xref: /dragonfly/sys/dev/drm/i915/i915_gem_gtt.c (revision 23b3ef78)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 
34 #include <linux/bitmap.h>
35 #include <linux/highmem.h>
36 
37 /**
38  * DOC: Global GTT views
39  *
40  * Background and previous state
41  *
42  * Historically objects could exists (be bound) in global GTT space only as
43  * singular instances with a view representing all of the object's backing pages
44  * in a linear fashion. This view will be called a normal view.
45  *
46  * To support multiple views of the same object, where the number of mapped
47  * pages is not equal to the backing store, or where the layout of the pages
48  * is not linear, concept of a GGTT view was added.
49  *
50  * One example of an alternative view is a stereo display driven by a single
51  * image. In this case we would have a framebuffer looking like this
52  * (2x2 pages):
53  *
54  *    12
55  *    34
56  *
57  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
58  * rendering. In contrast, fed to the display engine would be an alternative
59  * view which could look something like this:
60  *
61  *   1212
62  *   3434
63  *
64  * In this example both the size and layout of pages in the alternative view is
65  * different from the normal view.
66  *
67  * Implementation and usage
68  *
69  * GGTT views are implemented using VMAs and are distinguished via enum
70  * i915_ggtt_view_type and struct i915_ggtt_view.
71  *
72  * A new flavour of core GEM functions which work with GGTT bound objects were
73  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
74  * renaming  in large amounts of code. They take the struct i915_ggtt_view
75  * parameter encapsulating all metadata required to implement a view.
76  *
77  * As a helper for callers which are only interested in the normal view,
78  * globally const i915_ggtt_view_normal singleton instance exists. All old core
79  * GEM API functions, the ones not taking the view parameter, are operating on,
80  * or with the normal GGTT view.
81  *
82  * Code wanting to add or use a new GGTT view needs to:
83  *
84  * 1. Add a new enum with a suitable name.
85  * 2. Extend the metadata in the i915_ggtt_view structure if required.
86  * 3. Add support to i915_get_vma_pages().
87  *
88  * New views are required to build a scatter-gather table from within the
89  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
90  * exists for the lifetime of an VMA.
91  *
92  * Core API is designed to have copy semantics which means that passed in
93  * struct i915_ggtt_view does not need to be persistent (left around after
94  * calling the core API functions).
95  *
96  */
97 
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102 
103 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
104 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
105 
106 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
107 {
108 	bool has_aliasing_ppgtt;
109 	bool has_full_ppgtt;
110 
111 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
112 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
113 
114 	if (intel_vgpu_active(dev))
115 		has_full_ppgtt = false; /* emulation is too hard */
116 
117 	/*
118 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
119 	 * execlists, the sole mechanism available to submit work.
120 	 */
121 	if (INTEL_INFO(dev)->gen < 9 &&
122 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
123 		return 0;
124 
125 	if (enable_ppgtt == 1)
126 		return 1;
127 
128 	if (enable_ppgtt == 2 && has_full_ppgtt)
129 		return 2;
130 
131 #ifdef CONFIG_INTEL_IOMMU
132 	/* Disable ppgtt on SNB if VT-d is on. */
133 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
134 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
135 		return 0;
136 	}
137 #endif
138 
139 	/* Early VLV doesn't have this */
140 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
141 	    dev->pdev->revision < 0xb) {
142 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
143 		return 0;
144 	}
145 
146 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
147 		return 2;
148 	else
149 		return has_aliasing_ppgtt ? 1 : 0;
150 }
151 
152 static void ppgtt_bind_vma(struct i915_vma *vma,
153 			   enum i915_cache_level cache_level,
154 			   u32 flags);
155 static void ppgtt_unbind_vma(struct i915_vma *vma);
156 
157 static inline gen8_pte_t gen8_pte_encode(dma_addr_t addr,
158 					 enum i915_cache_level level,
159 					 bool valid)
160 {
161 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
162 	pte |= addr;
163 
164 	switch (level) {
165 	case I915_CACHE_NONE:
166 		pte |= PPAT_UNCACHED_INDEX;
167 		break;
168 	case I915_CACHE_WT:
169 		pte |= PPAT_DISPLAY_ELLC_INDEX;
170 		break;
171 	default:
172 		pte |= PPAT_CACHED_INDEX;
173 		break;
174 	}
175 
176 	return pte;
177 }
178 
179 static inline gen8_pde_t gen8_pde_encode(struct drm_device *dev,
180 					  dma_addr_t addr,
181 					  enum i915_cache_level level)
182 {
183 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
184 	pde |= addr;
185 	if (level != I915_CACHE_NONE)
186 		pde |= PPAT_CACHED_PDE_INDEX;
187 	else
188 		pde |= PPAT_UNCACHED_INDEX;
189 	return pde;
190 }
191 
192 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
193 				 enum i915_cache_level level,
194 				 bool valid, u32 unused)
195 {
196 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
197 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
198 
199 	switch (level) {
200 	case I915_CACHE_L3_LLC:
201 	case I915_CACHE_LLC:
202 		pte |= GEN6_PTE_CACHE_LLC;
203 		break;
204 	case I915_CACHE_NONE:
205 		pte |= GEN6_PTE_UNCACHED;
206 		break;
207 	default:
208 		MISSING_CASE(level);
209 	}
210 
211 	return pte;
212 }
213 
214 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
215 				 enum i915_cache_level level,
216 				 bool valid, u32 unused)
217 {
218 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
219 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
220 
221 	switch (level) {
222 	case I915_CACHE_L3_LLC:
223 		pte |= GEN7_PTE_CACHE_L3_LLC;
224 		break;
225 	case I915_CACHE_LLC:
226 		pte |= GEN6_PTE_CACHE_LLC;
227 		break;
228 	case I915_CACHE_NONE:
229 		pte |= GEN6_PTE_UNCACHED;
230 		break;
231 	default:
232 		MISSING_CASE(level);
233 	}
234 
235 	return pte;
236 }
237 
238 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
239 				 enum i915_cache_level level,
240 				 bool valid, u32 flags)
241 {
242 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
243 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
244 
245 	if (!(flags & PTE_READ_ONLY))
246 		pte |= BYT_PTE_WRITEABLE;
247 
248 	if (level != I915_CACHE_NONE)
249 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
250 
251 	return pte;
252 }
253 
254 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
255 				 enum i915_cache_level level,
256 				 bool valid, u32 unused)
257 {
258 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
259 	pte |= HSW_PTE_ADDR_ENCODE(addr);
260 
261 	if (level != I915_CACHE_NONE)
262 		pte |= HSW_WB_LLC_AGE3;
263 
264 	return pte;
265 }
266 
267 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
268 				  enum i915_cache_level level,
269 				  bool valid, u32 unused)
270 {
271 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
272 	pte |= HSW_PTE_ADDR_ENCODE(addr);
273 
274 	switch (level) {
275 	case I915_CACHE_NONE:
276 		break;
277 	case I915_CACHE_WT:
278 		pte |= HSW_WT_ELLC_LLC_AGE3;
279 		break;
280 	default:
281 		pte |= HSW_WB_ELLC_LLC_AGE3;
282 		break;
283 	}
284 
285 	return pte;
286 }
287 
288 #define i915_dma_unmap_single(px, dev) \
289 	__i915_dma_unmap_single((px)->daddr, dev)
290 
291 static inline void __i915_dma_unmap_single(dma_addr_t daddr,
292 					struct drm_device *dev)
293 {
294 #if 0
295 	struct device *device = &dev->pdev->dev;
296 
297 	dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
298 #endif
299 }
300 
301 /**
302  * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
303  * @px:	Page table/dir/etc to get a DMA map for
304  * @dev:	drm device
305  *
306  * Page table allocations are unified across all gens. They always require a
307  * single 4k allocation, as well as a DMA mapping. If we keep the structs
308  * symmetric here, the simple macro covers us for every page table type.
309  *
310  * Return: 0 if success.
311  */
312 #define i915_dma_map_single(px, dev) \
313 	i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
314 
315 static inline int i915_dma_map_page_single(struct vm_page *page,
316 					   struct drm_device *dev,
317 					   dma_addr_t *daddr)
318 {
319 	struct device *device = dev->pdev->dev;
320 
321 	*daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
322 	if (dma_mapping_error(device, *daddr))
323 		return -ENOMEM;
324 
325 	return 0;
326 }
327 
328 static void unmap_and_free_pt(struct i915_page_table_entry *pt,
329 			       struct drm_device *dev)
330 {
331 	if (WARN_ON(!pt->page))
332 		return;
333 
334 	i915_dma_unmap_single(pt, dev);
335 	__free_page(pt->page);
336 	kfree(pt->used_ptes);
337 	kfree(pt);
338 }
339 
340 static struct i915_page_table_entry *alloc_pt_single(struct drm_device *dev)
341 {
342 	struct i915_page_table_entry *pt;
343 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
344 		GEN8_PTES : GEN6_PTES;
345 	int ret = -ENOMEM;
346 
347 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
348 	if (!pt)
349 		return ERR_PTR(-ENOMEM);
350 
351 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
352 				GFP_KERNEL);
353 
354 	if (!pt->used_ptes)
355 		goto fail_bitmap;
356 
357 	pt->page = alloc_page(GFP_KERNEL);
358 	if (!pt->page)
359 		goto fail_page;
360 
361 	ret = i915_dma_map_single(pt, dev);
362 	if (ret)
363 		goto fail_dma;
364 
365 	return pt;
366 
367 fail_dma:
368 	__free_page(pt->page);
369 fail_page:
370 	kfree(pt->used_ptes);
371 fail_bitmap:
372 	kfree(pt);
373 
374 	return ERR_PTR(ret);
375 }
376 
377 /**
378  * alloc_pt_range() - Allocate a multiple page tables
379  * @pd:		The page directory which will have at least @count entries
380  *		available to point to the allocated page tables.
381  * @pde:	First page directory entry for which we are allocating.
382  * @count:	Number of pages to allocate.
383  * @dev:	DRM device.
384  *
385  * Allocates multiple page table pages and sets the appropriate entries in the
386  * page table structure within the page directory. Function cleans up after
387  * itself on any failures.
388  *
389  * Return: 0 if allocation succeeded.
