1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #include <drm/drmP.h> 31 #include <drm/i915_drm.h> 32 #include "i915_drv.h" 33 #include <drm/drm_pciids.h> 34 #include "intel_drv.h" 35 36 #include <linux/module.h> 37 #include <drm/drm_crtc_helper.h> 38 39 static struct drm_driver driver; 40 41 #define GEN_DEFAULT_PIPEOFFSETS \ 42 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \ 43 PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \ 44 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \ 45 TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \ 46 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET } 47 48 #define GEN_CHV_PIPEOFFSETS \ 49 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \ 50 CHV_PIPE_C_OFFSET }, \ 51 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \ 52 CHV_TRANSCODER_C_OFFSET, }, \ 53 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \ 54 CHV_PALETTE_C_OFFSET } 55 56 #define CURSOR_OFFSETS \ 57 .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET } 58 59 #define IVB_CURSOR_OFFSETS \ 60 .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET } 61 62 static const struct intel_device_info intel_i830_info = { 63 .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2, 64 .has_overlay = 1, .overlay_needs_physical = 1, 65 .ring_mask = RENDER_RING, 66 GEN_DEFAULT_PIPEOFFSETS, 67 CURSOR_OFFSETS, 68 }; 69 70 static const struct intel_device_info intel_845g_info = { 71 .gen = 2, .num_pipes = 1, 72 .has_overlay = 1, .overlay_needs_physical = 1, 73 .ring_mask = RENDER_RING, 74 GEN_DEFAULT_PIPEOFFSETS, 75 CURSOR_OFFSETS, 76 }; 77 78 static const struct intel_device_info intel_i85x_info = { 79 .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2, 80 .cursor_needs_physical = 1, 81 .has_overlay = 1, .overlay_needs_physical = 1, 82 .has_fbc = 1, 83 .ring_mask = RENDER_RING, 84 GEN_DEFAULT_PIPEOFFSETS, 85 CURSOR_OFFSETS, 86 }; 87 88 static const struct intel_device_info intel_i865g_info = { 89 .gen = 2, .num_pipes = 1, 90 .has_overlay = 1, .overlay_needs_physical = 1, 91 .ring_mask = RENDER_RING, 92 GEN_DEFAULT_PIPEOFFSETS, 93 CURSOR_OFFSETS, 94 }; 95 96 static const struct intel_device_info intel_i915g_info = { 97 .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2, 98 .has_overlay = 1, .overlay_needs_physical = 1, 99 .ring_mask = RENDER_RING, 100 GEN_DEFAULT_PIPEOFFSETS, 101 CURSOR_OFFSETS, 102 }; 103 static const struct intel_device_info intel_i915gm_info = { 104 .gen = 3, .is_mobile = 1, .num_pipes = 2, 105 .cursor_needs_physical = 1, 106 .has_overlay = 1, .overlay_needs_physical = 1, 107 .supports_tv = 1, 108 .has_fbc = 1, 109 .ring_mask = RENDER_RING, 110 GEN_DEFAULT_PIPEOFFSETS, 111 CURSOR_OFFSETS, 112 }; 113 static const struct intel_device_info intel_i945g_info = { 114 .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2, 115 .has_overlay = 1, .overlay_needs_physical = 1, 116 .ring_mask = RENDER_RING, 117 GEN_DEFAULT_PIPEOFFSETS, 118 CURSOR_OFFSETS, 119 }; 120 static const struct intel_device_info intel_i945gm_info = { 121 .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2, 122 .has_hotplug = 1, .cursor_needs_physical = 1, 123 .has_overlay = 1, .overlay_needs_physical = 1, 124 .supports_tv = 1, 125 .has_fbc = 1, 126 .ring_mask = RENDER_RING, 127 GEN_DEFAULT_PIPEOFFSETS, 128 CURSOR_OFFSETS, 129 }; 130 131 static const struct intel_device_info intel_i965g_info = { 132 .gen = 4, .is_broadwater = 1, .num_pipes = 2, 133 .has_hotplug = 1, 134 .has_overlay = 1, 135 .ring_mask = RENDER_RING, 136 GEN_DEFAULT_PIPEOFFSETS, 137 CURSOR_OFFSETS, 138 }; 139 140 static const struct intel_device_info intel_i965gm_info = { 141 .gen = 4, .is_crestline = 1, .num_pipes = 2, 142 .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1, 143 .has_overlay = 1, 144 .supports_tv = 1, 145 .ring_mask = RENDER_RING, 146 GEN_DEFAULT_PIPEOFFSETS, 147 CURSOR_OFFSETS, 148 }; 149 150 static const struct intel_device_info intel_g33_info = { 151 .gen = 3, .is_g33 = 1, .num_pipes = 2, 152 .need_gfx_hws = 1, .has_hotplug = 1, 153 .has_overlay = 1, 154 .ring_mask = RENDER_RING, 155 GEN_DEFAULT_PIPEOFFSETS, 156 CURSOR_OFFSETS, 157 }; 158 159 static const struct intel_device_info intel_g45_info = { 160 .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2, 161 .has_pipe_cxsr = 1, .has_hotplug = 1, 162 .ring_mask = RENDER_RING | BSD_RING, 163 GEN_DEFAULT_PIPEOFFSETS, 164 CURSOR_OFFSETS, 165 }; 166 167 static const struct intel_device_info intel_gm45_info = { 168 .gen = 4, .is_g4x = 1, .num_pipes = 2, 169 .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1, 170 .has_pipe_cxsr = 1, .has_hotplug = 1, 171 .supports_tv = 1, 172 .ring_mask = RENDER_RING | BSD_RING, 173 GEN_DEFAULT_PIPEOFFSETS, 174 CURSOR_OFFSETS, 175 }; 176 177 static const struct intel_device_info intel_pineview_info = { 178 .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2, 179 .need_gfx_hws = 1, .has_hotplug = 1, 180 .has_overlay = 1, 181 GEN_DEFAULT_PIPEOFFSETS, 182 CURSOR_OFFSETS, 183 }; 184 185 static const struct intel_device_info intel_ironlake_d_info = { 186 .gen = 5, .num_pipes = 2, 187 .need_gfx_hws = 1, .has_hotplug = 1, 188 .ring_mask = RENDER_RING | BSD_RING, 189 GEN_DEFAULT_PIPEOFFSETS, 190 CURSOR_OFFSETS, 191 }; 192 193 static const struct intel_device_info intel_ironlake_m_info = { 194 .gen = 5, .is_mobile = 1, .num_pipes = 2, 195 .need_gfx_hws = 1, .has_hotplug = 1, 196 .has_fbc = 1, 197 .ring_mask = RENDER_RING | BSD_RING, 198 GEN_DEFAULT_PIPEOFFSETS, 199 CURSOR_OFFSETS, 200 }; 201 202 static const struct intel_device_info intel_sandybridge_d_info = { 203 .gen = 6, .num_pipes = 2, 204 .need_gfx_hws = 1, .has_hotplug = 1, 205 .has_fbc = 1, 206 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, 207 .has_llc = 1, 208 GEN_DEFAULT_PIPEOFFSETS, 209 CURSOR_OFFSETS, 210 }; 211 212 static const struct intel_device_info intel_sandybridge_m_info = { 213 .gen = 6, .is_mobile = 1, .num_pipes = 2, 214 .need_gfx_hws = 1, .has_hotplug = 1, 215 .has_fbc = 1, 216 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, 217 .has_llc = 1, 218 GEN_DEFAULT_PIPEOFFSETS, 219 CURSOR_OFFSETS, 220 }; 221 222 #define GEN7_FEATURES \ 223 .gen = 7, .num_pipes = 3, \ 224 .need_gfx_hws = 1, .has_hotplug = 1, \ 225 .has_fbc = 1, \ 226 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \ 227 .has_llc = 1 228 229 static const struct intel_device_info intel_ivybridge_d_info = { 230 GEN7_FEATURES, 231 .is_ivybridge = 1, 232 GEN_DEFAULT_PIPEOFFSETS, 233 IVB_CURSOR_OFFSETS, 234 }; 235 236 static const struct intel_device_info intel_ivybridge_m_info = { 237 GEN7_FEATURES, 238 .is_ivybridge = 1, 239 .is_mobile = 1, 240 GEN_DEFAULT_PIPEOFFSETS, 241 IVB_CURSOR_OFFSETS, 242 }; 243 244 static const struct intel_device_info intel_ivybridge_q_info = { 245 GEN7_FEATURES, 246 .is_ivybridge = 1, 247 .num_pipes = 0, /* legal, last one wins */ 248 GEN_DEFAULT_PIPEOFFSETS, 249 IVB_CURSOR_OFFSETS, 250 }; 251 252 static const struct intel_device_info intel_valleyview_m_info = { 253 GEN7_FEATURES, 254 .is_mobile = 1, 255 .num_pipes = 2, 256 .is_valleyview = 