1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hashtable.h> 41 #include <linux/kref.h> 42 #include <linux/pm_qos.h> 43 #include <linux/shmem_fs.h> 44 45 #include <drm/drmP.h> 46 #include <drm/intel-gtt.h> 47 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 48 #include <drm/drm_gem.h> 49 #include <drm/drm_auth.h> 50 51 #include "i915_params.h" 52 #include "i915_reg.h" 53 54 #include "intel_bios.h" 55 #include "intel_dpll_mgr.h" 56 #include "intel_guc.h" 57 #include "intel_lrc.h" 58 #include "intel_ringbuffer.h" 59 60 #include "i915_gem.h" 61 #include "i915_gem_gtt.h" 62 #include "i915_gem_render_state.h" 63 64 #include "intel_gvt.h" 65 66 /* General customization: 67 */ 68 69 #define DRIVER_NAME "i915" 70 #define DRIVER_DESC "Intel Graphics" 71 #define DRIVER_DATE "20160711" 72 73 #undef WARN_ON 74 /* Many gcc seem to no see through this and fall over :( */ 75 #if 0 76 #define WARN_ON(x) ({ \ 77 bool __i915_warn_cond = (x); \ 78 if (__builtin_constant_p(__i915_warn_cond)) \ 79 BUILD_BUG_ON(__i915_warn_cond); \ 80 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); }) 81 #else 82 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 83 #endif 84 85 #undef WARN_ON_ONCE 86 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")") 87 88 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \ 89 (long) (x), __func__); 90 91 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 92 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 93 * which may not necessarily be a user visible problem. This will either 94 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 95 * enable distros and users to tailor their preferred amount of i915 abrt 96 * spam. 97 */ 98 #define I915_STATE_WARN(condition, format...) ({ \ 99 int __ret_warn_on = !!(condition); \ 100 if (unlikely(__ret_warn_on)) \ 101 if (!WARN(i915.verbose_state_checks, format)) \ 102 DRM_ERROR(format); \ 103 unlikely(__ret_warn_on); \ 104 }) 105 106 #define I915_STATE_WARN_ON(x) \ 107 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 108 109 bool __i915_inject_load_failure(const char *func, int line); 110 #define i915_inject_load_failure() \ 111 __i915_inject_load_failure(__func__, __LINE__) 112 113 static inline const char *yesno(bool v) 114 { 115 return v ? "yes" : "no"; 116 } 117 118 static inline const char *onoff(bool v) 119 { 120 return v ? "on" : "off"; 121 } 122 123 enum i915_pipe { 124 INVALID_PIPE = -1, 125 PIPE_A = 0, 126 PIPE_B, 127 PIPE_C, 128 _PIPE_EDP, 129 I915_MAX_PIPES = _PIPE_EDP 130 }; 131 #define pipe_name(p) ((p) + 'A') 132 133 enum transcoder { 134 TRANSCODER_A = 0, 135 TRANSCODER_B, 136 TRANSCODER_C, 137 TRANSCODER_EDP, 138 TRANSCODER_DSI_A, 139 TRANSCODER_DSI_C, 140 I915_MAX_TRANSCODERS 141 }; 142 143 static inline const char *transcoder_name(enum transcoder transcoder) 144 { 145 switch (transcoder) { 146 case TRANSCODER_A: 147 return "A"; 148 case TRANSCODER_B: 149 return "B"; 150 case TRANSCODER_C: 151 return "C"; 152 case TRANSCODER_EDP: 153 return "EDP"; 154 case TRANSCODER_DSI_A: 155 return "DSI A"; 156 case TRANSCODER_DSI_C: 157 return "DSI C"; 158 default: 159 return "<invalid>"; 160 } 161 } 162 163 static inline bool transcoder_is_dsi(enum transcoder transcoder) 164 { 165 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; 166 } 167 168 /* 169 * I915_MAX_PLANES in the enum below is the maximum (across all platforms) 170 * number of planes per CRTC. Not all platforms really have this many planes, 171 * which means some arrays of size I915_MAX_PLANES may have unused entries 172 * between the topmost sprite plane and the cursor plane. 173 */ 174 enum plane { 175 PLANE_A = 0, 176 PLANE_B, 177 PLANE_C, 178 PLANE_CURSOR, 179 I915_MAX_PLANES, 180 }; 181 #define plane_name(p) ((p) + 'A') 182 183 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A') 184 185 enum port { 186 PORT_A = 0, 187 PORT_B, 188 PORT_C, 189 PORT_D, 190 PORT_E, 191 I915_MAX_PORTS 192 }; 193 #define port_name(p) ((p) + 'A') 194 195 #define I915_NUM_PHYS_VLV 2 196 197 enum dpio_channel { 198 DPIO_CH0, 199 DPIO_CH1 200 }; 201 202 enum dpio_phy { 203 DPIO_PHY0, 204 DPIO_PHY1 205 }; 206 207 enum intel_display_power_domain { 208 POWER_DOMAIN_PIPE_A, 209 POWER_DOMAIN_PIPE_B, 210 POWER_DOMAIN_PIPE_C, 211 POWER_DOMAIN_PIPE_A_PANEL_FITTER, 212 POWER_DOMAIN_PIPE_B_PANEL_FITTER, 213 POWER_DOMAIN_PIPE_C_PANEL_FITTER, 214 POWER_DOMAIN_TRANSCODER_A, 215 POWER_DOMAIN_TRANSCODER_B, 216 POWER_DOMAIN_TRANSCODER_C, 217 POWER_DOMAIN_TRANSCODER_EDP, 218 POWER_DOMAIN_TRANSCODER_DSI_A, 219 POWER_DOMAIN_TRANSCODER_DSI_C, 220 POWER_DOMAIN_PORT_DDI_A_LANES, 221 POWER_DOMAIN_PORT_DDI_B_LANES, 222 POWER_DOMAIN_PORT_DDI_C_LANES, 223 POWER_DOMAIN_PORT_DDI_D_LANES, 224 POWER_DOMAIN_PORT_DDI_E_LANES, 225 POWER_DOMAIN_PORT_DSI, 226 POWER_DOMAIN_PORT_CRT, 227 POWER_DOMAIN_PORT_OTHER, 228 POWER_DOMAIN_VGA, 229 POWER_DOMAIN_AUDIO, 230 POWER_DOMAIN_PLLS, 231 POWER_DOMAIN_AUX_A, 232 POWER_DOMAIN_AUX_B, 233 POWER_DOMAIN_AUX_C, 234 POWER_DOMAIN_AUX_D, 235 POWER_DOMAIN_GMBUS, 236 POWER_DOMAIN_MODESET, 237 POWER_DOMAIN_INIT, 238 239 POWER_DOMAIN_NUM, 240 }; 241 242 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) 243 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ 244 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) 245 #define POWER_DOMAIN_TRANSCODER(tran) \ 246 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ 247 (tran) + POWER_DOMAIN_TRANSCODER_A) 248 249 enum hpd_pin { 250 HPD_NONE = 0, 251 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 252 HPD_CRT, 253 HPD_SDVO_B, 254 HPD_SDVO_C, 255 HPD_PORT_A, 256 HPD_PORT_B, 257 HPD_PORT_C, 258 HPD_PORT_D, 259 HPD_PORT_E, 260 HPD_NUM_PINS 261 }; 262 263 #define for_each_hpd_pin(__pin) \ 264 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 265 266 struct i915_hotplug { 267 struct work_struct hotplug_work; 268 269 struct { 270 unsigned long last_jiffies; 271 int count; 272 enum { 273 HPD_ENABLED = 0, 274 HPD_DISABLED = 1, 275 HPD_MARK_DISABLED = 2 276 } state; 277 } stats[HPD_NUM_PINS]; 278 u32 event_bits; 279 struct delayed_work reenable_work; 280 281 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 282 u32 long_port_mask; 283 u32 short_port_mask; 284 struct work_struct dig_port_work; 285 286 struct work_struct poll_init_work; 287 bool poll_enabled; 288 289 /* 290 * if we get a HPD irq from DP and a HPD irq from non-DP 291 * the non-DP HPD could block the workqueue on a mode config 292 * mutex getting, that userspace may have taken. However 293 * userspace is waiting on the DP workqueue to run which is 294 * blocked behind the non-DP one. 295 */ 296 struct workqueue_struct *dp_wq; 297 }; 298 299 #define I915_GEM_GPU_DOMAINS \ 300 (I915_GEM_DOMAIN_RENDER | \ 301 I915_GEM_DOMAIN_SAMPLER | \ 302 I915_GEM_DOMAIN_COMMAND | \ 303 I915_GEM_DOMAIN_INSTRUCTION | \ 304 I915_GEM_DOMAIN_VERTEX) 305 306 #define for_each_pipe(__dev_priv, __p) \ 307 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) 308 #define for_each_pipe_masked(__dev_priv, __p, __mask) \ 309 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ 310 for_each_if ((__mask) & (1 << (__p))) 311 #define for_each_plane(__dev_priv, __pipe, __p) \ 312 for ((__p) = 0; \ 313 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ 314 (__p)++) 315 #define for_each_sprite(__dev_priv, __p, __s) \ 316 for ((__s) = 0; \ 317 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ 318 (__s)++) 319 320 #define for_each_port_masked(__port, __ports_mask) \ 321 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ 322 for_each_if ((__ports_mask) & (1 << (__port))) 323 324 #define for_each_crtc(dev, crtc) \ 325 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head) 326 327 #define for_each_intel_plane(dev, intel_plane) \ 328 list_for_each_entry(intel_plane, \ 329 &(dev)->mode_config.plane_list, \ 330 base.head) 331 332 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \ 333 list_for_each_entry(intel_plane, \ 334 &(dev)->mode_config.plane_list, \ 335 base.head) \ 336 for_each_if ((plane_mask) & \ 337 (1 << drm_plane_index(&intel_plane->base))) 338 339 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ 340 list_for_each_entry(intel_plane, \ 341 &(dev)->mode_config.plane_list, \ 342 base.head) \ 343 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) 344 345 #define for_each_intel_crtc(dev, intel_crtc) \ 346 list_for_each_entry(intel_crtc, \ 347 &(dev)->mode_config.crtc_list, \ 348 base.head) 349 350 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \ 351 list_for_each_entry(intel_crtc, \ 352 &(dev)->mode_config.crtc_list, \ 353 base.head) \ 354 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base))) 355 356 #define for_each_intel_encoder(dev, intel_encoder) \ 357 list_for_each_entry(intel_encoder, \ 358 &(dev)->mode_config.encoder_list, \ 359 base.head) 360 361 #define for_each_intel_connector(dev, intel_connector) \ 362 list_for_each_entry(intel_connector, \ 363 &(dev)->mode_config.connector_list, \ 364 base.head) 365 366 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ 367 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ 368 for_each_if ((intel_encoder)->base.crtc == (__crtc)) 369 370 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ 371 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ 372 for_each_if ((intel_connector)->base.encoder == (__encoder)) 373 374 #define for_each_power_domain(domain, mask) \ 375 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ 376 for_each_if ((1 << (domain)) & (mask)) 377 378 struct drm_i915_private; 379 struct i915_mm_struct; 380 struct i915_mmu_object; 381 382 struct drm_i915_file_private { 383 struct drm_i915_private *dev_priv; 384 struct drm_file *file; 385 386 struct { 387 struct spinlock lock; 388 struct list_head request_list; 389 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 390 * chosen to prevent the CPU getting more than a frame ahead of the GPU 391 * (when using lax throttling for the frontbuffer). We also use it to 392 * offer free GPU waitboosts for severely congested workloads. 393 */ 394 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 395 } mm; 396 struct idr context_idr; 397 398 struct intel_rps_client { 399 struct list_head link; 400 unsigned boosts; 401 } rps; 402 403 unsigned int bsd_ring; 404 }; 405 406 /* Used by dp and fdi links */ 407 struct intel_link_m_n { 408 uint32_t tu; 409 uint32_t gmch_m; 410 uint32_t gmch_n; 411 uint32_t link_m; 412 uint32_t link_n; 413 }; 414 415 void intel_link_compute_m_n(int bpp, int nlanes, 416 int pixel_clock, int link_clock, 417 struct intel_link_m_n *m_n); 418 419 /* Interface history: 420 * 421 * 1.1: Original. 422 * 1.2: Add Power Management 423 * 1.3: Add vblank support 424 * 1.4: Fix cmdbuffer path, add heap destroy 425 * 1.5: Add vblank pipe configuration 426 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 427 * - Support vertical blank on secondary display pipe 428 */ 429 #define DRIVER_MAJOR 1 430 #define DRIVER_MINOR 6 431 #define DRIVER_PATCHLEVEL 0 432 433 #define WATCH_LISTS 0 434 435 struct opregion_header; 436 struct opregion_acpi; 437 struct opregion_swsci; 438 struct opregion_asle; 439 440 struct intel_opregion { 441 struct opregion_header *header; 442 struct opregion_acpi *acpi; 443 struct opregion_swsci *swsci; 444 u32 swsci_gbda_sub_functions; 445 u32 swsci_sbcb_sub_functions; 446 struct opregion_asle *asle; 447 void *rvda; 448 const void *vbt; 449 u32 vbt_size; 450 u32 *lid_state; 451 struct work_struct asle_work; 452 }; 453 #define OPREGION_SIZE (8*1024) 454 455 struct intel_overlay; 456 struct intel_overlay_error_state; 457 458 #define I915_FENCE_REG_NONE -1 459 #define I915_MAX_NUM_FENCES 32 460 /* 32 fences + sign bit for FENCE_REG_NONE */ 461 #define I915_MAX_NUM_FENCE_BITS 6 462 463 struct drm_i915_fence_reg { 464 struct list_head lru_list; 465 struct drm_i915_gem_object *obj; 466 int pin_count; 467 }; 468 469 struct sdvo_device_mapping { 470 u8 initialized; 471 u8 dvo_port; 472 u8 slave_addr; 473 u8 dvo_wiring; 474 u8 i2c_pin; 475 u8 ddc_pin; 476 }; 477 478 struct intel_display_error_state; 479 480 struct drm_i915_error_state { 481 struct kref ref; 482 struct timeval time; 483 484 char error_msg[128]; 485 bool simulated; 486 int iommu; 487 u32 reset_count; 488 u32 suspend_count; 489 490 /* Generic register state */ 491 u32 eir; 492 u32 pgtbl_er; 493 u32 ier; 494 u32 gtier[4]; 495 u32 ccid; 496 u32 derrmr; 497 u32 forcewake; 498 u32 error; /* gen6+ */ 499 u32 err_int; /* gen7 */ 500 u32 fault_data0; /* gen8, gen9 */ 501 u32 fault_data1; /* gen8, gen9 */ 502 u32 done_reg; 503 u32 gac_eco; 504 u32 gam_ecochk; 505 u32 gab_ctl; 506 u32 gfx_mode; 507 u32 extra_instdone[I915_NUM_INSTDONE_REG]; 508 u64 fence[I915_MAX_NUM_FENCES]; 509 struct intel_overlay_error_state *overlay; 510 struct intel_display_error_state *display; 511 struct drm_i915_error_object *semaphore_obj; 512 513 struct drm_i915_error_ring { 514 bool valid; 515 /* Software tracked state */ 516 bool waiting; 517 int num_waiters; 518 int hangcheck_score; 519 enum intel_ring_hangcheck_action hangcheck_action; 520 int num_requests; 521 522 /* our own tracking of ring head and tail */ 523 u32 cpu_ring_head; 524 u32 cpu_ring_tail; 525 526 u32 last_seqno; 527 u32 semaphore_seqno[I915_NUM_ENGINES - 1]; 528 529 /* Register state */ 530 u32 start; 531 u32 tail; 532 u32 head; 533 u32 ctl; 534 u32 hws; 535 u32 ipeir; 536 u32 ipehr; 537 u32 instdone; 538 u32 bbstate; 539 u32 instpm; 540 u32 instps; 541 u32 seqno; 542 u64 bbaddr; 543 u64 acthd; 544 u32 fault_reg; 545 u64 faddr; 546 u32 rc_psmi; /* sleep state */ 547 u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; 548 549 struct drm_i915_error_object { 550 int page_count; 551 u64 gtt_offset; 552 u32 *pages[0]; 553 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; 554 555 struct drm_i915_error_object *wa_ctx; 556 557 struct drm_i915_error_request { 558 long jiffies; 559 u32 seqno; 560 u32 tail; 561 } *requests; 562 563 struct drm_i915_error_waiter { 564 char comm[TASK_COMM_LEN]; 565 pid_t pid; 566 u32 seqno; 567 } *waiters; 568 569 struct { 570 u32 gfx_mode; 571 union { 572 u64 pdp[4]; 573 u32 pp_dir_base; 574 }; 575 } vm_info; 576 577 pid_t pid; 578 char comm[TASK_COMM_LEN]; 579 } ring[I915_NUM_ENGINES]; 580 581 struct drm_i915_error_buffer { 582 u32 size; 583 u32 name; 584 u32 rseqno[I915_NUM_ENGINES], wseqno; 585 u64 gtt_offset; 586 u32 read_domains; 587 u32 write_domain; 588 s32 fence_reg:I915_MAX_NUM_FENCE_BITS; 589 s32 pinned:2; 590 u32 tiling:2; 591 u32 dirty:1; 592 u32 purgeable:1; 593 u32 userptr:1; 594 s32 ring:4; 595 u32 cache_level:3; 596 } **active_bo, **pinned_bo; 597 598 u32 *active_bo_count, *pinned_bo_count; 599 u32 vm_count; 600 }; 601 602 struct intel_connector; 603 struct intel_encoder; 604 struct intel_crtc_state; 605 struct intel_initial_plane_config; 606 struct intel_crtc; 607 struct intel_limit; 608 struct dpll; 609 610 struct drm_i915_display_funcs { 611 int (*get_display_clock_speed)(struct drm_device *dev); 612 int (*get_fifo_size)(struct drm_device *dev, int plane); 613 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 614 int (*compute_intermediate_wm)(struct drm_device *dev, 615 struct intel_crtc *intel_crtc, 616 struct intel_crtc_state *newstate); 617 void (*initial_watermarks)(struct intel_crtc_state *cstate); 618 void (*optimize_watermarks)(struct intel_crtc_state *cstate); 619 int (*compute_global_watermarks)(struct drm_atomic_state *state); 620 void (*update_wm)(struct drm_crtc *crtc); 621 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 622 void (*modeset_commit_cdclk)(struct drm_atomic_state *state); 623 /* Returns the active state of the crtc, and if the crtc is active, 624 * fills out the pipe-config with the hw state. */ 625 bool (*get_pipe_config)(struct intel_crtc *, 626 struct intel_crtc_state *); 627 void (*get_initial_plane_config)(struct intel_crtc *, 628 struct intel_initial_plane_config *); 629 int (*crtc_compute_clock)(struct intel_crtc *crtc, 630 struct intel_crtc_state *crtc_state); 631 void (*crtc_enable)(struct drm_crtc *crtc); 632 void (*crtc_disable)(struct drm_crtc *crtc); 633 void (*update_crtcs)(struct drm_atomic_state *state, 634 unsigned int *crtc_vblank_mask); 635 void (*audio_codec_enable)(struct drm_connector *connector, 636 struct intel_encoder *encoder, 637 const struct drm_display_mode *adjusted_mode); 638 void (*audio_codec_disable)(struct intel_encoder *encoder); 639 void (*fdi_link_train)(struct drm_crtc *crtc); 640 void (*init_clock_gating)(struct drm_device *dev); 641 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc, 642 struct drm_framebuffer *fb, 643 struct drm_i915_gem_object *obj, 644 struct drm_i915_gem_request *req, 645 uint32_t flags); 646 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 647 /* clock updates for mode set */ 648 /* cursor updates */ 649 /* render clock increase/decrease */ 650 /* display clock increase/decrease */ 651 /* pll clock increase/decrease */ 652 653 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 654 void (*load_luts)(struct drm_crtc_state *crtc_state); 655 }; 656 657 enum forcewake_domain_id { 658 FW_DOMAIN_ID_RENDER = 0, 659 FW_DOMAIN_ID_BLITTER, 660 FW_DOMAIN_ID_MEDIA, 661 662 FW_DOMAIN_ID_COUNT 663 }; 664 665 enum forcewake_domains { 666 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER), 667 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER), 668 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA), 669 FORCEWAKE_ALL = (FORCEWAKE_RENDER | 670 FORCEWAKE_BLITTER | 671 FORCEWAKE_MEDIA) 672 }; 673 674 #define FW_REG_READ (1) 675 #define FW_REG_WRITE (2) 676 677 enum forcewake_domains 678 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv, 679 i915_reg_t reg, unsigned int op); 680 681 struct intel_uncore_funcs { 682 void (*force_wake_get)(struct drm_i915_private *dev_priv, 683 enum forcewake_domains domains); 684 void (*force_wake_put)(struct drm_i915_private *dev_priv, 685 enum forcewake_domains domains); 686 687 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 688 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 689 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 690 u64 (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 691 692 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r, 693 uint8_t val, bool trace); 694 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r, 695 uint16_t val, bool trace); 696 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r, 697 uint32_t val, bool trace); 698 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r, 699 u64 val, bool trace); 700 }; 701 702 struct intel_uncore { 703 struct lock lock; /** lock is also taken in irq contexts. */ 704 705 struct intel_uncore_funcs funcs; 706 707 unsigned fifo_count; 708 enum forcewake_domains fw_domains; 709 710 struct intel_uncore_forcewake_domain { 711 struct drm_i915_private *i915; 712 enum forcewake_domain_id id; 713 enum forcewake_domains mask; 714 unsigned wake_count; 715 struct hrtimer timer; 716 i915_reg_t reg_set; 717 u32 val_set; 718 u32 val_clear; 719 i915_reg_t reg_ack; 720 i915_reg_t reg_post; 721 u32 val_reset; 722 } fw_domain[FW_DOMAIN_ID_COUNT]; 723 724 int unclaimed_mmio_check; 725 }; 726 727 /* Iterate over initialised fw domains */ 728 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \ 729 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \ 730 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \ 731 (domain__)++) \ 732 for_each_if ((mask__) & (domain__)->mask) 733 734 #define for_each_fw_domain(domain__, dev_priv__) \ 735 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__) 736 737 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 738 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 739 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 740 741 struct intel_csr { 742 struct work_struct work; 743 const char *fw_path; 744 uint32_t *dmc_payload; 745 uint32_t dmc_fw_size; 746 uint32_t version; 747 uint32_t mmio_count; 748 i915_reg_t mmioaddr[8]; 749 uint32_t mmiodata[8]; 750 uint32_t dc_state; 751 uint32_t allowed_dc_mask; 752 }; 753 754 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \ 755 func(is_mobile) sep \ 756 func(is_i85x) sep \ 757 func(is_i915g) sep \ 758 func(is_i945gm) sep \ 759 func(is_g33) sep \ 760 func(need_gfx_hws) sep \ 761 func(is_g4x) sep \ 762 func(is_pineview) sep \ 763 func(is_broadwater) sep \ 764 func(is_crestline) sep \ 765 func(is_ivybridge) sep \ 766 func(is_valleyview) sep \ 767 func(is_cherryview) sep \ 768 func(is_haswell) sep \ 769 func(is_broadwell) sep \ 770 func(is_skylake) sep \ 771 func(is_broxton) sep \ 772 func(is_kabylake) sep \ 773 func(is_preliminary) sep \ 774 func(has_fbc) sep \ 775 func(has_pipe_cxsr) sep \ 776 func(has_hotplug) sep \ 777 func(cursor_needs_physical) sep \ 778 func(has_overlay) sep \ 779 func(overlay_needs_physical) sep \ 780 func(supports_tv) sep \ 781 func(has_llc) sep \ 782 func(has_snoop) sep \ 783 func(has_ddi) sep \ 784 func(has_fpga_dbg) sep \ 785 func(has_pooled_eu) 786 787 #define DEFINE_FLAG(name) u8 name:1 788 #define SEP_SEMICOLON ; 789 790 struct intel_device_info { 791 u32 display_mmio_offset; 792 u16 device_id; 793 u8 num_pipes; 794 u8 num_sprites[I915_MAX_PIPES]; 795 u8 gen; 796 u16 gen_mask; 797 u8 ring_mask; /* Rings supported by the HW */ 798 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON); 799 /* Register offsets for the various display pipes and transcoders */ 800 int pipe_offsets[I915_MAX_TRANSCODERS]; 801 int trans_offsets[I915_MAX_TRANSCODERS]; 802 int palette_offsets[I915_MAX_PIPES]; 803 int cursor_offsets[I915_MAX_PIPES]; 804 805 /* Slice/subslice/EU info */ 806 u8 slice_total; 807 u8 subslice_total; 808 u8 subslice_per_slice; 809 u8 eu_total; 810 u8 eu_per_subslice; 811 u8 min_eu_in_pool; 812 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ 813 u8 subslice_7eu[3]; 814 u8 has_slice_pg:1; 815 u8 has_subslice_pg:1; 816 u8 has_eu_pg:1; 817 818 struct color_luts { 819 u16 degamma_lut_size; 820 u16 gamma_lut_size; 821 } color; 822 }; 823 824 #undef DEFINE_FLAG 825 #undef SEP_SEMICOLON 826 827 enum i915_cache_level { 828 I915_CACHE_NONE = 0, 829 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 830 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 831 caches, eg sampler/render caches, and the 832 large Last-Level-Cache. LLC is coherent with 833 the CPU, but L3 is only visible to the GPU. */ 834 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 835 }; 836 837 struct i915_ctx_hang_stats { 838 /* This context had batch pending when hang was declared */ 839 unsigned batch_pending; 840 841 /* This context had batch active when hang was declared */ 842 unsigned batch_active; 843 844 /* Time when this context was last blamed for a GPU reset */ 845 unsigned long guilty_ts; 846 847 /* If the contexts causes a second GPU hang within this time, 848 * it is permanently banned from submitting any more work. 849 */ 850 unsigned long ban_period_seconds; 851 852 /* This context is banned to submit more work */ 853 bool banned; 854 }; 855 856 /* This must match up with the value previously used for execbuf2.rsvd1. */ 857 #define DEFAULT_CONTEXT_HANDLE 0 858 859 /** 860 * struct i915_gem_context - as the name implies, represents a context. 861 * @ref: reference count. 862 * @user_handle: userspace tracking identity for this context. 863 * @remap_slice: l3 row remapping information. 864 * @flags: context specific flags: 865 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0. 866 * @file_priv: filp associated with this context (NULL for global default 867 * context). 868 * @hang_stats: information about the role of this context in possible GPU 869 * hangs. 870 * @ppgtt: virtual memory space used by this context. 871 * @legacy_hw_ctx: render context backing object and whether it is correctly 872 * initialized (legacy ring submission mechanism only). 873 * @link: link in the global list of contexts. 874 * 875 * Contexts are memory images used by the hardware to store copies of their 876 * internal state. 877 */ 878 struct i915_gem_context { 879 struct kref ref; 880 struct drm_i915_private *i915; 881 struct drm_i915_file_private *file_priv; 882 struct i915_hw_ppgtt *ppgtt; 883 884 struct i915_ctx_hang_stats hang_stats; 885 886 unsigned long flags; 887 #define CONTEXT_NO_ZEROMAP BIT(0) 888 #define CONTEXT_NO_ERROR_CAPTURE BIT(1) 889 890 /* Unique identifier for this context, used by the hw for tracking */ 891 unsigned int hw_id; 892 u32 user_handle; 893 894 u32 ggtt_alignment; 895 896 struct intel_context { 897 struct drm_i915_gem_object *state; 898 struct intel_ringbuffer *ringbuf; 899 struct i915_vma *lrc_vma; 900 uint32_t *lrc_reg_state; 901 u64 lrc_desc; 902 int pin_count; 903 bool initialised; 904 } engine[I915_NUM_ENGINES]; 905 u32 ring_size; 906 u32 desc_template; 907 struct atomic_notifier_head status_notifier; 908 bool execlists_force_single_submission; 909 910 struct list_head link; 911 912 u8 remap_slice; 913 }; 914 915 enum fb_op_origin { 916 ORIGIN_GTT, 917 ORIGIN_CPU, 918 ORIGIN_CS, 919 ORIGIN_FLIP, 920 ORIGIN_DIRTYFB, 921 }; 922 923 struct intel_fbc { 924 /* This is always the inner lock when overlapping with struct_mutex and 925 * it's the outer lock when overlapping with stolen_lock. */ 926 struct lock lock; 927 unsigned threshold; 928 unsigned int possible_framebuffer_bits; 929 unsigned int busy_bits; 930 unsigned int visible_pipes_mask; 931 struct intel_crtc *crtc; 932 933 struct drm_mm_node compressed_fb; 934 struct drm_mm_node *compressed_llb; 935 936 bool false_color; 937 938 bool enabled; 939 bool active; 940 941 struct intel_fbc_state_cache { 942 struct { 943 unsigned int mode_flags; 944 uint32_t hsw_bdw_pixel_rate; 945 } crtc; 946 947 struct { 948 unsigned int rotation; 949 int src_w; 950 int src_h; 951 bool visible; 952 } plane; 953 954 struct { 955 u64 ilk_ggtt_offset; 956 uint32_t pixel_format; 957 unsigned int stride; 958 int fence_reg; 959 unsigned int tiling_mode; 960 } fb; 961 } state_cache; 962 963 struct intel_fbc_reg_params { 964 struct { 965 enum i915_pipe pipe; 966 enum plane plane; 967 unsigned int fence_y_offset; 968 } crtc; 969 970 struct { 971 u64 ggtt_offset; 972 uint32_t pixel_format; 973 unsigned int stride; 974 int fence_reg; 975 } fb; 976 977 int cfb_size; 978 } params; 979 980 struct intel_fbc_work { 981 bool scheduled; 982 u32 scheduled_vblank; 983 struct work_struct work; 984 } work; 985 986 const char *no_fbc_reason; 987 }; 988 989 /** 990 * HIGH_RR is the highest eDP panel refresh rate read from EDID 991 * LOW_RR is the lowest eDP panel refresh rate found from EDID 992 * parsing for same resolution. 993 */ 994 enum drrs_refresh_rate_type { 995 DRRS_HIGH_RR, 996 DRRS_LOW_RR, 997 DRRS_MAX_RR, /* RR count */ 998 }; 999 1000 enum drrs_support_type { 1001 DRRS_NOT_SUPPORTED = 0, 1002 STATIC_DRRS_SUPPORT = 1, 1003 SEAMLESS_DRRS_SUPPORT = 2 1004 }; 1005 1006 struct intel_dp; 1007 struct i915_drrs { 1008 struct lock mutex; 1009 struct delayed_work work; 1010 struct intel_dp *dp; 1011 unsigned busy_frontbuffer_bits; 1012 enum drrs_refresh_rate_type refresh_rate_type; 1013 enum drrs_support_type type; 1014 }; 1015 1016 struct i915_psr { 1017 struct lock lock; 1018 bool sink_support; 1019 bool source_ok; 1020 struct intel_dp *enabled; 1021 bool active; 1022 struct delayed_work work; 1023 unsigned busy_frontbuffer_bits; 1024 bool psr2_support; 1025 bool aux_frame_sync; 1026 bool link_standby; 1027 }; 1028 1029 enum intel_pch { 1030 PCH_NONE = 0, /* No PCH present */ 1031 PCH_IBX, /* Ibexpeak PCH */ 1032 PCH_CPT, /* Cougarpoint PCH */ 1033 PCH_LPT, /* Lynxpoint PCH */ 1034 PCH_SPT, /* Sunrisepoint PCH */ 1035 PCH_KBP, /* Kabypoint PCH */ 1036 PCH_NOP, 1037 }; 1038 1039 enum intel_sbi_destination { 1040 SBI_ICLK, 1041 SBI_MPHY, 1042 }; 1043 1044 #define QUIRK_PIPEA_FORCE (1<<0) 1045 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 1046 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 1047 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 1048 #define QUIRK_PIPEB_FORCE (1<<4) 1049 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 1050 1051 struct intel_fbdev; 1052 struct intel_fbc_work; 1053 1054 struct intel_gmbus { 1055 struct i2c_adapter adapter; 1056 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 1057 u32 force_bit; 1058 u32 reg0; 1059 i915_reg_t gpio_reg; 1060 struct i2c_algo_bit_data bit_algo; 1061 struct drm_i915_private *dev_priv; 1062 }; 1063 1064 struct i915_suspend_saved_registers { 1065 u32 saveDSPARB; 1066 u32 saveLVDS; 1067 u32 savePP_ON_DELAYS; 1068 u32 savePP_OFF_DELAYS; 1069 u32 savePP_ON; 1070 u32 savePP_OFF; 1071 u32 savePP_CONTROL; 1072 u32 savePP_DIVISOR; 1073 u32 saveFBC_CONTROL; 1074 u32 saveCACHE_MODE_0; 1075 u32 saveMI_ARB_STATE; 1076 u32 saveSWF0[16]; 1077 u32 saveSWF1[16]; 1078 u32 saveSWF3[3]; 1079 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 1080 u32 savePCH_PORT_HOTPLUG; 1081 u16 saveGCDGMBUS; 1082 }; 1083 1084 struct vlv_s0ix_state { 1085 /* GAM */ 1086 u32 wr_watermark; 1087 u32 gfx_prio_ctrl; 1088 u32 arb_mode; 1089 u32 gfx_pend_tlb0; 1090 u32 gfx_pend_tlb1; 1091 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 1092 u32 media_max_req_count; 1093 u32 gfx_max_req_count; 1094 u32 render_hwsp; 1095 u32 ecochk; 1096 u32 bsd_hwsp; 1097 u32 blt_hwsp; 1098 u32 tlb_rd_addr; 1099 1100 /* MBC */ 1101 u32 g3dctl; 1102 u32 gsckgctl; 1103 u32 mbctl; 1104 1105 /* GCP */ 1106 u32 ucgctl1; 1107 u32 ucgctl3; 1108 u32 rcgctl1; 1109 u32 rcgctl2; 1110 u32 rstctl; 1111 u32 misccpctl; 1112 1113 /* GPM */ 1114 u32 gfxpause; 1115 u32 rpdeuhwtc; 1116 u32 rpdeuc; 1117 u32 ecobus; 1118 u32 pwrdwnupctl; 1119 u32 rp_down_timeout; 1120 u32 rp_deucsw; 1121 u32 rcubmabdtmr; 1122 u32 rcedata; 1123 u32 spare2gh; 1124 1125 /* Display 1 CZ domain */ 1126 u32 gt_imr; 1127 u32 gt_ier; 1128 u32 pm_imr; 1129 u32 pm_ier; 1130 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 1131 1132 /* GT SA CZ domain */ 1133 u32 tilectl; 1134 u32 gt_fifoctl; 1135 u32 gtlc_wake_ctrl; 1136 u32 gtlc_survive; 1137 u32 pmwgicz; 1138 1139 /* Display 2 CZ domain */ 1140 u32 gu_ctl0; 1141 u32 gu_ctl1; 1142 u32 pcbr; 1143 u32 clock_gate_dis2; 1144 }; 1145 1146 struct intel_rps_ei { 1147 u32 cz_clock; 1148 u32 render_c0; 1149 u32 media_c0; 1150 }; 1151 1152 struct intel_gen6_power_mgmt { 1153 /* 1154 * work, interrupts_enabled and pm_iir are protected by 1155 * dev_priv->irq_lock 1156 */ 1157 struct work_struct work; 1158 bool interrupts_enabled; 1159 u32 pm_iir; 1160 1161 u32 pm_intr_keep; 1162 1163 /* Frequencies are stored in potentially platform dependent multiples. 1164 * In other words, *_freq needs to be multiplied by X to be interesting. 1165 * Soft limits are those which are used for the dynamic reclocking done 1166 * by the driver (raise frequencies under heavy loads, and lower for 1167 * lighter loads). Hard limits are those imposed by the hardware. 1168 * 1169 * A distinction is made for overclocking, which is never enabled by 1170 * default, and is considered to be above the hard limit if it's 1171 * possible at all. 1172 */ 1173 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 1174 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 1175 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 1176 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 1177 u8 min_freq; /* AKA RPn. Minimum frequency */ 1178 u8 idle_freq; /* Frequency to request when we are idle */ 1179 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 1180 u8 rp1_freq; /* "less than" RP0 power/freqency */ 1181 u8 rp0_freq; /* Non-overclocked max frequency. */ 1182 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 1183 1184 u8 up_threshold; /* Current %busy required to uplock */ 1185 u8 down_threshold; /* Current %busy required to downclock */ 1186 1187 int last_adj; 1188 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 1189 1190 struct lock client_lock; 1191 struct list_head clients; 1192 bool client_boost; 1193 1194 bool enabled; 1195 struct delayed_work delayed_resume_work; 1196 unsigned boosts; 1197 1198 struct intel_rps_client semaphores, mmioflips; 1199 1200 /* manual wa residency calculations */ 1201 struct intel_rps_ei up_ei, down_ei; 1202 1203 /* 1204 * Protects RPS/RC6 register access and PCU communication. 1205 * Must be taken after struct_mutex if nested. Note that 1206 * this lock may be held for long periods of time when 1207 * talking to hw - so only take it when talking to hw! 1208 */ 1209 struct lock hw_lock; 1210 }; 1211 1212 /* defined intel_pm.c */ 1213 extern struct lock mchdev_lock; 1214 1215 struct intel_ilk_power_mgmt { 1216 u8 cur_delay; 1217 u8 min_delay; 1218 u8 max_delay; 1219 u8 fmax; 1220 u8 fstart; 1221 1222 u64 last_count1; 1223 unsigned long last_time1; 1224 unsigned long chipset_power; 1225 u64 last_count2; 1226 u64 last_time2; 1227 unsigned long gfx_power; 1228 u8 corr; 1229 1230 int c_m; 1231 int r_t; 1232 }; 1233 1234 struct drm_i915_private; 1235 struct i915_power_well; 1236 1237 struct i915_power_well_ops { 1238 /* 1239 * Synchronize the well's hw state to match the current sw state, for 1240 * example enable/disable it based on the current refcount. Called 1241 * during driver init and resume time, possibly after first calling 1242 * the enable/disable handlers. 