xref: /dragonfly/sys/dev/drm/i915/i915_irq.c (revision 5cef369f)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: interrupt handling
37  *
38  * These functions provide the basic support for enabling and disabling the
39  * interrupt handling support. There's a lot more functionality in i915_irq.c
40  * and related files, but that will be described in separate chapters.
41  */
42 
43 static const u32 hpd_ibx[HPD_NUM_PINS] = {
44 	[HPD_CRT] = SDE_CRT_HOTPLUG,
45 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
46 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
47 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
48 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
49 };
50 
51 static const u32 hpd_cpt[HPD_NUM_PINS] = {
52 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
53 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
54 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
55 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
56 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
57 };
58 
59 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
60 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
61 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
62 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
63 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
64 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
65 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
66 };
67 
68 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
69 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
70 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
71 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
72 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
73 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
74 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
75 };
76 
77 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
78 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
79 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
80 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
81 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
82 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
83 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
84 };
85 
86 /* BXT hpd list */
87 static const u32 hpd_bxt[HPD_NUM_PINS] = {
88 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
89 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
90 };
91 
92 /* IIR can theoretically queue up two events. Be paranoid. */
93 #define GEN8_IRQ_RESET_NDX(type, which) do { \
94 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
95 	POSTING_READ(GEN8_##type##_IMR(which)); \
96 	I915_WRITE(GEN8_##type##_IER(which), 0); \
97 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
98 	POSTING_READ(GEN8_##type##_IIR(which)); \
99 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
100 	POSTING_READ(GEN8_##type##_IIR(which)); \
101 } while (0)
102 
103 #define GEN5_IRQ_RESET(type) do { \
104 	I915_WRITE(type##IMR, 0xffffffff); \
105 	POSTING_READ(type##IMR); \
106 	I915_WRITE(type##IER, 0); \
107 	I915_WRITE(type##IIR, 0xffffffff); \
108 	POSTING_READ(type##IIR); \
109 	I915_WRITE(type##IIR, 0xffffffff); \
110 	POSTING_READ(type##IIR); \
111 } while (0)
112 
113 /*
114  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
115  */
116 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
117 	u32 val = I915_READ(reg); \
118 	if (val) { \
119 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
120 		     (reg), val); \
121 		I915_WRITE((reg), 0xffffffff); \
122 		POSTING_READ(reg); \
123 		I915_WRITE((reg), 0xffffffff); \
124 		POSTING_READ(reg); \
125 	} \
126 } while (0)
127 
128 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
129 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
130 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
131 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
132 	POSTING_READ(GEN8_##type##_IMR(which)); \
133 } while (0)
134 
135 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
136 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
137 	I915_WRITE(type##IER, (ier_val)); \
138 	I915_WRITE(type##IMR, (imr_val)); \
139 	POSTING_READ(type##IMR); \
140 } while (0)
141 
142 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
143 
144 /* For display hotplug interrupt */
145 void
146 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
147 {
148 	assert_spin_locked(&dev_priv->irq_lock);
149 
150 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
151 		return;
152 
153 	if ((dev_priv->irq_mask & mask) != 0) {
154 		dev_priv->irq_mask &= ~mask;
155 		I915_WRITE(DEIMR, dev_priv->irq_mask);
156 		POSTING_READ(DEIMR);
157 	}
158 }
159 
160 void
161 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
162 {
163 	assert_spin_locked(&dev_priv->irq_lock);
164 
165 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
166 		return;
167 
168 	if ((dev_priv->irq_mask & mask) != mask) {
169 		dev_priv->irq_mask |= mask;
170 		I915_WRITE(DEIMR, dev_priv->irq_mask);
171 		POSTING_READ(DEIMR);
172 	}
173 }
174 
175 /**
176  * ilk_update_gt_irq - update GTIMR
177  * @dev_priv: driver private
178  * @interrupt_mask: mask of interrupt bits to update
179  * @enabled_irq_mask: mask of interrupt bits to enable
180  */
181 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
182 			      uint32_t interrupt_mask,
183 			      uint32_t enabled_irq_mask)
184 {
185 	assert_spin_locked(&dev_priv->irq_lock);
186 
187 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
188 
189 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
190 		return;
191 
192 	dev_priv->gt_irq_mask &= ~interrupt_mask;
193 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
194 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
195 	POSTING_READ(GTIMR);
196 }
197 
198 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
199 {
200 	ilk_update_gt_irq(dev_priv, mask, mask);
201 }
202 
203 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
204 {
205 	ilk_update_gt_irq(dev_priv, mask, 0);
206 }
207 
208 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
209 {
210 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
211 }
212 
213 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
214 {
215 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
216 }
217 
218 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
219 {
220 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
221 }
222 
223 /**
224   * snb_update_pm_irq - update GEN6_PMIMR
225   * @dev_priv: driver private
226   * @interrupt_mask: mask of interrupt bits to update
227   * @enabled_irq_mask: mask of interrupt bits to enable
228   */
229 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
230 			      uint32_t interrupt_mask,
231 			      uint32_t enabled_irq_mask)
232 {
233 	uint32_t new_val;
234 
235 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
236 
237 	assert_spin_locked(&dev_priv->irq_lock);
238 
239 	new_val = dev_priv->pm_irq_mask;
240 	new_val &= ~interrupt_mask;
241 	new_val |= (~enabled_irq_mask & interrupt_mask);
242 
243 	if (new_val != dev_priv->pm_irq_mask) {
244 		dev_priv->pm_irq_mask = new_val;
245 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
246 		POSTING_READ(gen6_pm_imr(dev_priv));
247 	}
248 }
249 
250 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
251 {
252 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
253 		return;
254 
255 	snb_update_pm_irq(dev_priv, mask, mask);
256 }
257 
258 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
259 				  uint32_t mask)
260 {
261 	snb_update_pm_irq(dev_priv, mask, 0);
262 }
263 
264 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
265 {
266 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
267 		return;
268 
269 	__gen6_disable_pm_irq(dev_priv, mask);
270 }
271 
272 void gen6_reset_rps_interrupts(struct drm_device *dev)
273 {
274 	struct drm_i915_private *dev_priv = dev->dev_private;
275 	uint32_t reg = gen6_pm_iir(dev_priv);
276 
277 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
278 	I915_WRITE(reg, dev_priv->pm_rps_events);
279 	I915_WRITE(reg, dev_priv->pm_rps_events);
280 	POSTING_READ(reg);
281 	dev_priv->rps.pm_iir = 0;
282 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
283 }
284 
285 void gen6_enable_rps_interrupts(struct drm_device *dev)
286 {
287 	struct drm_i915_private *dev_priv = dev->dev_private;
288 
289 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
290 
291 	WARN_ON(dev_priv->rps.pm_iir);
292 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
293 	dev_priv->rps.interrupts_enabled = true;
294 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
295 				dev_priv->pm_rps_events);
296 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
297 
298 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
299 }
300 
301 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
302 {
303 	/*
304 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
305 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
306 	 *
307 	 * TODO: verify if this can be reproduced on VLV,CHV.