390  */
391 static int alloc_pt_range(struct i915_page_directory_entry *pd, uint16_t pde, size_t count,
392 			  struct drm_device *dev)
393 {
394 	int i, ret;
395 
396 	/* 512 is the max page tables per page_directory on any platform. */
397 	if (WARN_ON(pde + count > I915_PDES))
398 		return -EINVAL;
399 
400 	for (i = pde; i < pde + count; i++) {
401 		struct i915_page_table_entry *pt = alloc_pt_single(dev);
402 
403 		if (IS_ERR(pt)) {
404 			ret = PTR_ERR(pt);
405 			goto err_out;
406 		}
407 		WARN(pd->page_table[i],
408 		     "Leaking page directory entry %d (%p)\n",
409 		     i, pd->page_table[i]);
410 		pd->page_table[i] = pt;
411 	}
412 
413 	return 0;
414 
415 err_out:
416 	while (i-- > pde)
417 		unmap_and_free_pt(pd->page_table[i], dev);
418 	return ret;
419 }
420 
421 static void unmap_and_free_pd(struct i915_page_directory_entry *pd)
422 {
423 	if (pd->page) {
424 		__free_page(pd->page);
425 		kfree(pd);
426 	}
427 }
428 
429 static struct i915_page_directory_entry *alloc_pd_single(void)
430 {
431 	struct i915_page_directory_entry *pd;
432 
433 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
434 	if (!pd)
435 		return ERR_PTR(-ENOMEM);
436 
437 	pd->page = alloc_page(GFP_KERNEL | __GFP_ZERO);
438 	if (!pd->page) {
439 		kfree(pd);
440 		return ERR_PTR(-ENOMEM);
441 	}
442 
443 	return pd;
444 }
445 
446 /* Broadwell Page Directory Pointer Descriptors */
447 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
448 			   uint64_t val)
449 {
450 	int ret;
451 
452 	BUG_ON(entry >= 4);
453 
454 	ret = intel_ring_begin(ring, 6);
455 	if (ret)
456 		return ret;
457 
458 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
459 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
460 	intel_ring_emit(ring, (u32)(val >> 32));
461 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
462 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
463 	intel_ring_emit(ring, (u32)(val));
464 	intel_ring_advance(ring);
465 
466 	return 0;
467 }
468 
469 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
470 			  struct intel_engine_cs *ring)
471 {
472 	int i, ret;
473 
474 	/* bit of a hack to find the actual last used pd */
475 	int used_pd = ppgtt->num_pd_entries / I915_PDES;
476 
477 	for (i = used_pd - 1; i >= 0; i--) {
478 		dma_addr_t addr = ppgtt->pdp.page_directory[i]->daddr;
479 		ret = gen8_write_pdp(ring, i, addr);
480 		if (ret)
481 			return ret;
482 	}
483 
484 	return 0;
485 }
486 
487 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
488 				   uint64_t start,
489 				   uint64_t length,
490 				   bool use_scratch)
491 {
492 	struct i915_hw_ppgtt *ppgtt =
493 		container_of(vm, struct i915_hw_ppgtt, base);
494 	gen8_pte_t *pt_vaddr, scratch_pte;
495 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
496 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
497 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
498 	unsigned num_entries = length >> PAGE_SHIFT;
499 	unsigned last_pte, i;
500 
501 	scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
502 				      I915_CACHE_LLC, use_scratch);
503 
504 	while (num_entries) {
505 		struct i915_page_directory_entry *pd;
506 		struct i915_page_table_entry *pt;
507 		struct vm_page *page_table;
508 
509 		if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
510 			continue;
511 
512 		pd = ppgtt->pdp.page_directory[pdpe];
513 
514 		if (WARN_ON(!pd->page_table[pde]))
515 			continue;
516 
517 		pt = pd->page_table[pde];
518 
519 		if (WARN_ON(!pt->page))
520 			continue;
521 
522 		page_table = pt->page;
523 
524 		last_pte = pte + num_entries;
525 		if (last_pte > GEN8_PTES)
526 			last_pte = GEN8_PTES;
527 
528 		pt_vaddr = kmap_atomic(page_table);
529 
530 		for (i = pte; i < last_pte; i++) {
531 			pt_vaddr[i] = scratch_pte;
532 			num_entries--;
533 		}
534 
535 		if (!HAS_LLC(ppgtt->base.dev))
536 			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
537 		kunmap_atomic(pt_vaddr);
538 
539 		pte = 0;
540 		if (++pde == I915_PDES) {
541 			pdpe++;
542 			pde = 0;
543 		}
544 	}
545 }
546 
547 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
548 				      vm_page_t *pages,
549 				      uint64_t start,
550 				      unsigned int num_entries,
551 				      enum i915_cache_level cache_level, u32 unused)
552 {
553 	struct i915_hw_ppgtt *ppgtt =
554 		container_of(vm, struct i915_hw_ppgtt, base);
555 	gen8_pte_t *pt_vaddr;
556 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
557 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
558 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
559 	int i;
560 
561 	pt_vaddr = NULL;
562 
563 	for (i=0;i<num_entries;i++) {
564 		if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
565 			break;
566 
567 		if (pt_vaddr == NULL) {
568 			struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[pdpe];
569 			struct i915_page_table_entry *pt = pd->page_table[pde];
570 			struct vm_page *page_table = pt->page;
571 
572 			pt_vaddr = kmap_atomic(page_table);
573 		}
574 
575 		pt_vaddr[pte] =
576 			gen8_pte_encode(VM_PAGE_TO_PHYS(pages[i]),
577 					cache_level, true);
578 		if (++pte == GEN8_PTES) {
579 			if (!HAS_LLC(ppgtt->base.dev))
580 				drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
581 			kunmap_atomic(pt_vaddr);
582 			pt_vaddr = NULL;
583 			if (++pde == I915_PDES) {
584 				pdpe++;
585 				pde = 0;
586 			}
587 			pte = 0;
588 		}
589 	}
590 	if (pt_vaddr) {
591 		if (!HAS_LLC(ppgtt->base.dev))
592 			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
593 		kunmap_atomic(pt_vaddr);
594 	}
595 }
596 
597 static void gen8_free_page_tables(struct i915_page_directory_entry *pd, struct drm_device *dev)
598 {
599 	int i;
600 
601 	if (!pd->page)
602 		return;
603 
604 	for (i = 0; i < I915_PDES; i++) {
605 		if (WARN_ON(!pd->page_table[i]))
606 			continue;
607 
608 		unmap_and_free_pt(pd->page_table[i], dev);
609 		pd->page_table[i] = NULL;
610 	}
611 }
612 
613 static void gen8_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
614 {
615 	int i;
616 
617 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
618 		if (WARN_ON(!ppgtt->pdp.page_directory[i]))
619 			continue;
620 
621 		gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
622 		unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
623 	}
624 }
625 
626 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
627 {
628 	struct pci_dev *hwdev = ppgtt->base.dev->pdev;
629 	int i, j;
630 
631 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
632 		/* TODO: In the future we'll support sparse mappings, so this
633 		 * will have to change. */
634 		if (!ppgtt->pdp.page_directory[i]->daddr)
635 			continue;
636 
637 		pci_unmap_page(hwdev, ppgtt->pdp.page_directory[i]->daddr, PAGE_SIZE,
638 			       PCI_DMA_BIDIRECTIONAL);
639 
640 		for (j = 0; j < I915_PDES; j++) {
641 			struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
642 			struct i915_page_table_entry *pt;
643 			dma_addr_t addr;
644 
645 			if (WARN_ON(!pd->page_table[j]))
646 				continue;
647 
648 			pt = pd->page_table[j];
649 			addr = pt->daddr;
650 
651 			if (addr)
652 				pci_unmap_page(hwdev, addr, PAGE_SIZE,
653 					       PCI_DMA_BIDIRECTIONAL);
654 		}
655 	}
656 }
657 
658 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
659 {
660 	struct i915_hw_ppgtt *ppgtt =
661 		container_of(vm, struct i915_hw_ppgtt, base);
662 
663 	gen8_ppgtt_unmap_pages(ppgtt);
664 	gen8_ppgtt_free(ppgtt);
665 }
666 
667 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
668 {
669 	int i, ret;
670 
671 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
672 		ret = alloc_pt_range(ppgtt->pdp.page_directory[i],
673 				     0, I915_PDES, ppgtt->base.dev);
674 		if (ret)
675 			goto unwind_out;
676 	}
677 
678 	return 0;
679 
680 unwind_out:
681 	while (i--)
682 		gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
683 
684 	return -ENOMEM;
685 }
686 
687 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
688 						const int max_pdp)
689 {
690 	int i;
691 
692 	for (i = 0; i < max_pdp; i++) {
693 		ppgtt->pdp.page_directory[i] = alloc_pd_single();
694 		if (IS_ERR(ppgtt->pdp.page_directory[i]))
695 			goto unwind_out;
696 	}
697 
698 	ppgtt->num_pd_pages = max_pdp;
699 	BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPES);
700 
701 	return 0;
702 
703 unwind_out:
704 	while (i--)
705 		unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
706 
707 	return -ENOMEM;
708 }
709 
710 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
711 			    const int max_pdp)
712 {
713 	int ret;
714 
715 	ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
716 	if (ret)
717 		return ret;
718 
719 	ret = gen8_ppgtt_allocate_page_tables(ppgtt);
720 	if (ret)
721 		goto err_out;
722 
723 	ppgtt->num_pd_entries = max_pdp * I915_PDES;
724 
725 	return 0;
726 
727 err_out:
728 	gen8_ppgtt_free(ppgtt);
729 	return ret;
730 }
731 
732 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
733 					     const int pd)
734 {
735 	dma_addr_t pd_addr;
736 	int ret;
737 
738 	pd_addr = pci_map_page(ppgtt->base.dev->pdev,
739 			       ppgtt->pdp.page_directory[pd]->page, 0,
740 			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
741 
742 	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
743 	if (ret)
744 		return ret;
745 
746 	ppgtt->pdp.page_directory[pd]->daddr = pd_addr;
747 
748 	return 0;
749 }
750 
751 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
752 					const int pd,
753 					const int pt)
754 {
755 	dma_addr_t pt_addr;
756 	struct i915_page_directory_entry *pdir = ppgtt->pdp.page_directory[pd];
757 	struct i915_page_table_entry *ptab = pdir->page_table[pt];
758 	struct vm_page *p = ptab->page;
759 	int ret;
760 
761 	pt_addr = pci_map_page(ppgtt->base.dev->pdev,
762 			       p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
763 	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
764 	if (ret)
765 		return ret;
766 
767 	ptab->daddr = pt_addr;
768 
769 	return 0;
770 }
771 
772 /*
773  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
774  * with a net effect resembling a 2-level page table in normal x86 terms. Each
775  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
776  * space.
777  *
778  * FIXME: split allocation into smaller pieces. For now we only ever do this
779  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
780  * TODO: Do something with the size parameter
781  */
782 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
783 {
784 	const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
785 	const int min_pt_pages = I915_PDES * max_pdp;
786 	int i, j, ret;
787 
788 	if (size % (1<<30))
789 		DRM_INFO("Pages will be wasted unless GTT size (%lu) is divisible by 1GB\n", size);
790 
791 	/* 1. Do all our allocations for page directories and page tables.
