xref: /dragonfly/sys/dev/drm/i915/i915_gem.c (revision c87dd536)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static void
44 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
47 
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49 				  enum i915_cache_level level)
50 {
51 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53 
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
57 		return true;
58 
59 	return obj->pin_display;
60 }
61 
62 /* some bookkeeping */
63 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
64 				  size_t size)
65 {
66 	spin_lock(&dev_priv->mm.object_stat_lock);
67 	dev_priv->mm.object_count++;
68 	dev_priv->mm.object_memory += size;
69 	spin_unlock(&dev_priv->mm.object_stat_lock);
70 }
71 
72 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
73 				     size_t size)
74 {
75 	spin_lock(&dev_priv->mm.object_stat_lock);
76 	dev_priv->mm.object_count--;
77 	dev_priv->mm.object_memory -= size;
78 	spin_unlock(&dev_priv->mm.object_stat_lock);
79 }
80 
81 static int
82 i915_gem_wait_for_error(struct i915_gpu_error *error)
83 {
84 	int ret;
85 
86 	if (!i915_reset_in_progress(error))
87 		return 0;
88 
89 	/*
90 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
91 	 * userspace. If it takes that long something really bad is going on and
92 	 * we should simply try to bail out and fail as gracefully as possible.
93 	 */
94 	ret = wait_event_interruptible_timeout(error->reset_queue,
95 					       !i915_reset_in_progress(error),
96 					       10*HZ);
97 	if (ret == 0) {
98 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
99 		return -EIO;
100 	} else if (ret < 0) {
101 		return ret;
102 	} else {
103 		return 0;
104 	}
105 }
106 
107 int i915_mutex_lock_interruptible(struct drm_device *dev)
108 {
109 	struct drm_i915_private *dev_priv = dev->dev_private;
110 	int ret;
111 
112 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
113 	if (ret)
114 		return ret;
115 
116 	ret = mutex_lock_interruptible(&dev->struct_mutex);
117 	if (ret)
118 		return ret;
119 
120 	WARN_ON(i915_verify_lists(dev));
121 	return 0;
122 }
123 
124 int
125 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
126 			    struct drm_file *file)
127 {
128 	struct drm_i915_private *dev_priv = to_i915(dev);
129 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
130 	struct drm_i915_gem_get_aperture *args = data;
131 	struct i915_vma *vma;
132 	size_t pinned;
133 
134 	pinned = 0;
135 	mutex_lock(&dev->struct_mutex);
136 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
137 		if (vma->pin_count)
138 			pinned += vma->node.size;
139 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
140 		if (vma->pin_count)
141 			pinned += vma->node.size;
142 	mutex_unlock(&dev->struct_mutex);
143 
144 	args->aper_size = ggtt->base.total;
145 	args->aper_available_size = args->aper_size - pinned;
146 
147 	return 0;
148 }
149 
150 #if 0
151 static int
152 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153 {
154 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 	char *vaddr = obj->phys_handle->vaddr;
156 	struct sg_table *st;
157 	struct scatterlist *sg;
158 	int i;
159 
160 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 		return -EINVAL;
162 
163 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 		struct page *page;
165 		char *src;
166 
167 		page = shmem_read_mapping_page(mapping, i);
168 		if (IS_ERR(page))
169 			return PTR_ERR(page);
170 
171 		src = kmap_atomic(page);
172 		memcpy(vaddr, src, PAGE_SIZE);
173 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 		kunmap_atomic(src);
175 
176 		put_page(page);
177 		vaddr += PAGE_SIZE;
178 	}
179 
180 	i915_gem_chipset_flush(obj->base.dev);
181 
182 	st = kmalloc(sizeof(*st), GFP_KERNEL);
183 	if (st == NULL)
184 		return -ENOMEM;
185 
186 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 		kfree(st);
188 		return -ENOMEM;
189 	}
190 
191 	sg = st->sgl;
192 	sg->offset = 0;
193 	sg->length = obj->base.size;
194 
195 	sg_dma_address(sg) = obj->phys_handle->busaddr;
196 	sg_dma_len(sg) = obj->base.size;
197 
198 	obj->pages = st;
199 	return 0;
200 }
201 
202 static void
203 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204 {
205 	int ret;
206 
207 	BUG_ON(obj->madv == __I915_MADV_PURGED);
208 
209 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
210 	if (WARN_ON(ret)) {
211 		/* In the event of a disaster, abandon all caches and
212 		 * hope for the best.
213 		 */
214 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 	}
216 
217 	if (obj->madv == I915_MADV_DONTNEED)
218 		obj->dirty = 0;
219 
220 	if (obj->dirty) {
221 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222 		char *vaddr = obj->phys_handle->vaddr;
223 		int i;
224 
225 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 			struct page *page;
227 			char *dst;
228 
229 			page = shmem_read_mapping_page(mapping, i);
230 			if (IS_ERR(page))
231 				continue;
232 
233 			dst = kmap_atomic(page);
234 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 			memcpy(dst, vaddr, PAGE_SIZE);
236 			kunmap_atomic(dst);
237 
238 			set_page_dirty(page);
239 			if (obj->madv == I915_MADV_WILLNEED)
240 				mark_page_accessed(page);
241 			put_page(page);
242 			vaddr += PAGE_SIZE;
243 		}
244 		obj->dirty = 0;
245 	}
246 
247 	sg_free_table(obj->pages);
248 	kfree(obj->pages);
249 }
250 
251 static void
252 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253 {
254 	drm_pci_free(obj->base.dev, obj->phys_handle);
255 }
256 
257 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 	.get_pages = i915_gem_object_get_pages_phys,
259 	.put_pages = i915_gem_object_put_pages_phys,
260 	.release = i915_gem_object_release_phys,
261 };
262 #endif
263 
264 static int
265 drop_pages(struct drm_i915_gem_object *obj)
266 {
267 	struct i915_vma *vma, *next;
268 	int ret;
269 
270 	drm_gem_object_reference(&obj->base);
271 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
272 		if (i915_vma_unbind(vma))
273 			break;
274 
275 	ret = i915_gem_object_put_pages(obj);
276 	drm_gem_object_unreference(&obj->base);
277 
278 	return ret;
279 }
280 
281 int
282 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
283 			    int align)
284 {
285 	drm_dma_handle_t *phys;
286 	int ret;
287 
288 	if (obj->phys_handle) {
289 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
290 			return -EBUSY;
291 
292 		return 0;
293 	}
294 
295 	if (obj->madv != I915_MADV_WILLNEED)
296 		return -EFAULT;
297 
298 #if 0
299 	if (obj->base.filp == NULL)
300 		return -EINVAL;
301 #endif
302 
303 	ret = drop_pages(obj);
304 	if (ret)
305 		return ret;
306 
307 	/* create a new object */
308 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
309 	if (!phys)
310 		return -ENOMEM;
311 
312 	obj->phys_handle = phys;
313 #if 0
314 	obj->ops = &i915_gem_phys_ops;
315 #endif
316 
317 	return i915_gem_object_get_pages(obj);
318 }
319 
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 		     struct drm_i915_gem_pwrite *args,
323 		     struct drm_file *file_priv)
324 {
325 	struct drm_device *dev = obj->base.dev;
326 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
327 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
328 	int ret = 0;
329 
330 	/* We manually control the domain here and pretend that it
331 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 	 */
333 	ret = i915_gem_object_wait_rendering(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 		unsigned long unwritten;
340 
341 		/* The physical object once assigned is fixed for the lifetime
342 		 * of the obj, so we can safely drop the lock and continue
343 		 * to access vaddr.
344 		 */
345 		mutex_unlock(&dev->struct_mutex);
346 		unwritten = copy_from_user(vaddr, user_data, args->size);
347 		mutex_lock(&dev->struct_mutex);
348 		if (unwritten) {
349 			ret = -EFAULT;
350 			goto out;
351 		}
352 	}
353 
354 	drm_clflush_virt_range(vaddr, args->size);
355 	i915_gem_chipset_flush(dev);
356 
357 out:
358 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 	return ret;
360 }
361 
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 	return kmalloc(sizeof(struct drm_i915_gem_object),
365 	    M_DRM, M_WAITOK | M_ZERO);
366 }
367 
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 	kfree(obj);
371 }
372 
373 static int
374 i915_gem_create(struct drm_file *file,
375 		struct drm_device *dev,
376 		uint64_t size,
377 		uint32_t *handle_p)
378 {
379 	struct drm_i915_gem_object *obj;
380 	int ret;
381 	u32 handle;
382 
383 	size = roundup(size, PAGE_SIZE);
384 	if (size == 0)
385 		return -EINVAL;
386 
387 	/* Allocate the new object */
388 	obj = i915_gem_alloc_object(dev, size);
389 	if (obj == NULL)
390 		return -ENOMEM;
391 
392 	ret = drm_gem_handle_create(file, &obj->base, &handle);
393 	/* drop reference from allocate - handle holds it now */
394 	drm_gem_object_unreference_unlocked(&obj->base);
395 	if (ret)
396 		return ret;
397 
398 	*handle_p = handle;
399 	return 0;
400 }
401 
402 int
403 i915_gem_dumb_create(struct drm_file *file,
404 		     struct drm_device *dev,
405 		     struct drm_mode_create_dumb *args)
406 {
407 	/* have to work out size/pitch and return them */
408 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
409 	args->size = args->pitch * args->height;
410 	return i915_gem_create(file, dev,
411 			       args->size, &args->handle);
412 }
413 
414 /**
415  * Creates a new mm object and returns a handle to it.
416  */
417 int
418 i915_gem_create_ioctl(struct drm_device *dev, void *data,
419 		      struct drm_file *file)
420 {
421 	struct drm_i915_gem_create *args = data;
422 
423 	return i915_gem_create(file, dev,
424 			       args->size, &args->handle);
425 }
426 
427 static inline int
428 __copy_to_user_swizzled(char __user *cpu_vaddr,
429 			const char *gpu_vaddr, int gpu_offset,
430 			int length)
431 {
432 	int ret, cpu_offset = 0;
433 
434 	while (length > 0) {
435 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
436 		int this_length = min(cacheline_end - gpu_offset, length);
437 		int swizzled_gpu_offset = gpu_offset ^ 64;
438 
439 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
440 				     gpu_vaddr + swizzled_gpu_offset,
441 				     this_length);
442 		if (ret)
443 			return ret + length;
444 
445 		cpu_offset += this_length;
446 		gpu_offset += this_length;
447 		length -= this_length;
448 	}
449 
450 	return 0;
451 }
452 
453 static inline int
454 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
455 			  const char __user *cpu_vaddr,
456 			  int length)
457 {
458 	int ret, cpu_offset = 0;
459 
460 	while (length > 0) {
461 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
462 		int this_length = min(cacheline_end - gpu_offset, length);
463 		int swizzled_gpu_offset = gpu_offset ^ 64;
464 
465 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
466 				       cpu_vaddr + cpu_offset,
467 				       this_length);
468 		if (ret)
469 			return ret + length;
470 
471 		cpu_offset += this_length;
472 		gpu_offset += this_length;
473 		length -= this_length;
474 	}
475 
476 	return 0;
477 }
478 
479 /*
480  * Pins the specified object's pages and synchronizes the object with
481  * GPU accesses. Sets needs_clflush to non-zero if the caller should
482  * flush the object from the CPU cache.
483  */
484 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
485 				    int *needs_clflush)
486 {
487 	int ret;
488 
489 	*needs_clflush = 0;
490 
491 #if 0
492 	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 		return -EINVAL;
494 #endif
495 
496 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
497 		/* If we're not in the cpu read domain, set ourself into the gtt
498 		 * read domain and manually flush cachelines (if required). This
499 		 * optimizes for the case when the gpu will dirty the data
500 		 * anyway again before the next pread happens. */
501 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
502 							obj->cache_level);
503 		ret = i915_gem_object_wait_rendering(obj, true);
504 		if (ret)
505 			return ret;
506 	}
507 
508 	ret = i915_gem_object_get_pages(obj);
509 	if (ret)
510 		return ret;
511 
512 	i915_gem_object_pin_pages(obj);
513 
514 	return ret;
515 }
516 
517 /* Per-page copy function for the shmem pread fastpath.
518  * Flushes invalid cachelines before reading the target if
519  * needs_clflush is set. */
520 static int
521 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
522 		 char __user *user_data,
523 		 bool page_do_bit17_swizzling, bool needs_clflush)
524 {
525 	char *vaddr;
526 	int ret;
527 
528 	if (unlikely(page_do_bit17_swizzling))
529 		return -EINVAL;
530 
531 	vaddr = kmap_atomic(page);
532 	if (needs_clflush)
533 		drm_clflush_virt_range(vaddr + shmem_page_offset,
534 				       page_length);
535 	ret = __copy_to_user_inatomic(user_data,
536 				      vaddr + shmem_page_offset,
537 				      page_length);
538 	kunmap_atomic(vaddr);
539 
540 	return ret ? -EFAULT : 0;
541 }
542 
543 static void
544 shmem_clflush_swizzled_range(char *addr, unsigned long length,
545 			     bool swizzled)
546 {
547 	if (unlikely(swizzled)) {
548 		unsigned long start = (unsigned long) addr;
549 		unsigned long end = (unsigned long) addr + length;
550 
551 		/* For swizzling simply ensure that we always flush both
552 		 * channels. Lame, but simple and it works. Swizzled
553 		 * pwrite/pread is far from a hotpath - current userspace
554 		 * doesn't use it at all. */
555 		start = round_down(start, 128);
556 		end = round_up(end, 128);
557 
558 		drm_clflush_virt_range((void *)start, end - start);
559 	} else {
560 		drm_clflush_virt_range(addr, length);
561 	}
562 
563 }
564 
565 /* Only difference to the fast-path function is that this can handle bit17
566  * and uses non-atomic copy and kmap functions. */
567 static int
568 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
569 		 char __user *user_data,
570 		 bool page_do_bit17_swizzling, bool needs_clflush)
571 {
572 	char *vaddr;
573 	int ret;
574 
575 	vaddr = kmap(page);
576 	if (needs_clflush)
577 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
578 					     page_length,
579 					     page_do_bit17_swizzling);
580 
581 	if (page_do_bit17_swizzling)
582 		ret = __copy_to_user_swizzled(user_data,
583 					      vaddr, shmem_page_offset,
584 					      page_length);
585 	else
586 		ret = __copy_to_user(user_data,
587 				     vaddr + shmem_page_offset,
588 				     page_length);
589 	kunmap(page);
590 
591 	return ret ? - EFAULT : 0;
592 }
593 
594 static int
595 i915_gem_shmem_pread(struct drm_device *dev,
596 		     struct drm_i915_gem_object *obj,
597 		     struct drm_i915_gem_pread *args,
598 		     struct drm_file *file)
599 {
600 	char __user *user_data;
601 	ssize_t remain;
602 	loff_t offset;
603 	int shmem_page_offset, page_length, ret = 0;
604 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
605 	int prefaulted = 0;
606 	int needs_clflush = 0;
607 	struct sg_page_iter sg_iter;
608 
609 	user_data = u64_to_user_ptr(args->data_ptr);
610 	remain = args->size;
611 
612 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
613 
614 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
615 	if (ret)
616 		return ret;
617 
618 	offset = args->offset;
619 
620 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
621 			 offset >> PAGE_SHIFT) {
622 		struct page *page = sg_page_iter_page(&sg_iter);
623 
624 		if (remain <= 0)
625 			break;
626 
627 		/* Operation in this page
628 		 *
629 		 * shmem_page_offset = offset within page in shmem file
630 		 * page_length = bytes to copy for this page
631 		 */
632 		shmem_page_offset = offset_in_page(offset);
633 		page_length = remain;
634 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
635 			page_length = PAGE_SIZE - shmem_page_offset;
636 
637 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
638 			(page_to_phys(page) & (1 << 17)) != 0;
639 
640 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
641 				       user_data, page_do_bit17_swizzling,
642 				       needs_clflush);
643 		if (ret == 0)
644 			goto next_page;
645 
646 		mutex_unlock(&dev->struct_mutex);
647 
648 		if (likely(!i915.prefault_disable) && !prefaulted) {
649 			ret = fault_in_multipages_writeable(user_data, remain);
650 			/* Userspace is tricking us, but we've already clobbered
651 			 * its pages with the prefault and promised to write the
652 			 * data up to the first fault. Hence ignore any errors
653 			 * and just continue. */
654 			(void)ret;
655 			prefaulted = 1;
656 		}
657 
658 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
659 				       user_data, page_do_bit17_swizzling,
660 				       needs_clflush);
661 
662 		mutex_lock(&dev->struct_mutex);
663 
664 		if (ret)
665 			goto out;
666 
667 next_page:
668 		remain -= page_length;
669 		user_data += page_length;
670 		offset += page_length;
671 	}
672 
673 out:
674 	i915_gem_object_unpin_pages(obj);
675 
676 	return ret;
677 }
678 
679 /**
680  * Reads data from the object referenced by handle.
681  *
682  * On error, the contents of *data are undefined.
683  */
684 int
685 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
686 		     struct drm_file *file)
687 {
688 	struct drm_i915_gem_pread *args = data;
689 	struct drm_i915_gem_object *obj;
690 	int ret = 0;
691 
692 	if (args->size == 0)
693 		return 0;
694 
695 #if 0
696 	if (!access_ok(VERIFY_WRITE,
697 		       u64_to_user_ptr(args->data_ptr),
698 		       args->size))
699 		return -EFAULT;
700 #endif
701 
702 	ret = i915_mutex_lock_interruptible(dev);
703 	if (ret)
704 		return ret;
705 
706 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
707 	if (&obj->base == NULL) {
708 		ret = -ENOENT;
709 		goto unlock;
710 	}
711 
712 	/* Bounds check source.  */
713 	if (args->offset > obj->base.size ||
714 	    args->size > obj->base.size - args->offset) {
715 		ret = -EINVAL;
716 		goto out;
717 	}
718 
719 	/* prime objects have no backing filp to GEM pread/pwrite
720 	 * pages from.
721 	 */
722 
723 	trace_i915_gem_object_pread(obj, args->offset, args->size);
724 
725 	ret = i915_gem_shmem_pread(dev, obj, args, file);
726 
727 out:
728 	drm_gem_object_unreference(&obj->base);
729 unlock:
730 	mutex_unlock(&dev->struct_mutex);
731 	return ret;
732 }
733 
734 /* This is the fast write path which cannot handle
735  * page faults in the source data
736  */
737 
738 static inline int
739 fast_user_write(struct io_mapping *mapping,
740 		loff_t page_base, int page_offset,
741 		char __user *user_data,
742 		int length)
743 {
744 	void __iomem *vaddr_atomic;
745 	void *vaddr;
746 	unsigned long unwritten;
747 
748 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
749 	/* We can use the cpu mem copy function because this is X86. */
750 	vaddr = (char __force*)vaddr_atomic + page_offset;
751 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
752 						      user_data, length);
753 	io_mapping_unmap_atomic(vaddr_atomic);
754 	return unwritten;
755 }
756 
757 /**
758  * This is the fast pwrite path, where we copy the data directly from the
759  * user into the GTT, uncached.
760  */
761 static int
762 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
763 			 struct drm_i915_gem_object *obj,
764 			 struct drm_i915_gem_pwrite *args,
765 			 struct drm_file *file)
766 {
767 	struct drm_i915_private *dev_priv = to_i915(dev);
768 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
769 	ssize_t remain;
770 	loff_t offset, page_base;
771 	char __user *user_data;
772 	int page_offset, page_length, ret;
773 
774 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 	if (ret)
776 		goto out;
777 
778 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 	if (ret)
780 		goto out_unpin;
781 
782 	ret = i915_gem_object_put_fence(obj);
783 	if (ret)
784 		goto out_unpin;
785 
786 	user_data = u64_to_user_ptr(args->data_ptr);
787 	remain = args->size;
788 
789 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790 
791 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792 
793 	while (remain > 0) {
794 		/* Operation in this page
795 		 *
796 		 * page_base = page offset within aperture
797 		 * page_offset = offset within page
798 		 * page_length = bytes to copy for this page
799 		 */
800 		page_base = offset & ~PAGE_MASK;
801 		page_offset = offset_in_page(offset);
802 		page_length = remain;
803 		if ((page_offset + remain) > PAGE_SIZE)
804 			page_length = PAGE_SIZE - page_offset;
805 
806 		/* If we get a fault while copying data, then (presumably) our
807 		 * source page isn't available.  Return the error and we'll
808 		 * retry in the slow path.