308 	 */
309 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
310 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
311 
312 	if (INTEL_INFO(dev_priv)->gen >= 8)
313 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
314 
315 	return mask;
316 }
317 
318 void gen6_disable_rps_interrupts(struct drm_device *dev)
319 {
320 	struct drm_i915_private *dev_priv = dev->dev_private;
321 
322 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
323 	dev_priv->rps.interrupts_enabled = false;
324 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
325 
326 	cancel_work_sync(&dev_priv->rps.work);
327 
328 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
329 
330 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
331 
332 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
333 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
334 				~dev_priv->pm_rps_events);
335 
336 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
337 
338 	/* Wait for pending IRQ handlers to complete (on other CPUs) */
339 #if 0
340 	synchronize_irq(dev->irq);
341 #endif
342 }
343 
344 /**
345  * ibx_display_interrupt_update - update SDEIMR
346  * @dev_priv: driver private
347  * @interrupt_mask: mask of interrupt bits to update
348  * @enabled_irq_mask: mask of interrupt bits to enable
349  */
350 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
351 				  uint32_t interrupt_mask,
352 				  uint32_t enabled_irq_mask)
353 {
354 	uint32_t sdeimr = I915_READ(SDEIMR);
355 	sdeimr &= ~interrupt_mask;
356 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
357 
358 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
359 
360 	assert_spin_locked(&dev_priv->irq_lock);
361 
362 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
363 		return;
364 
365 	I915_WRITE(SDEIMR, sdeimr);
366 	POSTING_READ(SDEIMR);
367 }
368 
369 static void
370 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
371 		       u32 enable_mask, u32 status_mask)
372 {
373 	u32 reg = PIPESTAT(pipe);
374 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
375 
376 	assert_spin_locked(&dev_priv->irq_lock);
377 	WARN_ON(!intel_irqs_enabled(dev_priv));
378 
379 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
380 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
381 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
382 		      pipe_name(pipe), enable_mask, status_mask))
383 		return;
384 
385 	if ((pipestat & enable_mask) == enable_mask)
386 		return;
387 
388 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
389 
390 	/* Enable the interrupt, clear any pending status */
391 	pipestat |= enable_mask | status_mask;
392 	I915_WRITE(reg, pipestat);
393 	POSTING_READ(reg);
394 }
395 
396 static void
397 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
398 		        u32 enable_mask, u32 status_mask)
399 {
400 	u32 reg = PIPESTAT(pipe);
401 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
402 
403 	assert_spin_locked(&dev_priv->irq_lock);
404 	WARN_ON(!intel_irqs_enabled(dev_priv));
405 
406 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
407 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
408 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
409 		      pipe_name(pipe), enable_mask, status_mask))
410 		return;
411 
412 	if ((pipestat & enable_mask) == 0)
413 		return;
414 
415 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
416 
417 	pipestat &= ~enable_mask;
418 	I915_WRITE(reg, pipestat);
419 	POSTING_READ(reg);
420 }
421 
422 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
423 {
424 	u32 enable_mask = status_mask << 16;
425 
426 	/*
427 	 * On pipe A we don't support the PSR interrupt yet,
428 	 * on pipe B and C the same bit MBZ.
429 	 */
430 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
431 		return 0;
432 	/*
433 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
434 	 * A the same bit is for perf counters which we don't use either.
435 	 */
436 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
437 		return 0;
438 
439 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
440 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
441 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
442 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
443 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
444 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
445 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
446 
447 	return enable_mask;
448 }
449 
450 void
451 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
452 		     u32 status_mask)
453 {
454 	u32 enable_mask;
455 
456 	if (IS_VALLEYVIEW(dev_priv->dev))
457 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
458 							   status_mask);
459 	else
460 		enable_mask = status_mask << 16;
461 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
462 }
463 
464 void
465 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
466 		      u32 status_mask)
467 {
468 	u32 enable_mask;
469 
470 	if (IS_VALLEYVIEW(dev_priv->dev))
471 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
472 							   status_mask);
473 	else
474 		enable_mask = status_mask << 16;
475 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
476 }
477 
478 /**
479  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
480  */
481 static void i915_enable_asle_pipestat(struct drm_device *dev)
482 {
483 	struct drm_i915_private *dev_priv = dev->dev_private;
484 
485 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
486 		return;
487 
488 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
489 
490 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
491 	if (INTEL_INFO(dev)->gen >= 4)
492 		i915_enable_pipestat(dev_priv, PIPE_A,
493 				     PIPE_LEGACY_BLC_EVENT_STATUS);
494 
495 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
496 }
497 
498 /*
499  * This timing diagram depicts the video signal in and
500  * around the vertical blanking period.
501  *
502  * Assumptions about the fictitious mode used in this example:
503  *  vblank_start >= 3
504  *  vsync_start = vblank_start + 1
505  *  vsync_end = vblank_start + 2
506  *  vtotal = vblank_start + 3
507  *
508  *           start of vblank:
509  *           latch double buffered registers
510  *           increment frame counter (ctg+)
511  *           generate start of vblank interrupt (gen4+)
512  *           |
513  *           |          frame start:
514  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
515  *           |          may be shifted forward 1-3 extra lines via PIPECONF
516  *           |          |
517  *           |          |  start of vsync:
518  *           |          |  generate vsync interrupt
519  *           |          |  |
520  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
521  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
522  * ----va---> <-----------------vb--------------------> <--------va-------------
523  *       |          |       <----vs----->                     |
524  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
525  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
526  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
527  *       |          |                                         |
528  *       last visible pixel                                   first visible pixel
529  *                  |                                         increment frame counter (gen3/4)
530  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
531  *
532  * x  = horizontal active
533  * _  = horizontal blanking
534  * hs = horizontal sync
535  * va = vertical active
536  * vb = vertical blanking
537  * vs = vertical sync
538  * vbs = vblank_start (number)
539  *
540  * Summary:
541  * - most events happen at the start of horizontal sync
542  * - frame start happens at the start of horizontal blank, 1-4 lines
543  *   (depending on PIPECONF settings) after the start of vblank
544  * - gen3/4 pixel and frame counter are synchronized with the start
545  *   of horizontal active on the first line of vertical active
546  */
547 
548 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
549 {
550 	/* Gen2 doesn't have a hardware frame counter */
551 	return 0;
552 }
553 
554 /* Called from drm generic code, passed a 'crtc', which
555  * we use as a pipe index
556  */
557 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
558 {
559 	struct drm_i915_private *dev_priv = dev->dev_private;
560 	unsigned long high_frame;
561 	unsigned long low_frame;
562 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
563 	struct intel_crtc *intel_crtc =
564 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
565 	const struct drm_display_mode *mode =
566 		&intel_crtc->config->base.adjusted_mode;
567 
568 	htotal = mode->crtc_htotal;
569 	hsync_start = mode->crtc_hsync_start;
570 	vbl_start = mode->crtc_vblank_start;
571 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
572 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
573 
574 	/* Convert to pixel count */
575 	vbl_start *= htotal;
576 
577 	/* Start of vblank event occurs at start of hsync */
578 	vbl_start -= htotal - hsync_start;
579 
580 	high_frame = PIPEFRAME(pipe);
581 	low_frame = PIPEFRAMEPIXEL(pipe);
582 
583 	/*
584 	 * High & low register fields aren't synchronized, so make sure
585 	 * we get a low value that's stable across two reads of the high
586 	 * register.
587 	 */
588 	do {
589 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
590 		low   = I915_READ(low_frame);
591 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
592 	} while (high1 != high2);
593 
594 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
595 	pixel = low & PIPE_PIXEL_MASK;
596 	low >>= PIPE_FRAME_LOW_SHIFT;
597 
598 	/*
599 	 * The frame counter increments at beginning of active.
600 	 * Cook up a vblank counter by also checking the pixel
601 	 * counter against vblank start.
602 	 */
603 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
604 }
605 
606 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
607 {
608 	struct drm_i915_private *dev_priv = dev->dev_private;
609 	int reg = PIPE_FRMCOUNT_GM45(pipe);
610 
611 	return I915_READ(reg);
612 }
613 
614 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
615 #define __raw_i915_read32(dev_priv__, reg__) DRM_READ32(dev_priv__->mmio_map, reg__)
616 
617 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
618 {
619 	struct drm_device *dev = crtc->base.dev;
620 	struct drm_i915_private *dev_priv = dev->dev_private;
621 	const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
622 	enum i915_pipe pipe = crtc->pipe;
623 	int position, vtotal;
624 
625 	vtotal = mode->crtc_vtotal;
626 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
627 		vtotal /= 2;
628 
629 	if (IS_GEN2(dev))
630 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
631 	else
632 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
633 
634 	/*
635 	 * See update_scanline_offset() for the details on the
636 	 * scanline_offset adjustment.
