xref: /dragonfly/sys/dev/drm/i915/i915_gem_gtt.c (revision 207ba670)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 #include <sys/mplock2.h>
36 
37 /**
38  * DOC: Global GTT views
39  *
40  * Background and previous state
41  *
42  * Historically objects could exists (be bound) in global GTT space only as
43  * singular instances with a view representing all of the object's backing pages
44  * in a linear fashion. This view will be called a normal view.
45  *
46  * To support multiple views of the same object, where the number of mapped
47  * pages is not equal to the backing store, or where the layout of the pages
48  * is not linear, concept of a GGTT view was added.
49  *
50  * One example of an alternative view is a stereo display driven by a single
51  * image. In this case we would have a framebuffer looking like this
52  * (2x2 pages):
53  *
54  *    12
55  *    34
56  *
57  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
58  * rendering. In contrast, fed to the display engine would be an alternative
59  * view which could look something like this:
60  *
61  *   1212
62  *   3434
63  *
64  * In this example both the size and layout of pages in the alternative view is
65  * different from the normal view.
66  *
67  * Implementation and usage
68  *
69  * GGTT views are implemented using VMAs and are distinguished via enum
70  * i915_ggtt_view_type and struct i915_ggtt_view.
71  *
72  * A new flavour of core GEM functions which work with GGTT bound objects were
73  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
74  * renaming  in large amounts of code. They take the struct i915_ggtt_view
75  * parameter encapsulating all metadata required to implement a view.
76  *
77  * As a helper for callers which are only interested in the normal view,
78  * globally const i915_ggtt_view_normal singleton instance exists. All old core
79  * GEM API functions, the ones not taking the view parameter, are operating on,
80  * or with the normal GGTT view.
81  *
82  * Code wanting to add or use a new GGTT view needs to:
83  *
84  * 1. Add a new enum with a suitable name.
85  * 2. Extend the metadata in the i915_ggtt_view structure if required.
86  * 3. Add support to i915_get_vma_pages().
87  *
88  * New views are required to build a scatter-gather table from within the
89  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
90  * exists for the lifetime of an VMA.
91  *
92  * Core API is designed to have copy semantics which means that passed in
93  * struct i915_ggtt_view does not need to be persistent (left around after
94  * calling the core API functions).
95  *
96  */
97 
98 static inline struct i915_ggtt *
99 i915_vm_to_ggtt(struct i915_address_space *vm)
100 {
101 	GEM_BUG_ON(!i915_is_ggtt(vm));
102 	return container_of(vm, struct i915_ggtt, base);
103 }
104 
105 static int
106 i915_get_ggtt_vma_pages(struct i915_vma *vma);
107 
108 const struct i915_ggtt_view i915_ggtt_view_normal = {
109 	.type = I915_GGTT_VIEW_NORMAL,
110 };
111 const struct i915_ggtt_view i915_ggtt_view_rotated = {
112 	.type = I915_GGTT_VIEW_ROTATED,
113 };
114 
115 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
116 			       	int enable_ppgtt)
117 {
118 	bool has_aliasing_ppgtt;
119 	bool has_full_ppgtt;
120 	bool has_full_48bit_ppgtt;
121 
122 	has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
123 	has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
124 	has_full_48bit_ppgtt =
125 	       	IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
126 
127 	if (intel_vgpu_active(dev_priv)) {
128 		/* emulation is too hard */
129 		has_full_ppgtt = false;
130 		has_full_48bit_ppgtt = false;
131 	}
132 
133 	if (!has_aliasing_ppgtt)
134 		return 0;
135 
136 	/*
137 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
138 	 * execlists, the sole mechanism available to submit work.
139 	 */
140 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
141 		return 0;
142 
143 	if (enable_ppgtt == 1)
144 		return 1;
145 
146 	if (enable_ppgtt == 2 && has_full_ppgtt)
147 		return 2;
148 
149 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
150 		return 3;
151 
152 #ifdef CONFIG_INTEL_IOMMU
153 	/* Disable ppgtt on SNB if VT-d is on. */
154 	if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
155 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
156 		return 0;
157 	}
158 #endif
159 
160 	/* Early VLV doesn't have this */
161 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
162 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
163 		return 0;
164 	}
165 
166 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
167 		return has_full_48bit_ppgtt ? 3 : 2;
168 	else
169 		return has_aliasing_ppgtt ? 1 : 0;
170 }
171 
172 static int ppgtt_bind_vma(struct i915_vma *vma,
173 			  enum i915_cache_level cache_level,
174 			  u32 unused)
175 {
176 	u32 pte_flags = 0;
177 
178 	/* Currently applicable only to VLV */
179 	if (vma->obj->gt_ro)
180 		pte_flags |= PTE_READ_ONLY;
181 
182 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
183 				cache_level, pte_flags);
184 
185 	return 0;
186 }
187 
188 static void ppgtt_unbind_vma(struct i915_vma *vma)
189 {
190 	vma->vm->clear_range(vma->vm,
191 			     vma->node.start,
192 			     vma->obj->base.size,
193 			     true);
194 }
195 
196 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
197 				  enum i915_cache_level level,
198 				  bool valid)
199 {
200 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
201 	pte |= addr;
202 
203 	switch (level) {
204 	case I915_CACHE_NONE:
205 		pte |= PPAT_UNCACHED_INDEX;
206 		break;
207 	case I915_CACHE_WT:
208 		pte |= PPAT_DISPLAY_ELLC_INDEX;
209 		break;
210 	default:
211 		pte |= PPAT_CACHED_INDEX;
212 		break;
213 	}
214 
215 	return pte;
216 }
217 
218 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
219 				  const enum i915_cache_level level)
220 {
221 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
222 	pde |= addr;
223 	if (level != I915_CACHE_NONE)
224 		pde |= PPAT_CACHED_PDE_INDEX;
225 	else
226 		pde |= PPAT_UNCACHED_INDEX;
227 	return pde;
228 }
229 
230 #define gen8_pdpe_encode gen8_pde_encode
231 #define gen8_pml4e_encode gen8_pde_encode
232 
233 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
234 				 enum i915_cache_level level,
235 				 bool valid, u32 unused)
236 {
237 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
238 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
239 
240 	switch (level) {
241 	case I915_CACHE_L3_LLC:
242 	case I915_CACHE_LLC:
243 		pte |= GEN6_PTE_CACHE_LLC;
244 		break;
245 	case I915_CACHE_NONE:
246 		pte |= GEN6_PTE_UNCACHED;
247 		break;
248 	default:
249 		MISSING_CASE(level);
250 	}
251 
252 	return pte;
253 }
254 
255 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
256 				 enum i915_cache_level level,
257 				 bool valid, u32 unused)
258 {
259 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
260 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
261 
262 	switch (level) {
263 	case I915_CACHE_L3_LLC:
264 		pte |= GEN7_PTE_CACHE_L3_LLC;
265 		break;
266 	case I915_CACHE_LLC:
267 		pte |= GEN6_PTE_CACHE_LLC;
268 		break;
269 	case I915_CACHE_NONE:
270 		pte |= GEN6_PTE_UNCACHED;
271 		break;
272 	default:
273 		MISSING_CASE(level);
274 	}
275 
276 	return pte;
277 }
278 
279 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
280 				 enum i915_cache_level level,
281 				 bool valid, u32 flags)
282 {
283 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
284 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
285 
286 	if (!(flags & PTE_READ_ONLY))
287 		pte |= BYT_PTE_WRITEABLE;
288 
289 	if (level != I915_CACHE_NONE)
290 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
291 
292 	return pte;
293 }
294 
295 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
296 				 enum i915_cache_level level,
297 				 bool valid, u32 unused)
298 {
299 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
300 	pte |= HSW_PTE_ADDR_ENCODE(addr);
301 
302 	if (level != I915_CACHE_NONE)
303 		pte |= HSW_WB_LLC_AGE3;
304 
305 	return pte;
306 }
307 
308 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
309 				  enum i915_cache_level level,
310 				  bool valid, u32 unused)
311 {
312 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
313 	pte |= HSW_PTE_ADDR_ENCODE(addr);
314 
315 	switch (level) {
316 	case I915_CACHE_NONE:
317 		break;
318 	case I915_CACHE_WT:
319 		pte |= HSW_WT_ELLC_LLC_AGE3;
320 		break;
321 	default:
322 		pte |= HSW_WB_ELLC_LLC_AGE3;
323 		break;
324 	}
325 
326 	return pte;
327 }
328 
329 static int __setup_page_dma(struct drm_device *dev,
330 			    struct i915_page_dma *p, gfp_t flags)
331 {
332 	struct device *device = &dev->pdev->dev;
333 
334 	p->page = alloc_page(flags);
335 	if (!p->page)
336 		return -ENOMEM;
337 
338 	p->daddr = dma_map_page(device,
339 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
340 
341 	if (dma_mapping_error(device, p->daddr)) {
342 		__free_page(p->page);
343 		return -EINVAL;
344 	}
345 
346 	return 0;
347 }
348 
349 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
350 {
351 	return __setup_page_dma(dev, p, GFP_KERNEL);
352 }
353 
354 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
355 {
356 	if (WARN_ON(!p->page))
357 		return;
358 
359 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
360 	__free_page(p->page);
361 	memset(p, 0, sizeof(*p));
362 }
363 
364 static void *kmap_page_dma(struct i915_page_dma *p)
365 {
366 	return kmap_atomic(p->page);
367 }
368 
369 /* We use the flushing unmap only with ppgtt structures:
370  * page directories, page tables and scratch pages.
371  */
372 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
373 {
374 	/* There are only few exceptions for gen >=6. chv and bxt.
375 	 * And we are not sure about the latter so play safe for now.
