1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi_drm/i915_drm.h> 34 #include <uapi_drm/drm_fourcc.h> 35 36 #include <drm/drmP.h> 37 #include <linux/io-mapping.h> 38 #include <linux/i2c.h> 39 #include <linux/i2c-algo-bit.h> 40 #include <linux/backlight.h> 41 #include <linux/hashtable.h> 42 #include <linux/kref.h> 43 #include <linux/pm_qos.h> 44 #include <linux/shmem_fs.h> 45 46 #include <drm/drmP.h> 47 #include <drm/intel-gtt.h> 48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 49 #include <drm/drm_gem.h> 50 51 #include "i915_params.h" 52 #include "i915_reg.h" 53 54 #include "intel_bios.h" 55 #include "intel_dpll_mgr.h" 56 #include "intel_guc.h" 57 #include "intel_lrc.h" 58 #include "intel_ringbuffer.h" 59 60 #include "i915_gem.h" 61 #include "i915_gem_gtt.h" 62 #include "i915_gem_render_state.h" 63 64 #define CONFIG_DRM_FBDEV_EMULATION 1 65 #define CONFIG_DRM_I915_KMS 1 66 #define CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT 1 67 #define CONFIG_ACPI 1 68 #define CONFIG_X86 1 69 70 /* General customization: 71 */ 72 73 #define DRIVER_NAME "i915" 74 #define DRIVER_DESC "Intel Graphics" 75 #define DRIVER_DATE "20160425" 76 77 #undef WARN_ON 78 /* Many gcc seem to no see through this and fall over :( */ 79 #if 0 80 #define WARN_ON(x) ({ \ 81 bool __i915_warn_cond = (x); \ 82 if (__builtin_constant_p(__i915_warn_cond)) \ 83 BUILD_BUG_ON(__i915_warn_cond); \ 84 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); }) 85 #else 86 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 87 #endif 88 89 #undef WARN_ON_ONCE 90 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")") 91 92 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \ 93 (long) (x), __func__); 94 95 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 96 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 97 * which may not necessarily be a user visible problem. This will either 98 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 99 * enable distros and users to tailor their preferred amount of i915 abrt 100 * spam. 101 */ 102 #define I915_STATE_WARN(condition, format...) ({ \ 103 int __ret_warn_on = !!(condition); \ 104 if (unlikely(__ret_warn_on)) \ 105 if (!WARN(i915.verbose_state_checks, format)) \ 106 DRM_ERROR(format); \ 107 unlikely(__ret_warn_on); \ 108 }) 109 110 #define I915_STATE_WARN_ON(x) \ 111 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 112 113 bool __i915_inject_load_failure(const char *func, int line); 114 #define i915_inject_load_failure() \ 115 __i915_inject_load_failure(__func__, __LINE__) 116 117 static inline const char *yesno(bool v) 118 { 119 return v ? "yes" : "no"; 120 } 121 122 static inline const char *onoff(bool v) 123 { 124 return v ? "on" : "off"; 125 } 126 127 enum i915_pipe { 128 INVALID_PIPE = -1, 129 PIPE_A = 0, 130 PIPE_B, 131 PIPE_C, 132 _PIPE_EDP, 133 I915_MAX_PIPES = _PIPE_EDP 134 }; 135 #define pipe_name(p) ((p) + 'A') 136 137 enum transcoder { 138 TRANSCODER_A = 0, 139 TRANSCODER_B, 140 TRANSCODER_C, 141 TRANSCODER_EDP, 142 TRANSCODER_DSI_A, 143 TRANSCODER_DSI_C, 144 I915_MAX_TRANSCODERS 145 }; 146 147 static inline const char *transcoder_name(enum transcoder transcoder) 148 { 149 switch (transcoder) { 150 case TRANSCODER_A: 151 return "A"; 152 case TRANSCODER_B: 153 return "B"; 154 case TRANSCODER_C: 155 return "C"; 156 case TRANSCODER_EDP: 157 return "EDP"; 158 case TRANSCODER_DSI_A: 159 return "DSI A"; 160 case TRANSCODER_DSI_C: 161 return "DSI C"; 162 default: 163 return "<invalid>"; 164 } 165 } 166 167 static inline bool transcoder_is_dsi(enum transcoder transcoder) 168 { 169 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; 170 } 171 172 /* 173 * I915_MAX_PLANES in the enum below is the maximum (across all platforms) 174 * number of planes per CRTC. Not all platforms really have this many planes, 175 * which means some arrays of size I915_MAX_PLANES may have unused entries 176 * between the topmost sprite plane and the cursor plane. 177 */ 178 enum plane { 179 PLANE_A = 0, 180 PLANE_B, 181 PLANE_C, 182 PLANE_CURSOR, 183 I915_MAX_PLANES, 184 }; 185 #define plane_name(p) ((p) + 'A') 186 187 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A') 188 189 enum port { 190 PORT_A = 0, 191 PORT_B, 192 PORT_C, 193 PORT_D, 194 PORT_E, 195 I915_MAX_PORTS 196 }; 197 #define port_name(p) ((p) + 'A') 198 199 #define I915_NUM_PHYS_VLV 2 200 201 enum dpio_channel { 202 DPIO_CH0, 203 DPIO_CH1 204 }; 205 206 enum dpio_phy { 207 DPIO_PHY0, 208 DPIO_PHY1 209 }; 210 211 enum intel_display_power_domain { 212 POWER_DOMAIN_PIPE_A, 213 POWER_DOMAIN_PIPE_B, 214 POWER_DOMAIN_PIPE_C, 215 POWER_DOMAIN_PIPE_A_PANEL_FITTER, 216 POWER_DOMAIN_PIPE_B_PANEL_FITTER, 217 POWER_DOMAIN_PIPE_C_PANEL_FITTER, 218 POWER_DOMAIN_TRANSCODER_A, 219 POWER_DOMAIN_TRANSCODER_B, 220 POWER_DOMAIN_TRANSCODER_C, 221 POWER_DOMAIN_TRANSCODER_EDP, 222 POWER_DOMAIN_TRANSCODER_DSI_A, 223 POWER_DOMAIN_TRANSCODER_DSI_C, 224 POWER_DOMAIN_PORT_DDI_A_LANES, 225 POWER_DOMAIN_PORT_DDI_B_LANES, 226 POWER_DOMAIN_PORT_DDI_C_LANES, 227 POWER_DOMAIN_PORT_DDI_D_LANES, 228 POWER_DOMAIN_PORT_DDI_E_LANES, 229 POWER_DOMAIN_PORT_DSI, 230 POWER_DOMAIN_PORT_CRT, 231 POWER_DOMAIN_PORT_OTHER, 232 POWER_DOMAIN_VGA, 233 POWER_DOMAIN_AUDIO, 234 POWER_DOMAIN_PLLS, 235 POWER_DOMAIN_AUX_A, 236 POWER_DOMAIN_AUX_B, 237 POWER_DOMAIN_AUX_C, 238 POWER_DOMAIN_AUX_D, 239 POWER_DOMAIN_GMBUS, 240 POWER_DOMAIN_MODESET, 241 POWER_DOMAIN_INIT, 242 243 POWER_DOMAIN_NUM, 244 }; 245 246 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) 247 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ 248 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) 249 #define POWER_DOMAIN_TRANSCODER(tran) \ 250 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ 251 (tran) + POWER_DOMAIN_TRANSCODER_A) 252 253 enum hpd_pin { 254 HPD_NONE = 0, 255 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 256 HPD_CRT, 257 HPD_SDVO_B, 258 HPD_SDVO_C, 259 HPD_PORT_A, 260 HPD_PORT_B, 261 HPD_PORT_C, 262 HPD_PORT_D, 263 HPD_PORT_E, 264 HPD_NUM_PINS 265 }; 266 267 #define for_each_hpd_pin(__pin) \ 268 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 269 270 struct i915_hotplug { 271 struct work_struct hotplug_work; 272 273 struct { 274 unsigned long last_jiffies; 275 int count; 276 enum { 277 HPD_ENABLED = 0, 278 HPD_DISABLED = 1, 279 HPD_MARK_DISABLED = 2 280 } state; 281 } stats[HPD_NUM_PINS]; 282 u32 event_bits; 283 struct delayed_work reenable_work; 284 285 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 286 u32 long_port_mask; 287 u32 short_port_mask; 288 struct work_struct dig_port_work; 289 290 struct work_struct poll_init_work; 291 bool poll_enabled; 292 293 /* 294 * if we get a HPD irq from DP and a HPD irq from non-DP 295 * the non-DP HPD could block the workqueue on a mode config 296 * mutex getting, that userspace may have taken. However 297 * userspace is waiting on the DP workqueue to run which is 298 * blocked behind the non-DP one. 299 */ 300 struct workqueue_struct *dp_wq; 301 }; 302 303 #define I915_GEM_GPU_DOMAINS \ 304 (I915_GEM_DOMAIN_RENDER | \ 305 I915_GEM_DOMAIN_SAMPLER | \ 306 I915_GEM_DOMAIN_COMMAND | \ 307 I915_GEM_DOMAIN_INSTRUCTION | \ 308 I915_GEM_DOMAIN_VERTEX) 309 310 #define for_each_pipe(__dev_priv, __p) \ 311 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) 312 #define for_each_pipe_masked(__dev_priv, __p, __mask) \ 313 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ 314 for_each_if ((__mask) & (1 << (__p))) 315 #define for_each_plane(__dev_priv, __pipe, __p) \ 316 for ((__p) = 0; \ 317 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ 318 (__p)++) 319 #define for_each_sprite(__dev_priv, __p, __s) \ 320 for ((__s) = 0; \ 321 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ 322 (__s)++) 323 324 #define for_each_port_masked(__port, __ports_mask) \ 325 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ 326 for_each_if ((__ports_mask) & (1 << (__port))) 327 328 #define for_each_crtc(dev, crtc) \ 329 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) 330 331 #define for_each_intel_plane(dev, intel_plane) \ 332 list_for_each_entry(intel_plane, \ 333 &dev->mode_config.plane_list, \ 334 base.head) 335 336 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ 337 list_for_each_entry(intel_plane, \ 338 &(dev)->mode_config.plane_list, \ 339 base.head) \ 340 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) 341 342 #define for_each_intel_crtc(dev, intel_crtc) \ 343 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) 344 345 #define for_each_intel_encoder(dev, intel_encoder) \ 346 list_for_each_entry(intel_encoder, \ 347 &(dev)->mode_config.encoder_list, \ 348 base.head) 349 350 #define for_each_intel_connector(dev, intel_connector) \ 351 list_for_each_entry(intel_connector, \ 352 &dev->mode_config.connector_list, \ 353 base.head) 354 355 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ 356 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ 357 for_each_if ((intel_encoder)->base.crtc == (__crtc)) 358 359 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ 360 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ 361 for_each_if ((intel_connector)->base.encoder == (__encoder)) 362 363 #define for_each_power_domain(domain, mask) \ 364 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ 365 for_each_if ((1 << (domain)) & (mask)) 366 367 struct drm_i915_private; 368 struct i915_mm_struct; 369 struct i915_mmu_object; 370 371 struct drm_i915_file_private { 372 struct drm_i915_private *dev_priv; 373 struct drm_file *file; 374 375 struct { 376 struct spinlock lock; 377 struct list_head request_list; 378 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 379 * chosen to prevent the CPU getting more than a frame ahead of the GPU 380 * (when using lax throttling for the frontbuffer). We also use it to 381 * offer free GPU waitboosts for severely congested workloads. 382 */ 383 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 384 } mm; 385 struct idr context_idr; 386 387 struct intel_rps_client { 388 struct list_head link; 389 unsigned boosts; 390 } rps; 391 392 unsigned int bsd_ring; 393 }; 394 395 /* Used by dp and fdi links */ 396 struct intel_link_m_n { 397 uint32_t tu; 398 uint32_t gmch_m; 399 uint32_t gmch_n; 400 uint32_t link_m; 401 uint32_t link_n; 402 }; 403 404 void intel_link_compute_m_n(int bpp, int nlanes, 405 int pixel_clock, int link_clock, 406 struct intel_link_m_n *m_n); 407 408 /* Interface history: 409 * 410 * 1.1: Original. 411 * 1.2: Add Power Management 412 * 1.3: Add vblank support 413 * 1.4: Fix cmdbuffer path, add heap destroy 414 * 1.5: Add vblank pipe configuration 415 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 416 * - Support vertical blank on secondary display pipe 417 */ 418 #define DRIVER_MAJOR 1 419 #define DRIVER_MINOR 6 420 #define DRIVER_PATCHLEVEL 0 421 422 #define WATCH_LISTS 0 423 424 struct opregion_header; 425 struct opregion_acpi; 426 struct opregion_swsci; 427 struct opregion_asle; 428 429 struct intel_opregion { 430 struct opregion_header *header; 431 struct opregion_acpi *acpi; 432 struct opregion_swsci *swsci; 433 u32 swsci_gbda_sub_functions; 434 u32 swsci_sbcb_sub_functions; 435 struct opregion_asle *asle; 436 void *rvda; 437 const void *vbt; 438 u32 vbt_size; 439 u32 *lid_state; 440 struct work_struct asle_work; 441 }; 442 #define OPREGION_SIZE (8*1024) 443 444 struct intel_overlay; 445 struct intel_overlay_error_state; 446 447 #define I915_FENCE_REG_NONE -1 448 #define I915_MAX_NUM_FENCES 32 449 /* 32 fences + sign bit for FENCE_REG_NONE */ 450 #define I915_MAX_NUM_FENCE_BITS 6 451 452 struct drm_i915_fence_reg { 453 struct list_head lru_list; 454 struct drm_i915_gem_object *obj; 455 int pin_count; 456 }; 457 458 struct sdvo_device_mapping { 459 u8 initialized; 460 u8 dvo_port; 461 u8 slave_addr; 462 u8 dvo_wiring; 463 u8 i2c_pin; 464 u8 ddc_pin; 465 }; 466 467 struct intel_display_error_state; 468 469 struct drm_i915_error_state { 470 struct kref ref; 471 struct timeval time; 472 473 char error_msg[128]; 474 int iommu; 475 u32 reset_count; 476 u32 suspend_count; 477 478 /* Generic register state */ 479 u32 eir; 480 u32 pgtbl_er; 481 u32 ier; 482 u32 gtier[4]; 483 u32 ccid; 484 u32 derrmr; 485 u32 forcewake; 486 u32 error; /* gen6+ */ 487 u32 err_int; /* gen7 */ 488 u32 fault_data0; /* gen8, gen9 */ 489 u32 fault_data1; /* gen8, gen9 */ 490 u32 done_reg; 491 u32 gac_eco; 492 u32 gam_ecochk; 493 u32 gab_ctl; 494 u32 gfx_mode; 495 u32 extra_instdone[I915_NUM_INSTDONE_REG]; 496 u64 fence[I915_MAX_NUM_FENCES]; 497 struct intel_overlay_error_state *overlay; 498 struct intel_display_error_state *display; 499 struct drm_i915_error_object *semaphore_obj; 500 501 struct drm_i915_error_ring { 502 bool valid; 503 /* Software tracked state */ 504 bool waiting; 505 int hangcheck_score; 506 enum intel_ring_hangcheck_action hangcheck_action; 507 int num_requests; 508 509 /* our own tracking of ring head and tail */ 510 u32 cpu_ring_head; 511 u32 cpu_ring_tail; 512 513 u32 last_seqno; 514 u32 semaphore_seqno[I915_NUM_ENGINES - 1]; 515 516 /* Register state */ 517 u32 start; 518 u32 tail; 519 u32 head; 520 u32 ctl; 521 u32 hws; 522 u32 ipeir; 523 u32 ipehr; 524 u32 instdone; 525 u32 bbstate; 526 u32 instpm; 527 u32 instps; 528 u32 seqno; 529 u64 bbaddr; 530 u64 acthd; 531 u32 fault_reg; 532 u64 faddr; 533 u32 rc_psmi; /* sleep state */ 534 u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; 535 536 struct drm_i915_error_object { 537 int page_count; 538 u64 gtt_offset; 539 u32 *pages[0]; 540 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; 541 542 struct drm_i915_error_object *wa_ctx; 543 544 struct drm_i915_error_request { 545 long jiffies; 546 u32 seqno; 547 u32 tail; 548 } *requests; 549 550 struct { 551 u32 gfx_mode; 552 union { 553 u64 pdp[4]; 554 u32 pp_dir_base; 555 }; 556 } vm_info; 557 558 pid_t pid; 559 char comm[TASK_COMM_LEN]; 560 } ring[I915_NUM_ENGINES]; 561 562 struct drm_i915_error_buffer { 563 u32 size; 564 u32 name; 565 u32 rseqno[I915_NUM_ENGINES], wseqno; 566 u64 gtt_offset; 567 u32 read_domains; 568 u32 write_domain; 569 s32 fence_reg:I915_MAX_NUM_FENCE_BITS; 570 s32 pinned:2; 571 u32 tiling:2; 572 u32 dirty:1; 573 u32 purgeable:1; 574 u32 userptr:1; 575 s32 ring:4; 576 u32 cache_level:3; 577 } **active_bo, **pinned_bo; 578 579 u32 *active_bo_count, *pinned_bo_count; 580 u32 vm_count; 581 }; 582 583 struct intel_connector; 584 struct intel_encoder; 585 struct intel_crtc_state; 586 struct intel_initial_plane_config; 587 struct intel_crtc; 588 struct intel_limit; 589 struct dpll; 590 591 struct drm_i915_display_funcs { 592 int (*get_display_clock_speed)(struct drm_device *dev); 593 int (*get_fifo_size)(struct drm_device *dev, int plane); 594 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 595 int (*compute_intermediate_wm)(struct drm_device *dev, 596 struct intel_crtc *intel_crtc, 597 struct intel_crtc_state *newstate); 598 void (*initial_watermarks)(struct intel_crtc_state *cstate); 599 void (*optimize_watermarks)(struct intel_crtc_state *cstate); 600 void (*update_wm)(struct drm_crtc *crtc); 601 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 602 void (*modeset_commit_cdclk)(struct drm_atomic_state *state); 603 /* Returns the active state of the crtc, and if the crtc is active, 604 * fills out the pipe-config with the hw state. */ 605 bool (*get_pipe_config)(struct intel_crtc *, 606 struct intel_crtc_state *); 607 void (*get_initial_plane_config)(struct intel_crtc *, 608 struct intel_initial_plane_config *); 609 int (*crtc_compute_clock)(struct intel_crtc *crtc, 610 struct intel_crtc_state *crtc_state); 611 void (*crtc_enable)(struct drm_crtc *crtc); 612 void (*crtc_disable)(struct drm_crtc *crtc); 613 void (*audio_codec_enable)(struct drm_connector *connector, 614 struct intel_encoder *encoder, 615 const struct drm_display_mode *adjusted_mode); 616 void (*audio_codec_disable)(struct intel_encoder *encoder); 617 void (*fdi_link_train)(struct drm_crtc *crtc); 618 void (*init_clock_gating)(struct drm_device *dev); 619 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc, 620 struct drm_framebuffer *fb, 621 struct drm_i915_gem_object *obj, 622 struct drm_i915_gem_request *req, 623 uint32_t flags); 624 void (*hpd_irq_setup)(struct drm_device *dev); 625 /* clock updates for mode set */ 626 /* cursor updates */ 627 /* render clock increase/decrease */ 628 /* display clock increase/decrease */ 629 /* pll clock increase/decrease */ 630 631 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 632 void (*load_luts)(struct drm_crtc_state *crtc_state); 633 }; 634 635 enum forcewake_domain_id { 636 FW_DOMAIN_ID_RENDER = 0, 637 FW_DOMAIN_ID_BLITTER, 638 FW_DOMAIN_ID_MEDIA, 639 640 FW_DOMAIN_ID_COUNT 641 }; 642 643 enum forcewake_domains { 644 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER), 645 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER), 646 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA), 647 FORCEWAKE_ALL = (FORCEWAKE_RENDER | 648 FORCEWAKE_BLITTER | 649 FORCEWAKE_MEDIA) 650 }; 651 652 #define FW_REG_READ (1) 653 #define FW_REG_WRITE (2) 654 655 enum forcewake_domains 656 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv, 657 i915_reg_t reg, unsigned int op); 658 659 struct intel_uncore_funcs { 660 void (*force_wake_get)(struct drm_i915_private *dev_priv, 661 enum forcewake_domains domains); 662 void (*force_wake_put)(struct drm_i915_private *dev_priv, 663 enum forcewake_domains domains); 664 665 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 666 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 667 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 668 u64 (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 669 670 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r, 671 uint8_t val, bool trace); 672 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r, 673 uint16_t val, bool trace); 674 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r, 675 uint32_t val, bool trace); 676 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r, 677 u64 val, bool trace); 678 }; 679 680 struct intel_uncore { 681 struct lock lock; /** lock is also taken in irq contexts. */ 682 683 struct intel_uncore_funcs funcs; 684 685 unsigned fifo_count; 686 enum forcewake_domains fw_domains; 687 688 struct intel_uncore_forcewake_domain { 689 struct drm_i915_private *i915; 690 enum forcewake_domain_id id; 691 enum forcewake_domains mask; 692 unsigned wake_count; 693 struct hrtimer timer; 694 i915_reg_t reg_set; 695 u32 val_set; 696 u32 val_clear; 697 i915_reg_t reg_ack; 698 i915_reg_t reg_post; 699 u32 val_reset; 700 } fw_domain[FW_DOMAIN_ID_COUNT]; 701 702 int unclaimed_mmio_check; 703 }; 704 705 /* Iterate over initialised fw domains */ 706 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \ 707 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \ 708 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \ 709 (domain__)++) \ 710 for_each_if ((mask__) & (domain__)->mask) 711 712 #define for_each_fw_domain(domain__, dev_priv__) \ 713 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__) 714 715 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 716 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 717 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 718 719 struct intel_csr { 720 struct work_struct work; 721 const char *fw_path; 722 uint32_t *dmc_payload; 723 uint32_t dmc_fw_size; 724 uint32_t version; 725 uint32_t mmio_count; 726 i915_reg_t mmioaddr[8]; 727 uint32_t mmiodata[8]; 728 uint32_t dc_state; 729 uint32_t allowed_dc_mask; 730 }; 731 732 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \ 733 func(is_mobile) sep \ 734 func(is_i85x) sep \ 735 func(is_i915g) sep \ 736 func(is_i945gm) sep \ 737 func(is_g33) sep \ 738 func(need_gfx_hws) sep \ 739 func(is_g4x) sep \ 740 func(is_pineview) sep \ 741 func(is_broadwater) sep \ 742 func(is_crestline) sep \ 743 func(is_ivybridge) sep \ 744 func(is_valleyview) sep \ 745 func(is_cherryview) sep \ 746 func(is_haswell) sep \ 747 func(is_skylake) sep \ 748 func(is_broxton) sep \ 749 func(is_kabylake) sep \ 750 func(is_preliminary) sep \ 751 func(has_fbc) sep \ 752 func(has_pipe_cxsr) sep \ 753 func(has_hotplug) sep \ 754 func(cursor_needs_physical) sep \ 755 func(has_overlay) sep \ 756 func(overlay_needs_physical) sep \ 757 func(supports_tv) sep \ 758 func(has_llc) sep \ 759 func(has_snoop) sep \ 760 func(has_ddi) sep \ 761 func(has_fpga_dbg) 762 763 #define DEFINE_FLAG(name) u8 name:1 764 #define SEP_SEMICOLON ; 765 766 struct intel_device_info { 767 u32 display_mmio_offset; 768 u16 device_id; 769 u8 num_pipes:3; 770 u8 num_sprites[I915_MAX_PIPES]; 771 u8 gen; 772 u8 ring_mask; /* Rings supported by the HW */ 773 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON); 774 /* Register offsets for the various display pipes and transcoders */ 775 int pipe_offsets[I915_MAX_TRANSCODERS]; 776 int trans_offsets[I915_MAX_TRANSCODERS]; 777 int palette_offsets[I915_MAX_PIPES]; 778 int cursor_offsets[I915_MAX_PIPES]; 779 780 /* Slice/subslice/EU info */ 781 u8 slice_total; 782 u8 subslice_total; 783 u8 subslice_per_slice; 784 u8 eu_total; 785 u8 eu_per_subslice; 786 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ 787 u8 subslice_7eu[3]; 788 u8 has_slice_pg:1; 789 u8 has_subslice_pg:1; 790 u8 has_eu_pg:1; 791 792 struct color_luts { 793 u16 degamma_lut_size; 794 u16 gamma_lut_size; 795 } color; 796 }; 797 798 #undef DEFINE_FLAG 799 #undef SEP_SEMICOLON 800 801 enum i915_cache_level { 802 I915_CACHE_NONE = 0, 803 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 804 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 805 caches, eg sampler/render caches, and the 806 large Last-Level-Cache. LLC is coherent with 807 the CPU, but L3 is only visible to the GPU. */ 808 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 809 }; 810 811 struct i915_ctx_hang_stats { 812 /* This context had batch pending when hang was declared */ 813 unsigned batch_pending; 814 815 /* This context had batch active when hang was declared */ 816 unsigned batch_active; 817 818 /* Time when this context was last blamed for a GPU reset */ 819 unsigned long guilty_ts; 820 821 /* If the contexts causes a second GPU hang within this time, 822 * it is permanently banned from submitting any more work. 823 */ 824 unsigned long ban_period_seconds; 825 826 /* This context is banned to submit more work */ 827 bool banned; 828 }; 829 830 /* This must match up with the value previously used for execbuf2.rsvd1. */ 831 #define DEFAULT_CONTEXT_HANDLE 0 832 833 #define CONTEXT_NO_ZEROMAP (1<<0) 834 /** 835 * struct intel_context - as the name implies, represents a context. 836 * @ref: reference count. 837 * @user_handle: userspace tracking identity for this context. 838 * @remap_slice: l3 row remapping information. 839 * @flags: context specific flags: 840 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0. 841 * @file_priv: filp associated with this context (NULL for global default 842 * context). 843 * @hang_stats: information about the role of this context in possible GPU 844 * hangs. 845 * @ppgtt: virtual memory space used by this context. 846 * @legacy_hw_ctx: render context backing object and whether it is correctly 847 * initialized (legacy ring submission mechanism only). 848 * @link: link in the global list of contexts. 849 * 850 * Contexts are memory images used by the hardware to store copies of their 851 * internal state. 852 */ 853 struct intel_context { 854 struct kref ref; 855 int user_handle; 856 uint8_t remap_slice; 857 struct drm_i915_private *i915; 858 int flags; 859 struct drm_i915_file_private *file_priv; 860 struct i915_ctx_hang_stats hang_stats; 861 struct i915_hw_ppgtt *ppgtt; 862 863 /* Legacy ring buffer submission */ 864 struct { 865 struct drm_i915_gem_object *rcs_state; 866 bool initialized; 867 } legacy_hw_ctx; 868 869 /* Execlists */ 870 struct { 871 struct drm_i915_gem_object *state; 872 struct intel_ringbuffer *ringbuf; 873 int pin_count; 874 struct i915_vma *lrc_vma; 875 u64 lrc_desc; 876 uint32_t *lrc_reg_state; 877 } engine[I915_NUM_ENGINES]; 878 879 struct list_head link; 880 }; 881 882 enum fb_op_origin { 883 ORIGIN_GTT, 884 ORIGIN_CPU, 885 ORIGIN_CS, 886 ORIGIN_FLIP, 887 ORIGIN_DIRTYFB, 888 }; 889 890 struct intel_fbc { 891 /* This is always the inner lock when overlapping with struct_mutex and 892 * it's the outer lock when overlapping with stolen_lock. */ 893 struct lock lock; 894 unsigned threshold; 895 unsigned int possible_framebuffer_bits; 896 unsigned int busy_bits; 897 unsigned int visible_pipes_mask; 898 struct intel_crtc *crtc; 899 900 struct drm_mm_node compressed_fb; 901 struct drm_mm_node *compressed_llb; 902 903 bool false_color; 904 905 bool enabled; 906 bool active; 907 908 struct intel_fbc_state_cache { 909 struct { 910 unsigned int mode_flags; 911 uint32_t hsw_bdw_pixel_rate; 912 } crtc; 913 914 struct { 915 unsigned int rotation; 916 int src_w; 917 int src_h; 918 bool visible; 919 } plane; 920 921 struct { 922 u64 ilk_ggtt_offset; 923 uint32_t pixel_format; 924 unsigned int stride; 925 int fence_reg; 926 unsigned int tiling_mode; 927 } fb; 928 } state_cache; 929 930 struct intel_fbc_reg_params { 931 struct { 932 enum i915_pipe pipe; 933 enum plane plane; 934 unsigned int fence_y_offset; 935 } crtc; 936 937 struct { 938 u64 ggtt_offset; 939 uint32_t pixel_format; 940 unsigned int stride; 941 int fence_reg; 942 } fb; 943 944 int cfb_size; 945 } params; 946 947 struct intel_fbc_work { 948 bool scheduled; 949 u32 scheduled_vblank; 950 struct work_struct work; 951 } work; 952 953 const char *no_fbc_reason; 954 }; 955 956 /** 957 * HIGH_RR is the highest eDP panel refresh rate read from EDID 958 * LOW_RR is the lowest eDP panel refresh rate found from EDID 959 * parsing for same resolution. 960 */ 961 enum drrs_refresh_rate_type { 962 DRRS_HIGH_RR, 963 DRRS_LOW_RR, 964 DRRS_MAX_RR, /* RR count */ 965 }; 966 967 enum drrs_support_type { 968 DRRS_NOT_SUPPORTED = 0, 969 STATIC_DRRS_SUPPORT = 1, 970 SEAMLESS_DRRS_SUPPORT = 2 971 }; 972 973 struct intel_dp; 974 struct i915_drrs { 975 struct lock mutex; 976 struct delayed_work work; 977 struct intel_dp *dp; 978 unsigned busy_frontbuffer_bits; 979 enum drrs_refresh_rate_type refresh_rate_type; 980 enum drrs_support_type type; 981 }; 982 983 struct i915_psr { 984 struct lock lock; 985 bool sink_support; 986 bool source_ok; 987 struct intel_dp *enabled; 988 bool active; 989 struct delayed_work work; 990 unsigned busy_frontbuffer_bits; 991 bool psr2_support; 992 bool aux_frame_sync; 993 bool link_standby; 994 }; 995 996 enum intel_pch { 997 PCH_NONE = 0, /* No PCH present */ 998 PCH_IBX, /* Ibexpeak PCH */ 999 PCH_CPT, /* Cougarpoint PCH */ 1000 PCH_LPT, /* Lynxpoint PCH */ 1001 PCH_SPT, /* Sunrisepoint PCH */ 1002 PCH_KBP, /* Kabypoint PCH */ 1003 PCH_NOP, 1004 }; 1005 1006 enum intel_sbi_destination { 1007 SBI_ICLK, 1008 SBI_MPHY, 1009 }; 1010 1011 #define QUIRK_PIPEA_FORCE (1<<0) 1012 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 1013 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 1014 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 1015 #define QUIRK_PIPEB_FORCE (1<<4) 1016 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 1017 1018 struct intel_fbdev; 1019 struct intel_fbc_work; 1020 1021 struct intel_gmbus { 1022 struct i2c_adapter adapter; 1023 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 1024 u32 force_bit; 1025 u32 reg0; 1026 i915_reg_t gpio_reg; 1027 struct i2c_algo_bit_data bit_algo; 1028 struct drm_i915_private *dev_priv; 1029 }; 1030 1031 struct i915_suspend_saved_registers { 1032 u32 saveDSPARB; 1033 u32 saveLVDS; 1034 u32 savePP_ON_DELAYS; 1035 u32 savePP_OFF_DELAYS; 1036 u32 savePP_ON; 1037 u32 savePP_OFF; 1038 u32 savePP_CONTROL; 1039 u32 savePP_DIVISOR; 1040 u32 saveFBC_CONTROL; 1041 u32 saveCACHE_MODE_0; 1042 u32 saveMI_ARB_STATE; 1043 u32 saveSWF0[16]; 1044 u32 saveSWF1[16]; 1045 u32 saveSWF3[3]; 1046 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 1047 u32 savePCH_PORT_HOTPLUG; 1048 u16 saveGCDGMBUS; 1049 }; 1050 1051 struct vlv_s0ix_state { 1052 /* GAM */ 1053 u32 wr_watermark; 1054 u32 gfx_prio_ctrl; 1055 u32 arb_mode; 1056 u32 gfx_pend_tlb0; 1057 u32 gfx_pend_tlb1; 1058 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 1059 u32 media_max_req_count; 1060 u32 gfx_max_req_count; 1061 u32 render_hwsp; 1062 u32 ecochk; 1063 u32 bsd_hwsp; 1064 u32 blt_hwsp; 1065 u32 tlb_rd_addr; 1066 1067 /* MBC */ 1068 u32 g3dctl; 1069 u32 gsckgctl; 1070 u32 mbctl; 1071 1072 /* GCP */ 1073 u32 ucgctl1; 1074 u32 ucgctl3; 1075 u32 rcgctl1; 1076 u32 rcgctl2; 1077 u32 rstctl; 1078 u32 misccpctl; 1079 1080 /* GPM */ 1081 u32 gfxpause; 1082 u32 rpdeuhwtc; 1083 u32 rpdeuc; 1084 u32 ecobus; 1085 u32 pwrdwnupctl; 1086 u32 rp_down_timeout; 1087 u32 rp_deucsw; 1088 u32 rcubmabdtmr; 1089 u32 rcedata; 1090 u32 spare2gh; 1091 1092 /* Display 1 CZ domain */ 1093 u32 gt_imr; 1094 u32 gt_ier; 1095 u32 pm_imr; 1096 u32 pm_ier; 1097 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 1098 1099 /* GT SA CZ domain */ 1100 u32 tilectl; 1101 u32 gt_fifoctl; 1102 u32 gtlc_wake_ctrl; 1103 u32 gtlc_survive; 1104 u32 pmwgicz; 1105 1106 /* Display 2 CZ domain */ 1107 u32 gu_ctl0; 1108 u32 gu_ctl1; 1109 u32 pcbr; 1110 u32 clock_gate_dis2; 1111 }; 1112 1113 struct intel_rps_ei { 1114 u32 cz_clock; 1115 u32 render_c0; 1116 u32 media_c0; 1117 }; 1118 1119 struct intel_gen6_power_mgmt { 1120 /* 1121 * work, interrupts_enabled and pm_iir are protected by 1122 * dev_priv->irq_lock 1123 */ 1124 struct work_struct work; 1125 bool interrupts_enabled; 1126 u32 pm_iir; 1127 1128 /* Frequencies are stored in potentially platform dependent multiples. 1129 * In other words, *_freq needs to be multiplied by X to be interesting. 1130 * Soft limits are those which are used for the dynamic reclocking done 1131 * by the driver (raise frequencies under heavy loads, and lower for 1132 * lighter loads). Hard limits are those imposed by the hardware. 1133 * 1134 * A distinction is made for overclocking, which is never enabled by 1135 * default, and is considered to be above the hard limit if it's 1136 * possible at all. 1137 */ 1138 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 1139 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 1140 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 1141 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 1142 u8 min_freq; /* AKA RPn. Minimum frequency */ 1143 u8 idle_freq; /* Frequency to request when we are idle */ 1144 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 1145 u8 rp1_freq; /* "less than" RP0 power/freqency */ 1146 u8 rp0_freq; /* Non-overclocked max frequency. */ 1147 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 1148 1149 u8 up_threshold; /* Current %busy required to uplock */ 1150 u8 down_threshold; /* Current %busy required to downclock */ 1151 1152 int last_adj; 1153 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 1154 1155 struct lock client_lock; 1156 struct list_head clients; 1157 bool client_boost; 1158 1159 bool enabled; 1160 struct delayed_work delayed_resume_work; 1161 unsigned boosts; 1162 1163 struct intel_rps_client semaphores, mmioflips; 1164 1165 /* manual wa residency calculations */ 1166 struct intel_rps_ei up_ei, down_ei; 1167 1168 /* 1169 * Protects RPS/RC6 register access and PCU communication. 