637 	 */
638 	return (position + crtc->scanline_offset) % vtotal;
639 }
640 
641 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
642 				    unsigned int flags, int *vpos, int *hpos,
643 				    ktime_t *stime, ktime_t *etime)
644 {
645 	struct drm_i915_private *dev_priv = dev->dev_private;
646 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
647 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
648 	const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
649 	int position;
650 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
651 	bool in_vbl = true;
652 	int ret = 0;
653 
654 	if (!intel_crtc->active) {
655 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
656 				 "pipe %c\n", pipe_name(pipe));
657 		return 0;
658 	}
659 
660 	htotal = mode->crtc_htotal;
661 	hsync_start = mode->crtc_hsync_start;
662 	vtotal = mode->crtc_vtotal;
663 	vbl_start = mode->crtc_vblank_start;
664 	vbl_end = mode->crtc_vblank_end;
665 
666 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
667 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
668 		vbl_end /= 2;
669 		vtotal /= 2;
670 	}
671 
672 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
673 
674 	/*
675 	 * Lock uncore.lock, as we will do multiple timing critical raw
676 	 * register reads, potentially with preemption disabled, so the
677 	 * following code must not block on uncore.lock.
678 	 */
679 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
680 
681 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
682 
683 	/* Get optional system timestamp before query. */
684 	if (stime)
685 		*stime = ktime_get();
686 
687 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
688 		/* No obvious pixelcount register. Only query vertical
689 		 * scanout position from Display scan line register.
690 		 */
691 		position = __intel_get_crtc_scanline(intel_crtc);
692 	} else {
693 		/* Have access to pixelcount since start of frame.
694 		 * We can split this into vertical and horizontal
695 		 * scanout position.
696 		 */
697 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
698 
699 		/* convert to pixel counts */
700 		vbl_start *= htotal;
701 		vbl_end *= htotal;
702 		vtotal *= htotal;
703 
704 		/*
705 		 * In interlaced modes, the pixel counter counts all pixels,
706 		 * so one field will have htotal more pixels. In order to avoid
707 		 * the reported position from jumping backwards when the pixel
708 		 * counter is beyond the length of the shorter field, just
709 		 * clamp the position the length of the shorter field. This
710 		 * matches how the scanline counter based position works since
711 		 * the scanline counter doesn't count the two half lines.
712 		 */
713 		if (position >= vtotal)
714 			position = vtotal - 1;
715 
716 		/*
717 		 * Start of vblank interrupt is triggered at start of hsync,
718 		 * just prior to the first active line of vblank. However we
719 		 * consider lines to start at the leading edge of horizontal
720 		 * active. So, should we get here before we've crossed into
721 		 * the horizontal active of the first line in vblank, we would
722 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
723 		 * always add htotal-hsync_start to the current pixel position.
724 		 */
725 		position = (position + htotal - hsync_start) % vtotal;
726 	}
727 
728 	/* Get optional system timestamp after query. */
729 	if (etime)
730 		*etime = ktime_get();
731 
732 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
733 
734 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
735 
736 	in_vbl = position >= vbl_start && position < vbl_end;
737 
738 	/*
739 	 * While in vblank, position will be negative
740 	 * counting up towards 0 at vbl_end. And outside
741 	 * vblank, position will be positive counting
742 	 * up since vbl_end.
743 	 */
744 	if (position >= vbl_start)
745 		position -= vbl_end;
746 	else
747 		position += vtotal - vbl_end;
748 
749 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
750 		*vpos = position;
751 		*hpos = 0;
752 	} else {
753 		*vpos = position / htotal;
754 		*hpos = position - (*vpos * htotal);
755 	}
756 
757 	/* In vblank? */
758 	if (in_vbl)
759 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
760 
761 	return ret;
762 }
763 
764 int intel_get_crtc_scanline(struct intel_crtc *crtc)
765 {
766 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
767 	int position;
768 
769 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
770 	position = __intel_get_crtc_scanline(crtc);
771 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
772 
773 	return position;
774 }
775 
776 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
777 			      int *max_error,
778 			      struct timeval *vblank_time,
779 			      unsigned flags)
780 {
781 	struct drm_crtc *crtc;
782 
783 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
784 		DRM_ERROR("Invalid crtc %d\n", pipe);
785 		return -EINVAL;
786 	}
787 
788 	/* Get drm_crtc to timestamp: */
789 	crtc = intel_get_crtc_for_pipe(dev, pipe);
790 	if (crtc == NULL) {
791 		DRM_ERROR("Invalid crtc %d\n", pipe);
792 		return -EINVAL;
793 	}
794 
795 	if (!crtc->state->enable) {
796 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
797 		return -EBUSY;
798 	}
799 
800 	/* Helper routine in DRM core does all the work: */
801 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
802 						     vblank_time, flags,
803 						     crtc,
804 						     &to_intel_crtc(crtc)->config->base.adjusted_mode);
805 }
806 
807 static bool intel_hpd_irq_event(struct drm_device *dev,
808 				struct drm_connector *connector)
809 {
810 	enum drm_connector_status old_status;
811 
812 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
813 	old_status = connector->status;
814 
815 	connector->status = connector->funcs->detect(connector, false);
816 	if (old_status == connector->status)
817 		return false;
818 
819 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
820 		      connector->base.id,
821 		      connector->name,
822 		      drm_get_connector_status_name(old_status),
823 		      drm_get_connector_status_name(connector->status));
824 
825 	return true;
826 }
827 
828 static void i915_digport_work_func(struct work_struct *work)
829 {
830 	struct drm_i915_private *dev_priv =
831 		container_of(work, struct drm_i915_private, dig_port_work);
832 	u32 long_port_mask, short_port_mask;
833 	struct intel_digital_port *intel_dig_port;
834 	int i, ret;
835 	u32 old_bits = 0;
836 
837 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
838 	long_port_mask = dev_priv->long_hpd_port_mask;
839 	dev_priv->long_hpd_port_mask = 0;
840 	short_port_mask = dev_priv->short_hpd_port_mask;
841 	dev_priv->short_hpd_port_mask = 0;
842 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
843 
844 	for (i = 0; i < I915_MAX_PORTS; i++) {
845 		bool valid = false;
846 		bool long_hpd = false;
847 		intel_dig_port = dev_priv->hpd_irq_port[i];
848 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
849 			continue;
850 
851 		if (long_port_mask & (1 << i))  {
852 			valid = true;
853 			long_hpd = true;
854 		} else if (short_port_mask & (1 << i))
855 			valid = true;
856 
857 		if (valid) {
858 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
859 			if (ret == true) {
860 				/* if we get true fallback to old school hpd */
861 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
862 			}
863 		}
864 	}
865 
866 	if (old_bits) {
867 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
868 		dev_priv->hpd_event_bits |= old_bits;
869 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
870 		schedule_work(&dev_priv->hotplug_work);
871 	}
872 }
873 
874 /*
875  * Handle hotplug events outside the interrupt handler proper.
