xref: /dragonfly/sys/dev/drm/i915/i915_gem.c (revision cae2835b)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 
40 #define RQ_BUG_ON(expr)
41 
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48 
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 				  enum i915_cache_level level)
51 {
52 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54 
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 		return true;
59 
60 	return obj->pin_display;
61 }
62 
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 				  size_t size)
66 {
67 	spin_lock(&dev_priv->mm.object_stat_lock);
68 	dev_priv->mm.object_count++;
69 	dev_priv->mm.object_memory += size;
70 	spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72 
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 				     size_t size)
75 {
76 	spin_lock(&dev_priv->mm.object_stat_lock);
77 	dev_priv->mm.object_count--;
78 	dev_priv->mm.object_memory -= size;
79 	spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81 
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85 	int ret;
86 
87 #define EXIT_COND (!i915_reset_in_progress(error) || \
88 		   i915_terminally_wedged(error))
89 	if (EXIT_COND)
90 		return 0;
91 
92 	/*
93 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
94 	 * userspace. If it takes that long something really bad is going on and
95 	 * we should simply try to bail out and fail as gracefully as possible.
96 	 */
97 	ret = wait_event_interruptible_timeout(error->reset_queue,
98 					       EXIT_COND,
99 					       10*HZ);
100 	if (ret == 0) {
101 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
102 		return -EIO;
103 	} else if (ret < 0) {
104 		return ret;
105 	}
106 #undef EXIT_COND
107 
108 	return 0;
109 }
110 
111 int i915_mutex_lock_interruptible(struct drm_device *dev)
112 {
113 	struct drm_i915_private *dev_priv = dev->dev_private;
114 	int ret;
115 
116 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
117 	if (ret)
118 		return ret;
119 
120 	ret = mutex_lock_interruptible(&dev->struct_mutex);
121 	if (ret)
122 		return ret;
123 
124 	WARN_ON(i915_verify_lists(dev));
125 	return 0;
126 }
127 
128 int
129 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
130 			    struct drm_file *file)
131 {
132 	struct drm_i915_private *dev_priv = dev->dev_private;
133 	struct drm_i915_gem_get_aperture *args = data;
134 	struct i915_gtt *ggtt = &dev_priv->gtt;
135 	struct i915_vma *vma;
136 	size_t pinned;
137 
138 	pinned = 0;
139 	mutex_lock(&dev->struct_mutex);
140 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
141 		if (vma->pin_count)
142 			pinned += vma->node.size;
143 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
144 		if (vma->pin_count)
145 			pinned += vma->node.size;
146 	mutex_unlock(&dev->struct_mutex);
147 
148 	args->aper_size = dev_priv->gtt.base.total;
149 	args->aper_available_size = args->aper_size - pinned;
150 
151 	return 0;
152 }
153 
154 #if 0
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		page_cache_release(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			page_cache_release(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 #endif
268 
269 static int
270 drop_pages(struct drm_i915_gem_object *obj)
271 {
272 	struct i915_vma *vma, *next;
273 	int ret;
274 
275 	drm_gem_object_reference(&obj->base);
276 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
277 		if (i915_vma_unbind(vma))
278 			break;
279 
280 	ret = i915_gem_object_put_pages(obj);
281 	drm_gem_object_unreference(&obj->base);
282 
283 	return ret;
284 }
285 
286 int
287 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
288 			    int align)
289 {
290 	drm_dma_handle_t *phys;
291 	int ret;
292 
293 	if (obj->phys_handle) {
294 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
295 			return -EBUSY;
296 
297 		return 0;
298 	}
299 
300 	if (obj->madv != I915_MADV_WILLNEED)
301 		return -EFAULT;
302 
303 #if 0
304 	if (obj->base.filp == NULL)
305 		return -EINVAL;
306 #endif
307 
308 	ret = drop_pages(obj);
309 	if (ret)
310 		return ret;
311 
312 	/* create a new object */
313 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
314 	if (!phys)
315 		return -ENOMEM;
316 
317 	obj->phys_handle = phys;
318 #if 0
319 	obj->ops = &i915_gem_phys_ops;
320 #endif
321 
322 	return i915_gem_object_get_pages(obj);
323 }
324 
325 static int
326 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
327 		     struct drm_i915_gem_pwrite *args,
328 		     struct drm_file *file_priv)
329 {
330 	struct drm_device *dev = obj->base.dev;
331 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
332 	char __user *user_data = to_user_ptr(args->data_ptr);
333 	int ret = 0;
334 
335 	/* We manually control the domain here and pretend that it
336 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
337 	 */
338 	ret = i915_gem_object_wait_rendering(obj, false);
339 	if (ret)
340 		return ret;
341 
342 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
343 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
344 		unsigned long unwritten;
345 
346 		/* The physical object once assigned is fixed for the lifetime
347 		 * of the obj, so we can safely drop the lock and continue
348 		 * to access vaddr.
349 		 */
350 		mutex_unlock(&dev->struct_mutex);
351 		unwritten = copy_from_user(vaddr, user_data, args->size);
352 		mutex_lock(&dev->struct_mutex);
353 		if (unwritten) {
354 			ret = -EFAULT;
355 			goto out;
356 		}
357 	}
358 
359 	drm_clflush_virt_range(vaddr, args->size);
360 	i915_gem_chipset_flush(dev);
361 
362 out:
363 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
364 	return ret;
365 }
366 
367 void *i915_gem_object_alloc(struct drm_device *dev)
368 {
369 	return kmalloc(sizeof(struct drm_i915_gem_object),
370 	    M_DRM, M_WAITOK | M_ZERO);
371 }
372 
373 void i915_gem_object_free(struct drm_i915_gem_object *obj)
374 {
375 	kfree(obj);
376 }
377 
378 static int
379 i915_gem_create(struct drm_file *file,
380 		struct drm_device *dev,
381 		uint64_t size,
382 		uint32_t *handle_p)
383 {
384 	struct drm_i915_gem_object *obj;
385 	int ret;
386 	u32 handle;
387 
388 	size = roundup(size, PAGE_SIZE);
389 	if (size == 0)
390 		return -EINVAL;
391 
392 	/* Allocate the new object */
393 	obj = i915_gem_alloc_object(dev, size);
394 	if (obj == NULL)
395 		return -ENOMEM;
396 
397 	ret = drm_gem_handle_create(file, &obj->base, &handle);
398 	/* drop reference from allocate - handle holds it now */
399 	drm_gem_object_unreference_unlocked(&obj->base);
400 	if (ret)
401 		return ret;
402 
403 	*handle_p = handle;
404 	return 0;
405 }
406 
407 int
408 i915_gem_dumb_create(struct drm_file *file,
409 		     struct drm_device *dev,
410 		     struct drm_mode_create_dumb *args)
411 {
412 	/* have to work out size/pitch and return them */
413 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
414 	args->size = args->pitch * args->height;
415 	return i915_gem_create(file, dev,
416 			       args->size, &args->handle);
417 }
418 
419 /**
420  * Creates a new mm object and returns a handle to it.
421  */
422 int
423 i915_gem_create_ioctl(struct drm_device *dev, void *data,
424 		      struct drm_file *file)
425 {
426 	struct drm_i915_gem_create *args = data;
427 
428 	return i915_gem_create(file, dev,
429 			       args->size, &args->handle);
430 }
431 
432 static inline int
433 __copy_to_user_swizzled(char __user *cpu_vaddr,
434 			const char *gpu_vaddr, int gpu_offset,
435 			int length)
436 {
437 	int ret, cpu_offset = 0;
438 
439 	while (length > 0) {
440 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
441 		int this_length = min(cacheline_end - gpu_offset, length);
442 		int swizzled_gpu_offset = gpu_offset ^ 64;
443 
444 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
445 				     gpu_vaddr + swizzled_gpu_offset,
446 				     this_length);
447 		if (ret)
448 			return ret + length;
449 
450 		cpu_offset += this_length;
451 		gpu_offset += this_length;
452 		length -= this_length;
453 	}
454 
455 	return 0;
456 }
457 
458 static inline int
459 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
460 			  const char __user *cpu_vaddr,
461 			  int length)
462 {
463 	int ret, cpu_offset = 0;
464 
465 	while (length > 0) {
466 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
467 		int this_length = min(cacheline_end - gpu_offset, length);
468 		int swizzled_gpu_offset = gpu_offset ^ 64;
469 
470 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
471 				       cpu_vaddr + cpu_offset,
472 				       this_length);
473 		if (ret)
474 			return ret + length;
475 
476 		cpu_offset += this_length;
477 		gpu_offset += this_length;
478 		length -= this_length;
479 	}
480 
481 	return 0;
482 }
483 
484 /*
485  * Pins the specified object's pages and synchronizes the object with
486  * GPU accesses. Sets needs_clflush to non-zero if the caller should
487  * flush the object from the CPU cache.
488  */
489 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
490 				    int *needs_clflush)
491 {
492 	int ret;
493 
494 	*needs_clflush = 0;
495 
496 #if 0
497 	if (!obj->base.filp)
498 		return -EINVAL;
499 #endif
500 
501 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
502 		/* If we're not in the cpu read domain, set ourself into the gtt
503 		 * read domain and manually flush cachelines (if required). This
504 		 * optimizes for the case when the gpu will dirty the data
505 		 * anyway again before the next pread happens. */
506 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
507 							obj->cache_level);
508 		ret = i915_gem_object_wait_rendering(obj, true);
509 		if (ret)
510 			return ret;
511 	}
512 
513 	ret = i915_gem_object_get_pages(obj);
514 	if (ret)
515 		return ret;
516 
517 	i915_gem_object_pin_pages(obj);
518 
519 	return ret;
520 }
521 
522 /* Per-page copy function for the shmem pread fastpath.
523  * Flushes invalid cachelines before reading the target if
524  * needs_clflush is set. */
525 static int
526 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length,
527 		 char __user *user_data,
528 		 bool page_do_bit17_swizzling, bool needs_clflush)
529 {
530 	char *vaddr;
531 	int ret;
532 
533 	if (unlikely(page_do_bit17_swizzling))
534 		return -EINVAL;
535 
536 	vaddr = kmap_atomic(page);
537 	if (needs_clflush)
538 		drm_clflush_virt_range(vaddr + shmem_page_offset,
539 				       page_length);
540 	ret = __copy_to_user_inatomic(user_data,
541 				      vaddr + shmem_page_offset,
542 				      page_length);
543 	kunmap_atomic(vaddr);
544 
545 	return ret ? -EFAULT : 0;
546 }
547 
548 static void
549 shmem_clflush_swizzled_range(char *addr, unsigned long length,
550 			     bool swizzled)
551 {
552 	if (unlikely(swizzled)) {
553 		unsigned long start = (unsigned long) addr;
554 		unsigned long end = (unsigned long) addr + length;
555 
556 		/* For swizzling simply ensure that we always flush both
557 		 * channels. Lame, but simple and it works. Swizzled
558 		 * pwrite/pread is far from a hotpath - current userspace
559 		 * doesn't use it at all. */
560 		start = round_down(start, 128);
561 		end = round_up(end, 128);
562 
563 		drm_clflush_virt_range((void *)start, end - start);
564 	} else {
565 		drm_clflush_virt_range(addr, length);
566 	}
567 
568 }
569 
570 /* Only difference to the fast-path function is that this can handle bit17
571  * and uses non-atomic copy and kmap functions. */
572 static int
573 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length,
574 		 char __user *user_data,
575 		 bool page_do_bit17_swizzling, bool needs_clflush)
576 {
577 	char *vaddr;
578 	int ret;
579 
580 	vaddr = kmap(page);
581 	if (needs_clflush)
582 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
583 					     page_length,
584 					     page_do_bit17_swizzling);
585 
586 	if (page_do_bit17_swizzling)
587 		ret = __copy_to_user_swizzled(user_data,
588 					      vaddr, shmem_page_offset,
589 					      page_length);
590 	else
591 		ret = __copy_to_user(user_data,
592 				     vaddr + shmem_page_offset,
593 				     page_length);
594 	kunmap(page);
595 
596 	return ret ? - EFAULT : 0;
597 }
598 
599 static int
600 i915_gem_shmem_pread(struct drm_device *dev,
601 		     struct drm_i915_gem_object *obj,
602 		     struct drm_i915_gem_pread *args,
603 		     struct drm_file *file)
604 {
605 	char __user *user_data;
606 	ssize_t remain;
607 	loff_t offset;
608 	int shmem_page_offset, page_length, ret = 0;
609 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
610 	int prefaulted = 0;
611 	int needs_clflush = 0;
612 	struct sg_page_iter sg_iter;
613 
614 	user_data = to_user_ptr(args->data_ptr);
615 	remain = args->size;
616 
617 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
618 
619 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
620 	if (ret)
621 		return ret;
622 
623 	offset = args->offset;
624 
625 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
626 			 offset >> PAGE_SHIFT) {
627 		struct vm_page *page = sg_page_iter_page(&sg_iter);
628 
629 		if (remain <= 0)
630 			break;
631 
632 		/* Operation in this page
633 		 *
634 		 * shmem_page_offset = offset within page in shmem file
635 		 * page_length = bytes to copy for this page
636 		 */
637 		shmem_page_offset = offset_in_page(offset);
638 		page_length = remain;
639 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
640 			page_length = PAGE_SIZE - shmem_page_offset;
641 
642 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
643 			(page_to_phys(page) & (1 << 17)) != 0;
644 
645 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
646 				       user_data, page_do_bit17_swizzling,
647 				       needs_clflush);
648 		if (ret == 0)
649 			goto next_page;
650 
651 		mutex_unlock(&dev->struct_mutex);
652 
653 		if (likely(!i915.prefault_disable) && !prefaulted) {
654 			ret = fault_in_multipages_writeable(user_data, remain);
655 			/* Userspace is tricking us, but we've already clobbered
656 			 * its pages with the prefault and promised to write the
657 			 * data up to the first fault. Hence ignore any errors
658 			 * and just continue. */
659 			(void)ret;
660 			prefaulted = 1;
661 		}
662 
663 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
664 				       user_data, page_do_bit17_swizzling,
665 				       needs_clflush);
666 
667 		mutex_lock(&dev->struct_mutex);
668 
669 		if (ret)
670 			goto out;
671 
672 next_page:
673 		remain -= page_length;
674 		user_data += page_length;
675 		offset += page_length;
676 	}
677 
678 out:
679 	i915_gem_object_unpin_pages(obj);
680 
681 	return ret;
682 }
683 
684 /**
685  * Reads data from the object referenced by handle.
686  *
687  * On error, the contents of *data are undefined.
688  */
689 int
690 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
691 		     struct drm_file *file)
692 {
693 	struct drm_i915_gem_pread *args = data;
694 	struct drm_i915_gem_object *obj;
695 	int ret = 0;
696 
697 	if (args->size == 0)
698 		return 0;
699 
700 	ret = i915_mutex_lock_interruptible(dev);
701 	if (ret)
702 		return ret;
703 
704 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
705 	if (&obj->base == NULL) {
706 		ret = -ENOENT;
707 		goto unlock;
708 	}
709 
710 	/* Bounds check source.  */
711 	if (args->offset > obj->base.size ||
712 	    args->size > obj->base.size - args->offset) {
713 		ret = -EINVAL;
714 		goto out;
715 	}
716 
717 	/* prime objects have no backing filp to GEM pread/pwrite
718 	 * pages from.
719 	 */
720 
721 	trace_i915_gem_object_pread(obj, args->offset, args->size);
722 
723 	ret = i915_gem_shmem_pread(dev, obj, args, file);
724 
725 out:
726 	drm_gem_object_unreference(&obj->base);
727 unlock:
728 	mutex_unlock(&dev->struct_mutex);
729 	return ret;
730 }
731 
732 /* This is the fast write path which cannot handle
733  * page faults in the source data
734  */
735 
736 static inline int
737 fast_user_write(struct io_mapping *mapping,
738 		loff_t page_base, int page_offset,
739 		char __user *user_data,
740 		int length)
741 {
742 	void __iomem *vaddr_atomic;
743 	void *vaddr;
744 	unsigned long unwritten;
745 
746 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
747 	/* We can use the cpu mem copy function because this is X86. */
748 	vaddr = (char __force*)vaddr_atomic + page_offset;
749 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
750 						      user_data, length);
751 	io_mapping_unmap_atomic(vaddr_atomic);
752 	return unwritten;
753 }
754 
755 /**
756  * This is the fast pwrite path, where we copy the data directly from the
757  * user into the GTT, uncached.
758  */
759 static int
760 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
761 			 struct drm_i915_gem_object *obj,
762 			 struct drm_i915_gem_pwrite *args,
763 			 struct drm_file *file)
764 {
765 	struct drm_i915_private *dev_priv = dev->dev_private;
766 	ssize_t remain;
767 	loff_t offset, page_base;
768 	char __user *user_data;
769 	int page_offset, page_length, ret;
770 
771 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
772 	if (ret)
773 		goto out;
774 
775 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
776 	if (ret)
777 		goto out_unpin;
778 
779 	ret = i915_gem_object_put_fence(obj);
780 	if (ret)
781 		goto out_unpin;
782 
783 	user_data = to_user_ptr(args->data_ptr);
784 	remain = args->size;
785 
786 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
787 
788 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
789 
790 	while (remain > 0) {
791 		/* Operation in this page
792 		 *
793 		 * page_base = page offset within aperture
794 		 * page_offset = offset within page
795 		 * page_length = bytes to copy for this page
796 		 */
797 		page_base = offset & ~PAGE_MASK;
798 		page_offset = offset_in_page(offset);
799 		page_length = remain;
800 		if ((page_offset + remain) > PAGE_SIZE)
801 			page_length = PAGE_SIZE - page_offset;
802 
803 		/* If we get a fault while copying data, then (presumably) our
804 		 * source page isn't available.  Return the error and we'll
805 		 * retry in the slow path.
806 		 */
807 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
808 				    page_offset, user_data, page_length)) {
809 			ret = -EFAULT;
810 			goto out_flush;
811 		}
812 
813 		remain -= page_length;
814 		user_data += page_length;
815 		offset += page_length;
816 	}
817 
818 out_flush:
819 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
820 out_unpin:
821 	i915_gem_object_ggtt_unpin(obj);
822 out:
823 	return ret;
824 }
825 
826 /* Per-page copy function for the shmem pwrite fastpath.
