xref: /dragonfly/sys/dev/drm/i915/i915_gem_tiling.c (revision 78478697)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/bitops.h>
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 
33 /** @file i915_gem_tiling.c
34  *
35  * Support for managing tiling state of buffer objects.
36  *
37  * The idea behind tiling is to increase cache hit rates by rearranging
38  * pixel data so that a group of pixel accesses are in the same cacheline.
39  * Performance improvement from doing this on the back/depth buffer are on
40  * the order of 30%.
41  *
42  * Intel architectures make this somewhat more complicated, though, by
43  * adjustments made to addressing of data when the memory is in interleaved
44  * mode (matched pairs of DIMMS) to improve memory bandwidth.
45  * For interleaved memory, the CPU sends every sequential 64 bytes
46  * to an alternate memory channel so it can get the bandwidth from both.
47  *
48  * The GPU also rearranges its accesses for increased bandwidth to interleaved
49  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
50  * it does it a little differently, since one walks addresses not just in the
51  * X direction but also Y.  So, along with alternating channels when bit
52  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
53  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
54  * are common to both the 915 and 965-class hardware.
55  *
56  * The CPU also sometimes XORs in higher bits as well, to improve
57  * bandwidth doing strided access like we do so frequently in graphics.  This
58  * is called "Channel XOR Randomization" in the MCH documentation.  The result
59  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
60  * decode.
61  *
62  * All of this bit 6 XORing has an effect on our memory management,
63  * as we need to make sure that the 3d driver can correctly address object
64  * contents.
65  *
66  * If we don't have interleaved memory, all tiling is safe and no swizzling is
67  * required.
68  *
69  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
70  * 17 is not just a page offset, so as we page an objet out and back in,
71  * individual pages in it will have different bit 17 addresses, resulting in
72  * each 64 bytes being swapped with its neighbor!
73  *
74  * Otherwise, if interleaved, we have to tell the 3d driver what the address
75  * swizzling it needs to do is, since it's writing with the CPU to the pages
76  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
77  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
78  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
79  * to match what the GPU expects.
80  */
81 
82 /**
83  * Detects bit 6 swizzling of address lookup between IGD access and CPU
84  * access through main memory.
85  */
86 void
87 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
88 {
89 	struct drm_i915_private *dev_priv = dev->dev_private;
90 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
91 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
92 
93 	if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
94 		/*
95 		 * On BDW+, swizzling is not used. We leave the CPU memory
96 		 * controller in charge of optimizing memory accesses without
97 		 * the extra address manipulation GPU side.
98 		 *
99 		 * VLV and CHV don't have GPU swizzling.
100 		 */
101 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
102 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
103 	} else if (INTEL_INFO(dev)->gen >= 6) {
104 		if (dev_priv->preserve_bios_swizzle) {
105 			if (I915_READ(DISP_ARB_CTL) &
106 			    DISP_TILE_SURFACE_SWIZZLING) {
107 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
108 				swizzle_y = I915_BIT_6_SWIZZLE_9;
109 			} else {
110 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
111 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
112 			}
113 		} else {
114 			uint32_t dimm_c0, dimm_c1;
115 			dimm_c0 = I915_READ(MAD_DIMM_C0);
116 			dimm_c1 = I915_READ(MAD_DIMM_C1);
117 			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
118 			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
119 			/* Enable swizzling when the channels are populated
120 			 * with identically sized dimms. We don't need to check
121 			 * the 3rd channel because no cpu with gpu attached
122 			 * ships in that configuration. Also, swizzling only
123 			 * makes sense for 2 channels anyway. */
124 			if (dimm_c0 == dimm_c1) {
125 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
126 				swizzle_y = I915_BIT_6_SWIZZLE_9;
127 			} else {
128 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
129 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
130 			}
131 		}
132 	} else if (IS_GEN5(dev)) {
133 		/* On Ironlake whatever DRAM config, GPU always do
134 		 * same swizzling setup.
135 		 */
136 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
137 		swizzle_y = I915_BIT_6_SWIZZLE_9;
138 	} else if (IS_GEN2(dev)) {
139 		/* As far as we know, the 865 doesn't have these bit 6
140 		 * swizzling issues.
