 */ 9009 #ifdef FreeBSD_Bus_Io_Abstraction 9010 static int 9011 sym_pci_probe(device_t dev) 9012 { 9013 struct sym_pci_chip *chip; 9014 9015 chip = sym_find_pci_chip(dev); 9016 if (chip && sym_find_firmware(chip)) { 9017 device_set_desc(dev, chip->name); 9018 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0; 9019 } 9020 return ENXIO; 9021 } 9022 #else /* Pre-FreeBSD_Bus_Io_Abstraction */ 9023 static const char * 9024 sym_pci_probe(pcici_t pci_tag, pcidi_t type) 9025 { 9026 struct sym_pci_chip *chip; 9027 9028 chip = sym_find_pci_chip(pci_tag); 9029 if (chip && sym_find_firmware(chip)) { 9030 #if NNCR > 0 9031 /* Only claim chips we are allowed to take precedence over the ncr */ 9032 if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)) 9033 #else 9034 if (1) 9035 #endif 9036 return chip->name; 9037 } 9038 return 0; 9039 } 9040 #endif 9041 9042 /* 9043 * Attach a sym53c8xx device. 9044 */ 9045 #ifdef FreeBSD_Bus_Io_Abstraction 9046 static int 9047 sym_pci_attach(device_t dev) 9048 #else 9049 static void 9050 sym_pci_attach(pcici_t pci_tag, int unit) 9051 { 9052 int err = sym_pci_attach2(pci_tag, unit); 9053 if (err) 9054 printf("sym: failed to attach unit %d - err=%d.\n", unit, err); 9055 } 9056 static int 9057 sym_pci_attach2(pcici_t pci_tag, int unit) 9058 #endif 9059 { 9060 struct sym_pci_chip *chip; 9061 u_short command; 9062 u_char cachelnsz; 9063 struct sym_hcb *np = 0; 9064 struct sym_nvram nvram; 9065 struct sym_fw *fw = 0; 9066 int i; 9067 #ifdef FreeBSD_Bus_Dma_Abstraction 9068 bus_dma_tag_t bus_dmat; 9069 9070 /* 9071 * I expected to be told about a parent 9072 * DMA tag, but didn't find any. 9073 */ 9074 bus_dmat = NULL; 9075 #endif 9076 9077 /* 9078 * Only probed devices should be attached. 9079 * We just enjoy being paranoid. :) 9080 */ 9081 #ifdef FreeBSD_Bus_Io_Abstraction 9082 chip = sym_find_pci_chip(dev); 9083 #else 9084 chip = sym_find_pci_chip(pci_tag); 9085 #endif 9086 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 9087 return (ENXIO); 9088 9089 /* 9090 * Allocate immediately the host control block, 9091 * since we are only expecting to succeed. :) 9092 * We keep track in the HCB of all the resources that 9093 * are to be released on error. 9094 */ 9095 #ifdef FreeBSD_Bus_Dma_Abstraction 9096 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 9097 if (np) 9098 np->bus_dmat = bus_dmat; 9099 else 9100 goto attach_failed; 9101 #else 9102 np = sym_calloc_dma(sizeof(*np), "HCB"); 9103 if (!np) 9104 goto attach_failed; 9105 #endif 9106 9107 /* 9108 * Copy some useful infos to the HCB. 9109 */ 9110 np->hcb_ba = vtobus(np); 9111 np->verbose = bootverbose; 9112 #ifdef FreeBSD_Bus_Io_Abstraction 9113 np->device = dev; 9114 np->unit = device_get_unit(dev); 9115 np->device_id = pci_get_device(dev); 9116 np->revision_id = pci_get_revid(dev); 9117 #else 9118 np->pci_tag = pci_tag; 9119 np->unit = unit; 9120 np->device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); 9121 np->revision_id = pci_cfgread(pci_tag, PCIR_REVID, 1); 9122 #endif 9123 np->features = chip->features; 9124 np->clock_divn = chip->nr_divisor; 9125 np->maxoffs = chip->offset_max; 9126 np->maxburst = chip->burst_max; 9127 np->scripta_sz = fw->a_size; 9128 np->scriptb_sz = fw->b_size; 9129 np->fw_setup = fw->setup; 9130 np->fw_patch = fw->patch; 9131 np->fw_name = fw->name; 9132 9133 /* 9134 * Edit its name. 9135 */ 9136 snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); 9137 9138 /* 9139 * Initialyze the CCB free and busy queues. 9140 */ 9141 sym_que_init(&np->free_ccbq); 9142 sym_que_init(&np->busy_ccbq); 9143 sym_que_init(&np->comp_ccbq); 9144 sym_que_init(&np->cam_ccbq); 9145 9146 /* 9147 * Allocate a tag for the DMA of user data. 9148 */ 9149 #ifdef FreeBSD_Bus_Dma_Abstraction 9150 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), 9151 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 9152 NULL, NULL, 9153 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, 9154 (1<<24), 0, &np->data_dmat)) { 9155 device_printf(dev, "failed to create DMA tag.\n"); 9156 goto attach_failed; 9157 } 9158 #endif 9159 /* 9160 * Read and apply some fix-ups to the PCI COMMAND 9161 * register. We want the chip to be enabled for: 9162 * - BUS mastering 9163 * - PCI parity checking (reporting would also be fine) 9164 * - Write And Invalidate. 