876  */
877 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
878 
879 static void i915_hotplug_work_func(struct work_struct *work)
880 {
881 	struct drm_i915_private *dev_priv =
882 		container_of(work, struct drm_i915_private, hotplug_work);
883 	struct drm_device *dev = dev_priv->dev;
884 	struct drm_mode_config *mode_config = &dev->mode_config;
885 	struct intel_connector *intel_connector;
886 	struct intel_encoder *intel_encoder;
887 	struct drm_connector *connector;
888 	bool hpd_disabled = false;
889 	bool changed = false;
890 	u32 hpd_event_bits;
891 
892 	mutex_lock(&mode_config->mutex);
893 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
894 
895 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
896 
897 	hpd_event_bits = dev_priv->hpd_event_bits;
898 	dev_priv->hpd_event_bits = 0;
899 	list_for_each_entry(connector, &mode_config->connector_list, head) {
900 		intel_connector = to_intel_connector(connector);
901 		if (!intel_connector->encoder)
902 			continue;
903 		intel_encoder = intel_connector->encoder;
904 		if (intel_encoder->hpd_pin > HPD_NONE &&
905 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
906 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
907 			DRM_INFO("HPD interrupt storm detected on connector %s: "
908 				 "switching from hotplug detection to polling\n",
909 				connector->name);
910 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
911 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
912 				| DRM_CONNECTOR_POLL_DISCONNECT;
913 			hpd_disabled = true;
914 		}
915 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
916 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
917 				      connector->name, intel_encoder->hpd_pin);
918 		}
919 	}
920 	 /* if there were no outputs to poll, poll was disabled,
921 	  * therefore make sure it's enabled when disabling HPD on
922 	  * some connectors */
923 	if (hpd_disabled) {
924 		drm_kms_helper_poll_enable(dev);
925 		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
926 				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
927 	}
928 
929 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
930 
931 	list_for_each_entry(connector, &mode_config->connector_list, head) {
932 		intel_connector = to_intel_connector(connector);
933 		if (!intel_connector->encoder)
934 			continue;
935 		intel_encoder = intel_connector->encoder;
936 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
937 			if (intel_encoder->hot_plug)
938 				intel_encoder->hot_plug(intel_encoder);
939 			if (intel_hpd_irq_event(dev, connector))
940 				changed = true;
941 		}
942 	}
943 	mutex_unlock(&mode_config->mutex);
944 
945 	if (changed)
946 		drm_kms_helper_hotplug_event(dev);
947 }
948 
949 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
950 {
951 	struct drm_i915_private *dev_priv = dev->dev_private;
952 	u32 busy_up, busy_down, max_avg, min_avg;
953 	u8 new_delay;
954 
955 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
956 
957 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
958 
959 	new_delay = dev_priv->ips.cur_delay;
960 
961 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
962 	busy_up = I915_READ(RCPREVBSYTUPAVG);
963 	busy_down = I915_READ(RCPREVBSYTDNAVG);
964 	max_avg = I915_READ(RCBMAXAVG);
965 	min_avg = I915_READ(RCBMINAVG);
966 
967 	/* Handle RCS change request from hw */
968 	if (busy_up > max_avg) {
969 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
970 			new_delay = dev_priv->ips.cur_delay - 1;
971 		if (new_delay < dev_priv->ips.max_delay)
972 			new_delay = dev_priv->ips.max_delay;
973 	} else if (busy_down < min_avg) {
974 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
975 			new_delay = dev_priv->ips.cur_delay + 1;
976 		if (new_delay > dev_priv->ips.min_delay)
977 			new_delay = dev_priv->ips.min_delay;
978 	}
979 
980 	if (ironlake_set_drps(dev, new_delay))
981 		dev_priv->ips.cur_delay = new_delay;
982 
983 	lockmgr(&mchdev_lock, LK_RELEASE);
984 
985 	return;
986 }
987 
988 static void notify_ring(struct intel_engine_cs *ring)
989 {
990 	if (!intel_ring_initialized(ring))
991 		return;
992 
993 	trace_i915_gem_request_notify(ring);
994 
995 	wake_up_all(&ring->irq_queue);
996 }
997 
998 static void vlv_c0_read(struct drm_i915_private *dev_priv,
999 			struct intel_rps_ei *ei)
1000 {
1001 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1002 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1003 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1004 }
1005 
1006 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1007 			 const struct intel_rps_ei *old,
1008 			 const struct intel_rps_ei *now,
1009 			 int threshold)
1010 {
1011 	u64 time, c0;
1012 
1013 	if (old->cz_clock == 0)
1014 		return false;
1015 
1016 	time = now->cz_clock - old->cz_clock;
1017 	time *= threshold * dev_priv->mem_freq;
1018 
1019 	/* Workload can be split between render + media, e.g. SwapBuffers
1020 	 * being blitted in X after being rendered in mesa. To account for
1021 	 * this we need to combine both engines into our activity counter.
1022 	 */
1023 	c0 = now->render_c0 - old->render_c0;
1024 	c0 += now->media_c0 - old->media_c0;
1025 	c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
1026 
1027 	return c0 >= time;
1028 }
1029 
1030 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1031 {
1032 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1033 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1034 }
1035 
1036 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1037 {
1038 	struct intel_rps_ei now;
1039 	u32 events = 0;
1040 
1041 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1042 		return 0;
1043 
1044 	vlv_c0_read(dev_priv, &now);
1045 	if (now.cz_clock == 0)
1046 		return 0;
1047 
1048 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1049 		if (!vlv_c0_above(dev_priv,
1050 				  &dev_priv->rps.down_ei, &now,
1051 				  dev_priv->rps.down_threshold))
1052 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1053 		dev_priv->rps.down_ei = now;
1054 	}
1055 
1056 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1057 		if (vlv_c0_above(dev_priv,
1058 				 &dev_priv->rps.up_ei, &now,
1059 				 dev_priv->rps.up_threshold))
1060 			events |= GEN6_PM_RP_UP_THRESHOLD;
1061 		dev_priv->rps.up_ei = now;
1062 	}
1063 
1064 	return events;
1065 }
1066 
1067 static bool any_waiters(struct drm_i915_private *dev_priv)
1068 {
1069 	struct intel_engine_cs *ring;
1070 	int i;
1071 
1072 	for_each_ring(ring, dev_priv, i)
1073 		if (ring->irq_refcount)
1074 			return true;
1075 
1076 	return false;
1077 }
1078 
1079 static void gen6_pm_rps_work(struct work_struct *work)
1080 {
1081 	struct drm_i915_private *dev_priv =
1082 		container_of(work, struct drm_i915_private, rps.work);
1083 	bool client_boost;
1084 	int new_delay, adj, min, max;
1085 	u32 pm_iir;
1086 
1087 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1088 	/* Speed up work cancelation during disabling rps interrupts. */
1089 	if (!dev_priv->rps.interrupts_enabled) {
1090 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1091 		return;
1092 	}
1093 	pm_iir = dev_priv->rps.pm_iir;
1094 	dev_priv->rps.pm_iir = 0;
1095 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1096 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1097 	client_boost = dev_priv->rps.client_boost;
1098 	dev_priv->rps.client_boost = false;
1099 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1100 
1101 	/* Make sure we didn't queue anything we're not going to process. */
1102 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1103 
1104 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1105 		return;
1106 
1107 	mutex_lock(&dev_priv->rps.hw_lock);
1108 
1109 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1110 
1111 	adj = dev_priv->rps.last_adj;
1112 	new_delay = dev_priv->rps.cur_freq;
1113 	min = dev_priv->rps.min_freq_softlimit;
1114 	max = dev_priv->rps.max_freq_softlimit;
1115 
1116 	if (client_boost) {
1117 		new_delay = dev_priv->rps.max_freq_softlimit;
1118 		adj = 0;
1119 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1120 		if (adj > 0)
1121 			adj *= 2;
1122 		else /* CHV needs even encode values */
1123 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1124 		/*
1125 		 * For better performance, jump directly
1126 		 * to RPe if we're below it.
1127 		 */
1128 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1129 			new_delay = dev_priv->rps.efficient_freq;
1130 			adj = 0;
1131 		}
1132 	} else if (any_waiters(dev_priv)) {
1133 		adj = 0;
1134 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1135 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1136 			new_delay = dev_priv->rps.efficient_freq;
1137 		else
1138 			new_delay = dev_priv->rps.min_freq_softlimit;
1139 		adj = 0;
1140 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1141 		if (adj < 0)
1142 			adj *= 2;
1143 		else /* CHV needs even encode values */
1144 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1145 	} else { /* unknown event */
1146 		adj = 0;
1147 	}
1148 
1149 	dev_priv->rps.last_adj = adj;
1150 
1151 	/* sysfs frequency interfaces may have snuck in while servicing the
1152 	 * interrupt
1153 	 */
1154 	new_delay += adj;
1155 	new_delay = clamp_t(int, new_delay, min, max);
1156 
1157 	intel_set_rps(dev_priv->dev, new_delay);
1158 
1159 	mutex_unlock(&dev_priv->rps.hw_lock);
1160 }
1161 
1162 /**
1163  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1164  * occurred.
1165  * @work: workqueue struct
1166  *
1167  * Doesn't actually do anything except notify userspace. As a consequence of
1168  * this event, userspace should try to remap the bad rows since statistically
1169  * it is likely the same row is more likely to go bad again.
1170  */
1171 static void ivybridge_parity_work(struct work_struct *work)
1172 {
1173 	struct drm_i915_private *dev_priv =
1174 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1175 	u32 error_status, row, bank, subbank;
1176 	char *parity_event[6];
1177 	uint32_t misccpctl;
1178 	uint8_t slice = 0;
1179 
1180 	/* We must turn off DOP level clock gating to access the L3 registers.