827  * Flushes invalid cachelines before writing to the target if
828  * needs_clflush_before is set and flushes out any written cachelines after
829  * writing if needs_clflush is set. */
830 static int
831 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length,
832 		  char __user *user_data,
833 		  bool page_do_bit17_swizzling,
834 		  bool needs_clflush_before,
835 		  bool needs_clflush_after)
836 {
837 	char *vaddr;
838 	int ret;
839 
840 	if (unlikely(page_do_bit17_swizzling))
841 		return -EINVAL;
842 
843 	vaddr = kmap_atomic(page);
844 	if (needs_clflush_before)
845 		drm_clflush_virt_range(vaddr + shmem_page_offset,
846 				       page_length);
847 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
848 					user_data, page_length);
849 	if (needs_clflush_after)
850 		drm_clflush_virt_range(vaddr + shmem_page_offset,
851 				       page_length);
852 	kunmap_atomic(vaddr);
853 
854 	return ret ? -EFAULT : 0;
855 }
856 
857 /* Only difference to the fast-path function is that this can handle bit17
858  * and uses non-atomic copy and kmap functions. */
859 static int
860 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length,
861 		  char __user *user_data,
862 		  bool page_do_bit17_swizzling,
863 		  bool needs_clflush_before,
864 		  bool needs_clflush_after)
865 {
866 	char *vaddr;
867 	int ret;
868 
869 	vaddr = kmap(page);
870 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
871 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
872 					     page_length,
873 					     page_do_bit17_swizzling);
874 	if (page_do_bit17_swizzling)
875 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
876 						user_data,
877 						page_length);
878 	else
879 		ret = __copy_from_user(vaddr + shmem_page_offset,
880 				       user_data,
881 				       page_length);
882 	if (needs_clflush_after)
883 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
884 					     page_length,
885 					     page_do_bit17_swizzling);
886 	kunmap(page);
887 
888 	return ret ? -EFAULT : 0;
889 }
890 
891 static int
892 i915_gem_shmem_pwrite(struct drm_device *dev,
893 		      struct drm_i915_gem_object *obj,
894 		      struct drm_i915_gem_pwrite *args,
895 		      struct drm_file *file)
896 {
897 	ssize_t remain;
898 	loff_t offset;
899 	char __user *user_data;
900 	int shmem_page_offset, page_length, ret = 0;
901 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
902 	int hit_slowpath = 0;
903 	int needs_clflush_after = 0;
904 	int needs_clflush_before = 0;
905 	struct sg_page_iter sg_iter;
906 
907 	user_data = to_user_ptr(args->data_ptr);
908 	remain = args->size;
909 
910 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
911 
912 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
913 		/* If we're not in the cpu write domain, set ourself into the gtt
914 		 * write domain and manually flush cachelines (if required). This
915 		 * optimizes for the case when the gpu will use the data
916 		 * right away and we therefore have to clflush anyway. */
917 		needs_clflush_after = cpu_write_needs_clflush(obj);
918 		ret = i915_gem_object_wait_rendering(obj, false);
919 		if (ret)
920 			return ret;
921 	}
922 	/* Same trick applies to invalidate partially written cachelines read
923 	 * before writing. */
924 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
925 		needs_clflush_before =
926 			!cpu_cache_is_coherent(dev, obj->cache_level);
927 
928 	ret = i915_gem_object_get_pages(obj);
929 	if (ret)
930 		return ret;
931 
932 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
933 
934 	i915_gem_object_pin_pages(obj);
935 
936 	offset = args->offset;
937 	obj->dirty = 1;
938 
939 	VM_OBJECT_LOCK(obj->base.vm_obj);
940 	vm_object_pip_add(obj->base.vm_obj, 1);
941 
942 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 			 offset >> PAGE_SHIFT) {
944 		struct vm_page *page = sg_page_iter_page(&sg_iter);
945 		int partial_cacheline_write;
946 
947 		if (remain <= 0)
948 			break;
949 
950 		/* Operation in this page
951 		 *
952 		 * shmem_page_offset = offset within page in shmem file
953 		 * page_length = bytes to copy for this page
954 		 */
955 		shmem_page_offset = offset_in_page(offset);
956 
957 		page_length = remain;
958 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 			page_length = PAGE_SIZE - shmem_page_offset;
960 
961 		/* If we don't overwrite a cacheline completely we need to be
962 		 * careful to have up-to-date data by first clflushing. Don't
963 		 * overcomplicate things and flush the entire patch. */
964 		partial_cacheline_write = needs_clflush_before &&
965 			((shmem_page_offset | page_length)
966 				& (cpu_clflush_line_size - 1));
967 
968 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 			(page_to_phys(page) & (1 << 17)) != 0;
970 
971 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 					user_data, page_do_bit17_swizzling,
973 					partial_cacheline_write,
974 					needs_clflush_after);
975 		if (ret == 0)
976 			goto next_page;
977 
978 		hit_slowpath = 1;
979 		mutex_unlock(&dev->struct_mutex);
980 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 					user_data, page_do_bit17_swizzling,
982 					partial_cacheline_write,
983 					needs_clflush_after);
984 
985 		mutex_lock(&dev->struct_mutex);
986 
987 		if (ret)
988 			goto out;
989 
990 next_page:
991 		remain -= page_length;
992 		user_data += page_length;
993 		offset += page_length;
994 	}
995 	vm_object_pip_wakeup(obj->base.vm_obj);
996 	VM_OBJECT_UNLOCK(obj->base.vm_obj);
997 
998 out:
999 	i915_gem_object_unpin_pages(obj);
1000 
1001 	if (hit_slowpath) {
1002 		/*
1003 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1004 		 * cachelines in-line while writing and the object moved
1005 		 * out of the cpu write domain while we've dropped the lock.
1006 		 */
1007 		if (!needs_clflush_after &&
1008 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1009 			if (i915_gem_clflush_object(obj, obj->pin_display))
1010 				needs_clflush_after = true;
1011 		}
1012 	}
1013 
1014 	if (needs_clflush_after)
1015 		i915_gem_chipset_flush(dev);
1016 	else
1017 		obj->cache_dirty = true;
1018 
1019 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1020 	return ret;
1021 }
1022 
1023 /**
1024  * Writes data to the object referenced by handle.
1025  *
1026  * On error, the contents of the buffer that were to be modified are undefined.
1027  */
1028 int
1029 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1030 		      struct drm_file *file)
1031 {
1032 	struct drm_i915_private *dev_priv = dev->dev_private;
1033 	struct drm_i915_gem_pwrite *args = data;
1034 	struct drm_i915_gem_object *obj;
1035 	int ret;
1036 
1037 	if (args->size == 0)
1038 		return 0;
1039 
1040 	if (likely(!i915.prefault_disable)) {
1041 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1042 						   args->size);
1043 		if (ret)
1044 			return -EFAULT;
1045 	}
1046 
1047 	intel_runtime_pm_get(dev_priv);
1048 
1049 	ret = i915_mutex_lock_interruptible(dev);
1050 	if (ret)
1051 		goto put_rpm;
1052 
1053 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1054 	if (&obj->base == NULL) {
1055 		ret = -ENOENT;
1056 		goto unlock;
1057 	}
1058 
1059 	/* Bounds check destination. */
1060 	if (args->offset > obj->base.size ||
1061 	    args->size > obj->base.size - args->offset) {
1062 		ret = -EINVAL;
1063 		goto out;
1064 	}
1065 
1066 	/* prime objects have no backing filp to GEM pread/pwrite
1067 	 * pages from.
1068 	 */
1069 
1070 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1071 
1072 	ret = -EFAULT;
1073 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1074 	 * it would end up going through the fenced access, and we'll get
1075 	 * different detiling behavior between reading and writing.
1076 	 * pread/pwrite currently are reading and writing from the CPU
1077 	 * perspective, requiring manual detiling by the client.
1078 	 */
1079 	if (obj->tiling_mode == I915_TILING_NONE &&
1080 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1081 	    cpu_write_needs_clflush(obj)) {
1082 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1083 		/* Note that the gtt paths might fail with non-page-backed user
1084 		 * pointers (e.g. gtt mappings when moving data between
1085 		 * textures). Fallback to the shmem path in that case. */
1086 	}
1087 
1088 	if (ret == -EFAULT || ret == -ENOSPC) {
1089 		if (obj->phys_handle)
1090 			ret = i915_gem_phys_pwrite(obj, args, file);
1091 		else
1092 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1093 	}
1094 
1095 out:
1096 	drm_gem_object_unreference(&obj->base);
1097 unlock:
1098 	mutex_unlock(&dev->struct_mutex);
1099 put_rpm:
1100 	intel_runtime_pm_put(dev_priv);
1101 
1102 	return ret;
1103 }
1104 
1105 int
1106 i915_gem_check_wedge(struct i915_gpu_error *error,
1107 		     bool interruptible)
1108 {
1109 	if (i915_reset_in_progress(error)) {
1110 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1111 		 * -EIO unconditionally for these. */
1112 		if (!interruptible)
1113 			return -EIO;
1114 
1115 		/* Recovery complete, but the reset failed ... */
1116 		if (i915_terminally_wedged(error))
1117 			return -EIO;
1118 
1119 		/*
1120 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1121 		 * to work properly to reinit the hw state while the gpu is
1122 		 * still marked as reset-in-progress. Handle this with a flag.
1123 		 */
1124 		if (!error->reload_in_reset)
1125 			return -EAGAIN;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static void fake_irq(unsigned long data)
1132 {
1133 	wakeup_one((void *)data);
1134 }
1135 
1136 static bool missed_irq(struct drm_i915_private *dev_priv,
1137 		       struct intel_engine_cs *ring)
1138 {
1139 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1140 }
1141 
1142 #if 0
1143 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1144 {
1145 	unsigned long timeout;
1146 	unsigned cpu;
1147 
1148 	/* When waiting for high frequency requests, e.g. during synchronous
1149 	 * rendering split between the CPU and GPU, the finite amount of time
1150 	 * required to set up the irq and wait upon it limits the response
1151 	 * rate. By busywaiting on the request completion for a short while we
1152 	 * can service the high frequency waits as quick as possible. However,
1153 	 * if it is a slow request, we want to sleep as quickly as possible.
1154 	 * The tradeoff between waiting and sleeping is roughly the time it
1155 	 * takes to sleep on a request, on the order of a microsecond.
1156 	 */
1157 
1158 	if (req->ring->irq_refcount)
1159 		return -EBUSY;
1160 
1161 	/* Only spin if we know the GPU is processing this request */
1162 	if (!i915_gem_request_started(req, true))
1163 		return -EAGAIN;
1164 
1165 	timeout = local_clock_us(&cpu) + 5;
1166 	while (!need_resched()) {
1167 		if (i915_gem_request_completed(req, true))
1168 			return 0;
1169 
1170 		if (signal_pending_state(state, current))
1171 			break;
1172 
1173 		if (busywait_stop(timeout, cpu))
1174 			break;
1175 
1176 		cpu_relax_lowlatency();
1177 	}
1178 
1179 	if (i915_gem_request_completed(req, false))
1180 		return 0;
1181 
1182 	return -EAGAIN;
1183 }
1184 #endif
1185 
1186 /**
1187  * __i915_wait_request - wait until execution of request has finished
1188  * @req: duh!
1189  * @reset_counter: reset sequence associated with the given request
1190  * @interruptible: do an interruptible wait (normally yes)
1191  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1192  *
1193  * Note: It is of utmost importance that the passed in seqno and reset_counter
1194  * values have been read by the caller in an smp safe manner. Where read-side
1195  * locks are involved, it is sufficient to read the reset_counter before
1196  * unlocking the lock that protects the seqno. For lockless tricks, the
1197  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1198  * inserted.
1199  *
1200  * Returns 0 if the request was found within the alloted time. Else returns the
1201  * errno with remaining time filled in timeout argument.
1202  */
1203 int __i915_wait_request(struct drm_i915_gem_request *req,
1204 			unsigned reset_counter,
1205 			bool interruptible,
1206 			s64 *timeout,
1207 			struct intel_rps_client *rps)
1208 {
1209 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1210 	struct drm_device *dev = ring->dev;
1211 	struct drm_i915_private *dev_priv = dev->dev_private;
1212 	const bool irq_test_in_progress =
1213 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1214 	unsigned long timeout_expire;
1215 	s64 before, now;
1216 	int ret, sl_timeout = 1;
1217 
1218 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1219 
1220 	if (list_empty(&req->list))
1221 		return 0;
1222 
1223 	if (i915_gem_request_completed(req, true))
1224 		return 0;
1225 
1226 	timeout_expire = 0;
1227 	if (timeout) {
1228 		if (WARN_ON(*timeout < 0))
1229 			return -EINVAL;
1230 
1231 		if (*timeout == 0)
1232 			return -ETIME;
1233 
1234 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1235 	}
1236 
1237 	if (INTEL_INFO(dev_priv)->gen >= 6)
1238 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1239 
1240 	/* Record current time in case interrupted by signal, or wedged */
1241 	trace_i915_gem_request_wait_begin(req);
1242 	before = ktime_get_raw_ns();
1243 
1244 	/* Optimistic spin for the next jiffie before touching IRQs */
1245 #if 0
1246 	ret = __i915_spin_request(req);
1247 	if (ret == 0)
1248 		goto out;
1249 #endif
1250 
1251 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1252 		ret = -ENODEV;
1253 		goto out;
1254 	}
1255 
1256 	lockmgr(&ring->irq_queue.lock, LK_EXCLUSIVE);
1257 	for (;;) {
1258 		struct timer_list timer;
1259 
1260 		/* We need to check whether any gpu reset happened in between
1261 		 * the caller grabbing the seqno and now ... */
1262 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1263 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1264 			 * is truely gone. */
1265 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1266 			if (ret == 0)
1267 				ret = -EAGAIN;
1268 			break;
1269 		}
1270 
1271 		if (i915_gem_request_completed(req, false)) {
1272 			ret = 0;
1273 			break;
1274 		}
1275 
1276 		if (interruptible && signal_pending(curthread->td_lwp)) {
1277 			ret = -ERESTARTSYS;
1278 			break;
1279 		}
1280 
1281 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1282 			ret = -ETIME;
1283 			break;
1284 		}
1285 
1286 		timer.function = NULL;
1287 		if (timeout || missed_irq(dev_priv, ring)) {
1288 			unsigned long expire;
1289 
1290 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)&ring->irq_queue);
1291 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1292 			sl_timeout = expire - jiffies;
1293 			if (sl_timeout < 1)
1294 				sl_timeout = 1;
1295 			mod_timer(&timer, expire);
1296 		}
1297 
1298 #if 0
1299 		io_schedule();
1300 #endif
1301 
1302 		if (timer.function) {
1303 			del_singleshot_timer_sync(&timer);
1304 			destroy_timer_on_stack(&timer);
1305 		}
1306 
1307 		lksleep(&ring->irq_queue, &ring->irq_queue.lock,
1308 			interruptible ? PCATCH : 0, "lwe", sl_timeout);
1309 	}
1310 	lockmgr(&ring->irq_queue.lock, LK_RELEASE);
1311 	if (!irq_test_in_progress)
1312 		ring->irq_put(ring);
1313 
1314 out:
1315 	now = ktime_get_raw_ns();
1316 	trace_i915_gem_request_wait_end(req);
1317 
1318 	if (timeout) {
1319 		s64 tres = *timeout - (now - before);
1320 
1321 		*timeout = tres < 0 ? 0 : tres;
1322 
1323 		/*
1324 		 * Apparently ktime isn't accurate enough and occasionally has a
1325 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1326 		 * things up to make the test happy. We allow up to 1 jiffy.
1327 		 *
1328 		 * This is a regrssion from the timespec->ktime conversion.
1329 		 */
1330 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1331 			*timeout = 0;
1332 	}
1333 
1334 	return ret;
1335 }
1336 
1337 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1338 				   struct drm_file *file)
1339 {
1340 	struct drm_i915_private *dev_private;
1341 	struct drm_i915_file_private *file_priv;
1342 
1343 	WARN_ON(!req || !file || req->file_priv);
1344 
1345 	if (!req || !file)
1346 		return -EINVAL;
1347 
1348 	if (req->file_priv)
1349 		return -EINVAL;
1350 
1351 	dev_private = req->ring->dev->dev_private;
1352 	file_priv = file->driver_priv;
1353 
1354 	spin_lock(&file_priv->mm.lock);
1355 	req->file_priv = file_priv;
1356 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1357 	spin_unlock(&file_priv->mm.lock);
1358 
1359 	req->pid = curproc->p_pid;
1360 
1361 	return 0;
1362 }
1363 
1364 static inline void
1365 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1366 {
1367 	struct drm_i915_file_private *file_priv = request->file_priv;
1368 
1369 	if (!file_priv)
1370 		return;
1371 
1372 	spin_lock(&file_priv->mm.lock);
1373 	list_del(&request->client_list);
1374 	request->file_priv = NULL;
1375 	spin_unlock(&file_priv->mm.lock);
1376 
1377 #if 0
1378 	put_pid(request->pid);
1379 	request->pid = NULL;
1380 #endif
1381 }
1382 
1383 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1384 {
1385 	trace_i915_gem_request_retire(request);
1386 
1387 	/* We know the GPU must have read the request to have
1388 	 * sent us the seqno + interrupt, so use the position
1389 	 * of tail of the request to update the last known position
1390 	 * of the GPU head.
1391 	 *
1392 	 * Note this requires that we are always called in request
1393 	 * completion order.
1394 	 */
1395 	request->ringbuf->last_retired_head = request->postfix;
1396 
1397 	list_del_init(&request->list);
1398 	i915_gem_request_remove_from_client(request);
1399 
1400 	i915_gem_request_unreference(request);
1401 }
1402 
1403 static void
1404 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1405 {
1406 	struct intel_engine_cs *engine = req->ring;
1407 	struct drm_i915_gem_request *tmp;
1408 
1409 	lockdep_assert_held(&engine->dev->struct_mutex);
1410 
1411 	if (list_empty(&req->list))
1412 		return;
1413 
1414 	do {
1415 		tmp = list_first_entry(&engine->request_list,
1416 				       typeof(*tmp), list);
1417 
1418 		i915_gem_request_retire(tmp);
1419 	} while (tmp != req);
1420 
1421 	WARN_ON(i915_verify_lists(engine->dev));
1422 }
1423 
1424 /**
1425  * Waits for a request to be signaled, and cleans up the
1426  * request and object lists appropriately for that event.
1427  */
1428 int
1429 i915_wait_request(struct drm_i915_gem_request *req)
1430 {
1431 	struct drm_device *dev;
1432 	struct drm_i915_private *dev_priv;
1433 	bool interruptible;
1434 	int ret;
1435 
1436 	BUG_ON(req == NULL);
1437 
1438 	dev = req->ring->dev;
1439 	dev_priv = dev->dev_private;
1440 	interruptible = dev_priv->mm.interruptible;
1441 
1442 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1443 
1444 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1445 	if (ret)
1446 		return ret;
1447 
1448 	ret = __i915_wait_request(req,
1449 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1450 				  interruptible, NULL, NULL);
1451 	if (ret)
1452 		return ret;
1453 
1454 	__i915_gem_request_retire__upto(req);
1455 	return 0;
1456 }
1457 
1458 /**
1459  * Ensures that all rendering to the object has completed and the object is
1460  * safe to unbind from the GTT or access from the CPU.
1461  */
1462 int
1463 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1464 			       bool readonly)
1465 {
1466 	int ret, i;
1467 
1468 	if (!obj->active)
1469 		return 0;
1470 
1471 	if (readonly) {
1472 		if (obj->last_write_req != NULL) {
1473 			ret = i915_wait_request(obj->last_write_req);
1474 			if (ret)
1475 				return ret;
1476 
1477 			i = obj->last_write_req->ring->id;
1478 			if (obj->last_read_req[i] == obj->last_write_req)
1479 				i915_gem_object_retire__read(obj, i);
1480 			else
1481 				i915_gem_object_retire__write(obj);
1482 		}
1483 	} else {
1484 		for (i = 0; i < I915_NUM_RINGS; i++) {
1485 			if (obj->last_read_req[i] == NULL)
1486 				continue;
1487 
1488 			ret = i915_wait_request(obj->last_read_req[i]);
1489 			if (ret)
1490 				return ret;
1491 
1492 			i915_gem_object_retire__read(obj, i);
1493 		}
1494 		RQ_BUG_ON(obj->active);
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static void
1501 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1502 			       struct drm_i915_gem_request *req)
1503 {
1504 	int ring = req->ring->id;
1505 
1506 	if (obj->last_read_req[ring] == req)
1507 		i915_gem_object_retire__read(obj, ring);
1508 	else if (obj->last_write_req == req)
1509 		i915_gem_object_retire__write(obj);
1510 
1511 	__i915_gem_request_retire__upto(req);
1512 }
1513 
1514 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1515  * as the object state may change during this call.