9165 */ 9166 #ifdef FreeBSD_Bus_Io_Abstraction 9167 command = pci_read_config(dev, PCIR_COMMAND, 2); 9168 #else 9169 command = pci_cfgread(pci_tag, PCIR_COMMAND, 2); 9170 #endif 9171 command |= PCIM_CMD_BUSMASTEREN; 9172 command |= PCIM_CMD_PERRESPEN; 9173 command |= /* PCIM_CMD_MWIEN */ 0x0010; 9174 #ifdef FreeBSD_Bus_Io_Abstraction 9175 pci_write_config(dev, PCIR_COMMAND, command, 2); 9176 #else 9177 pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2); 9178 #endif 9179 9180 /* 9181 * Let the device know about the cache line size, 9182 * if it doesn't yet. 9183 */ 9184 #ifdef FreeBSD_Bus_Io_Abstraction 9185 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 9186 #else 9187 cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1); 9188 #endif 9189 if (!cachelnsz) { 9190 cachelnsz = 8; 9191 #ifdef FreeBSD_Bus_Io_Abstraction 9192 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 9193 #else 9194 pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1); 9195 #endif 9196 } 9197 9198 /* 9199 * Alloc/get/map/retrieve everything that deals with MMIO. 9200 */ 9201 #ifdef FreeBSD_Bus_Io_Abstraction 9202 if ((command & PCIM_CMD_MEMEN) != 0) { 9203 int regs_id = SYM_PCI_MMIO; 9204 np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, 9205 0, ~0, 1, RF_ACTIVE); 9206 } 9207 if (!np->mmio_res) { 9208 device_printf(dev, "failed to allocate MMIO resources\n"); 9209 goto attach_failed; 9210 } 9211 np->mmio_bsh = rman_get_bushandle(np->mmio_res); 9212 np->mmio_tag = rman_get_bustag(np->mmio_res); 9213 np->mmio_pa = rman_get_start(np->mmio_res); 9214 np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res); 9215 np->mmio_ba = np->mmio_pa; 9216 #else 9217 if ((command & PCIM_CMD_MEMEN) != 0) { 9218 vm_offset_t vaddr, paddr; 9219 if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) { 9220 printf("%s: failed to map MMIO window\n", sym_name(np)); 9221 goto attach_failed; 9222 } 9223 np->mmio_va = vaddr; 9224 np->mmio_pa = paddr; 9225 np->mmio_ba = paddr; 9226 } 9227 #endif 9228 9229 /* 9230 * Allocate the IRQ. 9231 */ 9232 #ifdef FreeBSD_Bus_Io_Abstraction 9233 i = 0; 9234 np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i, 9235 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); 9236 if (!np->irq_res) { 9237 device_printf(dev, "failed to allocate IRQ resource\n"); 9238 goto attach_failed; 9239 } 9240 #endif 9241 9242 #ifdef SYM_CONF_IOMAPPED 9243 /* 9244 * User want us to use normal IO with PCI. 9245 * Alloc/get/map/retrieve everything that deals with IO. 9246 */ 9247 #ifdef FreeBSD_Bus_Io_Abstraction 9248 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 9249 int regs_id = SYM_PCI_IO; 9250 np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, ®s_id, 9251 0, ~0, 1, RF_ACTIVE); 9252 } 9253 if (!np->io_res) { 9254 device_printf(dev, "failed to allocate IO resources\n"); 9255 goto attach_failed; 9256 } 9257 np->io_bsh = rman_get_bushandle(np->io_res); 9258 np->io_tag = rman_get_bustag(np->io_res); 9259 np->io_port = rman_get_start(np->io_res); 9260 #else 9261 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 9262 pci_port_t io_port; 9263 if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) { 9264 printf("%s: failed to map IO window\n", sym_name(np)); 9265 goto attach_failed; 9266 } 9267 np->io_port = io_port; 9268 } 9269 #endif 9270 9271 #endif /* SYM_CONF_IOMAPPED */ 9272 9273 /* 9274 * If the chip has RAM. 9275 * Alloc/get/map/retrieve the corresponding resources. 9276 */ 9277 if ((np->features & (FE_RAM|FE_RAM8K)) && 9278 (command & PCIM_CMD_MEMEN) != 0) { 9279 #ifdef FreeBSD_Bus_Io_Abstraction 9280 int regs_id = SYM_PCI_RAM; 9281 if (np->features & FE_64BIT) 9282 regs_id = SYM_PCI_RAM64; 9283 np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, 9284 0, ~0, 1, RF_ACTIVE); 9285 if (!np->ram_res) { 9286 device_printf(dev,"failed to allocate RAM resources\n"); 9287 goto attach_failed; 9288 } 9289 np->ram_id = regs_id; 9290 np->ram_bsh = rman_get_bushandle(np->ram_res); 9291 np->ram_tag = rman_get_bustag(np->ram_res); 9292 np->ram_pa = rman_get_start(np->ram_res); 9293 np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res); 9294 np->ram_ba = np->ram_pa; 9295 #else 9296 vm_offset_t vaddr, paddr; 9297 int regs_id = SYM_PCI_RAM; 9298 if (np->features & FE_64BIT) 9299 regs_id = SYM_PCI_RAM64; 9300 if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) { 9301 printf("%s: failed to map RAM window\n", sym_name(np)); 9302 goto attach_failed; 9303 } 9304 np->ram_va = vaddr; 9305 np->ram_pa = paddr; 9306 np->ram_ba = paddr; 9307 #endif 9308 } 9309 9310 /* 9311 * Save setting of some IO registers, so we will 9312 * be able to probe specific implementations. 9313 */ 9314 sym_save_initial_setting (np); 9315 9316 /* 9317 * Reset the chip now, since it has been reported 9318 * that SCSI clock calibration may not work properly 9319 * if the chip is currently active. 9320 */ 9321 sym_chip_reset (np); 9322 9323 /* 9324 * Try to read the user set-up. 9325 */ 9326 (void) sym_read_nvram(np, &nvram); 9327 9328 /* 9329 * Prepare controller and devices settings, according 9330 * to chip features, user set-up and driver set-up. 9331 */ 9332 (void) sym_prepare_setting(np, &nvram); 9333 9334 /* 9335 * Check the PCI clock frequency. 9336 * Must be performed after prepare_setting since it destroys 9337 * STEST1 that is used to probe for the clock doubler. 9338 */ 9339 i = sym_getpciclock(np); 9340 if (i > 37000) 9341 #ifdef FreeBSD_Bus_Io_Abstraction 9342 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 9343 #else 9344 printf("%s: PCI BUS clock seems too high: %u KHz.