376 	 */
377 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
378 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
379 
380 	kunmap_atomic(vaddr);
381 }
382 
383 #define kmap_px(px) kmap_page_dma(px_base(px))
384 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
385 
386 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
387 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
388 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
389 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
390 
391 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
392 			  const uint64_t val)
393 {
394 	int i;
395 	uint64_t * const vaddr = kmap_page_dma(p);
396 
397 	for (i = 0; i < 512; i++)
398 		vaddr[i] = val;
399 
400 	kunmap_page_dma(dev, vaddr);
401 }
402 
403 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
404 			     const uint32_t val32)
405 {
406 	uint64_t v = val32;
407 
408 	v = v << 32 | val32;
409 
410 	fill_page_dma(dev, p, v);
411 }
412 
413 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
414 {
415 	struct i915_page_scratch *sp;
416 	int ret;
417 
418 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
419 	if (sp == NULL)
420 		return ERR_PTR(-ENOMEM);
421 
422 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
423 	if (ret) {
424 		kfree(sp);
425 		return ERR_PTR(ret);
426 	}
427 
428 	set_pages_uc(px_page(sp), 1);
429 
430 	return sp;
431 }
432 
433 static void free_scratch_page(struct drm_device *dev,
434 			      struct i915_page_scratch *sp)
435 {
436 	set_pages_wb(px_page(sp), 1);
437 
438 	cleanup_px(dev, sp);
439 	kfree(sp);
440 }
441 
442 static struct i915_page_table *alloc_pt(struct drm_device *dev)
443 {
444 	struct i915_page_table *pt;
445 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
446 		GEN8_PTES : GEN6_PTES;
447 	int ret = -ENOMEM;
448 
449 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
450 	if (!pt)
451 		return ERR_PTR(-ENOMEM);
452 
453 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
454 				GFP_KERNEL);
455 
456 	if (!pt->used_ptes)
457 		goto fail_bitmap;
458 
459 	ret = setup_px(dev, pt);
460 	if (ret)
461 		goto fail_page_m;
462 
463 	return pt;
464 
465 fail_page_m:
466 	kfree(pt->used_ptes);
467 fail_bitmap:
468 	kfree(pt);
469 
470 	return ERR_PTR(ret);
471 }
472 
473 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
474 {
475 	cleanup_px(dev, pt);
476 	kfree(pt->used_ptes);
477 	kfree(pt);
478 }
479 
480 static void gen8_initialize_pt(struct i915_address_space *vm,
481 			       struct i915_page_table *pt)
482 {
483 	gen8_pte_t scratch_pte;
484 
485 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
486 				      I915_CACHE_LLC, true);
487 
488 	fill_px(vm->dev, pt, scratch_pte);
489 }
490 
491 static void gen6_initialize_pt(struct i915_address_space *vm,
492 			       struct i915_page_table *pt)
493 {
494 	gen6_pte_t scratch_pte;
495 
496 	WARN_ON(px_dma(vm->scratch_page) == 0);
497 
498 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
499 				     I915_CACHE_LLC, true, 0);
500 
501 	fill32_px(vm->dev, pt, scratch_pte);
502 }
503 
504 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
505 {
506 	struct i915_page_directory *pd;
507 	int ret = -ENOMEM;
508 
509 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
510 	if (!pd)
511 		return ERR_PTR(-ENOMEM);
512 
513 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
514 				sizeof(*pd->used_pdes), GFP_KERNEL);
515 	if (!pd->used_pdes)
516 		goto fail_bitmap;
517 
518 	ret = setup_px(dev, pd);
519 	if (ret)
520 		goto fail_page_m;
521 
522 	return pd;
523 
524 fail_page_m:
525 	kfree(pd->used_pdes);
526 fail_bitmap:
527 	kfree(pd);
528 
529 	return ERR_PTR(ret);
530 }
531 
532 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
533 {
534 	if (px_page(pd)) {
535 		cleanup_px(dev, pd);
536 		kfree(pd->used_pdes);
537 		kfree(pd);
538 	}
539 }
540 
541 static void gen8_initialize_pd(struct i915_address_space *vm,
542 			       struct i915_page_directory *pd)
543 {
544 	gen8_pde_t scratch_pde;
545 
546 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
547 
548 	fill_px(vm->dev, pd, scratch_pde);
549 }
550 
551 static int __pdp_init(struct drm_device *dev,
552 		      struct i915_page_directory_pointer *pdp)
553 {
554 	size_t pdpes = I915_PDPES_PER_PDP(dev);
555 
556 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
557 				  sizeof(unsigned long),
558 				  GFP_KERNEL);
559 	if (!pdp->used_pdpes)
560 		return -ENOMEM;
561 
562 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
563 				      GFP_KERNEL);
564 	if (!pdp->page_directory) {
565 		kfree(pdp->used_pdpes);
566 		/* the PDP might be the statically allocated top level. Keep it
567 		 * as clean as possible */
568 		pdp->used_pdpes = NULL;
569 		return -ENOMEM;
570 	}
571 
572 	return 0;
573 }
574 
575 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
576 {
577 	kfree(pdp->used_pdpes);
578 	kfree(pdp->page_directory);
579 	pdp->page_directory = NULL;
580 }
581 
582 static struct
583 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
584 {
585 	struct i915_page_directory_pointer *pdp;
586 	int ret = -ENOMEM;
587 
588 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
589 
590 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
591 	if (!pdp)
592 		return ERR_PTR(-ENOMEM);
593 
594 	ret = __pdp_init(dev, pdp);
595 	if (ret)
596 		goto fail_bitmap;
597 
598 	ret = setup_px(dev, pdp);
599 	if (ret)
600 		goto fail_page_m;
601 
602 	return pdp;
603 
604 fail_page_m:
605 	__pdp_fini(pdp);
606 fail_bitmap:
607 	kfree(pdp);
608 
609 	return ERR_PTR(ret);
610 }
611 
612 static void free_pdp(struct drm_device *dev,
613 		     struct i915_page_directory_pointer *pdp)
614 {
615 	__pdp_fini(pdp);
616 	if (USES_FULL_48BIT_PPGTT(dev)) {
617 		cleanup_px(dev, pdp);
618 		kfree(pdp);
619 	}
620 }
621 
622 static void gen8_initialize_pdp(struct i915_address_space *vm,
623 				struct i915_page_directory_pointer *pdp)
624 {
625 	gen8_ppgtt_pdpe_t scratch_pdpe;
626 
627 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
628 
629 	fill_px(vm->dev, pdp, scratch_pdpe);
630 }
631 
632 static void gen8_initialize_pml4(struct i915_address_space *vm,
633 				 struct i915_pml4 *pml4)
634 {
635 	gen8_ppgtt_pml4e_t scratch_pml4e;
636 
637 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
638 					  I915_CACHE_LLC);
639 
640 	fill_px(vm->dev, pml4, scratch_pml4e);
641 }
642 
643 static void
644 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
645 			  struct i915_page_directory_pointer *pdp,
646 			  struct i915_page_directory *pd,
647 			  int index)
648 {
649 	gen8_ppgtt_pdpe_t *page_directorypo;
650 
651 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
652 		return;
653 
654 	page_directorypo = kmap_px(pdp);
655 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
656 	kunmap_px(ppgtt, page_directorypo);
657 }
658 
659 static void
660 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
661 				  struct i915_pml4 *pml4,
662 				  struct i915_page_directory_pointer *pdp,
663 				  int index)
664 {
665 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
666 
667 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
668 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
669 	kunmap_px(ppgtt, pagemap);
670 }
671 
672 /* Broadwell Page Directory Pointer Descriptors */
673 static int gen8_write_pdp(struct drm_i915_gem_request *req,
674 			  unsigned entry,
675 			  dma_addr_t addr)
676 {
677 	struct intel_engine_cs *engine = req->engine;
678 	int ret;
679 
680 	BUG_ON(entry >= 4);
681 
682 	ret = intel_ring_begin(req, 6);
683 	if (ret)
684 		return ret;
685 
686 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
687 	intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
688 	intel_ring_emit(engine, upper_32_bits(addr));
689 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
690 	intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
691 	intel_ring_emit(engine, lower_32_bits(addr));
692 	intel_ring_advance(engine);
693 
694 	return 0;
695 }
696 
697 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
698 				 struct drm_i915_gem_request *req)
699 {
700 	int i, ret;
701 
702 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
703 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
704 
705 		ret = gen8_write_pdp(req, i, pd_daddr);
706 		if (ret)
707 			return ret;
708 	}
709 
710 	return 0;
711 }
712 
713 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
714 			      struct drm_i915_gem_request *req)
715 {
716 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
717 }
718 
719 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
720 				       struct i915_page_directory_pointer *pdp,
721 				       uint64_t start,
722 				       uint64_t length,
723 				       gen8_pte_t scratch_pte)
724 {
725 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
726 	gen8_pte_t *pt_vaddr;
727 	unsigned pdpe = gen8_pdpe_index(start);
728 	unsigned pde = gen8_pde_index(start);
729 	unsigned pte = gen8_pte_index(start);
730 	unsigned num_entries = length >> PAGE_SHIFT;
731 	unsigned last_pte, i;
732 
733 	if (WARN_ON(!pdp))
734 		return;
735 
736 	while (num_entries) {
737 		struct i915_page_directory *pd;
738 		struct i915_page_table *pt;
739 
740 		if (WARN_ON(!pdp->page_directory[pdpe]))
741 			break;
742 
743 		pd = pdp->page_directory[pdpe];
744 
745 		if (WARN_ON(!pd->page_table[pde]))
746 			break;
747 
748 		pt = pd->page_table[pde];
749 
750 		if (WARN_ON(!px_page(pt)))
751 			break;
752 
753 		last_pte = pte + num_entries;
754 		if (last_pte > GEN8_PTES)
755 			last_pte = GEN8_PTES;
756 
757 		pt_vaddr = kmap_px(pt);
758 
759 		for (i = pte; i < last_pte; i++) {
760 			pt_vaddr[i] = scratch_pte;
761 			num_entries--;
762 		}
763 
764 		kunmap_px(ppgtt, pt_vaddr);
765 
766 		pte = 0;
767 		if (++pde == I915_PDES) {
768 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
769 				break;
770 			pde = 0;
771 		}
772 	}
773 }
774 
775 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
776 				   uint64_t start,
777 				   uint64_t length,
778 				   bool use_scratch)
779 {
780 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
781 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
782 						 I915_CACHE_LLC, use_scratch);
783 
784 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
785 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
786 					   scratch_pte);
787 	} else {
788 		uint64_t pml4e;
789 		struct i915_page_directory_pointer *pdp;
790 
791 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
792 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
793 						   scratch_pte);
794 		}
795 	}
796 }
797 
798 static void
799 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
800 			      struct i915_page_directory_pointer *pdp,
801 			      struct sg_page_iter *sg_iter,
802 			      uint64_t start,
803 			      enum i915_cache_level cache_level)
804 {
805 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
806 	gen8_pte_t *pt_vaddr;
807 	unsigned pdpe = gen8_pdpe_index(start);
808 	unsigned pde = gen8_pde_index(start);
809 	unsigned pte = gen8_pte_index(start);
810 
811 	pt_vaddr = NULL;
812 
813 	while (__sg_page_iter_next(sg_iter)) {
814 		if (pt_vaddr == NULL) {
815 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
816 			struct i915_page_table *pt = pd->page_table[pde];
817 			pt_vaddr = kmap_px(pt);
818 		}
819 
820 		pt_vaddr[pte] =
821 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
822 					cache_level, true);
823 		if (++pte == GEN8_PTES) {
824 			kunmap_px(ppgtt, pt_vaddr);
825 			pt_vaddr = NULL;
826 			if (++pde == I915_PDES) {
827 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
828 					break;
829 				pde = 0;
830 			}
831 			pte = 0;
832 		}
833 	}
834 
835 	if (pt_vaddr)
836 		kunmap_px(ppgtt, pt_vaddr);
837 }
838 
839 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
840 				      struct sg_table *pages,
841 				      uint64_t start,
842 				      enum i915_cache_level cache_level,
843 				      u32 unused)
844 {
845 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
846 	struct sg_page_iter sg_iter;
847 
848 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
849 
850 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
851 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
852 					      cache_level);
853 	} else {
854 		struct i915_page_directory_pointer *pdp;
855 		uint64_t pml4e;
856 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
857 
858 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
859 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
860 						      start, cache_level);
861 		}
862 	}
863 }
864 
865 static void gen8_free_page_tables(struct drm_device *dev,
866 				  struct i915_page_directory *pd)
867 {
868 	int i;
869 
870 	if (!px_page(pd))
871 		return;
872 
873 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
874 		if (WARN_ON(!pd->page_table[i]))
875 			continue;
876 
877 		free_pt(dev, pd->page_table[i]);
878 		pd->page_table[i] = NULL;
879 	}
880 }
881 
882 static int gen8_init_scratch(struct i915_address_space *vm)
883 {
884 	struct drm_device *dev = vm->dev;
885 	int ret;
886 
887 	vm->scratch_page = alloc_scratch_page(dev);
888 	if (IS_ERR(vm->scratch_page))
889 		return PTR_ERR(vm->scratch_page);
890 
891 	vm->scratch_pt = alloc_pt(dev);
892 	if (IS_ERR(vm->scratch_pt)) {
893 		ret = PTR_ERR(vm->scratch_pt);
894 		goto free_scratch_page;
895 	}
896 
897 	vm->scratch_pd = alloc_pd(dev);
898 	if (IS_ERR(vm->scratch_pd)) {
899 		ret = PTR_ERR(vm->scratch_pd);
900 		goto free_pt;
901 	}
902 
903 	if (USES_FULL_48BIT_PPGTT(dev)) {
904 		vm->scratch_pdp = alloc_pdp(dev);
905 		if (IS_ERR(vm->scratch_pdp)) {
906 			ret = PTR_ERR(vm->scratch_pdp);
907 			goto free_pd;
908 		}
909 	}
910 
911 	gen8_initialize_pt(vm, vm->scratch_pt);
912 	gen8_initialize_pd(vm, vm->scratch_pd);
913 	if (USES_FULL_48BIT_PPGTT(dev))
914 		gen8_initialize_pdp(vm, vm->scratch_pdp);
915 
916 	return 0;
917 
918 free_pd:
919 	free_pd(dev, vm->scratch_pd);
920 free_pt:
921 	free_pt(dev, vm->scratch_pt);
922 free_scratch_page:
923 	free_scratch_page(dev, vm->scratch_page);
924 
925 	return ret;
926 }
927 
928 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
929 {
930 	enum vgt_g2v_type msg;
931 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
932 	int i;
933 
934 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
935 		u64 daddr = px_dma(&ppgtt->pml4);
936 
937 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
938 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
939 
940 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
941 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
942 	} else {
943 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
944 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
945 
946 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
947 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
948 		}
949 
950 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
951 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
952 	}
953 
954 	I915_WRITE(vgtif_reg(g2v_notify), msg);
955 
956 	return 0;
957 }
958 
959 static void gen8_free_scratch(struct i915_address_space *vm)
960 {
961 	struct drm_device *dev = vm->dev;
962 
963 	if (USES_FULL_48BIT_PPGTT(dev))
964 		free_pdp(dev, vm->scratch_pdp);
965 	free_pd(dev, vm->scratch_pd);
966 	free_pt(dev, vm->scratch_pt);
967 	free_scratch_page(dev, vm->scratch_page);
968 }
969 
970 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
971 				    struct i915_page_directory_pointer *pdp)
972 {
973 	int i;
974 
975 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
976 		if (WARN_ON(!pdp->page_directory[i]))
977 			continue;
978 
979 		gen8_free_page_tables(dev, pdp->page_directory[i]);
980 		free_pd(dev, pdp->page_directory[i]);
981 	}
982 
983 	free_pdp(dev, pdp);
984 }
985 
986 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
987 {
988 	int i;
989 
990 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
991 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
992 			continue;
993 
994 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
995 	}
996 
997 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
998 }
999 
1000 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1001 {
1002 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1003 
1004 	if (intel_vgpu_active(to_i915(vm->dev)))
1005 		gen8_ppgtt_notify_vgt(ppgtt, false);
1006 
1007 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1008 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1009 	else
1010 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1011 
1012 	gen8_free_scratch(vm);
1013 }
1014 
1015 /**
1016  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1017  * @vm:	Master vm structure.
1018  * @pd:	Page directory for this address range.
1019  * @start:	Starting virtual address to begin allocations.
1020  * @length:	Size of the allocations.
1021  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1022  *		caller to free on error.
1023  *
1024  * Allocate the required number of page tables. Extremely similar to
1025  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1026  * the page directory boundary (instead of the page directory pointer). That
1027  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1028  * possible, and likely that the caller will need to use multiple calls of this
1029  * function to achieve the appropriate allocation.