1516  */
1517 static __must_check int
1518 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1519 					    struct intel_rps_client *rps,
1520 					    bool readonly)
1521 {
1522 	struct drm_device *dev = obj->base.dev;
1523 	struct drm_i915_private *dev_priv = dev->dev_private;
1524 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1525 	unsigned reset_counter;
1526 	int ret, i, n = 0;
1527 
1528 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1529 	BUG_ON(!dev_priv->mm.interruptible);
1530 
1531 	if (!obj->active)
1532 		return 0;
1533 
1534 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1535 	if (ret)
1536 		return ret;
1537 
1538 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1539 
1540 	if (readonly) {
1541 		struct drm_i915_gem_request *req;
1542 
1543 		req = obj->last_write_req;
1544 		if (req == NULL)
1545 			return 0;
1546 
1547 		requests[n++] = i915_gem_request_reference(req);
1548 	} else {
1549 		for (i = 0; i < I915_NUM_RINGS; i++) {
1550 			struct drm_i915_gem_request *req;
1551 
1552 			req = obj->last_read_req[i];
1553 			if (req == NULL)
1554 				continue;
1555 
1556 			requests[n++] = i915_gem_request_reference(req);
1557 		}
1558 	}
1559 
1560 	mutex_unlock(&dev->struct_mutex);
1561 	for (i = 0; ret == 0 && i < n; i++)
1562 		ret = __i915_wait_request(requests[i], reset_counter, true,
1563 					  NULL, rps);
1564 	mutex_lock(&dev->struct_mutex);
1565 
1566 	for (i = 0; i < n; i++) {
1567 		if (ret == 0)
1568 			i915_gem_object_retire_request(obj, requests[i]);
1569 		i915_gem_request_unreference(requests[i]);
1570 	}
1571 
1572 	return ret;
1573 }
1574 
1575 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1576 {
1577 	struct drm_i915_file_private *fpriv = file->driver_priv;
1578 	return &fpriv->rps;
1579 }
1580 
1581 /**
1582  * Called when user space prepares to use an object with the CPU, either
1583  * through the mmap ioctl's mapping or a GTT mapping.
1584  */
1585 int
1586 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1587 			  struct drm_file *file)
1588 {
1589 	struct drm_i915_gem_set_domain *args = data;
1590 	struct drm_i915_gem_object *obj;
1591 	uint32_t read_domains = args->read_domains;
1592 	uint32_t write_domain = args->write_domain;
1593 	int ret;
1594 
1595 	/* Only handle setting domains to types used by the CPU. */
1596 	if (write_domain & I915_GEM_GPU_DOMAINS)
1597 		return -EINVAL;
1598 
1599 	if (read_domains & I915_GEM_GPU_DOMAINS)
1600 		return -EINVAL;
1601 
1602 	/* Having something in the write domain implies it's in the read
1603 	 * domain, and only that read domain.  Enforce that in the request.
1604 	 */
1605 	if (write_domain != 0 && read_domains != write_domain)
1606 		return -EINVAL;
1607 
1608 	ret = i915_mutex_lock_interruptible(dev);
1609 	if (ret)
1610 		return ret;
1611 
1612 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1613 	if (&obj->base == NULL) {
1614 		ret = -ENOENT;
1615 		goto unlock;
1616 	}
1617 
1618 	/* Try to flush the object off the GPU without holding the lock.
1619 	 * We will repeat the flush holding the lock in the normal manner
1620 	 * to catch cases where we are gazumped.
1621 	 */
1622 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1623 							  to_rps_client(file),
1624 							  !write_domain);
1625 	if (ret)
1626 		goto unref;
1627 
1628 	if (read_domains & I915_GEM_DOMAIN_GTT)
1629 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1630 	else
1631 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1632 
1633 	if (write_domain != 0)
1634 		intel_fb_obj_invalidate(obj,
1635 					write_domain == I915_GEM_DOMAIN_GTT ?
1636 					ORIGIN_GTT : ORIGIN_CPU);
1637 
1638 unref:
1639 	drm_gem_object_unreference(&obj->base);
1640 unlock:
1641 	mutex_unlock(&dev->struct_mutex);
1642 	return ret;
1643 }
1644 
1645 /**
1646  * Called when user space has done writes to this buffer
1647  */
1648 int
1649 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1650 			 struct drm_file *file)
1651 {
1652 	struct drm_i915_gem_sw_finish *args = data;
1653 	struct drm_i915_gem_object *obj;
1654 	int ret = 0;
1655 
1656 	ret = i915_mutex_lock_interruptible(dev);
1657 	if (ret)
1658 		return ret;
1659 
1660 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1661 	if (&obj->base == NULL) {
1662 		ret = -ENOENT;
1663 		goto unlock;
1664 	}
1665 
1666 	/* Pinned buffers may be scanout, so flush the cache */
1667 	if (obj->pin_display)
1668 		i915_gem_object_flush_cpu_write_domain(obj);
1669 
1670 	drm_gem_object_unreference(&obj->base);
1671 unlock:
1672 	mutex_unlock(&dev->struct_mutex);
1673 	return ret;
1674 }
1675 
1676 /**
1677  * Maps the contents of an object, returning the address it is mapped
1678  * into.
1679  *
1680  * While the mapping holds a reference on the contents of the object, it doesn't
1681  * imply a ref on the object itself.
1682  *
1683  * IMPORTANT:
1684  *
1685  * DRM driver writers who look a this function as an example for how to do GEM
1686  * mmap support, please don't implement mmap support like here. The modern way
1687  * to implement DRM mmap support is with an mmap offset ioctl (like
1688  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1689  * That way debug tooling like valgrind will understand what's going on, hiding
1690  * the mmap call in a driver private ioctl will break that. The i915 driver only
1691  * does cpu mmaps this way because we didn't know better.
1692  */
1693 int
1694 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1695 		    struct drm_file *file)
1696 {
1697 	struct drm_i915_gem_mmap *args = data;
1698 	struct drm_gem_object *obj;
1699 	unsigned long addr;
1700 
1701 	struct proc *p = curproc;
1702 	vm_map_t map = &p->p_vmspace->vm_map;
1703 	vm_size_t size;
1704 	int error = 0, rv;
1705 
1706 	if (args->flags & ~(I915_MMAP_WC))
1707 		return -EINVAL;
1708 
1709 	obj = drm_gem_object_lookup(dev, file, args->handle);
1710 	if (obj == NULL)
1711 		return -ENOENT;
1712 
1713 	if (args->size == 0)
1714 		goto out;
1715 
1716 	size = round_page(args->size);
1717 	if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1718 		error = -ENOMEM;
1719 		goto out;
1720 	}
1721 
1722 	/* prime objects have no backing filp to GEM mmap
1723 	 * pages from.
1724 	 */
1725 
1726 	/*
1727 	 * Call hint to ensure that NULL is not returned as a valid address
1728 	 * and to reduce vm_map traversals. XXX causes instability, use a
1729 	 * fixed low address as the start point instead to avoid the NULL
1730 	 * return issue.
1731 	 */
1732 
1733 	addr = PAGE_SIZE;
1734 
1735 	/*
1736 	 * Use 256KB alignment.  It is unclear why this matters for a
1737 	 * virtual address but it appears to fix a number of application/X
1738 	 * crashes and kms console switching is much faster.
1739 	 */
1740 	vm_object_hold(obj->vm_obj);
1741 	vm_object_reference_locked(obj->vm_obj);
1742 	vm_object_drop(obj->vm_obj);
1743 
1744 	rv = vm_map_find(map, obj->vm_obj, NULL,
1745 			 args->offset, &addr, args->size,
1746 			 256 * 1024, /* align */
1747 			 TRUE, /* fitit */
1748 			 VM_MAPTYPE_NORMAL, /* maptype */
1749 			 VM_PROT_READ | VM_PROT_WRITE, /* prot */
1750 			 VM_PROT_READ | VM_PROT_WRITE, /* max */
1751 			 MAP_SHARED /* cow */);
1752 	if (rv != KERN_SUCCESS) {
1753 		vm_object_deallocate(obj->vm_obj);
1754 		error = -vm_mmap_to_errno(rv);
1755 	} else {
1756 		args->addr_ptr = (uint64_t)addr;
1757 	}
1758 out:
1759 	drm_gem_object_unreference(obj);
1760 	return (error);
1761 }
1762 
1763 /**
1764  * i915_gem_fault - fault a page into the GTT
1765  *
1766  * vm_obj is locked on entry and expected to be locked on return.
1767  *
1768  * The vm_pager has placemarked the object with an anonymous memory page
1769  * which we must replace atomically to avoid races against concurrent faults
1770  * on the same page.  XXX we currently are unable to do this atomically.
1771  *
1772  * If we are to return an error we should not touch the anonymous page,
1773  * the caller will deallocate it.
1774  *
1775  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
1776  * in that case.  Release all resources and wait 1 tick before retrying.
1777  * This is a huge problem which needs to be fixed by getting rid of most
1778  * of the interruptability.  The linux code does not retry but does appear
1779  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
1780  * to be able to retry.
1781  *
1782  * --
1783  * @vma: VMA in question
1784  * @vmf: fault info
1785  *
1786  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1787  * from userspace.  The fault handler takes care of binding the object to
1788  * the GTT (if needed), allocating and programming a fence register (again,
1789  * only if needed based on whether the old reg is still valid or the object
1790  * is tiled) and inserting a new PTE into the faulting process.
1791  *
1792  * Note that the faulting process may involve evicting existing objects
1793  * from the GTT and/or fence registers to make room.  So performance may
1794  * suffer if the GTT working set is large or there are few fence registers
1795  * left.
1796  *
1797  * vm_obj is locked on entry and expected to be locked on return.  The VM
1798  * pager has placed an anonymous memory page at (obj,offset) which we have
1799  * to replace.
1800  */
1801 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1802 {
1803 	struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1804 	struct drm_device *dev = obj->base.dev;
1805 	struct drm_i915_private *dev_priv = dev->dev_private;
1806 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1807 	unsigned long page_offset;
1808 	vm_page_t m, oldm = NULL;
1809 	int ret = 0;
1810 	bool write = !!(prot & VM_PROT_WRITE);
1811 
1812 	intel_runtime_pm_get(dev_priv);
1813 
1814 	/* We don't use vmf->pgoff since that has the fake offset */
1815 	page_offset = (unsigned long)offset;
1816 
1817 retry:
1818 	ret = i915_mutex_lock_interruptible(dev);
1819 	if (ret)
1820 		goto out;
1821 
1822 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1823 
1824 	/* Try to flush the object off the GPU first without holding the lock.
1825 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1826 	 * repeat the flush holding the lock in the normal manner to catch cases
1827 	 * where we are gazumped.
1828 	 */
1829 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1830 	if (ret)
1831 		goto unlock;
1832 
1833 	/* Access to snoopable pages through the GTT is incoherent. */
1834 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1835 		ret = -EFAULT;
1836 		goto unlock;
1837 	}
1838 
1839 	/* Use a partial view if the object is bigger than the aperture. */
1840 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1841 	    obj->tiling_mode == I915_TILING_NONE) {
1842 #if 0
1843 		static const unsigned int chunk_size = 256; // 1 MiB
1844 
1845 		memset(&view, 0, sizeof(view));
1846 		view.type = I915_GGTT_VIEW_PARTIAL;
1847 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1848 		view.params.partial.size =
1849 			min_t(unsigned int,
1850 			      chunk_size,
1851 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1852 			      view.params.partial.offset);
1853 #endif
1854 	}
1855 
1856 	/* Now pin it into the GTT if needed */
1857 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1858 	if (ret)
1859 		goto unlock;
1860 
1861 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1862 	if (ret)
1863 		goto unpin;
1864 
1865 	ret = i915_gem_object_get_fence(obj);
1866 	if (ret)
1867 		goto unpin;
1868 
1869 	/*
1870 	 * START FREEBSD MAGIC
1871 	 *
1872 	 * Add a pip count to avoid destruction and certain other
1873 	 * complex operations (such as collapses?) while unlocked.
1874 	 */
1875 	vm_object_pip_add(vm_obj, 1);
1876 
1877 	/*
1878 	 * XXX We must currently remove the placeholder page now to avoid
1879 	 * a deadlock against a concurrent i915_gem_release_mmap().
1880 	 * Otherwise concurrent operation will block on the busy page
1881 	 * while holding locks which we need to obtain.
1882 	 */
1883 	if (*mres != NULL) {
1884 		oldm = *mres;
1885 		if ((oldm->flags & PG_BUSY) == 0)
1886 			kprintf("i915_gem_fault: Page was not busy\n");
1887 		else
1888 			vm_page_remove(oldm);
1889 		*mres = NULL;
1890 	} else {
1891 		oldm = NULL;
1892 	}
1893 
1894 	ret = 0;
1895 	m = NULL;
1896 
1897 	/*
1898 	 * Since the object lock was dropped, another thread might have
1899 	 * faulted on the same GTT address and instantiated the mapping.
1900 	 * Recheck.
1901 	 */
1902 	m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
1903 	if (m != NULL) {
1904 		/*
1905 		 * Try to busy the page, retry on failure (non-zero ret).
1906 		 */
1907 		if (vm_page_busy_try(m, false)) {
1908 			kprintf("i915_gem_fault: PG_BUSY\n");
1909 			ret = -EINTR;
1910 			goto unlock;
1911 		}
1912 		goto have_page;
1913 	}
1914 	/*
1915 	 * END FREEBSD MAGIC
1916 	 */
1917 
1918 	obj->fault_mappable = true;
1919 
1920 	/* Finally, remap it using the new GTT offset */
1921 	m = vm_phys_fictitious_to_vm_page(dev_priv->gtt.mappable_base +
1922 			i915_gem_obj_ggtt_offset_view(obj, &view) + offset);
1923 	if (m == NULL) {
1924 		ret = -EFAULT;
1925 		goto unpin;
1926 	}
1927 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
1928 	KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
1929 
1930 	/*
1931 	 * Try to busy the page.  Fails on non-zero return.
1932 	 */
1933 	if (vm_page_busy_try(m, false)) {
1934 		kprintf("i915_gem_fault: PG_BUSY(2)\n");
1935 		ret = -EINTR;
1936 		goto unpin;
1937 	}
1938 	m->valid = VM_PAGE_BITS_ALL;
1939 
1940 #if 0
1941 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1942 		/* Overriding existing pages in partial view does not cause
1943 		 * us any trouble as TLBs are still valid because the fault
1944 		 * is due to userspace losing part of the mapping or never
1945 		 * having accessed it before (at this partials' range).
1946 		 */
1947 		unsigned long base = vma->vm_start +
1948 				     (view.params.partial.offset << PAGE_SHIFT);
1949 		unsigned int i;
1950 
1951 		for (i = 0; i < view.params.partial.size; i++) {
1952 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1953 			if (ret)
1954 				break;
1955 		}
1956 
1957 		obj->fault_mappable = true;
1958 	} else {
1959 		if (!obj->fault_mappable) {
1960 			unsigned long size = min_t(unsigned long,
1961 						   vma->vm_end - vma->vm_start,
1962 						   obj->base.size);
1963 			int i;
1964 
1965 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1966 				ret = vm_insert_pfn(vma,
1967 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1968 						    pfn + i);
1969 				if (ret)
1970 					break;
1971 			}
1972 
1973 			obj->fault_mappable = true;
1974 		} else
1975 			ret = vm_insert_pfn(vma,
1976 					    (unsigned long)vmf->virtual_address,
1977 					    pfn + page_offset);
1978 #endif
1979 			vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
1980 #if 0
1981 	}
1982 #endif
1983 
1984 have_page:
1985 	*mres = m;
1986 
1987 	i915_gem_object_ggtt_unpin_view(obj, &view);
1988 	mutex_unlock(&dev->struct_mutex);
1989 	ret = VM_PAGER_OK;
1990 	goto done;
1991 
1992 	/*
1993 	 * ALTERNATIVE ERROR RETURN.
1994 	 *
1995 	 * OBJECT EXPECTED TO BE LOCKED.
1996 	 */
1997 unpin:
1998 	i915_gem_object_ggtt_unpin_view(obj, &view);
1999 unlock:
2000 	mutex_unlock(&dev->struct_mutex);
2001 out:
2002 	switch (ret) {
2003 	case -EIO:
2004 		/*
2005 		 * We eat errors when the gpu is terminally wedged to avoid
2006 		 * userspace unduly crashing (gl has no provisions for mmaps to
2007 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008 		 * and so needs to be reported.
2009 		 */
2010 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011 //			ret = VM_FAULT_SIGBUS;
2012 			break;
2013 		}
2014 	case -EAGAIN:
2015 		/*
2016 		 * EAGAIN means the gpu is hung and we'll wait for the error
2017 		 * handler to reset everything when re-faulting in
2018 		 * i915_mutex_lock_interruptible.
2019 		 */
2020 	case -ERESTARTSYS:
2021 	case -EINTR:
2022 		VM_OBJECT_UNLOCK(vm_obj);
2023 		int dummy;
2024 		tsleep(&dummy, 0, "delay", 1); /* XXX */
2025 		VM_OBJECT_LOCK(vm_obj);
2026 		goto retry;
2027 	default:
2028 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2029 		ret = VM_PAGER_ERROR;
2030 		break;
2031 	}
2032 
2033 done:
2034 	if (oldm != NULL)
2035 		vm_page_free(oldm);
2036 	vm_object_pip_wakeup(vm_obj);
2037 
2038 	intel_runtime_pm_put(dev_priv);
2039 	return ret;
2040 }
2041 
2042 /**
2043  * i915_gem_release_mmap - remove physical page mappings
2044  * @obj: obj in question
2045  *
2046  * Preserve the reservation of the mmapping with the DRM core code, but
2047  * relinquish ownership of the pages back to the system.
2048  *
2049  * It is vital that we remove the page mapping if we have mapped a tiled
2050  * object through the GTT and then lose the fence register due to
2051  * resource pressure. Similarly if the object has been moved out of the
2052  * aperture, than pages mapped into userspace must be revoked. Removing the
2053  * mapping will then trigger a page fault on the next user access, allowing
2054  * fixup by i915_gem_fault().
2055  */
2056 void
2057 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2058 {
2059 	vm_object_t devobj;
2060 	vm_page_t m;
2061 	int i, page_count;
2062 
2063 	if (!obj->fault_mappable)
2064 		return;
2065 
2066 	devobj = cdev_pager_lookup(obj);
2067 	if (devobj != NULL) {
2068 		page_count = OFF_TO_IDX(obj->base.size);
2069 
2070 		VM_OBJECT_LOCK(devobj);
2071 		for (i = 0; i < page_count; i++) {
2072 			m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
2073 			if (m == NULL)
2074 				continue;
2075 			cdev_pager_free_page(devobj, m);
2076 		}
2077 		VM_OBJECT_UNLOCK(devobj);
2078 		vm_object_deallocate(devobj);
2079 	}
2080 
2081 	obj->fault_mappable = false;
2082 }
2083 
2084 void
2085 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2086 {
2087 	struct drm_i915_gem_object *obj;
2088 
2089 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2090 		i915_gem_release_mmap(obj);
2091 }
2092 
2093 uint32_t
2094 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2095 {
2096 	uint32_t gtt_size;
2097 
2098 	if (INTEL_INFO(dev)->gen >= 4 ||
2099 	    tiling_mode == I915_TILING_NONE)
2100 		return size;
2101 
2102 	/* Previous chips need a power-of-two fence region when tiling */
2103 	if (INTEL_INFO(dev)->gen == 3)
2104 		gtt_size = 1024*1024;
2105 	else
2106 		gtt_size = 512*1024;
2107 
2108 	while (gtt_size < size)
2109 		gtt_size <<= 1;
2110 
2111 	return gtt_size;
2112 }
2113 
2114 /**
2115  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2116  * @obj: object to check
2117  *
2118  * Return the required GTT alignment for an object, taking into account
2119  * potential fence register mapping.
2120  */
2121 uint32_t
2122 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2123 			   int tiling_mode, bool fenced)
2124 {
2125 	/*
2126 	 * Minimum alignment is 4k (GTT page size), but might be greater
2127 	 * if a fence register is needed for the object.
2128 	 */
2129 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2130 	    tiling_mode == I915_TILING_NONE)
2131 		return 4096;
2132 
2133 	/*
2134 	 * Previous chips need to be aligned to the size of the smallest
2135 	 * fence register that can contain the object.
2136 	 */
2137 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2138 }
2139 
2140 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2141 {
2142 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2143 	int ret;
2144 
2145 #if 0
2146 	if (drm_vma_node_has_offset(&obj->base.vma_node))
2147 		return 0;
2148 #endif
2149 
2150 	dev_priv->mm.shrinker_no_lock_stealing = true;
2151 
2152 	ret = drm_gem_create_mmap_offset(&obj->base);
2153 	if (ret != -ENOSPC)
2154 		goto out;
2155 
2156 	/* Badly fragmented mmap space? The only way we can recover
2157 	 * space is by destroying unwanted objects. We can't randomly release
2158 	 * mmap_offsets as userspace expects them to be persistent for the
2159 	 * lifetime of the objects. The closest we can is to release the
2160 	 * offsets on purgeable objects by truncating it and marking it purged,
2161 	 * which prevents userspace from ever using that object again.