1170 * Must be taken after struct_mutex if nested. Note that 1171 * this lock may be held for long periods of time when 1172 * talking to hw - so only take it when talking to hw! 1173 */ 1174 struct lock hw_lock; 1175 }; 1176 1177 /* defined intel_pm.c */ 1178 extern struct lock mchdev_lock; 1179 1180 struct intel_ilk_power_mgmt { 1181 u8 cur_delay; 1182 u8 min_delay; 1183 u8 max_delay; 1184 u8 fmax; 1185 u8 fstart; 1186 1187 u64 last_count1; 1188 unsigned long last_time1; 1189 unsigned long chipset_power; 1190 u64 last_count2; 1191 u64 last_time2; 1192 unsigned long gfx_power; 1193 u8 corr; 1194 1195 int c_m; 1196 int r_t; 1197 }; 1198 1199 struct drm_i915_private; 1200 struct i915_power_well; 1201 1202 struct i915_power_well_ops { 1203 /* 1204 * Synchronize the well's hw state to match the current sw state, for 1205 * example enable/disable it based on the current refcount. Called 1206 * during driver init and resume time, possibly after first calling 1207 * the enable/disable handlers. 1208 */ 1209 void (*sync_hw)(struct drm_i915_private *dev_priv, 1210 struct i915_power_well *power_well); 1211 /* 1212 * Enable the well and resources that depend on it (for example 1213 * interrupts located on the well). Called after the 0->1 refcount 1214 * transition. 1215 */ 1216 void (*enable)(struct drm_i915_private *dev_priv, 1217 struct i915_power_well *power_well); 1218 /* 1219 * Disable the well and resources that depend on it. Called after 1220 * the 1->0 refcount transition. 1221 */ 1222 void (*disable)(struct drm_i915_private *dev_priv, 1223 struct i915_power_well *power_well); 1224 /* Returns the hw enabled state. */ 1225 bool (*is_enabled)(struct drm_i915_private *dev_priv, 1226 struct i915_power_well *power_well); 1227 }; 1228 1229 /* Power well structure for haswell */ 1230 struct i915_power_well { 1231 const char *name; 1232 bool always_on; 1233 /* power well enable/disable usage count */ 1234 int count; 1235 /* cached hw enabled state */ 1236 bool hw_enabled; 1237 unsigned long domains; 1238 unsigned long data; 1239 const struct i915_power_well_ops *ops; 1240 }; 1241 1242 struct i915_power_domains { 1243 /* 1244 * Power wells needed for initialization at driver init and suspend 1245 * time are on. They are kept on until after the first modeset. 1246 */ 1247 bool init_power_on; 1248 bool initializing; 1249 int power_well_count; 1250 1251 struct lock lock; 1252 int domain_use_count[POWER_DOMAIN_NUM]; 1253 struct i915_power_well *power_wells; 1254 }; 1255 1256 #define MAX_L3_SLICES 2 1257 struct intel_l3_parity { 1258 u32 *remap_info[MAX_L3_SLICES]; 1259 struct work_struct error_work; 1260 int which_slice; 1261 }; 1262 1263 struct i915_gem_mm { 1264 /** Memory allocator for GTT stolen memory */ 1265 struct drm_mm stolen; 1266 /** Protects the usage of the GTT stolen memory allocator. This is 1267 * always the inner lock when overlapping with struct_mutex. */ 1268 struct lock stolen_lock; 1269 1270 /** List of all objects in gtt_space. Used to restore gtt 1271 * mappings on resume */ 1272 struct list_head bound_list; 1273 /** 1274 * List of objects which are not bound to the GTT (thus 1275 * are idle and not used by the GPU) but still have 1276 * (presumably uncached) pages still attached. 1277 */ 1278 struct list_head unbound_list; 1279 1280 /** Usable portion of the GTT for GEM */ 1281 unsigned long stolen_base; /* limited to low memory (32-bit) */ 1282 1283 /** PPGTT used for aliasing the PPGTT with the GTT */ 1284 struct i915_hw_ppgtt *aliasing_ppgtt; 1285 1286 struct notifier_block oom_notifier; 1287 struct notifier_block vmap_notifier; 1288 #if 0 1289 struct shrinker shrinker; 1290 #endif 1291 bool shrinker_no_lock_stealing; 1292 1293 /** LRU list of objects with fence regs on them. */ 1294 struct list_head fence_list; 1295 1296 /** 1297 * We leave the user IRQ off as much as possible, 1298 * but this means that requests will finish and never 1299 * be retired once the system goes idle. Set a timer to 1300 * fire periodically while the ring is running. When it 1301 * fires, go retire requests. 1302 */ 1303 struct delayed_work retire_work; 1304 1305 /** 1306 * When we detect an idle GPU, we want to turn on 1307 * powersaving features. So once we see that there 1308 * are no more requests outstanding and no more 1309 * arrive within a small period of time, we fire 1310 * off the idle_work. 1311 */ 1312 struct delayed_work idle_work; 1313 1314 /** 1315 * Are we in a non-interruptible section of code like 1316 * modesetting? 1317 */ 1318 bool interruptible; 1319 1320 /** 1321 * Is the GPU currently considered idle, or busy executing userspace 1322 * requests? Whilst idle, we attempt to power down the hardware and 1323 * display clocks. In order to reduce the effect on performance, there 1324 * is a slight delay before we do so. 1325 */ 1326 bool busy; 1327 1328 /* the indicator for dispatch video commands on two BSD rings */ 1329 unsigned int bsd_ring_dispatch_index; 1330 1331 /** Bit 6 swizzling required for X tiling */ 1332 uint32_t bit_6_swizzle_x; 1333 /** Bit 6 swizzling required for Y tiling */ 1334 uint32_t bit_6_swizzle_y; 1335 1336 /* accounting, useful for userland debugging */ 1337 struct spinlock object_stat_lock; 1338 size_t object_memory; 1339 u32 object_count; 1340 }; 1341 1342 struct drm_i915_error_state_buf { 1343 struct drm_i915_private *i915; 1344 unsigned bytes; 1345 unsigned size; 1346 int err; 1347 u8 *buf; 1348 loff_t start; 1349 loff_t pos; 1350 }; 1351 1352 struct i915_error_state_file_priv { 1353 struct drm_device *dev; 1354 struct drm_i915_error_state *error; 1355 }; 1356 1357 struct i915_gpu_error { 1358 /* For hangcheck timer */ 1359 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ 1360 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) 1361 /* Hang gpu twice in this window and your context gets banned */ 1362 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000) 1363 1364 struct workqueue_struct *hangcheck_wq; 1365 struct delayed_work hangcheck_work; 1366 1367 /* For reset and error_state handling. */ 1368 struct lock lock; 1369 /* Protected by the above dev->gpu_error.lock. */ 1370 struct drm_i915_error_state *first_error; 1371 1372 unsigned long missed_irq_rings; 1373 1374 /** 1375 * State variable controlling the reset flow and count 1376 * 1377 * This is a counter which gets incremented when reset is triggered, 1378 * and again when reset has been handled. So odd values (lowest bit set) 1379 * means that reset is in progress and even values that 1380 * (reset_counter >> 1):th reset was successfully completed. 1381 * 1382 * If reset is not completed succesfully, the I915_WEDGE bit is 1383 * set meaning that hardware is terminally sour and there is no 1384 * recovery. All waiters on the reset_queue will be woken when 1385 * that happens. 1386 * 1387 * This counter is used by the wait_seqno code to notice that reset 1388 * event happened and it needs to restart the entire ioctl (since most 1389 * likely the seqno it waited for won't ever signal anytime soon). 1390 * 1391 * This is important for lock-free wait paths, where no contended lock 1392 * naturally enforces the correct ordering between the bail-out of the 1393 * waiter and the gpu reset work code. 1394 */ 1395 atomic_t reset_counter; 1396 1397 #define I915_RESET_IN_PROGRESS_FLAG 1 1398 #define I915_WEDGED (1 << 31) 1399 1400 /** 1401 * Waitqueue to signal when the reset has completed. Used by clients 1402 * that wait for dev_priv->mm.wedged to settle. 1403 */ 1404 wait_queue_head_t reset_queue; 1405 1406 /* Userspace knobs for gpu hang simulation; 1407 * combines both a ring mask, and extra flags 1408 */ 1409 u32 stop_rings; 1410 #define I915_STOP_RING_ALLOW_BAN (1 << 31) 1411 #define I915_STOP_RING_ALLOW_WARN (1 << 30) 1412 1413 /* For missed irq/seqno simulation. */ 1414 unsigned int test_irq_rings; 1415 }; 1416 1417 enum modeset_restore { 1418 MODESET_ON_LID_OPEN, 1419 MODESET_DONE, 1420 MODESET_SUSPENDED, 1421 }; 1422 1423 #define DP_AUX_A 0x40 1424 #define DP_AUX_B 0x10 1425 #define DP_AUX_C 0x20 1426 #define DP_AUX_D 0x30 1427 1428 #define DDC_PIN_B 0x05 1429 #define DDC_PIN_C 0x04 1430 #define DDC_PIN_D 0x06 1431 1432 struct ddi_vbt_port_info { 1433 /* 1434 * This is an index in the HDMI/DVI DDI buffer translation table. 1435 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1436 * populate this field. 1437 */ 1438 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1439 uint8_t hdmi_level_shift; 1440 1441 uint8_t supports_dvi:1; 1442 uint8_t supports_hdmi:1; 1443 uint8_t supports_dp:1; 1444 1445 uint8_t alternate_aux_channel; 1446 uint8_t alternate_ddc_pin; 1447 1448 uint8_t dp_boost_level; 1449 uint8_t hdmi_boost_level; 1450 }; 1451 1452 enum psr_lines_to_wait { 1453 PSR_0_LINES_TO_WAIT = 0, 1454 PSR_1_LINE_TO_WAIT, 1455 PSR_4_LINES_TO_WAIT, 1456 PSR_8_LINES_TO_WAIT 1457 }; 1458 1459 struct intel_vbt_data { 1460 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1461 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1462 1463 /* Feature bits */ 1464 unsigned int int_tv_support:1; 1465 unsigned int lvds_dither:1; 1466 unsigned int lvds_vbt:1; 1467 unsigned int int_crt_support:1; 1468 unsigned int lvds_use_ssc:1; 1469 unsigned int display_clock_mode:1; 1470 unsigned int fdi_rx_polarity_inverted:1; 1471 unsigned int panel_type:4; 1472 int lvds_ssc_freq; 1473 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1474 1475 enum drrs_support_type drrs_type; 1476 1477 struct { 1478 int rate; 1479 int lanes; 1480 int preemphasis; 1481 int vswing; 1482 bool low_vswing; 1483 bool initialized; 1484 bool support; 1485 int bpp; 1486 struct edp_power_seq pps; 1487 } edp; 1488 1489 struct { 1490 bool full_link; 1491 bool require_aux_wakeup; 1492 int idle_frames; 1493 enum psr_lines_to_wait lines_to_wait; 1494 int tp1_wakeup_time; 1495 int tp2_tp3_wakeup_time; 1496 } psr; 1497 1498 struct { 1499 u16 pwm_freq_hz; 1500 bool present; 1501 bool active_low_pwm; 1502 u8 min_brightness; /* min_brightness/255 of max */ 1503 } backlight; 1504 1505 /* MIPI DSI */ 1506 struct { 1507 u16 panel_id; 1508 struct mipi_config *config; 1509 struct mipi_pps_data *pps; 1510 u8 seq_version; 1511 u32 size; 1512 u8 *data; 1513 const u8 *sequence[MIPI_SEQ_MAX]; 1514 } dsi; 1515 1516 int crt_ddc_pin; 1517 1518 int child_dev_num; 1519 union child_device_config *child_dev; 1520 1521 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1522 struct sdvo_device_mapping sdvo_mappings[2]; 1523 }; 1524 1525 enum intel_ddb_partitioning { 1526 INTEL_DDB_PART_1_2, 1527 INTEL_DDB_PART_5_6, /* IVB+ */ 1528 }; 1529 1530 struct intel_wm_level { 1531 bool enable; 1532 uint32_t pri_val; 1533 uint32_t spr_val; 1534 uint32_t cur_val; 1535 uint32_t fbc_val; 1536 }; 1537 1538 struct ilk_wm_values { 1539 uint32_t wm_pipe[3]; 1540 uint32_t wm_lp[3]; 1541 uint32_t wm_lp_spr[3]; 1542 uint32_t wm_linetime[3]; 1543 bool enable_fbc_wm; 1544 enum intel_ddb_partitioning partitioning; 1545 }; 1546 1547 struct vlv_pipe_wm { 1548 uint16_t primary; 1549 uint16_t sprite[2]; 1550 uint8_t cursor; 1551 }; 1552 1553 struct vlv_sr_wm { 1554 uint16_t plane; 1555 uint8_t cursor; 1556 }; 1557 1558 struct vlv_wm_values { 1559 struct vlv_pipe_wm pipe[3]; 1560 struct vlv_sr_wm sr; 1561 struct { 1562 uint8_t cursor; 1563 uint8_t sprite[2]; 1564 uint8_t primary; 1565 } ddl[3]; 1566 uint8_t level; 1567 bool cxsr; 1568 }; 1569 1570 struct skl_ddb_entry { 1571 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1572 }; 1573 1574 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1575 { 1576 return entry->end - entry->start; 1577 } 1578 1579 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1580 const struct skl_ddb_entry *e2) 1581 { 1582 if (e1->start == e2->start && e1->end == e2->end) 1583 return true; 1584 1585 return false; 1586 } 1587 1588 struct skl_ddb_allocation { 1589 struct skl_ddb_entry pipe[I915_MAX_PIPES]; 1590 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ 1591 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1592 }; 1593 1594 struct skl_wm_values { 1595 bool dirty[I915_MAX_PIPES]; 1596 struct skl_ddb_allocation ddb; 1597 uint32_t wm_linetime[I915_MAX_PIPES]; 1598 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8]; 1599 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES]; 1600 }; 1601 1602 struct skl_wm_level { 1603 bool plane_en[I915_MAX_PLANES]; 1604 uint16_t plane_res_b[I915_MAX_PLANES]; 1605 uint8_t plane_res_l[I915_MAX_PLANES]; 1606 }; 1607 1608 /* 1609 * This struct helps tracking the state needed for runtime PM, which puts the 1610 * device in PCI D3 state. Notice that when this happens, nothing on the 1611 * graphics device works, even register access, so we don't get interrupts nor 1612 * anything else. 1613 * 1614 * Every piece of our code that needs to actually touch the hardware needs to 1615 * either call intel_runtime_pm_get or call intel_display_power_get with the 1616 * appropriate power domain. 1617 * 1618 * Our driver uses the autosuspend delay feature, which means we'll only really 1619 * suspend if we stay with zero refcount for a certain amount of time. The 1620 * default value is currently very conservative (see intel_runtime_pm_enable), but 1621 * it can be changed with the standard runtime PM files from sysfs. 1622 * 1623 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1624 * goes back to false exactly before we reenable the IRQs. We use this variable 1625 * to check if someone is trying to enable/disable IRQs while they're supposed 1626 * to be disabled. This shouldn't happen and we'll print some error messages in 1627 * case it happens. 1628 * 1629 * For more, read the Documentation/power/runtime_pm.txt. 1630 */ 1631 struct i915_runtime_pm { 1632 atomic_t wakeref_count; 1633 atomic_t atomic_seq; 1634 bool suspended; 1635 bool irqs_enabled; 1636 }; 1637 1638 enum intel_pipe_crc_source { 1639 INTEL_PIPE_CRC_SOURCE_NONE, 1640 INTEL_PIPE_CRC_SOURCE_PLANE1, 1641 INTEL_PIPE_CRC_SOURCE_PLANE2, 1642 INTEL_PIPE_CRC_SOURCE_PF, 1643 INTEL_PIPE_CRC_SOURCE_PIPE, 1644 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1645 INTEL_PIPE_CRC_SOURCE_TV, 1646 INTEL_PIPE_CRC_SOURCE_DP_B, 1647 INTEL_PIPE_CRC_SOURCE_DP_C, 1648 INTEL_PIPE_CRC_SOURCE_DP_D, 1649 INTEL_PIPE_CRC_SOURCE_AUTO, 1650 INTEL_PIPE_CRC_SOURCE_MAX, 1651 }; 1652 1653 struct intel_pipe_crc_entry { 1654 uint32_t frame; 1655 uint32_t crc[5]; 1656 }; 1657 1658 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1659 struct intel_pipe_crc { 1660 struct spinlock lock; 1661 bool opened; /* exclusive access to the result file */ 1662 struct intel_pipe_crc_entry *entries; 1663 enum intel_pipe_crc_source source; 1664 int head, tail; 1665 wait_queue_head_t wq; 1666 }; 1667 1668 struct i915_frontbuffer_tracking { 1669 struct lock lock; 1670 1671 /* 1672 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1673 * scheduled flips. 