1181 	 * In order to prevent a get/put style interface, acquire struct mutex
1182 	 * any time we access those registers.
1183 	 */
1184 	mutex_lock(&dev_priv->dev->struct_mutex);
1185 
1186 	/* If we've screwed up tracking, just let the interrupt fire again */
1187 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1188 		goto out;
1189 
1190 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1191 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1192 	POSTING_READ(GEN7_MISCCPCTL);
1193 
1194 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1195 		u32 reg;
1196 
1197 		slice--;
1198 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1199 			break;
1200 
1201 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1202 
1203 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1204 
1205 		error_status = I915_READ(reg);
1206 		row = GEN7_PARITY_ERROR_ROW(error_status);
1207 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1208 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1209 
1210 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1211 		POSTING_READ(reg);
1212 
1213 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1214 		parity_event[1] = drm_asprintf(GFP_KERNEL, "ROW=%d", row);
1215 		parity_event[2] = drm_asprintf(GFP_KERNEL, "BANK=%d", bank);
1216 		parity_event[3] = drm_asprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1217 		parity_event[4] = drm_asprintf(GFP_KERNEL, "SLICE=%d", slice);
1218 		parity_event[5] = NULL;
1219 
1220 #if 0
1221 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1222 				   KOBJ_CHANGE, parity_event);
1223 #endif
1224 
1225 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1226 			  slice, row, bank, subbank);
1227 
1228 		kfree(parity_event[4]);
1229 		kfree(parity_event[3]);
1230 		kfree(parity_event[2]);
1231 		kfree(parity_event[1]);
1232 	}
1233 
1234 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1235 
1236 out:
1237 	WARN_ON(dev_priv->l3_parity.which_slice);
1238 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1239 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1240 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1241 
1242 	mutex_unlock(&dev_priv->dev->struct_mutex);
1243 }
1244 
1245 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1246 {
1247 	struct drm_i915_private *dev_priv = dev->dev_private;
1248 
1249 	if (!HAS_L3_DPF(dev))
1250 		return;
1251 
1252 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1253 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1254 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1255 
1256 	iir &= GT_PARITY_ERROR(dev);
1257 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1258 		dev_priv->l3_parity.which_slice |= 1 << 1;
1259 
1260 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1261 		dev_priv->l3_parity.which_slice |= 1 << 0;
1262 
1263 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1264 }
1265 
1266 static void ilk_gt_irq_handler(struct drm_device *dev,
1267 			       struct drm_i915_private *dev_priv,
1268 			       u32 gt_iir)
1269 {
1270 	if (gt_iir &
1271 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1272 		notify_ring(&dev_priv->ring[RCS]);
1273 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1274 		notify_ring(&dev_priv->ring[VCS]);
1275 }
1276 
1277 static void snb_gt_irq_handler(struct drm_device *dev,
1278 			       struct drm_i915_private *dev_priv,
1279 			       u32 gt_iir)
1280 {
1281 
1282 	if (gt_iir &
1283 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1284 		notify_ring(&dev_priv->ring[RCS]);
1285 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1286 		notify_ring(&dev_priv->ring[VCS]);
1287 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1288 		notify_ring(&dev_priv->ring[BCS]);
1289 
1290 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1291 		      GT_BSD_CS_ERROR_INTERRUPT |
1292 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1293 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1294 
1295 	if (gt_iir & GT_PARITY_ERROR(dev))
1296 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1297 }
1298 
1299 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1300 				       u32 master_ctl)
1301 {
1302 
1303 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1304 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1305 		if (tmp) {
1306 			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1307 
1308 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1309 				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1310 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1311 				notify_ring(&dev_priv->ring[RCS]);
1312 
1313 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1314 				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1315 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1316 				notify_ring(&dev_priv->ring[BCS]);
1317 		} else
1318 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1319 	}
1320 
1321 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1322 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1323 		if (tmp) {
1324 			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1325 
1326 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1327 				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1328 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1329 				notify_ring(&dev_priv->ring[VCS]);
1330 
1331 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1332 				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1333 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1334 				notify_ring(&dev_priv->ring[VCS2]);
1335 		} else
1336 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1337 	}
1338 
1339 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1340 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1341 		if (tmp) {
1342 			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1343 
1344 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1345 				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1346 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1347 				notify_ring(&dev_priv->ring[VECS]);
1348 		} else
1349 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1350 	}
1351 
1352 	if (master_ctl & GEN8_GT_PM_IRQ) {
1353 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1354 		if (tmp & dev_priv->pm_rps_events) {
1355 			I915_WRITE_FW(GEN8_GT_IIR(2),
1356 				      tmp & dev_priv->pm_rps_events);
1357 			gen6_rps_irq_handler(dev_priv, tmp);
1358 		} else
1359 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1360 	}
1361 
1362 }
1363 
1364 #define HPD_STORM_DETECT_PERIOD 1000
1365 #define HPD_STORM_THRESHOLD 5
1366 
1367 static int pch_port_to_hotplug_shift(enum port port)
1368 {
1369 	switch (port) {
1370 	case PORT_A:
1371 	case PORT_E:
1372 	default:
1373 		return -1;
1374 	case PORT_B:
1375 		return 0;
1376 	case PORT_C:
1377 		return 8;
1378 	case PORT_D:
1379 		return 16;
1380 	}
1381 }
1382 
1383 static int i915_port_to_hotplug_shift(enum port port)
1384 {
1385 	switch (port) {
1386 	case PORT_A:
1387 	case PORT_E:
1388 	default:
1389 		return -1;
1390 	case PORT_B:
1391 		return 17;
1392 	case PORT_C:
1393 		return 19;
1394 	case PORT_D:
1395 		return 21;
1396 	}
1397 }
1398 
1399 static enum port get_port_from_pin(enum hpd_pin pin)
1400 {
1401 	switch (pin) {
1402 	case HPD_PORT_B:
1403 		return PORT_B;
1404 	case HPD_PORT_C:
1405 		return PORT_C;
1406 	case HPD_PORT_D:
1407 		return PORT_D;
1408 	default:
1409 		return PORT_A; /* no hpd */
1410 	}
1411 }
1412 
1413 static void intel_hpd_irq_handler(struct drm_device *dev,
1414 				  u32 hotplug_trigger,
1415 				  u32 dig_hotplug_reg,
1416 				  const u32 hpd[HPD_NUM_PINS])
1417 {
1418 	struct drm_i915_private *dev_priv = dev->dev_private;
1419 	int i;
1420 	enum port port;
1421 	bool storm_detected = false;
1422 	bool queue_dig = false, queue_hp = false;
1423 	u32 dig_shift;
1424 	u32 dig_port_mask = 0;
1425 
1426 	if (!hotplug_trigger)
1427 		return;
1428 
1429 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1430 			 hotplug_trigger, dig_hotplug_reg);
1431 
1432 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1433 	for (i = 1; i < HPD_NUM_PINS; i++) {
1434 		if (!(hpd[i] & hotplug_trigger))
1435 			continue;
1436 
1437 		port = get_port_from_pin(i);
1438 		if (port && dev_priv->hpd_irq_port[port]) {
1439 			bool long_hpd;
1440 
1441 			if (!HAS_GMCH_DISPLAY(dev_priv)) {
1442 				dig_shift = pch_port_to_hotplug_shift(port);
1443 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1444 			} else {
1445 				dig_shift = i915_port_to_hotplug_shift(port);
1446 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1447 			}
1448 
1449 			DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1450 					 port_name(port),
1451 					 long_hpd ? "long" : "short");
1452 			/* for long HPD pulses we want to have the digital queue happen,
1453 			   but we still want HPD storm detection to function. */
1454 			if (long_hpd) {
1455 				dev_priv->long_hpd_port_mask |= (1 << port);
1456 				dig_port_mask |= hpd[i];
1457 			} else {
1458 				/* for short HPD just trigger the digital queue */
1459 				dev_priv->short_hpd_port_mask |= (1 << port);
1460 				hotplug_trigger &= ~hpd[i];
1461 			}
1462 			queue_dig = true;
1463 		}
1464 	}
1465 
1466 	for (i = 1; i < HPD_NUM_PINS; i++) {
1467 		if (hpd[i] & hotplug_trigger &&
1468 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1469 			/*
1470 			 * On GMCH platforms the interrupt mask bits only
1471 			 * prevent irq generation, not the setting of the
1472 			 * hotplug bits itself. So only WARN about unexpected
1473 			 * interrupts on saner platforms.