\n", 9345 sym_name(np), i); 9346 #endif 9347 9348 /* 9349 * Allocate the start queue. 9350 */ 9351 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 9352 if (!np->squeue) 9353 goto attach_failed; 9354 np->squeue_ba = vtobus(np->squeue); 9355 9356 /* 9357 * Allocate the done queue. 9358 */ 9359 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 9360 if (!np->dqueue) 9361 goto attach_failed; 9362 np->dqueue_ba = vtobus(np->dqueue); 9363 9364 /* 9365 * Allocate the target bus address array. 9366 */ 9367 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 9368 if (!np->targtbl) 9369 goto attach_failed; 9370 np->targtbl_ba = vtobus(np->targtbl); 9371 9372 /* 9373 * Allocate SCRIPTS areas. 9374 */ 9375 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 9376 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 9377 if (!np->scripta0 || !np->scriptb0) 9378 goto attach_failed; 9379 9380 /* 9381 * Allocate some CCB. We need at least ONE. 9382 */ 9383 if (!sym_alloc_ccb(np)) 9384 goto attach_failed; 9385 9386 /* 9387 * Calculate BUS addresses where we are going 9388 * to load the SCRIPTS. 9389 */ 9390 np->scripta_ba = vtobus(np->scripta0); 9391 np->scriptb_ba = vtobus(np->scriptb0); 9392 np->scriptb0_ba = np->scriptb_ba; 9393 9394 if (np->ram_ba) { 9395 np->scripta_ba = np->ram_ba; 9396 if (np->features & FE_RAM8K) { 9397 np->ram_ws = 8192; 9398 np->scriptb_ba = np->scripta_ba + 4096; 9399 #if BITS_PER_LONG > 32 9400 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 9401 #endif 9402 } 9403 else 9404 np->ram_ws = 4096; 9405 } 9406 9407 /* 9408 * Copy scripts to controller instance. 9409 */ 9410 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 9411 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 9412 9413 /* 9414 * Setup variable parts in scripts and compute 9415 * scripts bus addresses used from the C code. 9416 */ 9417 np->fw_setup(np, fw); 9418 9419 /* 9420 * Bind SCRIPTS with physical addresses usable by the 9421 * SCRIPTS processor (as seen from the BUS = BUS addresses). 9422 */ 9423 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 9424 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 9425 9426 #ifdef SYM_CONF_IARB_SUPPORT 9427 /* 9428 * If user wants IARB to be set when we win arbitration 9429 * and have other jobs, compute the max number of consecutive 9430 * settings of IARB hints before we leave devices a chance to 9431 * arbitrate for reselection. 9432 */ 9433 #ifdef SYM_SETUP_IARB_MAX 9434 np->iarb_max = SYM_SETUP_IARB_MAX; 9435 #else 9436 np->iarb_max = 4; 9437 #endif 9438 #endif 9439 9440 /* 9441 * Prepare the idle and invalid task actions. 9442 */ 9443 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9444 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9445 np->idletask_ba = vtobus(&np->idletask); 9446 9447 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9448 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9449 np->notask_ba = vtobus(&np->notask); 9450 9451 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9452 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9453 np->bad_itl_ba = vtobus(&np->bad_itl); 9454 9455 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9456 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 9457 np->bad_itlq_ba = vtobus(&np->bad_itlq); 9458 9459 /* 9460 * Allocate and prepare the lun JUMP table that is used 9461 * for a target prior the probing of devices (bad lun table). 9462 * A private table will be allocated for the target on the 9463 * first INQUIRY response received. 9464 */ 9465 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 9466 if (!np->badluntbl) 9467 goto attach_failed; 9468 9469 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 9470 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 9471 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 9472 9473 /* 9474 * Prepare the bus address array that contains the bus 9475 * address of each target control block. 9476 * For now, assume all logical units are wrong. :) 9477 */ 9478 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 9479 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 9480 np->target[i].head.luntbl_sa = 9481 cpu_to_scr(vtobus(np->badluntbl)); 9482 np->target[i].head.lun0_sa = 9483 cpu_to_scr(vtobus(&np->badlun_sa)); 9484 } 9485 9486 /* 9487 * Now check the cache handling of the pci chipset. 9488 */ 9489 if (sym_snooptest (np)) { 9490 #ifdef FreeBSD_Bus_Io_Abstraction 9491 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 9492 #else 9493 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); 9494 #endif 9495 goto attach_failed; 9496 }; 9497 9498 /* 9499 * Now deal with CAM. 9500 * Hopefully, we will succeed with that one.:) 9501 */ 9502 if (!sym_cam_attach(np)) 9503 goto attach_failed; 9504 9505 /* 9506 * Sigh! we are done. 9507 */ 9508 return 0; 9509 9510 /* 9511 * We have failed. 