1674 */ 1675 unsigned busy_bits; 1676 unsigned flip_bits; 1677 }; 1678 1679 struct i915_wa_reg { 1680 i915_reg_t addr; 1681 u32 value; 1682 /* bitmask representing WA bits */ 1683 u32 mask; 1684 }; 1685 1686 /* 1687 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only 1688 * allowing it for RCS as we don't foresee any requirement of having 1689 * a whitelist for other engines. When it is really required for 1690 * other engines then the limit need to be increased. 1691 */ 1692 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS) 1693 1694 struct i915_workarounds { 1695 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1696 u32 count; 1697 u32 hw_whitelist_count[I915_NUM_ENGINES]; 1698 }; 1699 1700 struct i915_virtual_gpu { 1701 bool active; 1702 }; 1703 1704 struct i915_execbuffer_params { 1705 struct drm_device *dev; 1706 struct drm_file *file; 1707 uint32_t dispatch_flags; 1708 uint32_t args_batch_start_offset; 1709 uint64_t batch_obj_vm_offset; 1710 struct intel_engine_cs *engine; 1711 struct drm_i915_gem_object *batch_obj; 1712 struct intel_context *ctx; 1713 struct drm_i915_gem_request *request; 1714 }; 1715 1716 /* used in computing the new watermarks state */ 1717 struct intel_wm_config { 1718 unsigned int num_pipes_active; 1719 bool sprites_enabled; 1720 bool sprites_scaled; 1721 }; 1722 1723 struct drm_i915_private { 1724 struct drm_device *dev; 1725 struct kmem_cache *objects; 1726 struct kmem_cache *vmas; 1727 struct kmem_cache *requests; 1728 1729 struct intel_device_info info; 1730 1731 int relative_constants_mode; 1732 1733 char __iomem *regs; 1734 1735 struct intel_uncore uncore; 1736 1737 struct i915_virtual_gpu vgpu; 1738 1739 struct intel_guc guc; 1740 1741 struct intel_csr csr; 1742 1743 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1744 1745 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1746 * controller on different i2c buses. */ 1747 struct lock gmbus_mutex; 1748 1749 /** 1750 * Base address of the gmbus and gpio block. 1751 */ 1752 uint32_t gpio_mmio_base; 1753 1754 /* MMIO base address for MIPI regs */ 1755 uint32_t mipi_mmio_base; 1756 1757 uint32_t psr_mmio_base; 1758 1759 wait_queue_head_t gmbus_wait_queue; 1760 1761 struct pci_dev *bridge_dev; 1762 struct intel_engine_cs engine[I915_NUM_ENGINES]; 1763 struct drm_i915_gem_object *semaphore_obj; 1764 uint32_t last_seqno, next_seqno; 1765 1766 struct drm_dma_handle *status_page_dmah; 1767 struct resource *mch_res; 1768 int mch_res_rid; 1769 1770 /* protects the irq masks */ 1771 struct lock irq_lock; 1772 1773 /* protects the mmio flip data */ 1774 struct spinlock mmio_flip_lock; 1775 1776 bool display_irqs_enabled; 1777 1778 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1779 struct pm_qos_request pm_qos; 1780 1781 /* Sideband mailbox protection */ 1782 struct lock sb_lock; 1783 1784 /** Cached value of IMR to avoid reads in updating the bitfield */ 1785 union { 1786 u32 irq_mask; 1787 u32 de_irq_mask[I915_MAX_PIPES]; 1788 }; 1789 u32 gt_irq_mask; 1790 u32 pm_irq_mask; 1791 u32 pm_rps_events; 1792 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1793 1794 struct i915_hotplug hotplug; 1795 struct intel_fbc fbc; 1796 struct i915_drrs drrs; 1797 struct intel_opregion opregion; 1798 struct intel_vbt_data vbt; 1799 1800 bool preserve_bios_swizzle; 1801 1802 /* overlay */ 1803 struct intel_overlay *overlay; 1804 1805 /* backlight registers and fields in struct intel_panel */ 1806 struct lock backlight_lock; 1807 1808 /* LVDS info */ 1809 bool no_aux_handshake; 1810 1811 /* protects panel power sequencer state */ 1812 struct lock pps_mutex; 1813 1814 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1815 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1816 1817 unsigned int fsb_freq, mem_freq, is_ddr3; 1818 unsigned int skl_boot_cdclk; 1819 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq; 1820 unsigned int max_dotclk_freq; 1821 unsigned int rawclk_freq; 1822 unsigned int hpll_freq; 1823 unsigned int czclk_freq; 1824 1825 /** 1826 * wq - Driver workqueue for GEM. 1827 * 1828 * NOTE: Work items scheduled here are not allowed to grab any modeset 1829 * locks, for otherwise the flushing done in the pageflip code will 1830 * result in deadlocks. 1831 */ 1832 struct workqueue_struct *wq; 1833 1834 /* Display functions */ 1835 struct drm_i915_display_funcs display; 1836 1837 /* PCH chipset type */ 1838 enum intel_pch pch_type; 1839 unsigned short pch_id; 1840 1841 unsigned long quirks; 1842 1843 enum modeset_restore modeset_restore; 1844 struct lock modeset_restore_lock; 1845 struct drm_atomic_state *modeset_restore_state; 1846 1847 struct list_head vm_list; /* Global list of all address spaces */ 1848 struct i915_ggtt ggtt; /* VM representing the global address space */ 1849 1850 struct i915_gem_mm mm; 1851 DECLARE_HASHTABLE(mm_structs, 7); 1852 struct lock mm_lock; 1853 1854 /* Kernel Modesetting */ 1855 1856 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1857 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1858 wait_queue_head_t pending_flip_queue; 1859 1860 #ifdef CONFIG_DEBUG_FS 1861 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1862 #endif 1863 1864 /* dpll and cdclk state is protected by connection_mutex */ 1865 int num_shared_dpll; 1866 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1867 const struct intel_dpll_mgr *dpll_mgr; 1868 1869 /* 1870 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1871 * Must be global rather than per dpll, because on some platforms 1872 * plls share registers. 1873 */ 1874 struct lock dpll_lock; 1875 1876 unsigned int active_crtcs; 1877 unsigned int min_pixclk[I915_MAX_PIPES]; 1878 1879 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1880 1881 struct i915_workarounds workarounds; 1882 1883 struct i915_frontbuffer_tracking fb_tracking; 1884 1885 u16 orig_clock; 1886 1887 bool mchbar_need_disable; 1888 1889 struct intel_l3_parity l3_parity; 1890 1891 /* Cannot be determined by PCIID. You must always read a register. */ 1892 u32 edram_cap; 1893 1894 /* gen6+ rps state */ 1895 struct intel_gen6_power_mgmt rps; 1896 1897 /* ilk-only ips/rps state. Everything in here is protected by the global 1898 * mchdev_lock in intel_pm.c */ 1899 struct intel_ilk_power_mgmt ips; 1900 1901 struct i915_power_domains power_domains; 1902 1903 struct i915_psr psr; 1904 1905 struct i915_gpu_error gpu_error; 1906 1907 struct drm_i915_gem_object *vlv_pctx; 1908 1909 #ifdef CONFIG_DRM_FBDEV_EMULATION 1910 /* list of fbdev register on this device */ 1911 struct intel_fbdev *fbdev; 1912 struct work_struct fbdev_suspend_work; 1913 #endif 1914 1915 struct drm_property *broadcast_rgb_property; 1916 struct drm_property *force_audio_property; 1917 1918 /* hda/i915 audio component */ 1919 struct i915_audio_component *audio_component; 1920 bool audio_component_registered; 1921 /** 1922 * av_mutex - mutex for audio/video sync 1923 * 1924 */ 1925 struct lock av_mutex; 1926 1927 uint32_t hw_context_size; 1928 struct list_head context_list; 1929 1930 u32 fdi_rx_config; 1931 1932 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1933 u32 chv_phy_control; 1934 /* 1935 * Shadows for CHV DPLL_MD regs to keep the state 1936 * checker somewhat working in the presence hardware 1937 * crappiness (can't read out DPLL_MD for pipes B & C). 1938 */ 1939 u32 chv_dpll_md[I915_MAX_PIPES]; 1940 u32 bxt_phy_grc; 1941 1942 u32 suspend_count; 1943 bool suspended_to_idle; 1944 struct i915_suspend_saved_registers regfile; 1945 struct vlv_s0ix_state vlv_s0ix_state; 1946 1947 struct { 1948 /* 1949 * Raw watermark latency values: 1950 * in 0.1us units for WM0, 1951 * in 0.5us units for WM1+. 1952 */ 1953 /* primary */ 1954 uint16_t pri_latency[5]; 1955 /* sprite */ 1956 uint16_t spr_latency[5]; 1957 /* cursor */ 1958 uint16_t cur_latency[5]; 1959 /* 1960 * Raw watermark memory latency values 1961 * for SKL for all 8 levels 1962 * in 1us units. 1963 */ 1964 uint16_t skl_latency[8]; 1965 1966 /* Committed wm config */ 1967 struct intel_wm_config config; 1968 1969 /* 1970 * The skl_wm_values structure is a bit too big for stack 1971 * allocation, so we keep the staging struct where we store 1972 * intermediate results here instead. 1973 */ 1974 struct skl_wm_values skl_results; 1975 1976 /* current hardware state */ 1977 union { 1978 struct ilk_wm_values hw; 1979 struct skl_wm_values skl_hw; 1980 struct vlv_wm_values vlv; 1981 }; 1982 1983 uint8_t max_level; 1984 1985 /* 1986 * Should be held around atomic WM register writing; also 1987 * protects * intel_crtc->wm.active and 1988 * cstate->wm.need_postvbl_update. 1989 */ 1990 struct lock wm_mutex; 1991 } wm; 1992 1993 struct i915_runtime_pm pm; 1994 1995 uint32_t bios_vgacntr; 1996 1997 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 1998 struct { 1999 int (*execbuf_submit)(struct i915_execbuffer_params *params, 2000 struct drm_i915_gem_execbuffer2 *args, 2001 struct list_head *vmas); 2002 int (*init_engines)(struct drm_device *dev); 2003 void (*cleanup_engine)(struct intel_engine_cs *engine); 2004 void (*stop_engine)(struct intel_engine_cs *engine); 2005 } gt; 2006 2007 struct intel_context *kernel_context; 2008 2009 /* perform PHY state sanity checks? */ 2010 bool chv_phy_assert[2]; 2011 2012 struct intel_encoder *dig_port_map[I915_MAX_PORTS]; 2013 2014 /* 2015 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2016 * will be rejected. Instead look for a better place. 2017 */ 2018 }; 2019 2020 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2021 { 2022 return dev->dev_private; 2023 } 2024 2025 static inline struct drm_i915_private *dev_to_i915(struct device *dev) 2026 { 2027 return to_i915(device_get_softc(dev->bsddev)); 2028 } 2029 2030 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2031 { 2032 return container_of(guc, struct drm_i915_private, guc); 2033 } 2034 2035 /* Simple iterator over all initialised engines */ 2036 #define for_each_engine(engine__, dev_priv__) \ 2037 for ((engine__) = &(dev_priv__)->engine[0]; \ 2038 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2039 (engine__)++) \ 2040 for_each_if (intel_engine_initialized(engine__)) 2041 2042 /* Iterator with engine_id */ 2043 #define for_each_engine_id(engine__, dev_priv__, id__) \ 2044 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \ 2045 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2046 (engine__)++) \ 2047 for_each_if (((id__) = (engine__)->id, \ 2048 intel_engine_initialized(engine__))) 2049 2050 /* Iterator over subset of engines selected by mask */ 2051 #define for_each_engine_masked(engine__, dev_priv__, mask__) \ 2052 for ((engine__) = &(dev_priv__)->engine[0]; \ 2053 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2054 (engine__)++) \ 2055 for_each_if (((mask__) & intel_engine_flag(engine__)) && \ 2056 intel_engine_initialized(engine__)) 2057 2058 enum hdmi_force_audio { 2059 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2060 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2061 HDMI_AUDIO_AUTO, /* trust EDID */ 2062 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2063 }; 2064 2065 #define I915_GTT_OFFSET_NONE ((u32)-1) 2066 2067 struct drm_i915_gem_object_ops { 2068 unsigned int flags; 2069 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1 2070 2071 /* Interface between the GEM object and its backing storage. 2072 * get_pages() is called once prior to the use of the associated set 2073 * of pages before to binding them into the GTT, and put_pages() is 2074 * called after we no longer need them. As we expect there to be 2075 * associated cost with migrating pages between the backing storage 2076 * and making them available for the GPU (e.g. clflush), we may hold 2077 * onto the pages after they are no longer referenced by the GPU 2078 * in case they may be used again shortly (for example migrating the 2079 * pages to a different memory domain within the GTT). put_pages() 2080 * will therefore most likely be called when the object itself is 2081 * being released or under memory pressure (where we attempt to 2082 * reap pages for the shrinker). 2083 */ 2084 int (*get_pages)(struct drm_i915_gem_object *); 2085 void (*put_pages)(struct drm_i915_gem_object *); 2086 2087 int (*dmabuf_export)(struct drm_i915_gem_object *); 2088 void (*release)(struct drm_i915_gem_object *); 2089 }; 2090 2091 /* 2092 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2093 * considered to be the frontbuffer for the given plane interface-wise. This 2094 * doesn't mean that the hw necessarily already scans it out, but that any 2095 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2096 * 2097 * We have one bit per pipe and per scanout plane type. 2098 */ 2099 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 2100 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2101 #define INTEL_FRONTBUFFER_BITS \ 2102 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES) 2103 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ 2104 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2105 #define INTEL_FRONTBUFFER_CURSOR(pipe) \ 2106 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2107 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ 2108 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2109 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2110 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2111 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2112 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2113 2114 struct drm_i915_gem_object { 2115 struct drm_gem_object base; 2116 2117 const struct drm_i915_gem_object_ops *ops; 2118 2119 /** List of VMAs backed by this object */ 2120 struct list_head vma_list; 2121 2122 /** Stolen memory for this object, instead of being backed by shmem. */ 2123 struct drm_mm_node *stolen; 2124 struct list_head global_list; 2125 2126 struct list_head engine_list[I915_NUM_ENGINES]; 2127 /** Used in execbuf to temporarily hold a ref */ 2128 struct list_head obj_exec_link; 2129 2130 struct list_head batch_pool_link; 2131 2132 /** 2133 * This is set if the object is on the active lists (has pending 2134 * rendering and so a non-zero seqno), and is not set if it i s on 2135 * inactive (ready to be unbound) list. 2136 */ 2137 unsigned int active:I915_NUM_ENGINES; 2138 2139 /** 2140 * This is set if the object has been written to since last bound 2141 * to the GTT 2142 */ 2143 unsigned int dirty:1; 2144 2145 /** 2146 * Fence register bits (if any) for this object. Will be set 2147 * as needed when mapped into the GTT. 2148 * Protected by dev->struct_mutex. 2149 */ 2150 signed int fence_reg:I915_MAX_NUM_FENCE_BITS; 2151 2152 /** 2153 * Advice: are the backing pages purgeable? 2154 */ 2155 unsigned int madv:2; 2156 2157 /** 2158 * Current tiling mode for the object. 2159 */ 2160 unsigned int tiling_mode:2; 2161 /** 2162 * Whether the tiling parameters for the currently associated fence 2163 * register have changed. Note that for the purposes of tracking 2164 * tiling changes we also treat the unfenced register, the register 2165 * slot that the object occupies whilst it executes a fenced 2166 * command (such as BLT on gen2/3), as a "fence". 2167 */ 2168 unsigned int fence_dirty:1; 2169 2170 /** 2171 * Is the object at the current location in the gtt mappable and 2172 * fenceable? Used to avoid costly recalculations. 