141 		 */
142 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
143 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
144 	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
145 		uint32_t dcc;
146 
147 		/* On 9xx chipsets, channel interleave by the CPU is
148 		 * determined by DCC.  For single-channel, neither the CPU
149 		 * nor the GPU do swizzling.  For dual channel interleaved,
150 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
151 		 * 9 for Y tiled.  The CPU's interleave is independent, and
152 		 * can be based on either bit 11 (haven't seen this yet) or
153 		 * bit 17 (common).
154 		 */
155 		dcc = I915_READ(DCC);
156 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
157 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
158 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
159 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
160 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
161 			break;
162 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
163 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
164 				/* This is the base swizzling by the GPU for
165 				 * tiled buffers.
166 				 */
167 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
168 				swizzle_y = I915_BIT_6_SWIZZLE_9;
169 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
170 				/* Bit 11 swizzling by the CPU in addition. */
171 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
172 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
173 			} else {
174 				/* Bit 17 swizzling by the CPU in addition. */
175 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
176 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
177 			}
178 			break;
179 		}
180 
181 		/* check for L-shaped memory aka modified enhanced addressing */
182 		if (IS_GEN4(dev)) {
183 			uint32_t ddc2 = I915_READ(DCC2);
184 
185 			if (!(ddc2 & DCC2_MODIFIED_ENHANCED_DISABLE))
186 				dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
187 		}
188 
189 		if (dcc == 0xffffffff) {
190 			DRM_ERROR("Couldn't read from MCHBAR.  "
191 				  "Disabling tiling.\n");
192 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
193 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
194 		}
195 	} else {
196 		/* The 965, G33, and newer, have a very flexible memory
197 		 * configuration.  It will enable dual-channel mode
198 		 * (interleaving) on as much memory as it can, and the GPU
199 		 * will additionally sometimes enable different bit 6
200 		 * swizzling for tiled objects from the CPU.
201 		 *
202 		 * Here's what I found on the G965:
203 		 *    slot fill         memory size  swizzling
204 		 * 0A   0B   1A   1B    1-ch   2-ch
205 		 * 512  0    0    0     512    0     O
206 		 * 512  0    512  0     16     1008  X
207 		 * 512  0    0    512   16     1008  X
208 		 * 0    512  0    512   16     1008  X
209 		 * 1024 1024 1024 0     2048   1024  O
210 		 *
211 		 * We could probably detect this based on either the DRB
212 		 * matching, which was the case for the swizzling required in
213 		 * the table above, or from the 1-ch value being less than
214 		 * the minimum size of a rank.
215 		 */
216 		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
217 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
218 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
219 		} else {
220 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
221 			swizzle_y = I915_BIT_6_SWIZZLE_9;
222 		}
223 	}
224 
225 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
226 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
227 }
228 
229 /* Check pitch constriants for all chips & tiling formats */
230 static bool
231 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
232 {
233 	int tile_width;
234 
235 	/* Linear is always fine */
236 	if (tiling_mode == I915_TILING_NONE)
237 		return true;
238 
239 	if (IS_GEN2(dev) ||
240 	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
241 		tile_width = 128;
242 	else
243 		tile_width = 512;
244 
245 	/* check maximum stride & object size */
246 	/* i965+ stores the end address of the gtt mapping in the fence
247 	 * reg, so dont bother to check the size */
248 	if (INTEL_INFO(dev)->gen >= 7) {
249 		if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
250 			return false;
251 	} else if (INTEL_INFO(dev)->gen >= 4) {
252 		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
253 			return false;
254 	} else {
255 		if (stride > 8192)
256 			return false;
257 
258 		if (IS_GEN3(dev)) {
259 			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
260 				return false;
261 		} else {
262 			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
263 				return false;
264 		}
265 	}
266 
267 	if (stride < tile_width)
268 		return false;
269 
270 	/* 965+ just needs multiples of tile width */
271 	if (INTEL_INFO(dev)->gen >= 4) {
272 		if (stride & (tile_width - 1))
273 			return false;
274 		return true;
275 	}
276 
277 	/* Pre-965 needs power of two tile widths */
278 	if (stride & (stride - 1))
279 		return false;
280 
281 	return true;
282 }
283 
284 /* Is the current GTT allocation valid for the change in tiling? */
285 static bool
286 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
287 {
288 	u32 size;
289 
290 	if (tiling_mode == I915_TILING_NONE)
291 		return true;
292 
293 	if (INTEL_INFO(obj->base.dev)->gen >= 4)
294 		return true;
295 
296 	if (INTEL_INFO(obj->base.dev)->gen == 3) {
297 		if (i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK)
298 			return false;
299 	} else {
300 		if (i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK)
301 			return false;
302 	}
303 
304 	size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
305 	if (i915_gem_obj_ggtt_size(obj) != size)
306 		return false;
307 
308 	if (i915_gem_obj_ggtt_offset(obj) & (size - 1))
309 		return false;
310 
311 	return true;
312 }
313 
314 /**
315  * Sets the tiling mode of an object, returning the required swizzling of
316  * bit 6 of addresses in the object.
