xref: /dragonfly/sys/dev/drm/i915/i915_drv.h (revision 5b8cd87c)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45 #include <linux/llist.h>
46 
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 
53 #include "i915_params.h"
54 #include "i915_reg.h"
55 
56 #include "intel_bios.h"
57 #include "intel_dpll_mgr.h"
58 #include "intel_guc.h"
59 #include "intel_lrc.h"
60 #include "intel_ringbuffer.h"
61 
62 #include "i915_gem.h"
63 #include "i915_gem_gtt.h"
64 #include "i915_gem_render_state.h"
65 #include "i915_gem_request.h"
66 
67 #include "intel_gvt.h"
68 
69 /* General customization:
70  */
71 
72 #define DRIVER_NAME		"i915"
73 #define DRIVER_DESC		"Intel Graphics"
74 #define DRIVER_DATE		"20161024"
75 #define DRIVER_TIMESTAMP	1477290335
76 
77 #undef WARN_ON
78 /* Many gcc seem to no see through this and fall over :( */
79 #if 0
80 #define WARN_ON(x) ({ \
81 	bool __i915_warn_cond = (x); \
82 	if (__builtin_constant_p(__i915_warn_cond)) \
83 		BUILD_BUG_ON(__i915_warn_cond); \
84 	WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
85 #else
86 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
87 #endif
88 
89 #undef WARN_ON_ONCE
90 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
91 
92 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
93 			     (long) (x), __func__);
94 
95 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
96  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
97  * which may not necessarily be a user visible problem.  This will either
98  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
99  * enable distros and users to tailor their preferred amount of i915 abrt
100  * spam.
101  */
102 #define I915_STATE_WARN(condition, format...) ({			\
103 	int __ret_warn_on = !!(condition);				\
104 	if (unlikely(__ret_warn_on))					\
105 		if (!WARN(i915.verbose_state_checks, format))		\
106 			DRM_ERROR(format);				\
107 	unlikely(__ret_warn_on);					\
108 })
109 
110 #define I915_STATE_WARN_ON(x)						\
111 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
112 
113 bool __i915_inject_load_failure(const char *func, int line);
114 #define i915_inject_load_failure() \
115 	__i915_inject_load_failure(__func__, __LINE__)
116 
117 static inline const char *yesno(bool v)
118 {
119 	return v ? "yes" : "no";
120 }
121 
122 static inline const char *onoff(bool v)
123 {
124 	return v ? "on" : "off";
125 }
126 
127 enum i915_pipe {
128 	INVALID_PIPE = -1,
129 	PIPE_A = 0,
130 	PIPE_B,
131 	PIPE_C,
132 	_PIPE_EDP,
133 	I915_MAX_PIPES = _PIPE_EDP
134 };
135 #define pipe_name(p) ((p) + 'A')
136 
137 enum transcoder {
138 	TRANSCODER_A = 0,
139 	TRANSCODER_B,
140 	TRANSCODER_C,
141 	TRANSCODER_EDP,
142 	TRANSCODER_DSI_A,
143 	TRANSCODER_DSI_C,
144 	I915_MAX_TRANSCODERS
145 };
146 
147 static inline const char *transcoder_name(enum transcoder transcoder)
148 {
149 	switch (transcoder) {
150 	case TRANSCODER_A:
151 		return "A";
152 	case TRANSCODER_B:
153 		return "B";
154 	case TRANSCODER_C:
155 		return "C";
156 	case TRANSCODER_EDP:
157 		return "EDP";
158 	case TRANSCODER_DSI_A:
159 		return "DSI A";
160 	case TRANSCODER_DSI_C:
161 		return "DSI C";
162 	default:
163 		return "<invalid>";
164 	}
165 }
166 
167 static inline bool transcoder_is_dsi(enum transcoder transcoder)
168 {
169 	return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
170 }
171 
172 /*
173  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
174  * number of planes per CRTC.  Not all platforms really have this many planes,
175  * which means some arrays of size I915_MAX_PLANES may have unused entries
176  * between the topmost sprite plane and the cursor plane.
177  */
178 enum plane {
179 	PLANE_A = 0,
180 	PLANE_B,
181 	PLANE_C,
182 	PLANE_CURSOR,
183 	I915_MAX_PLANES,
184 };
185 #define plane_name(p) ((p) + 'A')
186 
187 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
188 
189 enum port {
190 	PORT_NONE = -1,
191 	PORT_A = 0,
192 	PORT_B,
193 	PORT_C,
194 	PORT_D,
195 	PORT_E,
196 	I915_MAX_PORTS
197 };
198 #define port_name(p) ((p) + 'A')
199 
200 #define I915_NUM_PHYS_VLV 2
201 
202 enum dpio_channel {
203 	DPIO_CH0,
204 	DPIO_CH1
205 };
206 
207 enum dpio_phy {
208 	DPIO_PHY0,
209 	DPIO_PHY1
210 };
211 
212 enum intel_display_power_domain {
213 	POWER_DOMAIN_PIPE_A,
214 	POWER_DOMAIN_PIPE_B,
215 	POWER_DOMAIN_PIPE_C,
216 	POWER_DOMAIN_PIPE_A_PANEL_FITTER,
217 	POWER_DOMAIN_PIPE_B_PANEL_FITTER,
218 	POWER_DOMAIN_PIPE_C_PANEL_FITTER,
219 	POWER_DOMAIN_TRANSCODER_A,
220 	POWER_DOMAIN_TRANSCODER_B,
221 	POWER_DOMAIN_TRANSCODER_C,
222 	POWER_DOMAIN_TRANSCODER_EDP,
223 	POWER_DOMAIN_TRANSCODER_DSI_A,
224 	POWER_DOMAIN_TRANSCODER_DSI_C,
225 	POWER_DOMAIN_PORT_DDI_A_LANES,
226 	POWER_DOMAIN_PORT_DDI_B_LANES,
227 	POWER_DOMAIN_PORT_DDI_C_LANES,
228 	POWER_DOMAIN_PORT_DDI_D_LANES,
229 	POWER_DOMAIN_PORT_DDI_E_LANES,
230 	POWER_DOMAIN_PORT_DSI,
231 	POWER_DOMAIN_PORT_CRT,
232 	POWER_DOMAIN_PORT_OTHER,
233 	POWER_DOMAIN_VGA,
234 	POWER_DOMAIN_AUDIO,
235 	POWER_DOMAIN_PLLS,
236 	POWER_DOMAIN_AUX_A,
237 	POWER_DOMAIN_AUX_B,
238 	POWER_DOMAIN_AUX_C,
239 	POWER_DOMAIN_AUX_D,
240 	POWER_DOMAIN_GMBUS,
241 	POWER_DOMAIN_MODESET,
242 	POWER_DOMAIN_INIT,
243 
244 	POWER_DOMAIN_NUM,
245 };
246 
247 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
248 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
249 		((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
250 #define POWER_DOMAIN_TRANSCODER(tran) \
251 	((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
252 	 (tran) + POWER_DOMAIN_TRANSCODER_A)
253 
254 enum hpd_pin {
255 	HPD_NONE = 0,
256 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
257 	HPD_CRT,
258 	HPD_SDVO_B,
259 	HPD_SDVO_C,
260 	HPD_PORT_A,
261 	HPD_PORT_B,
262 	HPD_PORT_C,
263 	HPD_PORT_D,
264 	HPD_PORT_E,
265 	HPD_NUM_PINS
266 };
267 
268 #define for_each_hpd_pin(__pin) \
269 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
270 
271 struct i915_hotplug {
272 	struct work_struct hotplug_work;
273 
274 	struct {
275 		unsigned long last_jiffies;
276 		int count;
277 		enum {
278 			HPD_ENABLED = 0,
279 			HPD_DISABLED = 1,
280 			HPD_MARK_DISABLED = 2
281 		} state;
282 	} stats[HPD_NUM_PINS];
283 	u32 event_bits;
284 	struct delayed_work reenable_work;
285 
286 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
287 	u32 long_port_mask;
288 	u32 short_port_mask;
289 	struct work_struct dig_port_work;
290 
291 	struct work_struct poll_init_work;
292 	bool poll_enabled;
293 
294 	/*
295 	 * if we get a HPD irq from DP and a HPD irq from non-DP
296 	 * the non-DP HPD could block the workqueue on a mode config
297 	 * mutex getting, that userspace may have taken. However
298 	 * userspace is waiting on the DP workqueue to run which is
299 	 * blocked behind the non-DP one.
300 	 */
301 	struct workqueue_struct *dp_wq;
302 };
303 
304 #define I915_GEM_GPU_DOMAINS \
305 	(I915_GEM_DOMAIN_RENDER | \
306 	 I915_GEM_DOMAIN_SAMPLER | \
307 	 I915_GEM_DOMAIN_COMMAND | \
308 	 I915_GEM_DOMAIN_INSTRUCTION | \
309 	 I915_GEM_DOMAIN_VERTEX)
310 
311 #define for_each_pipe(__dev_priv, __p) \
312 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
313 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
314 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
315 		for_each_if ((__mask) & (1 << (__p)))
316 #define for_each_plane(__dev_priv, __pipe, __p)				\
317 	for ((__p) = 0;							\
318 	     (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1;	\
319 	     (__p)++)
320 #define for_each_sprite(__dev_priv, __p, __s)				\
321 	for ((__s) = 0;							\
322 	     (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];	\
323 	     (__s)++)
324 
325 #define for_each_port_masked(__port, __ports_mask) \
326 	for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)	\
327 		for_each_if ((__ports_mask) & (1 << (__port)))
328 
329 #define for_each_crtc(dev, crtc) \
330 	list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
331 
332 #define for_each_intel_plane(dev, intel_plane) \
333 	list_for_each_entry(intel_plane,			\
334 			    &(dev)->mode_config.plane_list,	\
335 			    base.head)
336 
337 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)		\
338 	list_for_each_entry(intel_plane,				\
339 			    &(dev)->mode_config.plane_list,		\
340 			    base.head)					\
341 		for_each_if ((plane_mask) &				\
342 			     (1 << drm_plane_index(&intel_plane->base)))
343 
344 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)	\
345 	list_for_each_entry(intel_plane,				\
346 			    &(dev)->mode_config.plane_list,		\
347 			    base.head)					\
348 		for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
349 
350 #define for_each_intel_crtc(dev, intel_crtc)				\
351 	list_for_each_entry(intel_crtc,					\
352 			    &(dev)->mode_config.crtc_list,		\
353 			    base.head)
354 
355 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)		\
356 	list_for_each_entry(intel_crtc,					\
357 			    &(dev)->mode_config.crtc_list,		\
358 			    base.head)					\
359 		for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
360 
361 #define for_each_intel_encoder(dev, intel_encoder)		\
362 	list_for_each_entry(intel_encoder,			\
363 			    &(dev)->mode_config.encoder_list,	\
364 			    base.head)
365 
366 #define for_each_intel_connector(dev, intel_connector)		\
367 	list_for_each_entry(intel_connector,			\
368 			    &(dev)->mode_config.connector_list,	\
369 			    base.head)
370 
371 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
372 	list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
373 		for_each_if ((intel_encoder)->base.crtc == (__crtc))
374 
375 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
376 	list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
377 		for_each_if ((intel_connector)->base.encoder == (__encoder))
378 
379 #define for_each_power_domain(domain, mask)				\
380 	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
381 		for_each_if ((1 << (domain)) & (mask))
382 
383 struct drm_i915_private;
384 struct i915_mm_struct;
385 struct i915_mmu_object;
386 
387 struct drm_i915_file_private {
388 	struct drm_i915_private *dev_priv;
389 	struct drm_file *file;
390 
391 	struct {
392 		spinlock_t lock;
393 		struct list_head request_list;
394 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
395  * chosen to prevent the CPU getting more than a frame ahead of the GPU
396  * (when using lax throttling for the frontbuffer). We also use it to
397  * offer free GPU waitboosts for severely congested workloads.
398  */
399 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
400 	} mm;
401 	struct idr context_idr;
402 
403 	struct intel_rps_client {
404 		struct list_head link;
405 		unsigned boosts;
406 	} rps;
407 
408 	unsigned int bsd_engine;
409 };
410 
411 /* Used by dp and fdi links */
412 struct intel_link_m_n {
413 	uint32_t	tu;
414 	uint32_t	gmch_m;
415 	uint32_t	gmch_n;
416 	uint32_t	link_m;
417 	uint32_t	link_n;
418 };
419 
420 void intel_link_compute_m_n(int bpp, int nlanes,
421 			    int pixel_clock, int link_clock,
422 			    struct intel_link_m_n *m_n);
423 
424 /* Interface history:
425  *
426  * 1.1: Original.
427  * 1.2: Add Power Management
428  * 1.3: Add vblank support
429  * 1.4: Fix cmdbuffer path, add heap destroy
430  * 1.5: Add vblank pipe configuration
431  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
432  *      - Support vertical blank on secondary display pipe
433  */
434 #define DRIVER_MAJOR		1
435 #define DRIVER_MINOR		6
436 #define DRIVER_PATCHLEVEL	0
437 
438 struct opregion_header;
439 struct opregion_acpi;
440 struct opregion_swsci;
441 struct opregion_asle;
442 
443 struct intel_opregion {
444 	struct opregion_header *header;
445 	struct opregion_acpi *acpi;
446 	struct opregion_swsci *swsci;
447 	u32 swsci_gbda_sub_functions;
448 	u32 swsci_sbcb_sub_functions;
449 	struct opregion_asle *asle;
450 	void *rvda;
451 	const void *vbt;
452 	u32 vbt_size;
453 	u32 *lid_state;
454 	struct work_struct asle_work;
455 };
456 #define OPREGION_SIZE            (8*1024)
457 
458 struct intel_overlay;
459 struct intel_overlay_error_state;
460 
461 struct drm_i915_fence_reg {
462 	struct list_head link;
463 	struct drm_i915_private *i915;
464 	struct i915_vma *vma;
465 	int pin_count;
466 	int id;
467 	/**
468 	 * Whether the tiling parameters for the currently
469 	 * associated fence register have changed. Note that
470 	 * for the purposes of tracking tiling changes we also
471 	 * treat the unfenced register, the register slot that
472 	 * the object occupies whilst it executes a fenced
473 	 * command (such as BLT on gen2/3), as a "fence".