809 		 */
810 		if (fast_user_write(ggtt->mappable, page_base,
811 				    page_offset, user_data, page_length)) {
812 			ret = -EFAULT;
813 			goto out_flush;
814 		}
815 
816 		remain -= page_length;
817 		user_data += page_length;
818 		offset += page_length;
819 	}
820 
821 out_flush:
822 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 	i915_gem_object_ggtt_unpin(obj);
825 out:
826 	return ret;
827 }
828 
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 		  char __user *user_data,
836 		  bool page_do_bit17_swizzling,
837 		  bool needs_clflush_before,
838 		  bool needs_clflush_after)
839 {
840 	char *vaddr;
841 	int ret;
842 
843 	if (unlikely(page_do_bit17_swizzling))
844 		return -EINVAL;
845 
846 	vaddr = kmap_atomic(page);
847 	if (needs_clflush_before)
848 		drm_clflush_virt_range(vaddr + shmem_page_offset,
849 				       page_length);
850 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 					user_data, page_length);
852 	if (needs_clflush_after)
853 		drm_clflush_virt_range(vaddr + shmem_page_offset,
854 				       page_length);
855 	kunmap_atomic(vaddr);
856 
857 	return ret ? -EFAULT : 0;
858 }
859 
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 		  char __user *user_data,
865 		  bool page_do_bit17_swizzling,
866 		  bool needs_clflush_before,
867 		  bool needs_clflush_after)
868 {
869 	char *vaddr;
870 	int ret;
871 
872 	vaddr = kmap(page);
873 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 					     page_length,
876 					     page_do_bit17_swizzling);
877 	if (page_do_bit17_swizzling)
878 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 						user_data,
880 						page_length);
881 	else
882 		ret = __copy_from_user(vaddr + shmem_page_offset,
883 				       user_data,
884 				       page_length);
885 	if (needs_clflush_after)
886 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 					     page_length,
888 					     page_do_bit17_swizzling);
889 	kunmap(page);
890 
891 	return ret ? -EFAULT : 0;
892 }
893 
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 		      struct drm_i915_gem_object *obj,
897 		      struct drm_i915_gem_pwrite *args,
898 		      struct drm_file *file)
899 {
900 	ssize_t remain;
901 	loff_t offset;
902 	char __user *user_data;
903 	int shmem_page_offset, page_length, ret = 0;
904 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 	int hit_slowpath = 0;
906 	int needs_clflush_after = 0;
907 	int needs_clflush_before = 0;
908 	struct sg_page_iter sg_iter;
909 
910 	user_data = u64_to_user_ptr(args->data_ptr);
911 	remain = args->size;
912 
913 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914 
915 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 		/* If we're not in the cpu write domain, set ourself into the gtt
917 		 * write domain and manually flush cachelines (if required). This
918 		 * optimizes for the case when the gpu will use the data
919 		 * right away and we therefore have to clflush anyway. */
920 		needs_clflush_after = cpu_write_needs_clflush(obj);
921 		ret = i915_gem_object_wait_rendering(obj, false);
922 		if (ret)
923 			return ret;
924 	}
925 	/* Same trick applies to invalidate partially written cachelines read
926 	 * before writing. */
927 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 		needs_clflush_before =
929 			!cpu_cache_is_coherent(dev, obj->cache_level);
930 
931 	ret = i915_gem_object_get_pages(obj);
932 	if (ret)
933 		return ret;
934 
935 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936 
937 	i915_gem_object_pin_pages(obj);
938 
939 	offset = args->offset;
940 	obj->dirty = 1;
941 
942 	VM_OBJECT_LOCK(obj->base.vm_obj);
943 	vm_object_pip_add(obj->base.vm_obj, 1);
944 
945 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
946 			 offset >> PAGE_SHIFT) {
947 		struct page *page = sg_page_iter_page(&sg_iter);
948 		int partial_cacheline_write;
949 
950 		if (remain <= 0)
951 			break;
952 
953 		/* Operation in this page
954 		 *
955 		 * shmem_page_offset = offset within page in shmem file
956 		 * page_length = bytes to copy for this page
957 		 */
958 		shmem_page_offset = offset_in_page(offset);
959 
960 		page_length = remain;
961 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
962 			page_length = PAGE_SIZE - shmem_page_offset;
963 
964 		/* If we don't overwrite a cacheline completely we need to be
965 		 * careful to have up-to-date data by first clflushing. Don't
966 		 * overcomplicate things and flush the entire patch. */
967 		partial_cacheline_write = needs_clflush_before &&
968 			((shmem_page_offset | page_length)
969 				& (cpu_clflush_line_size - 1));
970 
971 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
972 			(page_to_phys(page) & (1 << 17)) != 0;
973 
974 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
975 					user_data, page_do_bit17_swizzling,
976 					partial_cacheline_write,
977 					needs_clflush_after);
978 		if (ret == 0)
979 			goto next_page;
980 
981 		hit_slowpath = 1;
982 		mutex_unlock(&dev->struct_mutex);
983 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
984 					user_data, page_do_bit17_swizzling,
985 					partial_cacheline_write,
986 					needs_clflush_after);
987 
988 		mutex_lock(&dev->struct_mutex);
989 
990 		if (ret)
991 			goto out;
992 
993 next_page:
994 		remain -= page_length;
995 		user_data += page_length;
996 		offset += page_length;
997 	}
998 	vm_object_pip_wakeup(obj->base.vm_obj);
999 	VM_OBJECT_UNLOCK(obj->base.vm_obj);
1000 
1001 out:
1002 	i915_gem_object_unpin_pages(obj);
1003 
1004 	if (hit_slowpath) {
1005 		/*
1006 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1007 		 * cachelines in-line while writing and the object moved
1008 		 * out of the cpu write domain while we've dropped the lock.
1009 		 */
1010 		if (!needs_clflush_after &&
1011 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1012 			if (i915_gem_clflush_object(obj, obj->pin_display))
1013 				needs_clflush_after = true;
1014 		}
1015 	}
1016 
1017 	if (needs_clflush_after)
1018 		i915_gem_chipset_flush(dev);
1019 	else
1020 		obj->cache_dirty = true;
1021 
1022 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1023 	return ret;
1024 }
1025 
1026 /**
1027  * Writes data to the object referenced by handle.
1028  *
1029  * On error, the contents of the buffer that were to be modified are undefined.
1030  */
1031 int
1032 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1033 		      struct drm_file *file)
1034 {
1035 	struct drm_i915_private *dev_priv = dev->dev_private;
1036 	struct drm_i915_gem_pwrite *args = data;
1037 	struct drm_i915_gem_object *obj;
1038 	int ret;
1039 
1040 	if (args->size == 0)
1041 		return 0;
1042 
1043 #if 0
1044 	if (!access_ok(VERIFY_READ,
1045 		       u64_to_user_ptr(args->data_ptr),
1046 		       args->size))
1047 		return -EFAULT;
1048 #endif
1049 
1050 	if (likely(!i915.prefault_disable)) {
1051 		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1052 						   args->size);
1053 		if (ret)
1054 			return -EFAULT;
1055 	}
1056 
1057 	intel_runtime_pm_get(dev_priv);
1058 
1059 	ret = i915_mutex_lock_interruptible(dev);
1060 	if (ret)
1061 		goto put_rpm;
1062 
1063 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1064 	if (&obj->base == NULL) {
1065 		ret = -ENOENT;
1066 		goto unlock;
1067 	}
1068 
1069 	/* Bounds check destination. */
1070 	if (args->offset > obj->base.size ||
1071 	    args->size > obj->base.size - args->offset) {
1072 		ret = -EINVAL;
1073 		goto out;
1074 	}
1075 
1076 	/* prime objects have no backing filp to GEM pread/pwrite
1077 	 * pages from.
1078 	 */
1079 
1080 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1081 
1082 	ret = -EFAULT;
1083 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1084 	 * it would end up going through the fenced access, and we'll get
1085 	 * different detiling behavior between reading and writing.
1086 	 * pread/pwrite currently are reading and writing from the CPU
1087 	 * perspective, requiring manual detiling by the client.
1088 	 */
1089 	if (obj->tiling_mode == I915_TILING_NONE &&
1090 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1091 	    cpu_write_needs_clflush(obj)) {
1092 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1093 		/* Note that the gtt paths might fail with non-page-backed user
1094 		 * pointers (e.g. gtt mappings when moving data between
1095 		 * textures). Fallback to the shmem path in that case. */
1096 	}
1097 
1098 	if (ret == -EFAULT || ret == -ENOSPC) {
1099 		if (obj->phys_handle)
1100 			ret = i915_gem_phys_pwrite(obj, args, file);
1101 		else
1102 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1103 	}
1104 
1105 out:
1106 	drm_gem_object_unreference(&obj->base);
1107 unlock:
1108 	mutex_unlock(&dev->struct_mutex);
1109 put_rpm:
1110 	intel_runtime_pm_put(dev_priv);
1111 
1112 	return ret;
1113 }
1114 
1115 static int
1116 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1117 {
1118 	if (__i915_terminally_wedged(reset_counter))
1119 		return -EIO;
1120 
1121 	if (__i915_reset_in_progress(reset_counter)) {
1122 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1123 		 * -EIO unconditionally for these. */
1124 		if (!interruptible)
1125 			return -EIO;
1126 
1127 		return -EAGAIN;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static void fake_irq(unsigned long data)
1134 {
1135 	wakeup_one((void *)data);
1136 }
1137 
1138 static bool missed_irq(struct drm_i915_private *dev_priv,
1139 		       struct intel_engine_cs *engine)
1140 {
1141 	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1142 }
1143 
1144 #if 0
1145 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1146 {
1147 	unsigned long timeout;
1148 	unsigned cpu;
1149 
1150 	/* When waiting for high frequency requests, e.g. during synchronous
1151 	 * rendering split between the CPU and GPU, the finite amount of time
1152 	 * required to set up the irq and wait upon it limits the response
1153 	 * rate. By busywaiting on the request completion for a short while we
1154 	 * can service the high frequency waits as quick as possible. However,
1155 	 * if it is a slow request, we want to sleep as quickly as possible.
1156 	 * The tradeoff between waiting and sleeping is roughly the time it
1157 	 * takes to sleep on a request, on the order of a microsecond.
1158 	 */
1159 
1160 	if (req->engine->irq_refcount)
1161 		return -EBUSY;
1162 
1163 	/* Only spin if we know the GPU is processing this request */
1164 	if (!i915_gem_request_started(req, true))
1165 		return -EAGAIN;
1166 
1167 	timeout = local_clock_us(&cpu) + 5;
1168 	while (!need_resched()) {
1169 		if (i915_gem_request_completed(req, true))
1170 			return 0;
1171 
1172 		if (signal_pending_state(state, current))
1173 			break;
1174 
1175 		if (busywait_stop(timeout, cpu))
1176 			break;
1177 
1178 		cpu_relax_lowlatency();
1179 	}
1180 
1181 	if (i915_gem_request_completed(req, false))
1182 		return 0;
1183 
1184 	return -EAGAIN;
1185 }
1186 #endif
1187 
1188 /**
1189  * __i915_wait_request - wait until execution of request has finished
1190  * @req: duh!
1191  * @interruptible: do an interruptible wait (normally yes)
1192  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1193  *
1194  * Note: It is of utmost importance that the passed in seqno and reset_counter
1195  * values have been read by the caller in an smp safe manner. Where read-side
1196  * locks are involved, it is sufficient to read the reset_counter before
1197  * unlocking the lock that protects the seqno. For lockless tricks, the
1198  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1199  * inserted.
1200  *
1201  * Returns 0 if the request was found within the alloted time. Else returns the
1202  * errno with remaining time filled in timeout argument.
1203  */
1204 int __i915_wait_request(struct drm_i915_gem_request *req,
1205 			bool interruptible,
1206 			s64 *timeout,
1207 			struct intel_rps_client *rps)
1208 {
1209 	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1210 	struct drm_device *dev = engine->dev;
1211 	struct drm_i915_private *dev_priv = dev->dev_private;
1212 	const bool irq_test_in_progress =
1213 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1214 	unsigned long timeout_expire;
1215 	s64 before = 0; /* Only to silence a compiler warning. */
1216 	int ret, sl_timeout = 1;
1217 
1218 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1219 
1220 	if (list_empty(&req->list))
1221 		return 0;
1222 
1223 	if (i915_gem_request_completed(req, true))
1224 		return 0;
1225 
1226 	timeout_expire = 0;
1227 	if (timeout) {
1228 		if (WARN_ON(*timeout < 0))
1229 			return -EINVAL;
1230 
1231 		if (*timeout == 0)
1232 			return -ETIME;
1233 
1234 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1235 
1236 		/*
1237 		 * Record current time in case interrupted by signal, or wedged.
1238 		 */
1239 		before = ktime_get_raw_ns();
1240 	}
1241 
1242 	if (INTEL_INFO(dev_priv)->gen >= 6)
1243 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1244 
1245 	trace_i915_gem_request_wait_begin(req);
1246 
1247 	/* Optimistic spin for the next jiffie before touching IRQs */
1248 #if 0
1249 	ret = __i915_spin_request(req);
1250 	if (ret == 0)
1251 		goto out;
1252 #endif
1253 
1254 	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1255 		ret = -ENODEV;
1256 		goto out;
1257 	}
1258 
1259 	lockmgr(&engine->irq_queue.lock, LK_EXCLUSIVE);
1260 	for (;;) {
1261 		struct timer_list timer;
1262 
1263 		/* We need to check whether any gpu reset happened in between
1264 		 * the request being submitted and now. If a reset has occurred,
1265 		 * the request is effectively complete (we either are in the
1266 		 * process of or have discarded the rendering and completely
1267 		 * reset the GPU. The results of the request are lost and we
1268 		 * are free to continue on with the original operation.
1269 		 */
1270 		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1271 			ret = 0;
1272 			break;
1273 		}
1274 
1275 		if (i915_gem_request_completed(req, false)) {
1276 			ret = 0;
1277 			break;
1278 		}
1279 
1280 		if (interruptible && signal_pending(curthread->td_lwp)) {
1281 			ret = -ERESTARTSYS;
1282 			break;
1283 		}
1284 
1285 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1286 			ret = -ETIME;
1287 			break;
1288 		}
1289 
1290 		timer.function = NULL;
1291 		if (timeout || missed_irq(dev_priv, engine)) {
1292 			unsigned long expire;
1293 
1294 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)&engine->irq_queue);
1295 			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1296 			sl_timeout = expire - jiffies;
1297 			if (sl_timeout < 1)
1298 				sl_timeout = 1;
1299 			mod_timer(&timer, expire);
1300 		}
1301 
1302 #if 0
1303 		io_schedule();
1304 #endif
1305 
1306 		if (timer.function) {
1307 			del_singleshot_timer_sync(&timer);
1308 			destroy_timer_on_stack(&timer);
1309 		}
1310 
1311 		lksleep(&engine->irq_queue, &engine->irq_queue.lock,
1312 			interruptible ? PCATCH : 0, "lwe", sl_timeout);
1313 	}
1314 	lockmgr(&engine->irq_queue.lock, LK_RELEASE);
1315 	if (!irq_test_in_progress)
1316 		engine->irq_put(engine);
1317 
1318 out:
1319 	trace_i915_gem_request_wait_end(req);
1320 
1321 	if (timeout) {
1322 		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1323 
1324 		*timeout = tres < 0 ? 0 : tres;
1325 
1326 		/*
1327 		 * Apparently ktime isn't accurate enough and occasionally has a
1328 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1329 		 * things up to make the test happy. We allow up to 1 jiffy.
1330 		 *
1331 		 * This is a regrssion from the timespec->ktime conversion.
1332 		 */
1333 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1334 			*timeout = 0;
1335 	}
1336 
1337 	return ret;
1338 }
1339 
1340 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1341 				   struct drm_file *file)
1342 {
1343 	struct drm_i915_file_private *file_priv;
1344 
1345 	WARN_ON(!req || !file || req->file_priv);
1346 
1347 	if (!req || !file)
1348 		return -EINVAL;
1349 
1350 	if (req->file_priv)
1351 		return -EINVAL;
1352 
1353 	file_priv = file->driver_priv;
1354 
1355 	spin_lock(&file_priv->mm.lock);
1356 	req->file_priv = file_priv;
1357 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1358 	spin_unlock(&file_priv->mm.lock);
1359 
1360 	req->pid = curproc->p_pid;
1361 
1362 	return 0;
1363 }
1364 
1365 static inline void
1366 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1367 {
1368 	struct drm_i915_file_private *file_priv = request->file_priv;
1369 
1370 	if (!file_priv)
1371 		return;
1372 
1373 	spin_lock(&file_priv->mm.lock);
1374 	list_del(&request->client_list);
1375 	request->file_priv = NULL;
1376 	spin_unlock(&file_priv->mm.lock);
1377 
1378 #if 0
1379 	put_pid(request->pid);
1380 	request->pid = NULL;
1381 #endif
1382 }
1383 
1384 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1385 {
1386 	trace_i915_gem_request_retire(request);
1387 
1388 	/* We know the GPU must have read the request to have
1389 	 * sent us the seqno + interrupt, so use the position
1390 	 * of tail of the request to update the last known position
1391 	 * of the GPU head.
1392 	 *
1393 	 * Note this requires that we are always called in request
1394 	 * completion order.
1395 	 */
1396 	request->ringbuf->last_retired_head = request->postfix;
1397 
1398 	list_del_init(&request->list);
1399 	i915_gem_request_remove_from_client(request);
1400 
1401 	i915_gem_request_unreference(request);
1402 }
1403 
1404 static void
1405 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1406 {
1407 	struct intel_engine_cs *engine = req->engine;
1408 	struct drm_i915_gem_request *tmp;
1409 
1410 	lockdep_assert_held(&engine->dev->struct_mutex);
1411 
1412 	if (list_empty(&req->list))
1413 		return;
1414 
1415 	do {
1416 		tmp = list_first_entry(&engine->request_list,
1417 				       typeof(*tmp), list);
1418 
1419 		i915_gem_request_retire(tmp);
1420 	} while (tmp != req);
1421 
1422 	WARN_ON(i915_verify_lists(engine->dev));
1423 }
1424 
1425 /**
1426  * Waits for a request to be signaled, and cleans up the
1427  * request and object lists appropriately for that event.
1428  */
1429 int
1430 i915_wait_request(struct drm_i915_gem_request *req)
1431 {
1432 	struct drm_i915_private *dev_priv = req->i915;
1433 	bool interruptible;
1434 	int ret;
1435 
1436 	interruptible = dev_priv->mm.interruptible;
1437 
1438 	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1439 
1440 	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1441 	if (ret)
1442 		return ret;
1443 
1444 	/* If the GPU hung, we want to keep the requests to find the guilty. */
1445 	if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1446 		__i915_gem_request_retire__upto(req);
1447 
1448 	return 0;
1449 }
1450 
1451 /**
1452  * Ensures that all rendering to the object has completed and the object is
1453  * safe to unbind from the GTT or access from the CPU.
1454  */
1455 int
1456 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1457 			       bool readonly)
1458 {
1459 	int ret, i;
1460 
1461 	if (!obj->active)
1462 		return 0;
1463 
1464 	if (readonly) {
1465 		if (obj->last_write_req != NULL) {
1466 			ret = i915_wait_request(obj->last_write_req);
1467 			if (ret)
1468 				return ret;
1469 
1470 			i = obj->last_write_req->engine->id;
1471 			if (obj->last_read_req[i] == obj->last_write_req)
1472 				i915_gem_object_retire__read(obj, i);
1473 			else
1474 				i915_gem_object_retire__write(obj);
1475 		}
1476 	} else {
1477 		for (i = 0; i < I915_NUM_ENGINES; i++) {
1478 			if (obj->last_read_req[i] == NULL)
1479 				continue;
1480 
1481 			ret = i915_wait_request(obj->last_read_req[i]);
1482 			if (ret)
1483 				return ret;
1484 
1485 			i915_gem_object_retire__read(obj, i);
1486 		}
1487 		GEM_BUG_ON(obj->active);
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 static void
1494 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1495 			       struct drm_i915_gem_request *req)
1496 {
1497 	int ring = req->engine->id;
1498 
1499 	if (obj->last_read_req[ring] == req)
1500 		i915_gem_object_retire__read(obj, ring);
1501 	else if (obj->last_write_req == req)
1502 		i915_gem_object_retire__write(obj);
1503 
1504 	if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1505 		__i915_gem_request_retire__upto(req);
1506 }
1507 
1508 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1509  * as the object state may change during this call.
1510  */
1511 static __must_check int
1512 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1513 					    struct intel_rps_client *rps,
1514 					    bool readonly)
1515 {
1516 	struct drm_device *dev = obj->base.dev;
1517 	struct drm_i915_private *dev_priv = dev->dev_private;
1518 	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1519 	int ret, i, n = 0;
1520 
1521 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1522 	BUG_ON(!dev_priv->mm.interruptible);
1523 
1524 	if (!obj->active)
1525 		return 0;
1526 
1527 	if (readonly) {
1528 		struct drm_i915_gem_request *req;
1529 
1530 		req = obj->last_write_req;
1531 		if (req == NULL)
1532 			return 0;
1533 
1534 		requests[n++] = i915_gem_request_reference(req);
1535 	} else {
1536 		for (i = 0; i < I915_NUM_ENGINES; i++) {
1537 			struct drm_i915_gem_request *req;
1538 
1539 			req = obj->last_read_req[i];
1540 			if (req == NULL)
1541 				continue;
1542 
1543 			requests[n++] = i915_gem_request_reference(req);
1544 		}
1545 	}
1546 
1547 	mutex_unlock(&dev->struct_mutex);
1548 	ret = 0;
1549 	for (i = 0; ret == 0 && i < n; i++)
1550 		ret = __i915_wait_request(requests[i], true, NULL, rps);
1551 	mutex_lock(&dev->struct_mutex);
1552 
1553 	for (i = 0; i < n; i++) {
1554 		if (ret == 0)
1555 			i915_gem_object_retire_request(obj, requests[i]);
1556 		i915_gem_request_unreference(requests[i]);
1557 	}
1558 
1559 	return ret;
1560 }
1561 
1562 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1563 {
1564 	struct drm_i915_file_private *fpriv = file->driver_priv;
1565 	return &fpriv->rps;
1566 }
1567 
1568 /**
1569  * Called when user space prepares to use an object with the CPU, either
1570  * through the mmap ioctl's mapping or a GTT mapping.
