xref: /dragonfly/sys/dev/drm/i915/i915_gem_request.c (revision 99d38c70)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "i915_drv.h"
26 
27 static const char *i915_fence_get_driver_name(struct fence *fence)
28 {
29 	return "i915";
30 }
31 
32 static const char *i915_fence_get_timeline_name(struct fence *fence)
33 {
34 	/* Timelines are bound by eviction to a VM. However, since
35 	 * we only have a global seqno at the moment, we only have
36 	 * a single timeline. Note that each timeline will have
37 	 * multiple execution contexts (fence contexts) as we allow
38 	 * engines within a single timeline to execute in parallel.
39 	 */
40 	return "global";
41 }
42 
43 static bool i915_fence_signaled(struct fence *fence)
44 {
45 	return i915_gem_request_completed(to_request(fence));
46 }
47 
48 static bool i915_fence_enable_signaling(struct fence *fence)
49 {
50 	if (i915_fence_signaled(fence))
51 		return false;
52 
53 	intel_engine_enable_signaling(to_request(fence));
54 	return true;
55 }
56 
57 static signed long i915_fence_wait(struct fence *fence,
58 				   bool interruptible,
59 				   signed long timeout_jiffies)
60 {
61 	s64 timeout_ns, *timeout;
62 	int ret;
63 
64 	if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT) {
65 		timeout_ns = jiffies_to_nsecs(timeout_jiffies);
66 		timeout = &timeout_ns;
67 	} else {
68 		timeout = NULL;
69 	}
70 
71 	ret = __i915_wait_request(to_request(fence),
72 				  interruptible, timeout,
73 				  NO_WAITBOOST);
74 	if (ret == -ETIME)
75 		return 0;
76 
77 	if (ret < 0)
78 		return ret;
79 
80 	if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT)
81 		timeout_jiffies = nsecs_to_jiffies(timeout_ns);
82 
83 	return timeout_jiffies;
84 }
85 
86 static void i915_fence_value_str(struct fence *fence, char *str, int size)
87 {
88 	snprintf(str, size, "%u", fence->seqno);
89 }
90 
91 static void i915_fence_timeline_value_str(struct fence *fence, char *str,
92 					  int size)
93 {
94 	snprintf(str, size, "%u",
95 		 intel_engine_get_seqno(to_request(fence)->engine));
96 }
97 
98 static void i915_fence_release(struct fence *fence)
99 {
100 	struct drm_i915_gem_request *req = to_request(fence);
101 
102 	kmem_cache_free(req->i915->requests, req);
103 }
104 
105 const struct fence_ops i915_fence_ops = {
106 	.get_driver_name = i915_fence_get_driver_name,
107 	.get_timeline_name = i915_fence_get_timeline_name,
108 	.enable_signaling = i915_fence_enable_signaling,
109 	.signaled = i915_fence_signaled,
110 	.wait = i915_fence_wait,
111 	.release = i915_fence_release,
112 	.fence_value_str = i915_fence_value_str,
113 	.timeline_value_str = i915_fence_timeline_value_str,
114 };
115 
116 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
117 				   struct drm_file *file)
118 {
119 	struct drm_i915_private *dev_private;
120 	struct drm_i915_file_private *file_priv;
121 
122 	WARN_ON(!req || !file || req->file_priv);
123 
124 	if (!req || !file)
125 		return -EINVAL;
126 
127 	if (req->file_priv)
128 		return -EINVAL;
129 
130 	dev_private = req->i915;
131 	file_priv = file->driver_priv;
132 
133 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
134 	req->file_priv = file_priv;
135 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
136 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
137 
138 	req->pid = curproc->p_pid;
139 
140 	return 0;
141 }
142 
143 static inline void
144 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
145 {
146 	struct drm_i915_file_private *file_priv = request->file_priv;
147 
148 	if (!file_priv)
149 		return;
150 
151 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
152 	list_del(&request->client_list);
153 	request->file_priv = NULL;
154 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
155 
156 #if 0
157 	put_pid(request->pid);
158 	request->pid = NULL;
159 #else
160 	request->pid = 0;
161 #endif
162 }
163 
164 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
165 {
166 	trace_i915_gem_request_retire(request);
167 	list_del_init(&request->list);
168 
169 	/* We know the GPU must have read the request to have
170 	 * sent us the seqno + interrupt, so use the position
171 	 * of tail of the request to update the last known position
172 	 * of the GPU head.