2173 */ 2174 unsigned int map_and_fenceable:1; 2175 2176 /** 2177 * Whether the current gtt mapping needs to be mappable (and isn't just 2178 * mappable by accident). Track pin and fault separate for a more 2179 * accurate mappable working set. 2180 */ 2181 unsigned int fault_mappable:1; 2182 2183 /* 2184 * Is the object to be mapped as read-only to the GPU 2185 * Only honoured if hardware has relevant pte bit 2186 */ 2187 unsigned long gt_ro:1; 2188 unsigned int cache_level:3; 2189 unsigned int cache_dirty:1; 2190 2191 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS; 2192 2193 unsigned int pin_display; 2194 2195 struct sg_table *pages; 2196 int pages_pin_count; 2197 struct get_page { 2198 struct scatterlist *sg; 2199 int last; 2200 } get_page; 2201 void *mapping; 2202 2203 /** Breadcrumb of last rendering to the buffer. 2204 * There can only be one writer, but we allow for multiple readers. 2205 * If there is a writer that necessarily implies that all other 2206 * read requests are complete - but we may only be lazily clearing 2207 * the read requests. A read request is naturally the most recent 2208 * request on a ring, so we may have two different write and read 2209 * requests on one ring where the write request is older than the 2210 * read request. This allows for the CPU to read from an active 2211 * buffer by only waiting for the write to complete. 2212 * */ 2213 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES]; 2214 struct drm_i915_gem_request *last_write_req; 2215 /** Breadcrumb of last fenced GPU access to the buffer. */ 2216 struct drm_i915_gem_request *last_fenced_req; 2217 2218 /** Current tiling stride for the object, if it's tiled. */ 2219 uint32_t stride; 2220 2221 /** References from framebuffers, locks out tiling changes. */ 2222 unsigned long framebuffer_references; 2223 2224 /** Record of address bit 17 of each page at last unbind. */ 2225 unsigned long *bit_17; 2226 2227 union { 2228 /** for phy allocated objects */ 2229 struct drm_dma_handle *phys_handle; 2230 2231 struct i915_gem_userptr { 2232 uintptr_t ptr; 2233 unsigned read_only :1; 2234 unsigned workers :4; 2235 #define I915_GEM_USERPTR_MAX_WORKERS 15 2236 2237 struct i915_mm_struct *mm; 2238 struct i915_mmu_object *mmu_object; 2239 struct work_struct *work; 2240 } userptr; 2241 }; 2242 }; 2243 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base) 2244 2245 void i915_gem_track_fb(struct drm_i915_gem_object *old, 2246 struct drm_i915_gem_object *new, 2247 unsigned frontbuffer_bits); 2248 2249 /** 2250 * Request queue structure. 2251 * 2252 * The request queue allows us to note sequence numbers that have been emitted 2253 * and may be associated with active buffers to be retired. 2254 * 2255 * By keeping this list, we can avoid having to do questionable sequence 2256 * number comparisons on buffer last_read|write_seqno. It also allows an 2257 * emission time to be associated with the request for tracking how far ahead 2258 * of the GPU the submission is. 2259 * 2260 * The requests are reference counted, so upon creation they should have an 2261 * initial reference taken using kref_init 2262 */ 2263 struct drm_i915_gem_request { 2264 struct kref ref; 2265 2266 /** On Which ring this request was generated */ 2267 struct drm_i915_private *i915; 2268 struct intel_engine_cs *engine; 2269 unsigned reset_counter; 2270 2271 /** GEM sequence number associated with the previous request, 2272 * when the HWS breadcrumb is equal to this the GPU is processing 2273 * this request. 2274 */ 2275 u32 previous_seqno; 2276 2277 /** GEM sequence number associated with this request, 2278 * when the HWS breadcrumb is equal or greater than this the GPU 2279 * has finished processing this request. 2280 */ 2281 u32 seqno; 2282 2283 /** Position in the ringbuffer of the start of the request */ 2284 u32 head; 2285 2286 /** 2287 * Position in the ringbuffer of the start of the postfix. 2288 * This is required to calculate the maximum available ringbuffer 2289 * space without overwriting the postfix. 2290 */ 2291 u32 postfix; 2292 2293 /** Position in the ringbuffer of the end of the whole request */ 2294 u32 tail; 2295 2296 /** 2297 * Context and ring buffer related to this request 2298 * Contexts are refcounted, so when this request is associated with a 2299 * context, we must increment the context's refcount, to guarantee that 2300 * it persists while any request is linked to it. Requests themselves 2301 * are also refcounted, so the request will only be freed when the last 2302 * reference to it is dismissed, and the code in 2303 * i915_gem_request_free() will then decrement the refcount on the 2304 * context. 2305 */ 2306 struct intel_context *ctx; 2307 struct intel_ringbuffer *ringbuf; 2308 2309 /** Batch buffer related to this request if any (used for 2310 error state dump only) */ 2311 struct drm_i915_gem_object *batch_obj; 2312 2313 /** Time at which this request was emitted, in jiffies. */ 2314 unsigned long emitted_jiffies; 2315 2316 /** global list entry for this request */ 2317 struct list_head list; 2318 2319 struct drm_i915_file_private *file_priv; 2320 /** file_priv list entry for this request */ 2321 struct list_head client_list; 2322 2323 /** process identifier submitting this request */ 2324 pid_t pid; 2325 2326 /** 2327 * The ELSP only accepts two elements at a time, so we queue 2328 * context/tail pairs on a given queue (ring->execlist_queue) until the 2329 * hardware is available. The queue serves a double purpose: we also use 2330 * it to keep track of the up to 2 contexts currently in the hardware 2331 * (usually one in execution and the other queued up by the GPU): We 2332 * only remove elements from the head of the queue when the hardware 2333 * informs us that an element has been completed. 2334 * 2335 * All accesses to the queue are mediated by a spinlock 2336 * (ring->execlist_lock). 2337 */ 2338 2339 /** Execlist link in the submission queue.*/ 2340 struct list_head execlist_link; 2341 2342 /** Execlists no. of times this request has been sent to the ELSP */ 2343 int elsp_submitted; 2344 2345 }; 2346 2347 struct drm_i915_gem_request * __must_check 2348 i915_gem_request_alloc(struct intel_engine_cs *engine, 2349 struct intel_context *ctx); 2350 void i915_gem_request_free(struct kref *req_ref); 2351 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req, 2352 struct drm_file *file); 2353 2354 static inline uint32_t 2355 i915_gem_request_get_seqno(struct drm_i915_gem_request *req) 2356 { 2357 return req ? req->seqno : 0; 2358 } 2359 2360 static inline struct intel_engine_cs * 2361 i915_gem_request_get_engine(struct drm_i915_gem_request *req) 2362 { 2363 return req ? req->engine : NULL; 2364 } 2365 2366 static inline struct drm_i915_gem_request * 2367 i915_gem_request_reference(struct drm_i915_gem_request *req) 2368 { 2369 if (req) 2370 kref_get(&req->ref); 2371 return req; 2372 } 2373 2374 static inline void 2375 i915_gem_request_unreference(struct drm_i915_gem_request *req) 2376 { 2377 WARN_ON(!mutex_is_locked(&req->engine->dev->struct_mutex)); 2378 kref_put(&req->ref, i915_gem_request_free); 2379 } 2380 2381 static inline void 2382 i915_gem_request_unreference__unlocked(struct drm_i915_gem_request *req) 2383 { 2384 struct drm_device *dev; 2385 2386 if (!req) 2387 return; 2388 2389 dev = req->engine->dev; 2390 if (kref_put_mutex(&req->ref, i915_gem_request_free, &dev->struct_mutex)) 2391 mutex_unlock(&dev->struct_mutex); 2392 } 2393 2394 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst, 2395 struct drm_i915_gem_request *src) 2396 { 2397 if (src) 2398 i915_gem_request_reference(src); 2399 2400 if (*pdst) 2401 i915_gem_request_unreference(*pdst); 2402 2403 *pdst = src; 2404 } 2405 2406 /* 2407 * XXX: i915_gem_request_completed should be here but currently needs the 2408 * definition of i915_seqno_passed() which is below. It will be moved in 2409 * a later patch when the call to i915_seqno_passed() is obsoleted... 2410 */ 2411 2412 /* 2413 * A command that requires special handling by the command parser. 2414 */ 2415 struct drm_i915_cmd_descriptor { 2416 /* 2417 * Flags describing how the command parser processes the command. 2418 * 2419 * CMD_DESC_FIXED: The command has a fixed length if this is set, 2420 * a length mask if not set 2421 * CMD_DESC_SKIP: The command is allowed but does not follow the 2422 * standard length encoding for the opcode range in 2423 * which it falls 2424 * CMD_DESC_REJECT: The command is never allowed 2425 * CMD_DESC_REGISTER: The command should be checked against the 2426 * register whitelist for the appropriate ring 2427 * CMD_DESC_MASTER: The command is allowed if the submitting process 2428 * is the DRM master 2429 */ 2430 u32 flags; 2431 #define CMD_DESC_FIXED (1<<0) 2432 #define CMD_DESC_SKIP (1<<1) 2433 #define CMD_DESC_REJECT (1<<2) 2434 #define CMD_DESC_REGISTER (1<<3) 2435 #define CMD_DESC_BITMASK (1<<4) 2436 #define CMD_DESC_MASTER (1<<5) 2437 2438 /* 2439 * The command's unique identification bits and the bitmask to get them. 2440 * This isn't strictly the opcode field as defined in the spec and may 2441 * also include type, subtype, and/or subop fields. 2442 */ 2443 struct { 2444 u32 value; 2445 u32 mask; 2446 } cmd; 2447 2448 /* 2449 * The command's length. The command is either fixed length (i.e. does 2450 * not include a length field) or has a length field mask. The flag 2451 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has 2452 * a length mask. All command entries in a command table must include 2453 * length information. 2454 */ 2455 union { 2456 u32 fixed; 2457 u32 mask; 2458 } length; 2459 2460 /* 2461 * Describes where to find a register address in the command to check 2462 * against the ring's register whitelist. Only valid if flags has the 2463 * CMD_DESC_REGISTER bit set. 2464 * 2465 * A non-zero step value implies that the command may access multiple 2466 * registers in sequence (e.g. LRI), in that case step gives the 2467 * distance in dwords between individual offset fields. 2468 */ 2469 struct { 2470 u32 offset; 2471 u32 mask; 2472 u32 step; 2473 } reg; 2474 2475 #define MAX_CMD_DESC_BITMASKS 3 2476 /* 2477 * Describes command checks where a particular dword is masked and 2478 * compared against an expected value. If the command does not match 2479 * the expected value, the parser rejects it. Only valid if flags has 2480 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero 2481 * are valid. 2482 * 2483 * If the check specifies a non-zero condition_mask then the parser 2484 * only performs the check when the bits specified by condition_mask 2485 * are non-zero. 2486 */ 2487 struct { 2488 u32 offset; 2489 u32 mask; 2490 u32 expected; 2491 u32 condition_offset; 2492 u32 condition_mask; 2493 } bits[MAX_CMD_DESC_BITMASKS]; 2494 }; 2495 2496 /* 2497 * A table of commands requiring special handling by the command parser. 2498 * 2499 * Each ring has an array of tables. Each table consists of an array of command 2500 * descriptors, which must be sorted with command opcodes in ascending order. 2501 */ 2502 struct drm_i915_cmd_table { 2503 const struct drm_i915_cmd_descriptor *table; 2504 int count; 2505 }; 2506 2507 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */ 2508 #define __I915__(p) ({ \ 2509 const struct drm_i915_private *__p; \ 2510 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \ 2511 __p = (const struct drm_i915_private *)p; \ 2512 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \ 2513 __p = to_i915((const struct drm_device *)p); \ 2514 __p; \ 2515 }) 2516 #define INTEL_INFO(p) (&__I915__(p)->info) 2517 #define INTEL_GEN(p) (INTEL_INFO(p)->gen) 2518 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id) 2519 #define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision) 2520 2521 #define REVID_FOREVER 0xff 2522 /* 2523 * Return true if revision is in range [since,until] inclusive. 2524 * 2525 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2526 */ 2527 #define IS_REVID(p, since, until) \ 2528 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2529 2530 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577) 2531 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562) 2532 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x) 2533 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572) 2534 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g) 2535 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592) 2536 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772) 2537 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm) 2538 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater) 2539 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline) 2540 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42) 2541 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x) 2542 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001) 2543 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011) 2544 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview) 2545 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33) 2546 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046) 2547 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge) 2548 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \ 2549 INTEL_DEVID(dev) == 0x0152 || \ 2550 INTEL_DEVID(dev) == 0x015a) 2551 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview) 2552 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview) 2553 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell) 2554 #define IS_BROADWELL(dev) (!INTEL_INFO(dev)->is_cherryview && IS_GEN8(dev)) 2555 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake) 2556 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton) 2557 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake) 2558 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile) 2559 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \ 2560 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00) 2561 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \ 2562 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \ 2563 (INTEL_DEVID(dev) & 0xf) == 0xb || \ 2564 (INTEL_DEVID(dev) & 0xf) == 0xe)) 2565 /* ULX machines are also considered ULT. */ 2566 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \ 2567 (INTEL_DEVID(dev) & 0xf) == 0xe) 2568 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \ 2569 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2570 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \ 2571 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00) 2572 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \ 2573 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2574 /* ULX machines are also considered ULT. */ 2575 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \ 2576 INTEL_DEVID(dev) == 0x0A1E) 2577 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \ 2578 INTEL_DEVID(dev) == 0x1913 || \ 2579 INTEL_DEVID(dev) == 0x1916 || \ 2580 INTEL_DEVID(dev) == 0x1921 || \ 2581 INTEL_DEVID(dev) == 0x1926) 2582 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \ 2583 INTEL_DEVID(dev) == 0x1915 || \ 2584 INTEL_DEVID(dev) == 0x191E) 2585 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \ 2586 INTEL_DEVID(dev) == 0x5913 || \ 2587 INTEL_DEVID(dev) == 0x5916 || \ 2588 INTEL_DEVID(dev) == 0x5921 || \ 2589 INTEL_DEVID(dev) == 0x5926) 2590 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \ 2591 INTEL_DEVID(dev) == 0x5915 || \ 2592 INTEL_DEVID(dev) == 0x591E) 2593 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \ 2594 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2595 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \ 2596 (INTEL_DEVID(dev) & 0x00F0) == 0x0030) 2597 2598 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary) 2599 2600 #define SKL_REVID_A0 0x0 2601 #define SKL_REVID_B0 0x1 2602 #define SKL_REVID_C0 0x2 2603 #define SKL_REVID_D0 0x3 2604 #define SKL_REVID_E0 0x4 2605 #define SKL_REVID_F0 0x5 2606 #define SKL_REVID_G0 0x6 2607 #define SKL_REVID_H0 0x7 2608 2609 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2610 2611 #define BXT_REVID_A0 0x0 2612 #define BXT_REVID_A1 0x1 2613 #define BXT_REVID_B0 0x3 2614 #define BXT_REVID_C0 0x9 2615 2616 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until)) 2617 2618 #define KBL_REVID_A0 0x0 2619 #define KBL_REVID_B0 0x1 2620 #define KBL_REVID_C0 0x2 2621 #define KBL_REVID_D0 0x3 2622 #define KBL_REVID_E0 0x4 2623 2624 #define IS_KBL_REVID(p, since, until) \ 2625 (IS_KABYLAKE(p) && IS_REVID(p, since, until)) 2626 2627 /* 2628 * The genX designation typically refers to the render engine, so render 2629 * capability related checks should use IS_GEN, while display and other checks 2630 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2631 * chips, etc.). 