792 	 * We allocate more than was asked so that we can point the unused parts
793 	 * to valid entries that point to scratch page. Dynamic page tables
794 	 * will fix this eventually.
795 	 */
796 	ret = gen8_ppgtt_alloc(ppgtt, GEN8_LEGACY_PDPES);
797 	if (ret)
798 		return ret;
799 
800 	/*
801 	 * 2. Create DMA mappings for the page directories and page tables.
802 	 */
803 	for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
804 		ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
805 		if (ret)
806 			goto bail;
807 
808 		for (j = 0; j < I915_PDES; j++) {
809 			ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
810 			if (ret)
811 				goto bail;
812 		}
813 	}
814 
815 	/*
816 	 * 3. Map all the page directory entires to point to the page tables
817 	 * we've allocated.
818 	 *
819 	 * For now, the PPGTT helper functions all require that the PDEs are
820 	 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
821 	 * will never need to touch the PDEs again.
822 	 */
823 	for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
824 		struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
825 		gen8_pde_t *pd_vaddr;
826 		pd_vaddr = kmap_atomic(ppgtt->pdp.page_directory[i]->page);
827 		for (j = 0; j < I915_PDES; j++) {
828 			struct i915_page_table_entry *pt = pd->page_table[j];
829 			dma_addr_t addr = pt->daddr;
830 			pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
831 						      I915_CACHE_LLC);
832 		}
833 		if (!HAS_LLC(ppgtt->base.dev))
834 			drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
835 		kunmap_atomic(pd_vaddr);
836 	}
837 
838 	ppgtt->switch_mm = gen8_mm_switch;
839 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
840 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
841 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
842 	ppgtt->base.start = 0;
843 
844 	/* This is the area that we advertise as usable for the caller */
845 	ppgtt->base.total = max_pdp * I915_PDES * GEN8_PTES * PAGE_SIZE;
846 
847 	/* Set all ptes to a valid scratch page. Also above requested space */
848 	ppgtt->base.clear_range(&ppgtt->base, 0,
849 				ppgtt->num_pd_pages * GEN8_PTES * PAGE_SIZE,
850 				true);
851 
852 	DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
853 			 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
854 	DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%ld wasted)\n",
855 			 ppgtt->num_pd_entries,
856 			 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
857 	return 0;
858 
859 bail:
860 	gen8_ppgtt_unmap_pages(ppgtt);
861 	gen8_ppgtt_free(ppgtt);
862 	return ret;
863 }
864 
865 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
866 {
867 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
868 	struct i915_address_space *vm = &ppgtt->base;
869 	gen6_pte_t __iomem *pd_addr;
870 	gen6_pte_t scratch_pte;
871 	uint32_t pd_entry;
872 	int pte, pde;
873 
874 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
875 
876 	pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
877 		ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
878 
879 	seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
880 		   ppgtt->pd.pd_offset,
881 		   ppgtt->pd.pd_offset + ppgtt->num_pd_entries);
882 	for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
883 		u32 expected;
884 		gen6_pte_t *pt_vaddr;
885 		dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
886 		pd_entry = readl(pd_addr + pde);
887 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
888 
889 		if (pd_entry != expected)
890 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
891 				   pde,
892 				   pd_entry,
893 				   expected);
894 		seq_printf(m, "\tPDE: %x\n", pd_entry);
895 
896 		pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
897 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
898 			unsigned long va =
899 				(pde * PAGE_SIZE * GEN6_PTES) +
900 				(pte * PAGE_SIZE);
901 			int i;
902 			bool found = false;
903 			for (i = 0; i < 4; i++)
904 				if (pt_vaddr[pte + i] != scratch_pte)
905 					found = true;
906 			if (!found)
907 				continue;
908 
909 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
910 			for (i = 0; i < 4; i++) {
911 				if (pt_vaddr[pte + i] != scratch_pte)
912 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
913 				else
914 					seq_puts(m, "  SCRATCH ");
915 			}
916 			seq_puts(m, "\n");
917 		}
918 		kunmap_atomic(pt_vaddr);
919 	}
920 }
921 
922 /* Write pde (index) from the page directory @pd to the page table @pt */
923 static void gen6_write_pde(struct i915_page_directory_entry *pd,
924 			    const int pde, struct i915_page_table_entry *pt)
925 {
926 	/* Caller needs to make sure the write completes if necessary */
927 	struct i915_hw_ppgtt *ppgtt =
928 		container_of(pd, struct i915_hw_ppgtt, pd);
929 	u32 pd_entry;
930 
931 	pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
932 	pd_entry |= GEN6_PDE_VALID;
933 
934 	writel(pd_entry, ppgtt->pd_addr + pde);
935 }
936 
937 /* Write all the page tables found in the ppgtt structure to incrementing page
938  * directories. */
939 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
940 				  struct i915_page_directory_entry *pd,
941 				  uint32_t start, uint32_t length)
942 {
943 	struct i915_page_table_entry *pt;
944 	uint32_t pde, temp;
945 
946 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
947 		gen6_write_pde(pd, pde, pt);
948 
949 	/* Make sure write is complete before other code can use this page
950 	 * table. Also require for WC mapped PTEs */
951 	readl(dev_priv->gtt.gsm);
952 }
953 
954 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
955 {
956 	BUG_ON(ppgtt->pd.pd_offset & 0x3f);
957 
958 	return (ppgtt->pd.pd_offset / 64) << 16;
959 }
960 
961 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
962 			 struct intel_engine_cs *ring)
963 {
964 	int ret;
965 
966 	/* NB: TLBs must be flushed and invalidated before a switch */
967 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
968 	if (ret)
969 		return ret;
970 
971 	ret = intel_ring_begin(ring, 6);
972 	if (ret)
973 		return ret;
974 
975 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
976 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
977 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
978 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
979 	intel_ring_emit(ring, get_pd_offset(ppgtt));
980 	intel_ring_emit(ring, MI_NOOP);
981 	intel_ring_advance(ring);
982 
983 	return 0;
984 }
985 
986 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
987 			  struct intel_engine_cs *ring)
988 {
989 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
990 
991 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
992 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
993 	return 0;
994 }
995 
996 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
997 			  struct intel_engine_cs *ring)
998 {
999 	int ret;
1000 
1001 	/* NB: TLBs must be flushed and invalidated before a switch */
1002 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1003 	if (ret)
1004 		return ret;
1005 
1006 	ret = intel_ring_begin(ring, 6);
1007 	if (ret)
1008 		return ret;
1009 
1010 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1011 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1012 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1013 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1014 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1015 	intel_ring_emit(ring, MI_NOOP);
1016 	intel_ring_advance(ring);
1017 
1018 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1019 	if (ring->id != RCS) {
1020 		ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1021 		if (ret)
1022 			return ret;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1029 			  struct intel_engine_cs *ring)
1030 {
1031 	struct drm_device *dev = ppgtt->base.dev;
1032 	struct drm_i915_private *dev_priv = dev->dev_private;
1033 
1034 
1035 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1036 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1037 
1038 	POSTING_READ(RING_PP_DIR_DCLV(ring));
1039 
1040 	return 0;
1041 }
1042 
1043 static void gen8_ppgtt_enable(struct drm_device *dev)
1044 {
1045 	struct drm_i915_private *dev_priv = dev->dev_private;
1046 	struct intel_engine_cs *ring;
1047 	int j;
1048 
1049 	for_each_ring(ring, dev_priv, j) {
1050 		I915_WRITE(RING_MODE_GEN7(ring),
1051 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1052 	}
1053 }
1054 
1055 static void gen7_ppgtt_enable(struct drm_device *dev)
1056 {
1057 	struct drm_i915_private *dev_priv = dev->dev_private;
1058 	struct intel_engine_cs *ring;
1059 	uint32_t ecochk, ecobits;
1060 	int i;
1061 
1062 	ecobits = I915_READ(GAC_ECO_BITS);
1063 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1064 
1065 	ecochk = I915_READ(GAM_ECOCHK);
1066 	if (IS_HASWELL(dev)) {
1067 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1068 	} else {
1069 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1070 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1071 	}
1072 	I915_WRITE(GAM_ECOCHK, ecochk);
1073 
1074 	for_each_ring(ring, dev_priv, i) {
1075 		/* GFX_MODE is per-ring on gen7+ */
1076 		I915_WRITE(RING_MODE_GEN7(ring),
1077 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1078 	}
1079 }
1080 
1081 static void gen6_ppgtt_enable(struct drm_device *dev)
1082 {
1083 	struct drm_i915_private *dev_priv = dev->dev_private;
1084 	uint32_t ecochk, gab_ctl, ecobits;
1085 
1086 	ecobits = I915_READ(GAC_ECO_BITS);
1087 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1088 		   ECOBITS_PPGTT_CACHE64B);
1089 
1090 	gab_ctl = I915_READ(GAB_CTL);
1091 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1092 
1093 	ecochk = I915_READ(GAM_ECOCHK);
1094 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1095 
1096 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1097 }
1098 
1099 /* PPGTT support for Sandybdrige/Gen6 and later */
1100 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1101 				   uint64_t start,
1102 				   uint64_t length,
1103 				   bool use_scratch)
1104 {
1105 	struct i915_hw_ppgtt *ppgtt =
1106 		container_of(vm, struct i915_hw_ppgtt, base);
1107 	gen6_pte_t *pt_vaddr, scratch_pte;
1108 	unsigned first_entry = start >> PAGE_SHIFT;
1109 	unsigned num_entries = length >> PAGE_SHIFT;
1110 	unsigned act_pt = first_entry / GEN6_PTES;
1111 	unsigned first_pte = first_entry % GEN6_PTES;
1112 	unsigned last_pte, i;
1113 
1114 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1115 
1116 	while (num_entries) {
1117 		last_pte = first_pte + num_entries;
1118 		if (last_pte > GEN6_PTES)
1119 			last_pte = GEN6_PTES;
1120 
1121 		pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1122 
1123 		for (i = first_pte; i < last_pte; i++)
1124 			pt_vaddr[i] = scratch_pte;
1125 
1126 		kunmap_atomic(pt_vaddr);
1127 
1128 		num_entries -= last_pte - first_pte;
1129 		first_pte = 0;
1130 		act_pt++;
1131 	}
1132 }
1133 
1134 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1135 				      vm_page_t *pages,
1136 				      uint64_t start,
1137 				      unsigned num_entries,
1138 				      enum i915_cache_level cache_level, u32 flags)
1139 {
1140 	struct i915_hw_ppgtt *ppgtt =
1141 		container_of(vm, struct i915_hw_ppgtt, base);
1142 	gen6_pte_t *pt_vaddr;
1143 	unsigned first_entry = start >> PAGE_SHIFT;
1144 	unsigned act_pt = first_entry / GEN6_PTES;
1145 	unsigned act_pte = first_entry % GEN6_PTES;
1146 
1147 	pt_vaddr = NULL;
1148 	for (int i=0;i<num_entries;i++) {
1149 		if (pt_vaddr == NULL)
1150 			pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1151 
1152 		pt_vaddr[act_pte] =
1153 			vm->pte_encode(VM_PAGE_TO_PHYS(pages[i]),
1154 				       cache_level, true, flags);
1155 
1156 		if (++act_pte == GEN6_PTES) {
1157 			kunmap_atomic(pt_vaddr);
1158 			pt_vaddr = NULL;
1159 			act_pt++;
1160 			act_pte = 0;
1161 		}
1162 	}
1163 	if (pt_vaddr)
1164 		kunmap_atomic(pt_vaddr);
1165 }
1166 
1167 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1168  * are switching between contexts with the same LRCA, we also must do a force
1169  * restore.