1243 */ 1244 void (*sync_hw)(struct drm_i915_private *dev_priv, 1245 struct i915_power_well *power_well); 1246 /* 1247 * Enable the well and resources that depend on it (for example 1248 * interrupts located on the well). Called after the 0->1 refcount 1249 * transition. 1250 */ 1251 void (*enable)(struct drm_i915_private *dev_priv, 1252 struct i915_power_well *power_well); 1253 /* 1254 * Disable the well and resources that depend on it. Called after 1255 * the 1->0 refcount transition. 1256 */ 1257 void (*disable)(struct drm_i915_private *dev_priv, 1258 struct i915_power_well *power_well); 1259 /* Returns the hw enabled state. */ 1260 bool (*is_enabled)(struct drm_i915_private *dev_priv, 1261 struct i915_power_well *power_well); 1262 }; 1263 1264 /* Power well structure for haswell */ 1265 struct i915_power_well { 1266 const char *name; 1267 bool always_on; 1268 /* power well enable/disable usage count */ 1269 int count; 1270 /* cached hw enabled state */ 1271 bool hw_enabled; 1272 unsigned long domains; 1273 unsigned long data; 1274 const struct i915_power_well_ops *ops; 1275 }; 1276 1277 struct i915_power_domains { 1278 /* 1279 * Power wells needed for initialization at driver init and suspend 1280 * time are on. They are kept on until after the first modeset. 1281 */ 1282 bool init_power_on; 1283 bool initializing; 1284 int power_well_count; 1285 1286 struct lock lock; 1287 int domain_use_count[POWER_DOMAIN_NUM]; 1288 struct i915_power_well *power_wells; 1289 }; 1290 1291 #define MAX_L3_SLICES 2 1292 struct intel_l3_parity { 1293 u32 *remap_info[MAX_L3_SLICES]; 1294 struct work_struct error_work; 1295 int which_slice; 1296 }; 1297 1298 struct i915_gem_mm { 1299 /** Memory allocator for GTT stolen memory */ 1300 struct drm_mm stolen; 1301 /** Protects the usage of the GTT stolen memory allocator. This is 1302 * always the inner lock when overlapping with struct_mutex. */ 1303 struct lock stolen_lock; 1304 1305 /** List of all objects in gtt_space. Used to restore gtt 1306 * mappings on resume */ 1307 struct list_head bound_list; 1308 /** 1309 * List of objects which are not bound to the GTT (thus 1310 * are idle and not used by the GPU) but still have 1311 * (presumably uncached) pages still attached. 1312 */ 1313 struct list_head unbound_list; 1314 1315 /** Usable portion of the GTT for GEM */ 1316 unsigned long stolen_base; /* limited to low memory (32-bit) */ 1317 1318 /** PPGTT used for aliasing the PPGTT with the GTT */ 1319 struct i915_hw_ppgtt *aliasing_ppgtt; 1320 1321 struct notifier_block oom_notifier; 1322 struct notifier_block vmap_notifier; 1323 struct shrinker shrinker; 1324 bool shrinker_no_lock_stealing; 1325 1326 /** LRU list of objects with fence regs on them. */ 1327 struct list_head fence_list; 1328 1329 /** 1330 * Are we in a non-interruptible section of code like 1331 * modesetting? 1332 */ 1333 bool interruptible; 1334 1335 /* the indicator for dispatch video commands on two BSD rings */ 1336 unsigned int bsd_ring_dispatch_index; 1337 1338 /** Bit 6 swizzling required for X tiling */ 1339 uint32_t bit_6_swizzle_x; 1340 /** Bit 6 swizzling required for Y tiling */ 1341 uint32_t bit_6_swizzle_y; 1342 1343 /* accounting, useful for userland debugging */ 1344 struct spinlock object_stat_lock; 1345 size_t object_memory; 1346 u32 object_count; 1347 }; 1348 1349 struct drm_i915_error_state_buf { 1350 struct drm_i915_private *i915; 1351 unsigned bytes; 1352 unsigned size; 1353 int err; 1354 u8 *buf; 1355 loff_t start; 1356 loff_t pos; 1357 }; 1358 1359 struct i915_error_state_file_priv { 1360 struct drm_device *dev; 1361 struct drm_i915_error_state *error; 1362 }; 1363 1364 struct i915_gpu_error { 1365 /* For hangcheck timer */ 1366 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ 1367 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) 1368 /* Hang gpu twice in this window and your context gets banned */ 1369 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000) 1370 1371 struct delayed_work hangcheck_work; 1372 1373 /* For reset and error_state handling. */ 1374 struct lock lock; 1375 /* Protected by the above dev->gpu_error.lock. */ 1376 struct drm_i915_error_state *first_error; 1377 1378 unsigned long missed_irq_rings; 1379 1380 /** 1381 * State variable controlling the reset flow and count 1382 * 1383 * This is a counter which gets incremented when reset is triggered, 1384 * and again when reset has been handled. So odd values (lowest bit set) 1385 * means that reset is in progress and even values that 1386 * (reset_counter >> 1):th reset was successfully completed. 1387 * 1388 * If reset is not completed succesfully, the I915_WEDGE bit is 1389 * set meaning that hardware is terminally sour and there is no 1390 * recovery. All waiters on the reset_queue will be woken when 1391 * that happens. 1392 * 1393 * This counter is used by the wait_seqno code to notice that reset 1394 * event happened and it needs to restart the entire ioctl (since most 1395 * likely the seqno it waited for won't ever signal anytime soon). 1396 * 1397 * This is important for lock-free wait paths, where no contended lock 1398 * naturally enforces the correct ordering between the bail-out of the 1399 * waiter and the gpu reset work code. 1400 */ 1401 atomic_t reset_counter; 1402 1403 #define I915_RESET_IN_PROGRESS_FLAG 1 1404 #define I915_WEDGED (1 << 31) 1405 1406 /** 1407 * Waitqueue to signal when a hang is detected. Used to for waiters 1408 * to release the struct_mutex for the reset to procede. 1409 */ 1410 wait_queue_head_t wait_queue; 1411 1412 /** 1413 * Waitqueue to signal when the reset has completed. Used by clients 1414 * that wait for dev_priv->mm.wedged to settle. 1415 */ 1416 wait_queue_head_t reset_queue; 1417 1418 /* For missed irq/seqno simulation. */ 1419 unsigned long test_irq_rings; 1420 }; 1421 1422 enum modeset_restore { 1423 MODESET_ON_LID_OPEN, 1424 MODESET_DONE, 1425 MODESET_SUSPENDED, 1426 }; 1427 1428 #define DP_AUX_A 0x40 1429 #define DP_AUX_B 0x10 1430 #define DP_AUX_C 0x20 1431 #define DP_AUX_D 0x30 1432 1433 #define DDC_PIN_B 0x05 1434 #define DDC_PIN_C 0x04 1435 #define DDC_PIN_D 0x06 1436 1437 struct ddi_vbt_port_info { 1438 /* 1439 * This is an index in the HDMI/DVI DDI buffer translation table. 1440 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1441 * populate this field. 1442 */ 1443 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1444 uint8_t hdmi_level_shift; 1445 1446 uint8_t supports_dvi:1; 1447 uint8_t supports_hdmi:1; 1448 uint8_t supports_dp:1; 1449 1450 uint8_t alternate_aux_channel; 1451 uint8_t alternate_ddc_pin; 1452 1453 uint8_t dp_boost_level; 1454 uint8_t hdmi_boost_level; 1455 }; 1456 1457 enum psr_lines_to_wait { 1458 PSR_0_LINES_TO_WAIT = 0, 1459 PSR_1_LINE_TO_WAIT, 1460 PSR_4_LINES_TO_WAIT, 1461 PSR_8_LINES_TO_WAIT 1462 }; 1463 1464 struct intel_vbt_data { 1465 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1466 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1467 1468 /* Feature bits */ 1469 unsigned int int_tv_support:1; 1470 unsigned int lvds_dither:1; 1471 unsigned int lvds_vbt:1; 1472 unsigned int int_crt_support:1; 1473 unsigned int lvds_use_ssc:1; 1474 unsigned int display_clock_mode:1; 1475 unsigned int fdi_rx_polarity_inverted:1; 1476 unsigned int panel_type:4; 1477 int lvds_ssc_freq; 1478 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1479 1480 enum drrs_support_type drrs_type; 1481 1482 struct { 1483 int rate; 1484 int lanes; 1485 int preemphasis; 1486 int vswing; 1487 bool low_vswing; 1488 bool initialized; 1489 bool support; 1490 int bpp; 1491 struct edp_power_seq pps; 1492 } edp; 1493 1494 struct { 1495 bool full_link; 1496 bool require_aux_wakeup; 1497 int idle_frames; 1498 enum psr_lines_to_wait lines_to_wait; 1499 int tp1_wakeup_time; 1500 int tp2_tp3_wakeup_time; 1501 } psr; 1502 1503 struct { 1504 u16 pwm_freq_hz; 1505 bool present; 1506 bool active_low_pwm; 1507 u8 min_brightness; /* min_brightness/255 of max */ 1508 enum intel_backlight_type type; 1509 } backlight; 1510 1511 /* MIPI DSI */ 1512 struct { 1513 u16 panel_id; 1514 struct mipi_config *config; 1515 struct mipi_pps_data *pps; 1516 u8 seq_version; 1517 u32 size; 1518 u8 *data; 1519 const u8 *sequence[MIPI_SEQ_MAX]; 1520 } dsi; 1521 1522 int crt_ddc_pin; 1523 1524 int child_dev_num; 1525 union child_device_config *child_dev; 1526 1527 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1528 struct sdvo_device_mapping sdvo_mappings[2]; 1529 }; 1530 1531 enum intel_ddb_partitioning { 1532 INTEL_DDB_PART_1_2, 1533 INTEL_DDB_PART_5_6, /* IVB+ */ 1534 }; 1535 1536 struct intel_wm_level { 1537 bool enable; 1538 uint32_t pri_val; 1539 uint32_t spr_val; 1540 uint32_t cur_val; 1541 uint32_t fbc_val; 1542 }; 1543 1544 struct ilk_wm_values { 1545 uint32_t wm_pipe[3]; 1546 uint32_t wm_lp[3]; 1547 uint32_t wm_lp_spr[3]; 1548 uint32_t wm_linetime[3]; 1549 bool enable_fbc_wm; 1550 enum intel_ddb_partitioning partitioning; 1551 }; 1552 1553 struct vlv_pipe_wm { 1554 uint16_t primary; 1555 uint16_t sprite[2]; 1556 uint8_t cursor; 1557 }; 1558 1559 struct vlv_sr_wm { 1560 uint16_t plane; 1561 uint8_t cursor; 1562 }; 1563 1564 struct vlv_wm_values { 1565 struct vlv_pipe_wm pipe[3]; 1566 struct vlv_sr_wm sr; 1567 struct { 1568 uint8_t cursor; 1569 uint8_t sprite[2]; 1570 uint8_t primary; 1571 } ddl[3]; 1572 uint8_t level; 1573 bool cxsr; 1574 }; 1575 1576 struct skl_ddb_entry { 1577 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1578 }; 1579 1580 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1581 { 1582 return entry->end - entry->start; 1583 } 1584 1585 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1586 const struct skl_ddb_entry *e2) 1587 { 1588 if (e1->start == e2->start && e1->end == e2->end) 1589 return true; 1590 1591 return false; 1592 } 1593 1594 struct skl_ddb_allocation { 1595 struct skl_ddb_entry pipe[I915_MAX_PIPES]; 1596 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ 1597 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1598 }; 1599 1600 struct skl_wm_values { 1601 unsigned dirty_pipes; 1602 struct skl_ddb_allocation ddb; 1603 uint32_t wm_linetime[I915_MAX_PIPES]; 1604 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8]; 1605 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES]; 1606 }; 1607 1608 struct skl_wm_level { 1609 bool plane_en[I915_MAX_PLANES]; 1610 uint16_t plane_res_b[I915_MAX_PLANES]; 1611 uint8_t plane_res_l[I915_MAX_PLANES]; 1612 }; 1613 1614 /* 1615 * This struct helps tracking the state needed for runtime PM, which puts the 1616 * device in PCI D3 state. Notice that when this happens, nothing on the 1617 * graphics device works, even register access, so we don't get interrupts nor 1618 * anything else. 1619 * 1620 * Every piece of our code that needs to actually touch the hardware needs to 1621 * either call intel_runtime_pm_get or call intel_display_power_get with the 1622 * appropriate power domain. 1623 * 1624 * Our driver uses the autosuspend delay feature, which means we'll only really 1625 * suspend if we stay with zero refcount for a certain amount of time. The 1626 * default value is currently very conservative (see intel_runtime_pm_enable), but 1627 * it can be changed with the standard runtime PM files from sysfs. 1628 * 1629 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1630 * goes back to false exactly before we reenable the IRQs. We use this variable 1631 * to check if someone is trying to enable/disable IRQs while they're supposed 1632 * to be disabled. This shouldn't happen and we'll print some error messages in 1633 * case it happens. 1634 * 1635 * For more, read the Documentation/power/runtime_pm.txt. 1636 */ 1637 struct i915_runtime_pm { 1638 atomic_t wakeref_count; 1639 atomic_t atomic_seq; 1640 bool suspended; 1641 bool irqs_enabled; 1642 }; 1643 1644 enum intel_pipe_crc_source { 1645 INTEL_PIPE_CRC_SOURCE_NONE, 1646 INTEL_PIPE_CRC_SOURCE_PLANE1, 1647 INTEL_PIPE_CRC_SOURCE_PLANE2, 1648 INTEL_PIPE_CRC_SOURCE_PF, 1649 INTEL_PIPE_CRC_SOURCE_PIPE, 1650 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1651 INTEL_PIPE_CRC_SOURCE_TV, 1652 INTEL_PIPE_CRC_SOURCE_DP_B, 1653 INTEL_PIPE_CRC_SOURCE_DP_C, 1654 INTEL_PIPE_CRC_SOURCE_DP_D, 1655 INTEL_PIPE_CRC_SOURCE_AUTO, 1656 INTEL_PIPE_CRC_SOURCE_MAX, 1657 }; 1658 1659 struct intel_pipe_crc_entry { 1660 uint32_t frame; 1661 uint32_t crc[5]; 1662 }; 1663 1664 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1665 struct intel_pipe_crc { 1666 struct spinlock lock; 1667 bool opened; /* exclusive access to the result file */ 1668 struct intel_pipe_crc_entry *entries; 1669 enum intel_pipe_crc_source source; 1670 int head, tail; 1671 wait_queue_head_t wq; 1672 }; 1673 1674 struct i915_frontbuffer_tracking { 1675 struct lock lock; 1676 1677 /* 1678 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1679 * scheduled flips. 1680 */ 1681 unsigned busy_bits; 1682 unsigned flip_bits; 1683 }; 1684 1685 struct i915_wa_reg { 1686 i915_reg_t addr; 1687 u32 value; 1688 /* bitmask representing WA bits */ 1689 u32 mask; 1690 }; 1691 1692 /* 1693 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only 1694 * allowing it for RCS as we don't foresee any requirement of having 1695 * a whitelist for other engines. When it is really required for 1696 * other engines then the limit need to be increased. 1697 */ 1698 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS) 1699 1700 struct i915_workarounds { 1701 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1702 u32 count; 1703 u32 hw_whitelist_count[I915_NUM_ENGINES]; 1704 }; 1705 1706 struct i915_virtual_gpu { 1707 bool active; 1708 }; 1709 1710 struct i915_execbuffer_params { 1711 struct drm_device *dev; 1712 struct drm_file *file; 1713 uint32_t dispatch_flags; 1714 uint32_t args_batch_start_offset; 1715 uint64_t batch_obj_vm_offset; 1716 struct intel_engine_cs *engine; 1717 struct drm_i915_gem_object *batch_obj; 1718 struct i915_gem_context *ctx; 1719 struct drm_i915_gem_request *request; 1720 }; 1721 1722 /* used in computing the new watermarks state */ 1723 struct intel_wm_config { 1724 unsigned int num_pipes_active; 1725 bool sprites_enabled; 1726 bool sprites_scaled; 1727 }; 1728 1729 struct drm_i915_private { 1730 struct drm_device drm; 1731 1732 struct kmem_cache *objects; 1733 struct kmem_cache *vmas; 1734 struct kmem_cache *requests; 1735 1736 const struct intel_device_info info; 1737 1738 int relative_constants_mode; 1739 1740 void __iomem *regs; 1741 1742 struct intel_uncore uncore; 1743 1744 struct i915_virtual_gpu vgpu; 1745 1746 struct intel_gvt gvt; 1747 1748 struct intel_guc guc; 1749 1750 struct intel_csr csr; 1751 1752 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1753 1754 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1755 * controller on different i2c buses. */ 1756 struct lock gmbus_mutex; 1757 1758 /** 1759 * Base address of the gmbus and gpio block. 1760 */ 1761 uint32_t gpio_mmio_base; 1762 1763 /* MMIO base address for MIPI regs */ 1764 uint32_t mipi_mmio_base; 1765 1766 uint32_t psr_mmio_base; 1767 1768 wait_queue_head_t gmbus_wait_queue; 1769 1770 struct pci_dev *bridge_dev; 1771 struct i915_gem_context *kernel_context; 1772 struct intel_engine_cs engine[I915_NUM_ENGINES]; 1773 struct drm_i915_gem_object *semaphore_obj; 1774 uint32_t last_seqno, next_seqno; 1775 1776 struct drm_dma_handle *status_page_dmah; 1777 struct resource *mch_res; 1778 int mch_res_rid; 1779 1780 /* protects the irq masks */ 1781 struct lock irq_lock; 1782 1783 /* protects the mmio flip data */ 1784 struct spinlock mmio_flip_lock; 1785 1786 bool display_irqs_enabled; 1787 1788 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1789 struct pm_qos_request pm_qos; 1790 1791 /* Sideband mailbox protection */ 1792 struct lock sb_lock; 1793 1794 /** Cached value of IMR to avoid reads in updating the bitfield */ 1795 union { 1796 u32 irq_mask; 1797 u32 de_irq_mask[I915_MAX_PIPES]; 1798 }; 1799 u32 gt_irq_mask; 1800 u32 pm_irq_mask; 1801 u32 pm_rps_events; 1802 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1803 1804 struct i915_hotplug hotplug; 1805 struct intel_fbc fbc; 1806 struct i915_drrs drrs; 1807 struct intel_opregion opregion; 1808 struct intel_vbt_data vbt; 1809 1810 bool preserve_bios_swizzle; 1811 1812 /* overlay */ 1813 struct intel_overlay *overlay; 1814 1815 /* backlight registers and fields in struct intel_panel */ 1816 struct lock backlight_lock; 1817 1818 /* LVDS info */ 1819 bool no_aux_handshake; 1820 1821 /* protects panel power sequencer state */ 1822 struct lock pps_mutex; 1823 1824 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1825 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1826 1827 unsigned int fsb_freq, mem_freq, is_ddr3; 1828 unsigned int skl_preferred_vco_freq; 1829 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq; 1830 unsigned int max_dotclk_freq; 1831 unsigned int rawclk_freq; 1832 unsigned int hpll_freq; 1833 unsigned int czclk_freq; 1834 1835 struct { 1836 unsigned int vco, ref; 1837 } cdclk_pll; 1838 1839 /** 1840 * wq - Driver workqueue for GEM. 1841 * 1842 * NOTE: Work items scheduled here are not allowed to grab any modeset 1843 * locks, for otherwise the flushing done in the pageflip code will 1844 * result in deadlocks. 