2162 	 */
2163 	i915_gem_shrink(dev_priv,
2164 			obj->base.size >> PAGE_SHIFT,
2165 			I915_SHRINK_BOUND |
2166 			I915_SHRINK_UNBOUND |
2167 			I915_SHRINK_PURGEABLE);
2168 	ret = drm_gem_create_mmap_offset(&obj->base);
2169 	if (ret != -ENOSPC)
2170 		goto out;
2171 
2172 	i915_gem_shrink_all(dev_priv);
2173 	ret = drm_gem_create_mmap_offset(&obj->base);
2174 out:
2175 	dev_priv->mm.shrinker_no_lock_stealing = false;
2176 
2177 	return ret;
2178 }
2179 
2180 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2181 {
2182 	drm_gem_free_mmap_offset(&obj->base);
2183 }
2184 
2185 int
2186 i915_gem_mmap_gtt(struct drm_file *file,
2187 		  struct drm_device *dev,
2188 		  uint32_t handle,
2189 		  uint64_t *offset)
2190 {
2191 	struct drm_i915_gem_object *obj;
2192 	int ret;
2193 
2194 	ret = i915_mutex_lock_interruptible(dev);
2195 	if (ret)
2196 		return ret;
2197 
2198 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2199 	if (&obj->base == NULL) {
2200 		ret = -ENOENT;
2201 		goto unlock;
2202 	}
2203 
2204 	if (obj->madv != I915_MADV_WILLNEED) {
2205 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2206 		ret = -EFAULT;
2207 		goto out;
2208 	}
2209 
2210 	ret = i915_gem_object_create_mmap_offset(obj);
2211 	if (ret)
2212 		goto out;
2213 
2214 	*offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
2215 	    DRM_GEM_MAPPING_KEY;
2216 
2217 out:
2218 	drm_gem_object_unreference(&obj->base);
2219 unlock:
2220 	mutex_unlock(&dev->struct_mutex);
2221 	return ret;
2222 }
2223 
2224 /**
2225  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2226  * @dev: DRM device
2227  * @data: GTT mapping ioctl data
2228  * @file: GEM object info
2229  *
2230  * Simply returns the fake offset to userspace so it can mmap it.
2231  * The mmap call will end up in drm_gem_mmap(), which will set things
2232  * up so we can get faults in the handler above.
2233  *
2234  * The fault handler will take care of binding the object into the GTT
2235  * (since it may have been evicted to make room for something), allocating
2236  * a fence register, and mapping the appropriate aperture address into
2237  * userspace.
2238  */
2239 int
2240 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2241 			struct drm_file *file)
2242 {
2243 	struct drm_i915_gem_mmap_gtt *args = data;
2244 
2245 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2246 }
2247 
2248 /* Immediately discard the backing storage */
2249 static void
2250 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2251 {
2252 	vm_object_t vm_obj;
2253 
2254 	vm_obj = obj->base.vm_obj;
2255 	VM_OBJECT_LOCK(vm_obj);
2256 	vm_object_page_remove(vm_obj, 0, 0, false);
2257 	VM_OBJECT_UNLOCK(vm_obj);
2258 
2259 	obj->madv = __I915_MADV_PURGED;
2260 }
2261 
2262 /* Try to discard unwanted pages */
2263 static void
2264 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2265 {
2266 #if 0
2267 	struct address_space *mapping;
2268 #endif
2269 
2270 	switch (obj->madv) {
2271 	case I915_MADV_DONTNEED:
2272 		i915_gem_object_truncate(obj);
2273 	case __I915_MADV_PURGED:
2274 		return;
2275 	}
2276 
2277 #if 0
2278 	if (obj->base.filp == NULL)
2279 		return;
2280 
2281 	mapping = file_inode(obj->base.filp)->i_mapping,
2282 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2283 #endif
2284 }
2285 
2286 static void
2287 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2288 {
2289 	struct sg_page_iter sg_iter;
2290 	int ret;
2291 
2292 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2293 
2294 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2295 	if (ret) {
2296 		/* In the event of a disaster, abandon all caches and
2297 		 * hope for the best.
2298 		 */
2299 		WARN_ON(ret != -EIO);
2300 		i915_gem_clflush_object(obj, true);
2301 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2302 	}
2303 
2304 	i915_gem_gtt_finish_object(obj);
2305 
2306 	if (i915_gem_object_needs_bit17_swizzle(obj))
2307 		i915_gem_object_save_bit_17_swizzle(obj);
2308 
2309 	if (obj->madv == I915_MADV_DONTNEED)
2310 		obj->dirty = 0;
2311 
2312 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2313 		struct vm_page *page = sg_page_iter_page(&sg_iter);
2314 
2315 		if (obj->dirty)
2316 			set_page_dirty(page);
2317 
2318 		if (obj->madv == I915_MADV_WILLNEED)
2319 			mark_page_accessed(page);
2320 
2321 		vm_page_busy_wait(page, FALSE, "i915gem");
2322 		vm_page_unwire(page, 1);
2323 		vm_page_wakeup(page);
2324 	}
2325 	obj->dirty = 0;
2326 
2327 	sg_free_table(obj->pages);
2328 	kfree(obj->pages);
2329 }
2330 
2331 int
2332 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2333 {
2334 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2335 
2336 	if (obj->pages == NULL)
2337 		return 0;
2338 
2339 	if (obj->pages_pin_count)
2340 		return -EBUSY;
2341 
2342 	BUG_ON(i915_gem_obj_bound_any(obj));
2343 
2344 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2345 	 * array, hence protect them from being reaped by removing them from gtt
2346 	 * lists early. */
2347 	list_del(&obj->global_list);
2348 
2349 	ops->put_pages(obj);
2350 	obj->pages = NULL;
2351 
2352 	i915_gem_object_invalidate(obj);
2353 
2354 	return 0;
2355 }
2356 
2357 static int
2358 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2359 {
2360 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2361 	int page_count, i;
2362 	vm_object_t vm_obj;
2363 	struct sg_table *st;
2364 	struct scatterlist *sg;
2365 	struct sg_page_iter sg_iter;
2366 	struct vm_page *page;
2367 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2368 	int ret;
2369 
2370 	/* Assert that the object is not currently in any GPU domain. As it
2371 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2372 	 * a GPU cache
2373 	 */
2374 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2375 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2376 
2377 	st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
2378 	if (st == NULL)
2379 		return -ENOMEM;
2380 
2381 	page_count = obj->base.size / PAGE_SIZE;
2382 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2383 		kfree(st);
2384 		return -ENOMEM;
2385 	}
2386 
2387 	/* Get the list of pages out of our struct file.  They'll be pinned
2388 	 * at this point until we release them.
2389 	 *
2390 	 * Fail silently without starting the shrinker
2391 	 */
2392 	vm_obj = obj->base.vm_obj;
2393 	VM_OBJECT_LOCK(vm_obj);
2394 	sg = st->sgl;
2395 	st->nents = 0;
2396 	for (i = 0; i < page_count; i++) {
2397 		page = shmem_read_mapping_page(vm_obj, i);
2398 		if (IS_ERR(page)) {
2399 			i915_gem_shrink(dev_priv,
2400 					page_count,
2401 					I915_SHRINK_BOUND |
2402 					I915_SHRINK_UNBOUND |
2403 					I915_SHRINK_PURGEABLE);
2404 			page = shmem_read_mapping_page(vm_obj, i);
2405 		}
2406 		if (IS_ERR(page)) {
2407 			/* We've tried hard to allocate the memory by reaping
2408 			 * our own buffer, now let the real VM do its job and
2409 			 * go down in flames if truly OOM.
2410 			 */
2411 			i915_gem_shrink_all(dev_priv);
2412 			page = shmem_read_mapping_page(vm_obj, i);
2413 			if (IS_ERR(page)) {
2414 				ret = PTR_ERR(page);
2415 				goto err_pages;
2416 			}
2417 		}
2418 #ifdef CONFIG_SWIOTLB
2419 		if (swiotlb_nr_tbl()) {
2420 			st->nents++;
2421 			sg_set_page(sg, page, PAGE_SIZE, 0);
2422 			sg = sg_next(sg);
2423 			continue;
2424 		}
2425 #endif
2426 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2427 			if (i)
2428 				sg = sg_next(sg);
2429 			st->nents++;
2430 			sg_set_page(sg, page, PAGE_SIZE, 0);
2431 		} else {
2432 			sg->length += PAGE_SIZE;
2433 		}
2434 		last_pfn = page_to_pfn(page);
2435 
2436 		/* Check that the i965g/gm workaround works. */
2437 	}
2438 #ifdef CONFIG_SWIOTLB
2439 	if (!swiotlb_nr_tbl())
2440 #endif
2441 		sg_mark_end(sg);
2442 	obj->pages = st;
2443 	VM_OBJECT_UNLOCK(vm_obj);
2444 
2445 	ret = i915_gem_gtt_prepare_object(obj);
2446 	if (ret)
2447 		goto err_pages;
2448 
2449 	if (i915_gem_object_needs_bit17_swizzle(obj))
2450 		i915_gem_object_do_bit_17_swizzle(obj);
2451 
2452 	if (obj->tiling_mode != I915_TILING_NONE &&
2453 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2454 		i915_gem_object_pin_pages(obj);
2455 
2456 	return 0;
2457 
2458 err_pages:
2459 	sg_mark_end(sg);
2460 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2461 		page = sg_page_iter_page(&sg_iter);
2462 		vm_page_busy_wait(page, FALSE, "i915gem");
2463 		vm_page_unwire(page, 0);
2464 		vm_page_wakeup(page);
2465 	}
2466 	VM_OBJECT_UNLOCK(vm_obj);
2467 	sg_free_table(st);
2468 	kfree(st);
2469 
2470 	/* shmemfs first checks if there is enough memory to allocate the page
2471 	 * and reports ENOSPC should there be insufficient, along with the usual
2472 	 * ENOMEM for a genuine allocation failure.
2473 	 *
2474 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2475 	 * space and so want to translate the error from shmemfs back to our
2476 	 * usual understanding of ENOMEM.
2477 	 */
2478 	if (ret == -ENOSPC)
2479 		ret = -ENOMEM;
2480 
2481 	return ret;
2482 }
2483 
2484 /* Ensure that the associated pages are gathered from the backing storage
2485  * and pinned into our object. i915_gem_object_get_pages() may be called
2486  * multiple times before they are released by a single call to
2487  * i915_gem_object_put_pages() - once the pages are no longer referenced
2488  * either as a result of memory pressure (reaping pages under the shrinker)
2489  * or as the object is itself released.
2490  */
2491 int
2492 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2493 {
2494 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2495 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2496 	int ret;
2497 
2498 	if (obj->pages)
2499 		return 0;
2500 
2501 	if (obj->madv != I915_MADV_WILLNEED) {
2502 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2503 		return -EFAULT;
2504 	}
2505 
2506 	BUG_ON(obj->pages_pin_count);
2507 
2508 	ret = ops->get_pages(obj);
2509 	if (ret)
2510 		return ret;
2511 
2512 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2513 
2514 	obj->get_page.sg = obj->pages->sgl;
2515 	obj->get_page.last = 0;
2516 
2517 	return 0;
2518 }
2519 
2520 void i915_vma_move_to_active(struct i915_vma *vma,
2521 			     struct drm_i915_gem_request *req)
2522 {
2523 	struct drm_i915_gem_object *obj = vma->obj;
2524 	struct intel_engine_cs *ring;
2525 
2526 	ring = i915_gem_request_get_ring(req);
2527 
2528 	/* Add a reference if we're newly entering the active list. */
2529 	if (obj->active == 0)
2530 		drm_gem_object_reference(&obj->base);
2531 	obj->active |= intel_ring_flag(ring);
2532 
2533 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2534 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2535 
2536 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2537 }
2538 
2539 static void
2540 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2541 {
2542 	RQ_BUG_ON(obj->last_write_req == NULL);
2543 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2544 
2545 	i915_gem_request_assign(&obj->last_write_req, NULL);
2546 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2547 }
2548 
2549 static void
2550 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2551 {
2552 	struct i915_vma *vma;
2553 
2554 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2555 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2556 
2557 	list_del_init(&obj->ring_list[ring]);
2558 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2559 
2560 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2561 		i915_gem_object_retire__write(obj);
2562 
2563 	obj->active &= ~(1 << ring);
2564 	if (obj->active)
2565 		return;
2566 
2567 	/* Bump our place on the bound list to keep it roughly in LRU order
2568 	 * so that we don't steal from recently used but inactive objects
2569 	 * (unless we are forced to ofc!)
2570 	 */
2571 	list_move_tail(&obj->global_list,
2572 		       &to_i915(obj->base.dev)->mm.bound_list);
2573 
2574 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2575 		if (!list_empty(&vma->mm_list))
2576 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2577 	}
2578 
2579 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2580 	drm_gem_object_unreference(&obj->base);
2581 }
2582 
2583 static int
2584 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2585 {
2586 	struct drm_i915_private *dev_priv = dev->dev_private;
2587 	struct intel_engine_cs *ring;
2588 	int ret, i, j;
2589 
2590 	/* Carefully retire all requests without writing to the rings */
2591 	for_each_ring(ring, dev_priv, i) {
2592 		ret = intel_ring_idle(ring);
2593 		if (ret)
2594 			return ret;
2595 	}
2596 	i915_gem_retire_requests(dev);
2597 
2598 	/* Finally reset hw state */
2599 	for_each_ring(ring, dev_priv, i) {
2600 		intel_ring_init_seqno(ring, seqno);
2601 
2602 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2603 			ring->semaphore.sync_seqno[j] = 0;
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2610 {
2611 	struct drm_i915_private *dev_priv = dev->dev_private;
2612 	int ret;
2613 
2614 	if (seqno == 0)
2615 		return -EINVAL;
2616 
2617 	/* HWS page needs to be set less than what we
2618 	 * will inject to ring
2619 	 */
2620 	ret = i915_gem_init_seqno(dev, seqno - 1);
2621 	if (ret)
2622 		return ret;
2623 
2624 	/* Carefully set the last_seqno value so that wrap
2625 	 * detection still works
2626 	 */
2627 	dev_priv->next_seqno = seqno;
2628 	dev_priv->last_seqno = seqno - 1;
2629 	if (dev_priv->last_seqno == 0)
2630 		dev_priv->last_seqno--;
2631 
2632 	return 0;
2633 }
2634 
2635 int
2636 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2637 {
2638 	struct drm_i915_private *dev_priv = dev->dev_private;
2639 
2640 	/* reserve 0 for non-seqno */
2641 	if (dev_priv->next_seqno == 0) {
2642 		int ret = i915_gem_init_seqno(dev, 0);
2643 		if (ret)
2644 			return ret;
2645 
2646 		dev_priv->next_seqno = 1;
2647 	}
2648 
2649 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2650 	return 0;
2651 }
2652 
2653 /*
2654  * NB: This function is not allowed to fail. Doing so would mean the the
2655  * request is not being tracked for completion but the work itself is
2656  * going to happen on the hardware. This would be a Bad Thing(tm).
2657  */
2658 void __i915_add_request(struct drm_i915_gem_request *request,
2659 			struct drm_i915_gem_object *obj,
2660 			bool flush_caches)
2661 {
2662 	struct intel_engine_cs *ring;
2663 	struct drm_i915_private *dev_priv;
2664 	struct intel_ringbuffer *ringbuf;
2665 	u32 request_start;
2666 	int ret;
2667 
2668 	if (WARN_ON(request == NULL))
2669 		return;
2670 
2671 	ring = request->ring;
2672 	dev_priv = ring->dev->dev_private;
2673 	ringbuf = request->ringbuf;
2674 
2675 	/*
2676 	 * To ensure that this call will not fail, space for its emissions
2677 	 * should already have been reserved in the ring buffer. Let the ring
2678 	 * know that it is time to use that space up.
2679 	 */
2680 	intel_ring_reserved_space_use(ringbuf);
2681 
2682 	request_start = intel_ring_get_tail(ringbuf);
2683 	/*
2684 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2685 	 * after having emitted the batchbuffer command. Hence we need to fix
2686 	 * things up similar to emitting the lazy request. The difference here
2687 	 * is that the flush _must_ happen before the next request, no matter
2688 	 * what.
2689 	 */
2690 	if (flush_caches) {
2691 		if (i915.enable_execlists)
2692 			ret = logical_ring_flush_all_caches(request);
2693 		else
2694 			ret = intel_ring_flush_all_caches(request);
2695 		/* Not allowed to fail! */
2696 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2697 	}
2698 
2699 	/* Record the position of the start of the request so that
2700 	 * should we detect the updated seqno part-way through the
2701 	 * GPU processing the request, we never over-estimate the
2702 	 * position of the head.
2703 	 */
2704 	request->postfix = intel_ring_get_tail(ringbuf);
2705 
2706 	if (i915.enable_execlists)
2707 		ret = ring->emit_request(request);
2708 	else {
2709 		ret = ring->add_request(request);
2710 
2711 		request->tail = intel_ring_get_tail(ringbuf);
2712 	}
2713 
2714 	/* Not allowed to fail! */
2715 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2716 
2717 	request->head = request_start;
2718 
2719 	/* Whilst this request exists, batch_obj will be on the
2720 	 * active_list, and so will hold the active reference. Only when this
2721 	 * request is retired will the the batch_obj be moved onto the
2722 	 * inactive_list and lose its active reference. Hence we do not need
2723 	 * to explicitly hold another reference here.
2724 	 */
2725 	request->batch_obj = obj;
2726 
2727 	request->emitted_jiffies = jiffies;
2728 	request->previous_seqno = ring->last_submitted_seqno;
2729 	ring->last_submitted_seqno = request->seqno;
2730 	list_add_tail(&request->list, &ring->request_list);
2731 
2732 	trace_i915_gem_request_add(request);
2733 
2734 	i915_queue_hangcheck(ring->dev);
2735 
2736 	queue_delayed_work(dev_priv->wq,
2737 			   &dev_priv->mm.retire_work,
2738 			   round_jiffies_up_relative(HZ));
2739 	intel_mark_busy(dev_priv->dev);
2740 
2741 	/* Sanity check that the reserved size was large enough. */
2742 	intel_ring_reserved_space_end(ringbuf);
2743 }
2744 
2745 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2746 				   const struct intel_context *ctx)
2747 {
2748 	unsigned long elapsed;
2749 
2750 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2751 
2752 	if (ctx->hang_stats.banned)
2753 		return true;
2754 
2755 	if (ctx->hang_stats.ban_period_seconds &&
2756 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2757 		if (!i915_gem_context_is_default(ctx)) {
2758 			DRM_DEBUG("context hanging too fast, banning!\n");
2759 			return true;
2760 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2761 			if (i915_stop_ring_allow_warn(dev_priv))
2762 				DRM_ERROR("gpu hanging too fast, banning!\n");
2763 			return true;
2764 		}
2765 	}
2766 
2767 	return false;
2768 }
2769 
2770 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2771 				  struct intel_context *ctx,
2772 				  const bool guilty)
2773 {
2774 	struct i915_ctx_hang_stats *hs;
2775 
2776 	if (WARN_ON(!ctx))
2777 		return;
2778 
2779 	hs = &ctx->hang_stats;
2780 
2781 	if (guilty) {
2782 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2783 		hs->batch_active++;
2784 		hs->guilty_ts = get_seconds();
2785 	} else {
2786 		hs->batch_pending++;
2787 	}
2788 }
2789 
2790 void i915_gem_request_free(struct kref *req_ref)
2791 {
2792 	struct drm_i915_gem_request *req = container_of(req_ref,
2793 						 typeof(*req), ref);
2794 	struct intel_context *ctx = req->ctx;
2795 
2796 	if (req->file_priv)
2797 		i915_gem_request_remove_from_client(req);
2798 
2799 	if (ctx) {
2800 		if (i915.enable_execlists) {
2801 			if (ctx != req->ring->default_context)
2802 				intel_lr_context_unpin(req);
2803 		}
2804 
2805 		i915_gem_context_unreference(ctx);
2806 	}
2807 
2808 	kfree(req);
2809 }
2810 
2811 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2812 			   struct intel_context *ctx,
2813 			   struct drm_i915_gem_request **req_out)
2814 {
2815 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2816 	struct drm_i915_gem_request *req;
2817 	int ret;
2818 
2819 	if (!req_out)
2820 		return -EINVAL;
2821 
2822 	*req_out = NULL;
2823 
2824 	req = kzalloc(sizeof(*req), GFP_KERNEL);
2825 	if (req == NULL)
2826 		return -ENOMEM;
2827 
2828 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2829 	if (ret)
2830 		goto err;
2831 
2832 	kref_init(&req->ref);
2833 	req->i915 = dev_priv;
2834 	req->ring = ring;
2835 	req->ctx  = ctx;
2836 	i915_gem_context_reference(req->ctx);
2837 
2838 	if (i915.enable_execlists)
2839 		ret = intel_logical_ring_alloc_request_extras(req);
2840 	else
2841 		ret = intel_ring_alloc_request_extras(req);
2842 	if (ret) {
2843 		i915_gem_context_unreference(req->ctx);
2844 		goto err;
2845 	}
2846 
2847 	/*
2848 	 * Reserve space in the ring buffer for all the commands required to
2849 	 * eventually emit this request. This is to guarantee that the
2850 	 * i915_add_request() call can't fail. Note that the reserve may need
2851 	 * to be redone if the request is not actually submitted straight
2852 	 * away, e.g. because a GPU scheduler has deferred it.