474 	 */
475 	bool dirty;
476 };
477 
478 struct sdvo_device_mapping {
479 	u8 initialized;
480 	u8 dvo_port;
481 	u8 slave_addr;
482 	u8 dvo_wiring;
483 	u8 i2c_pin;
484 	u8 ddc_pin;
485 };
486 
487 struct intel_connector;
488 struct intel_encoder;
489 struct intel_crtc_state;
490 struct intel_initial_plane_config;
491 struct intel_crtc;
492 struct intel_limit;
493 struct dpll;
494 
495 struct drm_i915_display_funcs {
496 	int (*get_display_clock_speed)(struct drm_device *dev);
497 	int (*get_fifo_size)(struct drm_device *dev, int plane);
498 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
499 	int (*compute_intermediate_wm)(struct drm_device *dev,
500 				       struct intel_crtc *intel_crtc,
501 				       struct intel_crtc_state *newstate);
502 	void (*initial_watermarks)(struct intel_crtc_state *cstate);
503 	void (*optimize_watermarks)(struct intel_crtc_state *cstate);
504 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
505 	void (*update_wm)(struct drm_crtc *crtc);
506 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
507 	void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
508 	/* Returns the active state of the crtc, and if the crtc is active,
509 	 * fills out the pipe-config with the hw state. */
510 	bool (*get_pipe_config)(struct intel_crtc *,
511 				struct intel_crtc_state *);
512 	void (*get_initial_plane_config)(struct intel_crtc *,
513 					 struct intel_initial_plane_config *);
514 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
515 				  struct intel_crtc_state *crtc_state);
516 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
517 			    struct drm_atomic_state *old_state);
518 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
519 			     struct drm_atomic_state *old_state);
520 	void (*update_crtcs)(struct drm_atomic_state *state,
521 			     unsigned int *crtc_vblank_mask);
522 	void (*audio_codec_enable)(struct drm_connector *connector,
523 				   struct intel_encoder *encoder,
524 				   const struct drm_display_mode *adjusted_mode);
525 	void (*audio_codec_disable)(struct intel_encoder *encoder);
526 	void (*fdi_link_train)(struct drm_crtc *crtc);
527 	void (*init_clock_gating)(struct drm_device *dev);
528 	int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
529 			  struct drm_framebuffer *fb,
530 			  struct drm_i915_gem_object *obj,
531 			  struct drm_i915_gem_request *req,
532 			  uint32_t flags);
533 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
534 	/* clock updates for mode set */
535 	/* cursor updates */
536 	/* render clock increase/decrease */
537 	/* display clock increase/decrease */
538 	/* pll clock increase/decrease */
539 
540 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
541 	void (*load_luts)(struct drm_crtc_state *crtc_state);
542 };
543 
544 enum forcewake_domain_id {
545 	FW_DOMAIN_ID_RENDER = 0,
546 	FW_DOMAIN_ID_BLITTER,
547 	FW_DOMAIN_ID_MEDIA,
548 
549 	FW_DOMAIN_ID_COUNT
550 };
551 
552 enum forcewake_domains {
553 	FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
554 	FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
555 	FORCEWAKE_MEDIA	= (1 << FW_DOMAIN_ID_MEDIA),
556 	FORCEWAKE_ALL = (FORCEWAKE_RENDER |
557 			 FORCEWAKE_BLITTER |
558 			 FORCEWAKE_MEDIA)
559 };
560 
561 #define FW_REG_READ  (1)
562 #define FW_REG_WRITE (2)
563 
564 enum forcewake_domains
565 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
566 			       i915_reg_t reg, unsigned int op);
567 
568 struct intel_uncore_funcs {
569 	void (*force_wake_get)(struct drm_i915_private *dev_priv,
570 							enum forcewake_domains domains);
571 	void (*force_wake_put)(struct drm_i915_private *dev_priv,
572 							enum forcewake_domains domains);
573 
574 	uint8_t  (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
575 	uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
576 	uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
577 	u64      (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
578 
579 	void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
580 				uint8_t val, bool trace);
581 	void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
582 				uint16_t val, bool trace);
583 	void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
584 				uint32_t val, bool trace);
585 };
586 
587 struct intel_forcewake_range {
588 	u32 start;
589 	u32 end;
590 
591 	enum forcewake_domains domains;
592 };
593 
594 struct intel_uncore {
595 	spinlock_t lock; /** lock is also taken in irq contexts. */
596 
597 	const struct intel_forcewake_range *fw_domains_table;
598 	unsigned int fw_domains_table_entries;
599 
600 	struct intel_uncore_funcs funcs;
601 
602 	unsigned fifo_count;
603 
604 	enum forcewake_domains fw_domains;
605 	enum forcewake_domains fw_domains_active;
606 
607 	struct intel_uncore_forcewake_domain {
608 		struct drm_i915_private *i915;
609 		enum forcewake_domain_id id;
610 		enum forcewake_domains mask;
611 		unsigned wake_count;
612 		struct hrtimer timer;
613 		i915_reg_t reg_set;
614 		u32 val_set;
615 		u32 val_clear;
616 		i915_reg_t reg_ack;
617 		i915_reg_t reg_post;
618 		u32 val_reset;
619 	} fw_domain[FW_DOMAIN_ID_COUNT];
620 
621 	int unclaimed_mmio_check;
622 };
623 
624 /* Iterate over initialised fw domains */
625 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
626 	for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
627 	     (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
628 	     (domain__)++) \
629 		for_each_if ((mask__) & (domain__)->mask)
630 
631 #define for_each_fw_domain(domain__, dev_priv__) \
632 	for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
633 
634 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
635 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
636 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
637 
638 struct intel_csr {
639 	struct work_struct work;
640 	const char *fw_path;
641 	uint32_t *dmc_payload;
642 	uint32_t dmc_fw_size;
643 	uint32_t version;
644 	uint32_t mmio_count;
645 	i915_reg_t mmioaddr[8];
646 	uint32_t mmiodata[8];
647 	uint32_t dc_state;
648 	uint32_t allowed_dc_mask;
649 };
650 
651 #define DEV_INFO_FOR_EACH_FLAG(func) \
652 	/* Keep is_* in chronological order */ \
653 	func(is_mobile); \
654 	func(is_i85x); \
655 	func(is_i915g); \
656 	func(is_i945gm); \
657 	func(is_g33); \
658 	func(is_g4x); \
659 	func(is_pineview); \
660 	func(is_broadwater); \
661 	func(is_crestline); \
662 	func(is_ivybridge); \
663 	func(is_valleyview); \
664 	func(is_cherryview); \
665 	func(is_haswell); \
666 	func(is_broadwell); \
667 	func(is_skylake); \
668 	func(is_broxton); \
669 	func(is_kabylake); \
670 	func(is_preliminary); \
671 	/* Keep has_* in alphabetical order */ \
672 	func(has_csr); \
673 	func(has_ddi); \
674 	func(has_dp_mst); \
675 	func(has_fbc); \
676 	func(has_fpga_dbg); \
677 	func(has_gmbus_irq); \
678 	func(has_gmch_display); \
679 	func(has_guc); \
680 	func(has_hotplug); \
681 	func(has_hw_contexts); \
682 	func(has_l3_dpf); \
683 	func(has_llc); \
684 	func(has_logical_ring_contexts); \
685 	func(has_overlay); \
686 	func(has_pipe_cxsr); \
687 	func(has_pooled_eu); \
688 	func(has_psr); \
689 	func(has_rc6); \
690 	func(has_rc6p); \
691 	func(has_resource_streamer); \
692 	func(has_runtime_pm); \
693 	func(has_snoop); \
694 	func(cursor_needs_physical); \
695 	func(hws_needs_physical); \
696 	func(overlay_needs_physical); \
697 	func(supports_tv)
698 
699 struct sseu_dev_info {
700 	u8 slice_mask;
701 	u8 subslice_mask;
702 	u8 eu_total;
703 	u8 eu_per_subslice;
704 	u8 min_eu_in_pool;
705 	/* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
706 	u8 subslice_7eu[3];
707 	u8 has_slice_pg:1;
708 	u8 has_subslice_pg:1;
709 	u8 has_eu_pg:1;
710 };
711 
712 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
713 {
714 	return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
715 }
716 
717 struct intel_device_info {
718 	u32 display_mmio_offset;
719 	u16 device_id;
720 	u8 num_pipes;
721 	u8 num_sprites[I915_MAX_PIPES];
722 	u8 gen;
723 	u16 gen_mask;
724 	u8 ring_mask; /* Rings supported by the HW */
725 	u8 num_rings;
726 #define DEFINE_FLAG(name) u8 name:1
727 	DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
728 #undef DEFINE_FLAG
729 	u16 ddb_size; /* in blocks */
730 	/* Register offsets for the various display pipes and transcoders */
731 	int pipe_offsets[I915_MAX_TRANSCODERS];
732 	int trans_offsets[I915_MAX_TRANSCODERS];
733 	int palette_offsets[I915_MAX_PIPES];
734 	int cursor_offsets[I915_MAX_PIPES];
735 
736 	/* Slice/subslice/EU info */
737 	struct sseu_dev_info sseu;
738 
739 	struct color_luts {
740 		u16 degamma_lut_size;
741 		u16 gamma_lut_size;
742 	} color;
743 };
744 
745 struct intel_display_error_state;
746 
747 struct drm_i915_error_state {
748 	struct kref ref;
749 	struct timeval time;
750 
751 	struct drm_i915_private *i915;
752 
753 	char error_msg[128];
754 	bool simulated;
755 	int iommu;
756 	u32 reset_count;
757 	u32 suspend_count;
758 	struct intel_device_info device_info;
759 
760 	/* Generic register state */
761 	u32 eir;
762 	u32 pgtbl_er;
763 	u32 ier;
764 	u32 gtier[4];
765 	u32 ccid;
766 	u32 derrmr;
767 	u32 forcewake;
768 	u32 error; /* gen6+ */
769 	u32 err_int; /* gen7 */
770 	u32 fault_data0; /* gen8, gen9 */
771 	u32 fault_data1; /* gen8, gen9 */
772 	u32 done_reg;
773 	u32 gac_eco;
774 	u32 gam_ecochk;
775 	u32 gab_ctl;
776 	u32 gfx_mode;
777 
778 	u64 fence[I915_MAX_NUM_FENCES];
779 	struct intel_overlay_error_state *overlay;
780 	struct intel_display_error_state *display;
781 	struct drm_i915_error_object *semaphore;
782 
783 	struct drm_i915_error_engine {
784 		int engine_id;
785 		/* Software tracked state */
786 		bool waiting;
787 		int num_waiters;
788 		int hangcheck_score;
789 		enum intel_engine_hangcheck_action hangcheck_action;
790 		struct i915_address_space *vm;
791 		int num_requests;
792 
793 		/* position of active request inside the ring */
794 		u32 rq_head, rq_post, rq_tail;
795 
796 		/* our own tracking of ring head and tail */
797 		u32 cpu_ring_head;
798 		u32 cpu_ring_tail;
799 
800 		u32 last_seqno;
801 		u32 semaphore_seqno[I915_NUM_ENGINES - 1];
802 
803 		/* Register state */
804 		u32 start;
805 		u32 tail;
806 		u32 head;
807 		u32 ctl;
808 		u32 mode;
809 		u32 hws;
810 		u32 ipeir;
811 		u32 ipehr;
812 		u32 bbstate;
813 		u32 instpm;
814 		u32 instps;
815 		u32 seqno;
816 		u64 bbaddr;
817 		u64 acthd;
818 		u32 fault_reg;
819 		u64 faddr;
820 		u32 rc_psmi; /* sleep state */
821 		u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
822 		struct intel_instdone instdone;
823 
824 		struct drm_i915_error_object {
825 			u64 gtt_offset;
826 			u64 gtt_size;
827 			int page_count;
828 			int unused;
829 			u32 *pages[0];
830 		} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
831 
832 		struct drm_i915_error_object *wa_ctx;
833 
834 		struct drm_i915_error_request {
835 			long jiffies;
836 			pid_t pid;
837 			u32 context;
838 			u32 seqno;
839 			u32 head;
840 			u32 tail;
841 		} *requests, execlist[2];
842 
843 		struct drm_i915_error_waiter {
844 			char comm[TASK_COMM_LEN];
845 			pid_t pid;
846 			u32 seqno;
847 		} *waiters;
848 
849 		struct {
850 			u32 gfx_mode;
851 			union {
852 				u64 pdp[4];
853 				u32 pp_dir_base;
854 			};
855 		} vm_info;
856 
857 		pid_t pid;
858 		char comm[TASK_COMM_LEN];
859 	} engine[I915_NUM_ENGINES];
860 
861 	struct drm_i915_error_buffer {
862 		u32 size;
863 		u32 name;
864 		u32 rseqno[I915_NUM_ENGINES], wseqno;
865 		u64 gtt_offset;
866 		u32 read_domains;
867 		u32 write_domain;
868 		s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
869 		u32 tiling:2;
870 		u32 dirty:1;
871 		u32 purgeable:1;
872 		u32 userptr:1;
873 		s32 engine:4;
874 		u32 cache_level:3;
875 	} *active_bo[I915_NUM_ENGINES], *pinned_bo;
876 	u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
877 	struct i915_address_space *active_vm[I915_NUM_ENGINES];
878 };
879 
880 enum i915_cache_level {
881 	I915_CACHE_NONE = 0,
882 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
883 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
884 			      caches, eg sampler/render caches, and the
885 			      large Last-Level-Cache. LLC is coherent with
886 			      the CPU, but L3 is only visible to the GPU. */
887 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
888 };
889 
890 struct i915_ctx_hang_stats {
891 	/* This context had batch pending when hang was declared */
892 	unsigned batch_pending;
893 
894 	/* This context had batch active when hang was declared */
895 	unsigned batch_active;
896 
897 	/* Time when this context was last blamed for a GPU reset */
898 	unsigned long guilty_ts;
899 
900 	/* If the contexts causes a second GPU hang within this time,
901 	 * it is permanently banned from submitting any more work.
902 	 */
903 	unsigned long ban_period_seconds;
904 
905 	/* This context is banned to submit more work */
906 	bool banned;
907 };
908 
909 /* This must match up with the value previously used for execbuf2.rsvd1. */
910 #define DEFAULT_CONTEXT_HANDLE 0
911 
912 /**
913  * struct i915_gem_context - as the name implies, represents a context.
914  * @ref: reference count.
915  * @user_handle: userspace tracking identity for this context.
916  * @remap_slice: l3 row remapping information.
917  * @flags: context specific flags:
918  *         CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
919  * @file_priv: filp associated with this context (NULL for global default
920  *	       context).
921  * @hang_stats: information about the role of this context in possible GPU
922  *		hangs.
923  * @ppgtt: virtual memory space used by this context.
924  * @legacy_hw_ctx: render context backing object and whether it is correctly
925  *                initialized (legacy ring submission mechanism only).
926  * @link: link in the global list of contexts.
927  *
928  * Contexts are memory images used by the hardware to store copies of their
929  * internal state.
930  */
931 struct i915_gem_context {
932 	struct kref ref;
933 	struct drm_i915_private *i915;
934 	struct drm_i915_file_private *file_priv;
935 	struct i915_hw_ppgtt *ppgtt;
936 	pid_t pid;
937 
938 	struct i915_ctx_hang_stats hang_stats;
939 
940 	unsigned long flags;
941 #define CONTEXT_NO_ZEROMAP		BIT(0)
942 #define CONTEXT_NO_ERROR_CAPTURE	BIT(1)
943 
944 	/* Unique identifier for this context, used by the hw for tracking */
945 	unsigned int hw_id;
946 	u32 user_handle;
947 
948 	u32 ggtt_alignment;
949 
950 	struct intel_context {
951 		struct i915_vma *state;
952 		struct intel_ring *ring;
953 		uint32_t *lrc_reg_state;
954 		u64 lrc_desc;
955 		int pin_count;
956 		bool initialised;
957 	} engine[I915_NUM_ENGINES];
958 	u32 ring_size;
959 	u32 desc_template;
960 	struct atomic_notifier_head status_notifier;
961 	bool execlists_force_single_submission;
962 
963 	struct list_head link;
964 
965 	u8 remap_slice;
966 	bool closed:1;
967 };
968 
969 enum fb_op_origin {
970 	ORIGIN_GTT,
971 	ORIGIN_CPU,
972 	ORIGIN_CS,
973 	ORIGIN_FLIP,
974 	ORIGIN_DIRTYFB,
975 };
976 
977 struct intel_fbc {
978 	/* This is always the inner lock when overlapping with struct_mutex and
979 	 * it's the outer lock when overlapping with stolen_lock. */
980 	struct lock lock;
981 	unsigned threshold;
982 	unsigned int possible_framebuffer_bits;
983 	unsigned int busy_bits;
984 	unsigned int visible_pipes_mask;
985 	struct intel_crtc *crtc;
986 
987 	struct drm_mm_node compressed_fb;
988 	struct drm_mm_node *compressed_llb;
989 
990 	bool false_color;
991 
992 	bool enabled;
993 	bool active;
994 
995 	bool underrun_detected;
996 	struct work_struct underrun_work;
997 
998 	struct intel_fbc_state_cache {
999 		struct {
1000 			unsigned int mode_flags;
1001 			uint32_t hsw_bdw_pixel_rate;
1002 		} crtc;
1003 
1004 		struct {
1005 			unsigned int rotation;
1006 			int src_w;
1007 			int src_h;
1008 			bool visible;
1009 		} plane;
1010 
1011 		struct {
1012 			u64 ilk_ggtt_offset;
1013 			uint32_t pixel_format;
1014 			unsigned int stride;
1015 			int fence_reg;
1016 			unsigned int tiling_mode;
1017 		} fb;
1018 	} state_cache;
1019 
1020 	struct intel_fbc_reg_params {
1021 		struct {
1022 			enum i915_pipe pipe;
1023 			enum plane plane;
1024 			unsigned int fence_y_offset;
1025 		} crtc;
1026 
1027 		struct {
1028 			u64 ggtt_offset;
1029 			uint32_t pixel_format;
1030 			unsigned int stride;
1031 			int fence_reg;
1032 		} fb;
1033 
1034 		int cfb_size;
1035 	} params;
1036 
1037 	struct intel_fbc_work {
1038 		bool scheduled;
1039 		u32 scheduled_vblank;
1040 		struct work_struct work;
1041 	} work;
1042 
1043 	const char *no_fbc_reason;
1044 };
1045 
1046 /**
1047  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1048  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1049  * parsing for same resolution.