1170  */
1171 static inline void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1172 {
1173 	/* If current vm != vm, */
1174 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1175 }
1176 
1177 static void gen6_initialize_pt(struct i915_address_space *vm,
1178 		struct i915_page_table_entry *pt)
1179 {
1180 	gen6_pte_t *pt_vaddr, scratch_pte;
1181 	int i;
1182 
1183 	WARN_ON(vm->scratch.addr == 0);
1184 
1185 	scratch_pte = vm->pte_encode(vm->scratch.addr,
1186 			I915_CACHE_LLC, true, 0);
1187 
1188 	pt_vaddr = kmap_atomic(pt->page);
1189 
1190 	for (i = 0; i < GEN6_PTES; i++)
1191 		pt_vaddr[i] = scratch_pte;
1192 
1193 	kunmap_atomic(pt_vaddr);
1194 }
1195 
1196 static int gen6_alloc_va_range(struct i915_address_space *vm,
1197 			       uint64_t start, uint64_t length)
1198 {
1199 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1200 	struct drm_device *dev = vm->dev;
1201 	struct drm_i915_private *dev_priv = dev->dev_private;
1202 	struct i915_hw_ppgtt *ppgtt =
1203 				container_of(vm, struct i915_hw_ppgtt, base);
1204 	struct i915_page_table_entry *pt;
1205 	const uint32_t start_save = start, length_save = length;
1206 	uint32_t pde, temp;
1207 	int ret;
1208 
1209 	WARN_ON(upper_32_bits(start));
1210 
1211 	bitmap_zero(new_page_tables, I915_PDES);
1212 
1213 	/* The allocation is done in two stages so that we can bail out with
1214 	 * minimal amount of pain. The first stage finds new page tables that
1215 	 * need allocation. The second stage marks use ptes within the page
1216 	 * tables.
1217 	 */
1218 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1219 		if (pt != ppgtt->scratch_pt) {
1220 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1221 			continue;
1222 		}
1223 
1224 		/* We've already allocated a page table */
1225 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1226 
1227 		pt = alloc_pt_single(dev);
1228 		if (IS_ERR(pt)) {
1229 			ret = PTR_ERR(pt);
1230 			goto unwind_out;
1231 		}
1232 
1233 		gen6_initialize_pt(vm, pt);
1234 
1235 		ppgtt->pd.page_table[pde] = pt;
1236 		set_bit(pde, new_page_tables);
1237 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1238 	}
1239 
1240 	start = start_save;
1241 	length = length_save;
1242 
1243 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1244 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1245 
1246 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1247 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1248 			   gen6_pte_count(start, length));
1249 
1250 		if (test_and_clear_bit(pde, new_page_tables))
1251 			gen6_write_pde(&ppgtt->pd, pde, pt);
1252 
1253 		trace_i915_page_table_entry_map(vm, pde, pt,
1254 					 gen6_pte_index(start),
1255 					 gen6_pte_count(start, length),
1256 					 GEN6_PTES);
1257 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1258 				GEN6_PTES);
1259 	}
1260 
1261 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1262 
1263 	/* Make sure write is complete before other code can use this page
1264 	 * table. Also require for WC mapped PTEs */
1265 	readl(dev_priv->gtt.gsm);
1266 
1267 	mark_tlbs_dirty(ppgtt);
1268 	return 0;
1269 
1270 unwind_out:
1271 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1272 		struct i915_page_table_entry *pt = ppgtt->pd.page_table[pde];
1273 
1274 		ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1275 		unmap_and_free_pt(pt, vm->dev);
1276 	}
1277 
1278 	mark_tlbs_dirty(ppgtt);
1279 	return ret;
1280 }
1281 
1282 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1283 {
1284 	int i;
1285 
1286 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
1287 		struct i915_page_table_entry *pt = ppgtt->pd.page_table[i];
1288 
1289 		if (pt != ppgtt->scratch_pt)
1290 			unmap_and_free_pt(ppgtt->pd.page_table[i], ppgtt->base.dev);
1291 	}
1292 
1293 	unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1294 	unmap_and_free_pd(&ppgtt->pd);
1295 }
1296 
1297 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1298 {
1299 	struct i915_hw_ppgtt *ppgtt =
1300 		container_of(vm, struct i915_hw_ppgtt, base);
1301 
1302 	drm_mm_remove_node(&ppgtt->node);
1303 
1304 	gen6_ppgtt_free(ppgtt);
1305 }
1306 
1307 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1308 {
1309 	struct drm_device *dev = ppgtt->base.dev;
1310 	struct drm_i915_private *dev_priv = dev->dev_private;
1311 	bool retried = false;
1312 	int ret;
1313 
1314 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1315 	 * allocator works in address space sizes, so it's multiplied by page
1316 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1317 	 */
1318 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1319 	ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1320 	if (IS_ERR(ppgtt->scratch_pt))
1321 		return PTR_ERR(ppgtt->scratch_pt);
1322 
1323 	gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1324 
1325 alloc:
1326 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1327 						  &ppgtt->node, GEN6_PD_SIZE,
1328 						  GEN6_PD_ALIGN, 0,
1329 						  0, dev_priv->gtt.base.total,
1330 						  DRM_MM_TOPDOWN);
1331 	if (ret == -ENOSPC && !retried) {
1332 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1333 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
1334 					       I915_CACHE_NONE,
1335 					       0, dev_priv->gtt.base.total,
1336 					       0);
1337 		if (ret)
1338 			goto err_out;
1339 
1340 		retried = true;
1341 		goto alloc;
1342 	}
1343 
1344 	if (ret)
1345 		goto err_out;
1346 
1347 
1348 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1349 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1350 
1351 	ppgtt->num_pd_entries = I915_PDES;
1352 	return 0;
1353 
1354 err_out:
1355 	unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1356 	return ret;
1357 }
1358 
1359 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1360 {
1361 	return gen6_ppgtt_allocate_page_directories(ppgtt);
1362 }
1363 
1364 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1365 				  uint64_t start, uint64_t length)
1366 {
1367 	struct i915_page_table_entry *unused;
1368 	uint32_t pde, temp;
1369 
1370 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1371 		ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1372 }
1373 
1374 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt, bool aliasing)
1375 {
1376 	struct drm_device *dev = ppgtt->base.dev;
1377 	struct drm_i915_private *dev_priv = dev->dev_private;
1378 	int ret;
1379 
1380 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1381 	if (IS_GEN6(dev)) {
1382 		ppgtt->switch_mm = gen6_mm_switch;
1383 	} else if (IS_HASWELL(dev)) {
1384 		ppgtt->switch_mm = hsw_mm_switch;
1385 	} else if (IS_GEN7(dev)) {
1386 		ppgtt->switch_mm = gen7_mm_switch;
1387 	} else
1388 		BUG();
1389 
1390 	if (intel_vgpu_active(dev))
1391 		ppgtt->switch_mm = vgpu_mm_switch;
1392 
1393 	ret = gen6_ppgtt_alloc(ppgtt);
1394 	if (ret)
1395 		return ret;
1396 
1397 	if (aliasing) {
1398 		/* preallocate all pts */
1399 		ret = alloc_pt_range(&ppgtt->pd, 0, ppgtt->num_pd_entries,
1400 				ppgtt->base.dev);
1401 
1402 		if (ret) {
1403 			gen6_ppgtt_cleanup(&ppgtt->base);
1404 			return ret;
1405 		}
1406 	}
1407 
1408 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1409 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1410 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1411 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1412 	ppgtt->base.start = 0;
1413 	ppgtt->base.total = ppgtt->num_pd_entries * GEN6_PTES * PAGE_SIZE;
1414 	ppgtt->debug_dump = gen6_dump_ppgtt;
1415 
1416 	ppgtt->pd.pd_offset =
1417 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1418 
1419 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1420 		ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1421 
1422 	if (aliasing)
1423 		ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1424 	else
1425 		gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1426 
1427 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1428 
1429 	DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1430 			 ppgtt->node.size >> 20,
1431 			 ppgtt->node.start / PAGE_SIZE);
1432 
1433 	DRM_DEBUG("Adding PPGTT at offset %x\n",
1434 		  ppgtt->pd.pd_offset << 10);
1435 
1436 	return 0;
1437 }
1438 
1439 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt,
1440 		bool aliasing)
1441 {
1442 	struct drm_i915_private *dev_priv = dev->dev_private;
1443 
1444 	ppgtt->base.dev = dev;
1445 	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1446 
1447 	if (INTEL_INFO(dev)->gen < 8)
1448 		return gen6_ppgtt_init(ppgtt, aliasing);
1449 	else
1450 		return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1451 }
1452 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1453 {
1454 	struct drm_i915_private *dev_priv = dev->dev_private;
1455 	int ret = 0;
1456 
1457 	ret = __hw_ppgtt_init(dev, ppgtt, false);
1458 	if (ret == 0) {
1459 		kref_init(&ppgtt->ref);
1460 		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1461 			    ppgtt->base.total);
1462 		i915_init_vm(dev_priv, &ppgtt->base);
1463 	}
1464 
1465 	return ret;
1466 }
1467 
1468 int i915_ppgtt_init_hw(struct drm_device *dev)
1469 {
1470 	struct drm_i915_private *dev_priv = dev->dev_private;
1471 	struct intel_engine_cs *ring;
1472 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1473 	int i, ret = 0;
1474 
1475 	/* In the case of execlists, PPGTT is enabled by the context descriptor
1476 	 * and the PDPs are contained within the context itself.  We don't
1477 	 * need to do anything here. */
1478 	if (i915.enable_execlists)
1479 		return 0;
1480 
1481 	if (!USES_PPGTT(dev))
1482 		return 0;
1483 
1484 	if (IS_GEN6(dev))
1485 		gen6_ppgtt_enable(dev);
1486 	else if (IS_GEN7(dev))
1487 		gen7_ppgtt_enable(dev);
1488 	else if (INTEL_INFO(dev)->gen >= 8)
1489 		gen8_ppgtt_enable(dev);
1490 	else
1491 		MISSING_CASE(INTEL_INFO(dev)->gen);
1492 
1493 	if (ppgtt) {
1494 		for_each_ring(ring, dev_priv, i) {
1495 			ret = ppgtt->switch_mm(ppgtt, ring);
1496 			if (ret != 0)
1497 				return ret;
1498 		}
1499 	}
1500 
1501 	return ret;
1502 }
1503 struct i915_hw_ppgtt *
1504 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1505 {
1506 	struct i915_hw_ppgtt *ppgtt;
1507 	int ret;
1508 
1509 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1510 	if (!ppgtt)
1511 		return ERR_PTR(-ENOMEM);
1512 
1513 	ret = i915_ppgtt_init(dev, ppgtt);
1514 	if (ret) {
1515 		kfree(ppgtt);
1516 		return ERR_PTR(ret);
1517 	}
1518 
1519 	ppgtt->file_priv = fpriv;
1520 
1521 	trace_i915_ppgtt_create(&ppgtt->base);
1522 
1523 	return ppgtt;
1524 }
1525 
1526 void  i915_ppgtt_release(struct kref *kref)
1527 {
1528 	struct i915_hw_ppgtt *ppgtt =
1529 		container_of(kref, struct i915_hw_ppgtt, ref);
1530 
1531 	trace_i915_ppgtt_release(&ppgtt->base);
1532 
1533 	/* vmas should already be unbound */
1534 	WARN_ON(!list_empty(&ppgtt->base.active_list));
1535 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1536 
1537 	list_del(&ppgtt->base.global_link);
1538 	drm_mm_takedown(&ppgtt->base.mm);
1539 
1540 	ppgtt->base.cleanup(&ppgtt->base);
1541 	kfree(ppgtt);
1542 }
1543 
1544 static void
1545 ppgtt_bind_vma(struct i915_vma *vma,
1546 	       enum i915_cache_level cache_level,
1547 	       u32 flags)
1548 {
1549 	const unsigned int num_entries = vma->obj->base.size >> PAGE_SHIFT;
1550 
1551 	/* Currently applicable only to VLV */
1552 	if (vma->obj->gt_ro)
1553 		flags |= PTE_READ_ONLY;
1554 
1555 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1556 				num_entries,
1557 				cache_level, flags);
1558 }
1559 
1560 static void ppgtt_unbind_vma(struct i915_vma *vma)
1561 {
1562 	vma->vm->clear_range(vma->vm,
1563 			     vma->node.start,
1564 			     vma->obj->base.size,
1565 			     true);
1566 }
1567 
1568 extern int intel_iommu_gfx_mapped;
1569 /* Certain Gen5 chipsets require require idling the GPU before
1570  * unmapping anything from the GTT when VT-d is enabled.