317  */
318 int
319 i915_gem_set_tiling(struct drm_device *dev, void *data,
320 		   struct drm_file *file)
321 {
322 	struct drm_i915_gem_set_tiling *args = data;
323 	struct drm_i915_private *dev_priv = dev->dev_private;
324 	struct drm_i915_gem_object *obj;
325 	int ret = 0;
326 
327 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
328 	if (&obj->base == NULL)
329 		return -ENOENT;
330 
331 	if (!i915_tiling_ok(dev,
332 			    args->stride, obj->base.size, args->tiling_mode)) {
333 		drm_gem_object_unreference_unlocked(&obj->base);
334 		return -EINVAL;
335 	}
336 
337 	mutex_lock(&dev->struct_mutex);
338 	if (i915_gem_obj_is_pinned(obj) || obj->framebuffer_references) {
339 		ret = -EBUSY;
340 		goto err;
341 	}
342 
343 	if (args->tiling_mode == I915_TILING_NONE) {
344 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
345 		args->stride = 0;
346 	} else {
347 		if (args->tiling_mode == I915_TILING_X)
348 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
349 		else
350 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
351 
352 		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
353 		 * from aborting the application on sw fallbacks to bit 17,
354 		 * and we use the pread/pwrite bit17 paths to swizzle for it.
355 		 * If there was a user that was relying on the swizzle
356 		 * information for drm_intel_bo_map()ed reads/writes this would
357 		 * break it, but we don't have any of those.
358 		 */
359 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
360 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
361 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
362 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
363 
364 		/* If we can't handle the swizzling, make it untiled. */
365 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
366 			args->tiling_mode = I915_TILING_NONE;
367 			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
368 			args->stride = 0;
369 		}
370 	}
371 
372 	if (args->tiling_mode != obj->tiling_mode ||
373 	    args->stride != obj->stride) {
374 		/* We need to rebind the object if its current allocation
375 		 * no longer meets the alignment restrictions for its new
376 		 * tiling mode. Otherwise we can just leave it alone, but
377 		 * need to ensure that any fence register is updated before
378 		 * the next fenced (either through the GTT or by the BLT unit
379 		 * on older GPUs) access.
380 		 *
381 		 * After updating the tiling parameters, we then flag whether
382 		 * we need to update an associated fence register. Note this
383 		 * has to also include the unfenced register the GPU uses
384 		 * whilst executing a fenced command for an untiled object.