9512 * We will try to free all the resources we have 9513 * allocated, but if we are a boot device, this 9514 * will not help that much.;) 9515 */ 9516 attach_failed: 9517 if (np) 9518 sym_pci_free(np); 9519 return ENXIO; 9520 } 9521 9522 /* 9523 * Free everything that have been allocated for this device. 9524 */ 9525 static void sym_pci_free(hcb_p np) 9526 { 9527 SYM_QUEHEAD *qp; 9528 ccb_p cp; 9529 tcb_p tp; 9530 lcb_p lp; 9531 int target, lun; 9532 int s; 9533 9534 /* 9535 * First free CAM resources. 9536 */ 9537 s = splcam(); 9538 sym_cam_free(np); 9539 splx(s); 9540 9541 /* 9542 * Now every should be quiet for us to 9543 * free other resources. 9544 */ 9545 #ifdef FreeBSD_Bus_Io_Abstraction 9546 if (np->ram_res) 9547 bus_release_resource(np->device, SYS_RES_MEMORY, 9548 np->ram_id, np->ram_res); 9549 if (np->mmio_res) 9550 bus_release_resource(np->device, SYS_RES_MEMORY, 9551 SYM_PCI_MMIO, np->mmio_res); 9552 if (np->io_res) 9553 bus_release_resource(np->device, SYS_RES_IOPORT, 9554 SYM_PCI_IO, np->io_res); 9555 if (np->irq_res) 9556 bus_release_resource(np->device, SYS_RES_IRQ, 9557 0, np->irq_res); 9558 #else 9559 /* 9560 * YEAH!!! 9561 * It seems there is no means to free MMIO resources. 9562 */ 9563 #endif 9564 9565 if (np->scriptb0) 9566 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 9567 if (np->scripta0) 9568 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 9569 if (np->squeue) 9570 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 9571 if (np->dqueue) 9572 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 9573 9574 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { 9575 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 9576 #ifdef FreeBSD_Bus_Dma_Abstraction 9577 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 9578 #endif 9579 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 9580 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 9581 } 9582 9583 if (np->badluntbl) 9584 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 9585 9586 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 9587 tp = &np->target[target]; 9588 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 9589 lp = sym_lp(np, tp, lun); 9590 if (!lp) 9591 continue; 9592 if (lp->itlq_tbl) 9593 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 9594 "ITLQ_TBL"); 9595 if (lp->cb_tags) 9596 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 9597 "CB_TAGS"); 9598 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 9599 } 9600 #if SYM_CONF_MAX_LUN > 1 9601 if (tp->lunmp) 9602 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 9603 "LUNMP"); 9604 #endif 9605 } 9606 if (np->targtbl) 9607 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 9608 #ifdef FreeBSD_Bus_Dma_Abstraction 9609 if (np->data_dmat) 9610 bus_dma_tag_destroy(np->data_dmat); 9611 #endif 9612 sym_mfree_dma(np, sizeof(*np), "HCB"); 9613 } 9614 9615 /* 9616 * Allocate CAM resources and register a bus to CAM. 9617 */ 9618 int sym_cam_attach(hcb_p np) 9619 { 9620 struct cam_devq *devq = 0; 9621 struct cam_sim *sim = 0; 9622 struct cam_path *path = 0; 9623 struct ccb_setasync csa; 9624 int err, s; 9625 9626 s = splcam(); 9627 9628 /* 9629 * Establish our interrupt handler. 9630 */ 9631 #ifdef FreeBSD_Bus_Io_Abstraction 9632 err = bus_setup_intr(np->device, np->irq_res, INTR_TYPE_CAM, 9633 sym_intr, np, &np->intr); 9634 if (err) { 9635 device_printf(np->device, "bus_setup_intr() failed: %d\n", 9636 err); 9637 goto fail; 9638 } 9639 #else 9640 err = 0; 9641 if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) { 9642 printf("%s: failed to map interrupt\n", sym_name(np)); 9643 goto fail; 9644 } 9645 #endif 9646 9647 /* 9648 * Create the device queue for our sym SIM. 9649 */ 9650 devq = cam_simq_alloc(SYM_CONF_MAX_START); 9651 if (devq == NULL) { 9652 goto fail; 9653 } 9654 9655 /* 9656 * Construct our SIM entry. 9657 */ 9658 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, 9659 1, SYM_SETUP_MAX_TAG, devq); 9660 cam_simq_release(devq); 9661 if (sim == NULL) 9662 goto fail; 9663 9664 if (xpt_bus_register(sim, 0) != CAM_SUCCESS) 9665 goto fail; 9666 np->sim = sim; 9667 sim = 0; 9668 9669 if (xpt_create_path(&path, 0, 9670 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 9671 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 9672 goto fail; 9673 } 9674 np->path = path; 9675 9676 /* 9677 * Hmmm... This should be useful, but I donnot want to 9678 * know about. 9679 */ 9680 #if defined(__FreeBSD__) && __FreeBSD_version < 400000 9681 #ifdef __alpha__ 9682 #ifdef FreeBSD_Bus_Io_Abstraction 9683 alpha_register_pci_scsi(pci_get_bus(np->device), 9684 pci_get_slot(np->device), np->sim); 9685 #else 9686 alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim); 9687 #endif 9688 #endif 9689 #endif 9690 9691 /* 9692 * Establish our async notification handler. 