1845 */ 1846 struct workqueue_struct *wq; 1847 1848 /* Display functions */ 1849 struct drm_i915_display_funcs display; 1850 1851 /* PCH chipset type */ 1852 enum intel_pch pch_type; 1853 unsigned short pch_id; 1854 1855 unsigned long quirks; 1856 1857 enum modeset_restore modeset_restore; 1858 struct lock modeset_restore_lock; 1859 struct drm_atomic_state *modeset_restore_state; 1860 struct drm_modeset_acquire_ctx reset_ctx; 1861 1862 struct list_head vm_list; /* Global list of all address spaces */ 1863 struct i915_ggtt ggtt; /* VM representing the global address space */ 1864 1865 struct i915_gem_mm mm; 1866 DECLARE_HASHTABLE(mm_structs, 7); 1867 struct lock mm_lock; 1868 1869 /* The hw wants to have a stable context identifier for the lifetime 1870 * of the context (for OA, PASID, faults, etc). This is limited 1871 * in execlists to 21 bits. 1872 */ 1873 struct ida context_hw_ida; 1874 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1875 1876 /* Kernel Modesetting */ 1877 1878 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1879 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1880 wait_queue_head_t pending_flip_queue; 1881 1882 #ifdef CONFIG_DEBUG_FS 1883 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1884 #endif 1885 1886 /* dpll and cdclk state is protected by connection_mutex */ 1887 int num_shared_dpll; 1888 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1889 const struct intel_dpll_mgr *dpll_mgr; 1890 1891 /* 1892 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1893 * Must be global rather than per dpll, because on some platforms 1894 * plls share registers. 1895 */ 1896 struct lock dpll_lock; 1897 1898 unsigned int active_crtcs; 1899 unsigned int min_pixclk[I915_MAX_PIPES]; 1900 1901 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1902 1903 struct i915_workarounds workarounds; 1904 1905 struct i915_frontbuffer_tracking fb_tracking; 1906 1907 u16 orig_clock; 1908 1909 bool mchbar_need_disable; 1910 1911 struct intel_l3_parity l3_parity; 1912 1913 /* Cannot be determined by PCIID. You must always read a register. */ 1914 u32 edram_cap; 1915 1916 /* gen6+ rps state */ 1917 struct intel_gen6_power_mgmt rps; 1918 1919 /* ilk-only ips/rps state. Everything in here is protected by the global 1920 * mchdev_lock in intel_pm.c */ 1921 struct intel_ilk_power_mgmt ips; 1922 1923 struct i915_power_domains power_domains; 1924 1925 struct i915_psr psr; 1926 1927 struct i915_gpu_error gpu_error; 1928 1929 struct drm_i915_gem_object *vlv_pctx; 1930 1931 #ifdef CONFIG_DRM_FBDEV_EMULATION 1932 /* list of fbdev register on this device */ 1933 struct intel_fbdev *fbdev; 1934 struct work_struct fbdev_suspend_work; 1935 #endif 1936 1937 struct drm_property *broadcast_rgb_property; 1938 struct drm_property *force_audio_property; 1939 1940 /* hda/i915 audio component */ 1941 struct i915_audio_component *audio_component; 1942 bool audio_component_registered; 1943 /** 1944 * av_mutex - mutex for audio/video sync 1945 * 1946 */ 1947 struct lock av_mutex; 1948 1949 uint32_t hw_context_size; 1950 struct list_head context_list; 1951 1952 u32 fdi_rx_config; 1953 1954 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1955 u32 chv_phy_control; 1956 /* 1957 * Shadows for CHV DPLL_MD regs to keep the state 1958 * checker somewhat working in the presence hardware 1959 * crappiness (can't read out DPLL_MD for pipes B & C). 1960 */ 1961 u32 chv_dpll_md[I915_MAX_PIPES]; 1962 u32 bxt_phy_grc; 1963 1964 u32 suspend_count; 1965 bool suspended_to_idle; 1966 struct i915_suspend_saved_registers regfile; 1967 struct vlv_s0ix_state vlv_s0ix_state; 1968 1969 enum { 1970 I915_SAGV_UNKNOWN = 0, 1971 I915_SAGV_DISABLED, 1972 I915_SAGV_ENABLED, 1973 I915_SAGV_NOT_CONTROLLED 1974 } sagv_status; 1975 1976 struct { 1977 /* 1978 * Raw watermark latency values: 1979 * in 0.1us units for WM0, 1980 * in 0.5us units for WM1+. 1981 */ 1982 /* primary */ 1983 uint16_t pri_latency[5]; 1984 /* sprite */ 1985 uint16_t spr_latency[5]; 1986 /* cursor */ 1987 uint16_t cur_latency[5]; 1988 /* 1989 * Raw watermark memory latency values 1990 * for SKL for all 8 levels 1991 * in 1us units. 1992 */ 1993 uint16_t skl_latency[8]; 1994 1995 /* 1996 * The skl_wm_values structure is a bit too big for stack 1997 * allocation, so we keep the staging struct where we store 1998 * intermediate results here instead. 1999 */ 2000 struct skl_wm_values skl_results; 2001 2002 /* current hardware state */ 2003 union { 2004 struct ilk_wm_values hw; 2005 struct skl_wm_values skl_hw; 2006 struct vlv_wm_values vlv; 2007 }; 2008 2009 uint8_t max_level; 2010 2011 /* 2012 * Should be held around atomic WM register writing; also 2013 * protects * intel_crtc->wm.active and 2014 * cstate->wm.need_postvbl_update. 2015 */ 2016 struct lock wm_mutex; 2017 2018 /* 2019 * Set during HW readout of watermarks/DDB. Some platforms 2020 * need to know when we're still using BIOS-provided values 2021 * (which we don't fully trust). 2022 */ 2023 bool distrust_bios_wm; 2024 } wm; 2025 2026 struct i915_runtime_pm pm; 2027 2028 uint32_t bios_vgacntr; 2029 2030 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2031 struct { 2032 int (*execbuf_submit)(struct i915_execbuffer_params *params, 2033 struct drm_i915_gem_execbuffer2 *args, 2034 struct list_head *vmas); 2035 int (*init_engines)(struct drm_device *dev); 2036 void (*cleanup_engine)(struct intel_engine_cs *engine); 2037 void (*stop_engine)(struct intel_engine_cs *engine); 2038 2039 /** 2040 * Is the GPU currently considered idle, or busy executing 2041 * userspace requests? Whilst idle, we allow runtime power 2042 * management to power down the hardware and display clocks. 2043 * In order to reduce the effect on performance, there 2044 * is a slight delay before we do so. 2045 */ 2046 unsigned int active_engines; 2047 bool awake; 2048 2049 /** 2050 * We leave the user IRQ off as much as possible, 2051 * but this means that requests will finish and never 2052 * be retired once the system goes idle. Set a timer to 2053 * fire periodically while the ring is running. When it 2054 * fires, go retire requests. 2055 */ 2056 struct delayed_work retire_work; 2057 2058 /** 2059 * When we detect an idle GPU, we want to turn on 2060 * powersaving features. So once we see that there 2061 * are no more requests outstanding and no more 2062 * arrive within a small period of time, we fire 2063 * off the idle_work. 2064 */ 2065 struct delayed_work idle_work; 2066 } gt; 2067 2068 /* perform PHY state sanity checks? */ 2069 bool chv_phy_assert[2]; 2070 2071 struct intel_encoder *dig_port_map[I915_MAX_PORTS]; 2072 2073 /* 2074 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2075 * will be rejected. Instead look for a better place. 2076 */ 2077 }; 2078 2079 static inline struct drm_i915_private *to_i915(struct drm_device *dev) 2080 { 2081 return container_of(dev, struct drm_i915_private, drm); 2082 } 2083 2084 static inline struct drm_i915_private *dev_to_i915(struct device *dev) 2085 { 2086 return to_i915(dev_get_drvdata(dev)); 2087 } 2088 2089 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2090 { 2091 return container_of(guc, struct drm_i915_private, guc); 2092 } 2093 2094 /* Simple iterator over all initialised engines */ 2095 #define for_each_engine(engine__, dev_priv__) \ 2096 for ((engine__) = &(dev_priv__)->engine[0]; \ 2097 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2098 (engine__)++) \ 2099 for_each_if (intel_engine_initialized(engine__)) 2100 2101 /* Iterator with engine_id */ 2102 #define for_each_engine_id(engine__, dev_priv__, id__) \ 2103 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \ 2104 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2105 (engine__)++) \ 2106 for_each_if (((id__) = (engine__)->id, \ 2107 intel_engine_initialized(engine__))) 2108 2109 /* Iterator over subset of engines selected by mask */ 2110 #define for_each_engine_masked(engine__, dev_priv__, mask__) \ 2111 for ((engine__) = &(dev_priv__)->engine[0]; \ 2112 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2113 (engine__)++) \ 2114 for_each_if (((mask__) & intel_engine_flag(engine__)) && \ 2115 intel_engine_initialized(engine__)) 2116 2117 enum hdmi_force_audio { 2118 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2119 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2120 HDMI_AUDIO_AUTO, /* trust EDID */ 2121 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2122 }; 2123 2124 #define I915_GTT_OFFSET_NONE ((u32)-1) 2125 2126 struct drm_i915_gem_object_ops { 2127 unsigned int flags; 2128 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1 2129 2130 /* Interface between the GEM object and its backing storage. 2131 * get_pages() is called once prior to the use of the associated set 2132 * of pages before to binding them into the GTT, and put_pages() is 2133 * called after we no longer need them. As we expect there to be 2134 * associated cost with migrating pages between the backing storage 2135 * and making them available for the GPU (e.g. clflush), we may hold 2136 * onto the pages after they are no longer referenced by the GPU 2137 * in case they may be used again shortly (for example migrating the 2138 * pages to a different memory domain within the GTT). put_pages() 2139 * will therefore most likely be called when the object itself is 2140 * being released or under memory pressure (where we attempt to 2141 * reap pages for the shrinker). 2142 */ 2143 int (*get_pages)(struct drm_i915_gem_object *); 2144 void (*put_pages)(struct drm_i915_gem_object *); 2145 2146 int (*dmabuf_export)(struct drm_i915_gem_object *); 2147 void (*release)(struct drm_i915_gem_object *); 2148 }; 2149 2150 /* 2151 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2152 * considered to be the frontbuffer for the given plane interface-wise. This 2153 * doesn't mean that the hw necessarily already scans it out, but that any 2154 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2155 * 2156 * We have one bit per pipe and per scanout plane type. 2157 */ 2158 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 2159 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2160 #define INTEL_FRONTBUFFER_BITS \ 2161 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES) 2162 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ 2163 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2164 #define INTEL_FRONTBUFFER_CURSOR(pipe) \ 2165 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2166 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ 2167 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2168 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2169 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2170 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2171 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2172 2173 struct drm_i915_gem_object { 2174 struct drm_gem_object base; 2175 2176 const struct drm_i915_gem_object_ops *ops; 2177 2178 /** List of VMAs backed by this object */ 2179 struct list_head vma_list; 2180 2181 /** Stolen memory for this object, instead of being backed by shmem. */ 2182 struct drm_mm_node *stolen; 2183 struct list_head global_list; 2184 2185 struct list_head engine_list[I915_NUM_ENGINES]; 2186 /** Used in execbuf to temporarily hold a ref */ 2187 struct list_head obj_exec_link; 2188 2189 struct list_head batch_pool_link; 2190 2191 /** 2192 * This is set if the object is on the active lists (has pending 2193 * rendering and so a non-zero seqno), and is not set if it i s on 2194 * inactive (ready to be unbound) list. 2195 */ 2196 unsigned int active:I915_NUM_ENGINES; 2197 2198 /** 2199 * This is set if the object has been written to since last bound 2200 * to the GTT 2201 */ 2202 unsigned int dirty:1; 2203 2204 /** 2205 * Fence register bits (if any) for this object. Will be set 2206 * as needed when mapped into the GTT. 2207 * Protected by dev->struct_mutex. 2208 */ 2209 signed int fence_reg:I915_MAX_NUM_FENCE_BITS; 2210 2211 /** 2212 * Advice: are the backing pages purgeable? 2213 */ 2214 unsigned int madv:2; 2215 2216 /** 2217 * Current tiling mode for the object. 2218 */ 2219 unsigned int tiling_mode:2; 2220 /** 2221 * Whether the tiling parameters for the currently associated fence 2222 * register have changed. Note that for the purposes of tracking 2223 * tiling changes we also treat the unfenced register, the register 2224 * slot that the object occupies whilst it executes a fenced 2225 * command (such as BLT on gen2/3), as a "fence". 2226 */ 2227 unsigned int fence_dirty:1; 2228 2229 /** 2230 * Is the object at the current location in the gtt mappable and 2231 * fenceable? Used to avoid costly recalculations. 2232 */ 2233 unsigned int map_and_fenceable:1; 2234 2235 /** 2236 * Whether the current gtt mapping needs to be mappable (and isn't just 2237 * mappable by accident). Track pin and fault separate for a more 2238 * accurate mappable working set. 2239 */ 2240 unsigned int fault_mappable:1; 2241 2242 /* 2243 * Is the object to be mapped as read-only to the GPU 2244 * Only honoured if hardware has relevant pte bit 2245 */ 2246 unsigned long gt_ro:1; 2247 unsigned int cache_level:3; 2248 unsigned int cache_dirty:1; 2249 2250 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS; 2251 2252 unsigned int has_wc_mmap; 2253 unsigned int pin_display; 2254 2255 struct sg_table *pages; 2256 int pages_pin_count; 2257 struct get_page { 2258 struct scatterlist *sg; 2259 int last; 2260 } get_page; 2261 void *mapping; 2262 2263 /** Breadcrumb of last rendering to the buffer. 2264 * There can only be one writer, but we allow for multiple readers. 2265 * If there is a writer that necessarily implies that all other 2266 * read requests are complete - but we may only be lazily clearing 2267 * the read requests. A read request is naturally the most recent 2268 * request on a ring, so we may have two different write and read 2269 * requests on one ring where the write request is older than the 2270 * read request. This allows for the CPU to read from an active 2271 * buffer by only waiting for the write to complete. 2272 * */ 2273 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES]; 2274 struct drm_i915_gem_request *last_write_req; 2275 /** Breadcrumb of last fenced GPU access to the buffer. */ 2276 struct drm_i915_gem_request *last_fenced_req; 2277 2278 /** Current tiling stride for the object, if it's tiled. */ 2279 uint32_t stride; 2280 2281 /** References from framebuffers, locks out tiling changes. */ 2282 unsigned long framebuffer_references; 2283 2284 /** Record of address bit 17 of each page at last unbind. */ 2285 unsigned long *bit_17; 2286 2287 struct i915_gem_userptr { 2288 uintptr_t ptr; 2289 unsigned read_only :1; 2290 unsigned workers :4; 2291 #define I915_GEM_USERPTR_MAX_WORKERS 15 2292 2293 struct i915_mm_struct *mm; 2294 struct i915_mmu_object *mmu_object; 2295 struct work_struct *work; 2296 } userptr; 2297 2298 /** for phys allocated objects */ 2299 struct drm_dma_handle *phys_handle; 2300 }; 2301 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base) 2302 2303 static inline bool 2304 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj) 2305 { 2306 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE; 2307 } 2308 2309 /* 2310 * Optimised SGL iterator for GEM objects 2311 */ 2312 static __always_inline struct sgt_iter { 2313 struct scatterlist *sgp; 2314 union { 2315 unsigned long pfn; 2316 dma_addr_t dma; 2317 }; 2318 unsigned int curr; 2319 unsigned int max; 2320 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2321 struct sgt_iter s = { .sgp = sgl }; 2322 2323 if (s.sgp) { 2324 s.max = s.curr = s.sgp->offset; 2325 s.max += s.sgp->length; 2326 if (dma) 2327 s.dma = sg_dma_address(s.sgp); 2328 else 2329 s.pfn = page_to_pfn(sg_page(s.sgp)); 2330 } 2331 2332 return s; 2333 } 2334 2335 /** 2336 * __sg_next - return the next scatterlist entry in a list 2337 * @sg: The current sg entry 2338 * 2339 * Description: 2340 * If the entry is the last, return NULL; otherwise, step to the next 2341 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2342 * otherwise just return the pointer to the current element. 