1571  */
1572 int
1573 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1574 			  struct drm_file *file)
1575 {
1576 	struct drm_i915_gem_set_domain *args = data;
1577 	struct drm_i915_gem_object *obj;
1578 	uint32_t read_domains = args->read_domains;
1579 	uint32_t write_domain = args->write_domain;
1580 	int ret;
1581 
1582 	/* Only handle setting domains to types used by the CPU. */
1583 	if (write_domain & I915_GEM_GPU_DOMAINS)
1584 		return -EINVAL;
1585 
1586 	if (read_domains & I915_GEM_GPU_DOMAINS)
1587 		return -EINVAL;
1588 
1589 	/* Having something in the write domain implies it's in the read
1590 	 * domain, and only that read domain.  Enforce that in the request.
1591 	 */
1592 	if (write_domain != 0 && read_domains != write_domain)
1593 		return -EINVAL;
1594 
1595 	ret = i915_mutex_lock_interruptible(dev);
1596 	if (ret)
1597 		return ret;
1598 
1599 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1600 	if (&obj->base == NULL) {
1601 		ret = -ENOENT;
1602 		goto unlock;
1603 	}
1604 
1605 	/* Try to flush the object off the GPU without holding the lock.
1606 	 * We will repeat the flush holding the lock in the normal manner
1607 	 * to catch cases where we are gazumped.
1608 	 */
1609 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1610 							  to_rps_client(file),
1611 							  !write_domain);
1612 	if (ret)
1613 		goto unref;
1614 
1615 	if (read_domains & I915_GEM_DOMAIN_GTT)
1616 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1617 	else
1618 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1619 
1620 	if (write_domain != 0)
1621 		intel_fb_obj_invalidate(obj,
1622 					write_domain == I915_GEM_DOMAIN_GTT ?
1623 					ORIGIN_GTT : ORIGIN_CPU);
1624 
1625 unref:
1626 	drm_gem_object_unreference(&obj->base);
1627 unlock:
1628 	mutex_unlock(&dev->struct_mutex);
1629 	return ret;
1630 }
1631 
1632 /**
1633  * Called when user space has done writes to this buffer
1634  */
1635 int
1636 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1637 			 struct drm_file *file)
1638 {
1639 	struct drm_i915_gem_sw_finish *args = data;
1640 	struct drm_i915_gem_object *obj;
1641 	int ret = 0;
1642 
1643 	ret = i915_mutex_lock_interruptible(dev);
1644 	if (ret)
1645 		return ret;
1646 
1647 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1648 	if (&obj->base == NULL) {
1649 		ret = -ENOENT;
1650 		goto unlock;
1651 	}
1652 
1653 	/* Pinned buffers may be scanout, so flush the cache */
1654 	if (obj->pin_display)
1655 		i915_gem_object_flush_cpu_write_domain(obj);
1656 
1657 	drm_gem_object_unreference(&obj->base);
1658 unlock:
1659 	mutex_unlock(&dev->struct_mutex);
1660 	return ret;
1661 }
1662 
1663 /**
1664  * Maps the contents of an object, returning the address it is mapped
1665  * into.
1666  *
1667  * While the mapping holds a reference on the contents of the object, it doesn't
1668  * imply a ref on the object itself.
1669  *
1670  * IMPORTANT:
1671  *
1672  * DRM driver writers who look a this function as an example for how to do GEM
1673  * mmap support, please don't implement mmap support like here. The modern way
1674  * to implement DRM mmap support is with an mmap offset ioctl (like
1675  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1676  * That way debug tooling like valgrind will understand what's going on, hiding
1677  * the mmap call in a driver private ioctl will break that. The i915 driver only
1678  * does cpu mmaps this way because we didn't know better.
1679  */
1680 int
1681 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1682 		    struct drm_file *file)
1683 {
1684 	struct drm_i915_gem_mmap *args = data;
1685 	struct drm_gem_object *obj;
1686 	unsigned long addr;
1687 
1688 	struct proc *p = curproc;
1689 	vm_map_t map = &p->p_vmspace->vm_map;
1690 	vm_size_t size;
1691 	int error = 0, rv;
1692 
1693 	if (args->flags & ~(I915_MMAP_WC))
1694 		return -EINVAL;
1695 
1696 	obj = drm_gem_object_lookup(file, args->handle);
1697 	if (obj == NULL)
1698 		return -ENOENT;
1699 
1700 	if (args->size == 0)
1701 		goto out;
1702 
1703 	size = round_page(args->size);
1704 	if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1705 		error = -ENOMEM;
1706 		goto out;
1707 	}
1708 
1709 	/* prime objects have no backing filp to GEM mmap
1710 	 * pages from.
1711 	 */
1712 
1713 	/*
1714 	 * Call hint to ensure that NULL is not returned as a valid address
1715 	 * and to reduce vm_map traversals. XXX causes instability, use a
1716 	 * fixed low address as the start point instead to avoid the NULL
1717 	 * return issue.
1718 	 */
1719 
1720 	addr = PAGE_SIZE;
1721 
1722 	/*
1723 	 * Use 256KB alignment.  It is unclear why this matters for a
1724 	 * virtual address but it appears to fix a number of application/X
1725 	 * crashes and kms console switching is much faster.
1726 	 */
1727 	vm_object_hold(obj->vm_obj);
1728 	vm_object_reference_locked(obj->vm_obj);
1729 	vm_object_drop(obj->vm_obj);
1730 
1731 	rv = vm_map_find(map, obj->vm_obj, NULL,
1732 			 args->offset, &addr, args->size,
1733 			 256 * 1024, /* align */
1734 			 TRUE, /* fitit */
1735 			 VM_MAPTYPE_NORMAL, VM_SUBSYS_DRM_GEM,
1736 			 VM_PROT_READ | VM_PROT_WRITE, /* prot */
1737 			 VM_PROT_READ | VM_PROT_WRITE, /* max */
1738 			 MAP_SHARED /* cow */);
1739 	if (rv != KERN_SUCCESS) {
1740 		vm_object_deallocate(obj->vm_obj);
1741 		error = -vm_mmap_to_errno(rv);
1742 	} else {
1743 		args->addr_ptr = (uint64_t)addr;
1744 	}
1745 out:
1746 	drm_gem_object_unreference(obj);
1747 	return (error);
1748 }
1749 
1750 /**
1751  * i915_gem_fault - fault a page into the GTT
1752  *
1753  * vm_obj is locked on entry and expected to be locked on return.
1754  *
1755  * The vm_pager has placemarked the object with an anonymous memory page
1756  * which we must replace atomically to avoid races against concurrent faults
1757  * on the same page.  XXX we currently are unable to do this atomically.
1758  *
1759  * If we are to return an error we should not touch the anonymous page,
1760  * the caller will deallocate it.
1761  *
1762  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
1763  * in that case.  Release all resources and wait 1 tick before retrying.
1764  * This is a huge problem which needs to be fixed by getting rid of most
1765  * of the interruptability.  The linux code does not retry but does appear
1766  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
1767  * to be able to retry.
1768  *
1769  * --
1770  * @vma: VMA in question
1771  * @vmf: fault info
1772  *
1773  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1774  * from userspace.  The fault handler takes care of binding the object to
1775  * the GTT (if needed), allocating and programming a fence register (again,
1776  * only if needed based on whether the old reg is still valid or the object
1777  * is tiled) and inserting a new PTE into the faulting process.
1778  *
1779  * Note that the faulting process may involve evicting existing objects
1780  * from the GTT and/or fence registers to make room.  So performance may
1781  * suffer if the GTT working set is large or there are few fence registers
1782  * left.
1783  *
1784  * vm_obj is locked on entry and expected to be locked on return.  The VM
1785  * pager has placed an anonymous memory page at (obj,offset) which we have
1786  * to replace.
1787  */
1788 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1789 {
1790 	struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1791 	struct drm_device *dev = obj->base.dev;
1792 	struct drm_i915_private *dev_priv = to_i915(dev);
1793 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1794 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1795 	unsigned long page_offset;
1796 	vm_page_t m;
1797 	int ret = 0;
1798 	bool write = !!(prot & VM_PROT_WRITE);
1799 
1800 	intel_runtime_pm_get(dev_priv);
1801 
1802 	/* We don't use vmf->pgoff since that has the fake offset */
1803 	page_offset = (unsigned long)offset;
1804 
1805 	/*
1806 	 * vm_fault() has supplied us with a busied page placeholding
1807 	 * the operation.  This presents a lock order reversal issue
1808 	 * again i915_gem_release_mmap() for our device mutex.
1809 	 *
1810 	 * Deal with the problem by getting rid of the placeholder now,
1811 	 * and then dealing with the potential for a new placeholder when
1812 	 * we try to insert later.
1813 	 */
1814 	if (*mres != NULL) {
1815 		m = *mres;
1816 		*mres = NULL;
1817 		if ((m->busy_count & PBUSY_LOCKED) == 0)
1818 			kprintf("i915_gem_fault: Page was not busy\n");
1819 		else
1820 			vm_page_remove(m);
1821 		vm_page_free(m);
1822 	}
1823 
1824 	m = NULL;
1825 
1826 retry:
1827 	ret = i915_mutex_lock_interruptible(dev);
1828 	if (ret)
1829 		goto out;
1830 
1831 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1832 
1833 	/* Try to flush the object off the GPU first without holding the lock.
1834 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1835 	 * repeat the flush holding the lock in the normal manner to catch cases
1836 	 * where we are gazumped.
1837 	 */
1838 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1839 	if (ret)
1840 		goto unlock;
1841 
1842 	/* Access to snoopable pages through the GTT is incoherent. */
1843 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1844 		ret = -EFAULT;
1845 		goto unlock;
1846 	}
1847 
1848 	/* Use a partial view if the object is bigger than the aperture. */
1849 	if (obj->base.size >= ggtt->mappable_end &&
1850 	    obj->tiling_mode == I915_TILING_NONE) {
1851 #if 0
1852 		static const unsigned int chunk_size = 256; // 1 MiB
1853 
1854 		memset(&view, 0, sizeof(view));
1855 		view.type = I915_GGTT_VIEW_PARTIAL;
1856 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1857 		view.params.partial.size =
1858 			min_t(unsigned int,
1859 			      chunk_size,
1860 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1861 			      view.params.partial.offset);
1862 #endif
1863 	}
1864 
1865 	/* Now pin it into the GTT if needed */
1866 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1867 	if (ret)
1868 		goto unlock;
1869 
1870 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1871 	if (ret)
1872 		goto unpin;
1873 
1874 	ret = i915_gem_object_get_fence(obj);
1875 	if (ret)
1876 		goto unpin;
1877 
1878 	/*
1879 	 * START FREEBSD MAGIC
1880 	 *
1881 	 * Add a pip count to avoid destruction and certain other
1882 	 * complex operations (such as collapses?) while unlocked.
1883 	 */
1884 	vm_object_pip_add(vm_obj, 1);
1885 
1886 	ret = 0;
1887 	m = NULL;
1888 
1889 	/*
1890 	 * Since the object lock was dropped, another thread might have
1891 	 * faulted on the same GTT address and instantiated the mapping.
1892 	 * Recheck.
1893 	 */
1894 	m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
1895 	if (m != NULL) {
1896 		/*
1897 		 * Try to busy the page, retry on failure (non-zero ret).
1898 		 */
1899 		if (vm_page_busy_try(m, false)) {
1900 			kprintf("i915_gem_fault: BUSY\n");
1901 			ret = -EINTR;
1902 			goto unlock;
1903 		}
1904 		goto have_page;
1905 	}
1906 	/*
1907 	 * END FREEBSD MAGIC
1908 	 */
1909 
1910 	obj->fault_mappable = true;
1911 
1912 	/* Finally, remap it using the new GTT offset */
1913 	m = vm_phys_fictitious_to_vm_page(ggtt->mappable_base +
1914 			i915_gem_obj_ggtt_offset_view(obj, &view) + offset);
1915 	if (m == NULL) {
1916 		ret = -EFAULT;
1917 		goto unpin;
1918 	}
1919 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
1920 	KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
1921 
1922 	/*
1923 	 * Try to busy the page.  Fails on non-zero return.
1924 	 */
1925 	if (vm_page_busy_try(m, false)) {
1926 		kprintf("i915_gem_fault: BUSY(2)\n");
1927 		ret = -EINTR;
1928 		goto unpin;
1929 	}
1930 	m->valid = VM_PAGE_BITS_ALL;
1931 
1932 #if 1
1933 	/*
1934 	 * This should always work since we already checked via a lookup
1935 	 * above.
1936 	 */
1937 	if (vm_page_insert(m, vm_obj, OFF_TO_IDX(offset)) == FALSE) {
1938 		kprintf("i915:gem_fault: page %p,%jd already in object\n",
1939 			vm_obj,
1940 			OFF_TO_IDX(offset));
1941 		vm_page_wakeup(m);
1942 		ret = -EINTR;
1943 		goto unpin;
1944 	}
1945 #else
1946 	/* NOT COMPILED ATM */
1947 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1948 		/* Overriding existing pages in partial view does not cause
1949 		 * us any trouble as TLBs are still valid because the fault
1950 		 * is due to userspace losing part of the mapping or never
1951 		 * having accessed it before (at this partials' range).
1952 		 */
1953 		unsigned long base = vma->vm_start +
1954 				     (view.params.partial.offset << PAGE_SHIFT);
1955 		unsigned int i;
1956 
1957 		for (i = 0; i < view.params.partial.size; i++) {
1958 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1959 			if (ret)
1960 				break;
1961 		}
1962 
1963 		obj->fault_mappable = true;
1964 	} else {
1965 		if (!obj->fault_mappable) {
1966 			unsigned long size = min_t(unsigned long,
1967 						   vma->vm_end - vma->vm_start,
1968 						   obj->base.size);
1969 			int i;
1970 
1971 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1972 				ret = vm_insert_pfn(vma,
1973 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1974 						    pfn + i);
1975 				if (ret)
1976 					break;
1977 			}
1978 
1979 			obj->fault_mappable = true;
1980 		} else
1981 			ret = vm_insert_pfn(vma,
1982 					    (unsigned long)vmf->virtual_address,
1983 					    pfn + page_offset);
1984 	}
1985 #endif
1986 
1987 have_page:
1988 	*mres = m;
1989 
1990 	i915_gem_object_ggtt_unpin_view(obj, &view);
1991 	mutex_unlock(&dev->struct_mutex);
1992 	ret = VM_PAGER_OK;
1993 	goto done;
1994 
1995 	/*
1996 	 * ALTERNATIVE ERROR RETURN.
1997 	 *
1998 	 * OBJECT EXPECTED TO BE LOCKED.
1999 	 */
2000 unpin:
2001 	i915_gem_object_ggtt_unpin_view(obj, &view);
2002 unlock:
2003 	mutex_unlock(&dev->struct_mutex);
2004 out:
2005 	switch (ret) {
2006 	case -EIO:
2007 		/*
2008 		 * We eat errors when the gpu is terminally wedged to avoid
2009 		 * userspace unduly crashing (gl has no provisions for mmaps to
2010 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2011 		 * and so needs to be reported.
2012 		 */
2013 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2014 //			ret = VM_FAULT_SIGBUS;
2015 			break;
2016 		}
2017 	case -EAGAIN:
2018 		/*
2019 		 * EAGAIN means the gpu is hung and we'll wait for the error
2020 		 * handler to reset everything when re-faulting in
2021 		 * i915_mutex_lock_interruptible.
2022 		 */
2023 	case -ERESTARTSYS:
2024 	case -EINTR:
2025 		VM_OBJECT_UNLOCK(vm_obj);
2026 		int dummy;
2027 		tsleep(&dummy, 0, "delay", 1); /* XXX */
2028 		VM_OBJECT_LOCK(vm_obj);
2029 		goto retry;
2030 	default:
2031 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2032 		ret = VM_PAGER_ERROR;
2033 		break;
2034 	}
2035 
2036 done:
2037 	vm_object_pip_wakeup(vm_obj);
2038 
2039 	intel_runtime_pm_put(dev_priv);
2040 	return ret;
2041 }
2042 
2043 /**
2044  * i915_gem_release_mmap - remove physical page mappings
2045  * @obj: obj in question
2046  *
2047  * Preserve the reservation of the mmapping with the DRM core code, but
2048  * relinquish ownership of the pages back to the system.
2049  *
2050  * It is vital that we remove the page mapping if we have mapped a tiled
2051  * object through the GTT and then lose the fence register due to
2052  * resource pressure. Similarly if the object has been moved out of the
2053  * aperture, than pages mapped into userspace must be revoked. Removing the
2054  * mapping will then trigger a page fault on the next user access, allowing
2055  * fixup by i915_gem_fault().
2056  */
2057 void
2058 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2059 {
2060 	vm_object_t devobj;
2061 	vm_page_t m;
2062 	int i, page_count;
2063 
2064 	/* Serialisation between user GTT access and our code depends upon
2065 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2066 	 * pagefault then has to wait until we release the mutex.
2067 	 */
2068 	lockdep_assert_held(&obj->base.dev->struct_mutex);
2069 
2070 	if (!obj->fault_mappable)
2071 		return;
2072 
2073 	devobj = cdev_pager_lookup(obj);
2074 	if (devobj != NULL) {
2075 		page_count = OFF_TO_IDX(obj->base.size);
2076 
2077 		VM_OBJECT_LOCK(devobj);
2078 		for (i = 0; i < page_count; i++) {
2079 			m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
2080 			if (m == NULL)
2081 				continue;
2082 			cdev_pager_free_page(devobj, m);
2083 		}
2084 		VM_OBJECT_UNLOCK(devobj);
2085 		vm_object_deallocate(devobj);
2086 	}
2087 
2088 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2089 	 * memory transactions from userspace before we return. The TLB
2090 	 * flushing implied above by changing the PTE above *should* be
2091 	 * sufficient, an extra barrier here just provides us with a bit
2092 	 * of paranoid documentation about our requirement to serialise
2093 	 * memory writes before touching registers / GSM.
2094 	 */
2095 	wmb();
2096 
2097 	obj->fault_mappable = false;
2098 }
2099 
2100 void
2101 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2102 {
2103 	struct drm_i915_gem_object *obj;
2104 
2105 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2106 		i915_gem_release_mmap(obj);
2107 }
2108 
2109 uint32_t
2110 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2111 {
2112 	uint32_t gtt_size;
2113 
2114 	if (INTEL_INFO(dev)->gen >= 4 ||
2115 	    tiling_mode == I915_TILING_NONE)
2116 		return size;
2117 
2118 	/* Previous chips need a power-of-two fence region when tiling */
2119 	if (INTEL_INFO(dev)->gen == 3)
2120 		gtt_size = 1024*1024;
2121 	else
2122 		gtt_size = 512*1024;
2123 
2124 	while (gtt_size < size)
2125 		gtt_size <<= 1;
2126 
2127 	return gtt_size;
2128 }
2129 
2130 /**
2131  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2132  * @obj: object to check
2133  *
2134  * Return the required GTT alignment for an object, taking into account
2135  * potential fence register mapping.
2136  */
2137 uint32_t
2138 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2139 			   int tiling_mode, bool fenced)
2140 {
2141 	/*
2142 	 * Minimum alignment is 4k (GTT page size), but might be greater
2143 	 * if a fence register is needed for the object.
2144 	 */
2145 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2146 	    tiling_mode == I915_TILING_NONE)
2147 		return 4096;
2148 
2149 	/*
2150 	 * Previous chips need to be aligned to the size of the smallest
2151 	 * fence register that can contain the object.
2152 	 */
2153 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2154 }
2155 
2156 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2157 {
2158 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2159 	int ret;
2160 
2161 #if 0
2162 	if (drm_vma_node_has_offset(&obj->base.vma_node))
2163 		return 0;
2164 #endif
2165 
2166 	dev_priv->mm.shrinker_no_lock_stealing = true;
2167 
2168 	ret = drm_gem_create_mmap_offset(&obj->base);
2169 	if (ret != -ENOSPC)
2170 		goto out;
2171 
2172 	/* Badly fragmented mmap space? The only way we can recover
2173 	 * space is by destroying unwanted objects. We can't randomly release
2174 	 * mmap_offsets as userspace expects them to be persistent for the
2175 	 * lifetime of the objects. The closest we can is to release the
2176 	 * offsets on purgeable objects by truncating it and marking it purged,
2177 	 * which prevents userspace from ever using that object again.