1571  */
1572 static inline bool needs_idle_maps(struct drm_device *dev)
1573 {
1574 #ifdef CONFIG_INTEL_IOMMU
1575 	/* Query intel_iommu to see if we need the workaround. Presumably that
1576 	 * was loaded first.
1577 	 */
1578 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1579 		return true;
1580 #endif
1581 	return false;
1582 }
1583 
1584 static bool do_idling(struct drm_i915_private *dev_priv)
1585 {
1586 	bool ret = dev_priv->mm.interruptible;
1587 
1588 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
1589 		dev_priv->mm.interruptible = false;
1590 		if (i915_gpu_idle(dev_priv->dev)) {
1591 			DRM_ERROR("Couldn't idle GPU\n");
1592 			/* Wait a bit, in hopes it avoids the hang */
1593 			udelay(10);
1594 		}
1595 	}
1596 
1597 	return ret;
1598 }
1599 
1600 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1601 {
1602 	if (unlikely(dev_priv->gtt.do_idle_maps))
1603 		dev_priv->mm.interruptible = interruptible;
1604 }
1605 
1606 void i915_check_and_clear_faults(struct drm_device *dev)
1607 {
1608 	struct drm_i915_private *dev_priv = dev->dev_private;
1609 	struct intel_engine_cs *ring;
1610 	int i;
1611 
1612 	if (INTEL_INFO(dev)->gen < 6)
1613 		return;
1614 
1615 	for_each_ring(ring, dev_priv, i) {
1616 		u32 fault_reg;
1617 		fault_reg = I915_READ(RING_FAULT_REG(ring));
1618 		if (fault_reg & RING_FAULT_VALID) {
1619 #if 0
1620 			DRM_DEBUG_DRIVER("Unexpected fault\n"
1621 					 "\tAddr: 0x%08lx\n"
1622 					 "\tAddress space: %s\n"
1623 					 "\tSource ID: %d\n"
1624 					 "\tType: %d\n",
1625 					 fault_reg & PAGE_MASK,
1626 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1627 					 RING_FAULT_SRCID(fault_reg),
1628 					 RING_FAULT_FAULT_TYPE(fault_reg));
1629 #endif
1630 			I915_WRITE(RING_FAULT_REG(ring),
1631 				   fault_reg & ~RING_FAULT_VALID);
1632 		}
1633 	}
1634 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1635 }
1636 
1637 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1638 {
1639 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1640 		intel_gtt_chipset_flush();
1641 	} else {
1642 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1643 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
1644 	}
1645 }
1646 
1647 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1648 {
1649 	struct drm_i915_private *dev_priv = dev->dev_private;
1650 
1651 	/* Don't bother messing with faults pre GEN6 as we have little
1652 	 * documentation supporting that it's a good idea.
1653 	 */
1654 	if (INTEL_INFO(dev)->gen < 6)
1655 		return;
1656 
1657 	i915_check_and_clear_faults(dev);
1658 
1659 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1660 				       dev_priv->gtt.base.start,
1661 				       dev_priv->gtt.base.total,
1662 				       true);
1663 
1664 	i915_ggtt_flush(dev_priv);
1665 }
1666 
1667 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1668 {
1669 	struct drm_i915_private *dev_priv = dev->dev_private;
1670 	struct drm_i915_gem_object *obj;
1671 	struct i915_address_space *vm;
1672 
1673 	i915_check_and_clear_faults(dev);
1674 
1675 	/* First fill our portion of the GTT with scratch pages */
1676 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1677 				       dev_priv->gtt.base.start,
1678 				       dev_priv->gtt.base.total,
1679 				       true);
1680 
1681 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1682 		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1683 							   &dev_priv->gtt.base);
1684 		if (!vma)
1685 			continue;
1686 
1687 		i915_gem_clflush_object(obj, obj->pin_display);
1688 		/* The bind_vma code tries to be smart about tracking mappings.
1689 		 * Unfortunately above, we've just wiped out the mappings
1690 		 * without telling our object about it. So we need to fake it.
1691 		 *
1692 		 * Bind is not expected to fail since this is only called on
1693 		 * resume and assumption is all requirements exist already.
1694 		 */
1695 		vma->bound &= ~GLOBAL_BIND;
1696 		WARN_ON(i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND));
1697 	}
1698 
1699 
1700 	if (INTEL_INFO(dev)->gen >= 8) {
1701 		if (IS_CHERRYVIEW(dev))
1702 			chv_setup_private_ppat(dev_priv);
1703 		else
1704 			bdw_setup_private_ppat(dev_priv);
1705 
1706 		return;
1707 	}
1708 
1709 	if (USES_PPGTT(dev)) {
1710 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1711 			/* TODO: Perhaps it shouldn't be gen6 specific */
1712 
1713 			struct i915_hw_ppgtt *ppgtt =
1714 					container_of(vm, struct i915_hw_ppgtt,
1715 						     base);
1716 
1717 			if (i915_is_ggtt(vm))
1718 				ppgtt = dev_priv->mm.aliasing_ppgtt;
1719 
1720 			gen6_write_page_range(dev_priv, &ppgtt->pd,
1721 					      0, ppgtt->base.total);
1722 		}
1723 	}
1724 
1725 	i915_ggtt_flush(dev_priv);
1726 }
1727 
1728 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1729 {
1730 	if (obj->has_dma_mapping)
1731 		return 0;
1732 
1733 #if 0
1734 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
1735 			obj->pages->sgl, obj->pages->nents,
1736 			PCI_DMA_BIDIRECTIONAL))
1737 		return -ENOSPC;
1738 #endif
1739 
1740 	return 0;
1741 }
1742 
1743 static inline void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1744 {
1745 #if 0
1746 	writeq(pte, addr);
1747 #else
1748 	iowrite32((u32)pte, addr);
1749 	iowrite32(pte >> 32, addr + 4);
1750 #endif
1751 }
1752 
1753 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1754 				     vm_page_t *pages,
1755 				     uint64_t start,
1756 				     unsigned int num_entries,
1757 				     enum i915_cache_level level, u32 unused)
1758 {
1759 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1760 	unsigned first_entry = start >> PAGE_SHIFT;
1761 	gen8_pte_t __iomem *gtt_entries =
1762 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1763 	int i = 0;
1764 	dma_addr_t addr = 0;
1765 
1766 	for (i=0;i<num_entries;i++) {
1767 		addr = VM_PAGE_TO_PHYS(pages[i]);
1768 		gen8_set_pte(&gtt_entries[i],
1769 			     gen8_pte_encode(addr, level, true));
1770 	}
1771 
1772 	/*
1773 	 * XXX: This serves as a posting read to make sure that the PTE has
1774 	 * actually been updated. There is some concern that even though
1775 	 * registers and PTEs are within the same BAR that they are potentially
1776 	 * of NUMA access patterns. Therefore, even with the way we assume
1777 	 * hardware should work, we must keep this posting read for paranoia.
1778 	 */
1779 	if (i != 0)
1780 		WARN_ON(readq(&gtt_entries[i-1])
1781 			!= gen8_pte_encode(addr, level, true));
1782 
1783 	/* This next bit makes the above posting read even more important. We
1784 	 * want to flush the TLBs only after we're certain all the PTE updates
1785 	 * have finished.
1786 	 */
1787 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1788 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1789 }
1790 
1791 /*
1792  * Binds an object into the global gtt with the specified cache level. The object
1793  * will be accessible to the GPU via commands whose operands reference offsets
1794  * within the global GTT as well as accessible by the GPU through the GMADR
1795  * mapped BAR (dev_priv->mm.gtt->gtt).