1050  */
1051 enum drrs_refresh_rate_type {
1052 	DRRS_HIGH_RR,
1053 	DRRS_LOW_RR,
1054 	DRRS_MAX_RR, /* RR count */
1055 };
1056 
1057 enum drrs_support_type {
1058 	DRRS_NOT_SUPPORTED = 0,
1059 	STATIC_DRRS_SUPPORT = 1,
1060 	SEAMLESS_DRRS_SUPPORT = 2
1061 };
1062 
1063 struct intel_dp;
1064 struct i915_drrs {
1065 	struct lock mutex;
1066 	struct delayed_work work;
1067 	struct intel_dp *dp;
1068 	unsigned busy_frontbuffer_bits;
1069 	enum drrs_refresh_rate_type refresh_rate_type;
1070 	enum drrs_support_type type;
1071 };
1072 
1073 struct i915_psr {
1074 	struct lock lock;
1075 	bool sink_support;
1076 	bool source_ok;
1077 	struct intel_dp *enabled;
1078 	bool active;
1079 	struct delayed_work work;
1080 	unsigned busy_frontbuffer_bits;
1081 	bool psr2_support;
1082 	bool aux_frame_sync;
1083 	bool link_standby;
1084 };
1085 
1086 enum intel_pch {
1087 	PCH_NONE = 0,	/* No PCH present */
1088 	PCH_IBX,	/* Ibexpeak PCH */
1089 	PCH_CPT,	/* Cougarpoint PCH */
1090 	PCH_LPT,	/* Lynxpoint PCH */
1091 	PCH_SPT,        /* Sunrisepoint PCH */
1092 	PCH_KBP,        /* Kabypoint PCH */
1093 	PCH_NOP,
1094 };
1095 
1096 enum intel_sbi_destination {
1097 	SBI_ICLK,
1098 	SBI_MPHY,
1099 };
1100 
1101 #define QUIRK_PIPEA_FORCE (1<<0)
1102 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1103 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1104 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1105 #define QUIRK_PIPEB_FORCE (1<<4)
1106 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1107 
1108 struct intel_fbdev;
1109 struct intel_fbc_work;
1110 
1111 struct intel_gmbus {
1112 	struct i2c_adapter adapter;
1113 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1114 	u32 force_bit;
1115 	u32 reg0;
1116 	i915_reg_t gpio_reg;
1117 	struct i2c_algo_bit_data bit_algo;
1118 	struct drm_i915_private *dev_priv;
1119 };
1120 
1121 struct i915_suspend_saved_registers {
1122 	u32 saveDSPARB;
1123 	u32 saveFBC_CONTROL;
1124 	u32 saveCACHE_MODE_0;
1125 	u32 saveMI_ARB_STATE;
1126 	u32 saveSWF0[16];
1127 	u32 saveSWF1[16];
1128 	u32 saveSWF3[3];
1129 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1130 	u32 savePCH_PORT_HOTPLUG;
1131 	u16 saveGCDGMBUS;
1132 };
1133 
1134 struct vlv_s0ix_state {
1135 	/* GAM */
1136 	u32 wr_watermark;
1137 	u32 gfx_prio_ctrl;
1138 	u32 arb_mode;
1139 	u32 gfx_pend_tlb0;
1140 	u32 gfx_pend_tlb1;
1141 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1142 	u32 media_max_req_count;
1143 	u32 gfx_max_req_count;
1144 	u32 render_hwsp;
1145 	u32 ecochk;
1146 	u32 bsd_hwsp;
1147 	u32 blt_hwsp;
1148 	u32 tlb_rd_addr;
1149 
1150 	/* MBC */
1151 	u32 g3dctl;
1152 	u32 gsckgctl;
1153 	u32 mbctl;
1154 
1155 	/* GCP */
1156 	u32 ucgctl1;
1157 	u32 ucgctl3;
1158 	u32 rcgctl1;
1159 	u32 rcgctl2;
1160 	u32 rstctl;
1161 	u32 misccpctl;
1162 
1163 	/* GPM */
1164 	u32 gfxpause;
1165 	u32 rpdeuhwtc;
1166 	u32 rpdeuc;
1167 	u32 ecobus;
1168 	u32 pwrdwnupctl;
1169 	u32 rp_down_timeout;
1170 	u32 rp_deucsw;
1171 	u32 rcubmabdtmr;
1172 	u32 rcedata;
1173 	u32 spare2gh;
1174 
1175 	/* Display 1 CZ domain */
1176 	u32 gt_imr;
1177 	u32 gt_ier;
1178 	u32 pm_imr;
1179 	u32 pm_ier;
1180 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1181 
1182 	/* GT SA CZ domain */
1183 	u32 tilectl;
1184 	u32 gt_fifoctl;
1185 	u32 gtlc_wake_ctrl;
1186 	u32 gtlc_survive;
1187 	u32 pmwgicz;
1188 
1189 	/* Display 2 CZ domain */
1190 	u32 gu_ctl0;
1191 	u32 gu_ctl1;
1192 	u32 pcbr;
1193 	u32 clock_gate_dis2;
1194 };
1195 
1196 struct intel_rps_ei {
1197 	u32 cz_clock;
1198 	u32 render_c0;
1199 	u32 media_c0;
1200 };
1201 
1202 struct intel_gen6_power_mgmt {
1203 	/*
1204 	 * work, interrupts_enabled and pm_iir are protected by
1205 	 * dev_priv->irq_lock
1206 	 */
1207 	struct work_struct work;
1208 	bool interrupts_enabled;
1209 	u32 pm_iir;
1210 
1211 	/* PM interrupt bits that should never be masked */
1212 	u32 pm_intr_keep;
1213 
1214 	/* Frequencies are stored in potentially platform dependent multiples.
1215 	 * In other words, *_freq needs to be multiplied by X to be interesting.
1216 	 * Soft limits are those which are used for the dynamic reclocking done
1217 	 * by the driver (raise frequencies under heavy loads, and lower for
1218 	 * lighter loads). Hard limits are those imposed by the hardware.
1219 	 *
1220 	 * A distinction is made for overclocking, which is never enabled by
1221 	 * default, and is considered to be above the hard limit if it's
1222 	 * possible at all.
1223 	 */
1224 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
1225 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
1226 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
1227 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
1228 	u8 min_freq;		/* AKA RPn. Minimum frequency */
1229 	u8 boost_freq;		/* Frequency to request when wait boosting */
1230 	u8 idle_freq;		/* Frequency to request when we are idle */
1231 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
1232 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
1233 	u8 rp0_freq;		/* Non-overclocked max frequency. */
1234 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
1235 
1236 	u8 up_threshold; /* Current %busy required to uplock */
1237 	u8 down_threshold; /* Current %busy required to downclock */
1238 
1239 	int last_adj;
1240 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1241 
1242 	spinlock_t client_lock;
1243 	struct list_head clients;
1244 	bool client_boost;
1245 
1246 	bool enabled;
1247 	struct delayed_work autoenable_work;
1248 	unsigned boosts;
1249 
1250 	/* manual wa residency calculations */
1251 	struct intel_rps_ei up_ei, down_ei;
1252 
1253 	/*
1254 	 * Protects RPS/RC6 register access and PCU communication.
1255 	 * Must be taken after struct_mutex if nested. Note that
1256 	 * this lock may be held for long periods of time when
1257 	 * talking to hw - so only take it when talking to hw!
1258 	 */
1259 	struct lock hw_lock;
1260 };
1261 
1262 /* defined intel_pm.c */
1263 extern spinlock_t mchdev_lock;
1264 
1265 struct intel_ilk_power_mgmt {
1266 	u8 cur_delay;
1267 	u8 min_delay;
1268 	u8 max_delay;
1269 	u8 fmax;
1270 	u8 fstart;
1271 
1272 	u64 last_count1;
1273 	unsigned long last_time1;
1274 	unsigned long chipset_power;
1275 	u64 last_count2;
1276 	u64 last_time2;
1277 	unsigned long gfx_power;
1278 	u8 corr;
1279 
1280 	int c_m;
1281 	int r_t;
1282 };
1283 
1284 struct drm_i915_private;
1285 struct i915_power_well;
1286 
1287 struct i915_power_well_ops {
1288 	/*
1289 	 * Synchronize the well's hw state to match the current sw state, for
1290 	 * example enable/disable it based on the current refcount. Called
1291 	 * during driver init and resume time, possibly after first calling
1292 	 * the enable/disable handlers.
1293 	 */
1294 	void (*sync_hw)(struct drm_i915_private *dev_priv,
1295 			struct i915_power_well *power_well);
1296 	/*
1297 	 * Enable the well and resources that depend on it (for example
1298 	 * interrupts located on the well). Called after the 0->1 refcount
1299 	 * transition.
1300 	 */
1301 	void (*enable)(struct drm_i915_private *dev_priv,
1302 		       struct i915_power_well *power_well);
1303 	/*
1304 	 * Disable the well and resources that depend on it. Called after
1305 	 * the 1->0 refcount transition.
1306 	 */
1307 	void (*disable)(struct drm_i915_private *dev_priv,
1308 			struct i915_power_well *power_well);
1309 	/* Returns the hw enabled state. */
1310 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
1311 			   struct i915_power_well *power_well);
1312 };
1313 
1314 /* Power well structure for haswell */
1315 struct i915_power_well {
1316 	const char *name;
1317 	bool always_on;
1318 	/* power well enable/disable usage count */
1319 	int count;
1320 	/* cached hw enabled state */
1321 	bool hw_enabled;
1322 	unsigned long domains;
1323 	unsigned long data;
1324 	const struct i915_power_well_ops *ops;
1325 };
1326 
1327 struct i915_power_domains {
1328 	/*
1329 	 * Power wells needed for initialization at driver init and suspend
1330 	 * time are on. They are kept on until after the first modeset.
1331 	 */
1332 	bool init_power_on;
1333 	bool initializing;
1334 	int power_well_count;
1335 
1336 	struct lock lock;
1337 	int domain_use_count[POWER_DOMAIN_NUM];
1338 	struct i915_power_well *power_wells;
1339 };
1340 
1341 #define MAX_L3_SLICES 2
1342 struct intel_l3_parity {
1343 	u32 *remap_info[MAX_L3_SLICES];
1344 	struct work_struct error_work;
1345 	int which_slice;
1346 };
1347 
1348 struct i915_gem_mm {
1349 	/** Memory allocator for GTT stolen memory */
1350 	struct drm_mm stolen;
1351 	/** Protects the usage of the GTT stolen memory allocator. This is
1352 	 * always the inner lock when overlapping with struct_mutex. */
1353 	struct lock stolen_lock;
1354 
1355 	/** List of all objects in gtt_space. Used to restore gtt
1356 	 * mappings on resume */
1357 	struct list_head bound_list;
1358 	/**
1359 	 * List of objects which are not bound to the GTT (thus
1360 	 * are idle and not used by the GPU) but still have
1361 	 * (presumably uncached) pages still attached.
1362 	 */
1363 	struct list_head unbound_list;
1364 
1365 	/** Usable portion of the GTT for GEM */
1366 	unsigned long stolen_base; /* limited to low memory (32-bit) */
1367 
1368 	/** PPGTT used for aliasing the PPGTT with the GTT */
1369 	struct i915_hw_ppgtt *aliasing_ppgtt;
1370 
1371 	struct notifier_block oom_notifier;
1372 	struct notifier_block vmap_notifier;
1373 	struct shrinker shrinker;
1374 
1375 	/** LRU list of objects with fence regs on them. */
1376 	struct list_head fence_list;
1377 
1378 	/**
1379 	 * Are we in a non-interruptible section of code like
1380 	 * modesetting?
1381 	 */
1382 	bool interruptible;
1383 
1384 	/* the indicator for dispatch video commands on two BSD rings */
1385 	atomic_t bsd_engine_dispatch_index;
1386 
1387 	/** Bit 6 swizzling required for X tiling */
1388 	uint32_t bit_6_swizzle_x;
1389 	/** Bit 6 swizzling required for Y tiling */
1390 	uint32_t bit_6_swizzle_y;
1391 
1392 	/* accounting, useful for userland debugging */
1393 	spinlock_t object_stat_lock;
1394 	size_t object_memory;
1395 	u32 object_count;
1396 };
1397 
1398 struct drm_i915_error_state_buf {
1399 	struct drm_i915_private *i915;
1400 	unsigned bytes;
1401 	unsigned size;
1402 	int err;
1403 	u8 *buf;
1404 	loff_t start;
1405 	loff_t pos;
1406 };
1407 
1408 struct i915_error_state_file_priv {
1409 	struct drm_device *dev;
1410 	struct drm_i915_error_state *error;
1411 };
1412 
1413 struct i915_gpu_error {
1414 	/* For hangcheck timer */
1415 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1416 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1417 	/* Hang gpu twice in this window and your context gets banned */
1418 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1419 
1420 	struct delayed_work hangcheck_work;
1421 
1422 	/* For reset and error_state handling. */
1423 	spinlock_t lock;
1424 	/* Protected by the above dev->gpu_error.lock. */
1425 	struct drm_i915_error_state *first_error;
1426 
1427 	unsigned long missed_irq_rings;
1428 
1429 	/**
1430 	 * State variable controlling the reset flow and count
1431 	 *
1432 	 * This is a counter which gets incremented when reset is triggered,
1433 	 *
1434 	 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set
1435 	 * meaning that any waiters holding onto the struct_mutex should
1436 	 * relinquish the lock immediately in order for the reset to start.
1437 	 *
1438 	 * If reset is not completed succesfully, the I915_WEDGE bit is
1439 	 * set meaning that hardware is terminally sour and there is no
1440 	 * recovery. All waiters on the reset_queue will be woken when
1441 	 * that happens.
1442 	 *
1443 	 * This counter is used by the wait_seqno code to notice that reset
1444 	 * event happened and it needs to restart the entire ioctl (since most
1445 	 * likely the seqno it waited for won't ever signal anytime soon).
1446 	 *
1447 	 * This is important for lock-free wait paths, where no contended lock
1448 	 * naturally enforces the correct ordering between the bail-out of the
1449 	 * waiter and the gpu reset work code.
1450 	 */
1451 	unsigned long reset_count;
1452 
1453 	unsigned long flags;
1454 #define I915_RESET_IN_PROGRESS	0
1455 #define I915_WEDGED		(BITS_PER_LONG - 1)
1456 
1457 	/**
1458 	 * Waitqueue to signal when a hang is detected. Used to for waiters
1459 	 * to release the struct_mutex for the reset to procede.
1460 	 */
1461 	wait_queue_head_t wait_queue;
1462 
1463 	/**
1464 	 * Waitqueue to signal when the reset has completed. Used by clients
1465 	 * that wait for dev_priv->mm.wedged to settle.