173 	 *
174 	 * Note this requires that we are always called in request
175 	 * completion order.
176 	 */
177 	request->ringbuf->last_retired_head = request->postfix;
178 
179 	i915_gem_request_remove_from_client(request);
180 
181 	if (request->previous_context) {
182 		if (i915.enable_execlists)
183 			intel_lr_context_unpin(request->previous_context,
184 					       request->engine);
185 	}
186 
187 	i915_gem_context_put(request->ctx);
188 	i915_gem_request_put(request);
189 }
190 
191 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
192 {
193 	struct intel_engine_cs *engine = req->engine;
194 	struct drm_i915_gem_request *tmp;
195 
196 	lockdep_assert_held(&req->i915->drm.struct_mutex);
197 
198 	if (list_empty(&req->list))
199 		return;
200 
201 	do {
202 		tmp = list_first_entry(&engine->request_list,
203 				       typeof(*tmp), list);
204 
205 		i915_gem_request_retire(tmp);
206 	} while (tmp != req);
207 
208 	WARN_ON(i915_verify_lists(engine->dev));
209 }
210 
211 static int i915_gem_check_wedge(unsigned int reset_counter, bool interruptible)
212 {
213 	if (__i915_terminally_wedged(reset_counter))
214 		return -EIO;
215 
216 	if (__i915_reset_in_progress(reset_counter)) {
217 		/* Non-interruptible callers can't handle -EAGAIN, hence return
218 		 * -EIO unconditionally for these.
219 		 */
220 		if (!interruptible)
221 			return -EIO;
222 
223 		return -EAGAIN;
224 	}
225 
226 	return 0;
227 }
228 
229 static int i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
230 {
231 	struct intel_engine_cs *engine;
232 	int ret;
233 
234 	/* Carefully retire all requests without writing to the rings */
235 	for_each_engine(engine, dev_priv) {
236 		ret = intel_engine_idle(engine);
237 		if (ret)
238 			return ret;
239 	}
240 	i915_gem_retire_requests(dev_priv);
241 
242 	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
243 	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
244 		while (intel_kick_waiters(dev_priv) ||
245 		       intel_kick_signalers(dev_priv))
246 			yield();
247 	}
248 
249 	/* Finally reset hw state */
250 	for_each_engine(engine, dev_priv)
251 		intel_ring_init_seqno(engine, seqno);
252 
253 	return 0;
254 }
255 
256 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
257 {
258 	struct drm_i915_private *dev_priv = to_i915(dev);
259 	int ret;
260 
261 	if (seqno == 0)
262 		return -EINVAL;
263 
264 	/* HWS page needs to be set less than what we
265 	 * will inject to ring
266 	 */
267 	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
268 	if (ret)
269 		return ret;
270 
271 	/* Carefully set the last_seqno value so that wrap
272 	 * detection still works
273 	 */
274 	dev_priv->next_seqno = seqno;
275 	dev_priv->last_seqno = seqno - 1;
276 	if (dev_priv->last_seqno == 0)
277 		dev_priv->last_seqno--;
278 
279 	return 0;
280 }
281 
282 static int i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
283 {
284 	/* reserve 0 for non-seqno */
285 	if (unlikely(dev_priv->next_seqno == 0)) {
286 		int ret;
287 
288 		ret = i915_gem_init_seqno(dev_priv, 0);
289 		if (ret)
290 			return ret;
291 
292 		dev_priv->next_seqno = 1;
293 	}
294 
295 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
296 	return 0;
297 }
298 
299 static inline int
300 __i915_gem_request_alloc(struct intel_engine_cs *engine,
301 			 struct i915_gem_context *ctx,
302 			 struct drm_i915_gem_request **req_out)
303 {
304 	struct drm_i915_private *dev_priv = engine->i915;
305 	unsigned int reset_counter = i915_reset_counter(&dev_priv->gpu_error);
306 	struct drm_i915_gem_request *req;
307 	u32 seqno;
308 	int ret;
309 
310 	if (!req_out)
311 		return -EINVAL;
312 
313 	*req_out = NULL;
314 
315 	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
316 	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
317 	 * and restart.