2178 	 */
2179 	i915_gem_shrink(dev_priv,
2180 			obj->base.size >> PAGE_SHIFT,
2181 			I915_SHRINK_BOUND |
2182 			I915_SHRINK_UNBOUND |
2183 			I915_SHRINK_PURGEABLE);
2184 	ret = drm_gem_create_mmap_offset(&obj->base);
2185 	if (ret != -ENOSPC)
2186 		goto out;
2187 
2188 	i915_gem_shrink_all(dev_priv);
2189 	ret = drm_gem_create_mmap_offset(&obj->base);
2190 out:
2191 	dev_priv->mm.shrinker_no_lock_stealing = false;
2192 
2193 	return ret;
2194 }
2195 
2196 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2197 {
2198 	drm_gem_free_mmap_offset(&obj->base);
2199 }
2200 
2201 int
2202 i915_gem_mmap_gtt(struct drm_file *file,
2203 		  struct drm_device *dev,
2204 		  uint32_t handle,
2205 		  uint64_t *offset)
2206 {
2207 	struct drm_i915_gem_object *obj;
2208 	int ret;
2209 
2210 	ret = i915_mutex_lock_interruptible(dev);
2211 	if (ret)
2212 		return ret;
2213 
2214 	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2215 	if (&obj->base == NULL) {
2216 		ret = -ENOENT;
2217 		goto unlock;
2218 	}
2219 
2220 	if (obj->madv != I915_MADV_WILLNEED) {
2221 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2222 		ret = -EFAULT;
2223 		goto out;
2224 	}
2225 
2226 	ret = i915_gem_object_create_mmap_offset(obj);
2227 	if (ret)
2228 		goto out;
2229 
2230 	*offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
2231 	    DRM_GEM_MAPPING_KEY;
2232 
2233 out:
2234 	drm_gem_object_unreference(&obj->base);
2235 unlock:
2236 	mutex_unlock(&dev->struct_mutex);
2237 	return ret;
2238 }
2239 
2240 /**
2241  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2242  * @dev: DRM device
2243  * @data: GTT mapping ioctl data
2244  * @file: GEM object info
2245  *
2246  * Simply returns the fake offset to userspace so it can mmap it.
2247  * The mmap call will end up in drm_gem_mmap(), which will set things
2248  * up so we can get faults in the handler above.
2249  *
2250  * The fault handler will take care of binding the object into the GTT
2251  * (since it may have been evicted to make room for something), allocating
2252  * a fence register, and mapping the appropriate aperture address into
2253  * userspace.
2254  */
2255 int
2256 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2257 			struct drm_file *file)
2258 {
2259 	struct drm_i915_gem_mmap_gtt *args = data;
2260 
2261 	return i915_gem_mmap_gtt(file, dev, args->handle, (uint64_t *)&args->offset);
2262 }
2263 
2264 /* Immediately discard the backing storage */
2265 static void
2266 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2267 {
2268 	vm_object_t vm_obj;
2269 
2270 	vm_obj = obj->base.vm_obj;
2271 	VM_OBJECT_LOCK(vm_obj);
2272 	vm_object_page_remove(vm_obj, 0, 0, false);
2273 	VM_OBJECT_UNLOCK(vm_obj);
2274 
2275 	obj->madv = __I915_MADV_PURGED;
2276 }
2277 
2278 /* Try to discard unwanted pages */
2279 static void
2280 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2281 {
2282 #if 0
2283 	struct address_space *mapping;
2284 #endif
2285 
2286 	switch (obj->madv) {
2287 	case I915_MADV_DONTNEED:
2288 		i915_gem_object_truncate(obj);
2289 	case __I915_MADV_PURGED:
2290 		return;
2291 	}
2292 
2293 #if 0
2294 	if (obj->base.filp == NULL)
2295 		return;
2296 
2297 	mapping = file_inode(obj->base.filp)->i_mapping,
2298 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2299 #endif
2300 }
2301 
2302 static void
2303 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2304 {
2305 	struct sg_page_iter sg_iter;
2306 	int ret;
2307 
2308 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2309 
2310 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2311 	if (WARN_ON(ret)) {
2312 		/* In the event of a disaster, abandon all caches and
2313 		 * hope for the best.
2314 		 */
2315 		i915_gem_clflush_object(obj, true);
2316 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2317 	}
2318 
2319 	i915_gem_gtt_finish_object(obj);
2320 
2321 	if (i915_gem_object_needs_bit17_swizzle(obj))
2322 		i915_gem_object_save_bit_17_swizzle(obj);
2323 
2324 	if (obj->madv == I915_MADV_DONTNEED)
2325 		obj->dirty = 0;
2326 
2327 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2328 		struct page *page = sg_page_iter_page(&sg_iter);
2329 
2330 		if (obj->dirty)
2331 			set_page_dirty(page);
2332 
2333 		if (obj->madv == I915_MADV_WILLNEED)
2334 			mark_page_accessed(page);
2335 
2336 		vm_page_busy_wait((struct vm_page *)page, FALSE, "i915gem");
2337 		vm_page_unwire((struct vm_page *)page, 1);
2338 		vm_page_wakeup((struct vm_page *)page);
2339 	}
2340 	obj->dirty = 0;
2341 
2342 	sg_free_table(obj->pages);
2343 	kfree(obj->pages);
2344 }
2345 
2346 int
2347 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2348 {
2349 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2350 
2351 	if (obj->pages == NULL)
2352 		return 0;
2353 
2354 	if (obj->pages_pin_count)
2355 		return -EBUSY;
2356 
2357 	BUG_ON(i915_gem_obj_bound_any(obj));
2358 
2359 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2360 	 * array, hence protect them from being reaped by removing them from gtt
2361 	 * lists early. */
2362 	list_del(&obj->global_list);
2363 
2364 	if (obj->mapping) {
2365 		if (is_vmalloc_addr(obj->mapping))
2366 			vunmap(obj->mapping);
2367 		else
2368 			kunmap(kmap_to_page(obj->mapping));
2369 		obj->mapping = NULL;
2370 	}
2371 
2372 	ops->put_pages(obj);
2373 	obj->pages = NULL;
2374 
2375 	i915_gem_object_invalidate(obj);
2376 
2377 	return 0;
2378 }
2379 
2380 static int
2381 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2382 {
2383 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2384 	int page_count, i;
2385 	vm_object_t vm_obj;
2386 	struct sg_table *st;
2387 	struct scatterlist *sg;
2388 	struct sg_page_iter sg_iter;
2389 	struct page *page;
2390 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2391 	int ret;
2392 
2393 	/* Assert that the object is not currently in any GPU domain. As it
2394 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2395 	 * a GPU cache
2396 	 */
2397 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2398 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2399 
2400 	st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
2401 	if (st == NULL)
2402 		return -ENOMEM;
2403 
2404 	page_count = obj->base.size / PAGE_SIZE;
2405 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2406 		kfree(st);
2407 		return -ENOMEM;
2408 	}
2409 
2410 	/* Get the list of pages out of our struct file.  They'll be pinned
2411 	 * at this point until we release them.
2412 	 *
2413 	 * Fail silently without starting the shrinker
2414 	 */
2415 	vm_obj = obj->base.vm_obj;
2416 	VM_OBJECT_LOCK(vm_obj);
2417 	sg = st->sgl;
2418 	st->nents = 0;
2419 	for (i = 0; i < page_count; i++) {
2420 		page = shmem_read_mapping_page(vm_obj, i);
2421 		if (IS_ERR(page)) {
2422 			i915_gem_shrink(dev_priv,
2423 					page_count,
2424 					I915_SHRINK_BOUND |
2425 					I915_SHRINK_UNBOUND |
2426 					I915_SHRINK_PURGEABLE);
2427 			page = shmem_read_mapping_page(vm_obj, i);
2428 		}
2429 		if (IS_ERR(page)) {
2430 			/* We've tried hard to allocate the memory by reaping
2431 			 * our own buffer, now let the real VM do its job and
2432 			 * go down in flames if truly OOM.
2433 			 */
2434 			i915_gem_shrink_all(dev_priv);
2435 			page = shmem_read_mapping_page(vm_obj, i);
2436 			if (IS_ERR(page)) {
2437 				ret = PTR_ERR(page);
2438 				goto err_pages;
2439 			}
2440 		}
2441 #ifdef CONFIG_SWIOTLB
2442 		if (swiotlb_nr_tbl()) {
2443 			st->nents++;
2444 			sg_set_page(sg, page, PAGE_SIZE, 0);
2445 			sg = sg_next(sg);
2446 			continue;
2447 		}
2448 #endif
2449 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2450 			if (i)
2451 				sg = sg_next(sg);
2452 			st->nents++;
2453 			sg_set_page(sg, page, PAGE_SIZE, 0);
2454 		} else {
2455 			sg->length += PAGE_SIZE;
2456 		}
2457 		last_pfn = page_to_pfn(page);
2458 
2459 		/* Check that the i965g/gm workaround works. */
2460 	}
2461 #ifdef CONFIG_SWIOTLB
2462 	if (!swiotlb_nr_tbl())
2463 #endif
2464 		sg_mark_end(sg);
2465 	obj->pages = st;
2466 	VM_OBJECT_UNLOCK(vm_obj);
2467 
2468 	ret = i915_gem_gtt_prepare_object(obj);
2469 	if (ret)
2470 		goto err_pages;
2471 
2472 	if (i915_gem_object_needs_bit17_swizzle(obj))
2473 		i915_gem_object_do_bit_17_swizzle(obj);
2474 
2475 	if (obj->tiling_mode != I915_TILING_NONE &&
2476 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2477 		i915_gem_object_pin_pages(obj);
2478 
2479 	return 0;
2480 
2481 err_pages:
2482 	sg_mark_end(sg);
2483 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2484 		struct vm_page *vmp = (struct vm_page *)sg_page_iter_page(&sg_iter);
2485 		vm_page_busy_wait(vmp, FALSE, "i915gem");
2486 		vm_page_unwire(vmp, 0);
2487 		vm_page_wakeup(vmp);
2488 	}
2489 	VM_OBJECT_UNLOCK(vm_obj);
2490 	sg_free_table(st);
2491 	kfree(st);
2492 
2493 	/* shmemfs first checks if there is enough memory to allocate the page
2494 	 * and reports ENOSPC should there be insufficient, along with the usual
2495 	 * ENOMEM for a genuine allocation failure.
2496 	 *
2497 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2498 	 * space and so want to translate the error from shmemfs back to our
2499 	 * usual understanding of ENOMEM.
2500 	 */
2501 	if (ret == -ENOSPC)
2502 		ret = -ENOMEM;
2503 
2504 	return ret;
2505 }
2506 
2507 /* Ensure that the associated pages are gathered from the backing storage
2508  * and pinned into our object. i915_gem_object_get_pages() may be called
2509  * multiple times before they are released by a single call to
2510  * i915_gem_object_put_pages() - once the pages are no longer referenced
2511  * either as a result of memory pressure (reaping pages under the shrinker)
2512  * or as the object is itself released.
2513  */
2514 int
2515 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2516 {
2517 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2518 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2519 	int ret;
2520 
2521 	if (obj->pages)
2522 		return 0;
2523 
2524 	if (obj->madv != I915_MADV_WILLNEED) {
2525 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2526 		return -EFAULT;
2527 	}
2528 
2529 	BUG_ON(obj->pages_pin_count);
2530 
2531 	ret = ops->get_pages(obj);
2532 	if (ret)
2533 		return ret;
2534 
2535 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2536 
2537 	obj->get_page.sg = obj->pages->sgl;
2538 	obj->get_page.last = 0;
2539 
2540 	return 0;
2541 }
2542 
2543 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2544 {
2545 	int ret;
2546 
2547 	lockdep_assert_held(&obj->base.dev->struct_mutex);
2548 
2549 	ret = i915_gem_object_get_pages(obj);
2550 	if (ret)
2551 		return ERR_PTR(ret);
2552 
2553 	i915_gem_object_pin_pages(obj);
2554 
2555 	if (obj->mapping == NULL) {
2556 		struct page **pages;
2557 
2558 		pages = NULL;
2559 		if (obj->base.size == PAGE_SIZE)
2560 			obj->mapping = kmap(sg_page(obj->pages->sgl));
2561 		else
2562 			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2563 					       sizeof(*pages),
2564 					       GFP_TEMPORARY);
2565 		if (pages != NULL) {
2566 			struct sg_page_iter sg_iter;
2567 			int n;
2568 
2569 			n = 0;
2570 			for_each_sg_page(obj->pages->sgl, &sg_iter,
2571 					 obj->pages->nents, 0)
2572 				pages[n++] = sg_page_iter_page(&sg_iter);
2573 
2574 			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2575 			drm_free_large(pages);
2576 		}
2577 		if (obj->mapping == NULL) {
2578 			i915_gem_object_unpin_pages(obj);
2579 			return ERR_PTR(-ENOMEM);
2580 		}
2581 	}
2582 
2583 	return obj->mapping;
2584 }
2585 
2586 void i915_vma_move_to_active(struct i915_vma *vma,
2587 			     struct drm_i915_gem_request *req)
2588 {
2589 	struct drm_i915_gem_object *obj = vma->obj;
2590 	struct intel_engine_cs *engine;
2591 
2592 	engine = i915_gem_request_get_engine(req);
2593 
2594 	/* Add a reference if we're newly entering the active list. */
2595 	if (obj->active == 0)
2596 		drm_gem_object_reference(&obj->base);
2597 	obj->active |= intel_engine_flag(engine);
2598 
2599 	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2600 	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2601 
2602 	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2603 }
2604 
2605 static void
2606 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2607 {
2608 	GEM_BUG_ON(obj->last_write_req == NULL);
2609 	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2610 
2611 	i915_gem_request_assign(&obj->last_write_req, NULL);
2612 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2613 }
2614 
2615 static void
2616 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2617 {
2618 	struct i915_vma *vma;
2619 
2620 	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2621 	GEM_BUG_ON(!(obj->active & (1 << ring)));
2622 
2623 	list_del_init(&obj->engine_list[ring]);
2624 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2625 
2626 	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2627 		i915_gem_object_retire__write(obj);
2628 
2629 	obj->active &= ~(1 << ring);
2630 	if (obj->active)
2631 		return;
2632 
2633 	/* Bump our place on the bound list to keep it roughly in LRU order
2634 	 * so that we don't steal from recently used but inactive objects
2635 	 * (unless we are forced to ofc!)
2636 	 */
2637 	list_move_tail(&obj->global_list,
2638 		       &to_i915(obj->base.dev)->mm.bound_list);
2639 
2640 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
2641 		if (!list_empty(&vma->vm_link))
2642 			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2643 	}
2644 
2645 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2646 	drm_gem_object_unreference(&obj->base);
2647 }
2648 
2649 static int
2650 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2651 {
2652 	struct drm_i915_private *dev_priv = dev->dev_private;
2653 	struct intel_engine_cs *engine;
2654 	int ret;
2655 
2656 	/* Carefully retire all requests without writing to the rings */
2657 	for_each_engine(engine, dev_priv) {
2658 		ret = intel_engine_idle(engine);
2659 		if (ret)
2660 			return ret;
2661 	}
2662 	i915_gem_retire_requests(dev);
2663 
2664 	/* Finally reset hw state */
2665 	for_each_engine(engine, dev_priv)
2666 		intel_ring_init_seqno(engine, seqno);
2667 
2668 	return 0;
2669 }
2670 
2671 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2672 {
2673 	struct drm_i915_private *dev_priv = dev->dev_private;
2674 	int ret;
2675 
2676 	if (seqno == 0)
2677 		return -EINVAL;
2678 
2679 	/* HWS page needs to be set less than what we
2680 	 * will inject to ring
2681 	 */
2682 	ret = i915_gem_init_seqno(dev, seqno - 1);
2683 	if (ret)
2684 		return ret;
2685 
2686 	/* Carefully set the last_seqno value so that wrap
2687 	 * detection still works
2688 	 */
2689 	dev_priv->next_seqno = seqno;
2690 	dev_priv->last_seqno = seqno - 1;
2691 	if (dev_priv->last_seqno == 0)
2692 		dev_priv->last_seqno--;
2693 
2694 	return 0;
2695 }
2696 
2697 int
2698 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2699 {
2700 	struct drm_i915_private *dev_priv = dev->dev_private;
2701 
2702 	/* reserve 0 for non-seqno */
2703 	if (dev_priv->next_seqno == 0) {
2704 		int ret = i915_gem_init_seqno(dev, 0);
2705 		if (ret)
2706 			return ret;
2707 
2708 		dev_priv->next_seqno = 1;
2709 	}
2710 
2711 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2712 	return 0;
2713 }
2714 
2715 /*
2716  * NB: This function is not allowed to fail. Doing so would mean the the
2717  * request is not being tracked for completion but the work itself is
2718  * going to happen on the hardware. This would be a Bad Thing(tm).
2719  */
2720 void __i915_add_request(struct drm_i915_gem_request *request,
2721 			struct drm_i915_gem_object *obj,
2722 			bool flush_caches)
2723 {
2724 	struct intel_engine_cs *engine;
2725 	struct drm_i915_private *dev_priv;
2726 	struct intel_ringbuffer *ringbuf;
2727 	u32 request_start;
2728 	int ret;
2729 
2730 	if (WARN_ON(request == NULL))
2731 		return;
2732 
2733 	engine = request->engine;
2734 	dev_priv = request->i915;
2735 	ringbuf = request->ringbuf;
2736 
2737 	/*
2738 	 * To ensure that this call will not fail, space for its emissions
2739 	 * should already have been reserved in the ring buffer. Let the ring
2740 	 * know that it is time to use that space up.
2741 	 */
2742 	intel_ring_reserved_space_use(ringbuf);
2743 
2744 	request_start = intel_ring_get_tail(ringbuf);
2745 	/*
2746 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2747 	 * after having emitted the batchbuffer command. Hence we need to fix
2748 	 * things up similar to emitting the lazy request. The difference here
2749 	 * is that the flush _must_ happen before the next request, no matter
2750 	 * what.
2751 	 */
2752 	if (flush_caches) {
2753 		if (i915.enable_execlists)
2754 			ret = logical_ring_flush_all_caches(request);
2755 		else
2756 			ret = intel_ring_flush_all_caches(request);
2757 		/* Not allowed to fail! */
2758 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2759 	}
2760 
2761 	trace_i915_gem_request_add(request);
2762 
2763 	request->head = request_start;
2764 
2765 	/* Whilst this request exists, batch_obj will be on the
2766 	 * active_list, and so will hold the active reference. Only when this
2767 	 * request is retired will the the batch_obj be moved onto the
2768 	 * inactive_list and lose its active reference. Hence we do not need
2769 	 * to explicitly hold another reference here.
2770 	 */
2771 	request->batch_obj = obj;
2772 
2773 	/* Seal the request and mark it as pending execution. Note that
2774 	 * we may inspect this state, without holding any locks, during
2775 	 * hangcheck. Hence we apply the barrier to ensure that we do not
2776 	 * see a more recent value in the hws than we are tracking.
2777 	 */
2778 	request->emitted_jiffies = jiffies;
2779 	request->previous_seqno = engine->last_submitted_seqno;
2780 	smp_store_mb(engine->last_submitted_seqno, request->seqno);
2781 	list_add_tail(&request->list, &engine->request_list);
2782 
2783 	/* Record the position of the start of the request so that
2784 	 * should we detect the updated seqno part-way through the
2785 	 * GPU processing the request, we never over-estimate the
2786 	 * position of the head.
2787 	 */
2788 	request->postfix = intel_ring_get_tail(ringbuf);
2789 
2790 	if (i915.enable_execlists)
2791 		ret = engine->emit_request(request);
2792 	else {
2793 		ret = engine->add_request(request);
2794 
2795 		request->tail = intel_ring_get_tail(ringbuf);
2796 	}
2797 
2798 	/* Not allowed to fail! */
2799 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2800 
2801 	i915_queue_hangcheck(engine->dev);
2802 
2803 	queue_delayed_work(dev_priv->wq,
2804 			   &dev_priv->mm.retire_work,
2805 			   round_jiffies_up_relative(HZ));
2806 	intel_mark_busy(dev_priv->dev);
2807 
2808 	/* Sanity check that the reserved size was large enough. */
2809 	intel_ring_reserved_space_end(ringbuf);
2810 }
2811 
2812 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2813 				   const struct intel_context *ctx)
2814 {
2815 	unsigned long elapsed;
2816 
2817 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2818 
2819 	if (ctx->hang_stats.banned)
2820 		return true;
2821 
2822 	if (ctx->hang_stats.ban_period_seconds &&
2823 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2824 		if (!i915_gem_context_is_default(ctx)) {
2825 			DRM_DEBUG("context hanging too fast, banning!\n");
2826 			return true;
2827 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2828 			if (i915_stop_ring_allow_warn(dev_priv))
2829 				DRM_ERROR("gpu hanging too fast, banning!\n");
2830 			return true;
2831 		}
2832 	}
2833 
2834 	return false;
2835 }
2836 
2837 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2838 				  struct intel_context *ctx,
2839 				  const bool guilty)
2840 {
2841 	struct i915_ctx_hang_stats *hs;
2842 
2843 	if (WARN_ON(!ctx))
2844 		return;
2845 
2846 	hs = &ctx->hang_stats;
2847 
2848 	if (guilty) {
2849 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2850 		hs->batch_active++;
2851 		hs->guilty_ts = get_seconds();
2852 	} else {
2853 		hs->batch_pending++;
2854 	}
2855 }
2856 
2857 void i915_gem_request_free(struct kref *req_ref)
2858 {
2859 	struct drm_i915_gem_request *req = container_of(req_ref,
2860 						 typeof(*req), ref);
2861 	struct intel_context *ctx = req->ctx;
2862 
2863 	if (req->file_priv)
2864 		i915_gem_request_remove_from_client(req);
2865 
2866 	if (ctx) {
2867 		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2868 			intel_lr_context_unpin(ctx, req->engine);
2869 
2870 		i915_gem_context_unreference(ctx);
2871 	}
2872 
2873 	kfree(req);
2874 }
2875 
2876 static inline int
2877 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2878 			 struct intel_context *ctx,
2879 			 struct drm_i915_gem_request **req_out)
2880 {
2881 	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2882 	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2883 	struct drm_i915_gem_request *req;
2884 	int ret;
2885 
2886 	if (!req_out)
2887 		return -EINVAL;
2888 
2889 	*req_out = NULL;
2890 
2891 	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2892 	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2893 	 * and restart.