1466 	 */
1467 	wait_queue_head_t reset_queue;
1468 
1469 	/* For missed irq/seqno simulation. */
1470 	unsigned long test_irq_rings;
1471 };
1472 
1473 enum modeset_restore {
1474 	MODESET_ON_LID_OPEN,
1475 	MODESET_DONE,
1476 	MODESET_SUSPENDED,
1477 };
1478 
1479 #define DP_AUX_A 0x40
1480 #define DP_AUX_B 0x10
1481 #define DP_AUX_C 0x20
1482 #define DP_AUX_D 0x30
1483 
1484 #define DDC_PIN_B  0x05
1485 #define DDC_PIN_C  0x04
1486 #define DDC_PIN_D  0x06
1487 
1488 struct ddi_vbt_port_info {
1489 	/*
1490 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1491 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1492 	 * populate this field.
1493 	 */
1494 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1495 	uint8_t hdmi_level_shift;
1496 
1497 	uint8_t supports_dvi:1;
1498 	uint8_t supports_hdmi:1;
1499 	uint8_t supports_dp:1;
1500 
1501 	uint8_t alternate_aux_channel;
1502 	uint8_t alternate_ddc_pin;
1503 
1504 	uint8_t dp_boost_level;
1505 	uint8_t hdmi_boost_level;
1506 };
1507 
1508 enum psr_lines_to_wait {
1509 	PSR_0_LINES_TO_WAIT = 0,
1510 	PSR_1_LINE_TO_WAIT,
1511 	PSR_4_LINES_TO_WAIT,
1512 	PSR_8_LINES_TO_WAIT
1513 };
1514 
1515 struct intel_vbt_data {
1516 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1517 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1518 
1519 	/* Feature bits */
1520 	unsigned int int_tv_support:1;
1521 	unsigned int lvds_dither:1;
1522 	unsigned int lvds_vbt:1;
1523 	unsigned int int_crt_support:1;
1524 	unsigned int lvds_use_ssc:1;
1525 	unsigned int display_clock_mode:1;
1526 	unsigned int fdi_rx_polarity_inverted:1;
1527 	unsigned int panel_type:4;
1528 	int lvds_ssc_freq;
1529 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1530 
1531 	enum drrs_support_type drrs_type;
1532 
1533 	struct {
1534 		int rate;
1535 		int lanes;
1536 		int preemphasis;
1537 		int vswing;
1538 		bool low_vswing;
1539 		bool initialized;
1540 		bool support;
1541 		int bpp;
1542 		struct edp_power_seq pps;
1543 	} edp;
1544 
1545 	struct {
1546 		bool full_link;
1547 		bool require_aux_wakeup;
1548 		int idle_frames;
1549 		enum psr_lines_to_wait lines_to_wait;
1550 		int tp1_wakeup_time;
1551 		int tp2_tp3_wakeup_time;
1552 	} psr;
1553 
1554 	struct {
1555 		u16 pwm_freq_hz;
1556 		bool present;
1557 		bool active_low_pwm;
1558 		u8 min_brightness;	/* min_brightness/255 of max */
1559 		enum intel_backlight_type type;
1560 	} backlight;
1561 
1562 	/* MIPI DSI */
1563 	struct {
1564 		u16 panel_id;
1565 		struct mipi_config *config;
1566 		struct mipi_pps_data *pps;
1567 		u8 seq_version;
1568 		u32 size;
1569 		u8 *data;
1570 		const u8 *sequence[MIPI_SEQ_MAX];
1571 	} dsi;
1572 
1573 	int crt_ddc_pin;
1574 
1575 	int child_dev_num;
1576 	union child_device_config *child_dev;
1577 
1578 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1579 	struct sdvo_device_mapping sdvo_mappings[2];
1580 };
1581 
1582 enum intel_ddb_partitioning {
1583 	INTEL_DDB_PART_1_2,
1584 	INTEL_DDB_PART_5_6, /* IVB+ */
1585 };
1586 
1587 struct intel_wm_level {
1588 	bool enable;
1589 	uint32_t pri_val;
1590 	uint32_t spr_val;
1591 	uint32_t cur_val;
1592 	uint32_t fbc_val;
1593 };
1594 
1595 struct ilk_wm_values {
1596 	uint32_t wm_pipe[3];
1597 	uint32_t wm_lp[3];
1598 	uint32_t wm_lp_spr[3];
1599 	uint32_t wm_linetime[3];
1600 	bool enable_fbc_wm;
1601 	enum intel_ddb_partitioning partitioning;
1602 };
1603 
1604 struct vlv_pipe_wm {
1605 	uint16_t primary;
1606 	uint16_t sprite[2];
1607 	uint8_t cursor;
1608 };
1609 
1610 struct vlv_sr_wm {
1611 	uint16_t plane;
1612 	uint8_t cursor;
1613 };
1614 
1615 struct vlv_wm_values {
1616 	struct vlv_pipe_wm pipe[3];
1617 	struct vlv_sr_wm sr;
1618 	struct {
1619 		uint8_t cursor;
1620 		uint8_t sprite[2];
1621 		uint8_t primary;
1622 	} ddl[3];
1623 	uint8_t level;
1624 	bool cxsr;
1625 };
1626 
1627 struct skl_ddb_entry {
1628 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1629 };
1630 
1631 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1632 {
1633 	return entry->end - entry->start;
1634 }
1635 
1636 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1637 				       const struct skl_ddb_entry *e2)
1638 {
1639 	if (e1->start == e2->start && e1->end == e2->end)
1640 		return true;
1641 
1642 	return false;
1643 }
1644 
1645 struct skl_ddb_allocation {
1646 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1647 	struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1648 };
1649 
1650 struct skl_wm_values {
1651 	unsigned dirty_pipes;
1652 	struct skl_ddb_allocation ddb;
1653 };
1654 
1655 struct skl_wm_level {
1656 	bool plane_en;
1657 	uint16_t plane_res_b;
1658 	uint8_t plane_res_l;
1659 };
1660 
1661 /*
1662  * This struct helps tracking the state needed for runtime PM, which puts the
1663  * device in PCI D3 state. Notice that when this happens, nothing on the
1664  * graphics device works, even register access, so we don't get interrupts nor
1665  * anything else.
1666  *
1667  * Every piece of our code that needs to actually touch the hardware needs to
1668  * either call intel_runtime_pm_get or call intel_display_power_get with the
1669  * appropriate power domain.
1670  *
1671  * Our driver uses the autosuspend delay feature, which means we'll only really
1672  * suspend if we stay with zero refcount for a certain amount of time. The
1673  * default value is currently very conservative (see intel_runtime_pm_enable), but
1674  * it can be changed with the standard runtime PM files from sysfs.
1675  *
1676  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1677  * goes back to false exactly before we reenable the IRQs. We use this variable
1678  * to check if someone is trying to enable/disable IRQs while they're supposed
1679  * to be disabled. This shouldn't happen and we'll print some error messages in
1680  * case it happens.
1681  *
1682  * For more, read the Documentation/power/runtime_pm.txt.
1683  */
1684 struct i915_runtime_pm {
1685 	atomic_t wakeref_count;
1686 	atomic_t atomic_seq;
1687 	bool suspended;
1688 	bool irqs_enabled;
1689 };
1690 
1691 enum intel_pipe_crc_source {
1692 	INTEL_PIPE_CRC_SOURCE_NONE,
1693 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1694 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1695 	INTEL_PIPE_CRC_SOURCE_PF,
1696 	INTEL_PIPE_CRC_SOURCE_PIPE,
1697 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1698 	INTEL_PIPE_CRC_SOURCE_TV,
1699 	INTEL_PIPE_CRC_SOURCE_DP_B,
1700 	INTEL_PIPE_CRC_SOURCE_DP_C,
1701 	INTEL_PIPE_CRC_SOURCE_DP_D,
1702 	INTEL_PIPE_CRC_SOURCE_AUTO,
1703 	INTEL_PIPE_CRC_SOURCE_MAX,
1704 };
1705 
1706 struct intel_pipe_crc_entry {
1707 	uint32_t frame;
1708 	uint32_t crc[5];
1709 };
1710 
1711 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1712 struct intel_pipe_crc {
1713 	spinlock_t lock;
1714 	bool opened;		/* exclusive access to the result file */
1715 	struct intel_pipe_crc_entry *entries;
1716 	enum intel_pipe_crc_source source;
1717 	int head, tail;
1718 	wait_queue_head_t wq;
1719 };
1720 
1721 struct i915_frontbuffer_tracking {
1722 	spinlock_t lock;
1723 
1724 	/*
1725 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1726 	 * scheduled flips.
1727 	 */
1728 	unsigned busy_bits;
1729 	unsigned flip_bits;
1730 };
1731 
1732 struct i915_wa_reg {
1733 	i915_reg_t addr;
1734 	u32 value;
1735 	/* bitmask representing WA bits */
1736 	u32 mask;
1737 };
1738 
1739 /*
1740  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1741  * allowing it for RCS as we don't foresee any requirement of having
1742  * a whitelist for other engines. When it is really required for
1743  * other engines then the limit need to be increased.
1744  */
1745 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1746 
1747 struct i915_workarounds {
1748 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1749 	u32 count;
1750 	u32 hw_whitelist_count[I915_NUM_ENGINES];
1751 };
1752 
1753 struct i915_virtual_gpu {
1754 	bool active;
1755 };
1756 
1757 /* used in computing the new watermarks state */
1758 struct intel_wm_config {
1759 	unsigned int num_pipes_active;
1760 	bool sprites_enabled;
1761 	bool sprites_scaled;
1762 };
1763 
1764 struct drm_i915_private {
1765 	struct drm_device drm;
1766 
1767 	struct kmem_cache *objects;
1768 	struct kmem_cache *vmas;
1769 	struct kmem_cache *requests;
1770 
1771 	const struct intel_device_info info;
1772 
1773 	int relative_constants_mode;
1774 
1775 	void __iomem *regs;
1776 
1777 	struct intel_uncore uncore;
1778 
1779 	struct i915_virtual_gpu vgpu;
1780 
1781 	struct intel_gvt *gvt;
1782 
1783 	struct intel_guc guc;
1784 
1785 	struct intel_csr csr;
1786 
1787 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1788 
1789 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1790 	 * controller on different i2c buses. */
1791 	struct lock gmbus_mutex;
1792 
1793 	/**
1794 	 * Base address of the gmbus and gpio block.
1795 	 */
1796 	uint32_t gpio_mmio_base;
1797 
1798 	/* MMIO base address for MIPI regs */
1799 	uint32_t mipi_mmio_base;
1800 
1801 	uint32_t psr_mmio_base;
1802 
1803 	uint32_t pps_mmio_base;
1804 
1805 	wait_queue_head_t gmbus_wait_queue;
1806 
1807 	struct pci_dev *bridge_dev;
1808 	struct i915_gem_context *kernel_context;
1809 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1810 	struct i915_vma *semaphore;
1811 	u32 next_seqno;
1812 
1813 	struct drm_dma_handle *status_page_dmah;
1814 	struct resource *mch_res;
1815 	int mch_res_rid;
1816 
1817 	/* protects the irq masks */
1818 	spinlock_t irq_lock;
1819 
1820 	/* protects the mmio flip data */
1821 	spinlock_t mmio_flip_lock;
1822 
1823 	bool display_irqs_enabled;
1824 
1825 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1826 	struct pm_qos_request pm_qos;
1827 
1828 	/* Sideband mailbox protection */
1829 	struct lock sb_lock;
1830 
1831 	/** Cached value of IMR to avoid reads in updating the bitfield */
1832 	union {
1833 		u32 irq_mask;
1834 		u32 de_irq_mask[I915_MAX_PIPES];
1835 	};
1836 	u32 gt_irq_mask;
1837 	u32 pm_irq_mask;
1838 	u32 pm_rps_events;
1839 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1840 
1841 	struct i915_hotplug hotplug;
1842 	struct intel_fbc fbc;
1843 	struct i915_drrs drrs;
1844 	struct intel_opregion opregion;
1845 	struct intel_vbt_data vbt;
1846 
1847 	bool preserve_bios_swizzle;
1848 
1849 	/* overlay */
1850 	struct intel_overlay *overlay;
1851 
1852 	/* backlight registers and fields in struct intel_panel */
1853 	struct lock backlight_lock;
1854 
1855 	/* LVDS info */
1856 	bool no_aux_handshake;
1857 
1858 	/* protects panel power sequencer state */
1859 	struct lock pps_mutex;
1860 
1861 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1862 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1863 
1864 	unsigned int fsb_freq, mem_freq, is_ddr3;
1865 	unsigned int skl_preferred_vco_freq;
1866 	unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1867 	unsigned int max_dotclk_freq;
1868 	unsigned int rawclk_freq;
1869 	unsigned int hpll_freq;
1870 	unsigned int czclk_freq;
1871 
1872 	struct {
1873 		unsigned int vco, ref;
1874 	} cdclk_pll;
1875 
1876 	/**
1877 	 * wq - Driver workqueue for GEM.
1878 	 *
1879 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1880 	 * locks, for otherwise the flushing done in the pageflip code will
1881 	 * result in deadlocks.
1882 	 */
1883 	struct workqueue_struct *wq;
1884 
1885 	/* Display functions */
1886 	struct drm_i915_display_funcs display;
1887 
1888 	/* PCH chipset type */
1889 	enum intel_pch pch_type;
1890 	unsigned short pch_id;
1891 
1892 	unsigned long quirks;
1893 
1894 	enum modeset_restore modeset_restore;
1895 	struct lock modeset_restore_lock;
1896 	struct drm_atomic_state *modeset_restore_state;
1897 	struct drm_modeset_acquire_ctx reset_ctx;
1898 
1899 	struct list_head vm_list; /* Global list of all address spaces */
1900 	struct i915_ggtt ggtt; /* VM representing the global address space */
1901 
1902 	struct i915_gem_mm mm;
1903 	DECLARE_HASHTABLE(mm_structs, 7);
1904 	struct lock mm_lock;
1905 
1906 	/* The hw wants to have a stable context identifier for the lifetime
1907 	 * of the context (for OA, PASID, faults, etc). This is limited
1908 	 * in execlists to 21 bits.
1909 	 */
1910 	struct ida context_hw_ida;
1911 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1912 
1913 	/* Kernel Modesetting */
1914 
1915 	struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1916 	struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1917 	wait_queue_head_t pending_flip_queue;
1918 
1919 #ifdef CONFIG_DEBUG_FS
1920 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1921 #endif
1922 
1923 	/* dpll and cdclk state is protected by connection_mutex */
1924 	int num_shared_dpll;
1925 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1926 	const struct intel_dpll_mgr *dpll_mgr;
1927 
1928 	/*
1929 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1930 	 * Must be global rather than per dpll, because on some platforms
1931 	 * plls share registers.
