1 /* 2 * Copyright (C) 2016 Samsung Electronics Co.Ltd 3 * Authors: 4 * Marek Szyprowski <m.szyprowski@samsung.com> 5 * 6 * DRM core plane blending related functions 7 * 8 * Permission to use, copy, modify, distribute, and sell this software and its 9 * documentation for any purpose is hereby granted without fee, provided that 10 * the above copyright notice appear in all copies and that both that copyright 11 * notice and this permission notice appear in supporting documentation, and 12 * that the name of the copyright holders not be used in advertising or 13 * publicity pertaining to distribution of the software without specific, 14 * written prior permission. The copyright holders make no representations 15 * about the suitability of this software for any purpose. It is provided "as 16 * is" without express or implied warranty. 17 * 18 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 20 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 21 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 22 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 23 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 24 * OF THIS SOFTWARE. 25 */ 26 #include <drm/drmP.h> 27 #include <drm/drm_atomic.h> 28 #include <drm/drm_blend.h> 29 #include <linux/export.h> 30 #include <linux/slab.h> 31 #include <linux/sort.h> 32 33 #include "drm_crtc_internal.h" 34 35 /** 36 * DOC: overview 37 * 38 * The basic plane composition model supported by standard plane properties only 39 * has a source rectangle (in logical pixels within the &drm_framebuffer), with 40 * sub-pixel accuracy, which is scaled up to a pixel-aligned destination 41 * rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is 42 * defined by the horizontal and vertical visible pixels (stored in @hdisplay 43 * and @vdisplay) of the requested mode (stored in @mode in the 44 * &drm_crtc_state). These two rectangles are both stored in the 45 * &drm_plane_state. 46 * 47 * For the atomic ioctl the following standard (atomic) properties on the plane object 48 * encode the basic plane composition model: 49 * 50 * SRC_X: 51 * X coordinate offset for the source rectangle within the 52 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 53 * SRC_Y: 54 * Y coordinate offset for the source rectangle within the 55 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 56 * SRC_W: 57 * Width for the source rectangle within the &drm_framebuffer, in 16.16 58 * fixed point. SRC_X plus SRC_W must be within the width of the source 59 * framebuffer. Must be positive. 60 * SRC_H: 61 * Height for the source rectangle within the &drm_framebuffer, in 16.16 62 * fixed point. SRC_Y plus SRC_H must be within the height of the source 63 * framebuffer. Must be positive. 64 * CRTC_X: 65 * X coordinate offset for the destination rectangle. Can be negative. 66 * CRTC_Y: 67 * Y coordinate offset for the destination rectangle. Can be negative. 68 * CRTC_W: 69 * Width for the destination rectangle. CRTC_X plus CRTC_W can extend past 70 * the currently visible horizontal area of the &drm_crtc. 71 * CRTC_H: 72 * Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past 73 * the currently visible vertical area of the &drm_crtc. 74 * FB_ID: 75 * Mode object ID of the &drm_framebuffer this plane should scan out. 76 * CRTC_ID: 77 * Mode object ID of the &drm_crtc this plane should be connected to. 78 * 79 * Note that the source rectangle must fully lie within the bounds of the 80 * &drm_framebuffer. The destination rectangle can lie outside of the visible 81 * area of the current mode of the CRTC. It must be apprpriately clipped by the 82 * driver, which can be done by calling drm_plane_helper_check_update(). Drivers 83 * are also allowed to round the subpixel sampling positions appropriately, but 84 * only to the next full pixel. No pixel outside of the source rectangle may 85 * ever be sampled, which is important when applying more sophisticated 86 * filtering than just a bilinear one when scaling. The filtering mode when 87 * scaling is unspecified. 88 * 89 * On top of this basic transformation additional properties can be exposed by 90 * the driver: 91 * 92 * - Rotation is set up with drm_mode_create_rotation_property(). It adds a 93 * rotation and reflection step between the source and destination rectangles. 94 * Without this property the rectangle is only scaled, but not rotated or 95 * reflected. 96 * 97 * - Z position is set up with drm_plane_create_zpos_immutable_property() and 98 * drm_plane_create_zpos_property(). It controls the visibility of overlapping 99 * planes. Without this property the primary plane is always below the cursor 100 * plane, and ordering between all other planes is undefined. 101 * 102 * Note that all the property extensions described here apply either to the 103 * plane or the CRTC (e.g. for the background color, which currently is not 104 * exposed and assumed to be black). 105 */ 106 107 /** 108 * drm_mode_create_rotation_property - create a new rotation property 109 * @dev: DRM device 110 * @supported_rotations: bitmask of supported rotations and reflections 111 * 112 * This creates a new property with the selected support for transformations. 