1030  *
1031  * Return: 0 if success; negative error code otherwise.
1032  */
1033 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1034 				     struct i915_page_directory *pd,
1035 				     uint64_t start,
1036 				     uint64_t length,
1037 				     unsigned long *new_pts)
1038 {
1039 	struct drm_device *dev = vm->dev;
1040 	struct i915_page_table *pt;
1041 	uint32_t pde;
1042 
1043 	gen8_for_each_pde(pt, pd, start, length, pde) {
1044 		/* Don't reallocate page tables */
1045 		if (test_bit(pde, pd->used_pdes)) {
1046 			/* Scratch is never allocated this way */
1047 			WARN_ON(pt == vm->scratch_pt);
1048 			continue;
1049 		}
1050 
1051 		pt = alloc_pt(dev);
1052 		if (IS_ERR(pt))
1053 			goto unwind_out;
1054 
1055 		gen8_initialize_pt(vm, pt);
1056 		pd->page_table[pde] = pt;
1057 		__set_bit(pde, new_pts);
1058 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1059 	}
1060 
1061 	return 0;
1062 
1063 unwind_out:
1064 	for_each_set_bit(pde, new_pts, I915_PDES)
1065 		free_pt(dev, pd->page_table[pde]);
1066 
1067 	return -ENOMEM;
1068 }
1069 
1070 /**
1071  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1072  * @vm:	Master vm structure.
1073  * @pdp:	Page directory pointer for this address range.
1074  * @start:	Starting virtual address to begin allocations.
1075  * @length:	Size of the allocations.
1076  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1077  *		caller to free on error.
1078  *
1079  * Allocate the required number of page directories starting at the pde index of
1080  * @start, and ending at the pde index @start + @length. This function will skip
1081  * over already allocated page directories within the range, and only allocate
1082  * new ones, setting the appropriate pointer within the pdp as well as the
1083  * correct position in the bitmap @new_pds.
1084  *
1085  * The function will only allocate the pages within the range for a give page
1086  * directory pointer. In other words, if @start + @length straddles a virtually
1087  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1088  * required by the caller, This is not currently possible, and the BUG in the
1089  * code will prevent it.
1090  *
1091  * Return: 0 if success; negative error code otherwise.
1092  */
1093 static int
1094 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1095 				  struct i915_page_directory_pointer *pdp,
1096 				  uint64_t start,
1097 				  uint64_t length,
1098 				  unsigned long *new_pds)
1099 {
1100 	struct drm_device *dev = vm->dev;
1101 	struct i915_page_directory *pd;
1102 	uint32_t pdpe;
1103 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1104 
1105 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1106 
1107 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1108 		if (test_bit(pdpe, pdp->used_pdpes))
1109 			continue;
1110 
1111 		pd = alloc_pd(dev);
1112 		if (IS_ERR(pd))
1113 			goto unwind_out;
1114 
1115 		gen8_initialize_pd(vm, pd);
1116 		pdp->page_directory[pdpe] = pd;
1117 		__set_bit(pdpe, new_pds);
1118 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1119 	}
1120 
1121 	return 0;
1122 
1123 unwind_out:
1124 	for_each_set_bit(pdpe, new_pds, pdpes)
1125 		free_pd(dev, pdp->page_directory[pdpe]);
1126 
1127 	return -ENOMEM;
1128 }
1129 
1130 /**
1131  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1132  * @vm:	Master vm structure.
1133  * @pml4:	Page map level 4 for this address range.
1134  * @start:	Starting virtual address to begin allocations.
1135  * @length:	Size of the allocations.
1136  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1137  *		caller to free on error.
1138  *
1139  * Allocate the required number of page directory pointers. Extremely similar to
1140  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1141  * The main difference is here we are limited by the pml4 boundary (instead of
1142  * the page directory pointer).
1143  *
1144  * Return: 0 if success; negative error code otherwise.
1145  */
1146 static int
1147 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1148 				  struct i915_pml4 *pml4,
1149 				  uint64_t start,
1150 				  uint64_t length,
1151 				  unsigned long *new_pdps)
1152 {
1153 	struct drm_device *dev = vm->dev;
1154 	struct i915_page_directory_pointer *pdp;
1155 	uint32_t pml4e;
1156 
1157 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1158 
1159 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1160 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1161 			pdp = alloc_pdp(dev);
1162 			if (IS_ERR(pdp))
1163 				goto unwind_out;
1164 
1165 			gen8_initialize_pdp(vm, pdp);
1166 			pml4->pdps[pml4e] = pdp;
1167 			__set_bit(pml4e, new_pdps);
1168 			trace_i915_page_directory_pointer_entry_alloc(vm,
1169 								      pml4e,
1170 								      start,
1171 								      GEN8_PML4E_SHIFT);
1172 		}
1173 	}
1174 
1175 	return 0;
1176 
1177 unwind_out:
1178 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1179 		free_pdp(dev, pml4->pdps[pml4e]);
1180 
1181 	return -ENOMEM;
1182 }
1183 
1184 static void
1185 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1186 {
1187 	kfree(new_pts);
1188 	kfree(new_pds);
1189 }
1190 
1191 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1192  * of these are based on the number of PDPEs in the system.
1193  */
1194 static
1195 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1196 					 unsigned long **new_pts,
1197 					 uint32_t pdpes)
1198 {
1199 	unsigned long *pds;
1200 	unsigned long *pts;
1201 
1202 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1203 	if (!pds)
1204 		return -ENOMEM;
1205 
1206 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1207 		      GFP_TEMPORARY);
1208 	if (!pts)
1209 		goto err_out;
1210 
1211 	*new_pds = pds;
1212 	*new_pts = pts;
1213 
1214 	return 0;
1215 
1216 err_out:
1217 	free_gen8_temp_bitmaps(pds, pts);
1218 	return -ENOMEM;
1219 }
1220 
1221 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1222  * the page table structures, we mark them dirty so that
1223  * context switching/execlist queuing code takes extra steps
1224  * to ensure that tlbs are flushed.
1225  */
1226 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1227 {
1228 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1229 }
1230 
1231 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1232 				    struct i915_page_directory_pointer *pdp,
1233 				    uint64_t start,
1234 				    uint64_t length)
1235 {
1236 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1237 	unsigned long *new_page_dirs, *new_page_tables;
1238 	struct drm_device *dev = vm->dev;
1239 	struct i915_page_directory *pd;
1240 	const uint64_t orig_start = start;
1241 	const uint64_t orig_length = length;
1242 	uint32_t pdpe;
1243 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1244 	int ret;
1245 
1246 	/* Wrap is never okay since we can only represent 48b, and we don't
1247 	 * actually use the other side of the canonical address space.
1248 	 */
1249 	if (WARN_ON(start + length < start))
1250 		return -ENODEV;
1251 
1252 	if (WARN_ON(start + length > vm->total))
1253 		return -ENODEV;
1254 
1255 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1256 	if (ret)
1257 		return ret;
1258 
1259 	/* Do the allocations first so we can easily bail out */
1260 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1261 						new_page_dirs);
1262 	if (ret) {
1263 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1264 		return ret;
1265 	}
1266 
1267 	/* For every page directory referenced, allocate page tables */
1268 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1269 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1270 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1271 		if (ret)
1272 			goto err_out;
1273 	}
1274 
1275 	start = orig_start;
1276 	length = orig_length;
1277 
1278 	/* Allocations have completed successfully, so set the bitmaps, and do
1279 	 * the mappings. */
1280 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1281 		gen8_pde_t *const page_directory = kmap_px(pd);
1282 		struct i915_page_table *pt;
1283 		uint64_t pd_len = length;
1284 		uint64_t pd_start = start;
1285 		uint32_t pde;
1286 
1287 		/* Every pd should be allocated, we just did that above. */
1288 		WARN_ON(!pd);
1289 
1290 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1291 			/* Same reasoning as pd */
1292 			WARN_ON(!pt);
1293 			WARN_ON(!pd_len);
1294 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1295 
1296 			/* Set our used ptes within the page table */
1297 			bitmap_set(pt->used_ptes,
1298 				   gen8_pte_index(pd_start),
1299 				   gen8_pte_count(pd_start, pd_len));
1300 
1301 			/* Our pde is now pointing to the pagetable, pt */
1302 			__set_bit(pde, pd->used_pdes);
1303 
1304 			/* Map the PDE to the page table */
1305 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1306 							      I915_CACHE_LLC);
1307 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1308 							gen8_pte_index(start),
1309 							gen8_pte_count(start, length),
1310 							GEN8_PTES);
1311 
1312 			/* NB: We haven't yet mapped ptes to pages. At this
1313 			 * point we're still relying on insert_entries() */
1314 		}
1315 
1316 		kunmap_px(ppgtt, page_directory);
1317 		__set_bit(pdpe, pdp->used_pdpes);
1318 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1319 	}
1320 
1321 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1322 	mark_tlbs_dirty(ppgtt);
1323 	return 0;
1324 
1325 err_out:
1326 	while (pdpe--) {
1327 		unsigned long temp;
1328 
1329 		for_each_set_bit(temp, new_page_tables + pdpe *
1330 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1331 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1332 	}
1333 
1334 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1335 		free_pd(dev, pdp->page_directory[pdpe]);
1336 
1337 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1338 	mark_tlbs_dirty(ppgtt);
1339 	return ret;
1340 }
1341 
1342 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1343 				    struct i915_pml4 *pml4,
1344 				    uint64_t start,
1345 				    uint64_t length)
1346 {
1347 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1348 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1349 	struct i915_page_directory_pointer *pdp;
1350 	uint64_t pml4e;
1351 	int ret = 0;
1352 
1353 	/* Do the pml4 allocations first, so we don't need to track the newly
1354 	 * allocated tables below the pdp */
1355 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1356 
1357 	/* The pagedirectory and pagetable allocations are done in the shared 3
1358 	 * and 4 level code. Just allocate the pdps.
1359 	 */
1360 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1361 						new_pdps);
1362 	if (ret)
1363 		return ret;
1364 
1365 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1366 	     "The allocation has spanned more than 512GB. "
1367 	     "It is highly likely this is incorrect.");
1368 
1369 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1370 		WARN_ON(!pdp);
1371 
1372 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1373 		if (ret)
1374 			goto err_out;
1375 
1376 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1377 	}
1378 
1379 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1380 		  GEN8_PML4ES_PER_PML4);
1381 
1382 	return 0;
1383 
1384 err_out:
1385 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1386 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1387 
1388 	return ret;
1389 }
1390 
1391 static int gen8_alloc_va_range(struct i915_address_space *vm,
1392 			       uint64_t start, uint64_t length)
1393 {
1394 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1395 
1396 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1397 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1398 	else
1399 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1400 }
1401 
1402 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1403 			  uint64_t start, uint64_t length,
1404 			  gen8_pte_t scratch_pte,
1405 			  struct seq_file *m)
1406 {
1407 	struct i915_page_directory *pd;
1408 	uint32_t pdpe;
1409 
1410 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1411 		struct i915_page_table *pt;
1412 		uint64_t pd_len = length;
1413 		uint64_t pd_start = start;
1414 		uint32_t pde;
1415 
1416 		if (!test_bit(pdpe, pdp->used_pdpes))
1417 			continue;
1418 
1419 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1420 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1421 			uint32_t  pte;
1422 			gen8_pte_t *pt_vaddr;
1423 
1424 			if (!test_bit(pde, pd->used_pdes))
1425 				continue;
1426 
1427 			pt_vaddr = kmap_px(pt);
1428 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1429 				uint64_t va =
1430 					(pdpe << GEN8_PDPE_SHIFT) |
1431 					(pde << GEN8_PDE_SHIFT) |
1432 					(pte << GEN8_PTE_SHIFT);
1433 				int i;
1434 				bool found = false;
1435 
1436 				for (i = 0; i < 4; i++)
1437 					if (pt_vaddr[pte + i] != scratch_pte)
1438 						found = true;
1439 				if (!found)
1440 					continue;
1441 
1442 				seq_printf(m, "\t\t0x%lx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1443 				for (i = 0; i < 4; i++) {
1444 					if (pt_vaddr[pte + i] != scratch_pte)
1445 						seq_printf(m, " %lx", pt_vaddr[pte + i]);
1446 					else
1447 						seq_puts(m, "  SCRATCH ");
1448 				}
1449 				seq_puts(m, "\n");
1450 			}
1451 			/* don't use kunmap_px, it could trigger
1452 			 * an unnecessary flush.
1453 			 */
1454 			kunmap_atomic(pt_vaddr);
1455 		}
1456 	}
1457 }
1458 
1459 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1460 {
1461 	struct i915_address_space *vm = &ppgtt->base;
1462 	uint64_t start = ppgtt->base.start;
1463 	uint64_t length = ppgtt->base.total;
1464 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1465 						 I915_CACHE_LLC, true);
1466 
1467 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1468 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1469 	} else {
1470 		uint64_t pml4e;
1471 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1472 		struct i915_page_directory_pointer *pdp;
1473 
1474 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1475 			if (!test_bit(pml4e, pml4->used_pml4es))
1476 				continue;
1477 
1478 			seq_printf(m, "    PML4E #%lu\n", pml4e);
1479 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1480 		}
1481 	}
1482 }
1483 
1484 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1485 {
1486 	unsigned long *new_page_dirs, *new_page_tables;
1487 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1488 	int ret;
1489 
1490 	/* We allocate temp bitmap for page tables for no gain
1491 	 * but as this is for init only, lets keep the things simple
1492 	 */
1493 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1494 	if (ret)
1495 		return ret;
1496 
1497 	/* Allocate for all pdps regardless of how the ppgtt
1498 	 * was defined.