2894 	 */
2895 	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2896 	if (ret)
2897 		return ret;
2898 
2899 	req = kzalloc(sizeof(*req), GFP_KERNEL);
2900 	if (req == NULL)
2901 		return -ENOMEM;
2902 
2903 	ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2904 	if (ret)
2905 		goto err;
2906 
2907 	kref_init(&req->ref);
2908 	req->i915 = dev_priv;
2909 	req->engine = engine;
2910 	req->reset_counter = reset_counter;
2911 	req->ctx  = ctx;
2912 	i915_gem_context_reference(req->ctx);
2913 
2914 	if (i915.enable_execlists)
2915 		ret = intel_logical_ring_alloc_request_extras(req);
2916 	else
2917 		ret = intel_ring_alloc_request_extras(req);
2918 	if (ret) {
2919 		i915_gem_context_unreference(req->ctx);
2920 		goto err;
2921 	}
2922 
2923 	/*
2924 	 * Reserve space in the ring buffer for all the commands required to
2925 	 * eventually emit this request. This is to guarantee that the
2926 	 * i915_add_request() call can't fail. Note that the reserve may need
2927 	 * to be redone if the request is not actually submitted straight
2928 	 * away, e.g. because a GPU scheduler has deferred it.
2929 	 */
2930 	if (i915.enable_execlists)
2931 		ret = intel_logical_ring_reserve_space(req);
2932 	else
2933 		ret = intel_ring_reserve_space(req);
2934 	if (ret) {
2935 		/*
2936 		 * At this point, the request is fully allocated even if not
2937 		 * fully prepared. Thus it can be cleaned up using the proper
2938 		 * free code.
2939 		 */
2940 		intel_ring_reserved_space_cancel(req->ringbuf);
2941 		i915_gem_request_unreference(req);
2942 		return ret;
2943 	}
2944 
2945 	*req_out = req;
2946 	return 0;
2947 
2948 err:
2949 	kfree(req);
2950 	return ret;
2951 }
2952 
2953 /**
2954  * i915_gem_request_alloc - allocate a request structure
2955  *
2956  * @engine: engine that we wish to issue the request on.
2957  * @ctx: context that the request will be associated with.
2958  *       This can be NULL if the request is not directly related to
2959  *       any specific user context, in which case this function will
2960  *       choose an appropriate context to use.
2961  *
2962  * Returns a pointer to the allocated request if successful,
2963  * or an error code if not.
2964  */
2965 struct drm_i915_gem_request *
2966 i915_gem_request_alloc(struct intel_engine_cs *engine,
2967 		       struct intel_context *ctx)
2968 {
2969 	struct drm_i915_gem_request *req;
2970 	int err;
2971 
2972 	if (ctx == NULL)
2973 		ctx = to_i915(engine->dev)->kernel_context;
2974 	err = __i915_gem_request_alloc(engine, ctx, &req);
2975 	return err ? ERR_PTR(err) : req;
2976 }
2977 
2978 struct drm_i915_gem_request *
2979 i915_gem_find_active_request(struct intel_engine_cs *engine)
2980 {
2981 	struct drm_i915_gem_request *request;
2982 
2983 	list_for_each_entry(request, &engine->request_list, list) {
2984 		if (i915_gem_request_completed(request, false))
2985 			continue;
2986 
2987 		return request;
2988 	}
2989 
2990 	return NULL;
2991 }
2992 
2993 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2994 				       struct intel_engine_cs *engine)
2995 {
2996 	struct drm_i915_gem_request *request;
2997 	bool ring_hung;
2998 
2999 	request = i915_gem_find_active_request(engine);
3000 
3001 	if (request == NULL)
3002 		return;
3003 
3004 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3005 
3006 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3007 
3008 	list_for_each_entry_continue(request, &engine->request_list, list)
3009 		i915_set_reset_status(dev_priv, request->ctx, false);
3010 }
3011 
3012 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
3013 					struct intel_engine_cs *engine)
3014 {
3015 	struct intel_ringbuffer *buffer;
3016 
3017 	while (!list_empty(&engine->active_list)) {
3018 		struct drm_i915_gem_object *obj;
3019 
3020 		obj = list_first_entry(&engine->active_list,
3021 				       struct drm_i915_gem_object,
3022 				       engine_list[engine->id]);
3023 
3024 		i915_gem_object_retire__read(obj, engine->id);
3025 	}
3026 
3027 	/*
3028 	 * Clear the execlists queue up before freeing the requests, as those
3029 	 * are the ones that keep the context and ringbuffer backing objects
3030 	 * pinned in place.
3031 	 */
3032 
3033 	if (i915.enable_execlists) {
3034 		/* Ensure irq handler finishes or is cancelled. */
3035 		tasklet_kill(&engine->irq_tasklet);
3036 
3037 		spin_lock_bh(&engine->execlist_lock);
3038 		/* list_splice_tail_init checks for empty lists */
3039 		list_splice_tail_init(&engine->execlist_queue,
3040 				      &engine->execlist_retired_req_list);
3041 		spin_unlock_bh(&engine->execlist_lock);
3042 
3043 		intel_execlists_retire_requests(engine);
3044 	}
3045 
3046 	/*
3047 	 * We must free the requests after all the corresponding objects have
3048 	 * been moved off active lists. Which is the same order as the normal
3049 	 * retire_requests function does. This is important if object hold
3050 	 * implicit references on things like e.g. ppgtt address spaces through
3051 	 * the request.
3052 	 */
3053 	while (!list_empty(&engine->request_list)) {
3054 		struct drm_i915_gem_request *request;
3055 
3056 		request = list_first_entry(&engine->request_list,
3057 					   struct drm_i915_gem_request,
3058 					   list);
3059 
3060 		i915_gem_request_retire(request);
3061 	}
3062 
3063 	/* Having flushed all requests from all queues, we know that all
3064 	 * ringbuffers must now be empty. However, since we do not reclaim
3065 	 * all space when retiring the request (to prevent HEADs colliding
3066 	 * with rapid ringbuffer wraparound) the amount of available space
3067 	 * upon reset is less than when we start. Do one more pass over
3068 	 * all the ringbuffers to reset last_retired_head.
3069 	 */
3070 	list_for_each_entry(buffer, &engine->buffers, link) {
3071 		buffer->last_retired_head = buffer->tail;
3072 		intel_ring_update_space(buffer);
3073 	}
3074 
3075 	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3076 }
3077 
3078 void i915_gem_reset(struct drm_device *dev)
3079 {
3080 	struct drm_i915_private *dev_priv = dev->dev_private;
3081 	struct intel_engine_cs *engine;
3082 
3083 	/*
3084 	 * Before we free the objects from the requests, we need to inspect
3085 	 * them for finding the guilty party. As the requests only borrow
3086 	 * their reference to the objects, the inspection must be done first.
3087 	 */
3088 	for_each_engine(engine, dev_priv)
3089 		i915_gem_reset_engine_status(dev_priv, engine);
3090 
3091 	for_each_engine(engine, dev_priv)
3092 		i915_gem_reset_engine_cleanup(dev_priv, engine);
3093 
3094 	i915_gem_context_reset(dev);
3095 
3096 	i915_gem_restore_fences(dev);
3097 
3098 	WARN_ON(i915_verify_lists(dev));
3099 }
3100 
3101 /**
3102  * This function clears the request list as sequence numbers are passed.
3103  */
3104 void
3105 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3106 {
3107 	WARN_ON(i915_verify_lists(engine->dev));
3108 
3109 	/* Retire requests first as we use it above for the early return.
3110 	 * If we retire requests last, we may use a later seqno and so clear
3111 	 * the requests lists without clearing the active list, leading to
3112 	 * confusion.
3113 	 */
3114 	while (!list_empty(&engine->request_list)) {
3115 		struct drm_i915_gem_request *request;
3116 
3117 		request = list_first_entry(&engine->request_list,
3118 					   struct drm_i915_gem_request,
3119 					   list);
3120 
3121 		if (!i915_gem_request_completed(request, true))
3122 			break;
3123 
3124 		i915_gem_request_retire(request);
3125 	}
3126 
3127 	/* Move any buffers on the active list that are no longer referenced
3128 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
3129 	 * before we free the context associated with the requests.
3130 	 */
3131 	while (!list_empty(&engine->active_list)) {
3132 		struct drm_i915_gem_object *obj;
3133 
3134 		obj = list_first_entry(&engine->active_list,
3135 				       struct drm_i915_gem_object,
3136 				       engine_list[engine->id]);
3137 
3138 		if (!list_empty(&obj->last_read_req[engine->id]->list))
3139 			break;
3140 
3141 		i915_gem_object_retire__read(obj, engine->id);
3142 	}
3143 
3144 	if (unlikely(engine->trace_irq_req &&
3145 		     i915_gem_request_completed(engine->trace_irq_req, true))) {
3146 		engine->irq_put(engine);
3147 		i915_gem_request_assign(&engine->trace_irq_req, NULL);
3148 	}
3149 
3150 	WARN_ON(i915_verify_lists(engine->dev));
3151 }
3152 
3153 bool
3154 i915_gem_retire_requests(struct drm_device *dev)
3155 {
3156 	struct drm_i915_private *dev_priv = dev->dev_private;
3157 	struct intel_engine_cs *engine;
3158 	bool idle = true;
3159 
3160 	for_each_engine(engine, dev_priv) {
3161 		i915_gem_retire_requests_ring(engine);
3162 		idle &= list_empty(&engine->request_list);
3163 		if (i915.enable_execlists) {
3164 			spin_lock_bh(&engine->execlist_lock);
3165 			idle &= list_empty(&engine->execlist_queue);
3166 			spin_unlock_bh(&engine->execlist_lock);
3167 
3168 			intel_execlists_retire_requests(engine);
3169 		}
3170 	}
3171 
3172 	if (idle)
3173 		mod_delayed_work(dev_priv->wq,
3174 				   &dev_priv->mm.idle_work,
3175 				   msecs_to_jiffies(100));
3176 
3177 	return idle;
3178 }
3179 
3180 static void
3181 i915_gem_retire_work_handler(struct work_struct *work)
3182 {
3183 	struct drm_i915_private *dev_priv =
3184 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
3185 	struct drm_device *dev = dev_priv->dev;
3186 	bool idle;
3187 
3188 	/* Come back later if the device is busy... */
3189 	idle = false;
3190 	if (mutex_trylock(&dev->struct_mutex)) {
3191 		idle = i915_gem_retire_requests(dev);
3192 		mutex_unlock(&dev->struct_mutex);
3193 	}
3194 	if (!idle)
3195 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3196 				   round_jiffies_up_relative(HZ));
3197 }
3198 
3199 static void
3200 i915_gem_idle_work_handler(struct work_struct *work)
3201 {
3202 	struct drm_i915_private *dev_priv =
3203 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3204 	struct drm_device *dev = dev_priv->dev;
3205 	struct intel_engine_cs *engine;
3206 
3207 	for_each_engine(engine, dev_priv)
3208 		if (!list_empty(&engine->request_list))
3209 			return;
3210 
3211 	/* we probably should sync with hangcheck here, using cancel_work_sync.
3212 	 * Also locking seems to be fubar here, engine->request_list is protected
3213 	 * by dev->struct_mutex. */
3214 
3215 	intel_mark_idle(dev);
3216 
3217 	if (mutex_trylock(&dev->struct_mutex)) {
3218 		for_each_engine(engine, dev_priv)
3219 			i915_gem_batch_pool_fini(&engine->batch_pool);
3220 
3221 		mutex_unlock(&dev->struct_mutex);
3222 	}
3223 }
3224 
3225 /**
3226  * Ensures that an object will eventually get non-busy by flushing any required
3227  * write domains, emitting any outstanding lazy request and retiring and
3228  * completed requests.
3229  */
3230 static int
3231 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3232 {
3233 	int i;
3234 
3235 	if (!obj->active)
3236 		return 0;
3237 
3238 	for (i = 0; i < I915_NUM_ENGINES; i++) {
3239 		struct drm_i915_gem_request *req;
3240 
3241 		req = obj->last_read_req[i];
3242 		if (req == NULL)
3243 			continue;
3244 
3245 		if (list_empty(&req->list))
3246 			goto retire;
3247 
3248 		if (i915_gem_request_completed(req, true)) {
3249 			__i915_gem_request_retire__upto(req);
3250 retire:
3251 			i915_gem_object_retire__read(obj, i);
3252 		}
3253 	}
3254 
3255 	return 0;
3256 }
3257 
3258 /**
3259  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3260  * @DRM_IOCTL_ARGS: standard ioctl arguments
3261  *
3262  * Returns 0 if successful, else an error is returned with the remaining time in
3263  * the timeout parameter.
3264  *  -ETIME: object is still busy after timeout
3265  *  -ERESTARTSYS: signal interrupted the wait
3266  *  -ENONENT: object doesn't exist
3267  * Also possible, but rare:
3268  *  -EAGAIN: GPU wedged
3269  *  -ENOMEM: damn
3270  *  -ENODEV: Internal IRQ fail
3271  *  -E?: The add request failed
3272  *
3273  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3274  * non-zero timeout parameter the wait ioctl will wait for the given number of
3275  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3276  * without holding struct_mutex the object may become re-busied before this
3277  * function completes. A similar but shorter * race condition exists in the busy
3278  * ioctl
3279  */
3280 int
3281 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3282 {
3283 	struct drm_i915_gem_wait *args = data;
3284 	struct drm_i915_gem_object *obj;
3285 	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3286 	int i, n = 0;
3287 	int ret;
3288 
3289 	if (args->flags != 0)
3290 		return -EINVAL;
3291 
3292 	ret = i915_mutex_lock_interruptible(dev);
3293 	if (ret)
3294 		return ret;
3295 
3296 	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3297 	if (&obj->base == NULL) {
3298 		mutex_unlock(&dev->struct_mutex);
3299 		return -ENOENT;
3300 	}
3301 
3302 	/* Need to make sure the object gets inactive eventually. */
3303 	ret = i915_gem_object_flush_active(obj);
3304 	if (ret)
3305 		goto out;
3306 
3307 	if (!obj->active)
3308 		goto out;
3309 
3310 	/* Do this after OLR check to make sure we make forward progress polling
3311 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3312 	 */
3313 	if (args->timeout_ns == 0) {
3314 		ret = -ETIME;
3315 		goto out;
3316 	}
3317 
3318 	drm_gem_object_unreference(&obj->base);
3319 
3320 	for (i = 0; i < I915_NUM_ENGINES; i++) {
3321 		if (obj->last_read_req[i] == NULL)
3322 			continue;
3323 
3324 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3325 	}
3326 
3327 	mutex_unlock(&dev->struct_mutex);
3328 
3329 	for (i = 0; i < n; i++) {
3330 		if (ret == 0)
3331 			ret = __i915_wait_request(req[i], true,
3332 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3333 						  to_rps_client(file));
3334 		i915_gem_request_unreference__unlocked(req[i]);
3335 	}
3336 	return ret;
3337 
3338 out:
3339 	drm_gem_object_unreference(&obj->base);
3340 	mutex_unlock(&dev->struct_mutex);
3341 	return ret;
3342 }
3343 
3344 static int
3345 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3346 		       struct intel_engine_cs *to,
3347 		       struct drm_i915_gem_request *from_req,
3348 		       struct drm_i915_gem_request **to_req)
3349 {
3350 	struct intel_engine_cs *from;
3351 	int ret;
3352 
3353 	from = i915_gem_request_get_engine(from_req);
3354 	if (to == from)
3355 		return 0;
3356 
3357 	if (i915_gem_request_completed(from_req, true))
3358 		return 0;
3359 
3360 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3361 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3362 		ret = __i915_wait_request(from_req,
3363 					  i915->mm.interruptible,
3364 					  NULL,
3365 					  &i915->rps.semaphores);
3366 		if (ret)
3367 			return ret;
3368 
3369 		i915_gem_object_retire_request(obj, from_req);
3370 	} else {
3371 		int idx = intel_ring_sync_index(from, to);
3372 		u32 seqno = i915_gem_request_get_seqno(from_req);
3373 
3374 		WARN_ON(!to_req);
3375 
3376 		if (seqno <= from->semaphore.sync_seqno[idx])
3377 			return 0;
3378 
3379 		if (*to_req == NULL) {
3380 			struct drm_i915_gem_request *req;
3381 
3382 			req = i915_gem_request_alloc(to, NULL);
3383 			if (IS_ERR(req))
3384 				return PTR_ERR(req);
3385 
3386 			*to_req = req;
3387 		}
3388 
3389 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3390 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3391 		if (ret)
3392 			return ret;
3393 
3394 		/* We use last_read_req because sync_to()
3395 		 * might have just caused seqno wrap under
3396 		 * the radar.
3397 		 */
3398 		from->semaphore.sync_seqno[idx] =
3399 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3400 	}
3401 
3402 	return 0;
3403 }
3404 
3405 /**
3406  * i915_gem_object_sync - sync an object to a ring.
3407  *
3408  * @obj: object which may be in use on another ring.
3409  * @to: ring we wish to use the object on. May be NULL.
3410  * @to_req: request we wish to use the object for. See below.
3411  *          This will be allocated and returned if a request is
3412  *          required but not passed in.
3413  *
3414  * This code is meant to abstract object synchronization with the GPU.
3415  * Calling with NULL implies synchronizing the object with the CPU
3416  * rather than a particular GPU ring. Conceptually we serialise writes
3417  * between engines inside the GPU. We only allow one engine to write
3418  * into a buffer at any time, but multiple readers. To ensure each has
3419  * a coherent view of memory, we must:
3420  *
3421  * - If there is an outstanding write request to the object, the new
3422  *   request must wait for it to complete (either CPU or in hw, requests
3423  *   on the same ring will be naturally ordered).
3424  *
3425  * - If we are a write request (pending_write_domain is set), the new
3426  *   request must wait for outstanding read requests to complete.
3427  *
3428  * For CPU synchronisation (NULL to) no request is required. For syncing with
3429  * rings to_req must be non-NULL. However, a request does not have to be
3430  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3431  * request will be allocated automatically and returned through *to_req. Note
3432  * that it is not guaranteed that commands will be emitted (because the system
3433  * might already be idle). Hence there is no need to create a request that
3434  * might never have any work submitted. Note further that if a request is
3435  * returned in *to_req, it is the responsibility of the caller to submit
3436  * that request (after potentially adding more work to it).
3437  *
3438  * Returns 0 if successful, else propagates up the lower layer error.