2632 */ 2633 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen == 2) 2634 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen == 3) 2635 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen == 4) 2636 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen == 5) 2637 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen == 6) 2638 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen == 7) 2639 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen == 8) 2640 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen == 9) 2641 2642 #define RENDER_RING (1<<RCS) 2643 #define BSD_RING (1<<VCS) 2644 #define BLT_RING (1<<BCS) 2645 #define VEBOX_RING (1<<VECS) 2646 #define BSD2_RING (1<<VCS2) 2647 #define ALL_ENGINES (~0) 2648 2649 #define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING) 2650 #define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING) 2651 #define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING) 2652 #define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING) 2653 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc) 2654 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop) 2655 #define HAS_EDRAM(dev) (__I915__(dev)->edram_cap & EDRAM_ENABLED) 2656 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \ 2657 HAS_EDRAM(dev)) 2658 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws) 2659 2660 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6) 2661 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8) 2662 #define USES_PPGTT(dev) (i915.enable_ppgtt) 2663 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2) 2664 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3) 2665 2666 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay) 2667 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical) 2668 2669 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2670 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev)) 2671 2672 /* WaRsDisableCoarsePowerGating:skl,bxt */ 2673 #define NEEDS_WaRsDisableCoarsePowerGating(dev) (IS_BXT_REVID(dev, 0, BXT_REVID_A1) || \ 2674 IS_SKL_GT3(dev) || \ 2675 IS_SKL_GT4(dev)) 2676 2677 /* 2678 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2679 * even when in MSI mode. This results in spurious interrupt warnings if the 2680 * legacy irq no. is shared with another device. The kernel then disables that 2681 * interrupt source and so prevents the other device from working properly. 2682 */ 2683 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) 2684 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) 2685 2686 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2687 * rows, which changed the alignment requirements and fence programming. 2688 */ 2689 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \ 2690 IS_I915GM(dev))) 2691 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv) 2692 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug) 2693 2694 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2) 2695 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr) 2696 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc) 2697 2698 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev)) 2699 2700 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ 2701 INTEL_INFO(dev)->gen >= 9) 2702 2703 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi) 2704 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg) 2705 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ 2706 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \ 2707 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) 2708 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \ 2709 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \ 2710 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \ 2711 IS_KABYLAKE(dev) || IS_BROXTON(dev)) 2712 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6) 2713 #define HAS_RC6p(dev) (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev)) 2714 2715 #define HAS_CSR(dev) (IS_GEN9(dev)) 2716 2717 #define HAS_GUC_UCODE(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev)) 2718 #define HAS_GUC_SCHED(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev)) 2719 2720 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \ 2721 INTEL_INFO(dev)->gen >= 8) 2722 2723 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \ 2724 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \ 2725 !IS_BROXTON(dev)) 2726 2727 #define INTEL_PCH_DEVICE_ID_MASK 0xff00 2728 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2729 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2730 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2731 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2732 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2733 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2734 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2735 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200 2736 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2737 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2738 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2739 2740 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type) 2741 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP) 2742 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT) 2743 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT) 2744 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) 2745 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) 2746 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT) 2747 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX) 2748 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP) 2749 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE) 2750 2751 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \ 2752 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 2753 2754 /* DPF == dynamic parity feature */ 2755 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) 2756 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev)) 2757 2758 #define GT_FREQUENCY_MULTIPLIER 50 2759 #define GEN9_FREQ_SCALER 3 2760 2761 #include "i915_trace.h" 2762 2763 extern const struct drm_ioctl_desc i915_ioctls[]; 2764 extern int i915_max_ioctl; 2765 2766 extern int i915_suspend_switcheroo(device_t kdev); 2767 extern int i915_resume_switcheroo(struct drm_device *dev); 2768 2769 /* i915_dma.c */ 2770 void __printf(3, 4) 2771 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2772 const char *fmt, ...); 2773 2774 #define i915_report_error(dev_priv, fmt, ...) \ 2775 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2776 2777 extern int i915_driver_load(struct drm_device *, unsigned long flags); 2778 extern int i915_driver_unload(struct drm_device *); 2779 extern int i915_driver_open(struct drm_device *dev, struct drm_file *file); 2780 extern void i915_driver_lastclose(struct drm_device * dev); 2781 extern void i915_driver_preclose(struct drm_device *dev, 2782 struct drm_file *file); 2783 extern void i915_driver_postclose(struct drm_device *dev, 2784 struct drm_file *file); 2785 #ifdef CONFIG_COMPAT 2786 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2787 unsigned long arg); 2788 #endif 2789 extern int intel_gpu_reset(struct drm_device *dev, u32 engine_mask); 2790 extern bool intel_has_gpu_reset(struct drm_device *dev); 2791 extern int i915_reset(struct drm_device *dev); 2792 extern int intel_guc_reset(struct drm_i915_private *dev_priv); 2793 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2794 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2795 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2796 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2797 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2798 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2799 2800 /* intel_hotplug.c */ 2801 void intel_hpd_irq_handler(struct drm_device *dev, u32 pin_mask, u32 long_mask); 2802 void intel_hpd_init(struct drm_i915_private *dev_priv); 2803 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2804 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2805 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port); 2806 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2807 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2808 2809 /* i915_irq.c */ 2810 void i915_queue_hangcheck(struct drm_device *dev); 2811 __printf(3, 4) 2812 void i915_handle_error(struct drm_device *dev, u32 engine_mask, 2813 const char *fmt, ...); 2814 2815 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2816 int intel_irq_install(struct drm_i915_private *dev_priv); 2817 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2818 2819 extern void intel_uncore_sanitize(struct drm_device *dev); 2820 extern void intel_uncore_early_sanitize(struct drm_device *dev, 2821 bool restore_forcewake); 2822 extern void intel_uncore_init(struct drm_device *dev); 2823 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv); 2824 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv); 2825 extern void intel_uncore_fini(struct drm_device *dev); 2826 extern void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore); 2827 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id); 2828 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv, 2829 enum forcewake_domains domains); 2830 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv, 2831 enum forcewake_domains domains); 2832 /* Like above but the caller must manage the uncore.lock itself. 2833 * Must be used with I915_READ_FW and friends. 2834 */ 2835 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv, 2836 enum forcewake_domains domains); 2837 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv, 2838 enum forcewake_domains domains); 2839 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv); 2840 2841 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv); 2842 static inline bool intel_vgpu_active(struct drm_device *dev) 2843 { 2844 return to_i915(dev)->vgpu.active; 2845 } 2846 2847 void 2848 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe, 2849 u32 status_mask); 2850 2851 void 2852 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe, 2853 u32 status_mask); 2854 2855 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2856 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2857 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2858 uint32_t mask, 2859 uint32_t bits); 2860 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2861 uint32_t interrupt_mask, 2862 uint32_t enabled_irq_mask); 2863 static inline void 2864 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2865 { 2866 ilk_update_display_irq(dev_priv, bits, bits); 2867 } 2868 static inline void 2869 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2870 { 2871 ilk_update_display_irq(dev_priv, bits, 0); 2872 } 2873 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2874 enum i915_pipe pipe, 2875 uint32_t interrupt_mask, 2876 uint32_t enabled_irq_mask); 2877 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2878 enum i915_pipe pipe, uint32_t bits) 2879 { 2880 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2881 } 2882 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2883 enum i915_pipe pipe, uint32_t bits) 2884 { 2885 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2886 } 2887 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2888 uint32_t interrupt_mask, 2889 uint32_t enabled_irq_mask); 2890 static inline void 2891 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2892 { 2893 ibx_display_interrupt_update(dev_priv, bits, bits); 2894 } 2895 static inline void 2896 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2897 { 2898 ibx_display_interrupt_update(dev_priv, bits, 0); 2899 } 2900 2901 2902 /* i915_gem.c */ 2903 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2904 struct drm_file *file_priv); 2905 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2906 struct drm_file *file_priv); 2907 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2908 struct drm_file *file_priv); 2909 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2910 struct drm_file *file_priv); 2911 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2912 struct drm_file *file_priv); 2913 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2914 struct drm_file *file_priv); 2915 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2916 struct drm_file *file_priv); 2917 void i915_gem_execbuffer_move_to_active(struct list_head *vmas, 2918 struct drm_i915_gem_request *req); 2919 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params, 2920 struct drm_i915_gem_execbuffer2 *args, 2921 struct list_head *vmas); 2922 int i915_gem_execbuffer(struct drm_device *dev, void *data, 2923 struct drm_file *file_priv); 2924 int i915_gem_execbuffer2(struct drm_device *dev, void *data, 2925 struct drm_file *file_priv); 2926 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2927 struct drm_file *file_priv); 2928 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2929 struct drm_file *file); 2930 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2931 struct drm_file *file); 2932 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2933 struct drm_file *file_priv); 2934 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2935 struct drm_file *file_priv); 2936 int i915_gem_set_tiling(struct drm_device *dev, void *data, 2937 struct drm_file *file_priv); 2938 int i915_gem_get_tiling(struct drm_device *dev, void *data, 2939 struct drm_file *file_priv); 2940 int i915_gem_init_userptr(struct drm_device *dev); 2941 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2942 struct drm_file *file); 2943 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2944 struct drm_file *file_priv); 2945 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2946 struct drm_file *file_priv); 2947 void i915_gem_load_init(struct drm_device *dev); 2948 void i915_gem_load_cleanup(struct drm_device *dev); 2949 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2950 void *i915_gem_object_alloc(struct drm_device *dev); 2951 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2952 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2953 const struct drm_i915_gem_object_ops *ops); 2954 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 2955 size_t size); 2956 struct drm_i915_gem_object *i915_gem_object_create_from_data( 2957 struct drm_device *dev, const void *data, size_t size); 2958 void i915_gem_free_object(struct drm_gem_object *obj); 2959 void i915_gem_vma_destroy(struct i915_vma *vma); 2960 2961 /* Flags used by pin/bind&friends. */ 2962 #define PIN_MAPPABLE (1<<0) 2963 #define PIN_NONBLOCK (1<<1) 2964 #define PIN_GLOBAL (1<<2) 2965 #define PIN_OFFSET_BIAS (1<<3) 2966 #define PIN_USER (1<<4) 2967 #define PIN_UPDATE (1<<5) 2968 #define PIN_ZONE_4G (1<<6) 2969 #define PIN_HIGH (1<<7) 2970 #define PIN_OFFSET_FIXED (1<<8) 2971 #define PIN_OFFSET_MASK (~4095) 2972 int __must_check 2973 i915_gem_object_pin(struct drm_i915_gem_object *obj, 2974 struct i915_address_space *vm, 2975 uint32_t alignment, 2976 uint64_t flags); 2977 int __must_check 2978 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2979 const struct i915_ggtt_view *view, 2980 uint32_t alignment, 2981 uint64_t flags); 2982 2983 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, 2984 u32 flags); 2985 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma); 2986 int __must_check i915_vma_unbind(struct i915_vma *vma); 2987 /* 2988 * BEWARE: Do not use the function below unless you can _absolutely_ 2989 * _guarantee_ VMA in question is _not in use_ anywhere. 