1932 	 */
1933 	struct lock dpll_lock;
1934 
1935 	unsigned int active_crtcs;
1936 	unsigned int min_pixclk[I915_MAX_PIPES];
1937 
1938 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1939 
1940 	struct i915_workarounds workarounds;
1941 
1942 	struct i915_frontbuffer_tracking fb_tracking;
1943 
1944 	u16 orig_clock;
1945 
1946 	bool mchbar_need_disable;
1947 
1948 	struct intel_l3_parity l3_parity;
1949 
1950 	/* Cannot be determined by PCIID. You must always read a register. */
1951 	u32 edram_cap;
1952 
1953 	/* gen6+ rps state */
1954 	struct intel_gen6_power_mgmt rps;
1955 
1956 	/* ilk-only ips/rps state. Everything in here is protected by the global
1957 	 * mchdev_lock in intel_pm.c */
1958 	struct intel_ilk_power_mgmt ips;
1959 
1960 	struct i915_power_domains power_domains;
1961 
1962 	struct i915_psr psr;
1963 
1964 	struct i915_gpu_error gpu_error;
1965 
1966 	struct drm_i915_gem_object *vlv_pctx;
1967 
1968 #ifdef CONFIG_DRM_FBDEV_EMULATION
1969 	/* list of fbdev register on this device */
1970 	struct intel_fbdev *fbdev;
1971 	struct work_struct fbdev_suspend_work;
1972 #endif
1973 
1974 	struct drm_property *broadcast_rgb_property;
1975 	struct drm_property *force_audio_property;
1976 
1977 	/* hda/i915 audio component */
1978 	struct i915_audio_component *audio_component;
1979 	bool audio_component_registered;
1980 	/**
1981 	 * av_mutex - mutex for audio/video sync
1982 	 *
1983 	 */
1984 	struct lock av_mutex;
1985 
1986 	uint32_t hw_context_size;
1987 	struct list_head context_list;
1988 
1989 	u32 fdi_rx_config;
1990 
1991 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1992 	u32 chv_phy_control;
1993 	/*
1994 	 * Shadows for CHV DPLL_MD regs to keep the state
1995 	 * checker somewhat working in the presence hardware
1996 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1997 	 */
1998 	u32 chv_dpll_md[I915_MAX_PIPES];
1999 	u32 bxt_phy_grc;
2000 
2001 	u32 suspend_count;
2002 	bool suspended_to_idle;
2003 	struct i915_suspend_saved_registers regfile;
2004 	struct vlv_s0ix_state vlv_s0ix_state;
2005 
2006 	enum {
2007 		I915_SAGV_UNKNOWN = 0,
2008 		I915_SAGV_DISABLED,
2009 		I915_SAGV_ENABLED,
2010 		I915_SAGV_NOT_CONTROLLED
2011 	} sagv_status;
2012 
2013 	struct {
2014 		/*
2015 		 * Raw watermark latency values:
2016 		 * in 0.1us units for WM0,
2017 		 * in 0.5us units for WM1+.
2018 		 */
2019 		/* primary */
2020 		uint16_t pri_latency[5];
2021 		/* sprite */
2022 		uint16_t spr_latency[5];
2023 		/* cursor */
2024 		uint16_t cur_latency[5];
2025 		/*
2026 		 * Raw watermark memory latency values
2027 		 * for SKL for all 8 levels
2028 		 * in 1us units.
2029 		 */
2030 		uint16_t skl_latency[8];
2031 
2032 		/*
2033 		 * The skl_wm_values structure is a bit too big for stack
2034 		 * allocation, so we keep the staging struct where we store
2035 		 * intermediate results here instead.
2036 		 */
2037 		struct skl_wm_values skl_results;
2038 
2039 		/* current hardware state */
2040 		union {
2041 			struct ilk_wm_values hw;
2042 			struct skl_wm_values skl_hw;
2043 			struct vlv_wm_values vlv;
2044 		};
2045 
2046 		uint8_t max_level;
2047 
2048 		/*
2049 		 * Should be held around atomic WM register writing; also
2050 		 * protects * intel_crtc->wm.active and
2051 		 * cstate->wm.need_postvbl_update.
2052 		 */
2053 		struct lock wm_mutex;
2054 
2055 		/*
2056 		 * Set during HW readout of watermarks/DDB.  Some platforms
2057 		 * need to know when we're still using BIOS-provided values
2058 		 * (which we don't fully trust).
2059 		 */
2060 		bool distrust_bios_wm;
2061 	} wm;
2062 
2063 	struct i915_runtime_pm pm;
2064 
2065 	uint32_t bios_vgacntr;
2066 
2067 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2068 	struct {
2069 		void (*resume)(struct drm_i915_private *);
2070 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2071 
2072 		/**
2073 		 * Is the GPU currently considered idle, or busy executing
2074 		 * userspace requests? Whilst idle, we allow runtime power
2075 		 * management to power down the hardware and display clocks.
2076 		 * In order to reduce the effect on performance, there
2077 		 * is a slight delay before we do so.
2078 		 */
2079 		unsigned int active_engines;
2080 		bool awake;
2081 
2082 		/**
2083 		 * We leave the user IRQ off as much as possible,
2084 		 * but this means that requests will finish and never
2085 		 * be retired once the system goes idle. Set a timer to
2086 		 * fire periodically while the ring is running. When it
2087 		 * fires, go retire requests.
2088 		 */
2089 		struct delayed_work retire_work;
2090 
2091 		/**
2092 		 * When we detect an idle GPU, we want to turn on
2093 		 * powersaving features. So once we see that there
2094 		 * are no more requests outstanding and no more
2095 		 * arrive within a small period of time, we fire
2096 		 * off the idle_work.
2097 		 */
2098 		struct delayed_work idle_work;
2099 	} gt;
2100 
2101 	/* perform PHY state sanity checks? */
2102 	bool chv_phy_assert[2];
2103 
2104 	/* Used to save the pipe-to-encoder mapping for audio */
2105 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2106 
2107 	/*
2108 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2109 	 * will be rejected. Instead look for a better place.
2110 	 */
2111 };
2112 
2113 static inline struct drm_i915_private *to_i915(struct drm_device *dev)
2114 {
2115 	return container_of(dev, struct drm_i915_private, drm);
2116 }
2117 
2118 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2119 {
2120 	return to_i915(dev_get_drvdata(kdev));
2121 }
2122 
2123 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2124 {
2125 	return container_of(guc, struct drm_i915_private, guc);
2126 }
2127 
2128 /* Simple iterator over all initialised engines */
2129 #define for_each_engine(engine__, dev_priv__, id__) \
2130 	for ((id__) = 0; \
2131 	     (id__) < I915_NUM_ENGINES; \
2132 	     (id__)++) \
2133 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2134 
2135 #define __mask_next_bit(mask) ({					\
2136 	int __idx = ffs(mask) - 1;					\
2137 	mask &= ~BIT(__idx);						\
2138 	__idx;								\
2139 })
2140 
2141 /* Iterator over subset of engines selected by mask */
2142 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2143 	for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;	\
2144 	     tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2145 
2146 enum hdmi_force_audio {
2147 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2148 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2149 	HDMI_AUDIO_AUTO,		/* trust EDID */
2150 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2151 };
2152 
2153 #define I915_GTT_OFFSET_NONE ((u32)-1)
2154 
2155 struct drm_i915_gem_object_ops {
2156 	unsigned int flags;
2157 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2158 
2159 	/* Interface between the GEM object and its backing storage.
2160 	 * get_pages() is called once prior to the use of the associated set
2161 	 * of pages before to binding them into the GTT, and put_pages() is
2162 	 * called after we no longer need them. As we expect there to be
2163 	 * associated cost with migrating pages between the backing storage
2164 	 * and making them available for the GPU (e.g. clflush), we may hold
2165 	 * onto the pages after they are no longer referenced by the GPU
2166 	 * in case they may be used again shortly (for example migrating the
2167 	 * pages to a different memory domain within the GTT). put_pages()
2168 	 * will therefore most likely be called when the object itself is
2169 	 * being released or under memory pressure (where we attempt to
2170 	 * reap pages for the shrinker).
2171 	 */
2172 	int (*get_pages)(struct drm_i915_gem_object *);
2173 	void (*put_pages)(struct drm_i915_gem_object *);
2174 
2175 	int (*dmabuf_export)(struct drm_i915_gem_object *);
2176 	void (*release)(struct drm_i915_gem_object *);
2177 };
2178 
2179 /*
2180  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2181  * considered to be the frontbuffer for the given plane interface-wise. This
2182  * doesn't mean that the hw necessarily already scans it out, but that any
2183  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2184  *
2185  * We have one bit per pipe and per scanout plane type.
2186  */
2187 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2188 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2189 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2190 	(1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2191 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2192 	(1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2193 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2194 	(1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2195 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2196 	(1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2197 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2198 	(0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2199 
2200 struct drm_i915_gem_object {
2201 	struct drm_gem_object base;
2202 
2203 	const struct drm_i915_gem_object_ops *ops;
2204 
2205 	/** List of VMAs backed by this object */
2206 	struct list_head vma_list;
2207 
2208 	/** Stolen memory for this object, instead of being backed by shmem. */
2209 	struct drm_mm_node *stolen;
2210 	struct list_head global_list;
2211 
2212 	/** Used in execbuf to temporarily hold a ref */
2213 	struct list_head obj_exec_link;
2214 
2215 	struct list_head batch_pool_link;
2216 
2217 	unsigned long flags;
2218 	/**
2219 	 * This is set if the object is on the active lists (has pending
2220 	 * rendering and so a non-zero seqno), and is not set if it i s on
2221 	 * inactive (ready to be unbound) list.
2222 	 */
2223 #define I915_BO_ACTIVE_SHIFT 0
2224 #define I915_BO_ACTIVE_MASK ((1 << I915_NUM_ENGINES) - 1)
2225 #define __I915_BO_ACTIVE(bo) \
2226 	((READ_ONCE((bo)->flags) >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK)
2227 
2228 	/**
2229 	 * This is set if the object has been written to since last bound
2230 	 * to the GTT
2231 	 */
2232 	unsigned int dirty:1;
2233 
2234 	/**
2235 	 * Advice: are the backing pages purgeable?
2236 	 */
2237 	unsigned int madv:2;
2238 
2239 	/**
2240 	 * Whether the current gtt mapping needs to be mappable (and isn't just
2241 	 * mappable by accident). Track pin and fault separate for a more
2242 	 * accurate mappable working set.
2243 	 */
2244 	unsigned int fault_mappable:1;
2245 
2246 	/*
2247 	 * Is the object to be mapped as read-only to the GPU
2248 	 * Only honoured if hardware has relevant pte bit
2249 	 */
2250 	unsigned long gt_ro:1;
2251 	unsigned int cache_level:3;
2252 	unsigned int cache_dirty:1;
2253 
2254 	atomic_t frontbuffer_bits;
2255 	unsigned int frontbuffer_ggtt_origin; /* write once */
2256 
2257 	/** Current tiling stride for the object, if it's tiled. */
2258 	unsigned int tiling_and_stride;
2259 #define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */
2260 #define TILING_MASK (FENCE_MINIMUM_STRIDE-1)
2261 #define STRIDE_MASK (~TILING_MASK)
2262 
2263 	/** Count of VMA actually bound by this object */
2264 	unsigned int bind_count;
2265 	unsigned int pin_display;
2266 
2267 	struct sg_table *pages;
2268 	int pages_pin_count;
2269 	struct get_page {
2270 		struct scatterlist *sg;
2271 		int last;
2272 	} get_page;
2273 	void *mapping;
2274 
2275 	/** Breadcrumb of last rendering to the buffer.
2276 	 * There can only be one writer, but we allow for multiple readers.
2277 	 * If there is a writer that necessarily implies that all other
2278 	 * read requests are complete - but we may only be lazily clearing
2279 	 * the read requests. A read request is naturally the most recent
2280 	 * request on a ring, so we may have two different write and read
2281 	 * requests on one ring where the write request is older than the
2282 	 * read request. This allows for the CPU to read from an active
2283 	 * buffer by only waiting for the write to complete.
2284 	 */
2285 	struct i915_gem_active last_read[I915_NUM_ENGINES];
2286 	struct i915_gem_active last_write;
2287 
2288 	/** References from framebuffers, locks out tiling changes. */
2289 	unsigned long framebuffer_references;
2290 
2291 	/** Record of address bit 17 of each page at last unbind. */
2292 	unsigned long *bit_17;
2293 
2294 	struct i915_gem_userptr {
2295 		uintptr_t ptr;
2296 		unsigned read_only :1;
2297 		unsigned workers :4;
2298 #define I915_GEM_USERPTR_MAX_WORKERS 15
2299 
2300 		struct i915_mm_struct *mm;
2301 		struct i915_mmu_object *mmu_object;
2302 		struct work_struct *work;
2303 	} userptr;
2304 
2305 	/** for phys allocated objects */
2306 	struct drm_dma_handle *phys_handle;
2307 };
2308 
2309 static inline struct drm_i915_gem_object *
2310 to_intel_bo(struct drm_gem_object *gem)
2311 {
2312 	/* Assert that to_intel_bo(NULL) == NULL */
2313 	BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
2314 
2315 	return container_of(gem, struct drm_i915_gem_object, base);
2316 }
2317 
2318 static inline struct drm_i915_gem_object *
2319 i915_gem_object_lookup(struct drm_file *file, u32 handle)
2320 {
2321 	return to_intel_bo(drm_gem_object_lookup(file, handle));
2322 }
2323 
2324 __attribute__((nonnull))
2325 static inline struct drm_i915_gem_object *
2326 i915_gem_object_get(struct drm_i915_gem_object *obj)
2327 {
2328 	drm_gem_object_reference(&obj->base);
2329 	return obj;
2330 }
2331 
2332 __attribute__((nonnull))
2333 static inline void
2334 i915_gem_object_put(struct drm_i915_gem_object *obj)
2335 {
2336 	drm_gem_object_unreference(&obj->base);
2337 }
2338 
2339 __attribute__((nonnull))
2340 static inline void
2341 i915_gem_object_put_unlocked(struct drm_i915_gem_object *obj)
2342 {
2343 	drm_gem_object_unreference_unlocked(&obj->base);
2344 }
2345 
2346 static inline bool
2347 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2348 {
2349 	return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2350 }
2351 
2352 static inline unsigned long
2353 i915_gem_object_get_active(const struct drm_i915_gem_object *obj)
2354 {
2355 	return (obj->flags >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK;
2356 }
2357 
2358 static inline bool
2359 i915_gem_object_is_active(const struct drm_i915_gem_object *obj)
2360 {
2361 	return i915_gem_object_get_active(obj);
2362 }
2363 
2364 static inline void
2365 i915_gem_object_set_active(struct drm_i915_gem_object *obj, int engine)
2366 {
2367 	obj->flags |= BIT(engine + I915_BO_ACTIVE_SHIFT);
2368 }
2369 
2370 static inline void
2371 i915_gem_object_clear_active(struct drm_i915_gem_object *obj, int engine)
2372 {
2373 	obj->flags &= ~BIT(engine + I915_BO_ACTIVE_SHIFT);
2374 }
2375 
2376 static inline bool
2377 i915_gem_object_has_active_engine(const struct drm_i915_gem_object *obj,
2378 				  int engine)
2379 {
2380 	return obj->flags & BIT(engine + I915_BO_ACTIVE_SHIFT);
2381 }
2382 
2383 static inline unsigned int
2384 i915_gem_object_get_tiling(struct drm_i915_gem_object *obj)
2385 {
2386 	return obj->tiling_and_stride & TILING_MASK;
2387 }
2388 
2389 static inline bool
2390 i915_gem_object_is_tiled(struct drm_i915_gem_object *obj)
2391 {
2392 	return i915_gem_object_get_tiling(obj) != I915_TILING_NONE;
2393 }
2394 
2395 static inline unsigned int
2396 i915_gem_object_get_stride(struct drm_i915_gem_object *obj)
2397 {
2398 	return obj->tiling_and_stride & STRIDE_MASK;
2399 }
2400 
2401 static inline struct i915_vma *i915_vma_get(struct i915_vma *vma)
2402 {
2403 	i915_gem_object_get(vma->obj);
2404 	return vma;
2405 }
2406 
2407 static inline void i915_vma_put(struct i915_vma *vma)
2408 {
2409 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
2410 	i915_gem_object_put(vma->obj);
2411 }
2412 
2413 /*
2414  * Optimised SGL iterator for GEM objects
2415  */
2416 static __always_inline struct sgt_iter {
2417 	struct scatterlist *sgp;
2418 	union {
2419 		unsigned long pfn;
2420 		dma_addr_t dma;
2421 	};
2422 	unsigned int curr;
2423 	unsigned int max;
2424 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2425 	struct sgt_iter s = { .sgp = sgl };
2426 
2427 	if (s.sgp) {
2428 		s.max = s.curr = s.sgp->offset;
2429 		s.max += s.sgp->length;
2430 		if (dma)
2431 			s.dma = sg_dma_address(s.sgp);
2432 		else
2433 			s.pfn = page_to_pfn(sg_page(s.sgp));
2434 	}
2435 
2436 	return s;
2437 }
2438 
2439 /**
2440  * __sg_next - return the next scatterlist entry in a list
2441  * @sg:		The current sg entry
2442  *
2443  * Description:
2444  *   If the entry is the last, return NULL; otherwise, step to the next
2445  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2446  *   otherwise just return the pointer to the current element.