9693 */ 9694 xpt_setup_ccb(&csa.ccb_h, np->path, 5); 9695 csa.ccb_h.func_code = XPT_SASYNC_CB; 9696 csa.event_enable = AC_LOST_DEVICE; 9697 csa.callback = sym_async; 9698 csa.callback_arg = np->sim; 9699 xpt_action((union ccb *)&csa); 9700 9701 /* 9702 * Start the chip now, without resetting the BUS, since 9703 * it seems that this must stay under control of CAM. 9704 * With LVD/SE capable chips and BUS in SE mode, we may 9705 * get a spurious SMBC interrupt. 9706 */ 9707 sym_init (np, 0); 9708 9709 splx(s); 9710 return 1; 9711 fail: 9712 if (sim) 9713 cam_sim_free(sim); 9714 9715 sym_cam_free(np); 9716 9717 splx(s); 9718 return 0; 9719 } 9720 9721 /* 9722 * Free everything that deals with CAM. 9723 */ 9724 void sym_cam_free(hcb_p np) 9725 { 9726 #ifdef FreeBSD_Bus_Io_Abstraction 9727 if (np->intr) 9728 bus_teardown_intr(np->device, np->irq_res, np->intr); 9729 #else 9730 /* pci_unmap_int(np->pci_tag); */ /* Does nothing */ 9731 #endif 9732 9733 if (np->sim) { 9734 xpt_bus_deregister(cam_sim_path(np->sim)); 9735 cam_sim_free(np->sim); 9736 } 9737 if (np->path) 9738 xpt_free_path(np->path); 9739 } 9740 9741 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9742 9743 /* 9744 * Get host setup from NVRAM. 9745 */ 9746 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9747 { 9748 #ifdef SYM_CONF_NVRAM_SUPPORT 9749 /* 9750 * Get parity checking, host ID, verbose mode 9751 * and miscellaneous host flags from NVRAM. 9752 */ 9753 switch(nvram->type) { 9754 case SYM_SYMBIOS_NVRAM: 9755 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9756 np->rv_scntl0 &= ~0x0a; 9757 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9758 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9759 np->verbose += 1; 9760 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9761 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9762 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9763 np->usrflags |= SYM_AVOID_BUS_RESET; 9764 break; 9765 case SYM_TEKRAM_NVRAM: 9766 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9767 break; 9768 default: 9769 break; 9770 } 9771 #endif 9772 } 9773 9774 /* 9775 * Get target setup from NVRAM. 9776 */ 9777 #ifdef SYM_CONF_NVRAM_SUPPORT 9778 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9779 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9780 #endif 9781 9782 static void 9783 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9784 { 9785 #ifdef SYM_CONF_NVRAM_SUPPORT 9786 switch(nvp->type) { 9787 case SYM_SYMBIOS_NVRAM: 9788 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9789 break; 9790 case SYM_TEKRAM_NVRAM: 9791 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9792 break; 9793 default: 9794 break; 9795 } 9796 #endif 9797 } 9798 9799 #ifdef SYM_CONF_NVRAM_SUPPORT 9800 /* 9801 * Get target set-up from Symbios format NVRAM. 9802 */ 9803 static void 9804 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9805 { 9806 tcb_p tp = &np->target[target]; 9807 Symbios_target *tn = &nvram->target[target]; 9808 9809 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9810 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9811 tp->usrtags = 9812 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9813 9814 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9815 tp->usrflags &= ~SYM_DISC_ENABLED; 9816 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9817 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9818 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9819 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9820 } 9821 9822 /* 9823 * Get target set-up from Tekram format NVRAM. 9824 */ 9825 static void 9826 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9827 { 9828 tcb_p tp = &np->target[target]; 9829 struct Tekram_target *tn = &nvram->target[target]; 9830 int i; 9831 9832 if (tn->flags & TEKRAM_SYNC_NEGO) { 9833 i = tn->sync_index & 0xf; 9834 tp->tinfo.user.period = Tekram_sync[i]; 9835 } 9836 9837 tp->tinfo.user.width = 9838 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9839 9840 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9841 tp->usrtags = 2 << nvram->max_tags_index; 9842 } 9843 9844 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9845 tp->usrflags |= SYM_DISC_ENABLED; 9846 9847 /* If any device does not support parity, we will not use this option */ 9848 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9849 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9850 } 9851 9852 #ifdef SYM_CONF_DEBUG_NVRAM 9853 /* 9854 * Dump Symbios format NVRAM for debugging purpose. 