1499 	 */
1500 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1501 						0, 1ULL << 32,
1502 						new_page_dirs);
1503 	if (!ret)
1504 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1505 
1506 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1507 
1508 	return ret;
1509 }
1510 
1511 /*
1512  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1513  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1514  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1515  * space.
1516  *
1517  */
1518 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1519 {
1520 	int ret;
1521 
1522 	ret = gen8_init_scratch(&ppgtt->base);
1523 	if (ret)
1524 		return ret;
1525 
1526 	ppgtt->base.start = 0;
1527 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1528 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1529 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1530 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1531 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1532 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1533 	ppgtt->debug_dump = gen8_dump_ppgtt;
1534 
1535 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1536 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1537 		if (ret)
1538 			goto free_scratch;
1539 
1540 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1541 
1542 		ppgtt->base.total = 1ULL << 48;
1543 		ppgtt->switch_mm = gen8_48b_mm_switch;
1544 	} else {
1545 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1546 		if (ret)
1547 			goto free_scratch;
1548 
1549 		ppgtt->base.total = 1ULL << 32;
1550 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1551 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1552 							      0, 0,
1553 							      GEN8_PML4E_SHIFT);
1554 
1555 		if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1556 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1557 			if (ret)
1558 				goto free_scratch;
1559 		}
1560 	}
1561 
1562 	if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1563 		gen8_ppgtt_notify_vgt(ppgtt, true);
1564 
1565 	return 0;
1566 
1567 free_scratch:
1568 	gen8_free_scratch(&ppgtt->base);
1569 	return ret;
1570 }
1571 
1572 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1573 {
1574 	struct i915_address_space *vm = &ppgtt->base;
1575 	struct i915_page_table *unused;
1576 	gen6_pte_t scratch_pte;
1577 	uint32_t pd_entry;
1578 	uint32_t  pte, pde;
1579 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1580 
1581 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1582 				     I915_CACHE_LLC, true, 0);
1583 
1584 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1585 		u32 expected;
1586 		gen6_pte_t *pt_vaddr;
1587 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1588 		pd_entry = readl(ppgtt->pd_addr + pde);
1589 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1590 
1591 		if (pd_entry != expected)
1592 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1593 				   pde,
1594 				   pd_entry,
1595 				   expected);
1596 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1597 
1598 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1599 
1600 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1601 			unsigned long va =
1602 				(pde * PAGE_SIZE * GEN6_PTES) +
1603 				(pte * PAGE_SIZE);
1604 			int i;
1605 			bool found = false;
1606 			for (i = 0; i < 4; i++)
1607 				if (pt_vaddr[pte + i] != scratch_pte)
1608 					found = true;
1609 			if (!found)
1610 				continue;
1611 
1612 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1613 			for (i = 0; i < 4; i++) {
1614 				if (pt_vaddr[pte + i] != scratch_pte)
1615 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1616 				else
1617 					seq_puts(m, "  SCRATCH ");
1618 			}
1619 			seq_puts(m, "\n");
1620 		}
1621 		kunmap_px(ppgtt, pt_vaddr);
1622 	}
1623 }
1624 
1625 /* Write pde (index) from the page directory @pd to the page table @pt */
1626 static void gen6_write_pde(struct i915_page_directory *pd,
1627 			    const int pde, struct i915_page_table *pt)
1628 {
1629 	/* Caller needs to make sure the write completes if necessary */
1630 	struct i915_hw_ppgtt *ppgtt =
1631 		container_of(pd, struct i915_hw_ppgtt, pd);
1632 	u32 pd_entry;
1633 
1634 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1635 	pd_entry |= GEN6_PDE_VALID;
1636 
1637 	writel(pd_entry, ppgtt->pd_addr + pde);
1638 }
1639 
1640 /* Write all the page tables found in the ppgtt structure to incrementing page
1641  * directories. */
1642 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1643 				  struct i915_page_directory *pd,
1644 				  uint32_t start, uint32_t length)
1645 {
1646 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1647 	struct i915_page_table *pt;
1648 	uint32_t pde;
1649 
1650 	gen6_for_each_pde(pt, pd, start, length, pde)
1651 		gen6_write_pde(pd, pde, pt);
1652 
1653 	/* Make sure write is complete before other code can use this page
1654 	 * table. Also require for WC mapped PTEs */
1655 	readl(ggtt->gsm);
1656 }
1657 
1658 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1659 {
1660 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1661 
1662 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1663 }
1664 
1665 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1666 			 struct drm_i915_gem_request *req)
1667 {
1668 	struct intel_engine_cs *engine = req->engine;
1669 	int ret;
1670 
1671 	/* NB: TLBs must be flushed and invalidated before a switch */
1672 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1673 	if (ret)
1674 		return ret;
1675 
1676 	ret = intel_ring_begin(req, 6);
1677 	if (ret)
1678 		return ret;
1679 
1680 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1681 	intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1682 	intel_ring_emit(engine, PP_DIR_DCLV_2G);
1683 	intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1684 	intel_ring_emit(engine, get_pd_offset(ppgtt));
1685 	intel_ring_emit(engine, MI_NOOP);
1686 	intel_ring_advance(engine);
1687 
1688 	return 0;
1689 }
1690 
1691 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1692 			  struct drm_i915_gem_request *req)
1693 {
1694 	struct intel_engine_cs *engine = req->engine;
1695 	int ret;
1696 
1697 	/* NB: TLBs must be flushed and invalidated before a switch */
1698 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1699 	if (ret)
1700 		return ret;
1701 
1702 	ret = intel_ring_begin(req, 6);
1703 	if (ret)
1704 		return ret;
1705 
1706 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1707 	intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1708 	intel_ring_emit(engine, PP_DIR_DCLV_2G);
1709 	intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1710 	intel_ring_emit(engine, get_pd_offset(ppgtt));
1711 	intel_ring_emit(engine, MI_NOOP);
1712 	intel_ring_advance(engine);
1713 
1714 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1715 	if (engine->id != RCS) {
1716 		ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1717 		if (ret)
1718 			return ret;
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1725 			  struct drm_i915_gem_request *req)
1726 {
1727 	struct intel_engine_cs *engine = req->engine;
1728 	struct drm_i915_private *dev_priv = req->i915;
1729 
1730 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1731 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1732 	return 0;
1733 }
1734 
1735 static void gen8_ppgtt_enable(struct drm_device *dev)
1736 {
1737 	struct drm_i915_private *dev_priv = to_i915(dev);
1738 	struct intel_engine_cs *engine;
1739 
1740 	for_each_engine(engine, dev_priv) {
1741 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1742 		I915_WRITE(RING_MODE_GEN7(engine),
1743 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1744 	}
1745 }
1746 
1747 static void gen7_ppgtt_enable(struct drm_device *dev)
1748 {
1749 	struct drm_i915_private *dev_priv = to_i915(dev);
1750 	struct intel_engine_cs *engine;
1751 	uint32_t ecochk, ecobits;
1752 
1753 	ecobits = I915_READ(GAC_ECO_BITS);
1754 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1755 
1756 	ecochk = I915_READ(GAM_ECOCHK);
1757 	if (IS_HASWELL(dev)) {
1758 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1759 	} else {
1760 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1761 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1762 	}
1763 	I915_WRITE(GAM_ECOCHK, ecochk);
1764 
1765 	for_each_engine(engine, dev_priv) {
1766 		/* GFX_MODE is per-ring on gen7+ */
1767 		I915_WRITE(RING_MODE_GEN7(engine),
1768 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1769 	}
1770 }
1771 
1772 static void gen6_ppgtt_enable(struct drm_device *dev)
1773 {
1774 	struct drm_i915_private *dev_priv = to_i915(dev);
1775 	uint32_t ecochk, gab_ctl, ecobits;
1776 
1777 	ecobits = I915_READ(GAC_ECO_BITS);
1778 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1779 		   ECOBITS_PPGTT_CACHE64B);
1780 
1781 	gab_ctl = I915_READ(GAB_CTL);
1782 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1783 
1784 	ecochk = I915_READ(GAM_ECOCHK);
1785 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1786 
1787 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1788 }
1789 
1790 /* PPGTT support for Sandybdrige/Gen6 and later */
1791 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1792 				   uint64_t start,
1793 				   uint64_t length,
1794 				   bool use_scratch)
1795 {
1796 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1797 	gen6_pte_t *pt_vaddr, scratch_pte;
1798 	unsigned first_entry = start >> PAGE_SHIFT;
1799 	unsigned num_entries = length >> PAGE_SHIFT;
1800 	unsigned act_pt = first_entry / GEN6_PTES;
1801 	unsigned first_pte = first_entry % GEN6_PTES;
1802 	unsigned last_pte, i;
1803 
1804 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1805 				     I915_CACHE_LLC, true, 0);
1806 
1807 	while (num_entries) {
1808 		last_pte = first_pte + num_entries;
1809 		if (last_pte > GEN6_PTES)
1810 			last_pte = GEN6_PTES;
1811 
1812 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1813 
1814 		for (i = first_pte; i < last_pte; i++)
1815 			pt_vaddr[i] = scratch_pte;
1816 
1817 		kunmap_px(ppgtt, pt_vaddr);
1818 
1819 		num_entries -= last_pte - first_pte;
1820 		first_pte = 0;
1821 		act_pt++;
1822 	}
1823 }
1824 
1825 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1826 				      struct sg_table *pages,
1827 				      uint64_t start,
1828 				      enum i915_cache_level cache_level, u32 flags)
1829 {
1830 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1831 	unsigned first_entry = start >> PAGE_SHIFT;
1832 	unsigned act_pt = first_entry / GEN6_PTES;
1833 	unsigned act_pte = first_entry % GEN6_PTES;
1834 	gen6_pte_t *pt_vaddr = NULL;
1835 	struct sgt_iter sgt_iter;
1836 	dma_addr_t addr;
1837 
1838 	for_each_sgt_dma(addr, sgt_iter, pages) {
1839 		if (pt_vaddr == NULL)
1840 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1841 
1842 		pt_vaddr[act_pte] =
1843 			vm->pte_encode(addr, cache_level, true, flags);
1844 
1845 		if (++act_pte == GEN6_PTES) {
1846 			kunmap_px(ppgtt, pt_vaddr);
1847 			pt_vaddr = NULL;
1848 			act_pt++;
1849 			act_pte = 0;
1850 		}
1851 	}
1852 
1853 	if (pt_vaddr)
1854 		kunmap_px(ppgtt, pt_vaddr);
1855 }
1856 
1857 static int gen6_alloc_va_range(struct i915_address_space *vm,
1858 			       uint64_t start_in, uint64_t length_in)
1859 {
1860 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1861 	struct drm_device *dev = vm->dev;
1862 	struct drm_i915_private *dev_priv = to_i915(dev);
1863 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1864 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1865 	struct i915_page_table *pt;
1866 	uint32_t start, length, start_save, length_save;
1867 	uint32_t pde;
1868 	int ret;
1869 
1870 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1871 		return -ENODEV;
1872 
1873 	start = start_save = start_in;
1874 	length = length_save = length_in;
1875 
1876 	bitmap_zero(new_page_tables, I915_PDES);
1877 
1878 	/* The allocation is done in two stages so that we can bail out with
1879 	 * minimal amount of pain. The first stage finds new page tables that
1880 	 * need allocation. The second stage marks use ptes within the page
1881 	 * tables.