318 	 */
319 	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
320 	if (ret)
321 		return ret;
322 
323 	/* Move the oldest request to the slab-cache (if not in use!) */
324 	if (!list_empty(&engine->request_list)) {
325 		req = list_first_entry(&engine->request_list,
326 				       typeof(*req), list);
327 		if (i915_gem_request_completed(req))
328 			i915_gem_request_retire(req);
329 	}
330 
331 	req = kzalloc(sizeof(*req), GFP_KERNEL);
332 	if (!req)
333 		return -ENOMEM;
334 
335 	ret = i915_gem_get_seqno(dev_priv, &seqno);
336 	if (ret)
337 		goto err;
338 
339 	lockinit(&req->lock, "i915_rl", 0, LK_CANRECURSE);
340 	fence_init(&req->fence,
341 		   &i915_fence_ops,
342 		   &req->lock,
343 		   engine->fence_context,
344 		   seqno);
345 
346 	req->i915 = dev_priv;
347 	req->engine = engine;
348 	req->ctx = i915_gem_context_get(ctx);
349 
350 	/*
351 	 * Reserve space in the ring buffer for all the commands required to
352 	 * eventually emit this request. This is to guarantee that the
353 	 * i915_add_request() call can't fail. Note that the reserve may need
354 	 * to be redone if the request is not actually submitted straight
355 	 * away, e.g. because a GPU scheduler has deferred it.
356 	 */
357 	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
358 
359 	if (i915.enable_execlists)
360 		ret = intel_logical_ring_alloc_request_extras(req);
361 	else
362 		ret = intel_ring_alloc_request_extras(req);
363 	if (ret)
364 		goto err_ctx;
365 
366 	*req_out = req;
367 	return 0;
368 
369 err_ctx:
370 	i915_gem_context_put(ctx);
371 err:
372 	kmem_cache_free(dev_priv->requests, req);
373 	return ret;
374 }
375 
376 /**
377  * i915_gem_request_alloc - allocate a request structure
378  *
379  * @engine: engine that we wish to issue the request on.
380  * @ctx: context that the request will be associated with.
381  *       This can be NULL if the request is not directly related to
382  *       any specific user context, in which case this function will
383  *       choose an appropriate context to use.
384  *
385  * Returns a pointer to the allocated request if successful,
386  * or an error code if not.
387  */
388 struct drm_i915_gem_request *
389 i915_gem_request_alloc(struct intel_engine_cs *engine,
390 		       struct i915_gem_context *ctx)
391 {
392 	struct drm_i915_gem_request *req;
393 	int err;
394 
395 	if (!ctx)
396 		ctx = engine->i915->kernel_context;
397 	err = __i915_gem_request_alloc(engine, ctx, &req);
398 	return err ? ERR_PTR(err) : req;
399 }
400 
401 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
402 {
403 	struct drm_i915_private *dev_priv = engine->i915;
404 
405 	dev_priv->gt.active_engines |= intel_engine_flag(engine);
406 	if (dev_priv->gt.awake)
407 		return;
408 
409 	intel_runtime_pm_get_noresume(dev_priv);
410 	dev_priv->gt.awake = true;
411 
412 	intel_enable_gt_powersave(dev_priv);
413 	i915_update_gfx_val(dev_priv);
414 	if (INTEL_GEN(dev_priv) >= 6)
415 		gen6_rps_busy(dev_priv);
416 
417 	queue_delayed_work(dev_priv->wq,
418 			   &dev_priv->gt.retire_work,
419 			   round_jiffies_up_relative(HZ));
420 }
421 
422 /*
423  * NB: This function is not allowed to fail. Doing so would mean the the
424  * request is not being tracked for completion but the work itself is
425  * going to happen on the hardware. This would be a Bad Thing(tm).