3439  */
3440 int
3441 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3442 		     struct intel_engine_cs *to,
3443 		     struct drm_i915_gem_request **to_req)
3444 {
3445 	const bool readonly = obj->base.pending_write_domain == 0;
3446 	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3447 	int ret, i, n;
3448 
3449 	if (!obj->active)
3450 		return 0;
3451 
3452 	if (to == NULL)
3453 		return i915_gem_object_wait_rendering(obj, readonly);
3454 
3455 	n = 0;
3456 	if (readonly) {
3457 		if (obj->last_write_req)
3458 			req[n++] = obj->last_write_req;
3459 	} else {
3460 		for (i = 0; i < I915_NUM_ENGINES; i++)
3461 			if (obj->last_read_req[i])
3462 				req[n++] = obj->last_read_req[i];
3463 	}
3464 	for (i = 0; i < n; i++) {
3465 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3466 		if (ret)
3467 			return ret;
3468 	}
3469 
3470 	return 0;
3471 }
3472 
3473 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3474 {
3475 	u32 old_write_domain, old_read_domains;
3476 
3477 	/* Force a pagefault for domain tracking on next user access */
3478 	i915_gem_release_mmap(obj);
3479 
3480 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3481 		return;
3482 
3483 	old_read_domains = obj->base.read_domains;
3484 	old_write_domain = obj->base.write_domain;
3485 
3486 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3487 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3488 
3489 	trace_i915_gem_object_change_domain(obj,
3490 					    old_read_domains,
3491 					    old_write_domain);
3492 }
3493 
3494 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3495 {
3496 	struct drm_i915_gem_object *obj = vma->obj;
3497 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3498 	int ret;
3499 
3500 	if (list_empty(&vma->obj_link))
3501 		return 0;
3502 
3503 	if (!drm_mm_node_allocated(&vma->node)) {
3504 		i915_gem_vma_destroy(vma);
3505 		return 0;
3506 	}
3507 
3508 	if (vma->pin_count)
3509 		return -EBUSY;
3510 
3511 	BUG_ON(obj->pages == NULL);
3512 
3513 	if (wait) {
3514 		ret = i915_gem_object_wait_rendering(obj, false);
3515 		if (ret)
3516 			return ret;
3517 	}
3518 
3519 	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3520 		i915_gem_object_finish_gtt(obj);
3521 
3522 		/* release the fence reg _after_ flushing */
3523 		ret = i915_gem_object_put_fence(obj);
3524 		if (ret)
3525 			return ret;
3526 	}
3527 
3528 	trace_i915_vma_unbind(vma);
3529 
3530 	vma->vm->unbind_vma(vma);
3531 	vma->bound = 0;
3532 
3533 	list_del_init(&vma->vm_link);
3534 	if (vma->is_ggtt) {
3535 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3536 			obj->map_and_fenceable = false;
3537 		} else if (vma->ggtt_view.pages) {
3538 			sg_free_table(vma->ggtt_view.pages);
3539 			kfree(vma->ggtt_view.pages);
3540 		}
3541 		vma->ggtt_view.pages = NULL;
3542 	}
3543 
3544 	drm_mm_remove_node(&vma->node);
3545 	i915_gem_vma_destroy(vma);
3546 
3547 	/* Since the unbound list is global, only move to that list if
3548 	 * no more VMAs exist. */
3549 	if (list_empty(&obj->vma_list))
3550 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3551 
3552 	/* And finally now the object is completely decoupled from this vma,
3553 	 * we can drop its hold on the backing storage and allow it to be
3554 	 * reaped by the shrinker.
3555 	 */
3556 	i915_gem_object_unpin_pages(obj);
3557 
3558 	return 0;
3559 }
3560 
3561 int i915_vma_unbind(struct i915_vma *vma)
3562 {
3563 	return __i915_vma_unbind(vma, true);
3564 }
3565 
3566 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3567 {
3568 	return __i915_vma_unbind(vma, false);
3569 }
3570 
3571 int i915_gpu_idle(struct drm_device *dev)
3572 {
3573 	struct drm_i915_private *dev_priv = dev->dev_private;
3574 	struct intel_engine_cs *engine;
3575 	int ret;
3576 
3577 	/* Flush everything onto the inactive list. */
3578 	for_each_engine(engine, dev_priv) {
3579 		if (!i915.enable_execlists) {
3580 			struct drm_i915_gem_request *req;
3581 
3582 			req = i915_gem_request_alloc(engine, NULL);
3583 			if (IS_ERR(req))
3584 				return PTR_ERR(req);
3585 
3586 			ret = i915_switch_context(req);
3587 			i915_add_request_no_flush(req);
3588 			if (ret)
3589 				return ret;
3590 		}
3591 
3592 		ret = intel_engine_idle(engine);
3593 		if (ret)
3594 			return ret;
3595 	}
3596 
3597 	WARN_ON(i915_verify_lists(dev));
3598 	return 0;
3599 }
3600 
3601 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3602 				     unsigned long cache_level)
3603 {
3604 	struct drm_mm_node *gtt_space = &vma->node;
3605 	struct drm_mm_node *other;
3606 
3607 	/*
3608 	 * On some machines we have to be careful when putting differing types
3609 	 * of snoopable memory together to avoid the prefetcher crossing memory
3610 	 * domains and dying. During vm initialisation, we decide whether or not
3611 	 * these constraints apply and set the drm_mm.color_adjust
3612 	 * appropriately.
3613 	 */
3614 	if (vma->vm->mm.color_adjust == NULL)
3615 		return true;
3616 
3617 	if (!drm_mm_node_allocated(gtt_space))
3618 		return true;
3619 
3620 	if (list_empty(&gtt_space->node_list))
3621 		return true;
3622 
3623 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3624 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3625 		return false;
3626 
3627 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3628 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3629 		return false;
3630 
3631 	return true;
3632 }
3633 
3634 /**
3635  * Finds free space in the GTT aperture and binds the object or a view of it
3636  * there.
3637  */
3638 static struct i915_vma *
3639 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3640 			   struct i915_address_space *vm,
3641 			   const struct i915_ggtt_view *ggtt_view,
3642 			   unsigned alignment,
3643 			   uint64_t flags)
3644 {
3645 	struct drm_device *dev = obj->base.dev;
3646 	struct drm_i915_private *dev_priv = to_i915(dev);
3647 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3648 	u32 fence_alignment, unfenced_alignment;
3649 	u32 search_flag, alloc_flag;
3650 	u64 start, end;
3651 	u64 size, fence_size;
3652 	struct i915_vma *vma;
3653 	int ret;
3654 
3655 	if (i915_is_ggtt(vm)) {
3656 		u32 view_size;
3657 
3658 		if (WARN_ON(!ggtt_view))
3659 			return ERR_PTR(-EINVAL);
3660 
3661 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3662 
3663 		fence_size = i915_gem_get_gtt_size(dev,
3664 						   view_size,
3665 						   obj->tiling_mode);
3666 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3667 							     view_size,
3668 							     obj->tiling_mode,
3669 							     true);
3670 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3671 								view_size,
3672 								obj->tiling_mode,
3673 								false);
3674 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3675 	} else {
3676 		fence_size = i915_gem_get_gtt_size(dev,
3677 						   obj->base.size,
3678 						   obj->tiling_mode);
3679 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3680 							     obj->base.size,
3681 							     obj->tiling_mode,
3682 							     true);
3683 		unfenced_alignment =
3684 			i915_gem_get_gtt_alignment(dev,
3685 						   obj->base.size,
3686 						   obj->tiling_mode,
3687 						   false);
3688 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3689 	}
3690 
3691 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3692 	end = vm->total;
3693 	if (flags & PIN_MAPPABLE)
3694 		end = min_t(u64, end, ggtt->mappable_end);
3695 	if (flags & PIN_ZONE_4G)
3696 		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3697 
3698 	if (alignment == 0)
3699 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3700 						unfenced_alignment;
3701 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3702 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3703 			  ggtt_view ? ggtt_view->type : 0,
3704 			  alignment);
3705 		return ERR_PTR(-EINVAL);
3706 	}
3707 
3708 	/* If binding the object/GGTT view requires more space than the entire
3709 	 * aperture has, reject it early before evicting everything in a vain
3710 	 * attempt to find space.
3711 	 */
3712 	if (size > end) {
3713 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3714 			  ggtt_view ? ggtt_view->type : 0,
3715 			  size,
3716 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3717 			  end);
3718 		return ERR_PTR(-E2BIG);
3719 	}
3720 
3721 	ret = i915_gem_object_get_pages(obj);
3722 	if (ret)
3723 		return ERR_PTR(ret);
3724 
3725 	i915_gem_object_pin_pages(obj);
3726 
3727 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3728 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3729 
3730 	if (IS_ERR(vma))
3731 		goto err_unpin;
3732 
3733 	if (flags & PIN_OFFSET_FIXED) {
3734 		uint64_t offset = flags & PIN_OFFSET_MASK;
3735 
3736 		if (offset & (alignment - 1) || offset + size > end) {
3737 			ret = -EINVAL;
3738 			goto err_free_vma;
3739 		}
3740 		vma->node.start = offset;
3741 		vma->node.size = size;
3742 		vma->node.color = obj->cache_level;
3743 		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3744 		if (ret) {
3745 			ret = i915_gem_evict_for_vma(vma);
3746 			if (ret == 0)
3747 				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3748 		}
3749 		if (ret)
3750 			goto err_free_vma;
3751 	} else {
3752 		if (flags & PIN_HIGH) {
3753 			search_flag = DRM_MM_SEARCH_BELOW;
3754 			alloc_flag = DRM_MM_CREATE_TOP;
3755 		} else {
3756 			search_flag = DRM_MM_SEARCH_DEFAULT;
3757 			alloc_flag = DRM_MM_CREATE_DEFAULT;
3758 		}
3759 
3760 search_free:
3761 		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3762 							  size, alignment,
3763 							  obj->cache_level,
3764 							  start, end,
3765 							  search_flag,
3766 							  alloc_flag);
3767 		if (ret) {
3768 			ret = i915_gem_evict_something(dev, vm, size, alignment,
3769 						       obj->cache_level,
3770 						       start, end,
3771 						       flags);
3772 			if (ret == 0)
3773 				goto search_free;
3774 
3775 			goto err_free_vma;
3776 		}
3777 	}
3778 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3779 		ret = -EINVAL;
3780 		goto err_remove_node;
3781 	}
3782 
3783 	trace_i915_vma_bind(vma, flags);
3784 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3785 	if (ret)
3786 		goto err_remove_node;
3787 
3788 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3789 	list_add_tail(&vma->vm_link, &vm->inactive_list);
3790 
3791 	return vma;
3792 
3793 err_remove_node:
3794 	drm_mm_remove_node(&vma->node);
3795 err_free_vma:
3796 	i915_gem_vma_destroy(vma);
3797 	vma = ERR_PTR(ret);
3798 err_unpin:
3799 	i915_gem_object_unpin_pages(obj);
3800 	return vma;
3801 }
3802 
3803 bool
3804 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3805 			bool force)
3806 {
3807 	/* If we don't have a page list set up, then we're not pinned
3808 	 * to GPU, and we can ignore the cache flush because it'll happen
3809 	 * again at bind time.
3810 	 */
3811 	if (obj->pages == NULL)
3812 		return false;
3813 
3814 	/*
3815 	 * Stolen memory is always coherent with the GPU as it is explicitly
3816 	 * marked as wc by the system, or the system is cache-coherent.
3817 	 */
3818 	if (obj->stolen || obj->phys_handle)
3819 		return false;
3820 
3821 	/* If the GPU is snooping the contents of the CPU cache,
3822 	 * we do not need to manually clear the CPU cache lines.  However,
3823 	 * the caches are only snooped when the render cache is
3824 	 * flushed/invalidated.  As we always have to emit invalidations
3825 	 * and flushes when moving into and out of the RENDER domain, correct
3826 	 * snooping behaviour occurs naturally as the result of our domain
3827 	 * tracking.
3828 	 */
3829 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3830 		obj->cache_dirty = true;
3831 		return false;
3832 	}
3833 
3834 	trace_i915_gem_object_clflush(obj);
3835 	drm_clflush_sg(obj->pages);
3836 	obj->cache_dirty = false;
3837 
3838 	return true;
3839 }
3840 
3841 /** Flushes the GTT write domain for the object if it's dirty. */
3842 static void
3843 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3844 {
3845 	uint32_t old_write_domain;
3846 
3847 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3848 		return;
3849 
3850 	/* No actual flushing is required for the GTT write domain.  Writes
3851 	 * to it immediately go to main memory as far as we know, so there's
3852 	 * no chipset flush.  It also doesn't land in render cache.
3853 	 *
3854 	 * However, we do have to enforce the order so that all writes through
3855 	 * the GTT land before any writes to the device, such as updates to
3856 	 * the GATT itself.
3857 	 */
3858 	wmb();
3859 
3860 	old_write_domain = obj->base.write_domain;
3861 	obj->base.write_domain = 0;
3862 
3863 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3864 
3865 	trace_i915_gem_object_change_domain(obj,
3866 					    obj->base.read_domains,
3867 					    old_write_domain);
3868 }
3869 
3870 /** Flushes the CPU write domain for the object if it's dirty. */
3871 static void
3872 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3873 {
3874 	uint32_t old_write_domain;
3875 
3876 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3877 		return;
3878 
3879 	if (i915_gem_clflush_object(obj, obj->pin_display))
3880 		i915_gem_chipset_flush(obj->base.dev);
3881 
3882 	old_write_domain = obj->base.write_domain;
3883 	obj->base.write_domain = 0;
3884 
3885 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3886 
3887 	trace_i915_gem_object_change_domain(obj,
3888 					    obj->base.read_domains,
3889 					    old_write_domain);
3890 }
3891 
3892 /**
3893  * Moves a single object to the GTT read, and possibly write domain.
3894  *
3895  * This function returns when the move is complete, including waiting on
3896  * flushes to occur.
3897  */
3898 int
3899 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3900 {
3901 	struct drm_device *dev = obj->base.dev;
3902 	struct drm_i915_private *dev_priv = to_i915(dev);
3903 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3904 	uint32_t old_write_domain, old_read_domains;
3905 	struct i915_vma *vma;
3906 	int ret;
3907 
3908 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3909 		return 0;
3910 
3911 	ret = i915_gem_object_wait_rendering(obj, !write);
3912 	if (ret)
3913 		return ret;
3914 
3915 	/* Flush and acquire obj->pages so that we are coherent through
3916 	 * direct access in memory with previous cached writes through
3917 	 * shmemfs and that our cache domain tracking remains valid.
3918 	 * For example, if the obj->filp was moved to swap without us
3919 	 * being notified and releasing the pages, we would mistakenly
3920 	 * continue to assume that the obj remained out of the CPU cached
3921 	 * domain.
3922 	 */
3923 	ret = i915_gem_object_get_pages(obj);
3924 	if (ret)
3925 		return ret;
3926 
3927 	i915_gem_object_flush_cpu_write_domain(obj);
3928 
3929 	/* Serialise direct access to this object with the barriers for
3930 	 * coherent writes from the GPU, by effectively invalidating the
3931 	 * GTT domain upon first access.
3932 	 */
3933 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3934 		mb();
3935 
3936 	old_write_domain = obj->base.write_domain;
3937 	old_read_domains = obj->base.read_domains;
3938 
3939 	/* It should now be out of any other write domains, and we can update
3940 	 * the domain values for our changes.
3941 	 */
3942 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3943 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3944 	if (write) {
3945 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3946 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3947 		obj->dirty = 1;
3948 	}
3949 
3950 	trace_i915_gem_object_change_domain(obj,
3951 					    old_read_domains,
3952 					    old_write_domain);
3953 
3954 	/* And bump the LRU for this access */
3955 	vma = i915_gem_obj_to_ggtt(obj);
3956 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3957 		list_move_tail(&vma->vm_link,
3958 			       &ggtt->base.inactive_list);
3959 
3960 	return 0;
3961 }
3962 
3963 /**
3964  * Changes the cache-level of an object across all VMA.
3965  *
3966  * After this function returns, the object will be in the new cache-level
3967  * across all GTT and the contents of the backing storage will be coherent,
3968  * with respect to the new cache-level. In order to keep the backing storage
3969  * coherent for all users, we only allow a single cache level to be set
3970  * globally on the object and prevent it from being changed whilst the
3971  * hardware is reading from the object. That is if the object is currently
3972  * on the scanout it will be set to uncached (or equivalent display
3973  * cache coherency) and all non-MOCS GPU access will also be uncached so
3974  * that all direct access to the scanout remains coherent.
3975  */
3976 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3977 				    enum i915_cache_level cache_level)
3978 {
3979 	struct drm_device *dev = obj->base.dev;
3980 	struct i915_vma *vma, *next;
3981 	bool bound = false;
3982 	int ret = 0;
3983 
3984 	if (obj->cache_level == cache_level)
3985 		goto out;
3986 
3987 	/* Inspect the list of currently bound VMA and unbind any that would
3988 	 * be invalid given the new cache-level. This is principally to
3989 	 * catch the issue of the CS prefetch crossing page boundaries and
3990 	 * reading an invalid PTE on older architectures.
3991 	 */
3992 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3993 		if (!drm_mm_node_allocated(&vma->node))
3994 			continue;
3995 
3996 		if (vma->pin_count) {
3997 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3998 			return -EBUSY;
3999 		}
4000 
4001 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4002 			ret = i915_vma_unbind(vma);
4003 			if (ret)
4004 				return ret;
4005 		} else
4006 			bound = true;
4007 	}
4008 
4009 	/* We can reuse the existing drm_mm nodes but need to change the
4010 	 * cache-level on the PTE. We could simply unbind them all and
4011 	 * rebind with the correct cache-level on next use. However since
4012 	 * we already have a valid slot, dma mapping, pages etc, we may as
4013 	 * rewrite the PTE in the belief that doing so tramples upon less
4014 	 * state and so involves less work.
4015 	 */
4016 	if (bound) {
4017 		/* Before we change the PTE, the GPU must not be accessing it.
4018 		 * If we wait upon the object, we know that all the bound
4019 		 * VMA are no longer active.
4020 		 */
4021 		ret = i915_gem_object_wait_rendering(obj, false);
4022 		if (ret)
4023 			return ret;
4024 
4025 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4026 			/* Access to snoopable pages through the GTT is
4027 			 * incoherent and on some machines causes a hard
4028 			 * lockup. Relinquish the CPU mmaping to force
4029 			 * userspace to refault in the pages and we can
4030 			 * then double check if the GTT mapping is still
4031 			 * valid for that pointer access.
4032 			 */
4033 			i915_gem_release_mmap(obj);
4034 
4035 			/* As we no longer need a fence for GTT access,
4036 			 * we can relinquish it now (and so prevent having
4037 			 * to steal a fence from someone else on the next
4038 			 * fence request). Note GPU activity would have
4039 			 * dropped the fence as all snoopable access is
4040 			 * supposed to be linear.
4041 			 */
4042 			ret = i915_gem_object_put_fence(obj);
4043 			if (ret)
4044 				return ret;
4045 		} else {
4046 			/* We either have incoherent backing store and
4047 			 * so no GTT access or the architecture is fully
4048 			 * coherent. In such cases, existing GTT mmaps
4049 			 * ignore the cache bit in the PTE and we can
4050 			 * rewrite it without confusing the GPU or having
4051 			 * to force userspace to fault back in its mmaps.
4052 			 */
4053 		}
4054 
4055 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4056 			if (!drm_mm_node_allocated(&vma->node))
4057 				continue;
4058 
4059 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4060 			if (ret)
4061 				return ret;
4062 		}
4063 	}
4064 
4065 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4066 		vma->node.color = cache_level;
4067 	obj->cache_level = cache_level;
4068 
4069 out:
4070 	/* Flush the dirty CPU caches to the backing storage so that the
4071 	 * object is now coherent at its new cache level (with respect
4072 	 * to the access domain).
4073 	 */
4074 	if (obj->cache_dirty &&
4075 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4076 	    cpu_write_needs_clflush(obj)) {
4077 		if (i915_gem_clflush_object(obj, true))
4078 			i915_gem_chipset_flush(obj->base.dev);
4079 	}
4080 
4081 	return 0;
4082 }
4083 
4084 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4085 			       struct drm_file *file)
4086 {
4087 	struct drm_i915_gem_caching *args = data;
4088 	struct drm_i915_gem_object *obj;
4089 
4090 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4091 	if (&obj->base == NULL)
4092 		return -ENOENT;
4093 
4094 	switch (obj->cache_level) {
4095 	case I915_CACHE_LLC:
4096 	case I915_CACHE_L3_LLC:
4097 		args->caching = I915_CACHING_CACHED;
4098 		break;
4099 
4100 	case I915_CACHE_WT:
4101 		args->caching = I915_CACHING_DISPLAY;
4102 		break;
4103 
4104 	default:
4105 		args->caching = I915_CACHING_NONE;
4106 		break;
4107 	}
4108 
4109 	drm_gem_object_unreference_unlocked(&obj->base);
4110 	return 0;
4111 }
4112 
4113 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4114 			       struct drm_file *file)
4115 {
4116 	struct drm_i915_private *dev_priv = dev->dev_private;
4117 	struct drm_i915_gem_caching *args = data;
4118 	struct drm_i915_gem_object *obj;
4119 	enum i915_cache_level level;
4120 	int ret;
4121 
4122 	switch (args->caching) {
4123 	case I915_CACHING_NONE:
4124 		level = I915_CACHE_NONE;
4125 		break;
4126 	case I915_CACHING_CACHED:
4127 		/*
4128 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4129 		 * snooped mapping may leave stale data in a corresponding CPU
4130 		 * cacheline, whereas normally such cachelines would get
4131 		 * invalidated.