2447  **/
2448 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2449 {
2450 #ifdef CONFIG_DEBUG_SG
2451 	BUG_ON(sg->sg_magic != SG_MAGIC);
2452 #endif
2453 	return sg_is_last(sg) ? NULL :
2454 		likely(!sg_is_chain(++sg)) ? sg :
2455 		sg_chain_ptr(sg);
2456 }
2457 
2458 /**
2459  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2460  * @__dmap:	DMA address (output)
2461  * @__iter:	'struct sgt_iter' (iterator state, internal)
2462  * @__sgt:	sg_table to iterate over (input)
2463  */
2464 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2465 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2466 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2467 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2468 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2469 
2470 /**
2471  * for_each_sgt_page - iterate over the pages of the given sg_table
2472  * @__pp:	page pointer (output)
2473  * @__iter:	'struct sgt_iter' (iterator state, internal)
2474  * @__sgt:	sg_table to iterate over (input)
2475  */
2476 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2477 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2478 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2479 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2480 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2481 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2482 
2483 /*
2484  * A command that requires special handling by the command parser.
2485  */
2486 struct drm_i915_cmd_descriptor {
2487 	/*
2488 	 * Flags describing how the command parser processes the command.
2489 	 *
2490 	 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2491 	 *                 a length mask if not set
2492 	 * CMD_DESC_SKIP: The command is allowed but does not follow the
2493 	 *                standard length encoding for the opcode range in
2494 	 *                which it falls
2495 	 * CMD_DESC_REJECT: The command is never allowed
2496 	 * CMD_DESC_REGISTER: The command should be checked against the
2497 	 *                    register whitelist for the appropriate ring
2498 	 * CMD_DESC_MASTER: The command is allowed if the submitting process
2499 	 *                  is the DRM master
2500 	 */
2501 	u32 flags;
2502 #define CMD_DESC_FIXED    (1<<0)
2503 #define CMD_DESC_SKIP     (1<<1)
2504 #define CMD_DESC_REJECT   (1<<2)
2505 #define CMD_DESC_REGISTER (1<<3)
2506 #define CMD_DESC_BITMASK  (1<<4)
2507 #define CMD_DESC_MASTER   (1<<5)
2508 
2509 	/*
2510 	 * The command's unique identification bits and the bitmask to get them.
2511 	 * This isn't strictly the opcode field as defined in the spec and may
2512 	 * also include type, subtype, and/or subop fields.
2513 	 */
2514 	struct {
2515 		u32 value;
2516 		u32 mask;
2517 	} cmd;
2518 
2519 	/*
2520 	 * The command's length. The command is either fixed length (i.e. does
2521 	 * not include a length field) or has a length field mask. The flag
2522 	 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2523 	 * a length mask. All command entries in a command table must include
2524 	 * length information.
2525 	 */
2526 	union {
2527 		u32 fixed;
2528 		u32 mask;
2529 	} length;
2530 
2531 	/*
2532 	 * Describes where to find a register address in the command to check
2533 	 * against the ring's register whitelist. Only valid if flags has the
2534 	 * CMD_DESC_REGISTER bit set.
2535 	 *
2536 	 * A non-zero step value implies that the command may access multiple
2537 	 * registers in sequence (e.g. LRI), in that case step gives the
2538 	 * distance in dwords between individual offset fields.
2539 	 */
2540 	struct {
2541 		u32 offset;
2542 		u32 mask;
2543 		u32 step;
2544 	} reg;
2545 
2546 #define MAX_CMD_DESC_BITMASKS 3
2547 	/*
2548 	 * Describes command checks where a particular dword is masked and
2549 	 * compared against an expected value. If the command does not match
2550 	 * the expected value, the parser rejects it. Only valid if flags has
2551 	 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2552 	 * are valid.
2553 	 *
2554 	 * If the check specifies a non-zero condition_mask then the parser
2555 	 * only performs the check when the bits specified by condition_mask
2556 	 * are non-zero.
2557 	 */
2558 	struct {
2559 		u32 offset;
2560 		u32 mask;
2561 		u32 expected;
2562 		u32 condition_offset;
2563 		u32 condition_mask;
2564 	} bits[MAX_CMD_DESC_BITMASKS];
2565 };
2566 
2567 /*
2568  * A table of commands requiring special handling by the command parser.
2569  *
2570  * Each engine has an array of tables. Each table consists of an array of
2571  * command descriptors, which must be sorted with command opcodes in
2572  * ascending order.
2573  */
2574 struct drm_i915_cmd_table {
2575 	const struct drm_i915_cmd_descriptor *table;
2576 	int count;
2577 };
2578 
2579 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2580 #define __I915__(p) ({ \
2581 	struct drm_i915_private *__p; \
2582 	if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2583 		__p = (struct drm_i915_private *)p; \
2584 	else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2585 		__p = to_i915((struct drm_device *)p); \
2586 	else \
2587 		BUILD_BUG(); \
2588 	__p; \
2589 })
2590 #define INTEL_INFO(p)	(&__I915__(p)->info)
2591 
2592 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2593 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2594 
2595 #define REVID_FOREVER		0xff
2596 #define INTEL_REVID(p)	(__I915__(p)->drm.pdev->revision)
2597 
2598 #define GEN_FOREVER (0)
2599 /*
2600  * Returns true if Gen is in inclusive range [Start, End].
2601  *
2602  * Use GEN_FOREVER for unbound start and or end.
2603  */
2604 #define IS_GEN(dev_priv, s, e) ({ \
2605 	unsigned int __s = (s), __e = (e); \
2606 	BUILD_BUG_ON(!__builtin_constant_p(s)); \
2607 	BUILD_BUG_ON(!__builtin_constant_p(e)); \
2608 	if ((__s) != GEN_FOREVER) \
2609 		__s = (s) - 1; \
2610 	if ((__e) == GEN_FOREVER) \
2611 		__e = BITS_PER_LONG - 1; \
2612 	else \
2613 		__e = (e) - 1; \
2614 	!!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2615 })
2616 
2617 /*
2618  * Return true if revision is in range [since,until] inclusive.
2619  *
2620  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2621  */
2622 #define IS_REVID(p, since, until) \
2623 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2624 
2625 #define IS_I830(dev_priv)	(INTEL_DEVID(dev_priv) == 0x3577)
2626 #define IS_845G(dev_priv)	(INTEL_DEVID(dev_priv) == 0x2562)
2627 #define IS_I85X(dev)		(INTEL_INFO(dev)->is_i85x)
2628 #define IS_I865G(dev_priv)	(INTEL_DEVID(dev_priv) == 0x2572)
2629 #define IS_I915G(dev)		(INTEL_INFO(dev)->is_i915g)
2630 #define IS_I915GM(dev_priv)	(INTEL_DEVID(dev_priv) == 0x2592)
2631 #define IS_I945G(dev_priv)	(INTEL_DEVID(dev_priv) == 0x2772)
2632 #define IS_I945GM(dev)		(INTEL_INFO(dev)->is_i945gm)
2633 #define IS_BROADWATER(dev)	(INTEL_INFO(dev)->is_broadwater)
2634 #define IS_CRESTLINE(dev)	(INTEL_INFO(dev)->is_crestline)
2635 #define IS_GM45(dev_priv)	(INTEL_DEVID(dev_priv) == 0x2A42)
2636 #define IS_G4X(dev_priv)	((dev_priv)->info.is_g4x)
2637 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2638 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2639 #define IS_PINEVIEW(dev)	(INTEL_INFO(dev)->is_pineview)
2640 #define IS_G33(dev)		(INTEL_INFO(dev)->is_g33)
2641 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2642 #define IS_IVYBRIDGE(dev_priv)	((dev_priv)->info.is_ivybridge)
2643 #define IS_IVB_GT1(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0156 || \
2644 				 INTEL_DEVID(dev_priv) == 0x0152 || \
2645 				 INTEL_DEVID(dev_priv) == 0x015a)
2646 #define IS_VALLEYVIEW(dev_priv)	((dev_priv)->info.is_valleyview)
2647 #define IS_CHERRYVIEW(dev_priv)	((dev_priv)->info.is_cherryview)
2648 #define IS_HASWELL(dev_priv)	((dev_priv)->info.is_haswell)
2649 #define IS_BROADWELL(dev_priv)	((dev_priv)->info.is_broadwell)
2650 #define IS_SKYLAKE(dev_priv)	((dev_priv)->info.is_skylake)
2651 #define IS_BROXTON(dev_priv)	((dev_priv)->info.is_broxton)
2652 #define IS_KABYLAKE(dev_priv)	((dev_priv)->info.is_kabylake)
2653 #define IS_MOBILE(dev)		(INTEL_INFO(dev)->is_mobile)
2654 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2655 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2656 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2657 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2658 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2659 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2660 /* ULX machines are also considered ULT. */
2661 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2662 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2663 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2664 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2665 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2666 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2667 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2668 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2669 /* ULX machines are also considered ULT. */
2670 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2671 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2672 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2673 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2674 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2675 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2676 				 INTEL_DEVID(dev_priv) == 0x1926)
2677 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2678 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2679 				 INTEL_DEVID(dev_priv) == 0x191E)
2680 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2681 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2682 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2683 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2684 				 INTEL_DEVID(dev_priv) == 0x5926)
2685 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2686 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2687 				 INTEL_DEVID(dev_priv) == 0x591E)
2688 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2689 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2690 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2691 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2692 
2693 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2694 
2695 #define SKL_REVID_A0		0x0
2696 #define SKL_REVID_B0		0x1
2697 #define SKL_REVID_C0		0x2
2698 #define SKL_REVID_D0		0x3
2699 #define SKL_REVID_E0		0x4
2700 #define SKL_REVID_F0		0x5
2701 #define SKL_REVID_G0		0x6
2702 #define SKL_REVID_H0		0x7
2703 
2704 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2705 
2706 #define BXT_REVID_A0		0x0
2707 #define BXT_REVID_A1		0x1
2708 #define BXT_REVID_B0		0x3
2709 #define BXT_REVID_C0		0x9
2710 
2711 #define IS_BXT_REVID(dev_priv, since, until) \
2712 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2713 
2714 #define KBL_REVID_A0		0x0
2715 #define KBL_REVID_B0		0x1
2716 #define KBL_REVID_C0		0x2
2717 #define KBL_REVID_D0		0x3
2718 #define KBL_REVID_E0		0x4
2719 
2720 #define IS_KBL_REVID(dev_priv, since, until) \
2721 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2722 
2723 /*
2724  * The genX designation typically refers to the render engine, so render
2725  * capability related checks should use IS_GEN, while display and other checks
2726  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2727  * chips, etc.).
2728  */
2729 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2730 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2731 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2732 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2733 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2734 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2735 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2736 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2737 
2738 #define ENGINE_MASK(id)	BIT(id)
2739 #define RENDER_RING	ENGINE_MASK(RCS)
2740 #define BSD_RING	ENGINE_MASK(VCS)
2741 #define BLT_RING	ENGINE_MASK(BCS)
2742 #define VEBOX_RING	ENGINE_MASK(VECS)
2743 #define BSD2_RING	ENGINE_MASK(VCS2)
2744 #define ALL_ENGINES	(~0)
2745 
2746 #define HAS_ENGINE(dev_priv, id) \
2747 	(!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2748 
2749 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2750 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2751 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2752 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2753 
2754 #define HAS_LLC(dev)		(INTEL_INFO(dev)->has_llc)
2755 #define HAS_SNOOP(dev)		(INTEL_INFO(dev)->has_snoop)
2756 #define HAS_EDRAM(dev)		(!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2757 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2758 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2759 #define HWS_NEEDS_PHYSICAL(dev)	(INTEL_INFO(dev)->hws_needs_physical)
2760 
2761 #define HAS_HW_CONTEXTS(dev)	(INTEL_INFO(dev)->has_hw_contexts)
2762 #define HAS_LOGICAL_RING_CONTEXTS(dev)	(INTEL_INFO(dev)->has_logical_ring_contexts)
2763 #define USES_PPGTT(dev)		(i915.enable_ppgtt)
2764 #define USES_FULL_PPGTT(dev)	(i915.enable_ppgtt >= 2)
2765 #define USES_FULL_48BIT_PPGTT(dev)	(i915.enable_ppgtt == 3)
2766 
2767 #define HAS_OVERLAY(dev)		(INTEL_INFO(dev)->has_overlay)
2768 #define OVERLAY_NEEDS_PHYSICAL(dev)	(INTEL_INFO(dev)->overlay_needs_physical)
2769 
2770 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2771 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_845G(dev_priv))
2772 
2773 /* WaRsDisableCoarsePowerGating:skl,bxt */
2774 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2775 	(IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2776 	 IS_SKL_GT3(dev_priv) || \
2777 	 IS_SKL_GT4(dev_priv))
2778 
2779 /*
2780  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2781  * even when in MSI mode. This results in spurious interrupt warnings if the
2782  * legacy irq no. is shared with another device. The kernel then disables that
2783  * interrupt source and so prevents the other device from working properly.
2784  */
2785 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2786 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->has_gmbus_irq)
2787 
2788 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2789  * rows, which changed the alignment requirements and fence programming.
2790  */
2791 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2792 					 !(IS_I915G(dev_priv) || \
2793 					 IS_I915GM(dev_priv)))
2794 #define SUPPORTS_TV(dev)		(INTEL_INFO(dev)->supports_tv)
2795 #define I915_HAS_HOTPLUG(dev)		 (INTEL_INFO(dev)->has_hotplug)
2796 
2797 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2798 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2799 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2800 
2801 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2802 
2803 #define HAS_DP_MST(dev)	(INTEL_INFO(dev)->has_dp_mst)
2804 
2805 #define HAS_DDI(dev_priv)	((dev_priv)->info.has_ddi)
2806 #define HAS_FPGA_DBG_UNCLAIMED(dev)	(INTEL_INFO(dev)->has_fpga_dbg)
2807 #define HAS_PSR(dev)		(INTEL_INFO(dev)->has_psr)
2808 #define HAS_RC6(dev)		(INTEL_INFO(dev)->has_rc6)
2809 #define HAS_RC6p(dev)		(INTEL_INFO(dev)->has_rc6p)
2810 
2811 #define HAS_CSR(dev)	(INTEL_INFO(dev)->has_csr)
2812 
2813 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2814 /*
2815  * For now, anything with a GuC requires uCode loading, and then supports
2816  * command submission once loaded. But these are logically independent
2817  * properties, so we have separate macros to test them.