2343 **/ 2344 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2345 { 2346 #ifdef CONFIG_DEBUG_SG 2347 BUG_ON(sg->sg_magic != SG_MAGIC); 2348 #endif 2349 return sg_is_last(sg) ? NULL : 2350 likely(!sg_is_chain(++sg)) ? sg : 2351 sg_chain_ptr(sg); 2352 } 2353 2354 /** 2355 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2356 * @__dmap: DMA address (output) 2357 * @__iter: 'struct sgt_iter' (iterator state, internal) 2358 * @__sgt: sg_table to iterate over (input) 2359 */ 2360 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2361 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2362 ((__dmap) = (__iter).dma + (__iter).curr); \ 2363 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2364 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0)) 2365 2366 /** 2367 * for_each_sgt_page - iterate over the pages of the given sg_table 2368 * @__pp: page pointer (output) 2369 * @__iter: 'struct sgt_iter' (iterator state, internal) 2370 * @__sgt: sg_table to iterate over (input) 2371 */ 2372 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2373 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2374 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2375 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2376 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2377 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0)) 2378 2379 /** 2380 * Request queue structure. 2381 * 2382 * The request queue allows us to note sequence numbers that have been emitted 2383 * and may be associated with active buffers to be retired. 2384 * 2385 * By keeping this list, we can avoid having to do questionable sequence 2386 * number comparisons on buffer last_read|write_seqno. It also allows an 2387 * emission time to be associated with the request for tracking how far ahead 2388 * of the GPU the submission is. 2389 * 2390 * The requests are reference counted, so upon creation they should have an 2391 * initial reference taken using kref_init 2392 */ 2393 struct drm_i915_gem_request { 2394 struct kref ref; 2395 2396 /** On Which ring this request was generated */ 2397 struct drm_i915_private *i915; 2398 struct intel_engine_cs *engine; 2399 struct intel_signal_node signaling; 2400 2401 /** GEM sequence number associated with the previous request, 2402 * when the HWS breadcrumb is equal to this the GPU is processing 2403 * this request. 2404 */ 2405 u32 previous_seqno; 2406 2407 /** GEM sequence number associated with this request, 2408 * when the HWS breadcrumb is equal or greater than this the GPU 2409 * has finished processing this request. 2410 */ 2411 u32 seqno; 2412 2413 /** Position in the ringbuffer of the start of the request */ 2414 u32 head; 2415 2416 /** 2417 * Position in the ringbuffer of the start of the postfix. 2418 * This is required to calculate the maximum available ringbuffer 2419 * space without overwriting the postfix. 2420 */ 2421 u32 postfix; 2422 2423 /** Position in the ringbuffer of the end of the whole request */ 2424 u32 tail; 2425 2426 /** Preallocate space in the ringbuffer for the emitting the request */ 2427 u32 reserved_space; 2428 2429 /** 2430 * Context and ring buffer related to this request 2431 * Contexts are refcounted, so when this request is associated with a 2432 * context, we must increment the context's refcount, to guarantee that 2433 * it persists while any request is linked to it. Requests themselves 2434 * are also refcounted, so the request will only be freed when the last 2435 * reference to it is dismissed, and the code in 2436 * i915_gem_request_free() will then decrement the refcount on the 2437 * context. 2438 */ 2439 struct i915_gem_context *ctx; 2440 struct intel_ringbuffer *ringbuf; 2441 2442 /** 2443 * Context related to the previous request. 2444 * As the contexts are accessed by the hardware until the switch is 2445 * completed to a new context, the hardware may still be writing 2446 * to the context object after the breadcrumb is visible. We must 2447 * not unpin/unbind/prune that object whilst still active and so 2448 * we keep the previous context pinned until the following (this) 2449 * request is retired. 2450 */ 2451 struct i915_gem_context *previous_context; 2452 2453 /** Batch buffer related to this request if any (used for 2454 error state dump only) */ 2455 struct drm_i915_gem_object *batch_obj; 2456 2457 /** Time at which this request was emitted, in jiffies. */ 2458 unsigned long emitted_jiffies; 2459 2460 /** global list entry for this request */ 2461 struct list_head list; 2462 2463 struct drm_i915_file_private *file_priv; 2464 /** file_priv list entry for this request */ 2465 struct list_head client_list; 2466 2467 /** process identifier submitting this request */ 2468 pid_t pid; 2469 2470 /** 2471 * The ELSP only accepts two elements at a time, so we queue 2472 * context/tail pairs on a given queue (ring->execlist_queue) until the 2473 * hardware is available. The queue serves a double purpose: we also use 2474 * it to keep track of the up to 2 contexts currently in the hardware 2475 * (usually one in execution and the other queued up by the GPU): We 2476 * only remove elements from the head of the queue when the hardware 2477 * informs us that an element has been completed. 2478 * 2479 * All accesses to the queue are mediated by a spinlock 2480 * (ring->execlist_lock). 2481 */ 2482 2483 /** Execlist link in the submission queue.*/ 2484 struct list_head execlist_link; 2485 2486 /** Execlists no. of times this request has been sent to the ELSP */ 2487 int elsp_submitted; 2488 2489 /** Execlists context hardware id. */ 2490 unsigned ctx_hw_id; 2491 }; 2492 2493 struct drm_i915_gem_request * __must_check 2494 i915_gem_request_alloc(struct intel_engine_cs *engine, 2495 struct i915_gem_context *ctx); 2496 void i915_gem_request_free(struct kref *req_ref); 2497 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req, 2498 struct drm_file *file); 2499 2500 static inline uint32_t 2501 i915_gem_request_get_seqno(struct drm_i915_gem_request *req) 2502 { 2503 return req ? req->seqno : 0; 2504 } 2505 2506 static inline struct intel_engine_cs * 2507 i915_gem_request_get_engine(struct drm_i915_gem_request *req) 2508 { 2509 return req ? req->engine : NULL; 2510 } 2511 2512 static inline struct drm_i915_gem_request * 2513 i915_gem_request_reference(struct drm_i915_gem_request *req) 2514 { 2515 if (req) 2516 kref_get(&req->ref); 2517 return req; 2518 } 2519 2520 static inline void 2521 i915_gem_request_unreference(struct drm_i915_gem_request *req) 2522 { 2523 kref_put(&req->ref, i915_gem_request_free); 2524 } 2525 2526 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst, 2527 struct drm_i915_gem_request *src) 2528 { 2529 if (src) 2530 i915_gem_request_reference(src); 2531 2532 if (*pdst) 2533 i915_gem_request_unreference(*pdst); 2534 2535 *pdst = src; 2536 } 2537 2538 /* 2539 * XXX: i915_gem_request_completed should be here but currently needs the 2540 * definition of i915_seqno_passed() which is below. It will be moved in 2541 * a later patch when the call to i915_seqno_passed() is obsoleted... 2542 */ 2543 2544 /* 2545 * A command that requires special handling by the command parser. 2546 */ 2547 struct drm_i915_cmd_descriptor { 2548 /* 2549 * Flags describing how the command parser processes the command. 2550 * 2551 * CMD_DESC_FIXED: The command has a fixed length if this is set, 2552 * a length mask if not set 2553 * CMD_DESC_SKIP: The command is allowed but does not follow the 2554 * standard length encoding for the opcode range in 2555 * which it falls 2556 * CMD_DESC_REJECT: The command is never allowed 2557 * CMD_DESC_REGISTER: The command should be checked against the 2558 * register whitelist for the appropriate ring 2559 * CMD_DESC_MASTER: The command is allowed if the submitting process 2560 * is the DRM master 2561 */ 2562 u32 flags; 2563 #define CMD_DESC_FIXED (1<<0) 2564 #define CMD_DESC_SKIP (1<<1) 2565 #define CMD_DESC_REJECT (1<<2) 2566 #define CMD_DESC_REGISTER (1<<3) 2567 #define CMD_DESC_BITMASK (1<<4) 2568 #define CMD_DESC_MASTER (1<<5) 2569 2570 /* 2571 * The command's unique identification bits and the bitmask to get them. 2572 * This isn't strictly the opcode field as defined in the spec and may 2573 * also include type, subtype, and/or subop fields. 2574 */ 2575 struct { 2576 u32 value; 2577 u32 mask; 2578 } cmd; 2579 2580 /* 2581 * The command's length. The command is either fixed length (i.e. does 2582 * not include a length field) or has a length field mask. The flag 2583 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has 2584 * a length mask. All command entries in a command table must include 2585 * length information. 2586 */ 2587 union { 2588 u32 fixed; 2589 u32 mask; 2590 } length; 2591 2592 /* 2593 * Describes where to find a register address in the command to check 2594 * against the ring's register whitelist. Only valid if flags has the 2595 * CMD_DESC_REGISTER bit set. 2596 * 2597 * A non-zero step value implies that the command may access multiple 2598 * registers in sequence (e.g. LRI), in that case step gives the 2599 * distance in dwords between individual offset fields. 2600 */ 2601 struct { 2602 u32 offset; 2603 u32 mask; 2604 u32 step; 2605 } reg; 2606 2607 #define MAX_CMD_DESC_BITMASKS 3 2608 /* 2609 * Describes command checks where a particular dword is masked and 2610 * compared against an expected value. If the command does not match 2611 * the expected value, the parser rejects it. Only valid if flags has 2612 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero 2613 * are valid. 2614 * 2615 * If the check specifies a non-zero condition_mask then the parser 2616 * only performs the check when the bits specified by condition_mask 2617 * are non-zero. 2618 */ 2619 struct { 2620 u32 offset; 2621 u32 mask; 2622 u32 expected; 2623 u32 condition_offset; 2624 u32 condition_mask; 2625 } bits[MAX_CMD_DESC_BITMASKS]; 2626 }; 2627 2628 /* 2629 * A table of commands requiring special handling by the command parser. 2630 * 2631 * Each ring has an array of tables. Each table consists of an array of command 2632 * descriptors, which must be sorted with command opcodes in ascending order. 2633 */ 2634 struct drm_i915_cmd_table { 2635 const struct drm_i915_cmd_descriptor *table; 2636 int count; 2637 }; 2638 2639 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */ 2640 #define __I915__(p) ({ \ 2641 struct drm_i915_private *__p; \ 2642 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \ 2643 __p = (struct drm_i915_private *)p; \ 2644 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \ 2645 __p = to_i915((struct drm_device *)p); \ 2646 __p; \ 2647 }) 2648 #define INTEL_INFO(p) (&__I915__(p)->info) 2649 #define INTEL_GEN(p) (INTEL_INFO(p)->gen) 2650 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id) 2651 2652 #define REVID_FOREVER 0xff 2653 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision) 2654 2655 #define GEN_FOREVER (0) 2656 /* 2657 * Returns true if Gen is in inclusive range [Start, End]. 2658 * 2659 * Use GEN_FOREVER for unbound start and or end. 2660 */ 2661 #define IS_GEN(p, s, e) ({ \ 2662 unsigned int __s = (s), __e = (e); \ 2663 BUILD_BUG_ON(!__builtin_constant_p(s)); \ 2664 BUILD_BUG_ON(!__builtin_constant_p(e)); \ 2665 if ((__s) != GEN_FOREVER) \ 2666 __s = (s) - 1; \ 2667 if ((__e) == GEN_FOREVER) \ 2668 __e = BITS_PER_LONG - 1; \ 2669 else \ 2670 __e = (e) - 1; \ 2671 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \ 2672 }) 2673 2674 /* 2675 * Return true if revision is in range [since,until] inclusive. 2676 * 2677 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2678 */ 2679 #define IS_REVID(p, since, until) \ 2680 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2681 2682 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577) 2683 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562) 2684 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x) 2685 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572) 2686 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g) 2687 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592) 2688 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772) 2689 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm) 2690 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater) 2691 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline) 2692 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42) 2693 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x) 2694 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001) 2695 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011) 2696 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview) 2697 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33) 2698 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046) 2699 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge) 2700 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \ 2701 INTEL_DEVID(dev) == 0x0152 || \ 2702 INTEL_DEVID(dev) == 0x015a) 2703 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview) 2704 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview) 2705 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell) 2706 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell) 2707 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake) 2708 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton) 2709 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake) 2710 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile) 2711 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \ 2712 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00) 2713 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \ 2714 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \ 2715 (INTEL_DEVID(dev) & 0xf) == 0xb || \ 2716 (INTEL_DEVID(dev) & 0xf) == 0xe)) 2717 /* ULX machines are also considered ULT. */ 2718 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \ 2719 (INTEL_DEVID(dev) & 0xf) == 0xe) 2720 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \ 2721 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2722 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \ 2723 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00) 2724 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \ 2725 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2726 /* ULX machines are also considered ULT. */ 2727 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \ 2728 INTEL_DEVID(dev) == 0x0A1E) 2729 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \ 2730 INTEL_DEVID(dev) == 0x1913 || \ 2731 INTEL_DEVID(dev) == 0x1916 || \ 2732 INTEL_DEVID(dev) == 0x1921 || \ 2733 INTEL_DEVID(dev) == 0x1926) 2734 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \ 2735 INTEL_DEVID(dev) == 0x1915 || \ 2736 INTEL_DEVID(dev) == 0x191E) 2737 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \ 2738 INTEL_DEVID(dev) == 0x5913 || \ 2739 INTEL_DEVID(dev) == 0x5916 || \ 2740 INTEL_DEVID(dev) == 0x5921 || \ 2741 INTEL_DEVID(dev) == 0x5926) 2742 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \ 2743 INTEL_DEVID(dev) == 0x5915 || \ 2744 INTEL_DEVID(dev) == 0x591E) 2745 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \ 2746 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2747 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \ 2748 (INTEL_DEVID(dev) & 0x00F0) == 0x0030) 2749 2750 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary) 2751 2752 #define SKL_REVID_A0 0x0 2753 #define SKL_REVID_B0 0x1 2754 #define SKL_REVID_C0 0x2 2755 #define SKL_REVID_D0 0x3 2756 #define SKL_REVID_E0 0x4 2757 #define SKL_REVID_F0 0x5 2758 #define SKL_REVID_G0 0x6 2759 #define SKL_REVID_H0 0x7 2760 2761 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2762 2763 #define BXT_REVID_A0 0x0 2764 #define BXT_REVID_A1 0x1 2765 #define BXT_REVID_B0 0x3 2766 #define BXT_REVID_C0 0x9 2767 2768 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until)) 2769 2770 #define KBL_REVID_A0 0x0 2771 #define KBL_REVID_B0 0x1 2772 #define KBL_REVID_C0 0x2 2773 #define KBL_REVID_D0 0x3 2774 #define KBL_REVID_E0 0x4 2775 2776 #define IS_KBL_REVID(p, since, until) \ 2777 (IS_KABYLAKE(p) && IS_REVID(p, since, until)) 2778 2779 /* 2780 * The genX designation typically refers to the render engine, so render 2781 * capability related checks should use IS_GEN, while display and other checks 2782 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2783 * chips, etc.). 