2990 */ 2991 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma); 2992 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj); 2993 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv); 2994 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2995 2996 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 2997 int *needs_clflush); 2998 2999 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 3000 3001 static inline int __sg_page_count(struct scatterlist *sg) 3002 { 3003 return sg->length >> PAGE_SHIFT; 3004 } 3005 3006 struct vm_page * 3007 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n); 3008 3009 static inline struct vm_page * 3010 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n) 3011 { 3012 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT)) 3013 return NULL; 3014 3015 if (n < obj->get_page.last) { 3016 obj->get_page.sg = obj->pages->sgl; 3017 obj->get_page.last = 0; 3018 } 3019 3020 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) { 3021 obj->get_page.last += __sg_page_count(obj->get_page.sg++); 3022 #if 0 3023 if (unlikely(sg_is_chain(obj->get_page.sg))) 3024 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg); 3025 #endif 3026 } 3027 3028 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last); 3029 } 3030 3031 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3032 { 3033 BUG_ON(obj->pages == NULL); 3034 obj->pages_pin_count++; 3035 } 3036 3037 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3038 { 3039 BUG_ON(obj->pages_pin_count == 0); 3040 obj->pages_pin_count--; 3041 } 3042 3043 /** 3044 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3045 * @obj - the object to map into kernel address space 3046 * 3047 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3048 * pages and then returns a contiguous mapping of the backing storage into 3049 * the kernel address space. 3050 * 3051 * The caller must hold the struct_mutex, and is responsible for calling 3052 * i915_gem_object_unpin_map() when the mapping is no longer required. 3053 * 3054 * Returns the pointer through which to access the mapped object, or an 3055 * ERR_PTR() on error. 3056 */ 3057 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj); 3058 3059 /** 3060 * i915_gem_object_unpin_map - releases an earlier mapping 3061 * @obj - the object to unmap 3062 * 3063 * After pinning the object and mapping its pages, once you are finished 3064 * with your access, call i915_gem_object_unpin_map() to release the pin 3065 * upon the mapping. Once the pin count reaches zero, that mapping may be 3066 * removed. 3067 * 3068 * The caller must hold the struct_mutex. 3069 */ 3070 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3071 { 3072 lockdep_assert_held(&obj->base.dev->struct_mutex); 3073 i915_gem_object_unpin_pages(obj); 3074 } 3075 3076 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3077 int i915_gem_object_sync(struct drm_i915_gem_object *obj, 3078 struct intel_engine_cs *to, 3079 struct drm_i915_gem_request **to_req); 3080 void i915_vma_move_to_active(struct i915_vma *vma, 3081 struct drm_i915_gem_request *req); 3082 int i915_gem_dumb_create(struct drm_file *file_priv, 3083 struct drm_device *dev, 3084 struct drm_mode_create_dumb *args); 3085 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3086 uint32_t handle, uint64_t *offset); 3087 /** 3088 * Returns true if seq1 is later than seq2. 3089 */ 3090 static inline bool 3091 i915_seqno_passed(uint32_t seq1, uint32_t seq2) 3092 { 3093 return (int32_t)(seq1 - seq2) >= 0; 3094 } 3095 3096 static inline bool i915_gem_request_started(struct drm_i915_gem_request *req, 3097 bool lazy_coherency) 3098 { 3099 if (!lazy_coherency && req->engine->irq_seqno_barrier) 3100 req->engine->irq_seqno_barrier(req->engine); 3101 return i915_seqno_passed(req->engine->get_seqno(req->engine), 3102 req->previous_seqno); 3103 } 3104 3105 static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req, 3106 bool lazy_coherency) 3107 { 3108 if (!lazy_coherency && req->engine->irq_seqno_barrier) 3109 req->engine->irq_seqno_barrier(req->engine); 3110 return i915_seqno_passed(req->engine->get_seqno(req->engine), 3111 req->seqno); 3112 } 3113 3114 int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno); 3115 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno); 3116 3117 struct drm_i915_gem_request * 3118 i915_gem_find_active_request(struct intel_engine_cs *engine); 3119 3120 bool i915_gem_retire_requests(struct drm_device *dev); 3121 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine); 3122 3123 static inline u32 i915_reset_counter(struct i915_gpu_error *error) 3124 { 3125 return atomic_read(&error->reset_counter); 3126 } 3127 3128 static inline bool __i915_reset_in_progress(u32 reset) 3129 { 3130 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG); 3131 } 3132 3133 static inline bool __i915_reset_in_progress_or_wedged(u32 reset) 3134 { 3135 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED)); 3136 } 3137 3138 static inline bool __i915_terminally_wedged(u32 reset) 3139 { 3140 return unlikely(reset & I915_WEDGED); 3141 } 3142 3143 static inline bool i915_reset_in_progress(struct i915_gpu_error *error) 3144 { 3145 return __i915_reset_in_progress(i915_reset_counter(error)); 3146 } 3147 3148 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error) 3149 { 3150 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error)); 3151 } 3152 3153 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3154 { 3155 return __i915_terminally_wedged(i915_reset_counter(error)); 3156 } 3157 3158 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3159 { 3160 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2; 3161 } 3162 3163 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv) 3164 { 3165 return dev_priv->gpu_error.stop_rings == 0 || 3166 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN; 3167 } 3168 3169 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv) 3170 { 3171 return dev_priv->gpu_error.stop_rings == 0 || 3172 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN; 3173 } 3174 3175 void i915_gem_reset(struct drm_device *dev); 3176 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force); 3177 int __must_check i915_gem_init(struct drm_device *dev); 3178 int i915_gem_init_engines(struct drm_device *dev); 3179 int __must_check i915_gem_init_hw(struct drm_device *dev); 3180 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice); 3181 void i915_gem_init_swizzling(struct drm_device *dev); 3182 void i915_gem_cleanup_engines(struct drm_device *dev); 3183 int __must_check i915_gpu_idle(struct drm_device *dev); 3184 int __must_check i915_gem_suspend(struct drm_device *dev); 3185 void __i915_add_request(struct drm_i915_gem_request *req, 3186 struct drm_i915_gem_object *batch_obj, 3187 bool flush_caches); 3188 #define i915_add_request(req) \ 3189 __i915_add_request(req, NULL, true) 3190 #define i915_add_request_no_flush(req) \ 3191 __i915_add_request(req, NULL, false) 3192 int __i915_wait_request(struct drm_i915_gem_request *req, 3193 bool interruptible, 3194 s64 *timeout, 3195 struct intel_rps_client *rps); 3196 int __must_check i915_wait_request(struct drm_i915_gem_request *req); 3197 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres); 3198 int __must_check 3199 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 3200 bool readonly); 3201 int __must_check 3202 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, 3203 bool write); 3204 int __must_check 3205 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3206 int __must_check 3207 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3208 u32 alignment, 3209 const struct i915_ggtt_view *view); 3210 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj, 3211 const struct i915_ggtt_view *view); 3212 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3213 int align); 3214 int i915_gem_open(struct drm_device *dev, struct drm_file *file); 3215 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3216 3217 uint32_t 3218 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode); 3219 uint32_t 3220 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 3221 int tiling_mode, bool fenced); 3222 3223 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3224 enum i915_cache_level cache_level); 3225 3226 #if 0 3227 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3228 struct dma_buf *dma_buf); 3229 3230 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3231 struct drm_gem_object *gem_obj, int flags); 3232 #endif 3233 3234 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o, 3235 const struct i915_ggtt_view *view); 3236 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o, 3237 struct i915_address_space *vm); 3238 static inline u64 3239 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o) 3240 { 3241 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal); 3242 } 3243 3244 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o); 3245 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o, 3246 const struct i915_ggtt_view *view); 3247 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 3248 struct i915_address_space *vm); 3249 3250 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 3251 struct i915_address_space *vm); 3252 struct i915_vma * 3253 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 3254 struct i915_address_space *vm); 3255 struct i915_vma * 3256 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj, 3257 const struct i915_ggtt_view *view); 3258 3259 struct i915_vma * 3260 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, 3261 struct i915_address_space *vm); 3262 struct i915_vma * 3263 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj, 3264 const struct i915_ggtt_view *view); 3265 3266 static inline struct i915_vma * 3267 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 3268 { 3269 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal); 3270 } 3271 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj); 3272 3273 /* Some GGTT VM helpers */ 3274 static inline struct i915_hw_ppgtt * 3275 i915_vm_to_ppgtt(struct i915_address_space *vm) 3276 { 3277 return container_of(vm, struct i915_hw_ppgtt, base); 3278 } 3279 3280 3281 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj) 3282 { 3283 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal); 3284 } 3285 3286 static inline unsigned long 3287 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj) 3288 { 3289 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3290 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3291 3292 return i915_gem_obj_size(obj, &ggtt->base); 3293 } 3294 3295 static inline int __must_check 3296 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj, 3297 uint32_t alignment, 3298 unsigned flags) 3299 { 3300 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3301 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3302 3303 return i915_gem_object_pin(obj, &ggtt->base, 3304 alignment, flags | PIN_GLOBAL); 3305 } 3306 3307 static inline int 3308 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj) 3309 { 3310 return i915_vma_unbind(i915_gem_obj_to_ggtt(obj)); 3311 } 3312 3313 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj, 3314 const struct i915_ggtt_view *view); 3315 static inline void 3316 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 3317 { 3318 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal); 3319 } 3320 3321 /* i915_gem_fence.c */ 3322 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj); 3323 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj); 3324 3325 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj); 3326 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj); 3327 3328 void i915_gem_restore_fences(struct drm_device *dev); 3329 3330 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev); 3331 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj); 3332 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj); 3333 3334 /* i915_gem_context.c */ 3335 int __must_check i915_gem_context_init(struct drm_device *dev); 3336 void i915_gem_context_fini(struct drm_device *dev); 3337 void i915_gem_context_reset(struct drm_device *dev); 3338 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file); 3339 int i915_gem_context_enable(struct drm_i915_gem_request *req); 3340 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file); 3341 int i915_switch_context(struct drm_i915_gem_request *req); 3342 struct intel_context * 3343 i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id); 3344 void i915_gem_context_free(struct kref *ctx_ref); 3345 struct drm_i915_gem_object * 3346 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size); 3347 static inline void i915_gem_context_reference(struct intel_context *ctx) 3348 { 3349 kref_get(&ctx->ref); 3350 } 3351 3352 static inline void i915_gem_context_unreference(struct intel_context *ctx) 3353 { 3354 kref_put(&ctx->ref, i915_gem_context_free); 3355 } 3356 3357 static inline bool i915_gem_context_is_default(const struct intel_context *c) 3358 { 3359 return c->user_handle == DEFAULT_CONTEXT_HANDLE; 3360 } 3361 3362 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, 3363 struct drm_file *file); 3364 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, 3365 struct drm_file *file); 3366 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, 3367 struct drm_file *file_priv); 3368 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, 3369 struct drm_file *file_priv); 3370 3371 /* i915_gem_evict.c */ 3372 int __must_check i915_gem_evict_something(struct drm_device *dev, 3373 struct i915_address_space *vm, 3374 int min_size, 3375 unsigned alignment, 3376 unsigned cache_level, 3377 