1, 257 .display_mmio_offset = VLV_DISPLAY_BASE, 258 .has_fbc = 0, /* legal, last one wins */ 259 .has_llc = 0, /* legal, last one wins */ 260 GEN_DEFAULT_PIPEOFFSETS, 261 CURSOR_OFFSETS, 262 }; 263 264 static const struct intel_device_info intel_valleyview_d_info = { 265 GEN7_FEATURES, 266 .num_pipes = 2, 267 .is_valleyview = 1, 268 .display_mmio_offset = VLV_DISPLAY_BASE, 269 .has_fbc = 0, /* legal, last one wins */ 270 .has_llc = 0, /* legal, last one wins */ 271 GEN_DEFAULT_PIPEOFFSETS, 272 CURSOR_OFFSETS, 273 }; 274 275 static const struct intel_device_info intel_haswell_d_info = { 276 GEN7_FEATURES, 277 .is_haswell = 1, 278 .has_ddi = 1, 279 .has_fpga_dbg = 1, 280 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, 281 GEN_DEFAULT_PIPEOFFSETS, 282 IVB_CURSOR_OFFSETS, 283 }; 284 285 static const struct intel_device_info intel_haswell_m_info = { 286 GEN7_FEATURES, 287 .is_haswell = 1, 288 .is_mobile = 1, 289 .has_ddi = 1, 290 .has_fpga_dbg = 1, 291 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, 292 GEN_DEFAULT_PIPEOFFSETS, 293 IVB_CURSOR_OFFSETS, 294 }; 295 296 static const struct intel_device_info intel_broadwell_d_info = { 297 .gen = 8, .num_pipes = 3, 298 .need_gfx_hws = 1, .has_hotplug = 1, 299 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, 300 .has_llc = 1, 301 .has_ddi = 1, 302 .has_fpga_dbg = 1, 303 .has_fbc = 1, 304 GEN_DEFAULT_PIPEOFFSETS, 305 IVB_CURSOR_OFFSETS, 306 }; 307 308 static const struct intel_device_info intel_broadwell_m_info = { 309 .gen = 8, .is_mobile = 1, .num_pipes = 3, 310 .need_gfx_hws = 1, .has_hotplug = 1, 311 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, 312 .has_llc = 1, 313 .has_ddi = 1, 314 .has_fpga_dbg = 1, 315 .has_fbc = 1, 316 GEN_DEFAULT_PIPEOFFSETS, 317 IVB_CURSOR_OFFSETS, 318 }; 319 320 static const struct intel_device_info intel_broadwell_gt3d_info = { 321 .gen = 8, .num_pipes = 3, 322 .need_gfx_hws = 1, .has_hotplug = 1, 323 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING, 324 .has_llc = 1, 325 .has_ddi = 1, 326 .has_fpga_dbg = 1, 327 .has_fbc = 1, 328 GEN_DEFAULT_PIPEOFFSETS, 329 IVB_CURSOR_OFFSETS, 330 }; 331 332 static const struct intel_device_info intel_broadwell_gt3m_info = { 333 .gen = 8, .is_mobile = 1, .num_pipes = 3, 334 .need_gfx_hws = 1, .has_hotplug = 1, 335 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING, 336 .has_llc = 1, 337 .has_ddi = 1, 338 .has_fpga_dbg = 1, 339 .has_fbc = 1, 340 GEN_DEFAULT_PIPEOFFSETS, 341 IVB_CURSOR_OFFSETS, 342 }; 343 344 static const struct intel_device_info intel_cherryview_info = { 345 .gen = 8, .num_pipes = 3, 346 .need_gfx_hws = 1, .has_hotplug = 1, 347 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, 348 .is_valleyview = 1, 349 .display_mmio_offset = VLV_DISPLAY_BASE, 350 GEN_CHV_PIPEOFFSETS, 351 CURSOR_OFFSETS, 352 }; 353 354 static const struct intel_device_info intel_skylake_info = { 355 .is_skylake = 1, 356 .gen = 9, .num_pipes = 3, 357 .need_gfx_hws = 1, .has_hotplug = 1, 358 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, 359 .has_llc = 1, 360 .has_ddi = 1, 361 .has_fpga_dbg = 1, 362 .has_fbc = 1, 363 GEN_DEFAULT_PIPEOFFSETS, 364 IVB_CURSOR_OFFSETS, 365 }; 366 367 static const struct intel_device_info intel_skylake_gt3_info = { 368 .is_skylake = 1, 369 .gen = 9, .num_pipes = 3, 370 .need_gfx_hws = 1, .has_hotplug = 1, 371 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING, 372 .has_llc = 1, 373 .has_ddi = 1, 374 .has_fpga_dbg = 1, 375 .has_fbc = 1, 376 GEN_DEFAULT_PIPEOFFSETS, 377 IVB_CURSOR_OFFSETS, 378 }; 379 380 static const struct intel_device_info intel_broxton_info = { 381 .is_preliminary = 1, 382 .gen = 9, 383 .need_gfx_hws = 1, .has_hotplug = 1, 384 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, 385 .num_pipes = 3, 386 .has_ddi = 1, 387 .has_fpga_dbg = 1, 388 .has_fbc = 1, 389 GEN_DEFAULT_PIPEOFFSETS, 390 IVB_CURSOR_OFFSETS, 391 }; 392 393 /* 394 * Make sure any device matches here are from most specific to most 395 * general. For example, since the Quanta match is based on the subsystem 396 * and subvendor IDs, we need it to come before the more general IVB 397 * PCI ID matches, otherwise we'll use the wrong info struct above. 398 */ 399 #define INTEL_PCI_IDS \ 400 INTEL_I830_IDS(&intel_i830_info), \ 401 INTEL_I845G_IDS(&intel_845g_info), \ 402 INTEL_I85X_IDS(&intel_i85x_info), \ 403 INTEL_I865G_IDS(&intel_i865g_info), \ 404 INTEL_I915G_IDS(&intel_i915g_info), \ 405 INTEL_I915GM_IDS(&intel_i915gm_info), \ 406 INTEL_I945G_IDS(&intel_i945g_info), \ 407 INTEL_I945GM_IDS(&intel_i945gm_info), \ 408 INTEL_I965G_IDS(&intel_i965g_info), \ 409 INTEL_G33_IDS(&intel_g33_info), \ 410 INTEL_I965GM_IDS(&intel_i965gm_info), \ 411 INTEL_GM45_IDS(&intel_gm45_info), \ 412 INTEL_G45_IDS(&intel_g45_info), \ 413 INTEL_PINEVIEW_IDS(&intel_pineview_info), \ 414 INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info), \ 415 INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info), \ 416 INTEL_SNB_D_IDS(&intel_sandybridge_d_info), \ 417 INTEL_SNB_M_IDS(&intel_sandybridge_m_info), \ 418 INTEL_IVB_M_IDS(&intel_ivybridge_m_info), \ 419 INTEL_IVB_D_IDS(&intel_ivybridge_d_info), \ 420 INTEL_HSW_D_IDS(&intel_haswell_d_info), \ 421 INTEL_HSW_M_IDS(&intel_haswell_m_info), \ 422 INTEL_VLV_M_IDS(&intel_valleyview_m_info), \ 423 INTEL_VLV_D_IDS(&intel_valleyview_d_info), \ 424 INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info), \ 425 INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info), \ 426 INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info), \ 427 INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info), \ 428 INTEL_CHV_IDS(&intel_cherryview_info), \ 429 INTEL_SKL_GT1_IDS(&intel_skylake_info), \ 430 INTEL_SKL_GT2_IDS(&intel_skylake_info), \ 431 INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info), \ 432 INTEL_BXT_IDS(&intel_broxton_info) 433 434 static const struct pci_device_id pciidlist[] = { /* aka */ 435 INTEL_PCI_IDS, 436 {0, 0} 437 }; 438 439 #define PCI_VENDOR_INTEL 0x8086 440 441 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev) 442 { 443 enum intel_pch ret = PCH_NOP; 444 445 /* 446 * In a virtualized passthrough environment we can be in a 447 * setup where the ISA bridge is not able to be passed through. 448 * In this case, a south bridge can be emulated and we have to 449 * make an educated guess as to which PCH is really there. 450 */ 451 452 if (IS_GEN5(dev)) { 453 ret = PCH_IBX; 454 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n"); 455 } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) { 456 ret = PCH_CPT; 457 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n"); 458 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { 459 ret = PCH_LPT; 460 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n"); 461 } else if (IS_SKYLAKE(dev)) { 462 ret = PCH_SPT; 463 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n"); 464 } 465 466 return ret; 467 } 468 469 void intel_detect_pch(struct drm_device *dev) 470 { 471 struct drm_i915_private *dev_priv = dev->dev_private; 472 struct device *pch = NULL; 473 struct pci_devinfo *di; 474 475 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting 476 * (which really amounts to a PCH but no South Display). 