2784 */ 2785 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1))) 2786 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2))) 2787 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3))) 2788 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4))) 2789 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5))) 2790 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6))) 2791 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7))) 2792 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8))) 2793 2794 #define ENGINE_MASK(id) BIT(id) 2795 #define RENDER_RING ENGINE_MASK(RCS) 2796 #define BSD_RING ENGINE_MASK(VCS) 2797 #define BLT_RING ENGINE_MASK(BCS) 2798 #define VEBOX_RING ENGINE_MASK(VECS) 2799 #define BSD2_RING ENGINE_MASK(VCS2) 2800 #define ALL_ENGINES (~0) 2801 2802 #define HAS_ENGINE(dev_priv, id) \ 2803 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id))) 2804 2805 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2806 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2807 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2808 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2809 2810 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc) 2811 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop) 2812 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED)) 2813 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \ 2814 HAS_EDRAM(dev)) 2815 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws) 2816 2817 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6) 2818 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8) 2819 #define USES_PPGTT(dev) (i915.enable_ppgtt) 2820 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2) 2821 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3) 2822 2823 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay) 2824 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical) 2825 2826 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2827 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev)) 2828 2829 /* WaRsDisableCoarsePowerGating:skl,bxt */ 2830 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2831 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \ 2832 IS_SKL_GT3(dev_priv) || \ 2833 IS_SKL_GT4(dev_priv)) 2834 2835 /* 2836 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2837 * even when in MSI mode. This results in spurious interrupt warnings if the 2838 * legacy irq no. is shared with another device. The kernel then disables that 2839 * interrupt source and so prevents the other device from working properly. 2840 */ 2841 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) 2842 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) 2843 2844 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2845 * rows, which changed the alignment requirements and fence programming. 2846 */ 2847 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \ 2848 IS_I915GM(dev))) 2849 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv) 2850 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug) 2851 2852 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2) 2853 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr) 2854 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc) 2855 2856 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev)) 2857 2858 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ 2859 INTEL_INFO(dev)->gen >= 9) 2860 2861 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi) 2862 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg) 2863 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ 2864 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \ 2865 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) 2866 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \ 2867 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \ 2868 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \ 2869 IS_KABYLAKE(dev) || IS_BROXTON(dev)) 2870 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6) 2871 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) 2872 2873 #define HAS_CSR(dev) (IS_GEN9(dev)) 2874 2875 /* 2876 * For now, anything with a GuC requires uCode loading, and then supports 2877 * command submission once loaded. But these are logically independent 2878 * properties, so we have separate macros to test them. 2879 */ 2880 #define HAS_GUC(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev)) 2881 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev)) 2882 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev)) 2883 2884 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \ 2885 INTEL_INFO(dev)->gen >= 8) 2886 2887 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \ 2888 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \ 2889 !IS_BROXTON(dev)) 2890 2891 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu) 2892 2893 #define INTEL_PCH_DEVICE_ID_MASK 0xff00 2894 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2895 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2896 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2897 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2898 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2899 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2900 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2901 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200 2902 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2903 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2904 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2905 2906 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type) 2907 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP) 2908 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT) 2909 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT) 2910 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) 2911 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) 2912 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT) 2913 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX) 2914 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP) 2915 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE) 2916 2917 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \ 2918 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 2919 2920 /* DPF == dynamic parity feature */ 2921 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) 2922 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev)) 2923 2924 #define GT_FREQUENCY_MULTIPLIER 50 2925 #define GEN9_FREQ_SCALER 3 2926 2927 #include "i915_trace.h" 2928 2929 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2930 { 2931 #ifdef CONFIG_INTEL_IOMMU 2932 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped) 2933 return true; 2934 #endif 2935 return false; 2936 } 2937 2938 extern int i915_suspend_switcheroo(device_t kdev); 2939 extern int i915_resume_switcheroo(struct drm_device *dev); 2940 2941 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 2942 int enable_ppgtt); 2943 2944 /* i915_drv.c */ 2945 void __printf(3, 4) 2946 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2947 const char *fmt, ...); 2948 2949 #define i915_report_error(dev_priv, fmt, ...) \ 2950 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2951 2952 #ifdef CONFIG_COMPAT 2953 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2954 unsigned long arg); 2955 #endif 2956 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2957 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2958 extern int i915_reset(struct drm_i915_private *dev_priv); 2959 extern int intel_guc_reset(struct drm_i915_private *dev_priv); 2960 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2961 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2962 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2963 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2964 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2965 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2966 2967 /* intel_hotplug.c */ 2968 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2969 u32 pin_mask, u32 long_mask); 2970 void intel_hpd_init(struct drm_i915_private *dev_priv); 2971 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2972 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2973 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port); 2974 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2975 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2976 2977 /* i915_irq.c */ 2978 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2979 { 2980 unsigned long delay; 2981 2982 if (unlikely(!i915.enable_hangcheck)) 2983 return; 2984 2985 /* Don't continually defer the hangcheck so that it is always run at 2986 * least once after work has been scheduled on any ring. Otherwise, 2987 * we will ignore a hung ring if a second ring is kept busy. 2988 */ 2989 2990 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2991 queue_delayed_work(system_long_wq, 2992 &dev_priv->gpu_error.hangcheck_work, delay); 2993 } 2994 2995 __printf(3, 4) 2996 void i915_handle_error(struct drm_i915_private *dev_priv, 2997 u32 engine_mask, 2998 const char *fmt, ...); 2999 3000 extern void intel_irq_init(struct drm_i915_private *dev_priv); 3001 int intel_irq_install(struct drm_i915_private *dev_priv); 3002 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 3003 3004 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv); 3005 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv, 3006 bool restore_forcewake); 3007 extern void intel_uncore_init(struct drm_i915_private *dev_priv); 3008 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv); 3009 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv); 3010 extern void intel_uncore_fini(struct drm_i915_private *dev_priv); 3011 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv, 3012 bool restore); 3013 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id); 3014 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv, 3015 enum forcewake_domains domains); 3016 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv, 3017 enum forcewake_domains domains); 3018 /* Like above but the caller must manage the uncore.lock itself. 3019 * Must be used with I915_READ_FW and friends. 3020 */ 3021 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv, 3022 enum forcewake_domains domains); 3023 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv, 3024 enum forcewake_domains domains); 3025 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv); 3026 3027 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv); 3028 3029 int intel_wait_for_register(struct drm_i915_private *dev_priv, 3030 i915_reg_t reg, 3031 const u32 mask, 3032 const u32 value, 3033 const unsigned long timeout_ms); 3034 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv, 3035 i915_reg_t reg, 3036 const u32 mask, 3037 const u32 value, 3038 const unsigned long timeout_ms); 3039 3040 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 3041 { 3042 return dev_priv->gvt.initialized; 3043 } 3044 3045 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 3046 { 3047 return dev_priv->vgpu.active; 3048 } 3049 3050 void 3051 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe, 3052 u32 status_mask); 3053 3054 void 3055 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe, 3056 u32 status_mask); 3057 3058 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 3059 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 3060 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 3061 uint32_t mask, 3062 uint32_t bits); 3063 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 3064 uint32_t interrupt_mask, 3065 uint32_t enabled_irq_mask); 3066 static inline void 3067 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3068 { 3069 ilk_update_display_irq(dev_priv, bits, bits); 3070 } 3071 static inline void 3072 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3073 { 3074 ilk_update_display_irq(dev_priv, bits, 0); 3075 } 3076 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 3077 enum i915_pipe pipe, 3078 uint32_t interrupt_mask, 3079 uint32_t enabled_irq_mask); 3080 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 3081 enum i915_pipe pipe, uint32_t bits) 3082 { 3083 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 3084 } 3085 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 3086 enum i915_pipe pipe, uint32_t bits) 3087 { 3088 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 3089 } 3090 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 3091 uint32_t interrupt_mask, 3092 uint32_t enabled_irq_mask); 3093 static inline void 3094 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3095 { 3096 ibx_display_interrupt_update(dev_priv, bits, bits); 3097 } 3098 static inline void 3099 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3100 { 3101 ibx_display_interrupt_update(dev_priv, bits, 0); 3102 } 3103 3104 /* i915_gem.c */ 3105 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 3106 struct drm_file *file_priv); 3107 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 3108 struct drm_file *file_priv); 3109 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 3110 struct drm_file *file_priv); 3111 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 3112 struct drm_file *file_priv); 3113 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 3114 struct drm_file *file_priv); 3115 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 3116 struct drm_file *file_priv); 3117 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 3118 struct drm_file *file_priv); 3119 void i915_gem_execbuffer_move_to_active(struct list_head *vmas, 3120 struct drm_i915_gem_request *req); 3121 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params, 3122 struct drm_i915_gem_execbuffer2 *args, 3123 struct list_head *vmas); 3124 int i915_gem_execbuffer(struct drm_device *dev, void *data, 3125 struct drm_file *file_priv); 3126 int i915_gem_execbuffer2(struct drm_device *dev, void *data, 3127 struct drm_file *file_priv); 3128 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3129 struct drm_file *file_priv); 3130 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3131 struct drm_file *file); 3132 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3133 struct drm_file *file); 3134 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3135 struct drm_file *file_priv); 3136 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3137 struct drm_file *file_priv); 3138 int i915_gem_set_tiling(struct drm_device *dev, void *data, 3139 struct drm_file *file_priv); 3140 int i915_gem_get_tiling(struct drm_device *dev, void *data, 3141 struct drm_file *file_priv); 3142 void i915_gem_init_userptr(struct drm_i915_private *dev_priv); 3143 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 3144 struct drm_file *file); 3145 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 3146 struct drm_file *file_priv); 3147 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 3148 struct drm_file *file_priv); 3149 void i915_gem_load_init(struct drm_device *dev); 3150 void i915_gem_load_cleanup(struct drm_device *dev); 3151 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 3152 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 3153 3154 void *i915_gem_object_alloc(struct drm_device *dev); 3155 void i915_gem_object_free(struct drm_i915_gem_object *obj); 3156 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3157 const struct drm_i915_gem_object_ops *ops); 3158 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev, 3159 size_t size); 3160 struct drm_i915_gem_object *i915_gem_object_create_from_data( 3161 struct drm_device *dev, const void *data, size_t size); 3162 void i915_gem_free_object(struct drm_gem_object *obj); 3163 void i915_gem_vma_destroy(struct i915_vma *vma); 3164 3165 /* Flags used by pin/bind&friends. */ 3166 #define PIN_MAPPABLE (1<<0) 3167 #define PIN_NONBLOCK (1<<1) 3168 #define PIN_GLOBAL (1<<2) 3169 #define PIN_OFFSET_BIAS (1<<3) 3170 #define PIN_USER (1<<4) 3171 #define PIN_UPDATE (1<<5) 3172 #define PIN_ZONE_4G (1<<6) 3173 #define PIN_HIGH (1<<7) 3174 #define PIN_OFFSET_FIXED (1<<8) 3175 #define PIN_OFFSET_MASK (~4095) 3176 int __must_check 3177 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3178 struct i915_address_space *vm, 3179 uint32_t alignment, 3180 uint64_t flags); 3181 int __must_check 3182 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 3183 const struct i915_ggtt_view *view, 3184 uint32_t alignment, 3185 uint64_t flags); 3186 3187 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, 3188 u32 flags); 3189 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma); 3190 int __must_check i915_vma_unbind(struct i915_vma *vma); 3191 /* 3192 * BEWARE: Do not use the function below unless you can _absolutely_ 3193 * _guarantee_ VMA in question is _not in use_ anywhere. 