2818  */
2819 #define HAS_GUC(dev)		(INTEL_INFO(dev)->has_guc)
2820 #define HAS_GUC_UCODE(dev)	(HAS_GUC(dev))
2821 #define HAS_GUC_SCHED(dev)	(HAS_GUC(dev))
2822 
2823 #define HAS_RESOURCE_STREAMER(dev) (INTEL_INFO(dev)->has_resource_streamer)
2824 
2825 #define HAS_POOLED_EU(dev)	(INTEL_INFO(dev)->has_pooled_eu)
2826 
2827 #define INTEL_PCH_DEVICE_ID_MASK		0xff00
2828 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2829 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2830 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2831 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2832 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2833 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2834 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2835 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA200
2836 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2837 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2838 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2839 
2840 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2841 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2842 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2843 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2844 #define HAS_PCH_LPT_LP(dev_priv) \
2845 	((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2846 #define HAS_PCH_LPT_H(dev_priv) \
2847 	((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2848 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2849 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2850 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2851 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2852 
2853 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2854 
2855 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv))
2856 
2857 /* DPF == dynamic parity feature */
2858 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2859 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2860 				 2 : HAS_L3_DPF(dev_priv))
2861 
2862 #define GT_FREQUENCY_MULTIPLIER 50
2863 #define GEN9_FREQ_SCALER 3
2864 
2865 #include "i915_trace.h"
2866 
2867 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2868 {
2869 #ifdef CONFIG_INTEL_IOMMU
2870 	if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2871 		return true;
2872 #endif
2873 	return false;
2874 }
2875 
2876 extern int i915_suspend_switcheroo(device_t kdev);
2877 extern int i915_resume_switcheroo(struct drm_device *dev);
2878 
2879 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2880 				int enable_ppgtt);
2881 
2882 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2883 
2884 /* i915_drv.c */
2885 void __printf(3, 4)
2886 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2887 	      const char *fmt, ...);
2888 
2889 #define i915_report_error(dev_priv, fmt, ...)				   \
2890 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2891 
2892 #ifdef CONFIG_COMPAT
2893 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2894 			      unsigned long arg);
2895 #endif
2896 extern const struct dev_pm_ops i915_pm_ops;
2897 
2898 extern int i915_driver_load(struct pci_dev *pdev,
2899 			    const struct pci_device_id *ent);
2900 extern void i915_driver_unload(struct drm_device *dev);
2901 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2902 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2903 extern void i915_reset(struct drm_i915_private *dev_priv);
2904 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2905 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2906 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2907 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2908 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2909 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2910 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2911 
2912 /* intel_hotplug.c */
2913 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2914 			   u32 pin_mask, u32 long_mask);
2915 void intel_hpd_init(struct drm_i915_private *dev_priv);
2916 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2917 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2918 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2919 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2920 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2921 
2922 /* i915_irq.c */
2923 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2924 {
2925 	unsigned long delay;
2926 
2927 	if (unlikely(!i915.enable_hangcheck))
2928 		return;
2929 
2930 	/* Don't continually defer the hangcheck so that it is always run at
2931 	 * least once after work has been scheduled on any ring. Otherwise,
2932 	 * we will ignore a hung ring if a second ring is kept busy.
2933 	 */
2934 
2935 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2936 	queue_delayed_work(system_long_wq,
2937 			   &dev_priv->gpu_error.hangcheck_work, delay);
2938 }
2939 
2940 __printf(3, 4)
2941 void i915_handle_error(struct drm_i915_private *dev_priv,
2942 		       u32 engine_mask,
2943 		       const char *fmt, ...);
2944 
2945 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2946 int intel_irq_install(struct drm_i915_private *dev_priv);
2947 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2948 
2949 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2950 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2951 					bool restore_forcewake);
2952 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2953 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2954 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2955 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2956 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2957 					 bool restore);
2958 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2959 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2960 				enum forcewake_domains domains);
2961 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2962 				enum forcewake_domains domains);
2963 /* Like above but the caller must manage the uncore.lock itself.
2964  * Must be used with I915_READ_FW and friends.
2965  */
2966 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2967 					enum forcewake_domains domains);
2968 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2969 					enum forcewake_domains domains);
2970 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2971 
2972 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2973 
2974 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2975 			    i915_reg_t reg,
2976 			    const u32 mask,
2977 			    const u32 value,
2978 			    const unsigned long timeout_ms);
2979 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2980 			       i915_reg_t reg,
2981 			       const u32 mask,
2982 			       const u32 value,
2983 			       const unsigned long timeout_ms);
2984 
2985 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2986 {
2987 	return dev_priv->gvt;
2988 }
2989 
2990 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2991 {
2992 	return dev_priv->vgpu.active;
2993 }
2994 
2995 void
2996 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
2997 		     u32 status_mask);
2998 
2999 void
3000 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
3001 		      u32 status_mask);
3002 
3003 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3004 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3005 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3006 				   uint32_t mask,
3007 				   uint32_t bits);
3008 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3009 			    uint32_t interrupt_mask,
3010 			    uint32_t enabled_irq_mask);
3011 static inline void
3012 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3013 {
3014 	ilk_update_display_irq(dev_priv, bits, bits);
3015 }
3016 static inline void
3017 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3018 {
3019 	ilk_update_display_irq(dev_priv, bits, 0);
3020 }
3021 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3022 			 enum i915_pipe pipe,
3023 			 uint32_t interrupt_mask,
3024 			 uint32_t enabled_irq_mask);
3025 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3026 				       enum i915_pipe pipe, uint32_t bits)
3027 {
3028 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3029 }
3030 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3031 					enum i915_pipe pipe, uint32_t bits)
3032 {
3033 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3034 }
3035 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3036 				  uint32_t interrupt_mask,
3037 				  uint32_t enabled_irq_mask);
3038 static inline void
3039 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3040 {
3041 	ibx_display_interrupt_update(dev_priv, bits, bits);
3042 }
3043 static inline void
3044 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3045 {
3046 	ibx_display_interrupt_update(dev_priv, bits, 0);
3047 }
3048 
3049 /* i915_gem.c */
3050 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3051 			  struct drm_file *file_priv);
3052 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3053 			 struct drm_file *file_priv);
3054 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3055 			  struct drm_file *file_priv);
3056 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3057 			struct drm_file *file_priv);
3058 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3059 			struct drm_file *file_priv);
3060 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3061 			      struct drm_file *file_priv);
3062 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3063 			     struct drm_file *file_priv);
3064 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3065 			struct drm_file *file_priv);
3066 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3067 			 struct drm_file *file_priv);
3068 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3069 			struct drm_file *file_priv);
3070 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3071 			       struct drm_file *file);
3072 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3073 			       struct drm_file *file);
3074 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3075 			    struct drm_file *file_priv);
3076 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3077 			   struct drm_file *file_priv);
3078 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3079 			struct drm_file *file_priv);
3080 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3081 			struct drm_file *file_priv);
3082 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3083 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3084 			   struct drm_file *file);
3085 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3086 				struct drm_file *file_priv);
3087 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3088 			struct drm_file *file_priv);
3089 void i915_gem_load_init(struct drm_device *dev);
3090 void i915_gem_load_cleanup(struct drm_device *dev);
3091 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3092 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3093 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3094 
3095 void *i915_gem_object_alloc(struct drm_device *dev);
3096 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3097 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3098 			 const struct drm_i915_gem_object_ops *ops);
3099 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3100 						  size_t size);
3101 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3102 		struct drm_device *dev, const void *data, size_t size);
3103 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3104 void i915_gem_free_object(struct drm_gem_object *obj);
3105 
3106 struct i915_vma * __must_check
3107 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3108 			 const struct i915_ggtt_view *view,
3109 			 u64 size,
3110 			 u64 alignment,
3111 			 u64 flags);
3112 
3113 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3114 		  u32 flags);
3115 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3116 int __must_check i915_vma_unbind(struct i915_vma *vma);
3117 void i915_vma_close(struct i915_vma *vma);
3118 void i915_vma_destroy(struct i915_vma *vma);
3119 
3120 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3121 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3122 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3123 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3124 
3125 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3126 
3127 static inline int __sg_page_count(struct scatterlist *sg)
3128 {
3129 	return sg->length >> PAGE_SHIFT;
3130 }
3131 
3132 struct page *
3133 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3134 
3135 static inline dma_addr_t
3136 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3137 {
3138 	if (n < obj->get_page.last) {
3139 		obj->get_page.sg = obj->pages->sgl;
3140 		obj->get_page.last = 0;
3141 	}
3142 
3143 	while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3144 		obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3145 		if (unlikely(sg_is_chain(obj->get_page.sg)))
3146 			obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3147 	}
3148 
3149 	return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3150 }
3151 
3152 static inline struct page *
3153 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3154 {
3155 	if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3156 		return NULL;
3157 
3158 	if (n < obj->get_page.last) {
3159 		obj->get_page.sg = obj->pages->sgl;
3160 		obj->get_page.last = 0;
3161 	}
3162 
3163 	while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3164 		obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3165 		if (unlikely(sg_is_chain(obj->get_page.sg)))
3166 			obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3167 	}
3168 
3169 	return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3170 }
3171 
3172 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3173 {
3174 	GEM_BUG_ON(obj->pages == NULL);
3175 	obj->pages_pin_count++;
3176 }
3177 
3178 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3179 {
3180 	GEM_BUG_ON(obj->pages_pin_count == 0);
3181 	obj->pages_pin_count--;
3182 	GEM_BUG_ON(obj->pages_pin_count < obj->bind_count);
3183 }
3184 
3185 enum i915_map_type {
3186 	I915_MAP_WB = 0,
3187 	I915_MAP_WC,
3188 };
3189 
3190 /**
3191  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3192  * @obj - the object to map into kernel address space
3193  * @type - the type of mapping, used to select pgprot_t
3194  *
3195  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3196  * pages and then returns a contiguous mapping of the backing storage into
3197  * the kernel address space. Based on the @type of mapping, the PTE will be
3198  * set to either WriteBack or WriteCombine (via pgprot_t).
3199  *
3200  * The caller must hold the struct_mutex, and is responsible for calling
3201  * i915_gem_object_unpin_map() when the mapping is no longer required.
3202  *
3203  * Returns the pointer through which to access the mapped object, or an
3204  * ERR_PTR() on error.
3205  */
3206 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3207 					   enum i915_map_type type);
3208 
3209 /**
3210  * i915_gem_object_unpin_map - releases an earlier mapping
3211  * @obj - the object to unmap
3212  *
3213  * After pinning the object and mapping its pages, once you are finished
3214  * with your access, call i915_gem_object_unpin_map() to release the pin
3215  * upon the mapping. Once the pin count reaches zero, that mapping may be
3216  * removed.
3217  *
3218  * The caller must hold the struct_mutex.
3219  */
3220 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3221 {
3222 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3223 	i915_gem_object_unpin_pages(obj);
3224 }
3225 
3226 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3227 				    unsigned int *needs_clflush);
3228 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3229 				     unsigned int *needs_clflush);
3230 #define CLFLUSH_BEFORE 0x1
3231 #define CLFLUSH_AFTER 0x2
3232 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3233 
3234 static inline void
3235 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3236 {
3237 	i915_gem_object_unpin_pages(obj);
3238 }
3239 
3240 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3241 void i915_vma_move_to_active(struct i915_vma *vma,
3242 			     struct drm_i915_gem_request *req,
3243 			     unsigned int flags);
3244 int i915_gem_dumb_create(struct drm_file *file_priv,
3245 			 struct drm_device *dev,
3246 			 struct drm_mode_create_dumb *args);
3247 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3248 		      uint32_t handle, uint64_t *offset);
3249 int i915_gem_mmap_gtt_version(void);
3250 
3251 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3252 		       struct drm_i915_gem_object *new,
3253 		       unsigned frontbuffer_bits);
3254 
3255 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3256 
3257 struct drm_i915_gem_request *
3258 i915_gem_find_active_request(struct intel_engine_cs *engine);
3259 
3260 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3261 
3262 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3263 {
3264 	return unlikely(test_bit(I915_RESET_IN_PROGRESS, &error->flags));
3265 }
3266 
3267 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3268 {
3269 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3270 }
3271 
3272 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3273 {
3274 	return i915_reset_in_progress(error) | i915_terminally_wedged(error);
3275 }
3276 
3277 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3278 {
3279 	return READ_ONCE(error->reset_count);
3280 }
3281 
3282 void i915_gem_reset(struct drm_i915_private *dev_priv);
3283 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3284 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3285 int __must_check i915_gem_init(struct drm_device *dev);
3286 int __must_check i915_gem_init_hw(struct drm_device *dev);
3287 void i915_gem_init_swizzling(struct drm_device *dev);
3288 void i915_gem_cleanup_engines(struct drm_device *dev);
3289 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3290 					unsigned int flags);
3291 int __must_check i915_gem_suspend(struct drm_device *dev);
3292 void i915_gem_resume(struct drm_device *dev);
3293 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres);
3294 int __must_check
3295 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3296 			       bool readonly);
3297 int __must_check
3298 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3299 				  bool write);
3300 int __must_check
3301 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3302 struct i915_vma * __must_check
3303 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3304 				     u32 alignment,
3305 				     const struct i915_ggtt_view *view);
3306 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3307 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3308 				int align);
3309 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3310 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3311 
3312 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, u64 size,
3313 			   int tiling_mode);
3314 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
3315 				int tiling_mode, bool fenced);
3316 
3317 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3318 				    enum i915_cache_level cache_level);
3319 
3320 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3321 				struct dma_buf *dma_buf);
3322 
3323 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3324 				struct drm_gem_object *gem_obj, int flags);
3325 
3326 struct i915_vma *
3327 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3328 		     struct i915_address_space *vm,
3329 		     const struct i915_ggtt_view *view);
3330 
3331 struct i915_vma *
3332 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3333 				  struct i915_address_space *vm,
3334 				  const struct i915_ggtt_view *view);
3335 
3336 static inline struct i915_hw_ppgtt *
3337 i915_vm_to_ppgtt(struct i915_address_space *vm)
3338 {
3339 	return container_of(vm, struct i915_hw_ppgtt, base);
3340 }
3341 
3342 static inline struct i915_vma *
3343 i915_gem_object_to_ggtt(struct drm_i915_gem_object *obj,
3344 			const struct i915_ggtt_view *view)
3345 {
3346 	return i915_gem_obj_to_vma(obj, &to_i915(obj->base.dev)->ggtt.base, view);
3347 }
3348 
3349 static inline unsigned long
3350 i915_gem_object_ggtt_offset(struct drm_i915_gem_object *o,
3351 			    const struct i915_ggtt_view *view)
3352 {
3353 	return i915_ggtt_offset(i915_gem_object_to_ggtt(o, view));
3354 }
3355 
3356 /* i915_gem_fence.c */
3357 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3358 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3359 
3360 /**
3361  * i915_vma_pin_fence - pin fencing state
3362  * @vma: vma to pin fencing for
3363  *
3364  * This pins the fencing state (whether tiled or untiled) to make sure the
3365  * vma (and its object) is ready to be used as a scanout target. Fencing
3366  * status must be synchronize first by calling i915_vma_get_fence():
3367  *
3368  * The resulting fence pin reference must be released again with
3369  * i915_vma_unpin_fence().
3370  *
3371  * Returns:
3372  *
3373  * True if the vma has a fence, false otherwise.
3374  */
3375 static inline bool
3376 i915_vma_pin_fence(struct i915_vma *vma)
3377 {
3378 	if (vma->fence) {
3379 		vma->fence->pin_count++;
3380 		return true;
3381 	} else
3382 		return false;
3383 }
3384 
3385 /**
3386  * i915_vma_unpin_fence - unpin fencing state
3387  * @vma: vma to unpin fencing for
3388  *
3389  * This releases the fence pin reference acquired through
3390  * i915_vma_pin_fence. It will handle both objects with and without an
3391  * attached fence correctly, callers do not need to distinguish this.