426  */
427 void __i915_add_request(struct drm_i915_gem_request *request,
428 			struct drm_i915_gem_object *obj,
429 			bool flush_caches)
430 {
431 	struct intel_engine_cs *engine;
432 	struct intel_ringbuffer *ringbuf;
433 	u32 request_start;
434 	u32 reserved_tail;
435 	int ret;
436 
437 	if (WARN_ON(!request))
438 		return;
439 
440 	engine = request->engine;
441 	ringbuf = request->ringbuf;
442 
443 	/*
444 	 * To ensure that this call will not fail, space for its emissions
445 	 * should already have been reserved in the ring buffer. Let the ring
446 	 * know that it is time to use that space up.
447 	 */
448 	request_start = intel_ring_get_tail(ringbuf);
449 	reserved_tail = request->reserved_space;
450 	request->reserved_space = 0;
451 
452 	/*
453 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
454 	 * after having emitted the batchbuffer command. Hence we need to fix
455 	 * things up similar to emitting the lazy request. The difference here
456 	 * is that the flush _must_ happen before the next request, no matter
457 	 * what.
458 	 */
459 	if (flush_caches) {
460 		if (i915.enable_execlists)
461 			ret = logical_ring_flush_all_caches(request);
462 		else
463 			ret = intel_ring_flush_all_caches(request);
464 		/* Not allowed to fail! */
465 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
466 	}
467 
468 	trace_i915_gem_request_add(request);
469 
470 	request->head = request_start;
471 
472 	/* Whilst this request exists, batch_obj will be on the
473 	 * active_list, and so will hold the active reference. Only when this
474 	 * request is retired will the the batch_obj be moved onto the
475 	 * inactive_list and lose its active reference. Hence we do not need
476 	 * to explicitly hold another reference here.
477 	 */
478 	request->batch_obj = obj;
479 
480 	/* Seal the request and mark it as pending execution. Note that
481 	 * we may inspect this state, without holding any locks, during
482 	 * hangcheck. Hence we apply the barrier to ensure that we do not
483 	 * see a more recent value in the hws than we are tracking.
484 	 */
485 	request->emitted_jiffies = jiffies;
486 	request->previous_seqno = engine->last_submitted_seqno;
487 	smp_store_mb(engine->last_submitted_seqno, request->fence.seqno);
488 	list_add_tail(&request->list, &engine->request_list);
489 
490 	/* Record the position of the start of the request so that
491 	 * should we detect the updated seqno part-way through the
492 	 * GPU processing the request, we never over-estimate the
493 	 * position of the head.
494 	 */
495 	request->postfix = intel_ring_get_tail(ringbuf);
496 
497 	if (i915.enable_execlists) {
498 		ret = engine->emit_request(request);
499 	} else {
500 		ret = engine->add_request(request);
501 
502 		request->tail = intel_ring_get_tail(ringbuf);
503 	}
504 	/* Not allowed to fail! */
505 	WARN(ret, "emit|add_request failed: %d!\n", ret);
506 	/* Sanity check that the reserved size was large enough. */
507 	ret = intel_ring_get_tail(ringbuf) - request_start;
508 	if (ret < 0)
509 		ret += ringbuf->size;
510 	WARN_ONCE(ret > reserved_tail,
511 		  "Not enough space reserved (%d bytes) "
512 		  "for adding the request (%d bytes)\n",
513 		  reserved_tail, ret);
514 
515 	i915_gem_mark_busy(engine);
516 }
517 
518 static unsigned long local_clock_us(unsigned int *cpu)
519 {
520 	unsigned long t;
521 
522 	/* Cheaply and approximately convert from nanoseconds to microseconds.
523 	 * The result and subsequent calculations are also defined in the same
524 	 * approximate microseconds units. The principal source of timing
525 	 * error here is from the simple truncation.
526 	 *
527 	 * Note that local_clock() is only defined wrt to the current CPU;
528 	 * the comparisons are no longer valid if we switch CPUs. Instead of
529 	 * blocking preemption for the entire busywait, we can detect the CPU
530 	 * switch and use that as indicator of system load and a reason to
531 	 * stop busywaiting, see busywait_stop().