477 */ 478 if (INTEL_INFO(dev)->num_pipes == 0) { 479 dev_priv->pch_type = PCH_NOP; 480 return; 481 } 482 483 /* XXX The ISA bridge probe causes some old Core2 machines to hang */ 484 if (INTEL_INFO(dev)->gen < 5) 485 return; 486 487 /* 488 * The reason to probe ISA bridge instead of Dev31:Fun0 is to 489 * make graphics device passthrough work easy for VMM, that only 490 * need to expose ISA bridge to let driver know the real hardware 491 * underneath. This is a requirement from virtualization team. 492 * 493 * In some virtualized environments (e.g. XEN), there is irrelevant 494 * ISA bridge in the system. To work reliably, we should scan trhough 495 * all the ISA bridge devices and check for the first match, instead 496 * of only checking the first one. 497 */ 498 di = NULL; 499 500 while ((pch = pci_iterate_class(&di, PCIC_BRIDGE, PCIS_BRIDGE_ISA))) { 501 if (pci_get_vendor(pch) == PCI_VENDOR_INTEL) { 502 unsigned short id = pci_get_device(pch) & INTEL_PCH_DEVICE_ID_MASK; 503 dev_priv->pch_id = id; 504 505 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) { 506 dev_priv->pch_type = PCH_IBX; 507 DRM_DEBUG_KMS("Found Ibex Peak PCH\n"); 508 WARN_ON(!IS_GEN5(dev)); 509 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) { 510 dev_priv->pch_type = PCH_CPT; 511 DRM_DEBUG_KMS("Found CougarPoint PCH\n"); 512 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev))); 513 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) { 514 /* PantherPoint is CPT compatible */ 515 dev_priv->pch_type = PCH_CPT; 516 DRM_DEBUG_KMS("Found PantherPoint PCH\n"); 517 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev))); 518 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) { 519 dev_priv->pch_type = PCH_LPT; 520 DRM_DEBUG_KMS("Found LynxPoint PCH\n"); 521 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev)); 522 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev)); 523 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) { 524 dev_priv->pch_type = PCH_LPT; 525 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n"); 526 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev)); 527 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev)); 528 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) { 529 dev_priv->pch_type = PCH_SPT; 530 DRM_DEBUG_KMS("Found SunrisePoint PCH\n"); 531 WARN_ON(!IS_SKYLAKE(dev)); 532 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) { 533 dev_priv->pch_type = PCH_SPT; 534 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n"); 535 WARN_ON(!IS_SKYLAKE(dev)); 536 } else if (id == INTEL_PCH_P2X_DEVICE_ID_TYPE) { 537 dev_priv->pch_type = intel_virt_detect_pch(dev); 538 } else 539 continue; 540 541 break; 542 } 543 } 544 if (!pch) 545 DRM_DEBUG_KMS("No PCH found.\n"); 546 547 #if 0 548 pci_dev_put(pch); 549 #endif 550 } 551 552 bool i915_semaphore_is_enabled(struct drm_device *dev) 553 { 554 if (INTEL_INFO(dev)->gen < 6) 555 return false; 556 557 if (i915.semaphores >= 0) 558 return i915.semaphores; 559 560 /* TODO: make semaphores and Execlists play nicely together */ 561 if (i915.enable_execlists) 562 return false; 563 564 /* Until we get further testing... */ 565 if (IS_GEN8(dev)) 566 return false; 567 568 #ifdef CONFIG_INTEL_IOMMU 569 /* Enable semaphores on SNB when IO remapping is off */ 570 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) 571 return false; 572 #endif 573 574 return true; 575 } 576 577 #ifdef __DragonFly__ 578 #define IS_BUILTIN(blah) 0 579 #endif 580 581 void i915_firmware_load_error_print(const char *fw_path, int err) 582 { 583 DRM_ERROR("failed to load firmware %s (%d)\n", fw_path, err); 584 585 /* 586 * If the reason is not known assume -ENOENT since that's the most 587 * usual failure mode. 588 */ 589 if (!err) 590 err = -ENOENT; 591 592 if (!(IS_BUILTIN(CONFIG_DRM_I915) && err == -ENOENT)) 593 return; 594 595 DRM_ERROR( 596 "The driver is built-in, so to load the firmware you need to\n" 597 "include it either in the kernel (see CONFIG_EXTRA_FIRMWARE) or\n" 598 "in your initrd/initramfs image.\n"); 599 } 600 601 static void intel_suspend_encoders(struct drm_i915_private *dev_priv) 602 { 603 struct drm_device *dev = dev_priv->dev; 604 struct drm_encoder *encoder; 605 606 drm_modeset_lock_all(dev); 607 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 608 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 609 610 if (intel_encoder->suspend) 611 intel_encoder->suspend(intel_encoder); 612 } 613 drm_modeset_unlock_all(dev); 614 } 615 616 static int intel_suspend_complete(struct drm_i915_private *dev_priv); 617 static int vlv_resume_prepare(struct drm_i915_private *dev_priv, 618 bool rpm_resume); 619 static int skl_resume_prepare(struct drm_i915_private *dev_priv); 620 static int bxt_resume_prepare(struct drm_i915_private *dev_priv); 621 622 623 static int i915_drm_suspend(struct drm_device *dev) 624 { 625 struct drm_i915_private *dev_priv = dev->dev_private; 626 pci_power_t opregion_target_state; 627 int error; 628 629 /* ignore lid events during suspend */ 630 mutex_lock(&dev_priv->modeset_restore_lock); 631 dev_priv->modeset_restore = MODESET_SUSPENDED; 632 mutex_unlock(&dev_priv->modeset_restore_lock); 633 634 /* We do a lot of poking in a lot of registers, make sure they work 635 * properly. */ 636 intel_display_set_init_power(dev_priv, true); 637 638 drm_kms_helper_poll_disable(dev); 639 640 #if 0 641 pci_save_state(dev->pdev); 642 #endif 643 644 error = i915_gem_suspend(dev); 645 if (error) { 646 dev_err(dev->pdev->dev, 647 "GEM idle failed, resume might fail\n"); 648 return error; 649 } 650 651 intel_guc_suspend(dev); 652 653 intel_suspend_gt_powersave(dev); 654 655 /* 656 * Disable CRTCs directly since we want to preserve sw state 657 * for _thaw. Also, power gate the CRTC power wells. 658 */ 659 drm_modeset_lock_all(dev); 660 intel_display_suspend(dev); 661 drm_modeset_unlock_all(dev); 662 663 #if 0 664 intel_dp_mst_suspend(dev); 665 #endif 666 667 intel_runtime_pm_disable_interrupts(dev_priv); 668 intel_hpd_cancel_work(dev_priv); 669 670 intel_suspend_encoders(dev_priv); 671 672 intel_suspend_hw(dev); 673 674 i915_gem_suspend_gtt_mappings(dev); 675 676 i915_save_state(dev); 677 678 opregion_target_state = PCI_D3cold; 679 #if IS_ENABLED(CONFIG_ACPI_SLEEP) 680 if (acpi_target_system_state() < ACPI_STATE_S3) 681 opregion_target_state = PCI_D1; 682 #endif 683 intel_opregion_notify_adapter(dev, opregion_target_state); 684 685 intel_uncore_forcewake_reset(dev, false); 686 intel_opregion_fini(dev); 687 688 #if 0 689 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true); 690 #endif 691 692 dev_priv->suspend_count++; 693 694 intel_display_set_init_power(dev_priv, false); 695 696 return 0; 697 } 698 699 static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation) 700 { 701 struct drm_i915_private *dev_priv = drm_dev->dev_private; 702 int ret; 703 704 ret = intel_suspend_complete(dev_priv); 