2853 	 */
2854 	if (i915.enable_execlists)
2855 		ret = intel_logical_ring_reserve_space(req);
2856 	else
2857 		ret = intel_ring_reserve_space(req);
2858 	if (ret) {
2859 		/*
2860 		 * At this point, the request is fully allocated even if not
2861 		 * fully prepared. Thus it can be cleaned up using the proper
2862 		 * free code.
2863 		 */
2864 		i915_gem_request_cancel(req);
2865 		return ret;
2866 	}
2867 
2868 	*req_out = req;
2869 	return 0;
2870 
2871 err:
2872 	kfree(req);
2873 	return ret;
2874 }
2875 
2876 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2877 {
2878 	intel_ring_reserved_space_cancel(req->ringbuf);
2879 
2880 	i915_gem_request_unreference(req);
2881 }
2882 
2883 struct drm_i915_gem_request *
2884 i915_gem_find_active_request(struct intel_engine_cs *ring)
2885 {
2886 	struct drm_i915_gem_request *request;
2887 
2888 	list_for_each_entry(request, &ring->request_list, list) {
2889 		if (i915_gem_request_completed(request, false))
2890 			continue;
2891 
2892 		return request;
2893 	}
2894 
2895 	return NULL;
2896 }
2897 
2898 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2899 				       struct intel_engine_cs *ring)
2900 {
2901 	struct drm_i915_gem_request *request;
2902 	bool ring_hung;
2903 
2904 	request = i915_gem_find_active_request(ring);
2905 
2906 	if (request == NULL)
2907 		return;
2908 
2909 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2910 
2911 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2912 
2913 	list_for_each_entry_continue(request, &ring->request_list, list)
2914 		i915_set_reset_status(dev_priv, request->ctx, false);
2915 }
2916 
2917 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2918 					struct intel_engine_cs *ring)
2919 {
2920 	while (!list_empty(&ring->active_list)) {
2921 		struct drm_i915_gem_object *obj;
2922 
2923 		obj = list_first_entry(&ring->active_list,
2924 				       struct drm_i915_gem_object,
2925 				       ring_list[ring->id]);
2926 
2927 		i915_gem_object_retire__read(obj, ring->id);
2928 	}
2929 
2930 	/*
2931 	 * Clear the execlists queue up before freeing the requests, as those
2932 	 * are the ones that keep the context and ringbuffer backing objects
2933 	 * pinned in place.
2934 	 */
2935 	while (!list_empty(&ring->execlist_queue)) {
2936 		struct drm_i915_gem_request *submit_req;
2937 
2938 		submit_req = list_first_entry(&ring->execlist_queue,
2939 				struct drm_i915_gem_request,
2940 				execlist_link);
2941 		list_del(&submit_req->execlist_link);
2942 
2943 		if (submit_req->ctx != ring->default_context)
2944 			intel_lr_context_unpin(submit_req);
2945 
2946 		i915_gem_request_unreference(submit_req);
2947 	}
2948 
2949 	/*
2950 	 * We must free the requests after all the corresponding objects have
2951 	 * been moved off active lists. Which is the same order as the normal
2952 	 * retire_requests function does. This is important if object hold
2953 	 * implicit references on things like e.g. ppgtt address spaces through
2954 	 * the request.
2955 	 */
2956 	while (!list_empty(&ring->request_list)) {
2957 		struct drm_i915_gem_request *request;
2958 
2959 		request = list_first_entry(&ring->request_list,
2960 					   struct drm_i915_gem_request,
2961 					   list);
2962 
2963 		i915_gem_request_retire(request);
2964 	}
2965 }
2966 
2967 void i915_gem_reset(struct drm_device *dev)
2968 {
2969 	struct drm_i915_private *dev_priv = dev->dev_private;
2970 	struct intel_engine_cs *ring;
2971 	int i;
2972 
2973 	/*
2974 	 * Before we free the objects from the requests, we need to inspect
2975 	 * them for finding the guilty party. As the requests only borrow
2976 	 * their reference to the objects, the inspection must be done first.
2977 	 */
2978 	for_each_ring(ring, dev_priv, i)
2979 		i915_gem_reset_ring_status(dev_priv, ring);
2980 
2981 	for_each_ring(ring, dev_priv, i)
2982 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2983 
2984 	i915_gem_context_reset(dev);
2985 
2986 	i915_gem_restore_fences(dev);
2987 
2988 	WARN_ON(i915_verify_lists(dev));
2989 }
2990 
2991 /**
2992  * This function clears the request list as sequence numbers are passed.
2993  */
2994 void
2995 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2996 {
2997 	WARN_ON(i915_verify_lists(ring->dev));
2998 
2999 	/* Retire requests first as we use it above for the early return.
3000 	 * If we retire requests last, we may use a later seqno and so clear
3001 	 * the requests lists without clearing the active list, leading to
3002 	 * confusion.
3003 	 */
3004 	while (!list_empty(&ring->request_list)) {
3005 		struct drm_i915_gem_request *request;
3006 
3007 		request = list_first_entry(&ring->request_list,
3008 					   struct drm_i915_gem_request,
3009 					   list);
3010 
3011 		if (!i915_gem_request_completed(request, true))
3012 			break;
3013 
3014 		i915_gem_request_retire(request);
3015 	}
3016 
3017 	/* Move any buffers on the active list that are no longer referenced
3018 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
3019 	 * before we free the context associated with the requests.
3020 	 */
3021 	while (!list_empty(&ring->active_list)) {
3022 		struct drm_i915_gem_object *obj;
3023 
3024 		obj = list_first_entry(&ring->active_list,
3025 				      struct drm_i915_gem_object,
3026 				      ring_list[ring->id]);
3027 
3028 		if (!list_empty(&obj->last_read_req[ring->id]->list))
3029 			break;
3030 
3031 		i915_gem_object_retire__read(obj, ring->id);
3032 	}
3033 
3034 	if (unlikely(ring->trace_irq_req &&
3035 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
3036 		ring->irq_put(ring);
3037 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
3038 	}
3039 
3040 	WARN_ON(i915_verify_lists(ring->dev));
3041 }
3042 
3043 bool
3044 i915_gem_retire_requests(struct drm_device *dev)
3045 {
3046 	struct drm_i915_private *dev_priv = dev->dev_private;
3047 	struct intel_engine_cs *ring;
3048 	bool idle = true;
3049 	int i;
3050 
3051 	for_each_ring(ring, dev_priv, i) {
3052 		i915_gem_retire_requests_ring(ring);
3053 		idle &= list_empty(&ring->request_list);
3054 		if (i915.enable_execlists) {
3055 			unsigned long flags;
3056 
3057 			spin_lock_irqsave(&ring->execlist_lock, flags);
3058 			idle &= list_empty(&ring->execlist_queue);
3059 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
3060 
3061 			intel_execlists_retire_requests(ring);
3062 		}
3063 	}
3064 
3065 	if (idle)
3066 		mod_delayed_work(dev_priv->wq,
3067 				   &dev_priv->mm.idle_work,
3068 				   msecs_to_jiffies(100));
3069 
3070 	return idle;
3071 }
3072 
3073 static void
3074 i915_gem_retire_work_handler(struct work_struct *work)
3075 {
3076 	struct drm_i915_private *dev_priv =
3077 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
3078 	struct drm_device *dev = dev_priv->dev;
3079 	bool idle;
3080 
3081 	/* Come back later if the device is busy... */
3082 	idle = false;
3083 	if (mutex_trylock(&dev->struct_mutex)) {
3084 		idle = i915_gem_retire_requests(dev);
3085 		mutex_unlock(&dev->struct_mutex);
3086 	}
3087 	if (!idle)
3088 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3089 				   round_jiffies_up_relative(HZ));
3090 }
3091 
3092 static void
3093 i915_gem_idle_work_handler(struct work_struct *work)
3094 {
3095 	struct drm_i915_private *dev_priv =
3096 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3097 	struct drm_device *dev = dev_priv->dev;
3098 	struct intel_engine_cs *ring;
3099 	int i;
3100 
3101 	for_each_ring(ring, dev_priv, i)
3102 		if (!list_empty(&ring->request_list))
3103 			return;
3104 
3105 	intel_mark_idle(dev);
3106 
3107 	if (mutex_trylock(&dev->struct_mutex)) {
3108 		struct intel_engine_cs *ring;
3109 		int i;
3110 
3111 		for_each_ring(ring, dev_priv, i)
3112 			i915_gem_batch_pool_fini(&ring->batch_pool);
3113 
3114 		mutex_unlock(&dev->struct_mutex);
3115 	}
3116 }
3117 
3118 /**
3119  * Ensures that an object will eventually get non-busy by flushing any required
3120  * write domains, emitting any outstanding lazy request and retiring and
3121  * completed requests.
3122  */
3123 static int
3124 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3125 {
3126 	int i;
3127 
3128 	if (!obj->active)
3129 		return 0;
3130 
3131 	for (i = 0; i < I915_NUM_RINGS; i++) {
3132 		struct drm_i915_gem_request *req;
3133 
3134 		req = obj->last_read_req[i];
3135 		if (req == NULL)
3136 			continue;
3137 
3138 		if (list_empty(&req->list))
3139 			goto retire;
3140 
3141 		if (i915_gem_request_completed(req, true)) {
3142 			__i915_gem_request_retire__upto(req);
3143 retire:
3144 			i915_gem_object_retire__read(obj, i);
3145 		}
3146 	}
3147 
3148 	return 0;
3149 }
3150 
3151 /**
3152  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3153  * @DRM_IOCTL_ARGS: standard ioctl arguments
3154  *
3155  * Returns 0 if successful, else an error is returned with the remaining time in
3156  * the timeout parameter.
3157  *  -ETIME: object is still busy after timeout
3158  *  -ERESTARTSYS: signal interrupted the wait
3159  *  -ENONENT: object doesn't exist
3160  * Also possible, but rare:
3161  *  -EAGAIN: GPU wedged
3162  *  -ENOMEM: damn
3163  *  -ENODEV: Internal IRQ fail
3164  *  -E?: The add request failed
3165  *
3166  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3167  * non-zero timeout parameter the wait ioctl will wait for the given number of
3168  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3169  * without holding struct_mutex the object may become re-busied before this
3170  * function completes. A similar but shorter * race condition exists in the busy
3171  * ioctl
3172  */
3173 int
3174 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3175 {
3176 	struct drm_i915_private *dev_priv = dev->dev_private;
3177 	struct drm_i915_gem_wait *args = data;
3178 	struct drm_i915_gem_object *obj;
3179 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3180 	unsigned reset_counter;
3181 	int i, n = 0;
3182 	int ret;
3183 
3184 	if (args->flags != 0)
3185 		return -EINVAL;
3186 
3187 	ret = i915_mutex_lock_interruptible(dev);
3188 	if (ret)
3189 		return ret;
3190 
3191 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3192 	if (&obj->base == NULL) {
3193 		mutex_unlock(&dev->struct_mutex);
3194 		return -ENOENT;
3195 	}
3196 
3197 	/* Need to make sure the object gets inactive eventually. */
3198 	ret = i915_gem_object_flush_active(obj);
3199 	if (ret)
3200 		goto out;
3201 
3202 	if (!obj->active)
3203 		goto out;
3204 
3205 	/* Do this after OLR check to make sure we make forward progress polling
3206 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3207 	 */
3208 	if (args->timeout_ns == 0) {
3209 		ret = -ETIME;
3210 		goto out;
3211 	}
3212 
3213 	drm_gem_object_unreference(&obj->base);
3214 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3215 
3216 	for (i = 0; i < I915_NUM_RINGS; i++) {
3217 		if (obj->last_read_req[i] == NULL)
3218 			continue;
3219 
3220 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3221 	}
3222 
3223 	mutex_unlock(&dev->struct_mutex);
3224 
3225 	for (i = 0; i < n; i++) {
3226 		if (ret == 0)
3227 			ret = __i915_wait_request(req[i], reset_counter, true,
3228 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3229 						  file->driver_priv);
3230 		i915_gem_request_unreference__unlocked(req[i]);
3231 	}
3232 	return ret;
3233 
3234 out:
3235 	drm_gem_object_unreference(&obj->base);
3236 	mutex_unlock(&dev->struct_mutex);
3237 	return ret;
3238 }
3239 
3240 static int
3241 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3242 		       struct intel_engine_cs *to,
3243 		       struct drm_i915_gem_request *from_req,
3244 		       struct drm_i915_gem_request **to_req)
3245 {
3246 	struct intel_engine_cs *from;
3247 	int ret;
3248 
3249 	from = i915_gem_request_get_ring(from_req);
3250 	if (to == from)
3251 		return 0;
3252 
3253 	if (i915_gem_request_completed(from_req, true))
3254 		return 0;
3255 
3256 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3257 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3258 		ret = __i915_wait_request(from_req,
3259 					  atomic_read(&i915->gpu_error.reset_counter),
3260 					  i915->mm.interruptible,
3261 					  NULL,
3262 					  &i915->rps.semaphores);
3263 		if (ret)
3264 			return ret;
3265 
3266 		i915_gem_object_retire_request(obj, from_req);
3267 	} else {
3268 		int idx = intel_ring_sync_index(from, to);
3269 		u32 seqno = i915_gem_request_get_seqno(from_req);
3270 
3271 		WARN_ON(!to_req);
3272 
3273 		if (seqno <= from->semaphore.sync_seqno[idx])
3274 			return 0;
3275 
3276 		if (*to_req == NULL) {
3277 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
3278 			if (ret)
3279 				return ret;
3280 		}
3281 
3282 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3283 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3284 		if (ret)
3285 			return ret;
3286 
3287 		/* We use last_read_req because sync_to()
3288 		 * might have just caused seqno wrap under
3289 		 * the radar.
3290 		 */
3291 		from->semaphore.sync_seqno[idx] =
3292 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3293 	}
3294 
3295 	return 0;
3296 }
3297 
3298 /**
3299  * i915_gem_object_sync - sync an object to a ring.
3300  *
3301  * @obj: object which may be in use on another ring.
3302  * @to: ring we wish to use the object on. May be NULL.
3303  * @to_req: request we wish to use the object for. See below.
3304  *          This will be allocated and returned if a request is
3305  *          required but not passed in.
3306  *
3307  * This code is meant to abstract object synchronization with the GPU.
3308  * Calling with NULL implies synchronizing the object with the CPU
3309  * rather than a particular GPU ring. Conceptually we serialise writes
3310  * between engines inside the GPU. We only allow one engine to write
3311  * into a buffer at any time, but multiple readers. To ensure each has
3312  * a coherent view of memory, we must:
3313  *
3314  * - If there is an outstanding write request to the object, the new
3315  *   request must wait for it to complete (either CPU or in hw, requests
3316  *   on the same ring will be naturally ordered).
3317  *
3318  * - If we are a write request (pending_write_domain is set), the new
3319  *   request must wait for outstanding read requests to complete.
3320  *
3321  * For CPU synchronisation (NULL to) no request is required. For syncing with
3322  * rings to_req must be non-NULL. However, a request does not have to be
3323  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3324  * request will be allocated automatically and returned through *to_req. Note
3325  * that it is not guaranteed that commands will be emitted (because the system
3326  * might already be idle). Hence there is no need to create a request that
3327  * might never have any work submitted. Note further that if a request is
3328  * returned in *to_req, it is the responsibility of the caller to submit
3329  * that request (after potentially adding more work to it).
3330  *
3331  * Returns 0 if successful, else propagates up the lower layer error.
3332  */
3333 int
3334 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3335 		     struct intel_engine_cs *to,
3336 		     struct drm_i915_gem_request **to_req)
3337 {
3338 	const bool readonly = obj->base.pending_write_domain == 0;
3339 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3340 	int ret, i, n;
3341 
3342 	if (!obj->active)
3343 		return 0;
3344 
3345 	if (to == NULL)
3346 		return i915_gem_object_wait_rendering(obj, readonly);
3347 
3348 	n = 0;
3349 	if (readonly) {
3350 		if (obj->last_write_req)
3351 			req[n++] = obj->last_write_req;
3352 	} else {
3353 		for (i = 0; i < I915_NUM_RINGS; i++)
3354 			if (obj->last_read_req[i])
3355 				req[n++] = obj->last_read_req[i];
3356 	}
3357 	for (i = 0; i < n; i++) {
3358 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3359 		if (ret)
3360 			return ret;
3361 	}
3362 
3363 	return 0;
3364 }
3365 
3366 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3367 {
3368 	u32 old_write_domain, old_read_domains;
3369 
3370 	/* Force a pagefault for domain tracking on next user access */
3371 	i915_gem_release_mmap(obj);
3372 
3373 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3374 		return;
3375 
3376 	/* Wait for any direct GTT access to complete */
3377 	mb();
3378 
3379 	old_read_domains = obj->base.read_domains;
3380 	old_write_domain = obj->base.write_domain;
3381 
3382 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3383 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3384 
3385 	trace_i915_gem_object_change_domain(obj,
3386 					    old_read_domains,
3387 					    old_write_domain);
3388 }
3389 
3390 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3391 {
3392 	struct drm_i915_gem_object *obj = vma->obj;
3393 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3394 	int ret;
3395 
3396 	if (list_empty(&vma->vma_link))
3397 		return 0;
3398 
3399 	if (!drm_mm_node_allocated(&vma->node)) {
3400 		i915_gem_vma_destroy(vma);
3401 		return 0;
3402 	}
3403 
3404 	if (vma->pin_count)
3405 		return -EBUSY;
3406 
3407 	BUG_ON(obj->pages == NULL);
3408 
3409 	if (wait) {
3410 		ret = i915_gem_object_wait_rendering(obj, false);
3411 		if (ret)
3412 			return ret;
3413 	}
3414 
3415 	if (i915_is_ggtt(vma->vm) &&
3416 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3417 		i915_gem_object_finish_gtt(obj);
3418 
3419 		/* release the fence reg _after_ flushing */
3420 		ret = i915_gem_object_put_fence(obj);
3421 		if (ret)
3422 			return ret;
3423 	}
3424 
3425 	trace_i915_vma_unbind(vma);
3426 
3427 	vma->vm->unbind_vma(vma);
3428 	vma->bound = 0;
3429 
3430 	list_del_init(&vma->mm_list);
3431 	if (i915_is_ggtt(vma->vm)) {
3432 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3433 			obj->map_and_fenceable = false;
3434 		} else if (vma->ggtt_view.pages) {
3435 			sg_free_table(vma->ggtt_view.pages);
3436 			kfree(vma->ggtt_view.pages);
3437 		}
3438 		vma->ggtt_view.pages = NULL;
3439 	}
3440 
3441 	drm_mm_remove_node(&vma->node);
3442 	i915_gem_vma_destroy(vma);
3443 
3444 	/* Since the unbound list is global, only move to that list if
3445 	 * no more VMAs exist. */
3446 	if (list_empty(&obj->vma_list))
3447 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3448 
3449 	/* And finally now the object is completely decoupled from this vma,
3450 	 * we can drop its hold on the backing storage and allow it to be
3451 	 * reaped by the shrinker.