113 * The resulting property should be stored in @rotation_property in 114 * &drm_mode_config. It then must be attached to each plane which supports 115 * rotations using drm_object_attach_property(). 116 * 117 * FIXME: Probably better if the rotation property is created on each plane, 118 * like the zpos property. Otherwise it's not possible to allow different 119 * rotation modes on different planes. 120 * 121 * Since a rotation by 180° degress is the same as reflecting both along the x 122 * and the y axis the rotation property is somewhat redundant. Drivers can use 123 * drm_rotation_simplify() to normalize values of this property. 124 * 125 * The property exposed to userspace is a bitmask property (see 126 * drm_property_create_bitmask()) called "rotation" and has the following 127 * bitmask enumaration values: 128 * 129 * DRM_ROTATE_0: 130 * "rotate-0" 131 * DRM_ROTATE_90: 132 * "rotate-90" 133 * DRM_ROTATE_180: 134 * "rotate-180" 135 * DRM_ROTATE_270: 136 * "rotate-270" 137 * DRM_REFLECT_X: 138 * "reflect-x" 139 * DRM_REFELCT_Y: 140 * "reflect-y" 141 * 142 * Rotation is the specified amount in degrees in counter clockwise direction, 143 * the X and Y axis are within the source rectangle, i.e. the X/Y axis before 144 * rotation. After reflection, the rotation is applied to the image sampled from 145 * the source rectangle, before scaling it to fit the destination rectangle. 146 */ 147 struct drm_property *drm_mode_create_rotation_property(struct drm_device *dev, 148 unsigned int supported_rotations) 149 { 150 static const struct drm_prop_enum_list props[] = { 151 { __builtin_ffs(DRM_ROTATE_0) - 1, "rotate-0" }, 152 { __builtin_ffs(DRM_ROTATE_90) - 1, "rotate-90" }, 153 { __builtin_ffs(DRM_ROTATE_180) - 1, "rotate-180" }, 154 { __builtin_ffs(DRM_ROTATE_270) - 1, "rotate-270" }, 155 { __builtin_ffs(DRM_REFLECT_X) - 1, "reflect-x" }, 156 { __builtin_ffs(DRM_REFLECT_Y) - 1, "reflect-y" }, 157 }; 158 159 return drm_property_create_bitmask(dev, 0, "rotation", 160 props, ARRAY_SIZE(props), 161 supported_rotations); 162 } 163 EXPORT_SYMBOL(drm_mode_create_rotation_property); 164 165 /** 166 * drm_rotation_simplify() - Try to simplify the rotation 167 * @rotation: Rotation to be simplified 168 * @supported_rotations: Supported rotations 169 * 170 * Attempt to simplify the rotation to a form that is supported. 171 * Eg. if the hardware supports everything except DRM_REFLECT_X 172 * one could call this function like this: 173 * 174 * drm_rotation_simplify(rotation, DRM_ROTATE_0 | 175 * DRM_ROTATE_90 | DRM_ROTATE_180 | 176 * DRM_ROTATE_270 | DRM_REFLECT_Y); 177 * 178 * to eliminate the DRM_ROTATE_X flag. Depending on what kind of 179 * transforms the hardware supports, this function may not 180 * be able to produce a supported transform, so the caller should 181 * check the result afterwards. 182 */ 183 unsigned int drm_rotation_simplify(unsigned int rotation, 184 unsigned int supported_rotations) 185 { 186 if (rotation & ~supported_rotations) { 187 rotation ^= DRM_REFLECT_X | DRM_REFLECT_Y; 188 rotation = (rotation & DRM_REFLECT_MASK) | 189 BIT((ffs(rotation & DRM_ROTATE_MASK) + 1) % 4); 190 } 191 192 return rotation; 193 } 194 EXPORT_SYMBOL(drm_rotation_simplify); 195 196 /** 197 * drm_plane_create_zpos_property - create mutable zpos property 198 * @plane: drm plane 199 * @zpos: initial value of zpos property 200 * @min: minimal possible value of zpos property 201 * @max: maximal possible value of zpos property 202 * 203 * This function initializes generic mutable zpos property and enables support 204 * for it in drm core. Drivers can then attach this property to planes to enable 205 * support for configurable planes arrangement during blending operation. 206 * Once mutable zpos property has been enabled, the DRM core will automatically 207 * calculate drm_plane_state->normalized_zpos values. Usually min should be set 208 * to 0 and max to maximal number of planes for given crtc - 1. 209 * 210 * If zpos of some planes cannot be changed (like fixed background or 211 * cursor/topmost planes), driver should adjust min/max values and assign those 212 * planes immutable zpos property with lower or higher values (for more 213 * information, see drm_plane_create_zpos_immutable_property() function). In such 214 * case driver should also assign proper initial zpos values for all planes in 215 * its plane_reset() callback, so the planes will be always sorted properly. 216 * 217 * See also drm_atomic_normalize_zpos(). 218 * 219 * The property exposed to userspace is called "zpos". 220 * 221 * Returns: 222 * Zero on success, negative errno on failure. 