3392  */
3393 static inline void
3394 i915_vma_unpin_fence(struct i915_vma *vma)
3395 {
3396 	if (vma->fence) {
3397 		GEM_BUG_ON(vma->fence->pin_count <= 0);
3398 		vma->fence->pin_count--;
3399 	}
3400 }
3401 
3402 void i915_gem_restore_fences(struct drm_device *dev);
3403 
3404 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3405 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3406 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3407 
3408 /* i915_gem_context.c */
3409 int __must_check i915_gem_context_init(struct drm_device *dev);
3410 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3411 void i915_gem_context_fini(struct drm_device *dev);
3412 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3413 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3414 int i915_switch_context(struct drm_i915_gem_request *req);
3415 int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3416 void i915_gem_context_free(struct kref *ctx_ref);
3417 struct drm_i915_gem_object *
3418 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3419 struct i915_gem_context *
3420 i915_gem_context_create_gvt(struct drm_device *dev);
3421 
3422 static inline struct i915_gem_context *
3423 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3424 {
3425 	struct i915_gem_context *ctx;
3426 
3427 	lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3428 
3429 	ctx = idr_find(&file_priv->context_idr, id);
3430 	if (!ctx)
3431 		return ERR_PTR(-ENOENT);
3432 
3433 	return ctx;
3434 }
3435 
3436 static inline struct i915_gem_context *
3437 i915_gem_context_get(struct i915_gem_context *ctx)
3438 {
3439 	kref_get(&ctx->ref);
3440 	return ctx;
3441 }
3442 
3443 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3444 {
3445 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3446 	kref_put(&ctx->ref, i915_gem_context_free);
3447 }
3448 
3449 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3450 {
3451 	return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3452 }
3453 
3454 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3455 				  struct drm_file *file);
3456 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3457 				   struct drm_file *file);
3458 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3459 				    struct drm_file *file_priv);
3460 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3461 				    struct drm_file *file_priv);
3462 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3463 				       struct drm_file *file);
3464 
3465 /* i915_gem_evict.c */
3466 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3467 					  u64 min_size, u64 alignment,
3468 					  unsigned cache_level,
3469 					  u64 start, u64 end,
3470 					  unsigned flags);
3471 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3472 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3473 
3474 /* belongs in i915_gem_gtt.h */
3475 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3476 {
3477 	wmb();
3478 	if (INTEL_GEN(dev_priv) < 6)
3479 		intel_gtt_chipset_flush();
3480 }
3481 
3482 /* i915_gem_stolen.c */
3483 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3484 				struct drm_mm_node *node, u64 size,
3485 				unsigned alignment);
3486 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3487 					 struct drm_mm_node *node, u64 size,
3488 					 unsigned alignment, u64 start,
3489 					 u64 end);
3490 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3491 				 struct drm_mm_node *node);
3492 int i915_gem_init_stolen(struct drm_device *dev);
3493 void i915_gem_cleanup_stolen(struct drm_device *dev);
3494 struct drm_i915_gem_object *
3495 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3496 struct drm_i915_gem_object *
3497 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3498 					       u32 stolen_offset,
3499 					       u32 gtt_offset,
3500 					       u32 size);
3501 
3502 /* i915_gem_shrinker.c */
3503 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3504 			      unsigned long target,
3505 			      unsigned flags);
3506 #define I915_SHRINK_PURGEABLE 0x1
3507 #define I915_SHRINK_UNBOUND 0x2
3508 #define I915_SHRINK_BOUND 0x4
3509 #define I915_SHRINK_ACTIVE 0x8
3510 #define I915_SHRINK_VMAPS 0x10
3511 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3512 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3513 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3514 
3515 
3516 /* i915_gem_tiling.c */
3517 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3518 {
3519 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3520 
3521 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3522 		i915_gem_object_is_tiled(obj);
3523 }
3524 
3525 /* i915_debugfs.c */
3526 #ifdef CONFIG_DEBUG_FS
3527 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3528 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3529 int i915_debugfs_connector_add(struct drm_connector *connector);
3530 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3531 #else
3532 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3533 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3534 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3535 { return 0; }
3536 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3537 #endif
3538 
3539 /* i915_gpu_error.c */
3540 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3541 
3542 __printf(2, 3)
3543 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3544 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3545 			    const struct i915_error_state_file_priv *error);
3546 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3547 			      struct drm_i915_private *i915,
3548 			      size_t count, loff_t pos);
3549 static inline void i915_error_state_buf_release(
3550 	struct drm_i915_error_state_buf *eb)
3551 {
3552 	kfree(eb->buf);
3553 }
3554 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3555 			      u32 engine_mask,
3556 			      const char *error_msg);
3557 void i915_error_state_get(struct drm_device *dev,
3558 			  struct i915_error_state_file_priv *error_priv);
3559 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3560 void i915_destroy_error_state(struct drm_device *dev);
3561 
3562 #else
3563 
3564 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3565 					    u32 engine_mask,
3566 					    const char *error_msg)
3567 {
3568 }
3569 
3570 static inline void i915_destroy_error_state(struct drm_device *dev)
3571 {
3572 }
3573 
3574 #endif
3575 
3576 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3577 
3578 /* i915_cmd_parser.c */
3579 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3580 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3581 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3582 bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine);
3583 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3584 			    struct drm_i915_gem_object *batch_obj,
3585 			    struct drm_i915_gem_object *shadow_batch_obj,
3586 			    u32 batch_start_offset,
3587 			    u32 batch_len,
3588 			    bool is_master);
3589 
3590 /* i915_suspend.c */
3591 extern int i915_save_state(struct drm_device *dev);
3592 extern int i915_restore_state(struct drm_device *dev);
3593 
3594 /* i915_sysfs.c */
3595 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3596 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3597 
3598 /* intel_i2c.c */
3599 extern int intel_setup_gmbus(struct drm_device *dev);
3600 extern void intel_teardown_gmbus(struct drm_device *dev);
3601 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3602 				     unsigned int pin);
3603 
3604 extern struct i2c_adapter *
3605 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3606 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3607 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3608 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3609 {
3610 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3611 }
3612 extern void intel_i2c_reset(struct drm_device *dev);
3613 
3614 /* intel_bios.c */
3615 int intel_bios_init(struct drm_i915_private *dev_priv);
3616 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3617 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3618 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3619 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3620 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3621 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3622 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3623 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3624 				     enum port port);
3625 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3626 				enum port port);
3627 
3628 /* intel_opregion.c */
3629 #ifdef CONFIG_ACPI
3630 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3631 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3632 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3633 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3634 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3635 					 bool enable);
3636 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3637 					 pci_power_t state);
3638 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3639 #else
3640 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3641 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3642 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3643 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3644 {
3645 }
3646 static inline int
3647 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3648 {
3649 	return 0;
3650 }
3651 static inline int
3652 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3653 {
3654 	return 0;
3655 }
3656 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3657 {
3658 	return -ENODEV;
3659 }
3660 #endif
3661 
3662 /* intel_acpi.c */
3663 #ifdef CONFIG_ACPI
3664 extern void intel_register_dsm_handler(void);
3665 extern void intel_unregister_dsm_handler(void);
3666 #else
3667 static inline void intel_register_dsm_handler(void) { return; }
3668 static inline void intel_unregister_dsm_handler(void) { return; }
3669 #endif /* CONFIG_ACPI */
3670 
3671 /* intel_device_info.c */
3672 static inline struct intel_device_info *
3673 mkwrite_device_info(struct drm_i915_private *dev_priv)
3674 {
3675 	return (struct intel_device_info *)&dev_priv->info;
3676 }
3677 
3678 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3679 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3680 
3681 /* modesetting */
3682 extern void intel_modeset_init_hw(struct drm_device *dev);
3683 extern void intel_modeset_init(struct drm_device *dev);
3684 extern void intel_modeset_gem_init(struct drm_device *dev);
3685 extern void intel_modeset_cleanup(struct drm_device *dev);
3686 extern int intel_connector_register(struct drm_connector *);
3687 extern void intel_connector_unregister(struct drm_connector *);
3688 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3689 extern void intel_display_resume(struct drm_device *dev);
3690 extern void i915_redisable_vga(struct drm_device *dev);
3691 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3692 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3693 extern void intel_init_pch_refclk(struct drm_device *dev);
3694 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3695 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3696 				  bool enable);
3697 
3698 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3699 			struct drm_file *file);
3700 
3701 /* overlay */
3702 extern struct intel_overlay_error_state *
3703 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3704 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3705 					    struct intel_overlay_error_state *error);
3706 
3707 extern struct intel_display_error_state *
3708 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3709 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3710 					    struct drm_device *dev,
3711 					    struct intel_display_error_state *error);
3712 
3713 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3714 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3715 
3716 /* intel_sideband.c */
3717 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3718 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3719 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3720 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3721 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3722 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3723 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3724 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3725 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3726 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3727 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3728 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int reg);
3729 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int reg, u32 val);
3730 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3731 		   enum intel_sbi_destination destination);
3732 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3733 		     enum intel_sbi_destination destination);
3734 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3735 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3736 
3737 /* intel_dpio_phy.c */
3738 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3739 			      u32 deemph_reg_value, u32 margin_reg_value,
3740 			      bool uniq_trans_scale);
3741 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3742 			      bool reset);
3743 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3744 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3745 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3746 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3747 
3748 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3749 			      u32 demph_reg_value, u32 preemph_reg_value,
3750 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3751 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3752 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3753 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3754 
3755 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3756 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3757 
3758 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3759 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3760 
3761 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3762 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3763 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3764 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3765 
3766 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3767 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3768 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3769 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3770 
3771 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3772  * will be implemented using 2 32-bit writes in an arbitrary order with
3773  * an arbitrary delay between them. This can cause the hardware to
3774  * act upon the intermediate value, possibly leading to corruption and
3775  * machine death. For this reason we do not support I915_WRITE64, or
3776  * dev_priv->uncore.funcs.mmio_writeq.
3777  *
3778  * When reading a 64-bit value as two 32-bit values, the delay may cause
3779  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3780  * occasionally a 64-bit register does not actualy support a full readq
3781  * and must be read using two 32-bit reads.
3782  *
3783  * You have been warned.
3784  */
3785 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3786 
3787 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3788 	u32 upper, lower, old_upper, loop = 0;				\
3789 	upper = I915_READ(upper_reg);					\
3790 	do {								\
3791 		old_upper = upper;					\
3792 		lower = I915_READ(lower_reg);				\
3793 		upper = I915_READ(upper_reg);				\
3794 	} while (upper != old_upper && loop++ < 2);			\
3795 	(u64)upper << 32 | lower; })
3796 
3797 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3798 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3799 
3800 #define __raw_read(x, s) \
3801 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3802 					     i915_reg_t reg) \
3803 { \
3804 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3805 }
3806 
3807 #define __raw_write(x, s) \
3808 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3809 				       i915_reg_t reg, uint##x##_t val) \
3810 { \
3811 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3812 }
3813 __raw_read(8, b)
3814 __raw_read(16, w)
3815 __raw_read(32, l)
3816 __raw_read(64, q)
3817 
3818 __raw_write(8, b)
3819 __raw_write(16, w)
3820 __raw_write(32, l)
3821 __raw_write(64, q)
3822 
3823 #undef __raw_read
3824 #undef __raw_write
3825 
3826 /* These are untraced mmio-accessors that are only valid to be used inside
3827  * critical sections inside IRQ handlers where forcewake is explicitly
3828  * controlled.
3829  * Think twice, and think again, before using these.
3830  * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3831  * intel_uncore_forcewake_irqunlock().
3832  */
3833 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3834 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3835 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3836 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3837 
3838 /* "Broadcast RGB" property */
3839 #define INTEL_BROADCAST_RGB_AUTO 0
3840 #define INTEL_BROADCAST_RGB_FULL 1
3841 #define INTEL_BROADCAST_RGB_LIMITED 2
3842 
3843 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3844 {
3845 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3846 		return VLV_VGACNTRL;
3847 	else if (INTEL_GEN(dev_priv) >= 5)
3848 		return CPU_VGACNTRL;
3849 	else
3850 		return VGACNTRL;
3851 }
3852 
3853 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3854 {
3855 	unsigned long j = msecs_to_jiffies(m);
3856 
3857 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3858 }
3859 
3860 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3861 {
3862         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3863 }
3864 
3865 static inline unsigned long
3866 timespec_to_jiffies_timeout(const struct timespec *value)
3867 {
3868 	unsigned long j = timespec_to_jiffies(value);
3869 
3870 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3871 }
3872 
3873 /*
3874  * If you need to wait X milliseconds between events A and B, but event B
3875  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3876  * when event A happened, then just before event B you call this function and
3877  * pass the timestamp as the first argument, and X as the second argument.
3878  */
3879 static inline void
3880 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3881 {
3882 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3883 
3884 	/*
3885 	 * Don't re-read the value of "jiffies" every time since it may change
3886 	 * behind our back and break the math.
3887 	 */
3888 	tmp_jiffies = jiffies;
3889 	target_jiffies = timestamp_jiffies +
3890 			 msecs_to_jiffies_timeout(to_wait_ms);
3891 
3892 	if (time_after(target_jiffies, tmp_jiffies)) {
3893 		remaining_jiffies = target_jiffies - tmp_jiffies;
3894 		while (remaining_jiffies)
3895 			remaining_jiffies =
3896 			    schedule_timeout_uninterruptible(remaining_jiffies);
3897 	}
3898 }
3899 
3900 static inline bool
3901 __i915_request_irq_complete(struct drm_i915_gem_request *req)
3902 {
3903 	struct intel_engine_cs *engine = req->engine;
3904 
3905 	/* Before we do the heavier coherent read of the seqno,
3906 	 * check the value (hopefully) in the CPU cacheline.
3907 	 */
3908 	if (i915_gem_request_completed(req))
3909 		return true;
3910 
3911 	/* Ensure our read of the seqno is coherent so that we
3912 	 * do not "miss an interrupt" (i.e. if this is the last
3913 	 * request and the seqno write from the GPU is not visible
3914 	 * by the time the interrupt fires, we will see that the
3915 	 * request is incomplete and go back to sleep awaiting
3916 	 * another interrupt that will never come.)
3917 	 *
3918 	 * Strictly, we only need to do this once after an interrupt,
3919 	 * but it is easier and safer to do it every time the waiter
3920 	 * is woken.
3921 	 */
3922 	if (engine->irq_seqno_barrier &&
3923 	    rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current &&
3924 	    cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
3925 		struct task_struct *tsk;
3926 
3927 		/* The ordering of irq_posted versus applying the barrier
3928 		 * is crucial. The clearing of the current irq_posted must
3929 		 * be visible before we perform the barrier operation,
3930 		 * such that if a subsequent interrupt arrives, irq_posted
3931 		 * is reasserted and our task rewoken (which causes us to
3932 		 * do another __i915_request_irq_complete() immediately
3933 		 * and reapply the barrier). Conversely, if the clear
3934 		 * occurs after the barrier, then an interrupt that arrived
3935 		 * whilst we waited on the barrier would not trigger a
3936 		 * barrier on the next pass, and the read may not see the
3937 		 * seqno update.
3938 		 */
3939 		engine->irq_seqno_barrier(engine);
3940 
3941 		/* If we consume the irq, but we are no longer the bottom-half,
3942 		 * the real bottom-half may not have serialised their own
3943 		 * seqno check with the irq-barrier (i.e. may have inspected
3944 		 * the seqno before we believe it coherent since they see
3945 		 * irq_posted == false but we are still running).
3946 		 */
3947 		rcu_read_lock();
3948 		tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
3949 		if (tsk && tsk != current)
3950 			/* Note that if the bottom-half is changed as we
3951 			 * are sending the wake-up, the new bottom-half will
3952 			 * be woken by whomever made the change. We only have
3953 			 * to worry about when we steal the irq-posted for
3954 			 * ourself.
3955 			 */
3956 			wake_up_process(tsk);
3957 		rcu_read_unlock();
3958 
3959 		if (i915_gem_request_completed(req))
3960 			return true;
3961 	}
3962 
3963 	return false;
3964 }
3965 
3966 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3967 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3968 
3969 /* i915_mm.c */
3970 int remap_io_mapping(struct vm_area_struct *vma,
3971 		     unsigned long addr, unsigned long pfn, unsigned long size,
3972 		     struct io_mapping *iomap);
3973 
3974 #define ptr_mask_bits(ptr) ({						\
3975 	unsigned long __v = (unsigned long)(ptr);			\
3976 	(typeof(ptr))(__v & PAGE_MASK);					\
3977 })
3978 
3979 #define ptr_unpack_bits(ptr, bits) ({					\
3980 	unsigned long __v = (unsigned long)(ptr);			\
3981 	(bits) = __v & ~PAGE_MASK;					\
3982 	(typeof(ptr))(__v & PAGE_MASK);					\
3983 })
3984 
3985 #define ptr_pack_bits(ptr, bits)					\
3986 	((typeof(ptr))((unsigned long)(ptr) | (bits)))
3987 
3988 #define fetch_and_zero(ptr) ({						\
3989 	typeof(*ptr) __T = *(ptr);					\
3990 	*(ptr) = (typeof(*ptr))0;					\
3991 	__T;								\
3992 })
3993 
3994 #endif
3995