3452 	 */
3453 	i915_gem_object_unpin_pages(obj);
3454 
3455 	return 0;
3456 }
3457 
3458 int i915_vma_unbind(struct i915_vma *vma)
3459 {
3460 	return __i915_vma_unbind(vma, true);
3461 }
3462 
3463 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3464 {
3465 	return __i915_vma_unbind(vma, false);
3466 }
3467 
3468 int i915_gpu_idle(struct drm_device *dev)
3469 {
3470 	struct drm_i915_private *dev_priv = dev->dev_private;
3471 	struct intel_engine_cs *ring;
3472 	int ret, i;
3473 
3474 	/* Flush everything onto the inactive list. */
3475 	for_each_ring(ring, dev_priv, i) {
3476 		if (!i915.enable_execlists) {
3477 			struct drm_i915_gem_request *req;
3478 
3479 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3480 			if (ret)
3481 				return ret;
3482 
3483 			ret = i915_switch_context(req);
3484 			if (ret) {
3485 				i915_gem_request_cancel(req);
3486 				return ret;
3487 			}
3488 
3489 			i915_add_request_no_flush(req);
3490 		}
3491 
3492 		ret = intel_ring_idle(ring);
3493 		if (ret)
3494 			return ret;
3495 	}
3496 
3497 	WARN_ON(i915_verify_lists(dev));
3498 	return 0;
3499 }
3500 
3501 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3502 				     unsigned long cache_level)
3503 {
3504 	struct drm_mm_node *gtt_space = &vma->node;
3505 	struct drm_mm_node *other;
3506 
3507 	/*
3508 	 * On some machines we have to be careful when putting differing types
3509 	 * of snoopable memory together to avoid the prefetcher crossing memory
3510 	 * domains and dying. During vm initialisation, we decide whether or not
3511 	 * these constraints apply and set the drm_mm.color_adjust
3512 	 * appropriately.
3513 	 */
3514 	if (vma->vm->mm.color_adjust == NULL)
3515 		return true;
3516 
3517 	if (!drm_mm_node_allocated(gtt_space))
3518 		return true;
3519 
3520 	if (list_empty(&gtt_space->node_list))
3521 		return true;
3522 
3523 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3524 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3525 		return false;
3526 
3527 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3528 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3529 		return false;
3530 
3531 	return true;
3532 }
3533 
3534 /**
3535  * Finds free space in the GTT aperture and binds the object or a view of it
3536  * there.
3537  */
3538 static struct i915_vma *
3539 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3540 			   struct i915_address_space *vm,
3541 			   const struct i915_ggtt_view *ggtt_view,
3542 			   unsigned alignment,
3543 			   uint64_t flags)
3544 {
3545 	struct drm_device *dev = obj->base.dev;
3546 	struct drm_i915_private *dev_priv = dev->dev_private;
3547 	u32 fence_alignment, unfenced_alignment;
3548 	u32 search_flag, alloc_flag;
3549 	u64 start, end;
3550 	u64 size, fence_size;
3551 	struct i915_vma *vma;
3552 	int ret;
3553 
3554 	if (i915_is_ggtt(vm)) {
3555 		u32 view_size;
3556 
3557 		if (WARN_ON(!ggtt_view))
3558 			return ERR_PTR(-EINVAL);
3559 
3560 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3561 
3562 		fence_size = i915_gem_get_gtt_size(dev,
3563 						   view_size,
3564 						   obj->tiling_mode);
3565 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3566 							     view_size,
3567 							     obj->tiling_mode,
3568 							     true);
3569 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3570 								view_size,
3571 								obj->tiling_mode,
3572 								false);
3573 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3574 	} else {
3575 		fence_size = i915_gem_get_gtt_size(dev,
3576 						   obj->base.size,
3577 						   obj->tiling_mode);
3578 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3579 							     obj->base.size,
3580 							     obj->tiling_mode,
3581 							     true);
3582 		unfenced_alignment =
3583 			i915_gem_get_gtt_alignment(dev,
3584 						   obj->base.size,
3585 						   obj->tiling_mode,
3586 						   false);
3587 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3588 	}
3589 
3590 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3591 	end = vm->total;
3592 	if (flags & PIN_MAPPABLE)
3593 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3594 	if (flags & PIN_ZONE_4G)
3595 		end = min_t(u64, end, (1ULL << 32));
3596 
3597 	if (alignment == 0)
3598 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3599 						unfenced_alignment;
3600 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3601 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3602 			  ggtt_view ? ggtt_view->type : 0,
3603 			  alignment);
3604 		return ERR_PTR(-EINVAL);
3605 	}
3606 
3607 	/* If binding the object/GGTT view requires more space than the entire
3608 	 * aperture has, reject it early before evicting everything in a vain
3609 	 * attempt to find space.
3610 	 */
3611 	if (size > end) {
3612 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%lu > %s aperture=%lu\n",
3613 			  ggtt_view ? ggtt_view->type : 0,
3614 			  size,
3615 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3616 			  end);
3617 		return ERR_PTR(-E2BIG);
3618 	}
3619 
3620 	ret = i915_gem_object_get_pages(obj);
3621 	if (ret)
3622 		return ERR_PTR(ret);
3623 
3624 	i915_gem_object_pin_pages(obj);
3625 
3626 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3627 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3628 
3629 	if (IS_ERR(vma))
3630 		goto err_unpin;
3631 
3632 	if (flags & PIN_HIGH) {
3633 		search_flag = DRM_MM_SEARCH_BELOW;
3634 		alloc_flag = DRM_MM_CREATE_TOP;
3635 	} else {
3636 		search_flag = DRM_MM_SEARCH_DEFAULT;
3637 		alloc_flag = DRM_MM_CREATE_DEFAULT;
3638 	}
3639 
3640 search_free:
3641 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3642 						  size, alignment,
3643 						  obj->cache_level,
3644 						  start, end,
3645 						  search_flag,
3646 						  alloc_flag);
3647 	if (ret) {
3648 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3649 					       obj->cache_level,
3650 					       start, end,
3651 					       flags);
3652 		if (ret == 0)
3653 			goto search_free;
3654 
3655 		goto err_free_vma;
3656 	}
3657 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3658 		ret = -EINVAL;
3659 		goto err_remove_node;
3660 	}
3661 
3662 	trace_i915_vma_bind(vma, flags);
3663 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3664 	if (ret)
3665 		goto err_remove_node;
3666 
3667 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3668 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3669 
3670 	return vma;
3671 
3672 err_remove_node:
3673 	drm_mm_remove_node(&vma->node);
3674 err_free_vma:
3675 	i915_gem_vma_destroy(vma);
3676 	vma = ERR_PTR(ret);
3677 err_unpin:
3678 	i915_gem_object_unpin_pages(obj);
3679 	return vma;
3680 }
3681 
3682 bool
3683 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3684 			bool force)
3685 {
3686 	/* If we don't have a page list set up, then we're not pinned
3687 	 * to GPU, and we can ignore the cache flush because it'll happen
3688 	 * again at bind time.
3689 	 */
3690 	if (obj->pages == NULL)
3691 		return false;
3692 
3693 	/*
3694 	 * Stolen memory is always coherent with the GPU as it is explicitly
3695 	 * marked as wc by the system, or the system is cache-coherent.
3696 	 */
3697 	if (obj->stolen || obj->phys_handle)
3698 		return false;
3699 
3700 	/* If the GPU is snooping the contents of the CPU cache,
3701 	 * we do not need to manually clear the CPU cache lines.  However,
3702 	 * the caches are only snooped when the render cache is
3703 	 * flushed/invalidated.  As we always have to emit invalidations
3704 	 * and flushes when moving into and out of the RENDER domain, correct
3705 	 * snooping behaviour occurs naturally as the result of our domain
3706 	 * tracking.
3707 	 */
3708 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3709 		obj->cache_dirty = true;
3710 		return false;
3711 	}
3712 
3713 	trace_i915_gem_object_clflush(obj);
3714 	drm_clflush_sg(obj->pages);
3715 	obj->cache_dirty = false;
3716 
3717 	return true;
3718 }
3719 
3720 /** Flushes the GTT write domain for the object if it's dirty. */
3721 static void
3722 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3723 {
3724 	uint32_t old_write_domain;
3725 
3726 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3727 		return;
3728 
3729 	/* No actual flushing is required for the GTT write domain.  Writes
3730 	 * to it immediately go to main memory as far as we know, so there's
3731 	 * no chipset flush.  It also doesn't land in render cache.
3732 	 *
3733 	 * However, we do have to enforce the order so that all writes through
3734 	 * the GTT land before any writes to the device, such as updates to
3735 	 * the GATT itself.
3736 	 */
3737 	wmb();
3738 
3739 	old_write_domain = obj->base.write_domain;
3740 	obj->base.write_domain = 0;
3741 
3742 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3743 
3744 	trace_i915_gem_object_change_domain(obj,
3745 					    obj->base.read_domains,
3746 					    old_write_domain);
3747 }
3748 
3749 /** Flushes the CPU write domain for the object if it's dirty. */
3750 static void
3751 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3752 {
3753 	uint32_t old_write_domain;
3754 
3755 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3756 		return;
3757 
3758 	if (i915_gem_clflush_object(obj, obj->pin_display))
3759 		i915_gem_chipset_flush(obj->base.dev);
3760 
3761 	old_write_domain = obj->base.write_domain;
3762 	obj->base.write_domain = 0;
3763 
3764 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3765 
3766 	trace_i915_gem_object_change_domain(obj,
3767 					    obj->base.read_domains,
3768 					    old_write_domain);
3769 }
3770 
3771 /**
3772  * Moves a single object to the GTT read, and possibly write domain.
3773  *
3774  * This function returns when the move is complete, including waiting on
3775  * flushes to occur.
3776  */
3777 int
3778 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3779 {
3780 	uint32_t old_write_domain, old_read_domains;
3781 	struct i915_vma *vma;
3782 	int ret;
3783 
3784 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3785 		return 0;
3786 
3787 	ret = i915_gem_object_wait_rendering(obj, !write);
3788 	if (ret)
3789 		return ret;
3790 
3791 	/* Flush and acquire obj->pages so that we are coherent through
3792 	 * direct access in memory with previous cached writes through
3793 	 * shmemfs and that our cache domain tracking remains valid.
3794 	 * For example, if the obj->filp was moved to swap without us
3795 	 * being notified and releasing the pages, we would mistakenly
3796 	 * continue to assume that the obj remained out of the CPU cached
3797 	 * domain.
3798 	 */
3799 	ret = i915_gem_object_get_pages(obj);
3800 	if (ret)
3801 		return ret;
3802 
3803 	i915_gem_object_flush_cpu_write_domain(obj);
3804 
3805 	/* Serialise direct access to this object with the barriers for
3806 	 * coherent writes from the GPU, by effectively invalidating the
3807 	 * GTT domain upon first access.
3808 	 */
3809 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3810 		mb();
3811 
3812 	old_write_domain = obj->base.write_domain;
3813 	old_read_domains = obj->base.read_domains;
3814 
3815 	/* It should now be out of any other write domains, and we can update
3816 	 * the domain values for our changes.
3817 	 */
3818 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3819 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3820 	if (write) {
3821 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3822 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3823 		obj->dirty = 1;
3824 	}
3825 
3826 	trace_i915_gem_object_change_domain(obj,
3827 					    old_read_domains,
3828 					    old_write_domain);
3829 
3830 	/* And bump the LRU for this access */
3831 	vma = i915_gem_obj_to_ggtt(obj);
3832 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3833 		list_move_tail(&vma->mm_list,
3834 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3835 
3836 	return 0;
3837 }
3838 
3839 /**
3840  * Changes the cache-level of an object across all VMA.
3841  *
3842  * After this function returns, the object will be in the new cache-level
3843  * across all GTT and the contents of the backing storage will be coherent,
3844  * with respect to the new cache-level. In order to keep the backing storage
3845  * coherent for all users, we only allow a single cache level to be set
3846  * globally on the object and prevent it from being changed whilst the
3847  * hardware is reading from the object. That is if the object is currently
3848  * on the scanout it will be set to uncached (or equivalent display
3849  * cache coherency) and all non-MOCS GPU access will also be uncached so
3850  * that all direct access to the scanout remains coherent.
3851  */
3852 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3853 				    enum i915_cache_level cache_level)
3854 {
3855 	struct drm_device *dev = obj->base.dev;
3856 	struct i915_vma *vma, *next;
3857 	bool bound = false;
3858 	int ret = 0;
3859 
3860 	if (obj->cache_level == cache_level)
3861 		goto out;
3862 
3863 	/* Inspect the list of currently bound VMA and unbind any that would
3864 	 * be invalid given the new cache-level. This is principally to
3865 	 * catch the issue of the CS prefetch crossing page boundaries and
3866 	 * reading an invalid PTE on older architectures.
3867 	 */
3868 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3869 		if (!drm_mm_node_allocated(&vma->node))
3870 			continue;
3871 
3872 		if (vma->pin_count) {
3873 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3874 			return -EBUSY;
3875 		}
3876 
3877 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3878 			ret = i915_vma_unbind(vma);
3879 			if (ret)
3880 				return ret;
3881 		} else
3882 			bound = true;
3883 	}
3884 
3885 	/* We can reuse the existing drm_mm nodes but need to change the
3886 	 * cache-level on the PTE. We could simply unbind them all and
3887 	 * rebind with the correct cache-level on next use. However since
3888 	 * we already have a valid slot, dma mapping, pages etc, we may as
3889 	 * rewrite the PTE in the belief that doing so tramples upon less
3890 	 * state and so involves less work.
3891 	 */
3892 	if (bound) {
3893 		/* Before we change the PTE, the GPU must not be accessing it.
3894 		 * If we wait upon the object, we know that all the bound
3895 		 * VMA are no longer active.
3896 		 */
3897 		ret = i915_gem_object_wait_rendering(obj, false);
3898 		if (ret)
3899 			return ret;
3900 
3901 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3902 			/* Access to snoopable pages through the GTT is
3903 			 * incoherent and on some machines causes a hard
3904 			 * lockup. Relinquish the CPU mmaping to force
3905 			 * userspace to refault in the pages and we can
3906 			 * then double check if the GTT mapping is still
3907 			 * valid for that pointer access.
3908 			 */
3909 			i915_gem_release_mmap(obj);
3910 
3911 			/* As we no longer need a fence for GTT access,
3912 			 * we can relinquish it now (and so prevent having
3913 			 * to steal a fence from someone else on the next
3914 			 * fence request). Note GPU activity would have
3915 			 * dropped the fence as all snoopable access is
3916 			 * supposed to be linear.
3917 			 */
3918 			ret = i915_gem_object_put_fence(obj);
3919 			if (ret)
3920 				return ret;
3921 		} else {
3922 			/* We either have incoherent backing store and
3923 			 * so no GTT access or the architecture is fully
3924 			 * coherent. In such cases, existing GTT mmaps
3925 			 * ignore the cache bit in the PTE and we can
3926 			 * rewrite it without confusing the GPU or having
3927 			 * to force userspace to fault back in its mmaps.
3928 			 */
3929 		}
3930 
3931 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3932 			if (!drm_mm_node_allocated(&vma->node))
3933 				continue;
3934 
3935 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3936 			if (ret)
3937 				return ret;
3938 		}
3939 	}
3940 
3941 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3942 		vma->node.color = cache_level;
3943 	obj->cache_level = cache_level;
3944 
3945 out:
3946 	/* Flush the dirty CPU caches to the backing storage so that the
3947 	 * object is now coherent at its new cache level (with respect
3948 	 * to the access domain).
3949 	 */
3950 	if (obj->cache_dirty &&
3951 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3952 	    cpu_write_needs_clflush(obj)) {
3953 		if (i915_gem_clflush_object(obj, true))
3954 			i915_gem_chipset_flush(obj->base.dev);
3955 	}
3956 
3957 	return 0;
3958 }
3959 
3960 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3961 			       struct drm_file *file)
3962 {
3963 	struct drm_i915_gem_caching *args = data;
3964 	struct drm_i915_gem_object *obj;
3965 
3966 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3967 	if (&obj->base == NULL)
3968 		return -ENOENT;
3969 
3970 	switch (obj->cache_level) {
3971 	case I915_CACHE_LLC:
3972 	case I915_CACHE_L3_LLC:
3973 		args->caching = I915_CACHING_CACHED;
3974 		break;
3975 
3976 	case I915_CACHE_WT:
3977 		args->caching = I915_CACHING_DISPLAY;
3978 		break;
3979 
3980 	default:
3981 		args->caching = I915_CACHING_NONE;
3982 		break;
3983 	}
3984 
3985 	drm_gem_object_unreference_unlocked(&obj->base);
3986 	return 0;
3987 }
3988 
3989 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3990 			       struct drm_file *file)
3991 {
3992 	struct drm_i915_private *dev_priv = dev->dev_private;
3993 	struct drm_i915_gem_caching *args = data;
3994 	struct drm_i915_gem_object *obj;
3995 	enum i915_cache_level level;
3996 	int ret;
3997 
3998 	switch (args->caching) {
3999 	case I915_CACHING_NONE:
4000 		level = I915_CACHE_NONE;
4001 		break;
4002 	case I915_CACHING_CACHED:
4003 		/*
4004 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4005 		 * snooped mapping may leave stale data in a corresponding CPU
4006 		 * cacheline, whereas normally such cachelines would get
4007 		 * invalidated.
4008 		 */
4009 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
4010 			return -ENODEV;
4011 
4012 		level = I915_CACHE_LLC;
4013 		break;
4014 	case I915_CACHING_DISPLAY:
4015 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4016 		break;
4017 	default:
4018 		return -EINVAL;
4019 	}
4020 
4021 	intel_runtime_pm_get(dev_priv);
4022 
4023 	ret = i915_mutex_lock_interruptible(dev);
4024 	if (ret)
4025 		goto rpm_put;
4026 
4027 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4028 	if (&obj->base == NULL) {
4029 		ret = -ENOENT;
4030 		goto unlock;
4031 	}
4032 
4033 	ret = i915_gem_object_set_cache_level(obj, level);
4034 
4035 	drm_gem_object_unreference(&obj->base);
4036 unlock:
4037 	mutex_unlock(&dev->struct_mutex);
4038 rpm_put:
4039 	intel_runtime_pm_put(dev_priv);
4040 
4041 	return ret;
4042 }
4043 
4044 /*
4045  * Prepare buffer for display plane (scanout, cursors, etc).
4046  * Can be called from an uninterruptible phase (modesetting) and allows
4047  * any flushes to be pipelined (for pageflips).
4048  */
4049 int
4050 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4051 				     u32 alignment,
4052 				     struct intel_engine_cs *pipelined,
4053 				     struct drm_i915_gem_request **pipelined_request,
4054 				     const struct i915_ggtt_view *view)
4055 {
4056 	u32 old_read_domains, old_write_domain;
4057 	int ret;
4058 
4059 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4060 	if (ret)
4061 		return ret;
4062 
4063 	/* Mark the pin_display early so that we account for the
4064 	 * display coherency whilst setting up the cache domains.