705 706 if (ret) { 707 DRM_ERROR("Suspend complete failed: %d\n", ret); 708 709 return ret; 710 } 711 712 #if 0 713 pci_disable_device(drm_dev->pdev); 714 /* 715 * During hibernation on some platforms the BIOS may try to access 716 * the device even though it's already in D3 and hang the machine. So 717 * leave the device in D0 on those platforms and hope the BIOS will 718 * power down the device properly. The issue was seen on multiple old 719 * GENs with different BIOS vendors, so having an explicit blacklist 720 * is inpractical; apply the workaround on everything pre GEN6. The 721 * platforms where the issue was seen: 722 * Lenovo Thinkpad X301, X61s, X60, T60, X41 723 * Fujitsu FSC S7110 724 * Acer Aspire 1830T 725 */ 726 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6)) 727 pci_set_power_state(drm_dev->pdev, PCI_D3hot); 728 #endif 729 730 return 0; 731 } 732 733 int i915_suspend_switcheroo(device_t kdev) 734 { 735 struct drm_device *dev = device_get_softc(kdev); 736 int error; 737 738 if (!dev || !dev->dev_private) { 739 DRM_ERROR("dev: %p\n", dev); 740 DRM_ERROR("DRM not initialized, aborting suspend.\n"); 741 return -ENODEV; 742 } 743 744 #if 0 745 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND && 746 state.event != PM_EVENT_FREEZE)) 747 return -EINVAL; 748 #endif 749 750 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF) 751 return 0; 752 753 error = i915_drm_suspend(dev); 754 if (error) 755 return error; 756 757 return i915_drm_suspend_late(dev, false); 758 } 759 760 static int i915_drm_resume(struct drm_device *dev) 761 { 762 struct drm_i915_private *dev_priv = dev->dev_private; 763 764 mutex_lock(&dev->struct_mutex); 765 i915_gem_restore_gtt_mappings(dev); 766 mutex_unlock(&dev->struct_mutex); 767 768 i915_restore_state(dev); 769 intel_opregion_setup(dev); 770 771 intel_init_pch_refclk(dev); 772 drm_mode_config_reset(dev); 773 774 /* 775 * Interrupts have to be enabled before any batches are run. If not the 776 * GPU will hang. i915_gem_init_hw() will initiate batches to 777 * update/restore the context. 778 * 779 * Modeset enabling in intel_modeset_init_hw() also needs working 780 * interrupts. 781 */ 782 intel_runtime_pm_enable_interrupts(dev_priv); 783 784 mutex_lock(&dev->struct_mutex); 785 if (i915_gem_init_hw(dev)) { 786 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n"); 787 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter); 788 } 789 mutex_unlock(&dev->struct_mutex); 790 791 intel_guc_resume(dev); 792 793 intel_modeset_init_hw(dev); 794 795 spin_lock_irq(&dev_priv->irq_lock); 796 if (dev_priv->display.hpd_irq_setup) 797 dev_priv->display.hpd_irq_setup(dev); 798 spin_unlock_irq(&dev_priv->irq_lock); 799 800 drm_modeset_lock_all(dev); 801 intel_display_resume(dev); 802 drm_modeset_unlock_all(dev); 803 804 intel_dp_mst_resume(dev); 805 806 /* 807 * ... but also need to make sure that hotplug processing 808 * doesn't cause havoc. Like in the driver load code we don't 809 * bother with the tiny race here where we might loose hotplug 810 * notifications. 811 * */ 812 intel_hpd_init(dev_priv); 813 /* Config may have changed between suspend and resume */ 814 drm_helper_hpd_irq_event(dev); 815 816 intel_opregion_init(dev); 817 818 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false); 819 820 mutex_lock(&dev_priv->modeset_restore_lock); 821 dev_priv->modeset_restore = MODESET_DONE; 822 mutex_unlock(&dev_priv->modeset_restore_lock); 823 824 #if 0 825 intel_opregion_notify_adapter(dev, PCI_D0); 826 #endif 827 828 drm_kms_helper_poll_enable(dev); 829 830 return 0; 831 } 832 833 static int i915_drm_resume_early(struct drm_device *dev) 834 { 835 struct drm_i915_private *dev_priv = dev->dev_private; 836 int ret = 0; 837 838 /* 839 * We have a resume ordering issue with the snd-hda driver also 840 * requiring our device to be power up. Due to the lack of a 841 * parent/child relationship we currently solve this with an early 842 * resume hook. 843 * 844 * FIXME: This should be solved with a special hdmi sink device or 845 * similar so that power domains can be employed. 846 */ 847 #if 0 848 if (pci_enable_device(dev->pdev)) 849 return -EIO; 850 851 pci_set_master(dev->pdev); 852 #endif 853 854 if (IS_VALLEYVIEW(dev_priv)) 855 ret = vlv_resume_prepare(dev_priv, false); 856 if (ret) 857 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n", 858 ret); 859 860 intel_uncore_early_sanitize(dev, true); 861 862 if (IS_BROXTON(dev)) 863 ret = bxt_resume_prepare(dev_priv); 864 else if (IS_SKYLAKE(dev_priv)) 865 ret = skl_resume_prepare(dev_priv); 866 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 867 hsw_disable_pc8(dev_priv); 868 869 intel_uncore_sanitize(dev); 870 intel_power_domains_init_hw(dev_priv); 871 872 return ret; 873 } 874 875 int i915_resume_switcheroo(struct drm_device *dev) 876 { 877 int ret; 878 879 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF) 880 return 0; 881 882 ret = i915_drm_resume_early(dev); 883 if (ret) 884 return ret; 885 886 return i915_drm_resume(dev); 887 } 888 889 /* XXX Hack for the old *BSD drm code base 890 * The device id field is set at probe time */ 891 static drm_pci_id_list_t i915_attach_list[] = { 892 {0x8086, 0, 0, "Intel i915 GPU"}, 893 {0, 0, 0, NULL} 894 }; 895 896 struct intel_device_info * 897 i915_get_device_id(int device) 898 { 899 const struct pci_device_id *did; 900 901 for (did = &pciidlist[0]; did->device != 0; did++) { 902 if (did->device != device) 903 continue; 904 return (struct intel_device_info *)did->driver_data; 905 } 906 return (NULL); 907 } 908 909 extern devclass_t drm_devclass; 910 911 /** 912 * i915_reset - reset chip after a hang 913 * @dev: drm device to reset 914 * 915 * Reset the chip. Useful if a hang is detected. Returns zero on successful 916 * reset or otherwise an error code. 917 * 918 * Procedure is fairly simple: 919 * - reset the chip using the reset reg 920 * - re-init context state 921 * - re-init hardware status page 922 * - re-init ring buffer 923 * - re-init interrupt state 924 * - re-init display 925 */ 926 int i915_reset(struct drm_device *dev) 927 { 928 struct drm_i915_private *dev_priv = dev->dev_private; 929 bool simulated; 930 int ret; 931 932 intel_reset_gt_powersave(dev); 933 934 mutex_lock(&dev->struct_mutex); 935 936 i915_gem_reset(dev); 937 938 simulated = dev_priv->gpu_error.stop_rings != 0; 939 940 ret = intel_gpu_reset(dev); 941 942 /* Also reset the gpu hangman. */ 943 if (simulated) { 944 DRM_INFO("Simulated gpu hang, resetting stop_rings\n"); 945 dev_priv->gpu_error.stop_rings = 0; 946 if (ret == -ENODEV) { 947 DRM_INFO("Reset not implemented, but ignoring " 948 "error for simulated gpu hangs\n"); 949 ret = 0; 950 } 951 } 952 953 if (i915_stop_ring_allow_warn(dev_priv)) 954 pr_notice("drm/i915: Resetting chip after gpu hang\n"); 955 956 if (ret) { 957 DRM_ERROR("Failed to reset chip: %i\n", ret); 958 mutex_unlock(&dev->struct_mutex); 959 return ret; 960 } 961 962 intel_overlay_reset(dev_priv); 963 964 /* Ok, now get things going again... */ 965 966 /* 967 * Everything depends on having the GTT running, so we need to start 968 * there. Fortunately we don't need to do this unless we reset the 969 * chip at a PCI level. 