9855 */ 9856 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9857 { 9858 int i; 9859 9860 /* display Symbios nvram host data */ 9861 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9862 sym_name(np), nvram->host_id & 0x0f, 9863 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9864 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9865 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9866 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9867 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9868 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9869 9870 /* display Symbios nvram drive data */ 9871 for (i = 0 ; i < 15 ; i++) { 9872 struct Symbios_target *tn = &nvram->target[i]; 9873 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9874 sym_name(np), i, 9875 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9876 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9877 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9878 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9879 tn->bus_width, 9880 tn->sync_period / 4, 9881 tn->timeout); 9882 } 9883 } 9884 9885 /* 9886 * Dump TEKRAM format NVRAM for debugging purpose. 9887 */ 9888 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9889 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9890 { 9891 int i, tags, boot_delay; 9892 char *rem; 9893 9894 /* display Tekram nvram host data */ 9895 tags = 2 << nvram->max_tags_index; 9896 boot_delay = 0; 9897 if (nvram->boot_delay_index < 6) 9898 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9899 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9900 default: 9901 case 0: rem = ""; break; 9902 case 1: rem = " REMOVABLE=boot device"; break; 9903 case 2: rem = " REMOVABLE=all"; break; 9904 } 9905 9906 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9907 sym_name(np), nvram->host_id & 0x0f, 9908 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9909 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9910 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9911 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9912 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9913 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9914 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9915 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9916 rem, boot_delay, tags); 9917 9918 /* display Tekram nvram drive data */ 9919 for (i = 0; i <= 15; i++) { 9920 int sync, j; 9921 struct Tekram_target *tn = &nvram->target[i]; 9922 j = tn->sync_index & 0xf; 9923 sync = Tekram_sync[j]; 9924 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9925 sym_name(np), i, 9926 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9927 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9928 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9929 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9930 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9931 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9932 sync); 9933 } 9934 } 9935 #endif /* SYM_CONF_DEBUG_NVRAM */ 9936 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9937 9938 9939 /* 9940 * Try reading Symbios or Tekram NVRAM 9941 */ 9942 #ifdef SYM_CONF_NVRAM_SUPPORT 9943 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9944 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9945 #endif 9946 9947 int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9948 { 9949 #ifdef SYM_CONF_NVRAM_SUPPORT 9950 /* 9951 * Try to read SYMBIOS nvram. 9952 * Try to read TEKRAM nvram if Symbios nvram not found. 9953 */ 9954 if (SYM_SETUP_SYMBIOS_NVRAM && 9955 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9956 nvp->type = SYM_SYMBIOS_NVRAM; 9957 #ifdef SYM_CONF_DEBUG_NVRAM 9958 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9959 #endif 9960 } 9961 else if (SYM_SETUP_TEKRAM_NVRAM && 9962 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9963 nvp->type = SYM_TEKRAM_NVRAM; 9964 #ifdef SYM_CONF_DEBUG_NVRAM 9965 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9966 #endif 9967 } 9968 else 9969 nvp->type = 0; 9970 #else 9971 nvp->type = 0; 9972 #endif 9973 return nvp->type; 9974 } 9975 9976 9977 #ifdef SYM_CONF_NVRAM_SUPPORT 9978 /* 9979 * 24C16 EEPROM reading. 9980 * 9981 * GPOI0 - data in/data out 9982 * GPIO1 - clock 9983 * Symbios NVRAM wiring now also used by Tekram. 9984 */ 9985 9986 #define SET_BIT 0 9987 #define CLR_BIT 1 9988 #define SET_CLK 2 9989 #define CLR_CLK 3 9990 9991 /* 9992 * Set/clear data/clock bit in GPIO0 9993 */ 9994 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9995 int bit_mode) 9996 { 9997 UDELAY (5); 9998 switch (bit_mode){ 9999 case SET_BIT: 10000 *gpreg |= write_bit; 10001 break; 10002 case CLR_BIT: 10003 *gpreg &= 0xfe; 10004 break; 10005 case SET_CLK: 10006 *gpreg |= 0x02; 10007 break; 10008 case CLR_CLK: 10009 *gpreg &= 0xfd; 10010 break; 10011 10012 } 10013 OUTB (nc_gpreg, *gpreg); 10014 UDELAY (5); 10015 } 10016 10017 /* 10018 * Send START condition to NVRAM to wake it up. 10019 */ 10020 static void S24C16_start(hcb_p np, u_char *gpreg) 10021 { 10022 S24C16_set_bit(np, 1, gpreg, SET_BIT); 10023 S24C16_set_bit(np, 0, gpreg, SET_CLK); 10024 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 10025 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 10026 } 10027 10028 /* 10029 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 