3194 */ 3195 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma); 3196 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj); 3197 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv); 3198 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 3199 3200 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3201 int *needs_clflush); 3202 3203 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 3204 3205 static inline int __sg_page_count(struct scatterlist *sg) 3206 { 3207 return sg->length >> PAGE_SHIFT; 3208 } 3209 3210 struct page * 3211 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n); 3212 3213 static inline dma_addr_t 3214 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n) 3215 { 3216 if (n < obj->get_page.last) { 3217 obj->get_page.sg = obj->pages->sgl; 3218 obj->get_page.last = 0; 3219 } 3220 3221 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) { 3222 obj->get_page.last += __sg_page_count(obj->get_page.sg++); 3223 if (unlikely(sg_is_chain(obj->get_page.sg))) 3224 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg); 3225 } 3226 3227 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT); 3228 } 3229 3230 static inline struct page * 3231 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n) 3232 { 3233 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT)) 3234 return NULL; 3235 3236 if (n < obj->get_page.last) { 3237 obj->get_page.sg = obj->pages->sgl; 3238 obj->get_page.last = 0; 3239 } 3240 3241 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) { 3242 obj->get_page.last += __sg_page_count(obj->get_page.sg++); 3243 if (unlikely(sg_is_chain(obj->get_page.sg))) 3244 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg); 3245 } 3246 3247 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last); 3248 } 3249 3250 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3251 { 3252 BUG_ON(obj->pages == NULL); 3253 obj->pages_pin_count++; 3254 } 3255 3256 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3257 { 3258 BUG_ON(obj->pages_pin_count == 0); 3259 obj->pages_pin_count--; 3260 } 3261 3262 /** 3263 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3264 * @obj - the object to map into kernel address space 3265 * 3266 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3267 * pages and then returns a contiguous mapping of the backing storage into 3268 * the kernel address space. 3269 * 3270 * The caller must hold the struct_mutex, and is responsible for calling 3271 * i915_gem_object_unpin_map() when the mapping is no longer required. 3272 * 3273 * Returns the pointer through which to access the mapped object, or an 3274 * ERR_PTR() on error. 3275 */ 3276 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj); 3277 3278 /** 3279 * i915_gem_object_unpin_map - releases an earlier mapping 3280 * @obj - the object to unmap 3281 * 3282 * After pinning the object and mapping its pages, once you are finished 3283 * with your access, call i915_gem_object_unpin_map() to release the pin 3284 * upon the mapping. Once the pin count reaches zero, that mapping may be 3285 * removed. 3286 * 3287 * The caller must hold the struct_mutex. 3288 */ 3289 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3290 { 3291 lockdep_assert_held(&obj->base.dev->struct_mutex); 3292 i915_gem_object_unpin_pages(obj); 3293 } 3294 3295 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3296 int i915_gem_object_sync(struct drm_i915_gem_object *obj, 3297 struct intel_engine_cs *to, 3298 struct drm_i915_gem_request **to_req); 3299 void i915_vma_move_to_active(struct i915_vma *vma, 3300 struct drm_i915_gem_request *req); 3301 int i915_gem_dumb_create(struct drm_file *file_priv, 3302 struct drm_device *dev, 3303 struct drm_mode_create_dumb *args); 3304 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3305 uint32_t handle, uint64_t *offset); 3306 3307 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3308 struct drm_i915_gem_object *new, 3309 unsigned frontbuffer_bits); 3310 3311 /** 3312 * Returns true if seq1 is later than seq2. 3313 */ 3314 static inline bool 3315 i915_seqno_passed(uint32_t seq1, uint32_t seq2) 3316 { 3317 return (int32_t)(seq1 - seq2) >= 0; 3318 } 3319 3320 static inline bool i915_gem_request_started(const struct drm_i915_gem_request *req) 3321 { 3322 return i915_seqno_passed(intel_engine_get_seqno(req->engine), 3323 req->previous_seqno); 3324 } 3325 3326 static inline bool i915_gem_request_completed(const struct drm_i915_gem_request *req) 3327 { 3328 return i915_seqno_passed(intel_engine_get_seqno(req->engine), 3329 req->seqno); 3330 } 3331 3332 bool __i915_spin_request(const struct drm_i915_gem_request *request, 3333 int state, unsigned long timeout_us); 3334 static inline bool i915_spin_request(const struct drm_i915_gem_request *request, 3335 int state, unsigned long timeout_us) 3336 { 3337 return (i915_gem_request_started(request) && 3338 __i915_spin_request(request, state, timeout_us)); 3339 } 3340 3341 int __must_check i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno); 3342 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno); 3343 3344 struct drm_i915_gem_request * 3345 i915_gem_find_active_request(struct intel_engine_cs *engine); 3346 3347 void i915_gem_retire_requests(struct drm_i915_private *dev_priv); 3348 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine); 3349 3350 static inline u32 i915_reset_counter(struct i915_gpu_error *error) 3351 { 3352 return atomic_read(&error->reset_counter); 3353 } 3354 3355 static inline bool __i915_reset_in_progress(u32 reset) 3356 { 3357 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG); 3358 } 3359 3360 static inline bool __i915_reset_in_progress_or_wedged(u32 reset) 3361 { 3362 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED)); 3363 } 3364 3365 static inline bool __i915_terminally_wedged(u32 reset) 3366 { 3367 return unlikely(reset & I915_WEDGED); 3368 } 3369 3370 static inline bool i915_reset_in_progress(struct i915_gpu_error *error) 3371 { 3372 return __i915_reset_in_progress(i915_reset_counter(error)); 3373 } 3374 3375 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error) 3376 { 3377 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error)); 3378 } 3379 3380 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3381 { 3382 return __i915_terminally_wedged(i915_reset_counter(error)); 3383 } 3384 3385 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3386 { 3387 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2; 3388 } 3389 3390 void i915_gem_reset(struct drm_device *dev); 3391 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force); 3392 int __must_check i915_gem_init(struct drm_device *dev); 3393 int i915_gem_init_engines(struct drm_device *dev); 3394 int __must_check i915_gem_init_hw(struct drm_device *dev); 3395 void i915_gem_init_swizzling(struct drm_device *dev); 3396 void i915_gem_cleanup_engines(struct drm_device *dev); 3397 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv); 3398 int __must_check i915_gem_suspend(struct drm_device *dev); 3399 void __i915_add_request(struct drm_i915_gem_request *req, 3400 struct drm_i915_gem_object *batch_obj, 3401 bool flush_caches); 3402 #define i915_add_request(req) \ 3403 __i915_add_request(req, NULL, true) 3404 #define i915_add_request_no_flush(req) \ 3405 __i915_add_request(req, NULL, false) 3406 int __i915_wait_request(struct drm_i915_gem_request *req, 3407 bool interruptible, 3408 s64 *timeout, 3409 struct intel_rps_client *rps); 3410 int __must_check i915_wait_request(struct drm_i915_gem_request *req); 3411 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres); 3412 int __must_check 3413 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 3414 bool readonly); 3415 int __must_check 3416 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, 3417 bool write); 3418 int __must_check 3419 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3420 int __must_check 3421 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3422 u32 alignment, 3423 const struct i915_ggtt_view *view); 3424 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj, 3425 const struct i915_ggtt_view *view); 3426 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3427 int align); 3428 int i915_gem_open(struct drm_device *dev, struct drm_file *file); 3429 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3430 3431 uint32_t 3432 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode); 3433 uint32_t 3434 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 3435 int tiling_mode, bool fenced); 3436 3437 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3438 enum i915_cache_level cache_level); 3439 3440 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3441 struct dma_buf *dma_buf); 3442 3443 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3444 struct drm_gem_object *gem_obj, int flags); 3445 3446 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o, 3447 const struct i915_ggtt_view *view); 3448 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o, 3449 struct i915_address_space *vm); 3450 static inline u64 3451 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o) 3452 { 3453 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal); 3454 } 3455 3456 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o); 3457 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o, 3458 const struct i915_ggtt_view *view); 3459 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 3460 struct i915_address_space *vm); 3461 3462 struct i915_vma * 3463 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 3464 struct i915_address_space *vm); 3465 struct i915_vma * 3466 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj, 3467 const struct i915_ggtt_view *view); 3468 3469 struct i915_vma * 3470 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, 3471 struct i915_address_space *vm); 3472 struct i915_vma * 3473 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj, 3474 const struct i915_ggtt_view *view); 3475 3476 static inline struct i915_vma * 3477 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 3478 { 3479 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal); 3480 } 3481 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj); 3482 3483 /* Some GGTT VM helpers */ 3484 static inline struct i915_hw_ppgtt * 3485 i915_vm_to_ppgtt(struct i915_address_space *vm) 3486 { 3487 return container_of(vm, struct i915_hw_ppgtt, base); 3488 } 3489 3490 3491 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj) 3492 { 3493 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal); 3494 } 3495 3496 unsigned long 3497 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj); 3498 3499 static inline int __must_check 3500 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj, 3501 uint32_t alignment, 3502 unsigned flags) 3503 { 3504 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3505 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3506 3507 return i915_gem_object_pin(obj, &ggtt->base, 3508 alignment, flags | PIN_GLOBAL); 3509 } 3510 3511 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj, 3512 const struct i915_ggtt_view *view); 3513 static inline void 3514 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 3515 { 3516 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal); 3517 } 3518 3519 /* i915_gem_fence.c */ 3520 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj); 3521 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj); 3522 3523 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj); 3524 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj); 3525 3526 void i915_gem_restore_fences(struct drm_device *dev); 3527 3528 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev); 3529 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj); 3530 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj); 3531 3532 /* i915_gem_context.c */ 3533 int __must_check i915_gem_context_init(struct drm_device *dev); 3534 void i915_gem_context_lost(struct drm_i915_private *dev_priv); 3535 void i915_gem_context_fini(struct drm_device *dev); 3536 void i915_gem_context_reset(struct drm_device *dev); 3537 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file); 3538 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file); 3539 int i915_switch_context(struct drm_i915_gem_request *req); 3540 void i915_gem_context_free(struct kref *ctx_ref); 3541 struct drm_i915_gem_object * 3542 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size); 3543 struct i915_gem_context * 3544 i915_gem_context_create_gvt(struct drm_device *dev); 3545 3546 static inline struct i915_gem_context * 3547 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3548 { 3549 struct i915_gem_context *ctx; 3550 3551 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex); 3552 3553 ctx = idr_find(&file_priv->context_idr, id); 3554 if (!ctx) 3555 return ERR_PTR(-ENOENT); 3556 3557 return ctx; 3558 } 3559 3560 static inline void i915_gem_context_reference(struct i915_gem_context *ctx) 3561 { 3562 kref_get(&ctx->ref); 3563 } 3564 3565 static inline void i915_gem_context_unreference(struct i915_gem_context *ctx) 3566 { 3567 lockdep_assert_held(&ctx->i915->drm.struct_mutex); 3568 kref_put(&ctx->ref, i915_gem_context_free); 3569 } 3570 3571 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c) 3572 { 3573 return c->user_handle == DEFAULT_CONTEXT_HANDLE; 3574 } 3575 3576 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, 3577 struct drm_file *file); 3578 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, 3579 struct drm_file *file); 3580 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, 3581 struct drm_file *file_priv); 3582 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, 3583 struct drm_file *file_priv); 3584 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data, 3585 struct drm_file *file); 3586 3587 /* i915_gem_evict.c */ 3588 int __must_check i915_gem_evict_something(struct drm_device *dev, 3589 struct i915_address_space *vm, 3590 int min_size, 3591 unsigned alignment, 3592 unsigned cache_level, 3593 unsigned long start, 3594 unsigned long end, 3595 unsigned flags); 3596 int __must_check i915_gem_evict_for_vma(struct i915_vma *target); 3597 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle); 3598 3599 /* belongs in i915_gem_gtt.h */ 3600 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3601 { 3602 wmb(); 3603 if (INTEL_GEN(dev_priv) < 6) 3604 intel_gtt_chipset_flush(); 3605 } 3606 3607 /* i915_gem_stolen.c */ 3608 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3609 struct drm_mm_node *node, u64 size, 3610 unsigned alignment); 3611 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3612 struct drm_mm_node *node, u64 size, 3613 unsigned alignment, u64 start, 3614 u64 end); 3615 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3616 struct drm_mm_node *node); 3617 int i915_gem_init_stolen(struct drm_device *dev); 3618 void i915_gem_cleanup_stolen(struct drm_device *dev); 3619 struct drm_i915_gem_object * 3620 i915_gem_object_create_stolen(struct drm_device *dev, u32 size); 3621 struct drm_i915_gem_object * 3622 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev, 3623 u32 stolen_offset, 3624 u32 gtt_offset, 3625 u32 size); 3626 3627 /* i915_gem_shrinker.c */ 3628 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, 3629 unsigned long target, 3630 unsigned flags); 3631 #define I915_SHRINK_PURGEABLE 0x1 3632 #define I915_SHRINK_UNBOUND 0x2 3633 #define I915_SHRINK_BOUND 0x4 3634 #define I915_SHRINK_ACTIVE 0x8 3635 #define I915_SHRINK_VMAPS 0x10 3636 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 3637 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); 3638 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); 3639 3640 3641 /* i915_gem_tiling.c */ 3642 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3643 { 3644 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3645 3646 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3647 obj->tiling_mode != I915_TILING_NONE; 3648 } 3649 3650 /* i915_gem_debug.c */ 3651 #if WATCH_LISTS 3652 int i915_verify_lists(struct drm_device *dev); 3653 #else 3654 #define i915_verify_lists(dev) 0 3655 #endif 3656 3657 /* i915_debugfs.c */ 3658 #ifdef CONFIG_DEBUG_FS 3659 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3660 void i915_debugfs_unregister(struct drm_i915_private *dev_priv); 3661 int i915_debugfs_connector_add(struct drm_connector *connector); 3662 void intel_display_crc_init(struct drm_device *dev); 3663 #else 3664 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3665 