4132 		 */
4133 		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4134 			return -ENODEV;
4135 
4136 		level = I915_CACHE_LLC;
4137 		break;
4138 	case I915_CACHING_DISPLAY:
4139 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4140 		break;
4141 	default:
4142 		return -EINVAL;
4143 	}
4144 
4145 	intel_runtime_pm_get(dev_priv);
4146 
4147 	ret = i915_mutex_lock_interruptible(dev);
4148 	if (ret)
4149 		goto rpm_put;
4150 
4151 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4152 	if (&obj->base == NULL) {
4153 		ret = -ENOENT;
4154 		goto unlock;
4155 	}
4156 
4157 	ret = i915_gem_object_set_cache_level(obj, level);
4158 
4159 	drm_gem_object_unreference(&obj->base);
4160 unlock:
4161 	mutex_unlock(&dev->struct_mutex);
4162 rpm_put:
4163 	intel_runtime_pm_put(dev_priv);
4164 
4165 	return ret;
4166 }
4167 
4168 /*
4169  * Prepare buffer for display plane (scanout, cursors, etc).
4170  * Can be called from an uninterruptible phase (modesetting) and allows
4171  * any flushes to be pipelined (for pageflips).
4172  */
4173 int
4174 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4175 				     u32 alignment,
4176 				     const struct i915_ggtt_view *view)
4177 {
4178 	u32 old_read_domains, old_write_domain;
4179 	int ret;
4180 
4181 	/* Mark the pin_display early so that we account for the
4182 	 * display coherency whilst setting up the cache domains.
4183 	 */
4184 	obj->pin_display++;
4185 
4186 	/* The display engine is not coherent with the LLC cache on gen6.  As
4187 	 * a result, we make sure that the pinning that is about to occur is
4188 	 * done with uncached PTEs. This is lowest common denominator for all
4189 	 * chipsets.
4190 	 *
4191 	 * However for gen6+, we could do better by using the GFDT bit instead
4192 	 * of uncaching, which would allow us to flush all the LLC-cached data
4193 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4194 	 */
4195 	ret = i915_gem_object_set_cache_level(obj,
4196 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4197 	if (ret)
4198 		goto err_unpin_display;
4199 
4200 	/* As the user may map the buffer once pinned in the display plane
4201 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4202 	 * always use map_and_fenceable for all scanout buffers.
4203 	 */
4204 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4205 				       view->type == I915_GGTT_VIEW_NORMAL ?
4206 				       PIN_MAPPABLE : 0);
4207 	if (ret)
4208 		goto err_unpin_display;
4209 
4210 	i915_gem_object_flush_cpu_write_domain(obj);
4211 
4212 	old_write_domain = obj->base.write_domain;
4213 	old_read_domains = obj->base.read_domains;
4214 
4215 	/* It should now be out of any other write domains, and we can update
4216 	 * the domain values for our changes.
4217 	 */
4218 	obj->base.write_domain = 0;
4219 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4220 
4221 	trace_i915_gem_object_change_domain(obj,
4222 					    old_read_domains,
4223 					    old_write_domain);
4224 
4225 	return 0;
4226 
4227 err_unpin_display:
4228 	obj->pin_display--;
4229 	return ret;
4230 }
4231 
4232 void
4233 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4234 					 const struct i915_ggtt_view *view)
4235 {
4236 	if (WARN_ON(obj->pin_display == 0))
4237 		return;
4238 
4239 	i915_gem_object_ggtt_unpin_view(obj, view);
4240 
4241 	obj->pin_display--;
4242 }
4243 
4244 /**
4245  * Moves a single object to the CPU read, and possibly write domain.
4246  *
4247  * This function returns when the move is complete, including waiting on
4248  * flushes to occur.
4249  */
4250 int
4251 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4252 {
4253 	uint32_t old_write_domain, old_read_domains;
4254 	int ret;
4255 
4256 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4257 		return 0;
4258 
4259 	ret = i915_gem_object_wait_rendering(obj, !write);
4260 	if (ret)
4261 		return ret;
4262 
4263 	i915_gem_object_flush_gtt_write_domain(obj);
4264 
4265 	old_write_domain = obj->base.write_domain;
4266 	old_read_domains = obj->base.read_domains;
4267 
4268 	/* Flush the CPU cache if it's still invalid. */
4269 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4270 		i915_gem_clflush_object(obj, false);
4271 
4272 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4273 	}
4274 
4275 	/* It should now be out of any other write domains, and we can update
4276 	 * the domain values for our changes.
4277 	 */
4278 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4279 
4280 	/* If we're writing through the CPU, then the GPU read domains will
4281 	 * need to be invalidated at next use.
4282 	 */
4283 	if (write) {
4284 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4285 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4286 	}
4287 
4288 	trace_i915_gem_object_change_domain(obj,
4289 					    old_read_domains,
4290 					    old_write_domain);
4291 
4292 	return 0;
4293 }
4294 
4295 /* Throttle our rendering by waiting until the ring has completed our requests
4296  * emitted over 20 msec ago.
4297  *
4298  * Note that if we were to use the current jiffies each time around the loop,
4299  * we wouldn't escape the function with any frames outstanding if the time to
4300  * render a frame was over 20ms.
4301  *
4302  * This should get us reasonable parallelism between CPU and GPU but also
4303  * relatively low latency when blocking on a particular request to finish.
4304  */
4305 static int
4306 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4307 {
4308 	struct drm_i915_private *dev_priv = dev->dev_private;
4309 	struct drm_i915_file_private *file_priv = file->driver_priv;
4310 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4311 	struct drm_i915_gem_request *request, *target = NULL;
4312 	int ret;
4313 
4314 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4315 	if (ret)
4316 		return ret;
4317 
4318 	/* ABI: return -EIO if already wedged */
4319 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4320 		return -EIO;
4321 
4322 	spin_lock(&file_priv->mm.lock);
4323 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4324 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4325 			break;
4326 
4327 		/*
4328 		 * Note that the request might not have been submitted yet.
4329 		 * In which case emitted_jiffies will be zero.
4330 		 */
4331 		if (!request->emitted_jiffies)
4332 			continue;
4333 
4334 		target = request;
4335 	}
4336 	if (target)
4337 		i915_gem_request_reference(target);
4338 	spin_unlock(&file_priv->mm.lock);
4339 
4340 	if (target == NULL)
4341 		return 0;
4342 
4343 	ret = __i915_wait_request(target, true, NULL, NULL);
4344 	if (ret == 0)
4345 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4346 
4347 	i915_gem_request_unreference__unlocked(target);
4348 
4349 	return ret;
4350 }
4351 
4352 static bool
4353 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4354 {
4355 	struct drm_i915_gem_object *obj = vma->obj;
4356 
4357 	if (alignment &&
4358 	    vma->node.start & (alignment - 1))
4359 		return true;
4360 
4361 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4362 		return true;
4363 
4364 	if (flags & PIN_OFFSET_BIAS &&
4365 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4366 		return true;
4367 
4368 	if (flags & PIN_OFFSET_FIXED &&
4369 	    vma->node.start != (flags & PIN_OFFSET_MASK))
4370 		return true;
4371 
4372 	return false;
4373 }
4374 
4375 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4376 {
4377 	struct drm_i915_gem_object *obj = vma->obj;
4378 	bool mappable, fenceable;
4379 	u32 fence_size, fence_alignment;
4380 
4381 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4382 					   obj->base.size,
4383 					   obj->tiling_mode);
4384 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4385 						     obj->base.size,
4386 						     obj->tiling_mode,
4387 						     true);
4388 
4389 	fenceable = (vma->node.size == fence_size &&
4390 		     (vma->node.start & (fence_alignment - 1)) == 0);
4391 
4392 	mappable = (vma->node.start + fence_size <=
4393 		    to_i915(obj->base.dev)->ggtt.mappable_end);
4394 
4395 	obj->map_and_fenceable = mappable && fenceable;
4396 }
4397 
4398 static int
4399 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4400 		       struct i915_address_space *vm,
4401 		       const struct i915_ggtt_view *ggtt_view,
4402 		       uint32_t alignment,
4403 		       uint64_t flags)
4404 {
4405 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4406 	struct i915_vma *vma;
4407 	unsigned bound;
4408 	int ret;
4409 
4410 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4411 		return -ENODEV;
4412 
4413 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4414 		return -EINVAL;
4415 
4416 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4417 		return -EINVAL;
4418 
4419 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4420 		return -EINVAL;
4421 
4422 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4423 			  i915_gem_obj_to_vma(obj, vm);
4424 
4425 	if (vma) {
4426 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4427 			return -EBUSY;
4428 
4429 		if (i915_vma_misplaced(vma, alignment, flags)) {
4430 			WARN(vma->pin_count,
4431 			     "bo is already pinned in %s with incorrect alignment:"
4432 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4433 			     " obj->map_and_fenceable=%d\n",
4434 			     ggtt_view ? "ggtt" : "ppgtt",
4435 			     upper_32_bits(vma->node.start),
4436 			     lower_32_bits(vma->node.start),
4437 			     alignment,
4438 			     !!(flags & PIN_MAPPABLE),
4439 			     obj->map_and_fenceable);
4440 			ret = i915_vma_unbind(vma);
4441 			if (ret)
4442 				return ret;
4443 
4444 			vma = NULL;
4445 		}
4446 	}
4447 
4448 	bound = vma ? vma->bound : 0;
4449 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4450 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4451 						 flags);
4452 		if (IS_ERR(vma))
4453 			return PTR_ERR(vma);
4454 	} else {
4455 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4456 		if (ret)
4457 			return ret;
4458 	}
4459 
4460 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4461 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4462 		__i915_vma_set_map_and_fenceable(vma);
4463 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4464 	}
4465 
4466 	vma->pin_count++;
4467 	return 0;
4468 }
4469 
4470 int
4471 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4472 		    struct i915_address_space *vm,
4473 		    uint32_t alignment,
4474 		    uint64_t flags)
4475 {
4476 	return i915_gem_object_do_pin(obj, vm,
4477 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4478 				      alignment, flags);
4479 }
4480 
4481 int
4482 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4483 			 const struct i915_ggtt_view *view,
4484 			 uint32_t alignment,
4485 			 uint64_t flags)
4486 {
4487 	struct drm_device *dev = obj->base.dev;
4488 	struct drm_i915_private *dev_priv = to_i915(dev);
4489 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4490 
4491 	BUG_ON(!view);
4492 
4493 	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4494 				      alignment, flags | PIN_GLOBAL);
4495 }
4496 
4497 void
4498 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4499 				const struct i915_ggtt_view *view)
4500 {
4501 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4502 
4503 	WARN_ON(vma->pin_count == 0);
4504 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4505 
4506 	--vma->pin_count;
4507 }
4508 
4509 int
4510 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4511 		    struct drm_file *file)
4512 {
4513 	struct drm_i915_gem_busy *args = data;
4514 	struct drm_i915_gem_object *obj;
4515 	int ret;
4516 
4517 	ret = i915_mutex_lock_interruptible(dev);
4518 	if (ret)
4519 		return ret;
4520 
4521 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4522 	if (&obj->base == NULL) {
4523 		ret = -ENOENT;
4524 		goto unlock;
4525 	}
4526 
4527 	/* Count all active objects as busy, even if they are currently not used
4528 	 * by the gpu. Users of this interface expect objects to eventually
4529 	 * become non-busy without any further actions, therefore emit any
4530 	 * necessary flushes here.
4531 	 */
4532 	ret = i915_gem_object_flush_active(obj);
4533 	if (ret)
4534 		goto unref;
4535 
4536 	args->busy = 0;
4537 	if (obj->active) {
4538 		int i;
4539 
4540 		for (i = 0; i < I915_NUM_ENGINES; i++) {
4541 			struct drm_i915_gem_request *req;
4542 
4543 			req = obj->last_read_req[i];
4544 			if (req)
4545 				args->busy |= 1 << (16 + req->engine->exec_id);
4546 		}
4547 		if (obj->last_write_req)
4548 			args->busy |= obj->last_write_req->engine->exec_id;
4549 	}
4550 
4551 unref:
4552 	drm_gem_object_unreference(&obj->base);
4553 unlock:
4554 	mutex_unlock(&dev->struct_mutex);
4555 	return ret;
4556 }
4557 
4558 int
4559 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4560 			struct drm_file *file_priv)
4561 {
4562 	return i915_gem_ring_throttle(dev, file_priv);
4563 }
4564 
4565 int
4566 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4567 		       struct drm_file *file_priv)
4568 {
4569 	struct drm_i915_private *dev_priv = dev->dev_private;
4570 	struct drm_i915_gem_madvise *args = data;
4571 	struct drm_i915_gem_object *obj;
4572 	int ret;
4573 
4574 	switch (args->madv) {
4575 	case I915_MADV_DONTNEED:
4576 	case I915_MADV_WILLNEED:
4577 	    break;
4578 	default:
4579 	    return -EINVAL;
4580 	}
4581 
4582 	ret = i915_mutex_lock_interruptible(dev);
4583 	if (ret)
4584 		return ret;
4585 
4586 	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4587 	if (&obj->base == NULL) {
4588 		ret = -ENOENT;
4589 		goto unlock;
4590 	}
4591 
4592 	if (i915_gem_obj_is_pinned(obj)) {
4593 		ret = -EINVAL;
4594 		goto out;
4595 	}
4596 
4597 	if (obj->pages &&
4598 	    obj->tiling_mode != I915_TILING_NONE &&
4599 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4600 		if (obj->madv == I915_MADV_WILLNEED)
4601 			i915_gem_object_unpin_pages(obj);
4602 		if (args->madv == I915_MADV_WILLNEED)
4603 			i915_gem_object_pin_pages(obj);
4604 	}
4605 
4606 	if (obj->madv != __I915_MADV_PURGED)
4607 		obj->madv = args->madv;
4608 
4609 	/* if the object is no longer attached, discard its backing storage */
4610 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4611 		i915_gem_object_truncate(obj);
4612 
4613 	args->retained = obj->madv != __I915_MADV_PURGED;
4614 
4615 out:
4616 	drm_gem_object_unreference(&obj->base);
4617 unlock:
4618 	mutex_unlock(&dev->struct_mutex);
4619 	return ret;
4620 }
4621 
4622 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4623 			  const struct drm_i915_gem_object_ops *ops)
4624 {
4625 	int i;
4626 
4627 	INIT_LIST_HEAD(&obj->global_list);
4628 	for (i = 0; i < I915_NUM_ENGINES; i++)
4629 		INIT_LIST_HEAD(&obj->engine_list[i]);
4630 	INIT_LIST_HEAD(&obj->obj_exec_link);
4631 	INIT_LIST_HEAD(&obj->vma_list);
4632 	INIT_LIST_HEAD(&obj->batch_pool_link);
4633 
4634 	obj->ops = ops;
4635 
4636 	obj->fence_reg = I915_FENCE_REG_NONE;
4637 	obj->madv = I915_MADV_WILLNEED;
4638 
4639 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4640 }
4641 
4642 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4643 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4644 	.get_pages = i915_gem_object_get_pages_gtt,
4645 	.put_pages = i915_gem_object_put_pages_gtt,
4646 };
4647 
4648 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4649 						  size_t size)
4650 {
4651 	struct drm_i915_gem_object *obj;
4652 #if 0
4653 	struct address_space *mapping;
4654 	gfp_t mask;
4655 #endif
4656 
4657 	obj = i915_gem_object_alloc(dev);
4658 	if (obj == NULL)
4659 		return NULL;
4660 
4661 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4662 		i915_gem_object_free(obj);
4663 		return NULL;
4664 	}
4665 
4666 #if 0
4667 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4668 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4669 		/* 965gm cannot relocate objects above 4GiB. */
4670 		mask &= ~__GFP_HIGHMEM;
4671 		mask |= __GFP_DMA32;
4672 	}
4673 
4674 	mapping = file_inode(obj->base.filp)->i_mapping;
4675 	mapping_set_gfp_mask(mapping, mask);
4676 #endif
4677 
4678 	i915_gem_object_init(obj, &i915_gem_object_ops);
4679 
4680 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4681 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4682 
4683 	if (HAS_LLC(dev)) {
4684 		/* On some devices, we can have the GPU use the LLC (the CPU
4685 		 * cache) for about a 10% performance improvement
4686 		 * compared to uncached.  Graphics requests other than
4687 		 * display scanout are coherent with the CPU in
4688 		 * accessing this cache.  This means in this mode we
4689 		 * don't need to clflush on the CPU side, and on the
4690 		 * GPU side we only need to flush internal caches to
4691 		 * get data visible to the CPU.
4692 		 *
4693 		 * However, we maintain the display planes as UC, and so
4694 		 * need to rebind when first used as such.
4695 		 */
4696 		obj->cache_level = I915_CACHE_LLC;
4697 	} else
4698 		obj->cache_level = I915_CACHE_NONE;
4699 
4700 	trace_i915_gem_object_create(obj);
4701 
4702 	return obj;
4703 }
4704 
4705 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4706 {
4707 	/* If we are the last user of the backing storage (be it shmemfs
4708 	 * pages or stolen etc), we know that the pages are going to be
4709 	 * immediately released. In this case, we can then skip copying
4710 	 * back the contents from the GPU.
4711 	 */
4712 
4713 	if (obj->madv != I915_MADV_WILLNEED)
4714 		return false;
4715 
4716 	if (obj->base.vm_obj == NULL)
4717 		return true;
4718 
4719 	/* At first glance, this looks racy, but then again so would be
4720 	 * userspace racing mmap against close. However, the first external
4721 	 * reference to the filp can only be obtained through the
4722 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4723 	 * acquiring such a reference whilst we are in the middle of
4724 	 * freeing the object.
4725 	 */
4726 #if 0
4727 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4728 #else
4729 	return false;
4730 #endif
4731 }
4732 
4733 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4734 {
4735 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4736 	struct drm_device *dev = obj->base.dev;
4737 	struct drm_i915_private *dev_priv = dev->dev_private;
4738 	struct i915_vma *vma, *next;
4739 
4740 	intel_runtime_pm_get(dev_priv);
4741 
4742 	trace_i915_gem_object_destroy(obj);
4743 
4744 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4745 		int ret;
4746 
4747 		vma->pin_count = 0;
4748 		ret = i915_vma_unbind(vma);
4749 		if (WARN_ON(ret == -ERESTARTSYS)) {
4750 			bool was_interruptible;
4751 
4752 			was_interruptible = dev_priv->mm.interruptible;
4753 			dev_priv->mm.interruptible = false;
4754 
4755 			WARN_ON(i915_vma_unbind(vma));
4756 
4757 			dev_priv->mm.interruptible = was_interruptible;
4758 		}
4759 	}
4760 
4761 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4762 	 * before progressing. */
4763 	if (obj->stolen)
4764 		i915_gem_object_unpin_pages(obj);
4765 
4766 	WARN_ON(obj->frontbuffer_bits);
4767 
4768 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4769 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4770 	    obj->tiling_mode != I915_TILING_NONE)
4771 		i915_gem_object_unpin_pages(obj);
4772 
4773 	if (WARN_ON(obj->pages_pin_count))
4774 		obj->pages_pin_count = 0;
4775 	if (discard_backing_storage(obj))
4776 		obj->madv = I915_MADV_DONTNEED;
4777 	i915_gem_object_put_pages(obj);
4778 	i915_gem_object_free_mmap_offset(obj);
4779 
4780 	BUG_ON(obj->pages);
4781 
4782 #if 0
4783 	if (obj->base.import_attach)
4784 		drm_prime_gem_destroy(&obj->base, NULL);
4785 #endif
4786 
4787 	if (obj->ops->release)
4788 		obj->ops->release(obj);
4789 
4790 	drm_gem_object_release(&obj->base);
4791 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4792 
4793 	kfree(obj->bit_17);
4794 	i915_gem_object_free(obj);
4795 
4796 	intel_runtime_pm_put(dev_priv);
4797 }
4798 
4799 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4800 				     struct i915_address_space *vm)
4801 {
4802 	struct i915_vma *vma;
4803 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4804 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4805 		    vma->vm == vm)
4806 			return vma;
4807 	}
4808 	return NULL;
4809 }
4810 
4811 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4812 					   const struct i915_ggtt_view *view)
4813 {
4814 	struct drm_device *dev = obj->base.dev;
4815 	struct drm_i915_private *dev_priv = to_i915(dev);
4816 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4817 	struct i915_vma *vma;
4818 
4819 	BUG_ON(!view);
4820 
4821 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4822 		if (vma->vm == &ggtt->base &&
4823 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4824 			return vma;
4825 	return NULL;
4826 }
4827 
4828 void i915_gem_vma_destroy(struct i915_vma *vma)
4829 {
4830 	WARN_ON(vma->node.allocated);
4831 
4832 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4833 	if (!list_empty(&vma->exec_list))
4834 		return;
4835 
4836 	if (!vma->is_ggtt)
4837 		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4838 
4839 	list_del(&vma->obj_link);
4840 
4841 	kfree(vma);
4842 }
4843 
4844 static void
4845 i915_gem_stop_engines(struct drm_device *dev)
4846 {
4847 	struct drm_i915_private *dev_priv = dev->dev_private;
4848 	struct intel_engine_cs *engine;
4849 
4850 	for_each_engine(engine, dev_priv)
4851 		dev_priv->gt.stop_engine(engine);
4852 }
4853 
4854 int
4855 i915_gem_suspend(struct drm_device *dev)
4856 {
4857 	struct drm_i915_private *dev_priv = dev->dev_private;
4858 	int ret = 0;
4859 
4860 	mutex_lock(&dev->struct_mutex);
4861 	ret = i915_gpu_idle(dev);
4862 	if (ret)
4863 		goto err;
4864 
4865 	i915_gem_retire_requests(dev);
4866 
4867 	i915_gem_stop_engines(dev);
4868 	mutex_unlock(&dev->struct_mutex);
4869 
4870 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4871 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4872 #if 0
4873 	flush_delayed_work(&dev_priv->mm.idle_work);
4874 #endif
4875 
4876 	/* Assert that we sucessfully flushed all the work and
4877 	 * reset the GPU back to its idle, low power state.