1882 	 */
1883 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1884 		if (pt != vm->scratch_pt) {
1885 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1886 			continue;
1887 		}
1888 
1889 		/* We've already allocated a page table */
1890 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1891 
1892 		pt = alloc_pt(dev);
1893 		if (IS_ERR(pt)) {
1894 			ret = PTR_ERR(pt);
1895 			goto unwind_out;
1896 		}
1897 
1898 		gen6_initialize_pt(vm, pt);
1899 
1900 		ppgtt->pd.page_table[pde] = pt;
1901 		__set_bit(pde, new_page_tables);
1902 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1903 	}
1904 
1905 	start = start_save;
1906 	length = length_save;
1907 
1908 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1909 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1910 
1911 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1912 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1913 			   gen6_pte_count(start, length));
1914 
1915 		if (__test_and_clear_bit(pde, new_page_tables))
1916 			gen6_write_pde(&ppgtt->pd, pde, pt);
1917 
1918 		trace_i915_page_table_entry_map(vm, pde, pt,
1919 					 gen6_pte_index(start),
1920 					 gen6_pte_count(start, length),
1921 					 GEN6_PTES);
1922 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1923 				GEN6_PTES);
1924 	}
1925 
1926 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1927 
1928 	/* Make sure write is complete before other code can use this page
1929 	 * table. Also require for WC mapped PTEs */
1930 	readl(ggtt->gsm);
1931 
1932 	mark_tlbs_dirty(ppgtt);
1933 	return 0;
1934 
1935 unwind_out:
1936 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1937 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1938 
1939 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1940 		free_pt(vm->dev, pt);
1941 	}
1942 
1943 	mark_tlbs_dirty(ppgtt);
1944 	return ret;
1945 }
1946 
1947 static int gen6_init_scratch(struct i915_address_space *vm)
1948 {
1949 	struct drm_device *dev = vm->dev;
1950 
1951 	vm->scratch_page = alloc_scratch_page(dev);
1952 	if (IS_ERR(vm->scratch_page))
1953 		return PTR_ERR(vm->scratch_page);
1954 
1955 	vm->scratch_pt = alloc_pt(dev);
1956 	if (IS_ERR(vm->scratch_pt)) {
1957 		free_scratch_page(dev, vm->scratch_page);
1958 		return PTR_ERR(vm->scratch_pt);
1959 	}
1960 
1961 	gen6_initialize_pt(vm, vm->scratch_pt);
1962 
1963 	return 0;
1964 }
1965 
1966 static void gen6_free_scratch(struct i915_address_space *vm)
1967 {
1968 	struct drm_device *dev = vm->dev;
1969 
1970 	free_pt(dev, vm->scratch_pt);
1971 	free_scratch_page(dev, vm->scratch_page);
1972 }
1973 
1974 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1975 {
1976 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1977 	struct i915_page_directory *pd = &ppgtt->pd;
1978 	struct drm_device *dev = vm->dev;
1979 	struct i915_page_table *pt;
1980 	uint32_t pde;
1981 
1982 	drm_mm_remove_node(&ppgtt->node);
1983 
1984 	gen6_for_all_pdes(pt, pd, pde)
1985 		if (pt != vm->scratch_pt)
1986 			free_pt(dev, pt);
1987 
1988 	gen6_free_scratch(vm);
1989 }
1990 
1991 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1992 {
1993 	struct i915_address_space *vm = &ppgtt->base;
1994 	struct drm_device *dev = ppgtt->base.dev;
1995 	struct drm_i915_private *dev_priv = to_i915(dev);
1996 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1997 	bool retried = false;
1998 	int ret;
1999 
2000 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2001 	 * allocator works in address space sizes, so it's multiplied by page
2002 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2003 	 */
2004 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2005 
2006 	ret = gen6_init_scratch(vm);
2007 	if (ret)
2008 		return ret;
2009 
2010 alloc:
2011 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2012 						  &ppgtt->node, GEN6_PD_SIZE,
2013 						  GEN6_PD_ALIGN, 0,
2014 						  0, ggtt->base.total,
2015 						  DRM_MM_TOPDOWN);
2016 	if (ret == -ENOSPC && !retried) {
2017 		ret = i915_gem_evict_something(dev, &ggtt->base,
2018 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2019 					       I915_CACHE_NONE,
2020 					       0, ggtt->base.total,
2021 					       0);
2022 		if (ret)
2023 			goto err_out;
2024 
2025 		retried = true;
2026 		goto alloc;
2027 	}
2028 
2029 	if (ret)
2030 		goto err_out;
2031 
2032 
2033 	if (ppgtt->node.start < ggtt->mappable_end)
2034 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2035 
2036 	return 0;
2037 
2038 err_out:
2039 	gen6_free_scratch(vm);
2040 	return ret;
2041 }
2042 
2043 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2044 {
2045 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2046 }
2047 
2048 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2049 				  uint64_t start, uint64_t length)
2050 {
2051 	struct i915_page_table *unused;
2052 	uint32_t pde;
2053 
2054 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2055 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2056 }
2057 
2058 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2059 {
2060 	struct drm_device *dev = ppgtt->base.dev;
2061 	struct drm_i915_private *dev_priv = to_i915(dev);
2062 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2063 	int ret;
2064 
2065 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2066 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2067 		ppgtt->switch_mm = gen6_mm_switch;
2068 	else if (IS_HASWELL(dev))
2069 		ppgtt->switch_mm = hsw_mm_switch;
2070 	else if (IS_GEN7(dev))
2071 		ppgtt->switch_mm = gen7_mm_switch;
2072 	else
2073 		BUG();
2074 
2075 	ret = gen6_ppgtt_alloc(ppgtt);
2076 	if (ret)
2077 		return ret;
2078 
2079 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2080 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2081 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2082 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2083 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2084 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2085 	ppgtt->base.start = 0;
2086 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2087 	ppgtt->debug_dump = gen6_dump_ppgtt;
2088 
2089 	ppgtt->pd.base.ggtt_offset =
2090 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2091 
2092 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2093 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2094 
2095 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2096 
2097 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2098 
2099 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2100 			 ppgtt->node.size >> 20,
2101 			 ppgtt->node.start / PAGE_SIZE);
2102 
2103 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2104 		  ppgtt->pd.base.ggtt_offset << 10);
2105 
2106 	return 0;
2107 }
2108 
2109 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2110 {
2111 	ppgtt->base.dev = dev;
2112 
2113 	if (INTEL_INFO(dev)->gen < 8)
2114 		return gen6_ppgtt_init(ppgtt);
2115 	else
2116 		return gen8_ppgtt_init(ppgtt);
2117 }
2118 
2119 static void i915_address_space_init(struct i915_address_space *vm,
2120 				    struct drm_i915_private *dev_priv)
2121 {
2122 	drm_mm_init(&vm->mm, vm->start, vm->total);
2123 	vm->dev = &dev_priv->drm;
2124 	INIT_LIST_HEAD(&vm->active_list);
2125 	INIT_LIST_HEAD(&vm->inactive_list);
2126 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2127 }
2128 
2129 static void gtt_write_workarounds(struct drm_device *dev)
2130 {
2131 	struct drm_i915_private *dev_priv = to_i915(dev);
2132 
2133 	/* This function is for gtt related workarounds. This function is
2134 	 * called on driver load and after a GPU reset, so you can place
2135 	 * workarounds here even if they get overwritten by GPU reset.
2136 	 */
2137 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2138 	if (IS_BROADWELL(dev))
2139 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2140 	else if (IS_CHERRYVIEW(dev))
2141 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2142 	else if (IS_SKYLAKE(dev))
2143 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2144 	else if (IS_BROXTON(dev))
2145 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2146 }
2147 
2148 static int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2149 {
2150 	struct drm_i915_private *dev_priv = to_i915(dev);
2151 	int ret = 0;
2152 
2153 	ret = __hw_ppgtt_init(dev, ppgtt);
2154 	if (ret == 0) {
2155 		kref_init(&ppgtt->ref);
2156 		i915_address_space_init(&ppgtt->base, dev_priv);
2157 	}
2158 
2159 	return ret;
2160 }
2161 
2162 int i915_ppgtt_init_hw(struct drm_device *dev)
2163 {
2164 	gtt_write_workarounds(dev);
2165 
2166 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2167 	 * and the PDPs are contained within the context itself.  We don't
2168 	 * need to do anything here. */
2169 	if (i915.enable_execlists)
2170 		return 0;
2171 
2172 	if (!USES_PPGTT(dev))
2173 		return 0;
2174 
2175 	if (IS_GEN6(dev))
2176 		gen6_ppgtt_enable(dev);
2177 	else if (IS_GEN7(dev))
2178 		gen7_ppgtt_enable(dev);
2179 	else if (INTEL_INFO(dev)->gen >= 8)
2180 		gen8_ppgtt_enable(dev);
2181 	else
2182 		MISSING_CASE(INTEL_INFO(dev)->gen);
2183 
2184 	return 0;
2185 }
2186 
2187 struct i915_hw_ppgtt *
2188 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2189 {
2190 	struct i915_hw_ppgtt *ppgtt;
2191 	int ret;
2192 
2193 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2194 	if (!ppgtt)
2195 		return ERR_PTR(-ENOMEM);
2196 
2197 	ret = i915_ppgtt_init(dev, ppgtt);
2198 	if (ret) {
2199 		kfree(ppgtt);
2200 		return ERR_PTR(ret);
2201 	}
2202 
2203 	ppgtt->file_priv = fpriv;
2204 
2205 	trace_i915_ppgtt_create(&ppgtt->base);
2206 
2207 	return ppgtt;
2208 }
2209 
2210 void  i915_ppgtt_release(struct kref *kref)
2211 {
2212 	struct i915_hw_ppgtt *ppgtt =
2213 		container_of(kref, struct i915_hw_ppgtt, ref);
2214 
2215 	trace_i915_ppgtt_release(&ppgtt->base);
2216 
2217 	/* vmas should already be unbound */
2218 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2219 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2220 
2221 	list_del(&ppgtt->base.global_link);
2222 	drm_mm_takedown(&ppgtt->base.mm);
2223 
2224 	ppgtt->base.cleanup(&ppgtt->base);
2225 	kfree(ppgtt);
2226 }
2227 
2228 extern int intel_iommu_gfx_mapped;
2229 /* Certain Gen5 chipsets require require idling the GPU before
2230  * unmapping anything from the GTT when VT-d is enabled.
2231  */
2232 static bool needs_idle_maps(struct drm_device *dev)
2233 {
2234 #ifdef CONFIG_INTEL_IOMMU
2235 	/* Query intel_iommu to see if we need the workaround. Presumably that
2236 	 * was loaded first.
2237 	 */
2238 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2239 		return true;
2240 #endif
2241 	return false;
2242 }
2243 
2244 static bool do_idling(struct drm_i915_private *dev_priv)
2245 {
2246 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2247 	bool ret = dev_priv->mm.interruptible;
2248 
2249 	if (unlikely(ggtt->do_idle_maps)) {
2250 		dev_priv->mm.interruptible = false;
2251 		if (i915_gem_wait_for_idle(dev_priv)) {
2252 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2253 			/* Wait a bit, in hopes it avoids the hang */
2254 			udelay(10);
2255 		}
2256 	}
2257 
2258 	return ret;
2259 }
2260 
2261 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2262 {
2263 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2264 
2265 	if (unlikely(ggtt->do_idle_maps))
2266 		dev_priv->mm.interruptible = interruptible;
2267 }
2268 
2269 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2270 {
2271 	struct intel_engine_cs *engine;
2272 
2273 	if (INTEL_INFO(dev_priv)->gen < 6)
2274 		return;
2275 
2276 	for_each_engine(engine, dev_priv) {
2277 		u32 fault_reg;
2278 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2279 		if (fault_reg & RING_FAULT_VALID) {
2280 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2281 					 "\tAddr: 0x%08ux\n"
2282 					 "\tAddress space: %s\n"
2283 					 "\tSource ID: %d\n"
2284 					 "\tType: %d\n",
2285 					 fault_reg & LINUX_PAGE_MASK,
2286 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2287 					 RING_FAULT_SRCID(fault_reg),
2288 					 RING_FAULT_FAULT_TYPE(fault_reg));
2289 			I915_WRITE(RING_FAULT_REG(engine),
2290 				   fault_reg & ~RING_FAULT_VALID);
2291 		}
2292 	}
2293 	POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2294 }
2295 
2296 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2297 {
2298 	if (INTEL_INFO(dev_priv)->gen < 6) {
2299 		intel_gtt_chipset_flush();
2300 	} else {
2301 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2302 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2303 	}
2304 }
2305 
2306 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2307 {
2308 	struct drm_i915_private *dev_priv = to_i915(dev);
2309 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2310 
2311 	/* Don't bother messing with faults pre GEN6 as we have little
2312 	 * documentation supporting that it's a good idea.
2313 	 */
2314 	if (INTEL_INFO(dev)->gen < 6)
2315 		return;
2316 
2317 	i915_check_and_clear_faults(dev_priv);
2318 
2319 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2320 			     true);
2321 
2322 	i915_ggtt_flush(dev_priv);
2323 }
2324 
2325 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2326 {
2327 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2328 			obj->pages->sgl, obj->pages->nents,
2329 			PCI_DMA_BIDIRECTIONAL))
2330 		return -ENOSPC;
2331 
2332 	return 0;
2333 }
2334 
2335 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2336 {
2337 #ifdef writeq
2338 	writeq(pte, addr);
2339 #else
2340 	iowrite32((u32)pte, addr);
2341 	iowrite32(pte >> 32, addr + 4);
2342 #endif
2343 }
2344 
2345 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2346 				  dma_addr_t addr,
2347 				  uint64_t offset,
2348 				  enum i915_cache_level level,
2349 				  u32 unused)
2350 {
2351 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2352 	gen8_pte_t __iomem *pte =
2353 		(gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2354 		(offset >> PAGE_SHIFT);
2355 	int rpm_atomic_seq;
2356 
2357 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2358 
2359 	gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2360 
2361 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2362 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2363 
2364 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2365 }
2366 
2367 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2368 				     struct sg_table *st,
2369 				     uint64_t start,
2370 				     enum i915_cache_level level, u32 unused)
2371 {
2372 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2373 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2374 	struct sgt_iter sgt_iter;
2375 	gen8_pte_t __iomem *gtt_entries;
2376 	gen8_pte_t gtt_entry;
2377 	dma_addr_t addr;
2378 	int rpm_atomic_seq;
2379 	int i = 0;
2380 
2381 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2382 
2383 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2384 
2385 	for_each_sgt_dma(addr, sgt_iter, st) {
2386 		gtt_entry = gen8_pte_encode(addr, level, true);
2387 		gen8_set_pte(&gtt_entries[i++], gtt_entry);
2388 	}
2389 
2390 	/*
2391 	 * XXX: This serves as a posting read to make sure that the PTE has
2392 	 * actually been updated. There is some concern that even though
2393 	 * registers and PTEs are within the same BAR that they are potentially
2394 	 * of NUMA access patterns. Therefore, even with the way we assume
2395 	 * hardware should work, we must keep this posting read for paranoia.