223 */ 224 int drm_plane_create_zpos_property(struct drm_plane *plane, 225 unsigned int zpos, 226 unsigned int min, unsigned int max) 227 { 228 struct drm_property *prop; 229 230 prop = drm_property_create_range(plane->dev, 0, "zpos", min, max); 231 if (!prop) 232 return -ENOMEM; 233 234 drm_object_attach_property(&plane->base, prop, zpos); 235 236 plane->zpos_property = prop; 237 238 if (plane->state) { 239 plane->state->zpos = zpos; 240 plane->state->normalized_zpos = zpos; 241 } 242 243 return 0; 244 } 245 EXPORT_SYMBOL(drm_plane_create_zpos_property); 246 247 /** 248 * drm_plane_create_zpos_immutable_property - create immuttable zpos property 249 * @plane: drm plane 250 * @zpos: value of zpos property 251 * 252 * This function initializes generic immutable zpos property and enables 253 * support for it in drm core. Using this property driver lets userspace 254 * to get the arrangement of the planes for blending operation and notifies 255 * it that the hardware (or driver) doesn't support changing of the planes' 256 * order. For mutable zpos see drm_plane_create_zpos_property(). 257 * 258 * The property exposed to userspace is called "zpos". 259 * 260 * Returns: 261 * Zero on success, negative errno on failure. 262 */ 263 int drm_plane_create_zpos_immutable_property(struct drm_plane *plane, 264 unsigned int zpos) 265 { 266 struct drm_property *prop; 267 268 prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE, 269 "zpos", zpos, zpos); 270 if (!prop) 271 return -ENOMEM; 272 273 drm_object_attach_property(&plane->base, prop, zpos); 274 275 plane->zpos_property = prop; 276 277 if (plane->state) { 278 plane->state->zpos = zpos; 279 plane->state->normalized_zpos = zpos; 280 } 281 282 return 0; 283 } 284 EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property); 285 286 static int drm_atomic_state_zpos_cmp(const void *a, const void *b) 287 { 288 const struct drm_plane_state *sa = *(struct drm_plane_state **)a; 289 const struct drm_plane_state *sb = *(struct drm_plane_state **)b; 290 291 if (sa->zpos != sb->zpos) 292 return sa->zpos - sb->zpos; 293 else 294 return sa->plane->base.id - sb->plane->base.id; 295 } 296 297 static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc, 298 struct drm_crtc_state *crtc_state) 299 { 300 struct drm_atomic_state *state = crtc_state->state; 301 struct drm_device *dev = crtc->dev; 302 int total_planes = dev->mode_config.num_total_plane; 303 struct drm_plane_state **states; 304 struct drm_plane *plane; 305 int i, n = 0; 306 int ret = 0; 307 308 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] calculating normalized zpos values\n", 309 crtc->base.id, crtc->name); 310 311 states = kmalloc_array(total_planes, sizeof(*states), GFP_TEMPORARY); 312 if (!states) 313 return -ENOMEM; 314 315 /* 316 * Normalization process might create new states for planes which 317 * normalized_zpos has to be recalculated. 318 */ 319 drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) { 320 struct drm_plane_state *plane_state = 321 drm_atomic_get_plane_state(state, plane); 322 if (IS_ERR(plane_state)) { 323 ret = PTR_ERR(plane_state); 324 goto done; 325 } 326 states[n++] = plane_state; 327 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] processing zpos value %d\n", 328 plane->base.id, plane->name, 329 plane_state->zpos); 330 } 331 332 sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL); 333 334 for (i = 0; i < n; i++) { 335 plane = states[i]->plane; 336 337 states[i]->normalized_zpos = i; 338 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] normalized zpos value %d\n", 339 plane->base.id, plane->name, i); 340 } 341 crtc_state->zpos_changed = true; 342 343 done: 344 kfree(states); 345 return ret; 346 } 347 348 /** 349 * drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs 350 * @dev: DRM device 351 * @state: atomic state of DRM device 352 * 353 * This function calculates normalized zpos value for all modified planes in 354 * the provided atomic state of DRM device. 355 * 356 * For every CRTC this function checks new states of all planes assigned to 357 * it and calculates normalized zpos value for these planes. Planes are compared 358 * first by their zpos values, then by plane id (if zpos is equal). The plane 359 * with lowest zpos value is at the bottom. The plane_state->normalized_zpos is 360 * then filled with unique values from 0 to number of active planes in crtc 361 * minus one. 362 * 363 * RETURNS 364 * Zero for success or -errno 365 */ 366 int drm_atomic_normalize_zpos(struct drm_device *dev, 367 struct drm_atomic_state *state) 368 { 369 struct drm_crtc *crtc; 370 struct drm_crtc_state *crtc_state; 371 struct drm_plane *plane; 372 struct drm_plane_state *plane_state; 373 int i, ret = 0; 374 375 for_each_plane_in_state(state, plane, plane_state, i) { 376 crtc = plane_state->crtc; 377 if (!crtc) 378 continue; 379 if (plane->state->zpos != plane_state->zpos) { 380 crtc_state = 381 drm_atomic_get_existing_crtc_state(state, crtc); 382 crtc_state->zpos_changed = true; 383 } 384 } 385 386 for_each_crtc_in_state(state, crtc, crtc_state, i) { 387 if (crtc_state->plane_mask != crtc->state->plane_mask || 388 crtc_state->zpos_changed) { 389 ret = drm_atomic_helper_crtc_normalize_zpos(crtc, 390 crtc_state); 391 if (ret) 392 return ret; 393 } 394 } 395 return 0; 396 } 397 EXPORT_SYMBOL(drm_atomic_normalize_zpos); 398