970 * 971 * Next we need to restore the context, but we don't use those 972 * yet either... 973 * 974 * Ring buffer needs to be re-initialized in the KMS case, or if X 975 * was running at the time of the reset (i.e. we weren't VT 976 * switched away). 977 */ 978 979 /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */ 980 dev_priv->gpu_error.reload_in_reset = true; 981 982 ret = i915_gem_init_hw(dev); 983 984 dev_priv->gpu_error.reload_in_reset = false; 985 986 mutex_unlock(&dev->struct_mutex); 987 if (ret) { 988 DRM_ERROR("Failed hw init on reset %d\n", ret); 989 return ret; 990 } 991 992 /* 993 * rps/rc6 re-init is necessary to restore state lost after the 994 * reset and the re-install of gt irqs. Skip for ironlake per 995 * previous concerns that it doesn't respond well to some forms 996 * of re-init after reset. 997 */ 998 if (INTEL_INFO(dev)->gen > 5) 999 intel_enable_gt_powersave(dev); 1000 1001 return 0; 1002 } 1003 1004 static int i915_pci_probe(device_t kdev) 1005 { 1006 int device, i = 0; 1007 1008 if (pci_get_class(kdev) != PCIC_DISPLAY) 1009 return ENXIO; 1010 1011 if (pci_get_vendor(kdev) != PCI_VENDOR_INTEL) 1012 return ENXIO; 1013 1014 device = pci_get_device(kdev); 1015 1016 for (i = 0; pciidlist[i].device != 0; i++) { 1017 if (pciidlist[i].device == device) { 1018 i915_attach_list[0].device = device; 1019 return 0; 1020 } 1021 } 1022 1023 return ENXIO; 1024 } 1025 1026 #if 0 1027 static void 1028 i915_pci_remove(struct pci_dev *pdev) 1029 { 1030 struct drm_device *dev = pci_get_drvdata(pdev); 1031 1032 drm_put_dev(dev); 1033 } 1034 1035 static int i915_pm_suspend(struct device *dev) 1036 { 1037 struct pci_dev *pdev = to_pci_dev(dev); 1038 struct drm_device *drm_dev = pci_get_drvdata(pdev); 1039 1040 if (!drm_dev || !drm_dev->dev_private) { 1041 dev_err(dev, "DRM not initialized, aborting suspend.\n"); 1042 return -ENODEV; 1043 } 1044 1045 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF) 1046 return 0; 1047 1048 return i915_drm_suspend(drm_dev); 1049 } 1050 1051 static int i915_pm_suspend_late(struct device *dev) 1052 { 1053 struct drm_device *drm_dev = dev_to_i915(dev)->dev; 1054 1055 /* 1056 * We have a suspend ordering issue with the snd-hda driver also 1057 * requiring our device to be power up. Due to the lack of a 1058 * parent/child relationship we currently solve this with an late 1059 * suspend hook. 1060 * 1061 * FIXME: This should be solved with a special hdmi sink device or 1062 * similar so that power domains can be employed. 1063 */ 1064 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF) 1065 return 0; 1066 1067 return i915_drm_suspend_late(drm_dev, false); 1068 } 1069 1070 static int i915_pm_poweroff_late(struct device *dev) 1071 { 1072 struct drm_device *drm_dev = dev_to_i915(dev)->dev; 1073 1074 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF) 1075 return 0; 1076 1077 return i915_drm_suspend_late(drm_dev, true); 1078 } 1079 1080 static int i915_pm_resume_early(struct device *dev) 1081 { 1082 struct drm_device *drm_dev = dev_to_i915(dev)->dev; 1083 1084 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF) 1085 return 0; 1086 1087 return i915_drm_resume_early(drm_dev); 1088 } 1089 1090 static int i915_pm_resume(struct device *dev) 1091 { 1092 struct drm_device *drm_dev = dev_to_i915(dev)->dev; 1093 1094 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF) 1095 return 0; 1096 1097 return i915_drm_resume(drm_dev); 1098 } 1099 #endif 1100 1101 static int skl_suspend_complete(struct drm_i915_private *dev_priv) 1102 { 1103 /* Enabling DC6 is not a hard requirement to enter runtime D3 */ 1104 1105 skl_uninit_cdclk(dev_priv); 1106 1107 return 0; 1108 } 1109 1110 static int hsw_suspend_complete(struct drm_i915_private *dev_priv) 1111 { 1112 hsw_enable_pc8(dev_priv); 1113 1114 return 0; 1115 } 1116 1117 static int bxt_suspend_complete(struct drm_i915_private *dev_priv) 1118 { 1119 struct drm_device *dev = dev_priv->dev; 1120 1121 /* TODO: when DC5 support is added disable DC5 here. */ 1122 1123 broxton_ddi_phy_uninit(dev); 1124 broxton_uninit_cdclk(dev); 1125 bxt_enable_dc9(dev_priv); 1126 1127 return 0; 1128 } 1129 1130 static int bxt_resume_prepare(struct drm_i915_private *dev_priv) 1131 { 1132 struct drm_device *dev = dev_priv->dev; 1133 1134 /* TODO: when CSR FW support is added make sure the FW is loaded */ 1135 1136 bxt_disable_dc9(dev_priv); 1137 1138 /* 1139 * TODO: when DC5 support is added enable DC5 here if the CSR FW 1140 * is available. 1141 */ 1142 broxton_init_cdclk(dev); 1143 broxton_ddi_phy_init(dev); 1144 intel_prepare_ddi(dev); 1145 1146 return 0; 1147 } 1148 1149 static int skl_resume_prepare(struct drm_i915_private *dev_priv) 1150 { 1151 struct drm_device *dev = dev_priv->dev; 1152 1153 skl_init_cdclk(dev_priv); 1154 intel_csr_load_program(dev); 1155 1156 return 0; 1157 } 1158 1159 /* 1160 * Save all Gunit registers that may be lost after a D3 and a subsequent 1161 * S0i[R123] transition. The list of registers needing a save/restore is 1162 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit 1163 * registers in the following way: 1164 * - Driver: saved/restored by the driver 1165 * - Punit : saved/restored by the Punit firmware 1166 * - No, w/o marking: no need to save/restore, since the register is R/O or 1167 * used internally by the HW in a way that doesn't depend 1168 * keeping the content across a suspend/resume. 1169 * - Debug : used for debugging 1170 * 1171 * We save/restore all registers marked with 'Driver', with the following 1172 * exceptions: 1173 * - Registers out of use, including also registers marked with 'Debug'. 1174 * These have no effect on the driver's operation, so we don't save/restore 1175 * them to reduce the overhead. 1176 * - Registers that are fully setup by an initialization function called from 1177 * the resume path. For example many clock gating and RPS/RC6 registers. 1178 * - Registers that provide the right functionality with their reset defaults. 1179 * 1180 * TODO: Except for registers that based on the above 3 criteria can be safely 1181 * ignored, we save/restore all others, practically treating the HW context as 1182 * a black-box for the driver. Further investigation is needed to reduce the 1183 * saved/restored registers even further, by following the same 3 criteria. 