2396 	 */
2397 	if (i != 0)
2398 		WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2399 
2400 	/* This next bit makes the above posting read even more important. We
2401 	 * want to flush the TLBs only after we're certain all the PTE updates
2402 	 * have finished.
2403 	 */
2404 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2405 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2406 
2407 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2408 }
2409 
2410 struct insert_entries {
2411 	struct i915_address_space *vm;
2412 	struct sg_table *st;
2413 	uint64_t start;
2414 	enum i915_cache_level level;
2415 	u32 flags;
2416 };
2417 
2418 static int gen8_ggtt_insert_entries__cb(void *_arg)
2419 {
2420 	struct insert_entries *arg = _arg;
2421 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2422 				 arg->start, arg->level, arg->flags);
2423 	return 0;
2424 }
2425 
2426 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2427 					  struct sg_table *st,
2428 					  uint64_t start,
2429 					  enum i915_cache_level level,
2430 					  u32 flags)
2431 {
2432 	struct insert_entries arg = { vm, st, start, level, flags };
2433 #ifndef __DragonFly__
2434 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2435 #else
2436 	/* XXX: is this enough ?
2437 	 * See Linux commit 5bab6f60cb4d1417ad7c599166bcfec87529c1a2 */
2438 	get_mplock();
2439 	gen8_ggtt_insert_entries__cb(&arg);
2440 	rel_mplock();
2441 #endif
2442 }
2443 
2444 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2445 				  dma_addr_t addr,
2446 				  uint64_t offset,
2447 				  enum i915_cache_level level,
2448 				  u32 flags)
2449 {
2450 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2451 	gen6_pte_t __iomem *pte =
2452 		(gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2453 		(offset >> PAGE_SHIFT);
2454 	int rpm_atomic_seq;
2455 
2456 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2457 
2458 	iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2459 
2460 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2461 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2462 
2463 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2464 }
2465 
2466 /*
2467  * Binds an object into the global gtt with the specified cache level. The object
2468  * will be accessible to the GPU via commands whose operands reference offsets
2469  * within the global GTT as well as accessible by the GPU through the GMADR
2470  * mapped BAR (dev_priv->mm.gtt->gtt).
2471  */
2472 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2473 				     struct sg_table *st,
2474 				     uint64_t start,
2475 				     enum i915_cache_level level, u32 flags)
2476 {
2477 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2478 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2479 	struct sgt_iter sgt_iter;
2480 	gen6_pte_t __iomem *gtt_entries;
2481 	gen6_pte_t gtt_entry;
2482 	dma_addr_t addr;
2483 	int rpm_atomic_seq;
2484 	int i = 0;
2485 
2486 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2487 
2488 	gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2489 
2490 	for_each_sgt_dma(addr, sgt_iter, st) {
2491 		gtt_entry = vm->pte_encode(addr, level, true, flags);
2492 		iowrite32(gtt_entry, &gtt_entries[i++]);
2493 	}
2494 
2495 	/* XXX: This serves as a posting read to make sure that the PTE has
2496 	 * actually been updated. There is some concern that even though
2497 	 * registers and PTEs are within the same BAR that they are potentially
2498 	 * of NUMA access patterns. Therefore, even with the way we assume
2499 	 * hardware should work, we must keep this posting read for paranoia.
2500 	 */
2501 	if (i != 0)
2502 		WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2503 
2504 	/* This next bit makes the above posting read even more important. We
2505 	 * want to flush the TLBs only after we're certain all the PTE updates
2506 	 * have finished.
2507 	 */
2508 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2509 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2510 
2511 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2512 }
2513 
2514 static void nop_clear_range(struct i915_address_space *vm,
2515 			    uint64_t start,
2516 			    uint64_t length,
2517 			    bool use_scratch)
2518 {
2519 }
2520 
2521 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2522 				  uint64_t start,
2523 				  uint64_t length,
2524 				  bool use_scratch)
2525 {
2526 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2527 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2528 	unsigned first_entry = start >> PAGE_SHIFT;
2529 	unsigned num_entries = length >> PAGE_SHIFT;
2530 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2531 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2532 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2533 	int i;
2534 	int rpm_atomic_seq;
2535 
2536 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2537 
2538 	if (WARN(num_entries > max_entries,
2539 		 "First entry = %d; Num entries = %d (max=%d)\n",
2540 		 first_entry, num_entries, max_entries))
2541 		num_entries = max_entries;
2542 
2543 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2544 				      I915_CACHE_LLC,
2545 				      use_scratch);
2546 	for (i = 0; i < num_entries; i++)
2547 		gen8_set_pte(&gtt_base[i], scratch_pte);
2548 	readl(gtt_base);
2549 
2550 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2551 }
2552 
2553 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2554 				  uint64_t start,
2555 				  uint64_t length,
2556 				  bool use_scratch)
2557 {
2558 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2559 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2560 	unsigned first_entry = start >> PAGE_SHIFT;
2561 	unsigned num_entries = length >> PAGE_SHIFT;
2562 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2563 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2564 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2565 	int i;
2566 	int rpm_atomic_seq;
2567 
2568 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2569 
2570 	if (WARN(num_entries > max_entries,
2571 		 "First entry = %d; Num entries = %d (max=%d)\n",
2572 		 first_entry, num_entries, max_entries))
2573 		num_entries = max_entries;
2574 
2575 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2576 				     I915_CACHE_LLC, use_scratch, 0);
2577 
2578 	for (i = 0; i < num_entries; i++)
2579 		iowrite32(scratch_pte, &gtt_base[i]);
2580 	readl(gtt_base);
2581 
2582 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2583 }
2584 
2585 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2586 				  dma_addr_t addr,
2587 				  uint64_t offset,
2588 				  enum i915_cache_level cache_level,
2589 				  u32 unused)
2590 {
2591 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2592 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2593 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2594 	int rpm_atomic_seq;
2595 
2596 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2597 
2598 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2599 
2600 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2601 }
2602 
2603 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2604 				     struct sg_table *pages,
2605 				     uint64_t start,
2606 				     enum i915_cache_level cache_level, u32 unused)
2607 {
2608 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2609 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2610 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2611 	int rpm_atomic_seq;
2612 
2613 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2614 
2615 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2616 
2617 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2618 
2619 }
2620 
2621 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2622 				  uint64_t start,
2623 				  uint64_t length,
2624 				  bool unused)
2625 {
2626 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2627 	unsigned first_entry = start >> PAGE_SHIFT;
2628 	unsigned num_entries = length >> PAGE_SHIFT;
2629 	int rpm_atomic_seq;
2630 
2631 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2632 
2633 	intel_gtt_clear_range(first_entry, num_entries);
2634 
2635 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2636 }
2637 
2638 static int ggtt_bind_vma(struct i915_vma *vma,
2639 			 enum i915_cache_level cache_level,
2640 			 u32 flags)
2641 {
2642 	struct drm_i915_gem_object *obj = vma->obj;
2643 	u32 pte_flags = 0;
2644 	int ret;
2645 
2646 	ret = i915_get_ggtt_vma_pages(vma);
2647 	if (ret)
2648 		return ret;
2649 
2650 	/* Currently applicable only to VLV */
2651 	if (obj->gt_ro)
2652 		pte_flags |= PTE_READ_ONLY;
2653 
2654 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2655 				vma->node.start,
2656 				cache_level, pte_flags);
2657 
2658 	/*
2659 	 * Without aliasing PPGTT there's no difference between
2660 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2661 	 * upgrade to both bound if we bind either to avoid double-binding.
2662 	 */
2663 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2664 
2665 	return 0;
2666 }
2667 
2668 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2669 				 enum i915_cache_level cache_level,
2670 				 u32 flags)
2671 {
2672 	u32 pte_flags;
2673 	int ret;
2674 
2675 	ret = i915_get_ggtt_vma_pages(vma);
2676 	if (ret)
2677 		return ret;
2678 
2679 	/* Currently applicable only to VLV */
2680 	pte_flags = 0;
2681 	if (vma->obj->gt_ro)
2682 		pte_flags |= PTE_READ_ONLY;
2683 
2684 
2685 	if (flags & GLOBAL_BIND) {
2686 		vma->vm->insert_entries(vma->vm,
2687 					vma->ggtt_view.pages,
2688 					vma->node.start,
2689 					cache_level, pte_flags);
2690 	}
2691 
2692 	if (flags & LOCAL_BIND) {
2693 		struct i915_hw_ppgtt *appgtt =
2694 			to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2695 		appgtt->base.insert_entries(&appgtt->base,
2696 					    vma->ggtt_view.pages,
2697 					    vma->node.start,
2698 					    cache_level, pte_flags);
2699 	}
2700 
2701 	return 0;
2702 }
2703 
2704 static void ggtt_unbind_vma(struct i915_vma *vma)
2705 {
2706 	struct drm_device *dev = vma->vm->dev;
2707 	struct drm_i915_private *dev_priv = to_i915(dev);
2708 	struct drm_i915_gem_object *obj = vma->obj;
2709 	const uint64_t size = min_t(uint64_t,
2710 				    obj->base.size,
2711 				    vma->node.size);
2712 
2713 	if (vma->bound & GLOBAL_BIND) {
2714 		vma->vm->clear_range(vma->vm,
2715 				     vma->node.start,
2716 				     size,
2717 				     true);
2718 	}
2719 
2720 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2721 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2722 
2723 		appgtt->base.clear_range(&appgtt->base,
2724 					 vma->node.start,
2725 					 size,
2726 					 true);
2727 	}
2728 }
2729 
2730 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2731 {
2732 	struct drm_device *dev = obj->base.dev;
2733 	struct drm_i915_private *dev_priv = to_i915(dev);
2734 	bool interruptible;
2735 
2736 	interruptible = do_idling(dev_priv);
2737 
2738 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2739 		     PCI_DMA_BIDIRECTIONAL);
2740 
2741 	undo_idling(dev_priv, interruptible);
2742 }
2743 
2744 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2745 				  unsigned long color,
2746 				  u64 *start,
2747 				  u64 *end)
2748 {
2749 	if (node->color != color)
2750 		*start += 4096;
2751 
2752 	if (!list_empty(&node->node_list)) {
2753 		node = list_entry(node->node_list.next,
2754 				  struct drm_mm_node,
2755 				  node_list);
2756 		if (node->allocated && node->color != color)
2757 			*end -= 4096;
2758 	}
2759 }
2760 
2761 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2762 				     u64 start,
2763 				     u64 mappable_end,
2764 				     u64 end)
2765 {
2766 	/* Let GEM Manage all of the aperture.
2767 	 *
2768 	 * However, leave one page at the end still bound to the scratch page.
2769 	 * There are a number of places where the hardware apparently prefetches
2770 	 * past the end of the object, and we've seen multiple hangs with the
2771 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2772 	 * aperture.  One page should be enough to keep any prefetching inside
2773 	 * of the aperture.