385 		 */
386 		if (obj->map_and_fenceable &&
387 		    !i915_gem_object_fence_ok(obj, args->tiling_mode))
388 			ret = i915_gem_object_ggtt_unbind(obj);
389 
390 		if (ret == 0) {
391 			if (obj->pages &&
392 			    obj->madv == I915_MADV_WILLNEED &&
393 			    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
394 				if (args->tiling_mode == I915_TILING_NONE)
395 					i915_gem_object_unpin_pages(obj);
396 				if (obj->tiling_mode == I915_TILING_NONE)
397 					i915_gem_object_pin_pages(obj);
398 			}
399 
400 			obj->fence_dirty =
401 				obj->last_fenced_req ||
402 				obj->fence_reg != I915_FENCE_REG_NONE;
403 
404 			obj->tiling_mode = args->tiling_mode;
405 			obj->stride = args->stride;
406 
407 			/* Force the fence to be reacquired for GTT access */
408 			i915_gem_release_mmap(obj);
409 		}
410 	}
411 	/* we have to maintain this existing ABI... */
412 	args->stride = obj->stride;
413 	args->tiling_mode = obj->tiling_mode;
414 
415 	/* Try to preallocate memory required to save swizzling on put-pages */
416 	if (i915_gem_object_needs_bit17_swizzle(obj)) {
417 		if (obj->bit_17 == NULL) {
418 			obj->bit_17 = kcalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT),
419 					      sizeof(long), GFP_KERNEL);
420 		}
421 	} else {
422 		kfree(obj->bit_17);
423 		obj->bit_17 = NULL;
424 	}
425 
426 err:
427 	drm_gem_object_unreference(&obj->base);
428 	mutex_unlock(&dev->struct_mutex);
429 
430 	return ret;
431 }
432 
433 /**
434  * Returns the current tiling mode and required bit 6 swizzling for the object.
435  */
436 int
437 i915_gem_get_tiling(struct drm_device *dev, void *data,
438 		   struct drm_file *file)
439 {
440 	struct drm_i915_gem_get_tiling *args = data;
441 	struct drm_i915_private *dev_priv = dev->dev_private;
442 	struct drm_i915_gem_object *obj;
443 
444 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
445 	if (&obj->base == NULL)
446 		return -ENOENT;
447 
448 	mutex_lock(&dev->struct_mutex);
449 
450 	args->tiling_mode = obj->tiling_mode;
451 	switch (obj->tiling_mode) {
452 	case I915_TILING_X:
453 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
454 		break;
455 	case I915_TILING_Y:
456 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
457 		break;
458 	case I915_TILING_NONE:
459 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
460 		break;
461 	default:
462 		DRM_ERROR("unknown tiling mode\n");
463 	}
464 
465 	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
466 	args->phys_swizzle_mode = args->swizzle_mode;
467 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
468 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
469 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
470 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
471 
472 	drm_gem_object_unreference(&obj->base);
473 	mutex_unlock(&dev->struct_mutex);
474 
475 	return 0;
476 }
477 
478 /**
479  * Swap every 64 bytes of this page around, to account for it having a new
480  * bit 17 of its physical address and therefore being interpreted differently
481  * by the GPU.
482  */
483 static void
484 i915_gem_swizzle_page(struct vm_page *page)
485 {
486 	char temp[64];
487 	char *vaddr;
488 	int i;
489 
490 	vaddr = kmap(page);
491 
492 	for (i = 0; i < PAGE_SIZE; i += 128) {
493 		memcpy(temp, &vaddr[i], 64);
494 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
495 		memcpy(&vaddr[i + 64], temp, 64);
496 	}
497 
498 	kunmap(page);
499 }
500 
501 void
502 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
503 {
504 	int page_count = obj->base.size >> PAGE_SHIFT;
505 	int i;
506 
507 	if (obj->bit_17 == NULL)
508 		return;
509 
510 	for (i = 0; i < page_count; i++) {
511 		struct vm_page *page = obj->pages[i];
512 		char new_bit_17 = VM_PAGE_TO_PHYS(obj->pages[i]) >> 17;
513 		if ((new_bit_17 & 0x1) !=
514 		    (test_bit(i, obj->bit_17) != 0)) {
515 			i915_gem_swizzle_page(page);
516 			set_page_dirty(page);
517 		}
518 	}
519 }
520 
521 void
522 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
523 {
524 	int page_count = obj->base.size >> PAGE_SHIFT;
525 	int i;
526 
527 	if (obj->bit_17 == NULL) {
528 		obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
529 				      sizeof(long), GFP_KERNEL);
530 		if (obj->bit_17 == NULL) {
531 			DRM_ERROR("Failed to allocate memory for bit 17 "
532 				  "record\n");
533 			return;
534 		}
535 	}
536 
537 	for (i = 0; i < page_count; i++) {
538 		if (VM_PAGE_TO_PHYS(obj->pages[i]) & (1 << 17))
539 			__set_bit(i, obj->bit_17);
540 		else
541 			__clear_bit(i, obj->bit_17);
542 	}
543 }
544