532 	 */
533 	*cpu = get_cpu();
534 	t = local_clock() >> 10;
535 	put_cpu();
536 
537 	return t;
538 }
539 
540 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
541 {
542 	unsigned int this_cpu;
543 
544 	if (time_after(local_clock_us(&this_cpu), timeout))
545 		return true;
546 
547 	return this_cpu != cpu;
548 }
549 
550 bool __i915_spin_request(const struct drm_i915_gem_request *req,
551 			 int state, unsigned long timeout_us)
552 {
553 	unsigned int cpu;
554 
555 	/* When waiting for high frequency requests, e.g. during synchronous
556 	 * rendering split between the CPU and GPU, the finite amount of time
557 	 * required to set up the irq and wait upon it limits the response
558 	 * rate. By busywaiting on the request completion for a short while we
559 	 * can service the high frequency waits as quick as possible. However,
560 	 * if it is a slow request, we want to sleep as quickly as possible.
561 	 * The tradeoff between waiting and sleeping is roughly the time it
562 	 * takes to sleep on a request, on the order of a microsecond.
563 	 */
564 
565 	timeout_us += local_clock_us(&cpu);
566 	do {
567 		if (i915_gem_request_completed(req))
568 			return true;
569 
570 		if (signal_pending_state(state, current))
571 			break;
572 
573 		if (busywait_stop(timeout_us, cpu))
574 			break;
575 
576 		cpu_relax();
577 	} while (!need_resched());
578 
579 	return false;
580 }
581 
582 /**
583  * __i915_wait_request - wait until execution of request has finished
584  * @req: duh!
585  * @interruptible: do an interruptible wait (normally yes)
586  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
587  * @rps: client to charge for RPS boosting
588  *
589  * Note: It is of utmost importance that the passed in seqno and reset_counter
590  * values have been read by the caller in an smp safe manner. Where read-side
591  * locks are involved, it is sufficient to read the reset_counter before
592  * unlocking the lock that protects the seqno. For lockless tricks, the
593  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
594  * inserted.
595  *
596  * Returns 0 if the request was found within the alloted time. Else returns the
597  * errno with remaining time filled in timeout argument.
598  */
599 int __i915_wait_request(struct drm_i915_gem_request *req,
600 			bool interruptible,
601 			s64 *timeout,
602 			struct intel_rps_client *rps)
603 {
604 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
605 	DEFINE_WAIT(reset);
606 	struct intel_wait wait;
607 	unsigned long timeout_remain;
608 	int ret = 0;
609 
610 	might_sleep();
611 
612 	if (list_empty(&req->list))
613 		return 0;
614 
615 	if (i915_gem_request_completed(req))
616 		return 0;
617 
618 	timeout_remain = MAX_SCHEDULE_TIMEOUT;
619 	if (timeout) {
620 		if (WARN_ON(*timeout < 0))
621 			return -EINVAL;
622 
623 		if (*timeout == 0)
624 			return -ETIME;
625 
626 		/* Record current time in case interrupted, or wedged */
627 		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
628 		*timeout += ktime_get_raw_ns();
629 	}
630 
631 	trace_i915_gem_request_wait_begin(req);
632 
633 	/* This client is about to stall waiting for the GPU. In many cases
634 	 * this is undesirable and limits the throughput of the system, as
635 	 * many clients cannot continue processing user input/output whilst
636 	 * blocked. RPS autotuning may take tens of milliseconds to respond
637 	 * to the GPU load and thus incurs additional latency for the client.
638 	 * We can circumvent that by promoting the GPU frequency to maximum
639 	 * before we wait. This makes the GPU throttle up much more quickly
640 	 * (good for benchmarks and user experience, e.g. window animations),
641 	 * but at a cost of spending more power processing the workload
642 	 * (bad for battery). Not all clients even want their results
643 	 * immediately and for them we should just let the GPU select its own
644 	 * frequency to maximise efficiency. To prevent a single client from
645 	 * forcing the clocks too high for the whole system, we only allow
646 	 * each client to waitboost once in a busy period.