10030 */ 10031 static void S24C16_stop(hcb_p np, u_char *gpreg) 10032 { 10033 S24C16_set_bit(np, 0, gpreg, SET_CLK); 10034 S24C16_set_bit(np, 1, gpreg, SET_BIT); 10035 } 10036 10037 /* 10038 * Read or write a bit to the NVRAM, 10039 * read if GPIO0 input else write if GPIO0 output 10040 */ 10041 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 10042 u_char *gpreg) 10043 { 10044 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 10045 S24C16_set_bit(np, 0, gpreg, SET_CLK); 10046 if (read_bit) 10047 *read_bit = INB (nc_gpreg); 10048 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 10049 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 10050 } 10051 10052 /* 10053 * Output an ACK to the NVRAM after reading, 10054 * change GPIO0 to output and when done back to an input 10055 */ 10056 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 10057 u_char *gpcntl) 10058 { 10059 OUTB (nc_gpcntl, *gpcntl & 0xfe); 10060 S24C16_do_bit(np, 0, write_bit, gpreg); 10061 OUTB (nc_gpcntl, *gpcntl); 10062 } 10063 10064 /* 10065 * Input an ACK from NVRAM after writing, 10066 * change GPIO0 to input and when done back to an output 10067 */ 10068 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 10069 u_char *gpcntl) 10070 { 10071 OUTB (nc_gpcntl, *gpcntl | 0x01); 10072 S24C16_do_bit(np, read_bit, 1, gpreg); 10073 OUTB (nc_gpcntl, *gpcntl); 10074 } 10075 10076 /* 10077 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 10078 * GPIO0 must already be set as an output 10079 */ 10080 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 10081 u_char *gpreg, u_char *gpcntl) 10082 { 10083 int x; 10084 10085 for (x = 0; x < 8; x++) 10086 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 10087 10088 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 10089 } 10090 10091 /* 10092 * READ a byte from the NVRAM and then send an ACK to say we have got it, 10093 * GPIO0 must already be set as an input 10094 */ 10095 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 10096 u_char *gpreg, u_char *gpcntl) 10097 { 10098 int x; 10099 u_char read_bit; 10100 10101 *read_data = 0; 10102 for (x = 0; x < 8; x++) { 10103 S24C16_do_bit(np, &read_bit, 1, gpreg); 10104 *read_data |= ((read_bit & 0x01) << (7 - x)); 10105 } 10106 10107 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 10108 } 10109 10110 /* 10111 * Read 'len' bytes starting at 'offset'. 10112 */ 10113 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 10114 { 10115 u_char gpcntl, gpreg; 10116 u_char old_gpcntl, old_gpreg; 10117 u_char ack_data; 10118 int retv = 1; 10119 int x; 10120 10121 /* save current state of GPCNTL and GPREG */ 10122 old_gpreg = INB (nc_gpreg); 10123 old_gpcntl = INB (nc_gpcntl); 10124 gpcntl = old_gpcntl & 0x1c; 10125 10126 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 10127 OUTB (nc_gpreg, old_gpreg); 10128 OUTB (nc_gpcntl, gpcntl); 10129 10130 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 10131 gpreg = old_gpreg; 10132 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 10133 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 10134 10135 /* now set NVRAM inactive with GPIO0/1 both high */ 10136 S24C16_stop(np, &gpreg); 10137 10138 /* activate NVRAM */ 10139 S24C16_start(np, &gpreg); 10140 10141 /* write device code and random address MSB */ 10142 S24C16_write_byte(np, &ack_data, 10143 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 10144 if (ack_data & 0x01) 10145 goto out; 10146 10147 /* write random address LSB */ 10148 S24C16_write_byte(np, &ack_data, 10149 offset & 0xff, &gpreg, &gpcntl); 10150 if (ack_data & 0x01) 10151 goto out; 10152 10153 /* regenerate START state to set up for reading */ 10154 S24C16_start(np, &gpreg); 10155 10156 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 10157 S24C16_write_byte(np, &ack_data, 10158 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 10159 if (ack_data & 0x01) 10160 goto out; 10161 10162 /* now set up GPIO0 for inputting data */ 10163 gpcntl |= 0x01; 10164 OUTB (nc_gpcntl, gpcntl); 10165 10166 /* input all requested data - only part of total NVRAM */ 10167 for (x = 0; x < len; x++) 10168 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 10169 10170 /* finally put NVRAM back in inactive mode */ 10171 gpcntl &= 0xfe; 10172 OUTB (nc_gpcntl, gpcntl); 10173 S24C16_stop(np, &gpreg); 10174 retv = 0; 10175 out: 10176 /* return GPIO0/1 to original states after having accessed NVRAM */ 10177 OUTB (nc_gpcntl, old_gpcntl); 10178 OUTB (nc_gpreg, old_gpreg); 10179 10180 return retv; 10181 } 10182 10183 #undef SET_BIT 10184 #undef CLR_BIT 10185 #undef SET_CLK 10186 #undef CLR_CLK 10187 10188 /* 10189 * Try reading Symbios NVRAM. 