1474 			 */
1475 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1476 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1477 				  hotplug_trigger, i, hpd[i]);
1478 
1479 			continue;
1480 		}
1481 
1482 		if (!(hpd[i] & hotplug_trigger) ||
1483 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1484 			continue;
1485 
1486 		if (!(dig_port_mask & hpd[i])) {
1487 			dev_priv->hpd_event_bits |= (1 << i);
1488 			queue_hp = true;
1489 		}
1490 
1491 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1492 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1493 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1494 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1495 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1496 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1497 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1498 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1499 			dev_priv->hpd_event_bits &= ~(1 << i);
1500 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1501 			storm_detected = true;
1502 		} else {
1503 			dev_priv->hpd_stats[i].hpd_cnt++;
1504 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1505 				      dev_priv->hpd_stats[i].hpd_cnt);
1506 		}
1507 	}
1508 
1509 	if (storm_detected)
1510 		dev_priv->display.hpd_irq_setup(dev);
1511 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1512 
1513 	/*
1514 	 * Our hotplug handler can grab modeset locks (by calling down into the
1515 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1516 	 * queue for otherwise the flush_work in the pageflip code will
1517 	 * deadlock.
1518 	 */
1519 	if (queue_dig)
1520 		schedule_work(&dev_priv->dig_port_work);
1521 	if (queue_hp)
1522 		schedule_work(&dev_priv->hotplug_work);
1523 }
1524 
1525 static void gmbus_irq_handler(struct drm_device *dev)
1526 {
1527 	struct drm_i915_private *dev_priv = dev->dev_private;
1528 
1529 	wake_up_all(&dev_priv->gmbus_wait_queue);
1530 }
1531 
1532 static void dp_aux_irq_handler(struct drm_device *dev)
1533 {
1534 	struct drm_i915_private *dev_priv = dev->dev_private;
1535 
1536 	wake_up_all(&dev_priv->gmbus_wait_queue);
1537 }
1538 
1539 #if defined(CONFIG_DEBUG_FS)
1540 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1541 					 uint32_t crc0, uint32_t crc1,
1542 					 uint32_t crc2, uint32_t crc3,
1543 					 uint32_t crc4)
1544 {
1545 	struct drm_i915_private *dev_priv = dev->dev_private;
1546 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1547 	struct intel_pipe_crc_entry *entry;
1548 	int head, tail;
1549 
1550 	spin_lock(&pipe_crc->lock);
1551 
1552 	if (!pipe_crc->entries) {
1553 		spin_unlock(&pipe_crc->lock);
1554 		DRM_DEBUG_KMS("spurious interrupt\n");
1555 		return;
1556 	}
1557 
1558 	head = pipe_crc->head;
1559 	tail = pipe_crc->tail;
1560 
1561 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1562 		spin_unlock(&pipe_crc->lock);
1563 		DRM_ERROR("CRC buffer overflowing\n");
1564 		return;
1565 	}
1566 
1567 	entry = &pipe_crc->entries[head];
1568 
1569 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1570 	entry->crc[0] = crc0;
1571 	entry->crc[1] = crc1;
1572 	entry->crc[2] = crc2;
1573 	entry->crc[3] = crc3;
1574 	entry->crc[4] = crc4;
1575 
1576 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1577 	pipe_crc->head = head;
1578 
1579 	spin_unlock(&pipe_crc->lock);
1580 
1581 	wake_up_interruptible(&pipe_crc->wq);
1582 }
1583 #else
1584 static inline void
1585 display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1586 			     uint32_t crc0, uint32_t crc1,
1587 			     uint32_t crc2, uint32_t crc3,
1588 			     uint32_t crc4) {}
1589 #endif
1590 
1591 
1592 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1593 {
1594 	struct drm_i915_private *dev_priv = dev->dev_private;
1595 
1596 	display_pipe_crc_irq_handler(dev, pipe,
1597 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1598 				     0, 0, 0, 0);
1599 }
1600 
1601 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1602 {
1603 	struct drm_i915_private *dev_priv = dev->dev_private;
1604 
1605 	display_pipe_crc_irq_handler(dev, pipe,
1606 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1607 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1608 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1609 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1610 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1611 }
1612 
1613 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1614 {
1615 	struct drm_i915_private *dev_priv = dev->dev_private;
1616 	uint32_t res1, res2;
1617 
1618 	if (INTEL_INFO(dev)->gen >= 3)
1619 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1620 	else
1621 		res1 = 0;
1622 
1623 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1624 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1625 	else
1626 		res2 = 0;
1627 
1628 	display_pipe_crc_irq_handler(dev, pipe,
1629 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1630 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1631 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1632 				     res1, res2);
1633 }
1634 
1635 /* The RPS events need forcewake, so we add them to a work queue and mask their
1636  * IMR bits until the work is done. Other interrupts can be processed without
1637  * the work queue. */
1638 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1639 {
1640 	if (pm_iir & dev_priv->pm_rps_events) {
1641 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1642 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1643 		if (dev_priv->rps.interrupts_enabled) {
1644 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1645 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1646 		}
1647 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1648 	}
1649 
1650 	if (INTEL_INFO(dev_priv)->gen >= 8)
1651 		return;
1652 
1653 	if (HAS_VEBOX(dev_priv->dev)) {
1654 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1655 			notify_ring(&dev_priv->ring[VECS]);
1656 
1657 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1658 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1659 	}
1660 }
1661 
1662 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum i915_pipe pipe)
1663 {
1664 	if (!drm_handle_vblank(dev, pipe))
1665 		return false;
1666 
1667 	return true;
1668 }
1669 
1670 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1671 {
1672 	struct drm_i915_private *dev_priv = dev->dev_private;
1673 	u32 pipe_stats[I915_MAX_PIPES] = { };
1674 	int pipe;
1675 
1676 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1677 	for_each_pipe(dev_priv, pipe) {
1678 		int reg;
1679 		u32 mask, iir_bit = 0;
1680 
1681 		/*
1682 		 * PIPESTAT bits get signalled even when the interrupt is
1683 		 * disabled with the mask bits, and some of the status bits do
1684 		 * not generate interrupts at all (like the underrun bit). Hence
1685 		 * we need to be careful that we only handle what we want to
1686 		 * handle.
1687 		 */
1688 
1689 		/* fifo underruns are filterered in the underrun handler. */
1690 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1691 
1692 		switch (pipe) {
1693 		case PIPE_A:
1694 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1695 			break;
1696 		case PIPE_B:
1697 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1698 			break;
1699 		case PIPE_C:
1700 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1701 			break;
1702 		}
1703 		if (iir & iir_bit)
1704 			mask |= dev_priv->pipestat_irq_mask[pipe];
1705 
1706 		if (!mask)
1707 			continue;
1708 
1709 		reg = PIPESTAT(pipe);
1710 		mask |= PIPESTAT_INT_ENABLE_MASK;
1711 		pipe_stats[pipe] = I915_READ(reg) & mask;
1712 
1713 		/*
1714 		 * Clear the PIPE*STAT regs before the IIR
1715 		 */
1716 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1717 					PIPESTAT_INT_STATUS_MASK))
1718 			I915_WRITE(reg, pipe_stats[pipe]);
1719 	}
1720 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1721 
1722 	for_each_pipe(dev_priv, pipe) {
1723 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1724 		    intel_pipe_handle_vblank(dev, pipe))
1725 			intel_check_page_flip(dev, pipe);
1726 
1727 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1728 			intel_prepare_page_flip(dev, pipe);
1729 			intel_finish_page_flip(dev, pipe);
1730 		}
1731 
1732 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1733 			i9xx_pipe_crc_irq_handler(dev, pipe);
1734 
1735 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1736 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1737 	}
1738 
1739 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1740 		gmbus_irq_handler(dev);
1741 }
1742 
1743 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1744 {
1745 	struct drm_i915_private *dev_priv = dev->dev_private;
1746 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1747 
1748 	if (hotplug_status) {
1749 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1750 		/*
1751 		 * Make sure hotplug status is cleared before we clear IIR, or else we
1752 		 * may miss hotplug events.