4065 	 */
4066 	obj->pin_display++;
4067 
4068 	/* The display engine is not coherent with the LLC cache on gen6.  As
4069 	 * a result, we make sure that the pinning that is about to occur is
4070 	 * done with uncached PTEs. This is lowest common denominator for all
4071 	 * chipsets.
4072 	 *
4073 	 * However for gen6+, we could do better by using the GFDT bit instead
4074 	 * of uncaching, which would allow us to flush all the LLC-cached data
4075 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4076 	 */
4077 	ret = i915_gem_object_set_cache_level(obj,
4078 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4079 	if (ret)
4080 		goto err_unpin_display;
4081 
4082 	/* As the user may map the buffer once pinned in the display plane
4083 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4084 	 * always use map_and_fenceable for all scanout buffers.
4085 	 */
4086 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4087 				       view->type == I915_GGTT_VIEW_NORMAL ?
4088 				       PIN_MAPPABLE : 0);
4089 	if (ret)
4090 		goto err_unpin_display;
4091 
4092 	i915_gem_object_flush_cpu_write_domain(obj);
4093 
4094 	old_write_domain = obj->base.write_domain;
4095 	old_read_domains = obj->base.read_domains;
4096 
4097 	/* It should now be out of any other write domains, and we can update
4098 	 * the domain values for our changes.
4099 	 */
4100 	obj->base.write_domain = 0;
4101 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4102 
4103 	trace_i915_gem_object_change_domain(obj,
4104 					    old_read_domains,
4105 					    old_write_domain);
4106 
4107 	return 0;
4108 
4109 err_unpin_display:
4110 	obj->pin_display--;
4111 	return ret;
4112 }
4113 
4114 void
4115 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4116 					 const struct i915_ggtt_view *view)
4117 {
4118 	if (WARN_ON(obj->pin_display == 0))
4119 		return;
4120 
4121 	i915_gem_object_ggtt_unpin_view(obj, view);
4122 
4123 	obj->pin_display--;
4124 }
4125 
4126 /**
4127  * Moves a single object to the CPU read, and possibly write domain.
4128  *
4129  * This function returns when the move is complete, including waiting on
4130  * flushes to occur.
4131  */
4132 int
4133 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4134 {
4135 	uint32_t old_write_domain, old_read_domains;
4136 	int ret;
4137 
4138 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4139 		return 0;
4140 
4141 	ret = i915_gem_object_wait_rendering(obj, !write);
4142 	if (ret)
4143 		return ret;
4144 
4145 	i915_gem_object_flush_gtt_write_domain(obj);
4146 
4147 	old_write_domain = obj->base.write_domain;
4148 	old_read_domains = obj->base.read_domains;
4149 
4150 	/* Flush the CPU cache if it's still invalid. */
4151 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4152 		i915_gem_clflush_object(obj, false);
4153 
4154 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4155 	}
4156 
4157 	/* It should now be out of any other write domains, and we can update
4158 	 * the domain values for our changes.
4159 	 */
4160 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4161 
4162 	/* If we're writing through the CPU, then the GPU read domains will
4163 	 * need to be invalidated at next use.
4164 	 */
4165 	if (write) {
4166 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4167 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4168 	}
4169 
4170 	trace_i915_gem_object_change_domain(obj,
4171 					    old_read_domains,
4172 					    old_write_domain);
4173 
4174 	return 0;
4175 }
4176 
4177 /* Throttle our rendering by waiting until the ring has completed our requests
4178  * emitted over 20 msec ago.
4179  *
4180  * Note that if we were to use the current jiffies each time around the loop,
4181  * we wouldn't escape the function with any frames outstanding if the time to
4182  * render a frame was over 20ms.
4183  *
4184  * This should get us reasonable parallelism between CPU and GPU but also
4185  * relatively low latency when blocking on a particular request to finish.
4186  */
4187 static int
4188 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4189 {
4190 	struct drm_i915_private *dev_priv = dev->dev_private;
4191 	struct drm_i915_file_private *file_priv = file->driver_priv;
4192 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4193 	struct drm_i915_gem_request *request, *target = NULL;
4194 	unsigned reset_counter;
4195 	int ret;
4196 
4197 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4198 	if (ret)
4199 		return ret;
4200 
4201 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4202 	if (ret)
4203 		return ret;
4204 
4205 	spin_lock(&file_priv->mm.lock);
4206 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4207 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4208 			break;
4209 
4210 		/*
4211 		 * Note that the request might not have been submitted yet.
4212 		 * In which case emitted_jiffies will be zero.
4213 		 */
4214 		if (!request->emitted_jiffies)
4215 			continue;
4216 
4217 		target = request;
4218 	}
4219 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4220 	if (target)
4221 		i915_gem_request_reference(target);
4222 	spin_unlock(&file_priv->mm.lock);
4223 
4224 	if (target == NULL)
4225 		return 0;
4226 
4227 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4228 	if (ret == 0)
4229 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4230 
4231 	i915_gem_request_unreference__unlocked(target);
4232 
4233 	return ret;
4234 }
4235 
4236 static bool
4237 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4238 {
4239 	struct drm_i915_gem_object *obj = vma->obj;
4240 
4241 	if (alignment &&
4242 	    vma->node.start & (alignment - 1))
4243 		return true;
4244 
4245 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4246 		return true;
4247 
4248 	if (flags & PIN_OFFSET_BIAS &&
4249 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4250 		return true;
4251 
4252 	return false;
4253 }
4254 
4255 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4256 {
4257 	struct drm_i915_gem_object *obj = vma->obj;
4258 	bool mappable, fenceable;
4259 	u32 fence_size, fence_alignment;
4260 
4261 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4262 					   obj->base.size,
4263 					   obj->tiling_mode);
4264 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4265 						     obj->base.size,
4266 						     obj->tiling_mode,
4267 						     true);
4268 
4269 	fenceable = (vma->node.size == fence_size &&
4270 		     (vma->node.start & (fence_alignment - 1)) == 0);
4271 
4272 	mappable = (vma->node.start + fence_size <=
4273 		    to_i915(obj->base.dev)->gtt.mappable_end);
4274 
4275 	obj->map_and_fenceable = mappable && fenceable;
4276 }
4277 
4278 static int
4279 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4280 		       struct i915_address_space *vm,
4281 		       const struct i915_ggtt_view *ggtt_view,
4282 		       uint32_t alignment,
4283 		       uint64_t flags)
4284 {
4285 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4286 	struct i915_vma *vma;
4287 	unsigned bound;
4288 	int ret;
4289 
4290 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4291 		return -ENODEV;
4292 
4293 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4294 		return -EINVAL;
4295 
4296 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4297 		return -EINVAL;
4298 
4299 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4300 		return -EINVAL;
4301 
4302 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4303 			  i915_gem_obj_to_vma(obj, vm);
4304 
4305 	if (IS_ERR(vma))
4306 		return PTR_ERR(vma);
4307 
4308 	if (vma) {
4309 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4310 			return -EBUSY;
4311 
4312 		if (i915_vma_misplaced(vma, alignment, flags)) {
4313 			WARN(vma->pin_count,
4314 			     "bo is already pinned in %s with incorrect alignment:"
4315 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4316 			     " obj->map_and_fenceable=%d\n",
4317 			     ggtt_view ? "ggtt" : "ppgtt",
4318 			     upper_32_bits(vma->node.start),
4319 			     lower_32_bits(vma->node.start),
4320 			     alignment,
4321 			     !!(flags & PIN_MAPPABLE),
4322 			     obj->map_and_fenceable);
4323 			ret = i915_vma_unbind(vma);
4324 			if (ret)
4325 				return ret;
4326 
4327 			vma = NULL;
4328 		}
4329 	}
4330 
4331 	bound = vma ? vma->bound : 0;
4332 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4333 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4334 						 flags);
4335 		if (IS_ERR(vma))
4336 			return PTR_ERR(vma);
4337 	} else {
4338 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4339 		if (ret)
4340 			return ret;
4341 	}
4342 
4343 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4344 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4345 		__i915_vma_set_map_and_fenceable(vma);
4346 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4347 	}
4348 
4349 	vma->pin_count++;
4350 	return 0;
4351 }
4352 
4353 int
4354 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4355 		    struct i915_address_space *vm,
4356 		    uint32_t alignment,
4357 		    uint64_t flags)
4358 {
4359 	return i915_gem_object_do_pin(obj, vm,
4360 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4361 				      alignment, flags);
4362 }
4363 
4364 int
4365 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4366 			 const struct i915_ggtt_view *view,
4367 			 uint32_t alignment,
4368 			 uint64_t flags)
4369 {
4370 	if (WARN_ONCE(!view, "no view specified"))
4371 		return -EINVAL;
4372 
4373 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4374 				      alignment, flags | PIN_GLOBAL);
4375 }
4376 
4377 void
4378 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4379 				const struct i915_ggtt_view *view)
4380 {
4381 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4382 
4383 	BUG_ON(!vma);
4384 	WARN_ON(vma->pin_count == 0);
4385 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4386 
4387 	--vma->pin_count;
4388 }
4389 
4390 int
4391 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4392 		    struct drm_file *file)
4393 {
4394 	struct drm_i915_gem_busy *args = data;
4395 	struct drm_i915_gem_object *obj;
4396 	int ret;
4397 
4398 	ret = i915_mutex_lock_interruptible(dev);
4399 	if (ret)
4400 		return ret;
4401 
4402 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4403 	if (&obj->base == NULL) {
4404 		ret = -ENOENT;
4405 		goto unlock;
4406 	}
4407 
4408 	/* Count all active objects as busy, even if they are currently not used
4409 	 * by the gpu. Users of this interface expect objects to eventually
4410 	 * become non-busy without any further actions, therefore emit any
4411 	 * necessary flushes here.
4412 	 */
4413 	ret = i915_gem_object_flush_active(obj);
4414 	if (ret)
4415 		goto unref;
4416 
4417 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
4418 	args->busy = obj->active << 16;
4419 	if (obj->last_write_req)
4420 		args->busy |= obj->last_write_req->ring->id;
4421 
4422 unref:
4423 	drm_gem_object_unreference(&obj->base);
4424 unlock:
4425 	mutex_unlock(&dev->struct_mutex);
4426 	return ret;
4427 }
4428 
4429 int
4430 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4431 			struct drm_file *file_priv)
4432 {
4433 	return i915_gem_ring_throttle(dev, file_priv);
4434 }
4435 
4436 int
4437 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4438 		       struct drm_file *file_priv)
4439 {
4440 	struct drm_i915_private *dev_priv = dev->dev_private;
4441 	struct drm_i915_gem_madvise *args = data;
4442 	struct drm_i915_gem_object *obj;
4443 	int ret;
4444 
4445 	switch (args->madv) {
4446 	case I915_MADV_DONTNEED:
4447 	case I915_MADV_WILLNEED:
4448 	    break;
4449 	default:
4450 	    return -EINVAL;
4451 	}
4452 
4453 	ret = i915_mutex_lock_interruptible(dev);
4454 	if (ret)
4455 		return ret;
4456 
4457 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4458 	if (&obj->base == NULL) {
4459 		ret = -ENOENT;
4460 		goto unlock;
4461 	}
4462 
4463 	if (i915_gem_obj_is_pinned(obj)) {
4464 		ret = -EINVAL;
4465 		goto out;
4466 	}
4467 
4468 	if (obj->pages &&
4469 	    obj->tiling_mode != I915_TILING_NONE &&
4470 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4471 		if (obj->madv == I915_MADV_WILLNEED)
4472 			i915_gem_object_unpin_pages(obj);
4473 		if (args->madv == I915_MADV_WILLNEED)
4474 			i915_gem_object_pin_pages(obj);
4475 	}
4476 
4477 	if (obj->madv != __I915_MADV_PURGED)
4478 		obj->madv = args->madv;
4479 
4480 	/* if the object is no longer attached, discard its backing storage */
4481 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4482 		i915_gem_object_truncate(obj);
4483 
4484 	args->retained = obj->madv != __I915_MADV_PURGED;
4485 
4486 out:
4487 	drm_gem_object_unreference(&obj->base);
4488 unlock:
4489 	mutex_unlock(&dev->struct_mutex);
4490 	return ret;
4491 }
4492 
4493 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4494 			  const struct drm_i915_gem_object_ops *ops)
4495 {
4496 	int i;
4497 
4498 	INIT_LIST_HEAD(&obj->global_list);
4499 	for (i = 0; i < I915_NUM_RINGS; i++)
4500 		INIT_LIST_HEAD(&obj->ring_list[i]);
4501 	INIT_LIST_HEAD(&obj->obj_exec_link);
4502 	INIT_LIST_HEAD(&obj->vma_list);
4503 	INIT_LIST_HEAD(&obj->batch_pool_link);
4504 
4505 	obj->ops = ops;
4506 
4507 	obj->fence_reg = I915_FENCE_REG_NONE;
4508 	obj->madv = I915_MADV_WILLNEED;
4509 
4510 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4511 }
4512 
4513 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4514 	.get_pages = i915_gem_object_get_pages_gtt,
4515 	.put_pages = i915_gem_object_put_pages_gtt,
4516 };
4517 
4518 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4519 						  size_t size)
4520 {
4521 	struct drm_i915_gem_object *obj;
4522 #if 0
4523 	struct address_space *mapping;
4524 	gfp_t mask;
4525 #endif
4526 
4527 	obj = i915_gem_object_alloc(dev);
4528 	if (obj == NULL)
4529 		return NULL;
4530 
4531 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4532 		i915_gem_object_free(obj);
4533 		return NULL;
4534 	}
4535 
4536 #if 0
4537 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4538 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4539 		/* 965gm cannot relocate objects above 4GiB. */
4540 		mask &= ~__GFP_HIGHMEM;
4541 		mask |= __GFP_DMA32;
4542 	}
4543 
4544 	mapping = file_inode(obj->base.filp)->i_mapping;
4545 	mapping_set_gfp_mask(mapping, mask);
4546 #endif
4547 
4548 	i915_gem_object_init(obj, &i915_gem_object_ops);
4549 
4550 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4551 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4552 
4553 	if (HAS_LLC(dev)) {
4554 		/* On some devices, we can have the GPU use the LLC (the CPU
4555 		 * cache) for about a 10% performance improvement
4556 		 * compared to uncached.  Graphics requests other than
4557 		 * display scanout are coherent with the CPU in
4558 		 * accessing this cache.  This means in this mode we
4559 		 * don't need to clflush on the CPU side, and on the
4560 		 * GPU side we only need to flush internal caches to
4561 		 * get data visible to the CPU.
4562 		 *
4563 		 * However, we maintain the display planes as UC, and so
4564 		 * need to rebind when first used as such.
4565 		 */
4566 		obj->cache_level = I915_CACHE_LLC;
4567 	} else
4568 		obj->cache_level = I915_CACHE_NONE;
4569 
4570 	trace_i915_gem_object_create(obj);
4571 
4572 	return obj;
4573 }
4574 
4575 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4576 {
4577 	/* If we are the last user of the backing storage (be it shmemfs
4578 	 * pages or stolen etc), we know that the pages are going to be
4579 	 * immediately released. In this case, we can then skip copying
4580 	 * back the contents from the GPU.
4581 	 */
4582 
4583 	if (obj->madv != I915_MADV_WILLNEED)
4584 		return false;
4585 
4586 	if (obj->base.vm_obj == NULL)
4587 		return true;
4588 
4589 	/* At first glance, this looks racy, but then again so would be
4590 	 * userspace racing mmap against close. However, the first external
4591 	 * reference to the filp can only be obtained through the
4592 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4593 	 * acquiring such a reference whilst we are in the middle of
4594 	 * freeing the object.
4595 	 */
4596 #if 0
4597 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4598 #else
4599 	return false;
4600 #endif
4601 }
4602 
4603 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4604 {
4605 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4606 	struct drm_device *dev = obj->base.dev;
4607 	struct drm_i915_private *dev_priv = dev->dev_private;
4608 	struct i915_vma *vma, *next;
4609 
4610 	intel_runtime_pm_get(dev_priv);
4611 
4612 	trace_i915_gem_object_destroy(obj);
4613 
4614 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4615 		int ret;
4616 
4617 		vma->pin_count = 0;
4618 		ret = i915_vma_unbind(vma);
4619 		if (WARN_ON(ret == -ERESTARTSYS)) {
4620 			bool was_interruptible;
4621 
4622 			was_interruptible = dev_priv->mm.interruptible;
4623 			dev_priv->mm.interruptible = false;
4624 
4625 			WARN_ON(i915_vma_unbind(vma));
4626 
4627 			dev_priv->mm.interruptible = was_interruptible;
4628 		}
4629 	}
4630 
4631 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4632 	 * before progressing. */
4633 	if (obj->stolen)
4634 		i915_gem_object_unpin_pages(obj);
4635 
4636 	WARN_ON(obj->frontbuffer_bits);
4637 
4638 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4639 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4640 	    obj->tiling_mode != I915_TILING_NONE)
4641 		i915_gem_object_unpin_pages(obj);
4642 
4643 	if (WARN_ON(obj->pages_pin_count))
4644 		obj->pages_pin_count = 0;
4645 	if (discard_backing_storage(obj))
4646 		obj->madv = I915_MADV_DONTNEED;
4647 	i915_gem_object_put_pages(obj);
4648 	i915_gem_object_free_mmap_offset(obj);
4649 
4650 	BUG_ON(obj->pages);
4651 
4652 #if 0
4653 	if (obj->base.import_attach)
4654 		drm_prime_gem_destroy(&obj->base, NULL);
4655 #endif
4656 
4657 	if (obj->ops->release)
4658 		obj->ops->release(obj);
4659 
4660 	drm_gem_object_release(&obj->base);
4661 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4662 
4663 	kfree(obj->bit_17);
4664 	i915_gem_object_free(obj);
4665 
4666 	intel_runtime_pm_put(dev_priv);
4667 }
4668 
4669 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4670 				     struct i915_address_space *vm)
4671 {
4672 	struct i915_vma *vma;
4673 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4674 		if (i915_is_ggtt(vma->vm) &&
4675 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4676 			continue;
4677 		if (vma->vm == vm)
4678 			return vma;
4679 	}
4680 	return NULL;
4681 }
4682 
4683 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4684 					   const struct i915_ggtt_view *view)
4685 {
4686 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4687 	struct i915_vma *vma;
4688 
4689 	if (WARN_ONCE(!view, "no view specified"))
4690 		return ERR_PTR(-EINVAL);
4691 
4692 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4693 		if (vma->vm == ggtt &&
4694 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4695 			return vma;
4696 	return NULL;
4697 }
4698 
4699 void i915_gem_vma_destroy(struct i915_vma *vma)
4700 {
4701 	struct i915_address_space *vm = NULL;
4702 	WARN_ON(vma->node.allocated);
4703 
4704 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4705 	if (!list_empty(&vma->exec_list))
4706 		return;
4707 
4708 	vm = vma->vm;
4709 
4710 	if (!i915_is_ggtt(vm))
4711 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4712 
4713 	list_del(&vma->vma_link);
4714 
4715 	kfree(vma);
4716 }
4717 
4718 static void
4719 i915_gem_stop_ringbuffers(struct drm_device *dev)
4720 {
4721 	struct drm_i915_private *dev_priv = dev->dev_private;
4722 	struct intel_engine_cs *ring;
4723 	int i;
4724 
4725 	for_each_ring(ring, dev_priv, i)
4726 		dev_priv->gt.stop_ring(ring);
4727 }
4728 
4729 int
4730 i915_gem_suspend(struct drm_device *dev)
4731 {
4732 	struct drm_i915_private *dev_priv = dev->dev_private;
4733 	int ret = 0;
4734 
4735 	mutex_lock(&dev->struct_mutex);
4736 	ret = i915_gpu_idle(dev);
4737 	if (ret)
4738 		goto err;
4739 
4740 	i915_gem_retire_requests(dev);
4741 
4742 	i915_gem_stop_ringbuffers(dev);
4743 	mutex_unlock(&dev->struct_mutex);
4744 
4745 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4746 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4747 #if 0
4748 	flush_delayed_work(&dev_priv->mm.idle_work);
4749 #endif
4750 
4751 	/* Assert that we sucessfully flushed all the work and
4752 	 * reset the GPU back to its idle, low power state.