10190 * Return 0 if OK. 10191 */ 10192 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 10193 { 10194 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 10195 u_char *data = (u_char *) nvram; 10196 int len = sizeof(*nvram); 10197 u_short csum; 10198 int x; 10199 10200 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 10201 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 10202 return 1; 10203 10204 /* check valid NVRAM signature, verify byte count and checksum */ 10205 if (nvram->type != 0 || 10206 bcmp(nvram->trailer, Symbios_trailer, 6) || 10207 nvram->byte_count != len - 12) 10208 return 1; 10209 10210 /* verify checksum */ 10211 for (x = 6, csum = 0; x < len - 6; x++) 10212 csum += data[x]; 10213 if (csum != nvram->checksum) 10214 return 1; 10215 10216 return 0; 10217 } 10218 10219 /* 10220 * 93C46 EEPROM reading. 10221 * 10222 * GPOI0 - data in 10223 * GPIO1 - data out 10224 * GPIO2 - clock 10225 * GPIO4 - chip select 10226 * 10227 * Used by Tekram. 10228 */ 10229 10230 /* 10231 * Pulse clock bit in GPIO0 10232 */ 10233 static void T93C46_Clk(hcb_p np, u_char *gpreg) 10234 { 10235 OUTB (nc_gpreg, *gpreg | 0x04); 10236 UDELAY (2); 10237 OUTB (nc_gpreg, *gpreg); 10238 } 10239 10240 /* 10241 * Read bit from NVRAM 10242 */ 10243 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 10244 { 10245 UDELAY (2); 10246 T93C46_Clk(np, gpreg); 10247 *read_bit = INB (nc_gpreg); 10248 } 10249 10250 /* 10251 * Write bit to GPIO0 10252 */ 10253 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 10254 { 10255 if (write_bit & 0x01) 10256 *gpreg |= 0x02; 10257 else 10258 *gpreg &= 0xfd; 10259 10260 *gpreg |= 0x10; 10261 10262 OUTB (nc_gpreg, *gpreg); 10263 UDELAY (2); 10264 10265 T93C46_Clk(np, gpreg); 10266 } 10267 10268 /* 10269 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 10270 */ 10271 static void T93C46_Stop(hcb_p np, u_char *gpreg) 10272 { 10273 *gpreg &= 0xef; 10274 OUTB (nc_gpreg, *gpreg); 10275 UDELAY (2); 10276 10277 T93C46_Clk(np, gpreg); 10278 } 10279 10280 /* 10281 * Send read command and address to NVRAM 10282 */ 10283 static void T93C46_Send_Command(hcb_p np, u_short write_data, 10284 u_char *read_bit, u_char *gpreg) 10285 { 10286 int x; 10287 10288 /* send 9 bits, start bit (1), command (2), address (6) */ 10289 for (x = 0; x < 9; x++) 10290 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 10291 10292 *read_bit = INB (nc_gpreg); 10293 } 10294 10295 /* 10296 * READ 2 bytes from the NVRAM 10297 */ 10298 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 10299 { 10300 int x; 10301 u_char read_bit; 10302 10303 *nvram_data = 0; 10304 for (x = 0; x < 16; x++) { 10305 T93C46_Read_Bit(np, &read_bit, gpreg); 10306 10307 if (read_bit & 0x01) 10308 *nvram_data |= (0x01 << (15 - x)); 10309 else 10310 *nvram_data &= ~(0x01 << (15 - x)); 10311 } 10312 } 10313 10314 /* 10315 * Read Tekram NvRAM data. 10316 */ 10317 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 10318 { 10319 u_char read_bit; 10320 int x; 10321 10322 for (x = 0; x < len; x++) { 10323 10324 /* output read command and address */ 10325 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 10326 if (read_bit & 0x01) 10327 return 1; /* Bad */ 10328 T93C46_Read_Word(np, &data[x], gpreg); 10329 T93C46_Stop(np, gpreg); 10330 } 10331 10332 return 0; 10333 } 10334 10335 /* 10336 * Try reading 93C46 Tekram NVRAM. 10337 */ 10338 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 10339 { 10340 u_char gpcntl, gpreg; 10341 u_char old_gpcntl, old_gpreg; 10342 int retv = 1; 10343 10344 /* save current state of GPCNTL and GPREG */ 10345 old_gpreg = INB (nc_gpreg); 10346 old_gpcntl = INB (nc_gpcntl); 10347 10348 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 10349 1/2/4 out */ 10350 gpreg = old_gpreg & 0xe9; 10351 OUTB (nc_gpreg, gpreg); 10352 gpcntl = (old_gpcntl & 0xe9) | 0x09; 10353 OUTB (nc_gpcntl, gpcntl); 10354 10355 /* input all of NVRAM, 64 words */ 10356 retv = T93C46_Read_Data(np, (u_short *) nvram, 10357 sizeof(*nvram) / sizeof(short), &gpreg); 10358 10359 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 10360 OUTB (nc_gpcntl, old_gpcntl); 10361 OUTB (nc_gpreg, old_gpreg); 10362 10363 return retv; 10364 } 10365 10366 /* 10367 * Try reading Tekram NVRAM. 10368 * Return 0 if OK. 10369 */ 10370 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 10371 { 10372 u_char *data = (u_char *) nvram; 10373 int len = sizeof(*nvram); 10374 u_short csum; 10375 int x; 10376 10377 switch (np->device_id) { 10378 case PCI_ID_SYM53C885: 10379 case PCI_ID_SYM53C895: 10380 case PCI_ID_SYM53C896: 10381 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 10382 data, len); 10383 break; 10384 case PCI_ID_SYM53C875: 10385 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 10386 data, len); 10387 if (!x) 10388 break; 10389 default: 10390 x = sym_read_T93C46_nvram(np, nvram); 10391 break; 10392 } 10393 if (x) 10394 return 1; 10395 10396 /* verify checksum */ 10397 for (x = 0, csum = 0; x < len - 1; x += 2) 10398 csum += data[x] + (data[x+1] << 8); 10399 if (csum != 0x1234) 10400 return 1; 10401 10402 return 0; 10403 } 10404 10405 #endif /* SYM_CONF_NVRAM_SUPPORT */ 10406