1753 		 */
1754 		POSTING_READ(PORT_HOTPLUG_STAT);
1755 
1756 		if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1757 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1758 
1759 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1760 		} else {
1761 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1762 
1763 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1764 		}
1765 
1766 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1767 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1768 			dp_aux_irq_handler(dev);
1769 	}
1770 }
1771 
1772 static irqreturn_t valleyview_irq_handler(void *arg)
1773 {
1774 	struct drm_device *dev = arg;
1775 	struct drm_i915_private *dev_priv = dev->dev_private;
1776 	u32 iir, gt_iir, pm_iir;
1777 
1778 	if (!intel_irqs_enabled(dev_priv))
1779 		return IRQ_NONE;
1780 
1781 	while (true) {
1782 		/* Find, clear, then process each source of interrupt */
1783 
1784 		gt_iir = I915_READ(GTIIR);
1785 		if (gt_iir)
1786 			I915_WRITE(GTIIR, gt_iir);
1787 
1788 		pm_iir = I915_READ(GEN6_PMIIR);
1789 		if (pm_iir)
1790 			I915_WRITE(GEN6_PMIIR, pm_iir);
1791 
1792 		iir = I915_READ(VLV_IIR);
1793 		if (iir) {
1794 			/* Consume port before clearing IIR or we'll miss events */
1795 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1796 				i9xx_hpd_irq_handler(dev);
1797 			I915_WRITE(VLV_IIR, iir);
1798 		}
1799 
1800 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1801 			goto out;
1802 
1803 		if (gt_iir)
1804 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1805 		if (pm_iir)
1806 			gen6_rps_irq_handler(dev_priv, pm_iir);
1807 		/* Call regardless, as some status bits might not be
1808 		 * signalled in iir */
1809 		valleyview_pipestat_irq_handler(dev, iir);
1810 	}
1811 
1812 out:
1813 	return;
1814 }
1815 
1816 static irqreturn_t cherryview_irq_handler(void *arg)
1817 {
1818 	struct drm_device *dev = arg;
1819 	struct drm_i915_private *dev_priv = dev->dev_private;
1820 	u32 master_ctl, iir;
1821 
1822 	if (!intel_irqs_enabled(dev_priv))
1823 		return IRQ_NONE;
1824 
1825 	for (;;) {
1826 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1827 		iir = I915_READ(VLV_IIR);
1828 
1829 		if (master_ctl == 0 && iir == 0)
1830 			break;
1831 
1832 
1833 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1834 
1835 		/* Find, clear, then process each source of interrupt */
1836 
1837 		if (iir) {
1838 			/* Consume port before clearing IIR or we'll miss events */
1839 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1840 				i9xx_hpd_irq_handler(dev);
1841 			I915_WRITE(VLV_IIR, iir);
1842 		}
1843 
1844 		gen8_gt_irq_handler(dev_priv, master_ctl);
1845 
1846 		/* Call regardless, as some status bits might not be
1847 		 * signalled in iir */
1848 		valleyview_pipestat_irq_handler(dev, iir);
1849 
1850 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1851 		POSTING_READ(GEN8_MASTER_IRQ);
1852 	}
1853 
1854 }
1855 
1856 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1857 {
1858 	struct drm_i915_private *dev_priv = dev->dev_private;
1859 	int pipe;
1860 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1861 	u32 dig_hotplug_reg;
1862 
1863 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1864 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1865 
1866 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1867 
1868 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1869 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1870 			       SDE_AUDIO_POWER_SHIFT);
1871 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1872 				 port_name(port));
1873 	}
1874 
1875 	if (pch_iir & SDE_AUX_MASK)
1876 		dp_aux_irq_handler(dev);
1877 
1878 	if (pch_iir & SDE_GMBUS)
1879 		gmbus_irq_handler(dev);
1880 
1881 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1882 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1883 
1884 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1885 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1886 
1887 	if (pch_iir & SDE_POISON)
1888 		DRM_ERROR("PCH poison interrupt\n");
1889 
1890 	if (pch_iir & SDE_FDI_MASK)
1891 		for_each_pipe(dev_priv, pipe)
1892 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1893 					 pipe_name(pipe),
1894 					 I915_READ(FDI_RX_IIR(pipe)));
1895 
1896 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1897 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1898 
1899 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1900 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1901 
1902 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1903 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1904 
1905 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1906 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1907 }
1908 
1909 static void ivb_err_int_handler(struct drm_device *dev)
1910 {
1911 	struct drm_i915_private *dev_priv = dev->dev_private;
1912 	u32 err_int = I915_READ(GEN7_ERR_INT);
1913 	enum i915_pipe pipe;
1914 
1915 	if (err_int & ERR_INT_POISON)
1916 		DRM_ERROR("Poison interrupt\n");
1917 
1918 	for_each_pipe(dev_priv, pipe) {
1919 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1920 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1921 
1922 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1923 			if (IS_IVYBRIDGE(dev))
1924 				ivb_pipe_crc_irq_handler(dev, pipe);
1925 			else
1926 				hsw_pipe_crc_irq_handler(dev, pipe);
1927 		}
1928 	}
1929 
1930 	I915_WRITE(GEN7_ERR_INT, err_int);
1931 }
1932 
1933 static void cpt_serr_int_handler(struct drm_device *dev)
1934 {
1935 	struct drm_i915_private *dev_priv = dev->dev_private;
1936 	u32 serr_int = I915_READ(SERR_INT);
1937 
1938 	if (serr_int & SERR_INT_POISON)
1939 		DRM_ERROR("PCH poison interrupt\n");
1940 
1941 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1942 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943 
1944 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1945 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946 
1947 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1948 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1949 
1950 	I915_WRITE(SERR_INT, serr_int);
1951 }
1952 
1953 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1954 {
1955 	struct drm_i915_private *dev_priv = dev->dev_private;
1956 	int pipe;
1957 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1958 	u32 dig_hotplug_reg;
1959 
1960 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1961 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1962 
1963 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
1964 
1965 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1966 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1967 			       SDE_AUDIO_POWER_SHIFT_CPT);
1968 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1969 				 port_name(port));
1970 	}
1971 
1972 	if (pch_iir & SDE_AUX_MASK_CPT)
1973 		dp_aux_irq_handler(dev);
1974 
1975 	if (pch_iir & SDE_GMBUS_CPT)
1976 		gmbus_irq_handler(dev);
1977 
1978 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1979 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1980 
1981 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1982 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1983 
1984 	if (pch_iir & SDE_FDI_MASK_CPT)
1985 		for_each_pipe(dev_priv, pipe)
1986 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1987 					 pipe_name(pipe),
1988 					 I915_READ(FDI_RX_IIR(pipe)));
1989 
1990 	if (pch_iir & SDE_ERROR_CPT)
1991 		cpt_serr_int_handler(dev);
1992 }
1993 
1994 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1995 {
1996 	struct drm_i915_private *dev_priv = dev->dev_private;
1997 	enum i915_pipe pipe;
1998 
1999 	if (de_iir & DE_AUX_CHANNEL_A)
2000 		dp_aux_irq_handler(dev);
2001 
2002 	if (de_iir & DE_GSE)
2003 		intel_opregion_asle_intr(dev);
2004 
2005 	if (de_iir & DE_POISON)
2006 		DRM_ERROR("Poison interrupt\n");
2007 
2008 	for_each_pipe(dev_priv, pipe) {
2009 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2010 		    intel_pipe_handle_vblank(dev, pipe))
2011 			intel_check_page_flip(dev, pipe);
2012 
2013 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2014 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2015 
2016 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2017 			i9xx_pipe_crc_irq_handler(dev, pipe);
2018 
2019 		/* plane/pipes map 1:1 on ilk+ */
2020 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2021 			intel_prepare_page_flip(dev, pipe);
2022 			intel_finish_page_flip_plane(dev, pipe);
2023 		}
2024 	}
2025 
2026 	/* check event from PCH */
2027 	if (de_iir & DE_PCH_EVENT) {
2028 		u32 pch_iir = I915_READ(SDEIIR);
2029 
2030 		if (HAS_PCH_CPT(dev))
2031 			cpt_irq_handler(dev, pch_iir);
2032 		else
2033 			ibx_irq_handler(dev, pch_iir);
2034 
2035 		/* should clear PCH hotplug event before clear CPU irq */
2036 		I915_WRITE(SDEIIR, pch_iir);
2037 	}
2038 
2039 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2040 		ironlake_rps_change_irq_handler(dev);
2041 }
2042 
2043 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2044 {
2045 	struct drm_i915_private *dev_priv = dev->dev_private;
2046 	enum i915_pipe pipe;
2047 
2048 	if (de_iir & DE_ERR_INT_IVB)
2049 		ivb_err_int_handler(dev);
2050 
2051 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2052 		dp_aux_irq_handler(dev);
2053 
2054 	if (de_iir & DE_GSE_IVB)
2055 		intel_opregion_asle_intr(dev);
2056 
2057 	for_each_pipe(dev_priv, pipe) {
2058 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2059 		    intel_pipe_handle_vblank(dev, pipe))
2060 			intel_check_page_flip(dev, pipe);
2061 
2062 		/* plane/pipes map 1:1 on ilk+ */
2063 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2064 			intel_prepare_page_flip(dev, pipe);
2065 			intel_finish_page_flip_plane(dev, pipe);
2066 		}
2067 	}
2068 
2069 	/* check event from PCH */
2070 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2071 		u32 pch_iir = I915_READ(SDEIIR);
2072 
2073 		cpt_irq_handler(dev, pch_iir);
2074 
2075 		/* clear PCH hotplug event before clear CPU irq */
2076 		I915_WRITE(SDEIIR, pch_iir);
2077 	}
2078 }
2079 
2080 /*
2081  * To handle irqs with the minimum potential races with fresh interrupts, we:
2082  * 1 - Disable Master Interrupt Control.