2774 	 */
2775 	struct drm_i915_private *dev_priv = to_i915(dev);
2776 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2777 	struct drm_mm_node *entry;
2778 	struct drm_i915_gem_object *obj;
2779 	unsigned long hole_start, hole_end;
2780 	int ret;
2781 	unsigned long mappable = min(end, mappable_end) - start;
2782 	int error;
2783 
2784 	BUG_ON(mappable_end > end);
2785 
2786 	ggtt->base.start = start;
2787 
2788 	/* Subtract the guard page before address space initialization to
2789 	 * shrink the range used by drm_mm */
2790 	ggtt->base.total = end - start - PAGE_SIZE;
2791 	i915_address_space_init(&ggtt->base, dev_priv);
2792 	ggtt->base.total += PAGE_SIZE;
2793 
2794 	ret = intel_vgt_balloon(dev_priv);
2795 	if (ret)
2796 		return ret;
2797 
2798 	if (!HAS_LLC(dev))
2799 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2800 
2801 	/* Mark any preallocated objects as occupied */
2802 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2803 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2804 
2805 		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2806 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2807 
2808 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2809 		ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2810 		if (ret) {
2811 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2812 			return ret;
2813 		}
2814 		vma->bound |= GLOBAL_BIND;
2815 		__i915_vma_set_map_and_fenceable(vma);
2816 		list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2817 	}
2818 
2819 	/* Clear any non-preallocated blocks */
2820 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2821 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2822 			      hole_start, hole_end);
2823 		ggtt->base.clear_range(&ggtt->base, hole_start,
2824 				     hole_end - hole_start, true);
2825 	}
2826 
2827 #ifdef __DragonFly__
2828 	device_printf(dev->dev->bsddev,
2829 	    "taking over the fictitious range 0x%llx-0x%llx\n",
2830 	    dev_priv->ggtt.mappable_base + start, dev_priv->ggtt.mappable_base + start + mappable);
2831 	error = -vm_phys_fictitious_reg_range(dev_priv->ggtt.mappable_base + start,
2832 	    dev_priv->ggtt.mappable_base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2833 #endif
2834 
2835 	/* And finally clear the reserved guard page */
2836 	ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2837 
2838 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2839 		struct i915_hw_ppgtt *ppgtt;
2840 
2841 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2842 		if (!ppgtt)
2843 			return -ENOMEM;
2844 
2845 		ret = __hw_ppgtt_init(dev, ppgtt);
2846 		if (ret) {
2847 			ppgtt->base.cleanup(&ppgtt->base);
2848 			kfree(ppgtt);
2849 			return ret;
2850 		}
2851 
2852 		if (ppgtt->base.allocate_va_range)
2853 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2854 							    ppgtt->base.total);
2855 		if (ret) {
2856 			ppgtt->base.cleanup(&ppgtt->base);
2857 			kfree(ppgtt);
2858 			return ret;
2859 		}
2860 
2861 		ppgtt->base.clear_range(&ppgtt->base,
2862 					ppgtt->base.start,
2863 					ppgtt->base.total,
2864 					true);
2865 
2866 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2867 		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2868 		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2869 	}
2870 
2871 	return 0;
2872 }
2873 
2874 /**
2875  * i915_gem_init_ggtt - Initialize GEM for Global GTT
2876  * @dev: DRM device
2877  */
2878 void i915_gem_init_ggtt(struct drm_device *dev)
2879 {
2880 	struct drm_i915_private *dev_priv = to_i915(dev);
2881 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2882 
2883 	i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2884 }
2885 
2886 /**
2887  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2888  * @dev: DRM device
2889  */
2890 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2891 {
2892 	struct drm_i915_private *dev_priv = to_i915(dev);
2893 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2894 
2895 	if (dev_priv->mm.aliasing_ppgtt) {
2896 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2897 
2898 		ppgtt->base.cleanup(&ppgtt->base);
2899 		kfree(ppgtt);
2900 	}
2901 
2902 	i915_gem_cleanup_stolen(dev);
2903 
2904 	if (drm_mm_initialized(&ggtt->base.mm)) {
2905 		intel_vgt_deballoon(dev_priv);
2906 
2907 		drm_mm_takedown(&ggtt->base.mm);
2908 		list_del(&ggtt->base.global_link);
2909 	}
2910 
2911 	ggtt->base.cleanup(&ggtt->base);
2912 }
2913 
2914 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2915 {
2916 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2917 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2918 	return snb_gmch_ctl << 20;
2919 }
2920 
2921 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2922 {
2923 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2924 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2925 	if (bdw_gmch_ctl)
2926 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2927 
2928 #ifdef CONFIG_X86_32
2929 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2930 	if (bdw_gmch_ctl > 4)
2931 		bdw_gmch_ctl = 4;
2932 #endif
2933 
2934 	return bdw_gmch_ctl << 20;
2935 }
2936 
2937 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2938 {
2939 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2940 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2941 
2942 	if (gmch_ctrl)
2943 		return 1 << (20 + gmch_ctrl);
2944 
2945 	return 0;
2946 }
2947 
2948 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2949 {
2950 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2951 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2952 	return snb_gmch_ctl << 25; /* 32 MB units */
2953 }
2954 
2955 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2956 {
2957 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2958 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2959 	return bdw_gmch_ctl << 25; /* 32 MB units */
2960 }
2961 
2962 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2963 {
2964 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2965 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2966 
2967 	/*
2968 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2969 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2970 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2971 	 */
2972 	if (gmch_ctrl < 0x11)
2973 		return gmch_ctrl << 25;
2974 	else if (gmch_ctrl < 0x17)
2975 		return (gmch_ctrl - 0x11 + 2) << 22;
2976 	else
2977 		return (gmch_ctrl - 0x17 + 9) << 22;
2978 }
2979 
2980 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2981 {
2982 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2983 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2984 
2985 	if (gen9_gmch_ctl < 0xf0)
2986 		return gen9_gmch_ctl << 25; /* 32 MB units */
2987 	else
2988 		/* 4MB increments starting at 0xf0 for 4MB */
2989 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2990 }
2991 
2992 static int ggtt_probe_common(struct drm_device *dev,
2993 			     size_t gtt_size)
2994 {
2995 	struct drm_i915_private *dev_priv = to_i915(dev);
2996 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2997 	struct i915_page_scratch *scratch_page;
2998 	phys_addr_t ggtt_phys_addr;
2999 
3000 	/* For Modern GENs the PTEs and register space are split in the BAR */
3001 	ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
3002 			 (pci_resource_len(dev->pdev, 0) / 2);
3003 
3004 	/*
3005 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
3006 	 * dropped. For WC mappings in general we have 64 byte burst writes
3007 	 * when the WC buffer is flushed, so we can't use it, but have to
3008 	 * resort to an uncached mapping. The WC issue is easily caught by the
3009 	 * readback check when writing GTT PTE entries.
3010 	 */
3011 	if (IS_BROXTON(dev))
3012 		ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
3013 	else
3014 		ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
3015 	if (!ggtt->gsm) {
3016 		DRM_ERROR("Failed to map the gtt page table\n");
3017 		return -ENOMEM;
3018 	}
3019 
3020 	scratch_page = alloc_scratch_page(dev);
3021 	if (IS_ERR(scratch_page)) {
3022 		DRM_ERROR("Scratch setup failed\n");
3023 		/* iounmap will also get called at remove, but meh */
3024 		iounmap(ggtt->gsm);
3025 		return PTR_ERR(scratch_page);
3026 	}
3027 
3028 	ggtt->base.scratch_page = scratch_page;
3029 
3030 	return 0;
3031 }
3032 
3033 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3034  * bits. When using advanced contexts each context stores its own PAT, but
3035  * writing this data shouldn't be harmful even in those cases. */
3036 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
3037 {
3038 	uint64_t pat;
3039 
3040 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
3041 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
3042 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
3043 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
3044 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
3045 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
3046 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
3047 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3048 
3049 	if (!USES_PPGTT(dev_priv))
3050 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3051 		 * so RTL will always use the value corresponding to
3052 		 * pat_sel = 000".
3053 		 * So let's disable cache for GGTT to avoid screen corruptions.
3054 		 * MOCS still can be used though.
3055 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3056 		 * before this patch, i.e. the same uncached + snooping access
3057 		 * like on gen6/7 seems to be in effect.
3058 		 * - So this just fixes blitter/render access. Again it looks
3059 		 * like it's not just uncached access, but uncached + snooping.
3060 		 * So we can still hold onto all our assumptions wrt cpu
3061 		 * clflushing on LLC machines.
3062 		 */
3063 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3064 
3065 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3066 	 * write would work. */
3067 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3068 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3069 }
3070 
3071 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3072 {
3073 	uint64_t pat;
3074 
3075 	/*
3076 	 * Map WB on BDW to snooped on CHV.
3077 	 *
3078 	 * Only the snoop bit has meaning for CHV, the rest is
3079 	 * ignored.
3080 	 *
3081 	 * The hardware will never snoop for certain types of accesses:
3082 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3083 	 * - PPGTT page tables
3084 	 * - some other special cycles
3085 	 *
3086 	 * As with BDW, we also need to consider the following for GT accesses:
3087 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3088 	 * so RTL will always use the value corresponding to
3089 	 * pat_sel = 000".
3090 	 * Which means we must set the snoop bit in PAT entry 0
3091 	 * in order to keep the global status page working.
3092 	 */
3093 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3094 	      GEN8_PPAT(1, 0) |
3095 	      GEN8_PPAT(2, 0) |
3096 	      GEN8_PPAT(3, 0) |
3097 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3098 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3099 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3100 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3101 
3102 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3103 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3104 }
3105 
3106 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3107 {
3108 	struct drm_device *dev = ggtt->base.dev;
3109 	struct drm_i915_private *dev_priv = to_i915(dev);
3110 	u16 snb_gmch_ctl;
3111 	int ret;
3112 
3113 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3114 	ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3115 	ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3116 
3117 #if 0
3118 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3119 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3120 #endif
3121 
3122 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3123 
3124 	if (INTEL_INFO(dev)->gen >= 9) {
3125 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3126 		ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3127 	} else if (IS_CHERRYVIEW(dev)) {
3128 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3129 		ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3130 	} else {
3131 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3132 		ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3133 	}
3134 
3135 	ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3136 
3137 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3138 		chv_setup_private_ppat(dev_priv);
3139 	else
3140 		bdw_setup_private_ppat(dev_priv);
3141 
3142 	ret = ggtt_probe_common(dev, ggtt->size);
3143 
3144 	ggtt->base.bind_vma = ggtt_bind_vma;
3145 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3146 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3147 	ggtt->base.clear_range = nop_clear_range;
3148 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3149 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3150 
3151 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3152 	if (IS_CHERRYVIEW(dev_priv))
3153 		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3154 
3155 	return ret;
3156 }
3157 
3158 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3159 {
3160 	struct drm_device *dev = ggtt->base.dev;
3161 	u16 snb_gmch_ctl;
3162 	int ret;
3163 
3164 	ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3165 	ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3166 
3167 	/* 64/512MB is the current min/max we actually know of, but this is just
3168 	 * a coarse sanity check.
3169 	 */
3170 	if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3171 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3172 		return -ENXIO;
3173 	}
3174 
3175 #if 0
3176 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3177 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3178 #endif
3179 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3180 
3181 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3182 	ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3183 	ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3184 
3185 	ret = ggtt_probe_common(dev, ggtt->size);
3186 
3187 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3188 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3189 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3190 	ggtt->base.bind_vma = ggtt_bind_vma;
3191 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3192 
3193 	return ret;
3194 }
3195 
3196 static void gen6_gmch_remove(struct i915_address_space *vm)
3197 {
3198 	struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3199 
3200 	iounmap(ggtt->gsm);
3201 	free_scratch_page(vm->dev, vm->scratch_page);
3202 }
3203 
3204 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3205 {
3206 	struct drm_device *dev = ggtt->base.dev;
3207 	struct drm_i915_private *dev_priv = to_i915(dev);
3208 #if 0
3209 	int ret;
3210 
3211 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3212 	if (!ret) {
3213 		DRM_ERROR("failed to set up gmch\n");
3214 		return -EIO;
3215 	}
3216 #endif
3217 
3218 	intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3219 		      &ggtt->mappable_base, &ggtt->mappable_end);
3220 
3221 	ggtt->do_idle_maps = needs_idle_maps(&dev_priv->drm);
3222 	ggtt->base.insert_page = i915_ggtt_insert_page;
3223 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3224 	ggtt->base.clear_range = i915_ggtt_clear_range;
3225 	ggtt->base.bind_vma = ggtt_bind_vma;
3226 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3227 
3228 	if (unlikely(ggtt->do_idle_maps))
3229 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3230 
3231 	return 0;
3232 }
3233 
3234 static void i915_gmch_remove(struct i915_address_space *vm)
3235 {
3236 	intel_gmch_remove();
3237 }
3238 
3239 /**
3240  * i915_ggtt_init_hw - Initialize GGTT hardware
3241  * @dev: DRM device
3242  */
3243 int i915_ggtt_init_hw(struct drm_device *dev)
3244 {
3245 	struct drm_i915_private *dev_priv = to_i915(dev);
3246 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3247 	int ret;
3248 
3249 	if (INTEL_INFO(dev)->gen <= 5) {
3250 		ggtt->probe = i915_gmch_probe;
3251 		ggtt->base.cleanup = i915_gmch_remove;
3252 	} else if (INTEL_INFO(dev)->gen < 8) {
3253 		ggtt->probe = gen6_gmch_probe;
3254 		ggtt->base.cleanup = gen6_gmch_remove;
3255 
3256 		if (HAS_EDRAM(dev))
3257 			ggtt->base.pte_encode = iris_pte_encode;
3258 		else if (IS_HASWELL(dev))
3259 			ggtt->base.pte_encode = hsw_pte_encode;
3260 		else if (IS_VALLEYVIEW(dev))
3261 			ggtt->base.pte_encode = byt_pte_encode;
3262 		else if (INTEL_INFO(dev)->gen >= 7)
3263 			ggtt->base.pte_encode = ivb_pte_encode;
3264 		else
3265 			ggtt->base.pte_encode = snb_pte_encode;
3266 	} else {
3267 		ggtt->probe = gen8_gmch_probe;
3268 		ggtt->base.cleanup = gen6_gmch_remove;
3269 	}
3270 
3271 	ggtt->base.dev = dev;
3272 	ggtt->base.is_ggtt = true;
3273 
3274 	ret = ggtt->probe(ggtt);
3275 	if (ret)
3276 		return ret;
3277 
3278 	if ((ggtt->base.total - 1) >> 32) {
3279 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3280 			  "of address space! Found %lldM!\n",
3281 			  ggtt->base.total >> 20);
3282 		ggtt->base.total = 1ULL << 32;
3283 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3284 	}
3285 
3286 	/*
3287 	 * Initialise stolen early so that we may reserve preallocated
3288 	 * objects for the BIOS to KMS transition.