1796  */
1797 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1798 				     vm_page_t *pages,
1799 				     uint64_t start,
1800 				     unsigned int num_entries,
1801 				     enum i915_cache_level level, u32 flags)
1802 {
1803 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1804 	unsigned first_entry = start >> PAGE_SHIFT;
1805 	gen6_pte_t __iomem *gtt_entries =
1806 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1807 	int i = 0;
1808 	dma_addr_t addr = 0; /* shut up gcc */
1809 
1810 	for (i = 0; i < num_entries; i++) {
1811 		addr = VM_PAGE_TO_PHYS(pages[i]);
1812 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1813 	}
1814 
1815 	/* XXX: This serves as a posting read to make sure that the PTE has
1816 	 * actually been updated. There is some concern that even though
1817 	 * registers and PTEs are within the same BAR that they are potentially
1818 	 * of NUMA access patterns. Therefore, even with the way we assume
1819 	 * hardware should work, we must keep this posting read for paranoia.
1820 	 */
1821 	if (i != 0) {
1822 		unsigned long gtt = readl(&gtt_entries[i-1]);
1823 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1824 	}
1825 
1826 	/* This next bit makes the above posting read even more important. We
1827 	 * want to flush the TLBs only after we're certain all the PTE updates
1828 	 * have finished.
1829 	 */
1830 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1831 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1832 }
1833 
1834 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1835 				  uint64_t start,
1836 				  uint64_t length,
1837 				  bool use_scratch)
1838 {
1839 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1840 	unsigned first_entry = start >> PAGE_SHIFT;
1841 	unsigned num_entries = length >> PAGE_SHIFT;
1842 	gen8_pte_t scratch_pte, __iomem *gtt_base =
1843 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1844 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1845 	int i;
1846 
1847 	if (WARN(num_entries > max_entries,
1848 		 "First entry = %d; Num entries = %d (max=%d)\n",
1849 		 first_entry, num_entries, max_entries))
1850 		num_entries = max_entries;
1851 
1852 	scratch_pte = gen8_pte_encode(vm->scratch.addr,
1853 				      I915_CACHE_LLC,
1854 				      use_scratch);
1855 	for (i = 0; i < num_entries; i++)
1856 		gen8_set_pte(&gtt_base[i], scratch_pte);
1857 	readl(gtt_base);
1858 }
1859 
1860 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1861 				  uint64_t start,
1862 				  uint64_t length,
1863 				  bool use_scratch)
1864 {
1865 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1866 	unsigned first_entry = start >> PAGE_SHIFT;
1867 	unsigned num_entries = length >> PAGE_SHIFT;
1868 	gen6_pte_t scratch_pte, __iomem *gtt_base =
1869 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1870 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1871 	int i;
1872 
1873 	if (WARN(num_entries > max_entries,
1874 		 "First entry = %d; Num entries = %d (max=%d)\n",
1875 		 first_entry, num_entries, max_entries))
1876 		num_entries = max_entries;
1877 
1878 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1879 
1880 	for (i = 0; i < num_entries; i++)
1881 		iowrite32(scratch_pte, &gtt_base[i]);
1882 	readl(gtt_base);
1883 }
1884 
1885 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1886 			       enum i915_cache_level cache_level,
1887 			       u32 unused)
1888 {
1889 	const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1890 	const unsigned int num_entries = vma->obj->base.size >> PAGE_SHIFT;
1891 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1892 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1893 
1894 	BUG_ON(!i915_is_ggtt(vma->vm));
1895 	intel_gtt_insert_pages(entry, num_entries, vma->ggtt_view.pages, flags);
1896 	vma->bound = GLOBAL_BIND;
1897 }
1898 
1899 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1900 				  uint64_t start,
1901 				  uint64_t length,
1902 				  bool unused)
1903 {
1904 	unsigned first_entry = start >> PAGE_SHIFT;
1905 	unsigned num_entries = length >> PAGE_SHIFT;
1906 	intel_gtt_clear_range(first_entry, num_entries);
1907 }
1908 
1909 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1910 {
1911 	const unsigned int first = vma->node.start >> PAGE_SHIFT;
1912 	const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1913 
1914 	BUG_ON(!i915_is_ggtt(vma->vm));
1915 	vma->bound = 0;
1916 	intel_gtt_clear_range(first, size);
1917 }
1918 
1919 static void ggtt_bind_vma(struct i915_vma *vma,
1920 			  enum i915_cache_level cache_level,
1921 			  u32 flags)
1922 {
1923 	struct drm_device *dev = vma->vm->dev;
1924 	struct drm_i915_private *dev_priv = dev->dev_private;
1925 	struct drm_i915_gem_object *obj = vma->obj;
1926 	struct vm_page **pages = obj->pages;
1927 
1928 	/* Currently applicable only to VLV */
1929 	if (obj->gt_ro)
1930 		flags |= PTE_READ_ONLY;
1931 
1932 	if (i915_is_ggtt(vma->vm))
1933 		pages = vma->ggtt_view.pages;
1934 
1935 	/* If there is no aliasing PPGTT, or the caller needs a global mapping,
1936 	 * or we have a global mapping already but the cacheability flags have
1937 	 * changed, set the global PTEs.
1938 	 *
1939 	 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1940 	 * instead if none of the above hold true.
1941 	 *
1942 	 * NB: A global mapping should only be needed for special regions like
1943 	 * "gtt mappable", SNB errata, or if specified via special execbuf
1944 	 * flags. At all other times, the GPU will use the aliasing PPGTT.
1945 	 */
1946 	if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1947 		if (!(vma->bound & GLOBAL_BIND) ||
1948 		    (cache_level != obj->cache_level)) {
1949 			vma->vm->insert_entries(vma->vm, pages,
1950 						vma->node.start,
1951 						obj->base.size >> PAGE_SHIFT,
1952 						cache_level, flags);
1953 			vma->bound |= GLOBAL_BIND;
1954 		}
1955 	}
1956 
1957 	if (dev_priv->mm.aliasing_ppgtt &&
1958 	    (!(vma->bound & LOCAL_BIND) ||
1959 	     (cache_level != obj->cache_level))) {
1960 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1961 		appgtt->base.insert_entries(&appgtt->base, pages,
1962 					    vma->node.start,
1963 					    obj->base.size >> PAGE_SHIFT,
1964 					    cache_level, flags);
1965 		vma->bound |= LOCAL_BIND;
1966 	}
1967 }
1968 
1969 static void ggtt_unbind_vma(struct i915_vma *vma)
1970 {
1971 	struct drm_device *dev = vma->vm->dev;
1972 	struct drm_i915_private *dev_priv = dev->dev_private;
1973 	struct drm_i915_gem_object *obj = vma->obj;
1974 
1975 	if (vma->bound & GLOBAL_BIND) {
1976 		vma->vm->clear_range(vma->vm,
1977 				     vma->node.start,
1978 				     obj->base.size,
1979 				     true);
1980 		vma->bound &= ~GLOBAL_BIND;
1981 	}
1982 
1983 	if (vma->bound & LOCAL_BIND) {
1984 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1985 		appgtt->base.clear_range(&appgtt->base,
1986 					 vma->node.start,
1987 					 obj->base.size,
1988 					 true);
1989 		vma->bound &= ~LOCAL_BIND;
1990 	}
1991 }
1992 
1993 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1994 {
1995 	struct drm_device *dev = obj->base.dev;
1996 	struct drm_i915_private *dev_priv = dev->dev_private;
1997 	bool interruptible;
1998 
1999 	interruptible = do_idling(dev_priv);
2000 
2001 #if 0
2002 	if (!obj->has_dma_mapping)
2003 		dma_unmap_sg(&dev->pdev->dev,
2004 			     obj->pages->sgl, obj->pages->nents,
2005 			     PCI_DMA_BIDIRECTIONAL);
2006 #endif
2007 
2008 	undo_idling(dev_priv, interruptible);
2009 }
2010 
2011 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2012 				  unsigned long color,
2013 				  u64 *start,
2014 				  u64 *end)
2015 {
2016 	if (node->color != color)
2017 		*start += 4096;
2018 
2019 	if (!list_empty(&node->node_list)) {
2020 		node = list_entry(node->node_list.next,
2021 				  struct drm_mm_node,
2022 				  node_list);
2023 		if (node->allocated && node->color != color)
2024 			*end -= 4096;
2025 	}
2026 }
2027 
2028 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2029 				     unsigned long start,
2030 				     unsigned long mappable_end,
2031 				     unsigned long end)
2032 {
2033 	/* Let GEM Manage all of the aperture.
2034 	 *
2035 	 * However, leave one page at the end still bound to the scratch page.
2036 	 * There are a number of places where the hardware apparently prefetches
2037 	 * past the end of the object, and we've seen multiple hangs with the
2038 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2039 	 * aperture.  One page should be enough to keep any prefetching inside
2040 	 * of the aperture.