unsigned long start, 3378 unsigned long end, 3379 unsigned flags); 3380 int __must_check i915_gem_evict_for_vma(struct i915_vma *target); 3381 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle); 3382 3383 /* belongs in i915_gem_gtt.h */ 3384 static inline void i915_gem_chipset_flush(struct drm_device *dev) 3385 { 3386 if (INTEL_INFO(dev)->gen < 6) 3387 intel_gtt_chipset_flush(); 3388 } 3389 3390 /* i915_gem_stolen.c */ 3391 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3392 struct drm_mm_node *node, u64 size, 3393 unsigned alignment); 3394 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3395 struct drm_mm_node *node, u64 size, 3396 unsigned alignment, u64 start, 3397 u64 end); 3398 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3399 struct drm_mm_node *node); 3400 int i915_gem_init_stolen(struct drm_device *dev); 3401 void i915_gem_cleanup_stolen(struct drm_device *dev); 3402 struct drm_i915_gem_object * 3403 i915_gem_object_create_stolen(struct drm_device *dev, u32 size); 3404 struct drm_i915_gem_object * 3405 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev, 3406 u32 stolen_offset, 3407 u32 gtt_offset, 3408 u32 size); 3409 3410 /* i915_gem_shrinker.c */ 3411 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, 3412 unsigned long target, 3413 unsigned flags); 3414 #define I915_SHRINK_PURGEABLE 0x1 3415 #define I915_SHRINK_UNBOUND 0x2 3416 #define I915_SHRINK_BOUND 0x4 3417 #define I915_SHRINK_ACTIVE 0x8 3418 #define I915_SHRINK_VMAPS 0x10 3419 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 3420 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); 3421 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); 3422 3423 3424 /* i915_gem_tiling.c */ 3425 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3426 { 3427 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3428 3429 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3430 obj->tiling_mode != I915_TILING_NONE; 3431 } 3432 3433 /* i915_gem_debug.c */ 3434 #if WATCH_LISTS 3435 int i915_verify_lists(struct drm_device *dev); 3436 #else 3437 #define i915_verify_lists(dev) 0 3438 #endif 3439 3440 /* i915_debugfs.c */ 3441 int i915_debugfs_init(struct drm_minor *minor); 3442 void i915_debugfs_cleanup(struct drm_minor *minor); 3443 #ifdef CONFIG_DEBUG_FS 3444 int i915_debugfs_connector_add(struct drm_connector *connector); 3445 void intel_display_crc_init(struct drm_device *dev); 3446 #else 3447 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3448 { return 0; } 3449 static inline void intel_display_crc_init(struct drm_device *dev) {} 3450 #endif 3451 3452 /* i915_gpu_error.c */ 3453 __printf(2, 3) 3454 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); 3455 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, 3456 const struct i915_error_state_file_priv *error); 3457 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, 3458 struct drm_i915_private *i915, 3459 size_t count, loff_t pos); 3460 static inline void i915_error_state_buf_release( 3461 struct drm_i915_error_state_buf *eb) 3462 { 3463 kfree(eb->buf); 3464 } 3465 void i915_capture_error_state(struct drm_device *dev, u32 engine_mask, 3466 const char *error_msg); 3467 void i915_error_state_get(struct drm_device *dev, 3468 struct i915_error_state_file_priv *error_priv); 3469 void i915_error_state_put(struct i915_error_state_file_priv *error_priv); 3470 void i915_destroy_error_state(struct drm_device *dev); 3471 3472 void i915_get_extra_instdone(struct drm_device *dev, uint32_t *instdone); 3473 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3474 3475 /* i915_cmd_parser.c */ 3476 int i915_cmd_parser_get_version(void); 3477 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine); 3478 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine); 3479 bool i915_needs_cmd_parser(struct intel_engine_cs *engine); 3480 int i915_parse_cmds(struct intel_engine_cs *engine, 3481 struct drm_i915_gem_object *batch_obj, 3482 struct drm_i915_gem_object *shadow_batch_obj, 3483 u32 batch_start_offset, 3484 u32 batch_len, 3485 bool is_master); 3486 3487 /* i915_suspend.c */ 3488 extern int i915_save_state(struct drm_device *dev); 3489 extern int i915_restore_state(struct drm_device *dev); 3490 3491 /* i915_sysfs.c */ 3492 void i915_setup_sysfs(struct drm_device *dev_priv); 3493 void i915_teardown_sysfs(struct drm_device *dev_priv); 3494 3495 /* intel_i2c.c */ 3496 extern int intel_setup_gmbus(struct drm_device *dev); 3497 extern void intel_teardown_gmbus(struct drm_device *dev); 3498 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3499 unsigned int pin); 3500 3501 extern struct i2c_adapter * 3502 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3503 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3504 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3505 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3506 { 3507 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3508 } 3509 extern void intel_i2c_reset(struct drm_device *dev); 3510 3511 /* intel_bios.c */ 3512 int intel_bios_init(struct drm_i915_private *dev_priv); 3513 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3514 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3515 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3516 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3517 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3518 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3519 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3520 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3521 enum port port); 3522 3523 /* intel_opregion.c */ 3524 #ifdef CONFIG_ACPI 3525 extern int intel_opregion_setup(struct drm_device *dev); 3526 extern void intel_opregion_init(struct drm_device *dev); 3527 extern void intel_opregion_fini(struct drm_device *dev); 3528 extern void intel_opregion_asle_intr(struct drm_device *dev); 3529 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, 3530 bool enable); 3531 extern int intel_opregion_notify_adapter(struct drm_device *dev, 3532 pci_power_t state); 3533 extern int intel_opregion_get_panel_type(struct drm_device *dev); 3534 #else 3535 static inline int intel_opregion_setup(struct drm_device *dev) { return 0; } 3536 static inline void intel_opregion_init(struct drm_device *dev) { return; } 3537 static inline void intel_opregion_fini(struct drm_device *dev) { return; } 3538 static inline void intel_opregion_asle_intr(struct drm_device *dev) { return; } 3539 static inline int 3540 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) 3541 { 3542 return 0; 3543 } 3544 static inline int 3545 intel_opregion_notify_adapter(struct drm_device *dev, pci_power_t state) 3546 { 3547 return 0; 3548 } 3549 static inline int intel_opregion_get_panel_type(struct drm_device *dev) 3550 { 3551 return -ENODEV; 3552 } 3553 #endif 3554 3555 /* intel_acpi.c */ 3556 #ifdef CONFIG_ACPI 3557 extern void intel_register_dsm_handler(void); 3558 extern void intel_unregister_dsm_handler(void); 3559 #else 3560 static inline void intel_register_dsm_handler(void) { return; } 3561 static inline void intel_unregister_dsm_handler(void) { return; } 3562 #endif /* CONFIG_ACPI */ 3563 3564 /* modesetting */ 3565 extern void intel_modeset_init_hw(struct drm_device *dev); 3566 extern void intel_modeset_init(struct drm_device *dev); 3567 extern void intel_modeset_gem_init(struct drm_device *dev); 3568 extern void intel_modeset_cleanup(struct drm_device *dev); 3569 extern void intel_connector_unregister(struct intel_connector *); 3570 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state); 3571 extern void intel_display_resume(struct drm_device *dev); 3572 extern void i915_redisable_vga(struct drm_device *dev); 3573 extern void i915_redisable_vga_power_on(struct drm_device *dev); 3574 extern bool ironlake_set_drps(struct drm_device *dev, u8 val); 3575 extern void intel_init_pch_refclk(struct drm_device *dev); 3576 extern void intel_set_rps(struct drm_device *dev, u8 val); 3577 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3578 bool enable); 3579 extern void intel_detect_pch(struct drm_device *dev); 3580 extern int intel_enable_rc6(const struct drm_device *dev); 3581 3582 extern bool i915_semaphore_is_enabled(struct drm_device *dev); 3583 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3584 struct drm_file *file); 3585 int i915_get_reset_stats_ioctl(struct drm_device *dev, void *data, 3586 struct drm_file *file); 3587 3588 struct intel_device_info *i915_get_device_id(int device); 3589 3590 /* overlay */ 3591 extern struct intel_overlay_error_state *intel_overlay_capture_error_state(struct drm_device *dev); 3592 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3593 struct intel_overlay_error_state *error); 3594 3595 extern struct intel_display_error_state *intel_display_capture_error_state(struct drm_device *dev); 3596 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3597 struct drm_device *dev, 3598 struct intel_display_error_state *error); 3599 3600 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3601 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); 3602 3603 /* intel_sideband.c */ 3604 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3605 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3606 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3607 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3608 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3609 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3610 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3611 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3612 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3613 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3614 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3615 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int reg); 3616 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int reg, u32 val); 3617 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3618 enum intel_sbi_destination destination); 3619 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3620 enum intel_sbi_destination destination); 3621 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3622 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3623 3624 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3625 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3626 3627 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3628 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3629 3630 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3631 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3632 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3633 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3634 3635 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3636 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3637 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3638 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3639 3640 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3641 * will be implemented using 2 32-bit writes in an arbitrary order with 3642 * an arbitrary delay between them. This can cause the hardware to 3643 * act upon the intermediate value, possibly leading to corruption and 3644 * machine death. You have been warned. 3645 */ 3646 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true) 3647 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3648 3649 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3650 u32 upper, lower, old_upper, loop = 0; \ 3651 upper = I915_READ(upper_reg); \ 3652 do { \ 3653 old_upper = upper; \ 3654 lower = I915_READ(lower_reg); \ 3655 upper = I915_READ(upper_reg); \ 3656 } while (upper != old_upper && loop++ < 2); \ 3657 (u64)upper << 32 | lower; }) 3658 3659 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3660 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3661 3662 #define __raw_read(x, s) \ 3663 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \ 3664 i915_reg_t reg) \ 3665 { \ 3666 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3667 } 3668 3669 #define __raw_write(x, s) \ 3670 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \ 3671 i915_reg_t reg, uint##x##_t val) \ 3672 { \ 3673 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3674 } 3675 __raw_read(8, b) 3676 __raw_read(16, w) 3677 __raw_read(32, l) 3678 __raw_read(64, q) 3679 3680 __raw_write(8, b) 3681 __raw_write(16, w) 3682 __raw_write(32, l) 3683 __raw_write(64, q) 3684 3685 #undef __raw_read 3686 #undef __raw_write 3687 3688 /* These are untraced mmio-accessors that are only valid to be used inside 3689 * criticial sections inside IRQ handlers where forcewake is explicitly 3690 * controlled. 3691 * Think twice, and think again, before using these. 3692 * Note: Should only be used between intel_uncore_forcewake_irqlock() and 3693 * intel_uncore_forcewake_irqunlock(). 3694 */ 3695 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3696 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3697 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3698 3699 /* "Broadcast RGB" property */ 3700 #define INTEL_BROADCAST_RGB_AUTO 0 3701 #define INTEL_BROADCAST_RGB_FULL 1 3702 #define INTEL_BROADCAST_RGB_LIMITED 2 3703 3704 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev) 3705 { 3706 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 3707 return VLV_VGACNTRL; 3708 else if (INTEL_INFO(dev)->gen >= 5) 3709 return CPU_VGACNTRL; 3710 else 3711 return VGACNTRL; 3712 } 3713 3714 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3715 { 3716 unsigned long j = msecs_to_jiffies(m); 3717 3718 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3719 } 3720 3721 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3722 { 3723 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3724 } 3725 3726 static inline unsigned long 3727 timespec_to_jiffies_timeout(const struct timespec *value) 3728 { 3729 unsigned long j = timespec_to_jiffies(value); 3730 3731 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3732 } 3733 3734 /* 3735 * If you need to wait X milliseconds between events A and B, but event B 3736 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3737 * when event A happened, then just before event B you call this function and 3738 * pass the timestamp as the first argument, and X as the second argument. 3739 */ 3740 static inline void 3741 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3742 { 3743 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3744 3745 /* 3746 * Don't re-read the value of "jiffies" every time since it may change 3747 * behind our back and break the math. 3748 */ 3749 tmp_jiffies = jiffies; 3750 target_jiffies = timestamp_jiffies + 3751 msecs_to_jiffies_timeout(to_wait_ms); 3752 3753 if (time_after(target_jiffies, tmp_jiffies)) { 3754 remaining_jiffies = target_jiffies - tmp_jiffies; 3755 #if 0 3756 while (remaining_jiffies) 3757 remaining_jiffies = 3758 schedule_timeout_uninterruptible(remaining_jiffies); 3759 #else 3760 msleep(jiffies_to_msecs(remaining_jiffies)); 3761 #endif 3762 } 3763 } 3764 3765 static inline void i915_trace_irq_get(struct intel_engine_cs *engine, 3766 struct drm_i915_gem_request *req) 3767 { 3768 if (engine->trace_irq_req == NULL && engine->irq_get(engine)) 3769 i915_gem_request_assign(&engine->trace_irq_req, req); 3770 } 3771 3772 #endif 3773