4878 	 */
4879 	WARN_ON(dev_priv->mm.busy);
4880 
4881 	return 0;
4882 
4883 err:
4884 	mutex_unlock(&dev->struct_mutex);
4885 	return ret;
4886 }
4887 
4888 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4889 {
4890 	struct intel_engine_cs *engine = req->engine;
4891 	struct drm_device *dev = engine->dev;
4892 	struct drm_i915_private *dev_priv = dev->dev_private;
4893 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4894 	int i, ret;
4895 
4896 	if (!HAS_L3_DPF(dev) || !remap_info)
4897 		return 0;
4898 
4899 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4900 	if (ret)
4901 		return ret;
4902 
4903 	/*
4904 	 * Note: We do not worry about the concurrent register cacheline hang
4905 	 * here because no other code should access these registers other than
4906 	 * at initialization time.
4907 	 */
4908 	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4909 		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4910 		intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4911 		intel_ring_emit(engine, remap_info[i]);
4912 	}
4913 
4914 	intel_ring_advance(engine);
4915 
4916 	return ret;
4917 }
4918 
4919 void i915_gem_init_swizzling(struct drm_device *dev)
4920 {
4921 	struct drm_i915_private *dev_priv = dev->dev_private;
4922 
4923 	if (INTEL_INFO(dev)->gen < 5 ||
4924 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4925 		return;
4926 
4927 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4928 				 DISP_TILE_SURFACE_SWIZZLING);
4929 
4930 	if (IS_GEN5(dev))
4931 		return;
4932 
4933 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4934 	if (IS_GEN6(dev))
4935 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4936 	else if (IS_GEN7(dev))
4937 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4938 	else if (IS_GEN8(dev))
4939 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4940 	else
4941 		BUG();
4942 }
4943 
4944 static void init_unused_ring(struct drm_device *dev, u32 base)
4945 {
4946 	struct drm_i915_private *dev_priv = dev->dev_private;
4947 
4948 	I915_WRITE(RING_CTL(base), 0);
4949 	I915_WRITE(RING_HEAD(base), 0);
4950 	I915_WRITE(RING_TAIL(base), 0);
4951 	I915_WRITE(RING_START(base), 0);
4952 }
4953 
4954 static void init_unused_rings(struct drm_device *dev)
4955 {
4956 	if (IS_I830(dev)) {
4957 		init_unused_ring(dev, PRB1_BASE);
4958 		init_unused_ring(dev, SRB0_BASE);
4959 		init_unused_ring(dev, SRB1_BASE);
4960 		init_unused_ring(dev, SRB2_BASE);
4961 		init_unused_ring(dev, SRB3_BASE);
4962 	} else if (IS_GEN2(dev)) {
4963 		init_unused_ring(dev, SRB0_BASE);
4964 		init_unused_ring(dev, SRB1_BASE);
4965 	} else if (IS_GEN3(dev)) {
4966 		init_unused_ring(dev, PRB1_BASE);
4967 		init_unused_ring(dev, PRB2_BASE);
4968 	}
4969 }
4970 
4971 int i915_gem_init_engines(struct drm_device *dev)
4972 {
4973 	struct drm_i915_private *dev_priv = dev->dev_private;
4974 	int ret;
4975 
4976 	ret = intel_init_render_ring_buffer(dev);
4977 	if (ret)
4978 		return ret;
4979 
4980 	if (HAS_BSD(dev)) {
4981 		ret = intel_init_bsd_ring_buffer(dev);
4982 		if (ret)
4983 			goto cleanup_render_ring;
4984 	}
4985 
4986 	if (HAS_BLT(dev)) {
4987 		ret = intel_init_blt_ring_buffer(dev);
4988 		if (ret)
4989 			goto cleanup_bsd_ring;
4990 	}
4991 
4992 	if (HAS_VEBOX(dev)) {
4993 		ret = intel_init_vebox_ring_buffer(dev);
4994 		if (ret)
4995 			goto cleanup_blt_ring;
4996 	}
4997 
4998 	if (HAS_BSD2(dev)) {
4999 		ret = intel_init_bsd2_ring_buffer(dev);
5000 		if (ret)
5001 			goto cleanup_vebox_ring;
5002 	}
5003 
5004 	return 0;
5005 
5006 cleanup_vebox_ring:
5007 	intel_cleanup_engine(&dev_priv->engine[VECS]);
5008 cleanup_blt_ring:
5009 	intel_cleanup_engine(&dev_priv->engine[BCS]);
5010 cleanup_bsd_ring:
5011 	intel_cleanup_engine(&dev_priv->engine[VCS]);
5012 cleanup_render_ring:
5013 	intel_cleanup_engine(&dev_priv->engine[RCS]);
5014 
5015 	return ret;
5016 }
5017 
5018 int
5019 i915_gem_init_hw(struct drm_device *dev)
5020 {
5021 	struct drm_i915_private *dev_priv = dev->dev_private;
5022 	struct intel_engine_cs *engine;
5023 	int ret, j;
5024 
5025 	/* Double layer security blanket, see i915_gem_init() */
5026 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5027 
5028 	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5029 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5030 
5031 	if (IS_HASWELL(dev))
5032 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5033 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5034 
5035 	if (HAS_PCH_NOP(dev)) {
5036 		if (IS_IVYBRIDGE(dev)) {
5037 			u32 temp = I915_READ(GEN7_MSG_CTL);
5038 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5039 			I915_WRITE(GEN7_MSG_CTL, temp);
5040 		} else if (INTEL_INFO(dev)->gen >= 7) {
5041 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5042 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5043 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5044 		}
5045 	}
5046 
5047 	i915_gem_init_swizzling(dev);
5048 
5049 	/*
5050 	 * At least 830 can leave some of the unused rings
5051 	 * "active" (ie. head != tail) after resume which
5052 	 * will prevent c3 entry. Makes sure all unused rings
5053 	 * are totally idle.
5054 	 */
5055 	init_unused_rings(dev);
5056 
5057 	BUG_ON(!dev_priv->kernel_context);
5058 
5059 	ret = i915_ppgtt_init_hw(dev);
5060 	if (ret) {
5061 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5062 		goto out;
5063 	}
5064 
5065 	/* Need to do basic initialisation of all rings first: */
5066 	for_each_engine(engine, dev_priv) {
5067 		ret = engine->init_hw(engine);
5068 		if (ret)
5069 			goto out;
5070 	}
5071 
5072 	intel_mocs_init_l3cc_table(dev);
5073 
5074 	/* We can't enable contexts until all firmware is loaded */
5075 	if (HAS_GUC_UCODE(dev)) {
5076 		ret = intel_guc_ucode_load(dev);
5077 		if (ret) {
5078 			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
5079 			ret = -EIO;
5080 			goto out;
5081 		}
5082 	}
5083 
5084 	/*
5085 	 * Increment the next seqno by 0x100 so we have a visible break
5086 	 * on re-initialisation
5087 	 */
5088 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
5089 	if (ret)
5090 		goto out;
5091 
5092 	/* Now it is safe to go back round and do everything else: */
5093 	for_each_engine(engine, dev_priv) {
5094 		struct drm_i915_gem_request *req;
5095 
5096 		req = i915_gem_request_alloc(engine, NULL);
5097 		if (IS_ERR(req)) {
5098 			ret = PTR_ERR(req);
5099 			break;
5100 		}
5101 
5102 		if (engine->id == RCS) {
5103 			for (j = 0; j < NUM_L3_SLICES(dev); j++) {
5104 				ret = i915_gem_l3_remap(req, j);
5105 				if (ret)
5106 					goto err_request;
5107 			}
5108 		}
5109 
5110 		ret = i915_ppgtt_init_ring(req);
5111 		if (ret)
5112 			goto err_request;
5113 
5114 		ret = i915_gem_context_enable(req);
5115 		if (ret)
5116 			goto err_request;
5117 
5118 err_request:
5119 		i915_add_request_no_flush(req);
5120 		if (ret) {
5121 			DRM_ERROR("Failed to enable %s, error=%d\n",
5122 				  engine->name, ret);
5123 			i915_gem_cleanup_engines(dev);
5124 			break;
5125 		}
5126 	}
5127 
5128 out:
5129 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5130 	return ret;
5131 }
5132 
5133 int i915_gem_init(struct drm_device *dev)
5134 {
5135 	struct drm_i915_private *dev_priv = dev->dev_private;
5136 	int ret;
5137 
5138 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5139 			i915.enable_execlists);
5140 
5141 	mutex_lock(&dev->struct_mutex);
5142 
5143 	if (!i915.enable_execlists) {
5144 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5145 		dev_priv->gt.init_engines = i915_gem_init_engines;
5146 		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5147 		dev_priv->gt.stop_engine = intel_stop_engine;
5148 	} else {
5149 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5150 		dev_priv->gt.init_engines = intel_logical_rings_init;
5151 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5152 		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5153 	}
5154 
5155 	/* This is just a security blanket to placate dragons.
5156 	 * On some systems, we very sporadically observe that the first TLBs
5157 	 * used by the CS may be stale, despite us poking the TLB reset. If
5158 	 * we hold the forcewake during initialisation these problems
5159 	 * just magically go away.
5160 	 */
5161 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5162 
5163 	ret = i915_gem_init_userptr(dev);
5164 	if (ret)
5165 		goto out_unlock;
5166 
5167 	i915_gem_init_ggtt(dev);
5168 
5169 	ret = i915_gem_context_init(dev);
5170 	if (ret)
5171 		goto out_unlock;
5172 
5173 	ret = dev_priv->gt.init_engines(dev);
5174 	if (ret)
5175 		goto out_unlock;
5176 
5177 	ret = i915_gem_init_hw(dev);
5178 	if (ret == -EIO) {
5179 		/* Allow ring initialisation to fail by marking the GPU as
5180 		 * wedged. But we only want to do this where the GPU is angry,
5181 		 * for all other failure, such as an allocation failure, bail.
5182 		 */
5183 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5184 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5185 		ret = 0;
5186 	}
5187 
5188 out_unlock:
5189 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5190 	mutex_unlock(&dev->struct_mutex);
5191 
5192 	return ret;
5193 }
5194 
5195 void
5196 i915_gem_cleanup_engines(struct drm_device *dev)
5197 {
5198 	struct drm_i915_private *dev_priv = dev->dev_private;
5199 	struct intel_engine_cs *engine;
5200 
5201 	for_each_engine(engine, dev_priv)
5202 		dev_priv->gt.cleanup_engine(engine);
5203 
5204 	if (i915.enable_execlists)
5205 		/*
5206 		 * Neither the BIOS, ourselves or any other kernel
5207 		 * expects the system to be in execlists mode on startup,
5208 		 * so we need to reset the GPU back to legacy mode.
5209 		 */
5210 		intel_gpu_reset(dev, ALL_ENGINES);
5211 }
5212 
5213 static void
5214 init_engine_lists(struct intel_engine_cs *engine)
5215 {
5216 	INIT_LIST_HEAD(&engine->active_list);
5217 	INIT_LIST_HEAD(&engine->request_list);
5218 }
5219 
5220 void
5221 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5222 {
5223 	struct drm_device *dev = dev_priv->dev;
5224 
5225 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5226 	    !IS_CHERRYVIEW(dev_priv))
5227 		dev_priv->num_fence_regs = 32;
5228 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5229 		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5230 		dev_priv->num_fence_regs = 16;
5231 	else
5232 		dev_priv->num_fence_regs = 8;
5233 
5234 	if (intel_vgpu_active(dev))
5235 		dev_priv->num_fence_regs =
5236 				I915_READ(vgtif_reg(avail_rs.fence_num));
5237 
5238 	/* Initialize fence registers to zero */
5239 	i915_gem_restore_fences(dev);
5240 
5241 	i915_gem_detect_bit_6_swizzle(dev);
5242 }
5243 
5244 void
5245 i915_gem_load_init(struct drm_device *dev)
5246 {
5247 	struct drm_i915_private *dev_priv = dev->dev_private;
5248 	int i;
5249 
5250 	INIT_LIST_HEAD(&dev_priv->vm_list);
5251 	INIT_LIST_HEAD(&dev_priv->context_list);
5252 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5253 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5254 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5255 	for (i = 0; i < I915_NUM_ENGINES; i++)
5256 		init_engine_lists(&dev_priv->engine[i]);
5257 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5258 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5259 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5260 			  i915_gem_retire_work_handler);
5261 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5262 			  i915_gem_idle_work_handler);
5263 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5264 
5265 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5266 
5267 	/*
5268 	 * Set initial sequence number for requests.
5269 	 * Using this number allows the wraparound to happen early,
5270 	 * catching any obvious problems.
5271 	 */
5272 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5273 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5274 
5275 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5276 
5277 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5278 
5279 	dev_priv->mm.interruptible = true;
5280 
5281 	lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, LK_CANRECURSE);
5282 }
5283 
5284 void i915_gem_load_cleanup(struct drm_device *dev)
5285 {
5286 #if 0
5287 	struct drm_i915_private *dev_priv = to_i915(dev);
5288 
5289 	kmem_cache_destroy(dev_priv->requests);
5290 	kmem_cache_destroy(dev_priv->vmas);
5291 	kmem_cache_destroy(dev_priv->objects);
5292 #endif
5293 }
5294 
5295 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5296 {
5297 	struct drm_i915_file_private *file_priv = file->driver_priv;
5298 
5299 	/* Clean up our request list when the client is going away, so that
5300 	 * later retire_requests won't dereference our soon-to-be-gone
5301 	 * file_priv.
5302 	 */
5303 	spin_lock(&file_priv->mm.lock);
5304 	while (!list_empty(&file_priv->mm.request_list)) {
5305 		struct drm_i915_gem_request *request;
5306 
5307 		request = list_first_entry(&file_priv->mm.request_list,
5308 					   struct drm_i915_gem_request,
5309 					   client_list);
5310 		list_del(&request->client_list);
5311 		request->file_priv = NULL;
5312 	}
5313 	spin_unlock(&file_priv->mm.lock);
5314 
5315 	if (!list_empty(&file_priv->rps.link)) {
5316 		lockmgr(&to_i915(dev)->rps.client_lock, LK_EXCLUSIVE);
5317 		list_del(&file_priv->rps.link);
5318 		lockmgr(&to_i915(dev)->rps.client_lock, LK_RELEASE);
5319 	}
5320 }
5321 
5322 int
5323 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5324     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5325 {
5326 	*color = 0; /* XXXKIB */
5327 	return (0);
5328 }
5329 
5330 void
5331 i915_gem_pager_dtor(void *handle)
5332 {
5333 	struct drm_gem_object *obj;
5334 	struct drm_device *dev;
5335 
5336 	obj = handle;
5337 	dev = obj->dev;
5338 
5339 	mutex_lock(&dev->struct_mutex);
5340 	drm_gem_free_mmap_offset(obj);
5341 	i915_gem_release_mmap(to_intel_bo(obj));
5342 	drm_gem_object_unreference(obj);
5343 	mutex_unlock(&dev->struct_mutex);
5344 }
5345 
5346 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5347 {
5348 	struct drm_i915_file_private *file_priv;
5349 	int ret;
5350 
5351 	DRM_DEBUG_DRIVER("\n");
5352 
5353 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5354 	if (!file_priv)
5355 		return -ENOMEM;
5356 
5357 	file->driver_priv = file_priv;
5358 	file_priv->dev_priv = dev->dev_private;
5359 	file_priv->file = file;
5360 	INIT_LIST_HEAD(&file_priv->rps.link);
5361 
5362 	spin_init(&file_priv->mm.lock, "i915_priv");
5363 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5364 
5365 	file_priv->bsd_ring = -1;
5366 
5367 	ret = i915_gem_context_open(dev, file);
5368 	if (ret)
5369 		kfree(file_priv);
5370 
5371 	return ret;
5372 }
5373 
5374 /**
5375  * i915_gem_track_fb - update frontbuffer tracking
5376  * @old: current GEM buffer for the frontbuffer slots
5377  * @new: new GEM buffer for the frontbuffer slots
5378  * @frontbuffer_bits: bitmask of frontbuffer slots
5379  *
5380  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5381  * from @old and setting them in @new. Both @old and @new can be NULL.
5382  */
5383 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5384 		       struct drm_i915_gem_object *new,
5385 		       unsigned frontbuffer_bits)
5386 {
5387 	if (old) {
5388 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5389 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5390 		old->frontbuffer_bits &= ~frontbuffer_bits;
5391 	}
5392 
5393 	if (new) {
5394 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5395 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5396 		new->frontbuffer_bits |= frontbuffer_bits;
5397 	}
5398 }
5399 
5400 /* All the new VM stuff */
5401 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5402 			struct i915_address_space *vm)
5403 {
5404 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5405 	struct i915_vma *vma;
5406 
5407 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5408 
5409 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5410 		if (vma->is_ggtt &&
5411 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5412 			continue;
5413 		if (vma->vm == vm)
5414 			return vma->node.start;
5415 	}
5416 
5417 	WARN(1, "%s vma for this object not found.\n",
5418 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5419 	return -1;
5420 }
5421 
5422 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5423 				  const struct i915_ggtt_view *view)
5424 {
5425 	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5426 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5427 	struct i915_vma *vma;
5428 
5429 	list_for_each_entry(vma, &o->vma_list, obj_link)
5430 		if (vma->vm == &ggtt->base &&
5431 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5432 			return vma->node.start;
5433 
5434 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5435 	return -1;
5436 }
5437 
5438 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5439 			struct i915_address_space *vm)
5440 {
5441 	struct i915_vma *vma;
5442 
5443 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5444 		if (vma->is_ggtt &&
5445 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5446 			continue;
5447 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5448 			return true;
5449 	}
5450 
5451 	return false;
5452 }
5453 
5454 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5455 				  const struct i915_ggtt_view *view)
5456 {
5457 	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5458 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5459 	struct i915_vma *vma;
5460 
5461 	list_for_each_entry(vma, &o->vma_list, obj_link)
5462 		if (vma->vm == &ggtt->base &&
5463 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5464 		    drm_mm_node_allocated(&vma->node))
5465 			return true;
5466 
5467 	return false;
5468 }
5469 
5470 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5471 {
5472 	struct i915_vma *vma;
5473 
5474 	list_for_each_entry(vma, &o->vma_list, obj_link)
5475 		if (drm_mm_node_allocated(&vma->node))
5476 			return true;
5477 
5478 	return false;
5479 }
5480 
5481 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5482 				struct i915_address_space *vm)
5483 {
5484 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5485 	struct i915_vma *vma;
5486 
5487 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5488 
5489 	BUG_ON(list_empty(&o->vma_list));
5490 
5491 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5492 		if (vma->is_ggtt &&
5493 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5494 			continue;
5495 		if (vma->vm == vm)
5496 			return vma->node.size;
5497 	}
5498 	return 0;
5499 }
5500 
5501 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5502 {
5503 	struct i915_vma *vma;
5504 	list_for_each_entry(vma, &obj->vma_list, obj_link)
5505 		if (vma->pin_count > 0)
5506 			return true;
5507 
5508 	return false;
5509 }
5510 
5511 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5512 struct page *
5513 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5514 {
5515 	struct page *page;
5516 
5517 	/* Only default objects have per-page dirty tracking */
5518 	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5519 		return NULL;
5520 
5521 	page = i915_gem_object_get_page(obj, n);
5522 	set_page_dirty(page);
5523 	return page;
5524 }
5525 
5526 /* Allocate a new GEM object and fill it with the supplied data */
5527 struct drm_i915_gem_object *
5528 i915_gem_object_create_from_data(struct drm_device *dev,
5529 			         const void *data, size_t size)
5530 {
5531 	struct drm_i915_gem_object *obj;
5532 	struct sg_table *sg;
5533 	size_t bytes;
5534 	int ret;
5535 
5536 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5537 	if (IS_ERR_OR_NULL(obj))
5538 		return obj;
5539 
5540 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5541 	if (ret)
5542 		goto fail;
5543 
5544 	ret = i915_gem_object_get_pages(obj);
5545 	if (ret)
5546 		goto fail;
5547 
5548 	i915_gem_object_pin_pages(obj);
5549 	sg = obj->pages;
5550 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, data, size);
5551 	obj->dirty = 1;		/* Backing store is now out of date */
5552 	i915_gem_object_unpin_pages(obj);
5553 
5554 	if (WARN_ON(bytes != size)) {
5555 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5556 		ret = -EFAULT;
5557 		goto fail;
5558 	}
5559 
5560 	return obj;
5561 
5562 fail:
5563 	drm_gem_object_unreference(&obj->base);
5564 	return ERR_PTR(ret);
5565 }
5566