2041 	 */
2042 	struct drm_i915_private *dev_priv = dev->dev_private;
2043 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2044 	unsigned long mappable;
2045 	int error;
2046 	struct drm_mm_node *entry;
2047 	struct drm_i915_gem_object *obj;
2048 	unsigned long hole_start, hole_end;
2049 	int ret;
2050 
2051 	kprintf("MAPPABLE_END VS END %016jx %016jx\n", mappable_end, end);
2052 	tsleep(&mappable_end, 0, "DELAY", hz); /* for kprintf */
2053 	/*BUG_ON(mappable_end > end);*/
2054 
2055 	mappable = min(end, mappable_end) - start;
2056 
2057 	/* Subtract the guard page ... */
2058 	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2059 
2060 	dev_priv->gtt.base.start = start;
2061 	dev_priv->gtt.base.total = end - start;
2062 
2063 	if (intel_vgpu_active(dev)) {
2064 		ret = intel_vgt_balloon(dev);
2065 		if (ret)
2066 			return ret;
2067 	}
2068 
2069 	if (!HAS_LLC(dev))
2070 		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2071 
2072 	/* Mark any preallocated objects as occupied */
2073 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2074 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2075 
2076 		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2077 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2078 
2079 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2080 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2081 		if (ret) {
2082 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2083 			return ret;
2084 		}
2085 		vma->bound |= GLOBAL_BIND;
2086 	}
2087 
2088 	/* Clear any non-preallocated blocks */
2089 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2090 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2091 			      hole_start, hole_end);
2092 		ggtt_vm->clear_range(ggtt_vm, hole_start,
2093 				     hole_end - hole_start, true);
2094 	}
2095 
2096 #ifdef __DragonFly__
2097 	device_printf(dev->dev,
2098 	    "taking over the fictitious range 0x%lx-0x%lx\n",
2099 	    dev_priv->gtt.mappable_base + start, dev_priv->gtt.mappable_base + start + mappable);
2100 	error = -vm_phys_fictitious_reg_range(dev_priv->gtt.mappable_base + start,
2101 	    dev_priv->gtt.mappable_base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2102 #endif
2103 
2104 	/* And finally clear the reserved guard page */
2105 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2106 
2107 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2108 		struct i915_hw_ppgtt *ppgtt;
2109 
2110 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2111 		if (!ppgtt)
2112 			return -ENOMEM;
2113 
2114 		ret = __hw_ppgtt_init(dev, ppgtt, true);
2115 		if (ret) {
2116 			kfree(ppgtt);
2117 			return ret;
2118 		}
2119 
2120 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2121 	}
2122 
2123 	return 0;
2124 }
2125 
2126 void i915_gem_init_global_gtt(struct drm_device *dev)
2127 {
2128 	struct drm_i915_private *dev_priv = dev->dev_private;
2129 	unsigned long gtt_size, mappable_size;
2130 
2131 	gtt_size = dev_priv->gtt.base.total;
2132 	mappable_size = dev_priv->gtt.mappable_end;
2133 
2134 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2135 }
2136 
2137 void i915_global_gtt_cleanup(struct drm_device *dev)
2138 {
2139 	struct drm_i915_private *dev_priv = dev->dev_private;
2140 	struct i915_address_space *vm = &dev_priv->gtt.base;
2141 
2142 	if (dev_priv->mm.aliasing_ppgtt) {
2143 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2144 
2145 		ppgtt->base.cleanup(&ppgtt->base);
2146 	}
2147 
2148 	if (drm_mm_initialized(&vm->mm)) {
2149 		if (intel_vgpu_active(dev))
2150 			intel_vgt_deballoon();
2151 
2152 		drm_mm_takedown(&vm->mm);
2153 		list_del(&vm->global_link);
2154 	}
2155 
2156 	vm->cleanup(vm);
2157 }
2158 
2159 static int setup_scratch_page(struct drm_device *dev)
2160 {
2161 	struct drm_i915_private *dev_priv = dev->dev_private;
2162 	struct vm_page *page;
2163 	dma_addr_t dma_addr;
2164 
2165 	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2166 	if (page == NULL)
2167 		return -ENOMEM;
2168 	set_pages_uc(page, 1);
2169 
2170 #ifdef CONFIG_INTEL_IOMMU
2171 	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2172 				PCI_DMA_BIDIRECTIONAL);
2173 	if (pci_dma_mapping_error(dev->pdev, dma_addr))
2174 		return -EINVAL;
2175 #else
2176 	dma_addr = page_to_phys(page);
2177 #endif
2178 	dev_priv->gtt.base.scratch.page = page;
2179 	dev_priv->gtt.base.scratch.addr = dma_addr;
2180 
2181 	return 0;
2182 }
2183 
2184 #if 0
2185 static void teardown_scratch_page(struct drm_device *dev)
2186 {
2187 	struct drm_i915_private *dev_priv = dev->dev_private;
2188 	struct vm_page *page = dev_priv->gtt.base.scratch.page;
2189 
2190 	set_pages_wb(page, 1);
2191 	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2192 		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2193 	__free_page(page);
2194 }
2195 #endif
2196 
2197 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2198 {
2199 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2200 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2201 	return snb_gmch_ctl << 20;
2202 }
2203 
2204 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2205 {
2206 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2207 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2208 	if (bdw_gmch_ctl)
2209 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2210 
2211 #ifdef CONFIG_X86_32
2212 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2213 	if (bdw_gmch_ctl > 4)
2214 		bdw_gmch_ctl = 4;
2215 #endif
2216 
2217 	return bdw_gmch_ctl << 20;
2218 }
2219 
2220 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2221 {
2222 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2223 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2224 
2225 	if (gmch_ctrl)
2226 		return 1 << (20 + gmch_ctrl);
2227 
2228 	return 0;
2229 }
2230 
2231 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2232 {
2233 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2234 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2235 	return snb_gmch_ctl << 25; /* 32 MB units */
2236 }
2237 
2238 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2239 {
2240 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2241 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2242 	return bdw_gmch_ctl << 25; /* 32 MB units */
2243 }
2244 
2245 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2246 {
2247 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2248 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2249 
2250 	/*
2251 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2252 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2253 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2254 	 */
2255 	if (gmch_ctrl < 0x11)
2256 		return gmch_ctrl << 25;
2257 	else if (gmch_ctrl < 0x17)
2258 		return (gmch_ctrl - 0x11 + 2) << 22;
2259 	else
2260 		return (gmch_ctrl - 0x17 + 9) << 22;
2261 }
2262 
2263 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2264 {
2265 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2266 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2267 
2268 	if (gen9_gmch_ctl < 0xf0)
2269 		return gen9_gmch_ctl << 25; /* 32 MB units */
2270 	else
2271 		/* 4MB increments starting at 0xf0 for 4MB */
2272 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2273 }
2274 
2275 static int ggtt_probe_common(struct drm_device *dev,
2276 			     size_t gtt_size)
2277 {
2278 	struct drm_i915_private *dev_priv = dev->dev_private;
2279 	phys_addr_t gtt_phys_addr;
2280 	int ret;
2281 
2282 	/* For Modern GENs the PTEs and register space are split in the BAR */
2283 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2284 		(pci_resource_len(dev->pdev, 0) / 2);
2285 
2286 	dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2287 	if (!dev_priv->gtt.gsm) {
2288 		DRM_ERROR("Failed to map the gtt page table\n");
2289 		return -ENOMEM;
2290 	}
2291 
2292 	ret = setup_scratch_page(dev);
2293 	if (ret) {
2294 		DRM_ERROR("Scratch setup failed\n");
2295 		/* iounmap will also get called at remove, but meh */
2296 #if 0
2297 		iounmap(dev_priv->gtt.gsm);
2298 #endif
2299 	}
2300 
2301 	return ret;
2302 }
2303 
2304 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2305  * bits. When using advanced contexts each context stores its own PAT, but
2306  * writing this data shouldn't be harmful even in those cases. */
2307 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2308 {
2309 	uint64_t pat;
2310 
2311 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2312 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2313 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2314 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2315 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2316 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2317 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2318 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2319 
2320 	if (!USES_PPGTT(dev_priv->dev))
2321 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2322 		 * so RTL will always use the value corresponding to
2323 		 * pat_sel = 000".
2324 		 * So let's disable cache for GGTT to avoid screen corruptions.
2325 		 * MOCS still can be used though.
2326 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2327 		 * before this patch, i.e. the same uncached + snooping access
2328 		 * like on gen6/7 seems to be in effect.
2329 		 * - So this just fixes blitter/render access. Again it looks
2330 		 * like it's not just uncached access, but uncached + snooping.
2331 		 * So we can still hold onto all our assumptions wrt cpu
2332 		 * clflushing on LLC machines.
2333 		 */
2334 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2335 
2336 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2337 	 * write would work. */
2338 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2339 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2340 }
2341 
2342 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2343 {
2344 	uint64_t pat;
2345 
2346 	/*
2347 	 * Map WB on BDW to snooped on CHV.
2348 	 *
2349 	 * Only the snoop bit has meaning for CHV, the rest is
2350 	 * ignored.
2351 	 *
2352 	 * The hardware will never snoop for certain types of accesses:
2353 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2354 	 * - PPGTT page tables
2355 	 * - some other special cycles
2356 	 *
2357 	 * As with BDW, we also need to consider the following for GT accesses:
2358 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2359 	 * so RTL will always use the value corresponding to
2360 	 * pat_sel = 000".
2361 	 * Which means we must set the snoop bit in PAT entry 0
2362 	 * in order to keep the global status page working.
2363 	 */
2364 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2365 	      GEN8_PPAT(1, 0) |
2366 	      GEN8_PPAT(2, 0) |
2367 	      GEN8_PPAT(3, 0) |
2368 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2369 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2370 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2371 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2372 
2373 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2374 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2375 }
2376 
2377 static int gen8_gmch_probe(struct drm_device *dev,
2378 			   size_t *gtt_total,
2379 			   size_t *stolen,
2380 			   phys_addr_t *mappable_base,
2381 			   unsigned long *mappable_end)
2382 {
2383 	struct drm_i915_private *dev_priv = dev->dev_private;
2384 	unsigned int gtt_size;
2385 	u16 snb_gmch_ctl;
2386 	int ret;
2387 
2388 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2389 	*mappable_base = pci_resource_start(dev->pdev, 2);
2390 	*mappable_end = pci_resource_len(dev->pdev, 2);
2391 
2392 #if 0
2393 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2394 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2395 #endif
2396 
2397 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2398 
2399 	if (INTEL_INFO(dev)->gen >= 9) {
2400 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
2401 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2402 	} else if (IS_CHERRYVIEW(dev)) {
2403 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
2404 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2405 	} else {
2406 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
2407 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2408 	}
2409 
2410 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2411 
2412 	if (IS_CHERRYVIEW(dev))
2413 		chv_setup_private_ppat(dev_priv);
2414 	else
2415 		bdw_setup_private_ppat(dev_priv);
2416 
2417 	ret = ggtt_probe_common(dev, gtt_size);
2418 
2419 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2420 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2421 
2422 	return ret;
2423 }
2424 
2425 static int gen6_gmch_probe(struct drm_device *dev,
2426 			   size_t *gtt_total,
2427 			   size_t *stolen,
2428 			   phys_addr_t *mappable_base,
2429 			   unsigned long *mappable_end)
2430 {
2431 	struct drm_i915_private *dev_priv = dev->dev_private;
2432 	unsigned int gtt_size;
2433 	u16 snb_gmch_ctl;
2434 	int ret;
2435 
2436 	*mappable_base = pci_resource_start(dev->pdev, 2);
2437 	*mappable_end = pci_resource_len(dev->pdev, 2);
2438 
2439 	/* 64/512MB is the current min/max we actually know of, but this is just
2440 	 * a coarse sanity check.