647 	 */
648 	if (IS_RPS_CLIENT(rps) && INTEL_GEN(req->i915) >= 6)
649 		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
650 
651 	/* Optimistic spin for the next ~jiffie before touching IRQs */
652 	if (i915_spin_request(req, state, 5))
653 		goto complete;
654 
655 	set_current_state(state);
656 	add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
657 
658 	intel_wait_init(&wait, req->fence.seqno);
659 	if (intel_engine_add_wait(req->engine, &wait))
660 		/* In order to check that we haven't missed the interrupt
661 		 * as we enabled it, we need to kick ourselves to do a
662 		 * coherent check on the seqno before we sleep.
663 		 */
664 		goto wakeup;
665 
666 	for (;;) {
667 		if (signal_pending_state(state, current)) {
668 			ret = -ERESTARTSYS;
669 			break;
670 		}
671 
672 		timeout_remain = io_schedule_timeout(timeout_remain);
673 		if (timeout_remain == 0) {
674 			ret = -ETIME;
675 			break;
676 		}
677 
678 		if (intel_wait_complete(&wait))
679 			break;
680 
681 		set_current_state(state);
682 
683 wakeup:
684 		/* Carefully check if the request is complete, giving time
685 		 * for the seqno to be visible following the interrupt.
686 		 * We also have to check in case we are kicked by the GPU
687 		 * reset in order to drop the struct_mutex.
688 		 */
689 		if (__i915_request_irq_complete(req))
690 			break;
691 
692 		/* Only spin if we know the GPU is processing this request */
693 		if (i915_spin_request(req, state, 2))
694 			break;
695 	}
696 	remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
697 
698 	intel_engine_remove_wait(req->engine, &wait);
699 	__set_current_state(TASK_RUNNING);
700 complete:
701 	trace_i915_gem_request_wait_end(req);
702 
703 	if (timeout) {
704 		*timeout -= ktime_get_raw_ns();
705 		if (*timeout < 0)
706 			*timeout = 0;
707 
708 		/*
709 		 * Apparently ktime isn't accurate enough and occasionally has a
710 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
711 		 * things up to make the test happy. We allow up to 1 jiffy.
712 		 *
713 		 * This is a regrssion from the timespec->ktime conversion.
714 		 */
715 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
716 			*timeout = 0;
717 	}
718 
719 	if (IS_RPS_USER(rps) &&
720 	    req->fence.seqno == req->engine->last_submitted_seqno) {
721 		/* The GPU is now idle and this client has stalled.
722 		 * Since no other client has submitted a request in the
723 		 * meantime, assume that this client is the only one
724 		 * supplying work to the GPU but is unable to keep that
725 		 * work supplied because it is waiting. Since the GPU is
726 		 * then never kept fully busy, RPS autoclocking will
727 		 * keep the clocks relatively low, causing further delays.
728 		 * Compensate by giving the synchronous client credit for
729 		 * a waitboost next time.
730 		 */
731 		lockmgr(&req->i915->rps.client_lock, LK_EXCLUSIVE);
732 		list_del_init(&rps->link);
733 		lockmgr(&req->i915->rps.client_lock, LK_RELEASE);
734 	}
735 
736 	return ret;
737 }
738 
739 /**
740  * Waits for a request to be signaled, and cleans up the
741  * request and object lists appropriately for that event.
742  */
743 int i915_wait_request(struct drm_i915_gem_request *req)
744 {
745 	int ret;
746 
747 	GEM_BUG_ON(!req);
748 	lockdep_assert_held(&req->i915->drm.struct_mutex);
749 
750 	ret = __i915_wait_request(req, req->i915->mm.interruptible, NULL, NULL);
751 	if (ret)
752 		return ret;
753 
754 	/* If the GPU hung, we want to keep the requests to find the guilty. */
755 	if (!i915_reset_in_progress(&req->i915->gpu_error))
756 		i915_gem_request_retire_upto(req);
757 
758 	return 0;
759 }
760