4753 	 */
4754 	WARN_ON(dev_priv->mm.busy);
4755 
4756 	return 0;
4757 
4758 err:
4759 	mutex_unlock(&dev->struct_mutex);
4760 	return ret;
4761 }
4762 
4763 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4764 {
4765 	struct intel_engine_cs *ring = req->ring;
4766 	struct drm_device *dev = ring->dev;
4767 	struct drm_i915_private *dev_priv = dev->dev_private;
4768 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4769 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4770 	int i, ret;
4771 
4772 	if (!HAS_L3_DPF(dev) || !remap_info)
4773 		return 0;
4774 
4775 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4776 	if (ret)
4777 		return ret;
4778 
4779 	/*
4780 	 * Note: We do not worry about the concurrent register cacheline hang
4781 	 * here because no other code should access these registers other than
4782 	 * at initialization time.
4783 	 */
4784 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4785 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4786 		intel_ring_emit(ring, reg_base + i);
4787 		intel_ring_emit(ring, remap_info[i/4]);
4788 	}
4789 
4790 	intel_ring_advance(ring);
4791 
4792 	return ret;
4793 }
4794 
4795 void i915_gem_init_swizzling(struct drm_device *dev)
4796 {
4797 	struct drm_i915_private *dev_priv = dev->dev_private;
4798 
4799 	if (INTEL_INFO(dev)->gen < 5 ||
4800 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4801 		return;
4802 
4803 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4804 				 DISP_TILE_SURFACE_SWIZZLING);
4805 
4806 	if (IS_GEN5(dev))
4807 		return;
4808 
4809 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4810 	if (IS_GEN6(dev))
4811 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4812 	else if (IS_GEN7(dev))
4813 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4814 	else if (IS_GEN8(dev))
4815 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4816 	else
4817 		BUG();
4818 }
4819 
4820 static void init_unused_ring(struct drm_device *dev, u32 base)
4821 {
4822 	struct drm_i915_private *dev_priv = dev->dev_private;
4823 
4824 	I915_WRITE(RING_CTL(base), 0);
4825 	I915_WRITE(RING_HEAD(base), 0);
4826 	I915_WRITE(RING_TAIL(base), 0);
4827 	I915_WRITE(RING_START(base), 0);
4828 }
4829 
4830 static void init_unused_rings(struct drm_device *dev)
4831 {
4832 	if (IS_I830(dev)) {
4833 		init_unused_ring(dev, PRB1_BASE);
4834 		init_unused_ring(dev, SRB0_BASE);
4835 		init_unused_ring(dev, SRB1_BASE);
4836 		init_unused_ring(dev, SRB2_BASE);
4837 		init_unused_ring(dev, SRB3_BASE);
4838 	} else if (IS_GEN2(dev)) {
4839 		init_unused_ring(dev, SRB0_BASE);
4840 		init_unused_ring(dev, SRB1_BASE);
4841 	} else if (IS_GEN3(dev)) {
4842 		init_unused_ring(dev, PRB1_BASE);
4843 		init_unused_ring(dev, PRB2_BASE);
4844 	}
4845 }
4846 
4847 int i915_gem_init_rings(struct drm_device *dev)
4848 {
4849 	struct drm_i915_private *dev_priv = dev->dev_private;
4850 	int ret;
4851 
4852 	ret = intel_init_render_ring_buffer(dev);
4853 	if (ret)
4854 		return ret;
4855 
4856 	if (HAS_BSD(dev)) {
4857 		ret = intel_init_bsd_ring_buffer(dev);
4858 		if (ret)
4859 			goto cleanup_render_ring;
4860 	}
4861 
4862 	if (HAS_BLT(dev)) {
4863 		ret = intel_init_blt_ring_buffer(dev);
4864 		if (ret)
4865 			goto cleanup_bsd_ring;
4866 	}
4867 
4868 	if (HAS_VEBOX(dev)) {
4869 		ret = intel_init_vebox_ring_buffer(dev);
4870 		if (ret)
4871 			goto cleanup_blt_ring;
4872 	}
4873 
4874 	if (HAS_BSD2(dev)) {
4875 		ret = intel_init_bsd2_ring_buffer(dev);
4876 		if (ret)
4877 			goto cleanup_vebox_ring;
4878 	}
4879 
4880 	return 0;
4881 
4882 cleanup_vebox_ring:
4883 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4884 cleanup_blt_ring:
4885 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4886 cleanup_bsd_ring:
4887 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4888 cleanup_render_ring:
4889 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4890 
4891 	return ret;
4892 }
4893 
4894 int
4895 i915_gem_init_hw(struct drm_device *dev)
4896 {
4897 	struct drm_i915_private *dev_priv = dev->dev_private;
4898 	struct intel_engine_cs *ring;
4899 	int ret, i, j;
4900 
4901 #if 0
4902 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4903 		return -EIO;
4904 #endif
4905 
4906 	/* Double layer security blanket, see i915_gem_init() */
4907 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4908 
4909 	if (dev_priv->ellc_size)
4910 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4911 
4912 	if (IS_HASWELL(dev))
4913 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4914 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4915 
4916 	if (HAS_PCH_NOP(dev)) {
4917 		if (IS_IVYBRIDGE(dev)) {
4918 			u32 temp = I915_READ(GEN7_MSG_CTL);
4919 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4920 			I915_WRITE(GEN7_MSG_CTL, temp);
4921 		} else if (INTEL_INFO(dev)->gen >= 7) {
4922 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4923 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4924 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4925 		}
4926 	}
4927 
4928 	i915_gem_init_swizzling(dev);
4929 
4930 	/*
4931 	 * At least 830 can leave some of the unused rings
4932 	 * "active" (ie. head != tail) after resume which
4933 	 * will prevent c3 entry. Makes sure all unused rings
4934 	 * are totally idle.
4935 	 */
4936 	init_unused_rings(dev);
4937 
4938 	BUG_ON(!dev_priv->ring[RCS].default_context);
4939 
4940 	ret = i915_ppgtt_init_hw(dev);
4941 	if (ret) {
4942 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4943 		goto out;
4944 	}
4945 
4946 	/* Need to do basic initialisation of all rings first: */
4947 	for_each_ring(ring, dev_priv, i) {
4948 		ret = ring->init_hw(ring);
4949 		if (ret)
4950 			goto out;
4951 	}
4952 
4953 	/* We can't enable contexts until all firmware is loaded */
4954 	if (HAS_GUC_UCODE(dev)) {
4955 #ifndef __DragonFly__
4956 		ret = intel_guc_ucode_load(dev);
4957 #else
4958 		ret = -ENOEXEC;
4959 #endif
4960 		if (ret) {
4961 			/*
4962 			 * If we got an error and GuC submission is enabled, map
4963 			 * the error to -EIO so the GPU will be declared wedged.
4964 			 * OTOH, if we didn't intend to use the GuC anyway, just
4965 			 * discard the error and carry on.
4966 			 */
4967 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4968 				  i915.enable_guc_submission ? "" :
4969 				  " (ignored)");
4970 			ret = i915.enable_guc_submission ? -EIO : 0;
4971 			if (ret)
4972 				goto out;
4973 		}
4974 	}
4975 
4976 	/*
4977 	 * Increment the next seqno by 0x100 so we have a visible break
4978 	 * on re-initialisation
4979 	 */
4980 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4981 	if (ret)
4982 		goto out;
4983 
4984 	/* Now it is safe to go back round and do everything else: */
4985 	for_each_ring(ring, dev_priv, i) {
4986 		struct drm_i915_gem_request *req;
4987 
4988 		WARN_ON(!ring->default_context);
4989 
4990 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4991 		if (ret) {
4992 			i915_gem_cleanup_ringbuffer(dev);
4993 			goto out;
4994 		}
4995 
4996 		if (ring->id == RCS) {
4997 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4998 				i915_gem_l3_remap(req, j);
4999 		}
5000 
5001 		ret = i915_ppgtt_init_ring(req);
5002 		if (ret && ret != -EIO) {
5003 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5004 			i915_gem_request_cancel(req);
5005 			i915_gem_cleanup_ringbuffer(dev);
5006 			goto out;
5007 		}
5008 
5009 		ret = i915_gem_context_enable(req);
5010 		if (ret && ret != -EIO) {
5011 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5012 			i915_gem_request_cancel(req);
5013 			i915_gem_cleanup_ringbuffer(dev);
5014 			goto out;
5015 		}
5016 
5017 		i915_add_request_no_flush(req);
5018 	}
5019 
5020 out:
5021 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5022 	return ret;
5023 }
5024 
5025 int i915_gem_init(struct drm_device *dev)
5026 {
5027 	struct drm_i915_private *dev_priv = dev->dev_private;
5028 	int ret;
5029 
5030 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5031 			i915.enable_execlists);
5032 
5033 	mutex_lock(&dev->struct_mutex);
5034 
5035 	if (IS_VALLEYVIEW(dev)) {
5036 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5037 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5038 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5039 			      VLV_GTLC_ALLOWWAKEACK), 10))
5040 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5041 	}
5042 
5043 	if (!i915.enable_execlists) {
5044 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5045 		dev_priv->gt.init_rings = i915_gem_init_rings;
5046 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5047 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5048 	} else {
5049 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5050 		dev_priv->gt.init_rings = intel_logical_rings_init;
5051 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5052 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5053 	}
5054 
5055 	/* This is just a security blanket to placate dragons.
5056 	 * On some systems, we very sporadically observe that the first TLBs
5057 	 * used by the CS may be stale, despite us poking the TLB reset. If
5058 	 * we hold the forcewake during initialisation these problems
5059 	 * just magically go away.
5060 	 */
5061 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5062 
5063 	ret = i915_gem_init_userptr(dev);
5064 	if (ret)
5065 		goto out_unlock;
5066 
5067 	i915_gem_init_global_gtt(dev);
5068 
5069 	ret = i915_gem_context_init(dev);
5070 	if (ret)
5071 		goto out_unlock;
5072 
5073 	ret = dev_priv->gt.init_rings(dev);
5074 	if (ret)
5075 		goto out_unlock;
5076 
5077 	ret = i915_gem_init_hw(dev);
5078 	if (ret == -EIO) {
5079 		/* Allow ring initialisation to fail by marking the GPU as
5080 		 * wedged. But we only want to do this where the GPU is angry,
5081 		 * for all other failure, such as an allocation failure, bail.
5082 		 */
5083 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5084 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5085 		ret = 0;
5086 	}
5087 
5088 out_unlock:
5089 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5090 	mutex_unlock(&dev->struct_mutex);
5091 
5092 	return ret;
5093 }
5094 
5095 void
5096 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5097 {
5098 	struct drm_i915_private *dev_priv = dev->dev_private;
5099 	struct intel_engine_cs *ring;
5100 	int i;
5101 
5102 	for_each_ring(ring, dev_priv, i)
5103 		dev_priv->gt.cleanup_ring(ring);
5104 
5105     if (i915.enable_execlists)
5106             /*
5107              * Neither the BIOS, ourselves or any other kernel
5108              * expects the system to be in execlists mode on startup,
5109              * so we need to reset the GPU back to legacy mode.
5110              */
5111             intel_gpu_reset(dev);
5112 }
5113 
5114 static void
5115 init_ring_lists(struct intel_engine_cs *ring)
5116 {
5117 	INIT_LIST_HEAD(&ring->active_list);
5118 	INIT_LIST_HEAD(&ring->request_list);
5119 }
5120 
5121 void
5122 i915_gem_load(struct drm_device *dev)
5123 {
5124 	struct drm_i915_private *dev_priv = dev->dev_private;
5125 	int i;
5126 
5127 	INIT_LIST_HEAD(&dev_priv->vm_list);
5128 	INIT_LIST_HEAD(&dev_priv->context_list);
5129 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5130 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5131 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5132 	for (i = 0; i < I915_NUM_RINGS; i++)
5133 		init_ring_lists(&dev_priv->ring[i]);
5134 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5135 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5136 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5137 			  i915_gem_retire_work_handler);
5138 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5139 			  i915_gem_idle_work_handler);
5140 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5141 
5142 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5143 
5144 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5145 		dev_priv->num_fence_regs = 32;
5146 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5147 		dev_priv->num_fence_regs = 16;
5148 	else
5149 		dev_priv->num_fence_regs = 8;
5150 
5151 	if (intel_vgpu_active(dev))
5152 		dev_priv->num_fence_regs =
5153 				I915_READ(vgtif_reg(avail_rs.fence_num));
5154 
5155 	/*
5156 	 * Set initial sequence number for requests.
5157 	 * Using this number allows the wraparound to happen early,
5158 	 * catching any obvious problems.
5159 	 */
5160 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5161 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5162 
5163 	/* Initialize fence registers to zero */
5164 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5165 	i915_gem_restore_fences(dev);
5166 
5167 	i915_gem_detect_bit_6_swizzle(dev);
5168 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5169 
5170 	dev_priv->mm.interruptible = true;
5171 
5172 	i915_gem_shrinker_init(dev_priv);
5173 
5174 	lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, LK_CANRECURSE);
5175 }
5176 
5177 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5178 {
5179 	struct drm_i915_file_private *file_priv = file->driver_priv;
5180 
5181 	/* Clean up our request list when the client is going away, so that
5182 	 * later retire_requests won't dereference our soon-to-be-gone
5183 	 * file_priv.
5184 	 */
5185 	spin_lock(&file_priv->mm.lock);
5186 	while (!list_empty(&file_priv->mm.request_list)) {
5187 		struct drm_i915_gem_request *request;
5188 
5189 		request = list_first_entry(&file_priv->mm.request_list,
5190 					   struct drm_i915_gem_request,
5191 					   client_list);
5192 		list_del(&request->client_list);
5193 		request->file_priv = NULL;
5194 	}
5195 	spin_unlock(&file_priv->mm.lock);
5196 
5197 	if (!list_empty(&file_priv->rps.link)) {
5198 		lockmgr(&to_i915(dev)->rps.client_lock, LK_EXCLUSIVE);
5199 		list_del(&file_priv->rps.link);
5200 		lockmgr(&to_i915(dev)->rps.client_lock, LK_RELEASE);
5201 	}
5202 }
5203 
5204 int
5205 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5206     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5207 {
5208 	*color = 0; /* XXXKIB */
5209 	return (0);
5210 }
5211 
5212 void
5213 i915_gem_pager_dtor(void *handle)
5214 {
5215 	struct drm_gem_object *obj;
5216 	struct drm_device *dev;
5217 
5218 	obj = handle;
5219 	dev = obj->dev;
5220 
5221 	mutex_lock(&dev->struct_mutex);
5222 	drm_gem_free_mmap_offset(obj);
5223 	i915_gem_release_mmap(to_intel_bo(obj));
5224 	drm_gem_object_unreference(obj);
5225 	mutex_unlock(&dev->struct_mutex);
5226 }
5227 
5228 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5229 {
5230 	struct drm_i915_file_private *file_priv;
5231 	int ret;
5232 
5233 	DRM_DEBUG_DRIVER("\n");
5234 
5235 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5236 	if (!file_priv)
5237 		return -ENOMEM;
5238 
5239 	file->driver_priv = file_priv;
5240 	file_priv->dev_priv = dev->dev_private;
5241 	file_priv->file = file;
5242 	INIT_LIST_HEAD(&file_priv->rps.link);
5243 
5244 	spin_init(&file_priv->mm.lock, "i915_priv");
5245 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5246 
5247 	ret = i915_gem_context_open(dev, file);
5248 	if (ret)
5249 		kfree(file_priv);
5250 
5251 	return ret;
5252 }
5253 
5254 /**
5255  * i915_gem_track_fb - update frontbuffer tracking
5256  * @old: current GEM buffer for the frontbuffer slots
5257  * @new: new GEM buffer for the frontbuffer slots
5258  * @frontbuffer_bits: bitmask of frontbuffer slots
5259  *
5260  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5261  * from @old and setting them in @new. Both @old and @new can be NULL.
5262  */
5263 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5264 		       struct drm_i915_gem_object *new,
5265 		       unsigned frontbuffer_bits)
5266 {
5267 	if (old) {
5268 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5269 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5270 		old->frontbuffer_bits &= ~frontbuffer_bits;
5271 	}
5272 
5273 	if (new) {
5274 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5275 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5276 		new->frontbuffer_bits |= frontbuffer_bits;
5277 	}
5278 }
5279 
5280 /* All the new VM stuff */
5281 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5282 			struct i915_address_space *vm)
5283 {
5284 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5285 	struct i915_vma *vma;
5286 
5287 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5288 
5289 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5290 		if (i915_is_ggtt(vma->vm) &&
5291 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5292 			continue;
5293 		if (vma->vm == vm)
5294 			return vma->node.start;
5295 	}
5296 
5297 	WARN(1, "%s vma for this object not found.\n",
5298 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5299 	return -1;
5300 }
5301 
5302 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5303 				  const struct i915_ggtt_view *view)
5304 {
5305 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5306 	struct i915_vma *vma;
5307 
5308 	list_for_each_entry(vma, &o->vma_list, vma_link)
5309 		if (vma->vm == ggtt &&
5310 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5311 			return vma->node.start;
5312 
5313 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5314 	return -1;
5315 }
5316 
5317 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5318 			struct i915_address_space *vm)
5319 {
5320 	struct i915_vma *vma;
5321 
5322 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5323 		if (i915_is_ggtt(vma->vm) &&
5324 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5325 			continue;
5326 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5327 			return true;
5328 	}
5329 
5330 	return false;
5331 }
5332 
5333 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5334 				  const struct i915_ggtt_view *view)
5335 {
5336 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5337 	struct i915_vma *vma;
5338 
5339 	list_for_each_entry(vma, &o->vma_list, vma_link)
5340 		if (vma->vm == ggtt &&
5341 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5342 		    drm_mm_node_allocated(&vma->node))
5343 			return true;
5344 
5345 	return false;
5346 }
5347 
5348 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5349 {
5350 	struct i915_vma *vma;
5351 
5352 	list_for_each_entry(vma, &o->vma_list, vma_link)
5353 		if (drm_mm_node_allocated(&vma->node))
5354 			return true;
5355 
5356 	return false;
5357 }
5358 
5359 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5360 				struct i915_address_space *vm)
5361 {
5362 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5363 	struct i915_vma *vma;
5364 
5365 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5366 
5367 	BUG_ON(list_empty(&o->vma_list));
5368 
5369 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5370 		if (i915_is_ggtt(vma->vm) &&
5371 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5372 			continue;
5373 		if (vma->vm == vm)
5374 			return vma->node.size;
5375 	}
5376 	return 0;
5377 }
5378 
5379 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5380 {
5381 	struct i915_vma *vma;
5382 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5383 		if (vma->pin_count > 0)
5384 			return true;
5385 
5386 	return false;
5387 }
5388 
5389 #if 0
5390 /* Allocate a new GEM object and fill it with the supplied data */
5391 struct drm_i915_gem_object *
5392 i915_gem_object_create_from_data(struct drm_device *dev,
5393 			         const void *data, size_t size)
5394 {
5395 	struct drm_i915_gem_object *obj;
5396 	struct sg_table *sg;
5397 	size_t bytes;
5398 	int ret;
5399 
5400 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5401 	if (IS_ERR_OR_NULL(obj))
5402 		return obj;
5403 
5404 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5405 	if (ret)
5406 		goto fail;
5407 
5408 	ret = i915_gem_object_get_pages(obj);
5409 	if (ret)
5410 		goto fail;
5411 
5412 	i915_gem_object_pin_pages(obj);
5413 	sg = obj->pages;
5414 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5415 	i915_gem_object_unpin_pages(obj);
5416 
5417 	if (WARN_ON(bytes != size)) {
5418 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5419 		ret = -EFAULT;
5420 		goto fail;
5421 	}
5422 
5423 	return obj;
5424 
5425 fail:
5426 	drm_gem_object_unreference(&obj->base);
5427 	return ERR_PTR(ret);
5428 }
5429 #endif
5430