3289 	 */
3290 	ret = i915_gem_init_stolen(dev);
3291 	if (ret)
3292 		goto out_gtt_cleanup;
3293 
3294 	/* GMADR is the PCI mmio aperture into the global GTT. */
3295 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3296 		 ggtt->base.total >> 20);
3297 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3298 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3299 #ifdef CONFIG_INTEL_IOMMU
3300 	if (intel_iommu_gfx_mapped)
3301 		DRM_INFO("VT-d active for gfx access\n");
3302 #endif
3303 
3304 	return 0;
3305 
3306 out_gtt_cleanup:
3307 	ggtt->base.cleanup(&ggtt->base);
3308 
3309 	return ret;
3310 }
3311 
3312 int i915_ggtt_enable_hw(struct drm_device *dev)
3313 {
3314 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3315 		return -EIO;
3316 
3317 	return 0;
3318 }
3319 
3320 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3321 {
3322 	struct drm_i915_private *dev_priv = to_i915(dev);
3323 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3324 	struct drm_i915_gem_object *obj;
3325 	struct i915_vma *vma;
3326 
3327 	i915_check_and_clear_faults(dev_priv);
3328 
3329 	/* First fill our portion of the GTT with scratch pages */
3330 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3331 			       true);
3332 
3333 	/* Cache flush objects bound into GGTT and rebind them. */
3334 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3335 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3336 			if (vma->vm != &ggtt->base)
3337 				continue;
3338 
3339 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3340 					      PIN_UPDATE));
3341 		}
3342 
3343 		if (obj->pin_display)
3344 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3345 	}
3346 
3347 	if (INTEL_INFO(dev)->gen >= 8) {
3348 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3349 			chv_setup_private_ppat(dev_priv);
3350 		else
3351 			bdw_setup_private_ppat(dev_priv);
3352 
3353 		return;
3354 	}
3355 
3356 	if (USES_PPGTT(dev)) {
3357 		struct i915_address_space *vm;
3358 
3359 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3360 			/* TODO: Perhaps it shouldn't be gen6 specific */
3361 
3362 			struct i915_hw_ppgtt *ppgtt;
3363 
3364 			if (vm->is_ggtt)
3365 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3366 			else
3367 				ppgtt = i915_vm_to_ppgtt(vm);
3368 
3369 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3370 					      0, ppgtt->base.total);
3371 		}
3372 	}
3373 
3374 	i915_ggtt_flush(dev_priv);
3375 }
3376 
3377 static struct i915_vma *
3378 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3379 		      struct i915_address_space *vm,
3380 		      const struct i915_ggtt_view *ggtt_view)
3381 {
3382 	struct i915_vma *vma;
3383 
3384 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3385 		return ERR_PTR(-EINVAL);
3386 
3387 	vma = kzalloc(sizeof(*vma), GFP_KERNEL);
3388 	if (vma == NULL)
3389 		return ERR_PTR(-ENOMEM);
3390 
3391 	INIT_LIST_HEAD(&vma->vm_link);
3392 	INIT_LIST_HEAD(&vma->obj_link);
3393 	INIT_LIST_HEAD(&vma->exec_list);
3394 	vma->vm = vm;
3395 	vma->obj = obj;
3396 	vma->is_ggtt = i915_is_ggtt(vm);
3397 
3398 	if (i915_is_ggtt(vm))
3399 		vma->ggtt_view = *ggtt_view;
3400 	else
3401 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3402 
3403 	list_add_tail(&vma->obj_link, &obj->vma_list);
3404 
3405 	return vma;
3406 }
3407 
3408 struct i915_vma *
3409 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3410 				  struct i915_address_space *vm)
3411 {
3412 	struct i915_vma *vma;
3413 
3414 	vma = i915_gem_obj_to_vma(obj, vm);
3415 	if (!vma)
3416 		vma = __i915_gem_vma_create(obj, vm,
3417 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3418 
3419 	return vma;
3420 }
3421 
3422 struct i915_vma *
3423 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3424 				       const struct i915_ggtt_view *view)
3425 {
3426 	struct drm_device *dev = obj->base.dev;
3427 	struct drm_i915_private *dev_priv = to_i915(dev);
3428 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3429 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3430 
3431 	if (!vma)
3432 		vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3433 
3434 	return vma;
3435 
3436 }
3437 
3438 static struct scatterlist *
3439 rotate_pages(const dma_addr_t *in, unsigned int offset,
3440 	     unsigned int width, unsigned int height,
3441 	     unsigned int stride,
3442 	     struct sg_table *st, struct scatterlist *sg)
3443 {
3444 	unsigned int column, row;
3445 	unsigned int src_idx;
3446 
3447 	for (column = 0; column < width; column++) {
3448 		src_idx = stride * (height - 1) + column;
3449 		for (row = 0; row < height; row++) {
3450 			st->nents++;
3451 			/* We don't need the pages, but need to initialize
3452 			 * the entries so the sg list can be happily traversed.
3453 			 * The only thing we need are DMA addresses.
3454 			 */
3455 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3456 			sg_dma_address(sg) = in[offset + src_idx];
3457 			sg_dma_len(sg) = PAGE_SIZE;
3458 			sg = sg_next(sg);
3459 			src_idx -= stride;
3460 		}
3461 	}
3462 
3463 	return sg;
3464 }
3465 
3466 static struct sg_table *
3467 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3468 			  struct drm_i915_gem_object *obj)
3469 {
3470 	const size_t n_pages = obj->base.size / PAGE_SIZE;
3471 	unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3472 	unsigned int size_pages_uv;
3473 	struct sgt_iter sgt_iter;
3474 	dma_addr_t dma_addr;
3475 	unsigned long i;
3476 	dma_addr_t *page_addr_list;
3477 	struct sg_table *st;
3478 	unsigned int uv_start_page;
3479 	struct scatterlist *sg;
3480 	int ret = -ENOMEM;
3481 
3482 	/* Allocate a temporary list of source pages for random access. */
3483 	page_addr_list = drm_malloc_gfp(n_pages,
3484 					sizeof(dma_addr_t),
3485 					GFP_TEMPORARY);
3486 	if (!page_addr_list)
3487 		return ERR_PTR(ret);
3488 
3489 	/* Account for UV plane with NV12. */
3490 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3491 		size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3492 	else
3493 		size_pages_uv = 0;
3494 
3495 	/* Allocate target SG list. */
3496 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
3497 	if (!st)
3498 		goto err_st_alloc;
3499 
3500 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3501 	if (ret)
3502 		goto err_sg_alloc;
3503 
3504 	/* Populate source page list from the object. */
3505 	i = 0;
3506 	for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3507 		page_addr_list[i++] = dma_addr;
3508 
3509 	GEM_BUG_ON(i != n_pages);
3510 	st->nents = 0;
3511 	sg = st->sgl;
3512 
3513 	/* Rotate the pages. */
3514 	sg = rotate_pages(page_addr_list, 0,
3515 			  rot_info->plane[0].width, rot_info->plane[0].height,
3516 			  rot_info->plane[0].width,
3517 			  st, sg);
3518 
3519 	/* Append the UV plane if NV12. */
3520 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3521 		uv_start_page = size_pages;
3522 
3523 		/* Check for tile-row un-alignment. */
3524 		if (offset_in_page(rot_info->uv_offset))
3525 			uv_start_page--;
3526 
3527 		rot_info->uv_start_page = uv_start_page;
3528 
3529 		sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3530 				  rot_info->plane[1].width, rot_info->plane[1].height,
3531 				  rot_info->plane[1].width,
3532 				  st, sg);
3533 	}
3534 
3535 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3536 		      obj->base.size, rot_info->plane[0].width,
3537 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3538 		      size_pages);
3539 
3540 	drm_free_large(page_addr_list);
3541 
3542 	return st;
3543 
3544 err_sg_alloc:
3545 	kfree(st);
3546 err_st_alloc:
3547 	drm_free_large(page_addr_list);
3548 
3549 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3550 		      obj->base.size, ret, rot_info->plane[0].width,
3551 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3552 		      size_pages);
3553 	return ERR_PTR(ret);
3554 }
3555 
3556 static struct sg_table *
3557 intel_partial_pages(const struct i915_ggtt_view *view,
3558 		    struct drm_i915_gem_object *obj)
3559 {
3560 	struct sg_table *st;
3561 	struct scatterlist *sg;
3562 	struct sg_page_iter obj_sg_iter;
3563 	int ret = -ENOMEM;
3564 
3565 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
3566 	if (!st)
3567 		goto err_st_alloc;
3568 
3569 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3570 	if (ret)
3571 		goto err_sg_alloc;
3572 
3573 	sg = st->sgl;
3574 	st->nents = 0;
3575 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3576 		view->params.partial.offset)
3577 	{
3578 		if (st->nents >= view->params.partial.size)
3579 			break;
3580 
3581 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3582 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3583 		sg_dma_len(sg) = PAGE_SIZE;
3584 
3585 		sg = sg_next(sg);
3586 		st->nents++;
3587 	}
3588 
3589 	return st;
3590 
3591 err_sg_alloc:
3592 	kfree(st);
3593 err_st_alloc:
3594 	return ERR_PTR(ret);
3595 }
3596 
3597 static int
3598 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3599 {
3600 	int ret = 0;
3601 
3602 	if (vma->ggtt_view.pages)
3603 		return 0;
3604 
3605 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3606 		vma->ggtt_view.pages = vma->obj->pages;
3607 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3608 		vma->ggtt_view.pages =
3609 			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3610 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3611 		vma->ggtt_view.pages =
3612 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3613 	else
3614 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3615 			  vma->ggtt_view.type);
3616 
3617 	if (!vma->ggtt_view.pages) {
3618 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3619 			  vma->ggtt_view.type);
3620 		ret = -EINVAL;
3621 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3622 		ret = PTR_ERR(vma->ggtt_view.pages);
3623 		vma->ggtt_view.pages = NULL;
3624 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3625 			  vma->ggtt_view.type, ret);
3626 	}
3627 
3628 	return ret;
3629 }
3630 
3631 /**
3632  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3633  * @vma: VMA to map
3634  * @cache_level: mapping cache level
3635  * @flags: flags like global or local mapping
3636  *
3637  * DMA addresses are taken from the scatter-gather table of this object (or of
3638  * this VMA in case of non-default GGTT views) and PTE entries set up.
3639  * Note that DMA addresses are also the only part of the SG table we care about.
3640  */
3641 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3642 		  u32 flags)
3643 {
3644 	int ret;
3645 	u32 bind_flags;
3646 
3647 	if (WARN_ON(flags == 0))
3648 		return -EINVAL;
3649 
3650 	bind_flags = 0;
3651 	if (flags & PIN_GLOBAL)
3652 		bind_flags |= GLOBAL_BIND;
3653 	if (flags & PIN_USER)
3654 		bind_flags |= LOCAL_BIND;
3655 
3656 	if (flags & PIN_UPDATE)
3657 		bind_flags |= vma->bound;
3658 	else
3659 		bind_flags &= ~vma->bound;
3660 
3661 	if (bind_flags == 0)
3662 		return 0;
3663 
3664 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3665 		/* XXX: i915_vma_pin() will fix this +- hack */
3666 		vma->pin_count++;
3667 		trace_i915_va_alloc(vma);
3668 		ret = vma->vm->allocate_va_range(vma->vm,
3669 						 vma->node.start,
3670 						 vma->node.size);
3671 		vma->pin_count--;
3672 		if (ret)
3673 			return ret;
3674 	}
3675 
3676 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3677 	if (ret)
3678 		return ret;
3679 
3680 	vma->bound |= bind_flags;
3681 
3682 	return 0;
3683 }
3684 
3685 /**
3686  * i915_ggtt_view_size - Get the size of a GGTT view.
3687  * @obj: Object the view is of.
3688  * @view: The view in question.
3689  *
3690  * @return The size of the GGTT view in bytes.
3691  */
3692 size_t
3693 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3694 		    const struct i915_ggtt_view *view)
3695 {
3696 	if (view->type == I915_GGTT_VIEW_NORMAL) {
3697 		return obj->base.size;
3698 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3699 		return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3700 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3701 		return view->params.partial.size << PAGE_SHIFT;
3702 	} else {
3703 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3704 		return obj->base.size;
3705 	}
3706 }
3707 
3708 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3709 {
3710 	void __iomem *ptr;
3711 
3712 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3713 	if (WARN_ON(!vma->obj->map_and_fenceable))
3714 		return ERR_PTR(-ENODEV);
3715 
3716 	GEM_BUG_ON(!vma->is_ggtt);
3717 	GEM_BUG_ON((vma->bound & GLOBAL_BIND) == 0);
3718 
3719 	ptr = vma->iomap;
3720 	if (ptr == NULL) {
3721 		ptr = io_mapping_map_wc(i915_vm_to_ggtt(vma->vm)->mappable,
3722 					vma->node.start,
3723 					vma->node.size);
3724 		if (ptr == NULL)
3725 			return ERR_PTR(-ENOMEM);
3726 
3727 		vma->iomap = ptr;
3728 	}
3729 
3730 	vma->pin_count++;
3731 	return ptr;
3732 }
3733