2441 	 */
2442 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2443 		DRM_ERROR("Unknown GMADR size (%lx)\n",
2444 			  dev_priv->gtt.mappable_end);
2445 		return -ENXIO;
2446 	}
2447 
2448 #if 0
2449 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2450 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2451 #endif
2452 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2453 
2454 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
2455 
2456 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2457 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2458 
2459 	ret = ggtt_probe_common(dev, gtt_size);
2460 
2461 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2462 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2463 
2464 	return ret;
2465 }
2466 
2467 static void gen6_gmch_remove(struct i915_address_space *vm)
2468 {
2469 #if 0
2470 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2471 
2472 	iounmap(gtt->gsm);
2473 	teardown_scratch_page(vm->dev);
2474 #endif
2475 }
2476 
2477 static int i915_gmch_probe(struct drm_device *dev,
2478 			   size_t *gtt_total,
2479 			   size_t *stolen,
2480 			   phys_addr_t *mappable_base,
2481 			   unsigned long *mappable_end)
2482 {
2483 	struct drm_i915_private *dev_priv = dev->dev_private;
2484 #if 0
2485 	int ret;
2486 
2487 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2488 	if (!ret) {
2489 		DRM_ERROR("failed to set up gmch\n");
2490 		return -EIO;
2491 	}
2492 #endif
2493 
2494 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2495 
2496 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2497 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2498 
2499 	if (unlikely(dev_priv->gtt.do_idle_maps))
2500 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2501 
2502 	return 0;
2503 }
2504 
2505 static void i915_gmch_remove(struct i915_address_space *vm)
2506 {
2507 	intel_gmch_remove();
2508 }
2509 
2510 int i915_gem_gtt_init(struct drm_device *dev)
2511 {
2512 	struct drm_i915_private *dev_priv = dev->dev_private;
2513 	struct i915_gtt *gtt = &dev_priv->gtt;
2514 	int ret;
2515 
2516 	if (INTEL_INFO(dev)->gen <= 5) {
2517 		gtt->gtt_probe = i915_gmch_probe;
2518 		gtt->base.cleanup = i915_gmch_remove;
2519 	} else if (INTEL_INFO(dev)->gen < 8) {
2520 		gtt->gtt_probe = gen6_gmch_probe;
2521 		gtt->base.cleanup = gen6_gmch_remove;
2522 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
2523 			gtt->base.pte_encode = iris_pte_encode;
2524 		else if (IS_HASWELL(dev))
2525 			gtt->base.pte_encode = hsw_pte_encode;
2526 		else if (IS_VALLEYVIEW(dev))
2527 			gtt->base.pte_encode = byt_pte_encode;
2528 		else if (INTEL_INFO(dev)->gen >= 7)
2529 			gtt->base.pte_encode = ivb_pte_encode;
2530 		else
2531 			gtt->base.pte_encode = snb_pte_encode;
2532 	} else {
2533 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2534 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2535 	}
2536 
2537 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2538 			     &gtt->mappable_base, &gtt->mappable_end);
2539 	if (ret)
2540 		return ret;
2541 
2542 	gtt->base.dev = dev;
2543 
2544 	/* GMADR is the PCI mmio aperture into the global GTT. */
2545 	DRM_INFO("Memory usable by graphics device = %zdM\n",
2546 		 gtt->base.total >> 20);
2547 	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2548 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2549 #ifdef CONFIG_INTEL_IOMMU
2550 	if (intel_iommu_gfx_mapped)
2551 		DRM_INFO("VT-d active for gfx access\n");
2552 #endif
2553 	/*
2554 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2555 	 * user's requested state against the hardware/driver capabilities.  We
2556 	 * do this now so that we can print out any log messages once rather
2557 	 * than every time we check intel_enable_ppgtt().
2558 	 */
2559 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2560 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2561 
2562 	return 0;
2563 }
2564 
2565 static struct i915_vma *
2566 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2567 		      struct i915_address_space *vm,
2568 		      const struct i915_ggtt_view *ggtt_view)
2569 {
2570 	struct i915_vma *vma;
2571 
2572 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2573 		return ERR_PTR(-EINVAL);
2574 	vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2575 	if (vma == NULL)
2576 		return ERR_PTR(-ENOMEM);
2577 
2578 	INIT_LIST_HEAD(&vma->vma_link);
2579 	INIT_LIST_HEAD(&vma->mm_list);
2580 	INIT_LIST_HEAD(&vma->exec_list);
2581 	vma->vm = vm;
2582 	vma->obj = obj;
2583 
2584 	if (INTEL_INFO(vm->dev)->gen >= 6) {
2585 		if (i915_is_ggtt(vm)) {
2586 			vma->ggtt_view = *ggtt_view;
2587 
2588 			vma->unbind_vma = ggtt_unbind_vma;
2589 			vma->bind_vma = ggtt_bind_vma;
2590 		} else {
2591 			vma->unbind_vma = ppgtt_unbind_vma;
2592 			vma->bind_vma = ppgtt_bind_vma;
2593 		}
2594 	} else {
2595 		BUG_ON(!i915_is_ggtt(vm));
2596 		vma->ggtt_view = *ggtt_view;
2597 		vma->unbind_vma = i915_ggtt_unbind_vma;
2598 		vma->bind_vma = i915_ggtt_bind_vma;
2599 	}
2600 
2601 	list_add_tail(&vma->vma_link, &obj->vma_list);
2602 	if (!i915_is_ggtt(vm))
2603 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2604 
2605 	return vma;
2606 }
2607 
2608 struct i915_vma *
2609 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2610 				  struct i915_address_space *vm)
2611 {
2612 	struct i915_vma *vma;
2613 
2614 	vma = i915_gem_obj_to_vma(obj, vm);
2615 	if (!vma)
2616 		vma = __i915_gem_vma_create(obj, vm,
2617 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2618 
2619 	return vma;
2620 }
2621 
2622 struct i915_vma *
2623 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2624 				       const struct i915_ggtt_view *view)
2625 {
2626 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2627 	struct i915_vma *vma;
2628 
2629 	if (WARN_ON(!view))
2630 		return ERR_PTR(-EINVAL);
2631 
2632 	vma = i915_gem_obj_to_ggtt_view(obj, view);
2633 
2634 	if (IS_ERR(vma))
2635 		return vma;
2636 
2637 	if (!vma)
2638 		vma = __i915_gem_vma_create(obj, ggtt, view);
2639 
2640 	return vma;
2641 
2642 }
2643 
2644 #if 0
2645 static void
2646 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2647 	     struct sg_table *st)
2648 {
2649 	unsigned int column, row;
2650 	unsigned int src_idx;
2651 	struct scatterlist *sg = st->sgl;
2652 
2653 	st->nents = 0;
2654 
2655 	for (column = 0; column < width; column++) {
2656 		src_idx = width * (height - 1) + column;
2657 		for (row = 0; row < height; row++) {
2658 			st->nents++;
2659 			/* We don't need the pages, but need to initialize
2660 			 * the entries so the sg list can be happily traversed.
2661 			 * The only thing we need are DMA addresses.
2662 			 */
2663 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
2664 			sg_dma_address(sg) = in[src_idx];
2665 			sg_dma_len(sg) = PAGE_SIZE;
2666 			sg = sg_next(sg);
2667 			src_idx -= width;
2668 		}
2669 	}
2670 }
2671 
2672 static struct sg_table *
2673 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2674 			  struct drm_i915_gem_object *obj)
2675 {
2676 	struct drm_device *dev = obj->base.dev;
2677 	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2678 	unsigned long size, pages, rot_pages;
2679 	struct sg_page_iter sg_iter;
2680 	unsigned long i;
2681 	dma_addr_t *page_addr_list;
2682 	struct sg_table *st;
2683 	unsigned int tile_pitch, tile_height;
2684 	unsigned int width_pages, height_pages;
2685 	int ret = -ENOMEM;
2686 
2687 	pages = obj->base.size / PAGE_SIZE;
2688 
2689 	/* Calculate tiling geometry. */
2690 	tile_height = intel_tile_height(dev, rot_info->pixel_format,
2691 					rot_info->fb_modifier);
2692 	tile_pitch = PAGE_SIZE / tile_height;
2693 	width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2694 	height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2695 	rot_pages = width_pages * height_pages;
2696 	size = rot_pages * PAGE_SIZE;
2697 
2698 	/* Allocate a temporary list of source pages for random access. */
2699 	page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2700 	if (!page_addr_list)
2701 		return ERR_PTR(ret);
2702 
2703 	/* Allocate target SG list. */
2704 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2705 	if (!st)
2706 		goto err_st_alloc;
2707 
2708 	ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2709 	if (ret)
2710 		goto err_sg_alloc;
2711 
2712 	/* Populate source page list from the object. */
2713 	i = 0;
2714 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2715 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2716 		i++;
2717 	}
2718 
2719 	/* Rotate the pages. */
2720 	rotate_pages(page_addr_list, width_pages, height_pages, st);
2721 
2722 	DRM_DEBUG_KMS(
2723 		      "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2724 		      size, rot_info->pitch, rot_info->height,
2725 		      rot_info->pixel_format, width_pages, height_pages,
2726 		      rot_pages);
2727 
2728 	drm_free_large(page_addr_list);
2729 
2730 	return st;
2731 
2732 err_sg_alloc:
2733 	kfree(st);
2734 err_st_alloc:
2735 	drm_free_large(page_addr_list);
2736 
2737 	DRM_DEBUG_KMS(
2738 		      "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2739 		      size, ret, rot_info->pitch, rot_info->height,
2740 		      rot_info->pixel_format, width_pages, height_pages,
2741 		      rot_pages);
2742 	return ERR_PTR(ret);
2743 }
2744 #endif
2745 
2746 static inline int
2747 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2748 {
2749 	int ret = 0;
2750 
2751 	if (vma->ggtt_view.pages)
2752 		return 0;
2753 
2754 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2755 		vma->ggtt_view.pages = vma->obj->pages;
2756 #if 0
2757 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2758 		vma->ggtt_view.pages =
2759 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2760 #endif
2761 	else
2762 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
2763 			  vma->ggtt_view.type);
2764 
2765 	if (!vma->ggtt_view.pages) {
2766 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2767 			  vma->ggtt_view.type);
2768 		ret = -EINVAL;
2769 	} else if (IS_ERR(vma->ggtt_view.pages)) {
2770 		ret = PTR_ERR(vma->ggtt_view.pages);
2771 		vma->ggtt_view.pages = NULL;
2772 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2773 			  vma->ggtt_view.type, ret);
2774 	}
2775 
2776 	return ret;
2777 }
2778 
2779 /**
2780  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2781  * @vma: VMA to map
2782  * @cache_level: mapping cache level
2783  * @flags: flags like global or local mapping
2784  *
2785  * DMA addresses are taken from the scatter-gather table of this object (or of
2786  * this VMA in case of non-default GGTT views) and PTE entries set up.
2787  * Note that DMA addresses are also the only part of the SG table we care about.
2788  */
2789 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2790 		  u32 flags)
2791 {
2792 	if (i915_is_ggtt(vma->vm)) {
2793 		int ret = i915_get_ggtt_vma_pages(vma);
2794 
2795 		if (ret)
2796 			return ret;
2797 	}
2798 
2799 	vma->bind_vma(vma, cache_level, flags);
2800 
2801 	return 0;
2802 }
2803