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {} 3666 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3667 { return 0; } 3668 static inline void intel_display_crc_init(struct drm_device *dev) {} 3669 #endif 3670 3671 /* i915_gpu_error.c */ 3672 __printf(2, 3) 3673 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); 3674 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, 3675 const struct i915_error_state_file_priv *error); 3676 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, 3677 struct drm_i915_private *i915, 3678 size_t count, loff_t pos); 3679 static inline void i915_error_state_buf_release( 3680 struct drm_i915_error_state_buf *eb) 3681 { 3682 kfree(eb->buf); 3683 } 3684 void i915_capture_error_state(struct drm_i915_private *dev_priv, 3685 u32 engine_mask, 3686 const char *error_msg); 3687 void i915_error_state_get(struct drm_device *dev, 3688 struct i915_error_state_file_priv *error_priv); 3689 void i915_error_state_put(struct i915_error_state_file_priv *error_priv); 3690 void i915_destroy_error_state(struct drm_device *dev); 3691 3692 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone); 3693 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3694 3695 /* i915_cmd_parser.c */ 3696 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3697 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine); 3698 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine); 3699 bool i915_needs_cmd_parser(struct intel_engine_cs *engine); 3700 int i915_parse_cmds(struct intel_engine_cs *engine, 3701 struct drm_i915_gem_object *batch_obj, 3702 struct drm_i915_gem_object *shadow_batch_obj, 3703 u32 batch_start_offset, 3704 u32 batch_len, 3705 bool is_master); 3706 3707 /* i915_suspend.c */ 3708 extern int i915_save_state(struct drm_device *dev); 3709 extern int i915_restore_state(struct drm_device *dev); 3710 3711 /* i915_sysfs.c */ 3712 void i915_setup_sysfs(struct drm_device *dev_priv); 3713 void i915_teardown_sysfs(struct drm_device *dev_priv); 3714 3715 /* intel_i2c.c */ 3716 extern int intel_setup_gmbus(struct drm_device *dev); 3717 extern void intel_teardown_gmbus(struct drm_device *dev); 3718 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3719 unsigned int pin); 3720 3721 extern struct i2c_adapter * 3722 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3723 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3724 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3725 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3726 { 3727 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3728 } 3729 extern void intel_i2c_reset(struct drm_device *dev); 3730 3731 /* intel_bios.c */ 3732 int intel_bios_init(struct drm_i915_private *dev_priv); 3733 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3734 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3735 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3736 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3737 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3738 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3739 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3740 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3741 enum port port); 3742 3743 /* intel_opregion.c */ 3744 #ifdef CONFIG_ACPI 3745 extern int intel_opregion_setup(struct drm_i915_private *dev_priv); 3746 extern void intel_opregion_register(struct drm_i915_private *dev_priv); 3747 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv); 3748 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv); 3749 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, 3750 bool enable); 3751 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv, 3752 pci_power_t state); 3753 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv); 3754 #else 3755 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; } 3756 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { } 3757 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { } 3758 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv) 3759 { 3760 } 3761 static inline int 3762 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) 3763 { 3764 return 0; 3765 } 3766 static inline int 3767 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state) 3768 { 3769 return 0; 3770 } 3771 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev) 3772 { 3773 return -ENODEV; 3774 } 3775 #endif 3776 3777 /* intel_acpi.c */ 3778 #ifdef CONFIG_ACPI 3779 extern void intel_register_dsm_handler(void); 3780 extern void intel_unregister_dsm_handler(void); 3781 #else 3782 static inline void intel_register_dsm_handler(void) { return; } 3783 static inline void intel_unregister_dsm_handler(void) { return; } 3784 #endif /* CONFIG_ACPI */ 3785 3786 /* intel_device_info.c */ 3787 static inline struct intel_device_info * 3788 mkwrite_device_info(struct drm_i915_private *dev_priv) 3789 { 3790 return (struct intel_device_info *)&dev_priv->info; 3791 } 3792 3793 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv); 3794 void intel_device_info_dump(struct drm_i915_private *dev_priv); 3795 3796 /* modesetting */ 3797 extern void intel_modeset_init_hw(struct drm_device *dev); 3798 extern void intel_modeset_init(struct drm_device *dev); 3799 extern void intel_modeset_gem_init(struct drm_device *dev); 3800 extern void intel_modeset_cleanup(struct drm_device *dev); 3801 extern int intel_connector_register(struct drm_connector *); 3802 extern void intel_connector_unregister(struct drm_connector *); 3803 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state); 3804 extern void intel_display_resume(struct drm_device *dev); 3805 extern void i915_redisable_vga(struct drm_device *dev); 3806 extern void i915_redisable_vga_power_on(struct drm_device *dev); 3807 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3808 extern void intel_init_pch_refclk(struct drm_device *dev); 3809 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3810 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3811 bool enable); 3812 3813 extern bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv); 3814 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3815 struct drm_file *file); 3816 3817 /* overlay */ 3818 extern struct intel_overlay_error_state * 3819 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3820 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3821 struct intel_overlay_error_state *error); 3822 3823 extern struct intel_display_error_state * 3824 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3825 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3826 struct drm_device *dev, 3827 struct intel_display_error_state *error); 3828 3829 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3830 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); 3831 3832 /* intel_sideband.c */ 3833 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3834 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3835 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3836 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3837 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3838 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3839 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3840 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3841 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3842 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3843 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3844 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int reg); 3845 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int reg, u32 val); 3846 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3847 enum intel_sbi_destination destination); 3848 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3849 enum intel_sbi_destination destination); 3850 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3851 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3852 3853 /* intel_dpio_phy.c */ 3854 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3855 u32 deemph_reg_value, u32 margin_reg_value, 3856 bool uniq_trans_scale); 3857 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3858 bool reset); 3859 void chv_phy_pre_pll_enable(struct intel_encoder *encoder); 3860 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder); 3861 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3862 void chv_phy_post_pll_disable(struct intel_encoder *encoder); 3863 3864 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3865 u32 demph_reg_value, u32 preemph_reg_value, 3866 u32 uniqtranscale_reg_value, u32 tx3_demph); 3867 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder); 3868 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder); 3869 void vlv_phy_reset_lanes(struct intel_encoder *encoder); 3870 3871 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3872 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3873 3874 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3875 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3876 3877 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3878 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3879 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3880 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3881 3882 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3883 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3884 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3885 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3886 3887 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3888 * will be implemented using 2 32-bit writes in an arbitrary order with 3889 * an arbitrary delay between them. This can cause the hardware to 3890 * act upon the intermediate value, possibly leading to corruption and 3891 * machine death. You have been warned. 3892 */ 3893 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true) 3894 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3895 3896 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3897 u32 upper, lower, old_upper, loop = 0; \ 3898 upper = I915_READ(upper_reg); \ 3899 do { \ 3900 old_upper = upper; \ 3901 lower = I915_READ(lower_reg); \ 3902 upper = I915_READ(upper_reg); \ 3903 } while (upper != old_upper && loop++ < 2); \ 3904 (u64)upper << 32 | lower; }) 3905 3906 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3907 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3908 3909 #define __raw_read(x, s) \ 3910 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \ 3911 i915_reg_t reg) \ 3912 { \ 3913 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3914 } 3915 3916 #define __raw_write(x, s) \ 3917 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \ 3918 i915_reg_t reg, uint##x##_t val) \ 3919 { \ 3920 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3921 } 3922 __raw_read(8, b) 3923 __raw_read(16, w) 3924 __raw_read(32, l) 3925 __raw_read(64, q) 3926 3927 __raw_write(8, b) 3928 __raw_write(16, w) 3929 __raw_write(32, l) 3930 __raw_write(64, q) 3931 3932 #undef __raw_read 3933 #undef __raw_write 3934 3935 /* These are untraced mmio-accessors that are only valid to be used inside 3936 * criticial sections inside IRQ handlers where forcewake is explicitly 3937 * controlled. 3938 * Think twice, and think again, before using these. 3939 * Note: Should only be used between intel_uncore_forcewake_irqlock() and 3940 * intel_uncore_forcewake_irqunlock(). 3941 */ 3942 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3943 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3944 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3945 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3946 3947 /* "Broadcast RGB" property */ 3948 #define INTEL_BROADCAST_RGB_AUTO 0 3949 #define INTEL_BROADCAST_RGB_FULL 1 3950 #define INTEL_BROADCAST_RGB_LIMITED 2 3951 3952 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev) 3953 { 3954 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 3955 return VLV_VGACNTRL; 3956 else if (INTEL_INFO(dev)->gen >= 5) 3957 return CPU_VGACNTRL; 3958 else 3959 return VGACNTRL; 3960 } 3961 3962 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3963 { 3964 unsigned long j = msecs_to_jiffies(m); 3965 3966 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3967 } 3968 3969 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3970 { 3971 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3972 } 3973 3974 static inline unsigned long 3975 timespec_to_jiffies_timeout(const struct timespec *value) 3976 { 3977 unsigned long j = timespec_to_jiffies(value); 3978 3979 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3980 } 3981 3982 /* 3983 * If you need to wait X milliseconds between events A and B, but event B 3984 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3985 * when event A happened, then just before event B you call this function and 3986 * pass the timestamp as the first argument, and X as the second argument. 3987 */ 3988 static inline void 3989 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3990 { 3991 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3992 3993 /* 3994 * Don't re-read the value of "jiffies" every time since it may change 3995 * behind our back and break the math. 3996 */ 3997 tmp_jiffies = jiffies; 3998 target_jiffies = timestamp_jiffies + 3999 msecs_to_jiffies_timeout(to_wait_ms); 4000 4001 if (time_after(target_jiffies, tmp_jiffies)) { 4002 remaining_jiffies = target_jiffies - tmp_jiffies; 4003 while (remaining_jiffies) 4004 remaining_jiffies = 4005 schedule_timeout_uninterruptible(remaining_jiffies); 4006 } 4007 } 4008 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req) 4009 { 4010 struct intel_engine_cs *engine = req->engine; 4011 4012 /* Before we do the heavier coherent read of the seqno, 4013 * check the value (hopefully) in the CPU cacheline. 4014 */ 4015 if (i915_gem_request_completed(req)) 4016 return true; 4017 4018 /* Ensure our read of the seqno is coherent so that we 4019 * do not "miss an interrupt" (i.e. if this is the last 4020 * request and the seqno write from the GPU is not visible 4021 * by the time the interrupt fires, we will see that the 4022 * request is incomplete and go back to sleep awaiting 4023 * another interrupt that will never come.) 4024 * 4025 * Strictly, we only need to do this once after an interrupt, 4026 * but it is easier and safer to do it every time the waiter 4027 * is woken. 4028 */ 4029 if (engine->irq_seqno_barrier && 4030 READ_ONCE(engine->breadcrumbs.irq_seqno_bh) == current && 4031 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) { 4032 struct task_struct *tsk; 4033 4034 /* The ordering of irq_posted versus applying the barrier 4035 * is crucial. The clearing of the current irq_posted must 4036 * be visible before we perform the barrier operation, 4037 * such that if a subsequent interrupt arrives, irq_posted 4038 * is reasserted and our task rewoken (which causes us to 4039 * do another __i915_request_irq_complete() immediately 4040 * and reapply the barrier). Conversely, if the clear 4041 * occurs after the barrier, then an interrupt that arrived 4042 * whilst we waited on the barrier would not trigger a 4043 * barrier on the next pass, and the read may not see the 4044 * seqno update. 4045 */ 4046 engine->irq_seqno_barrier(engine); 4047 4048 /* If we consume the irq, but we are no longer the bottom-half, 4049 * the real bottom-half may not have serialised their own 4050 * seqno check with the irq-barrier (i.e. may have inspected 4051 * the seqno before we believe it coherent since they see 4052 * irq_posted == false but we are still running). 4053 */ 4054 rcu_read_lock(); 4055 tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh); 4056 if (tsk && tsk != current) 4057 /* Note that if the bottom-half is changed as we 4058 * are sending the wake-up, the new bottom-half will 4059 * be woken by whomever made the change. We only have 4060 * to worry about when we steal the irq-posted for 4061 * ourself. 4062 */ 4063 wake_up_process(tsk); 4064 rcu_read_unlock(); 4065 4066 if (i915_gem_request_completed(req)) 4067 return true; 4068 } 4069 4070 /* We need to check whether any gpu reset happened in between 4071 * the request being submitted and now. If a reset has occurred, 4072 * the seqno will have been advance past ours and our request 4073 * is complete. If we are in the process of handling a reset, 4074 * the request is effectively complete as the rendering will 4075 * be discarded, but we need to return in order to drop the 4076 * struct_mutex. 4077 */ 4078 if (i915_reset_in_progress(&req->i915->gpu_error)) 4079 return true; 4080 4081 return false; 4082 } 4083 4084 #endif 4085