1184 */ 1185 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv) 1186 { 1187 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state; 1188 int i; 1189 1190 /* GAM 0x4000-0x4770 */ 1191 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK); 1192 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL); 1193 s->arb_mode = I915_READ(ARB_MODE); 1194 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0); 1195 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1); 1196 1197 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++) 1198 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i)); 1199 1200 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT); 1201 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT); 1202 1203 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7); 1204 s->ecochk = I915_READ(GAM_ECOCHK); 1205 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7); 1206 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7); 1207 1208 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR); 1209 1210 /* MBC 0x9024-0x91D0, 0x8500 */ 1211 s->g3dctl = I915_READ(VLV_G3DCTL); 1212 s->gsckgctl = I915_READ(VLV_GSCKGCTL); 1213 s->mbctl = I915_READ(GEN6_MBCTL); 1214 1215 /* GCP 0x9400-0x9424, 0x8100-0x810C */ 1216 s->ucgctl1 = I915_READ(GEN6_UCGCTL1); 1217 s->ucgctl3 = I915_READ(GEN6_UCGCTL3); 1218 s->rcgctl1 = I915_READ(GEN6_RCGCTL1); 1219 s->rcgctl2 = I915_READ(GEN6_RCGCTL2); 1220 s->rstctl = I915_READ(GEN6_RSTCTL); 1221 s->misccpctl = I915_READ(GEN7_MISCCPCTL); 1222 1223 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */ 1224 s->gfxpause = I915_READ(GEN6_GFXPAUSE); 1225 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC); 1226 s->rpdeuc = I915_READ(GEN6_RPDEUC); 1227 s->ecobus = I915_READ(ECOBUS); 1228 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL); 1229 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT); 1230 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW); 1231 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR); 1232 s->rcedata = I915_READ(VLV_RCEDATA); 1233 s->spare2gh = I915_READ(VLV_SPAREG2H); 1234 1235 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */ 1236 s->gt_imr = I915_READ(GTIMR); 1237 s->gt_ier = I915_READ(GTIER); 1238 s->pm_imr = I915_READ(GEN6_PMIMR); 1239 s->pm_ier = I915_READ(GEN6_PMIER); 1240 1241 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++) 1242 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i)); 1243 1244 /* GT SA CZ domain, 0x100000-0x138124 */ 1245 s->tilectl = I915_READ(TILECTL); 1246 s->gt_fifoctl = I915_READ(GTFIFOCTL); 1247 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL); 1248 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG); 1249 s->pmwgicz = I915_READ(VLV_PMWGICZ); 1250 1251 /* Gunit-Display CZ domain, 0x182028-0x1821CF */ 1252 s->gu_ctl0 = I915_READ(VLV_GU_CTL0); 1253 s->gu_ctl1 = I915_READ(VLV_GU_CTL1); 1254 s->pcbr = I915_READ(VLV_PCBR); 1255 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2); 1256 1257 /* 1258 * Not saving any of: 1259 * DFT, 0x9800-0x9EC0 1260 * SARB, 0xB000-0xB1FC 1261 * GAC, 0x5208-0x524C, 0x14000-0x14C000 1262 * PCI CFG 1263 */ 1264 } 1265 1266 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv) 1267 { 1268 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state; 1269 u32 val; 1270 int i; 1271 1272 /* GAM 0x4000-0x4770 */ 1273 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark); 1274 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl); 1275 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16)); 1276 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0); 1277 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1); 1278 1279 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++) 1280 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]); 1281 1282 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count); 1283 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count); 1284 1285 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp); 1286 I915_WRITE(GAM_ECOCHK, s->ecochk); 1287 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp); 1288 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp); 1289 1290 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr); 1291 1292 /* MBC 0x9024-0x91D0, 0x8500 */ 1293 I915_WRITE(VLV_G3DCTL, s->g3dctl); 1294 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl); 1295 I915_WRITE(GEN6_MBCTL, s->mbctl); 1296 1297 /* GCP 0x9400-0x9424, 0x8100-0x810C */ 1298 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1); 1299 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3); 1300 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1); 1301 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2); 1302 I915_WRITE(GEN6_RSTCTL, s->rstctl); 1303 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl); 1304 1305 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */ 1306 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause); 1307 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc); 1308 I915_WRITE(GEN6_RPDEUC, s->rpdeuc); 1309 I915_WRITE(ECOBUS, s->ecobus); 1310 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl); 1311 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout); 1312 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw); 1313 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr); 1314 I915_WRITE(VLV_RCEDATA, s->rcedata); 1315 I915_WRITE(VLV_SPAREG2H, s->spare2gh); 1316 1317 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */ 1318 I915_WRITE(GTIMR, s->gt_imr); 1319 I915_WRITE(GTIER, s->gt_ier); 1320 I915_WRITE(GEN6_PMIMR, s->pm_imr); 1321 I915_WRITE(GEN6_PMIER, s->pm_ier); 1322 1323 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++) 1324 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]); 1325 1326 /* GT SA CZ domain, 0x100000-0x138124 */ 1327 I915_WRITE(TILECTL, s->tilectl); 1328 I915_WRITE(GTFIFOCTL, s->gt_fifoctl); 1329 /* 1330 * Preserve the GT allow wake and GFX force clock bit, they are not 1331 * be restored, as they are used to control the s0ix suspend/resume 1332 * sequence by the caller. 1333 */ 1334 val = I915_READ(VLV_GTLC_WAKE_CTRL); 1335 val &= VLV_GTLC_ALLOWWAKEREQ; 1336 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ; 1337 I915_WRITE(VLV_GTLC_WAKE_CTRL, val); 1338 1339 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG); 1340 val &= VLV_GFX_CLK_FORCE_ON_BIT; 1341 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT; 1342 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val); 1343 1344 I915_WRITE(VLV_PMWGICZ, s->pmwgicz); 1345 1346 /* Gunit-Display CZ domain, 0x182028-0x1821CF */ 1347 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0); 1348 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1); 1349 I915_WRITE(VLV_PCBR, s->pcbr); 1350 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2); 1351 } 1352 1353 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on) 1354 { 1355 u32 val; 1356 int err; 1357 1358 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT) 1359 1360 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG); 1361 val &= ~VLV_GFX_CLK_FORCE_ON_BIT; 1362 if (force_on) 1363 val |= VLV_GFX_CLK_FORCE_ON_BIT; 1364 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val); 1365 1366 if (!force_on) 1367 return 0; 1368 1369 err = wait_for(COND, 20); 1370 if (err) 1371 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n", 1372 I915_READ(VLV_GTLC_SURVIVABILITY_REG)); 1373 1374 return err; 1375 #undef COND 1376 } 1377 1378 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow) 1379 { 1380 u32 val; 1381 int err = 0; 1382 1383 val = I915_READ(VLV_GTLC_WAKE_CTRL); 1384 val &= ~VLV_GTLC_ALLOWWAKEREQ; 1385 if (allow) 1386 val |= VLV_GTLC_ALLOWWAKEREQ; 1387 I915_WRITE(VLV_GTLC_WAKE_CTRL, val); 1388 POSTING_READ(VLV_GTLC_WAKE_CTRL); 1389 1390 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \ 1391 allow) 1392 err = wait_for(COND, 1); 1393 if (err) 1394 DRM_ERROR("timeout disabling GT waking\n"); 1395 return err; 1396 #undef COND 1397 } 1398 1399 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv, 1400 bool wait_for_on) 1401 { 1402 u32 mask; 1403 u32 val; 1404 int err; 1405 1406 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK; 1407 val = wait_for_on ? mask : 0; 1408 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val) 1409 if (COND) 1410 return 0; 1411 1412 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n", 1413 wait_for_on ? "on" : "off", 1414 I915_READ(VLV_GTLC_PW_STATUS)); 1415 1416 /* 1417 * RC6 transitioning can be delayed up to 2 msec (see 1418 * valleyview_enable_rps), use 3 msec for safety. 1419 */ 1420 err = wait_for(COND, 3); 1421 if (err) 1422 DRM_ERROR("timeout waiting for GT wells to go %s\n", 1423 wait_for_on ? "on" : "off"); 1424 1425 return err; 1426 #undef COND 1427 } 1428 1429 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv) 1430 { 1431 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR)) 1432 return; 1433 1434 DRM_ERROR("GT register access while GT waking disabled\n"); 1435 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR); 1436 } 1437 1438 static int vlv_suspend_complete(struct drm_i915_private *dev_priv) 1439 { 1440 u32 mask; 1441 int err; 1442 1443 /* 1444 * Bspec defines the following GT well on flags as debug only, so 1445 * don't treat them as hard failures. 1446 */ 1447 (void)vlv_wait_for_gt_wells(dev_priv, false); 1448 1449 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS; 1450 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask); 1451 1452 vlv_check_no_gt_access(dev_priv); 1453 1454 err = vlv_force_gfx_clock(dev_priv, true); 1455 if (err) 1456 goto err1; 1457 1458 err = vlv_allow_gt_wake(dev_priv, false); 1459 if (err) 1460 goto err2; 1461 1462 if (!IS_CHERRYVIEW(dev_priv->dev)) 1463 vlv_save_gunit_s0ix_state(dev_priv); 1464 1465 err = vlv_force_gfx_clock(dev_priv, false); 1466 if (err) 1467 goto err2; 1468 1469 return 0; 1470 1471 err2: 1472 /* For safety always re-enable waking and disable gfx clock forcing */ 1473 vlv_allow_gt_wake(dev_priv, true); 1474 err1: 1475 vlv_force_gfx_clock(dev_priv, false); 1476 1477 return err; 1478 } 1479 1480 static int vlv_resume_prepare(struct drm_i915_private *dev_priv, 1481 bool rpm_resume) 1482 { 1483 struct drm_device *dev = dev_priv->dev; 1484 int err; 1485 int ret; 1486 1487 /* 1488 * If any of the steps fail just try to continue, that's the best we 1489 * can do at this point. Return the first error code (which will also 1490 * leave RPM permanently disabled). 1491 */ 1492 ret = vlv_force_gfx_clock(dev_priv, true); 1493 1494 if (!IS_CHERRYVIEW(dev_priv->dev)) 1495 vlv_restore_gunit_s0ix_state(dev_priv); 1496 1497 err = vlv_allow_gt_wake(dev_priv, true); 1498 if (!ret) 1499 ret = err; 1500 1501 err = vlv_force_gfx_clock(dev_priv, false); 1502 if (!ret) 1503 ret = err; 1504 1505 vlv_check_no_gt_access(dev_priv); 1506 1507 if (rpm_resume) { 1508 intel_init_clock_gating(dev); 1509 i915_gem_restore_fences(dev); 1510 } 1511 1512 return ret; 1513 } 1514 1515 #if 0 1516 static int intel_runtime_suspend(struct device *device) 1517 { 1518 struct pci_dev *pdev = to_pci_dev(device); 1519 struct drm_device *dev = pci_get_drvdata(pdev); 1520 struct drm_i915_private *dev_priv = dev->dev_private; 1521 int ret; 1522 1523 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev)))) 1524 return -ENODEV; 1525 1526 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev))) 1527 return -ENODEV; 1528 1529 DRM_DEBUG_KMS("Suspending device\n"); 1530 1531 /* 1532 * We could deadlock here in case another thread holding struct_mutex 1533 * calls RPM suspend concurrently, since the RPM suspend will wait 1534 * first for this RPM suspend to finish. In this case the concurrent 1535 * RPM resume will be followed by its RPM suspend counterpart. Still 1536 * for consistency return -EAGAIN, which will reschedule this suspend. 1537 */ 1538 if (!mutex_trylock(&dev->struct_mutex)) { 1539 DRM_DEBUG_KMS("device lock contention, deffering suspend\n"); 1540 /* 1541 * Bump the expiration timestamp, otherwise the suspend won't 1542 * be rescheduled. 1543 */ 1544 pm_runtime_mark_last_busy(device); 1545 1546 return -EAGAIN; 1547 } 1548 /* 1549 * We are safe here against re-faults, since the fault handler takes 1550 * an RPM reference. 1551 */ 1552 i915_gem_release_all_mmaps(dev_priv); 1553 mutex_unlock(&dev->struct_mutex); 1554 1555 intel_guc_suspend(dev); 1556 1557 intel_suspend_gt_powersave(dev); 1558 intel_runtime_pm_disable_interrupts(dev_priv); 1559 1560 ret = intel_suspend_complete(dev_priv); 1561 if (ret) { 1562 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret); 1563 intel_runtime_pm_enable_interrupts(dev_priv); 1564 1565 return ret; 1566 } 1567 1568 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 1569 intel_uncore_forcewake_reset(dev, false); 1570 dev_priv->pm.suspended = true; 1571 1572 /* 1573 * FIXME: We really should find a document that references the arguments 1574 * used below! 1575 */ 1576 if (IS_BROADWELL(dev)) { 1577 /* 1578 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop 1579 * being detected, and the call we do at intel_runtime_resume() 1580 * won't be able to restore them. Since PCI_D3hot matches the 1581 * actual specification and appears to be working, use it. 1582 */ 1583 intel_opregion_notify_adapter(dev, PCI_D3hot); 1584 } else { 1585 /* 1586 * current versions of firmware which depend on this opregion 1587 * notification have repurposed the D1 definition to mean 1588 * "runtime suspended" vs. what you would normally expect (D3) 1589 * to distinguish it from notifications that might be sent via 1590 * the suspend path. 1591 */ 1592 intel_opregion_notify_adapter(dev, PCI_D1); 1593 } 1594 1595 assert_forcewakes_inactive(dev_priv); 1596 1597 DRM_DEBUG_KMS("Device suspended\n"); 1598 return 0; 1599 } 1600 1601 static int intel_runtime_resume(struct device *device) 1602 { 1603 struct pci_dev *pdev = to_pci_dev(device); 1604 struct drm_device *dev = pci_get_drvdata(pdev); 1605 struct drm_i915_private *dev_priv = dev->dev_private; 1606 int ret = 0; 1607 1608 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev))) 1609 return -ENODEV; 1610 1611 DRM_DEBUG_KMS("Resuming device\n"); 1612 1613 intel_opregion_notify_adapter(dev, PCI_D0); 1614 dev_priv->pm.suspended = false; 1615 1616 intel_guc_resume(dev); 1617 1618 if (IS_GEN6(dev_priv)) 1619 intel_init_pch_refclk(dev); 1620 1621 if (IS_BROXTON(dev)) 1622 ret = bxt_resume_prepare(dev_priv); 1623 else if (IS_SKYLAKE(dev)) 1624 ret = skl_resume_prepare(dev_priv); 1625 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 1626 hsw_disable_pc8(dev_priv); 1627 else if (IS_VALLEYVIEW(dev_priv)) 1628 ret = vlv_resume_prepare(dev_priv, true); 1629 1630 /* 1631 * No point of rolling back things in case of an error, as the best 1632 * we can do is to hope that things will still work (and disable RPM). 1633 */ 1634 i915_gem_init_swizzling(dev); 1635 gen6_update_ring_freq(dev); 1636 1637 intel_runtime_pm_enable_interrupts(dev_priv); 1638 1639 /* 1640 * On VLV/CHV display interrupts are part of the display 1641 * power well, so hpd is reinitialized from there. For 1642 * everyone else do it here. 1643 */ 1644 if (!IS_VALLEYVIEW(dev_priv)) 1645 intel_hpd_init(dev_priv); 1646 1647 intel_enable_gt_powersave(dev); 1648 1649 if (ret) 1650 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret); 1651 else 1652 DRM_DEBUG_KMS("Device resumed\n"); 1653 1654 return ret; 1655 } 1656 #endif 1657 1658 /* 1659 * This function implements common functionality of runtime and system 1660 * suspend sequence. 1661 */ 1662 static int intel_suspend_complete(struct drm_i915_private *dev_priv) 1663 { 1664 int ret; 1665 1666 if (IS_BROXTON(dev_priv)) 1667 ret = bxt_suspend_complete(dev_priv); 1668 else if (IS_SKYLAKE(dev_priv)) 1669 ret = skl_suspend_complete(dev_priv); 1670 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 1671 ret = hsw_suspend_complete(dev_priv); 1672 else if (IS_VALLEYVIEW(dev_priv)) 1673 ret = vlv_suspend_complete(dev_priv); 1674 else 1675 ret = 0; 1676 1677 return ret; 1678 } 1679 1680 #if 0 1681 static const struct dev_pm_ops i915_pm_ops = { 1682 /* 1683 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND, 1684 * PMSG_RESUME] 1685 */ 1686 .suspend = i915_pm_suspend, 1687 .suspend_late = i915_pm_suspend_late, 1688 .resume_early = i915_pm_resume_early, 1689 .resume = i915_pm_resume, 1690 1691 /* 1692 * S4 event handlers 1693 * @freeze, @freeze_late : called (1) before creating the 1694 * hibernation image [PMSG_FREEZE] and 1695 * (2) after rebooting, before restoring 1696 * the image [PMSG_QUIESCE] 1697 * @thaw, @thaw_early : called (1) after creating the hibernation 1698 * image, before writing it [PMSG_THAW] 1699 * and (2) after failing to create or 1700 * restore the image [PMSG_RECOVER] 1701 * @poweroff, @poweroff_late: called after writing the hibernation 1702 * image, before rebooting [PMSG_HIBERNATE] 1703 * @restore, @restore_early : called after rebooting and restoring the 1704 * hibernation image [PMSG_RESTORE] 1705 */ 1706 .freeze = i915_pm_suspend, 1707 .freeze_late = i915_pm_suspend_late, 1708 .thaw_early = i915_pm_resume_early, 1709 .thaw = i915_pm_resume, 1710 .poweroff = i915_pm_suspend, 1711 .poweroff_late = i915_pm_poweroff_late, 1712 .restore_early = i915_pm_resume_early, 1713 .restore = i915_pm_resume, 1714 1715 /* S0ix (via runtime suspend) event handlers */ 1716 .runtime_suspend = intel_runtime_suspend, 1717 .runtime_resume = intel_runtime_resume, 1718 }; 1719 1720 static const struct vm_operations_struct i915_gem_vm_ops = { 1721 .fault = i915_gem_fault, 1722 .open = drm_gem_vm_open, 1723 .close = drm_gem_vm_close, 1724 }; 1725 1726 static const struct file_operations i915_driver_fops = { 1727 .owner = THIS_MODULE, 1728 .open = drm_open, 1729 .release = drm_release, 1730 .unlocked_ioctl = drm_ioctl, 1731 .mmap = drm_gem_mmap, 1732 .poll = drm_poll, 1733 .read = drm_read, 1734 #ifdef CONFIG_COMPAT 1735 .compat_ioctl = i915_compat_ioctl, 1736 #endif 1737 .llseek = noop_llseek, 1738 }; 1739 #endif 1740 1741 static struct cdev_pager_ops i915_gem_vm_ops = { 1742 .cdev_pg_fault = i915_gem_fault, 1743 .cdev_pg_ctor = i915_gem_pager_ctor, 1744 .cdev_pg_dtor = i915_gem_pager_dtor 1745 }; 1746 1747 static struct drm_driver driver = { 1748 /* Don't use MTRRs here; the Xserver or userspace app should 1749 * deal with them for Intel hardware. 1750 */ 1751 .driver_features = 1752 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | 1753 DRIVER_RENDER | DRIVER_MODESET, 1754 .load = i915_driver_load, 1755 .unload = i915_driver_unload, 1756 .open = i915_driver_open, 1757 .lastclose = i915_driver_lastclose, 1758 .preclose = i915_driver_preclose, 1759 .postclose = i915_driver_postclose, 1760 1761 #if defined(CONFIG_DEBUG_FS) 1762 .debugfs_init = i915_debugfs_init, 1763 .debugfs_cleanup = i915_debugfs_cleanup, 1764 #endif 1765 .gem_free_object = i915_gem_free_object, 1766 .gem_pager_ops = &i915_gem_vm_ops, 1767 1768 .dumb_create = i915_gem_dumb_create, 1769 .dumb_map_offset = i915_gem_mmap_gtt, 1770 .dumb_destroy = drm_gem_dumb_destroy, 1771 .ioctls = i915_ioctls, 1772 .name = DRIVER_NAME, 1773 .desc = DRIVER_DESC, 1774 .date = DRIVER_DATE, 1775 .major = DRIVER_MAJOR, 1776 .minor = DRIVER_MINOR, 1777 .patchlevel = DRIVER_PATCHLEVEL, 1778 }; 1779 1780 static int __init i915_init(void); 1781 1782 static int 1783 i915_attach(device_t kdev) 1784 { 1785 struct drm_device *dev = device_get_softc(kdev); 1786 int error; 1787 int dummy; 1788 1789 i915_init(); 1790 1791 dev->driver = &driver; 1792 error = drm_attach(kdev, i915_attach_list); 1793 1794 /* 1795 * XXX hack - give the kvm_console time to come up before X starts 1796 * messing with everything, avoiding at least one deadlock. 1797 */ 1798 tsleep(&dummy, 0, "i915_attach", hz*2); 1799 1800 return error; 1801 } 1802 1803 static device_method_t i915_methods[] = { 1804 /* Device interface */ 1805 DEVMETHOD(device_probe, i915_pci_probe), 1806 DEVMETHOD(device_attach, i915_attach), 1807 DEVMETHOD(device_suspend, i915_suspend_switcheroo), 1808 DEVMETHOD(device_resume, i915_resume_switcheroo), 1809 DEVMETHOD(device_detach, drm_release), 1810 DEVMETHOD_END 1811 }; 1812 1813 static driver_t i915_driver = { 1814 "drm", 1815 i915_methods, 1816 sizeof(struct drm_device) 1817 }; 1818 1819 static int __init i915_init(void) 1820 { 1821 driver.num_ioctls = i915_max_ioctl; 1822 1823 /* 1824 * Enable KMS by default, unless explicitly overriden by 1825 * either the i915.modeset prarameter or by the 1826 * vga_text_mode_force boot option. 1827 */ 1828 1829 if (i915.modeset == 0) 1830 driver.driver_features &= ~DRIVER_MODESET; 1831 1832 #ifdef CONFIG_VGA_CONSOLE 1833 if (vgacon_text_force() && i915.modeset == -1) 1834 driver.driver_features &= ~DRIVER_MODESET; 1835 #endif 1836 1837 if (!(driver.driver_features & DRIVER_MODESET)) { 1838 /* Silently fail loading to not upset userspace. */ 1839 DRM_DEBUG_DRIVER("KMS and UMS disabled.\n"); 1840 return 0; 1841 } 1842 1843 if (i915.nuclear_pageflip) 1844 driver.driver_features |= DRIVER_ATOMIC; 1845 1846 #if 0 1847 return drm_pci_init(&driver, &i915_pci_driver); 1848 #else 1849 return 1; 1850 #endif 1851 } 1852 1853 #if 0 1854 static void __exit i915_exit(void) 1855 { 1856 if (!(driver.driver_features & DRIVER_MODESET)) 1857 return; /* Never loaded a driver. */ 1858 1859 drm_pci_exit(&driver, &i915_pci_driver); 1860 } 1861 #endif 1862 1863 DRIVER_MODULE_ORDERED(i915, vgapci, i915_driver, drm_devclass, NULL, NULL, SI_ORDER_ANY); 1864 MODULE_DEPEND(i915, drm, 1, 1, 1); 1865 MODULE_DEPEND(i915, iicbus, 1, 1, 1); 1866 MODULE_DEPEND(i915, iic, 1, 1, 1); 1867 MODULE_DEPEND(i915, iicbb, 1, 1, 1); 1868 #ifdef CONFIG_ACPI 1869 MODULE_DEPEND(i915, acpi, 1, 1, 1); 1870 #endif 1871