2083  * 2 - Find the source(s) of the interrupt.
2084  * 3 - Clear the Interrupt Identity bits (IIR).
2085  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2086  * 5 - Re-enable Master Interrupt Control.
2087  */
2088 static irqreturn_t ironlake_irq_handler(void *arg)
2089 {
2090 	struct drm_device *dev = arg;
2091 	struct drm_i915_private *dev_priv = dev->dev_private;
2092 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2093 
2094 	if (!intel_irqs_enabled(dev_priv))
2095 		return IRQ_NONE;
2096 
2097 	/* We get interrupts on unclaimed registers, so check for this before we
2098 	 * do any I915_{READ,WRITE}. */
2099 	intel_uncore_check_errors(dev);
2100 
2101 	/* disable master interrupt before clearing iir  */
2102 	de_ier = I915_READ(DEIER);
2103 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2104 	POSTING_READ(DEIER);
2105 
2106 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2107 	 * interrupts will will be stored on its back queue, and then we'll be
2108 	 * able to process them after we restore SDEIER (as soon as we restore
2109 	 * it, we'll get an interrupt if SDEIIR still has something to process
2110 	 * due to its back queue). */
2111 	if (!HAS_PCH_NOP(dev)) {
2112 		sde_ier = I915_READ(SDEIER);
2113 		I915_WRITE(SDEIER, 0);
2114 		POSTING_READ(SDEIER);
2115 	}
2116 
2117 	/* Find, clear, then process each source of interrupt */
2118 
2119 	gt_iir = I915_READ(GTIIR);
2120 	if (gt_iir) {
2121 		I915_WRITE(GTIIR, gt_iir);
2122 		if (INTEL_INFO(dev)->gen >= 6)
2123 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2124 		else
2125 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2126 	}
2127 
2128 	de_iir = I915_READ(DEIIR);
2129 	if (de_iir) {
2130 		I915_WRITE(DEIIR, de_iir);
2131 		if (INTEL_INFO(dev)->gen >= 7)
2132 			ivb_display_irq_handler(dev, de_iir);
2133 		else
2134 			ilk_display_irq_handler(dev, de_iir);
2135 	}
2136 
2137 	if (INTEL_INFO(dev)->gen >= 6) {
2138 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2139 		if (pm_iir) {
2140 			I915_WRITE(GEN6_PMIIR, pm_iir);
2141 			gen6_rps_irq_handler(dev_priv, pm_iir);
2142 		}
2143 	}
2144 
2145 	I915_WRITE(DEIER, de_ier);
2146 	POSTING_READ(DEIER);
2147 	if (!HAS_PCH_NOP(dev)) {
2148 		I915_WRITE(SDEIER, sde_ier);
2149 		POSTING_READ(SDEIER);
2150 	}
2151 
2152 }
2153 
2154 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
2155 {
2156 	struct drm_i915_private *dev_priv = dev->dev_private;
2157 	uint32_t hp_control;
2158 	uint32_t hp_trigger;
2159 
2160 	/* Get the status */
2161 	hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
2162 	hp_control = I915_READ(BXT_HOTPLUG_CTL);
2163 
2164 	/* Hotplug not enabled ? */
2165 	if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2166 		DRM_ERROR("Interrupt when HPD disabled\n");
2167 		return;
2168 	}
2169 
2170 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2171 		hp_control & BXT_HOTPLUG_CTL_MASK);
2172 
2173 	/* Check for HPD storm and schedule bottom half */
2174 	intel_hpd_irq_handler(dev, hp_trigger, hp_control, hpd_bxt);
2175 
2176 	/*
2177 	 * FIXME: Save the hot plug status for bottom half before
2178 	 * clearing the sticky status bits, else the status will be
2179 	 * lost.
2180 	 */
2181 
2182 	/* Clear sticky bits in hpd status */
2183 	I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2184 }
2185 
2186 static irqreturn_t gen8_irq_handler(void *arg)
2187 {
2188 	struct drm_device *dev = arg;
2189 	struct drm_i915_private *dev_priv = dev->dev_private;
2190 	u32 master_ctl;
2191 	uint32_t tmp = 0;
2192 	enum i915_pipe pipe;
2193 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2194 
2195 	if (!intel_irqs_enabled(dev_priv))
2196 		return IRQ_NONE;
2197 
2198 	if (IS_GEN9(dev))
2199 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2200 			GEN9_AUX_CHANNEL_D;
2201 
2202 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2203 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2204 	if (!master_ctl)
2205 		return IRQ_NONE;
2206 
2207 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2208 
2209 	/* Find, clear, then process each source of interrupt */
2210 
2211 	gen8_gt_irq_handler(dev_priv, master_ctl);
2212 
2213 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2214 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2215 		if (tmp) {
2216 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2217 			if (tmp & GEN8_DE_MISC_GSE)
2218 				intel_opregion_asle_intr(dev);
2219 			else
2220 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2221 		}
2222 		else
2223 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2224 	}
2225 
2226 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2227 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2228 		if (tmp) {
2229 			bool found = false;
2230 
2231 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2232 
2233 			if (tmp & aux_mask) {
2234 				dp_aux_irq_handler(dev);
2235 				found = true;
2236 			}
2237 
2238 			if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2239 				bxt_hpd_handler(dev, tmp);
2240 				found = true;
2241 			}
2242 
2243 			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2244 				gmbus_irq_handler(dev);
2245 				found = true;
2246 			}
2247 
2248 			if (!found)
2249 				DRM_ERROR("Unexpected DE Port interrupt\n");
2250 		}
2251 		else
2252 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2253 	}
2254 
2255 	for_each_pipe(dev_priv, pipe) {
2256 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2257 
2258 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2259 			continue;
2260 
2261 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2262 		if (pipe_iir) {
2263 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2264 
2265 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2266 			    intel_pipe_handle_vblank(dev, pipe))
2267 				intel_check_page_flip(dev, pipe);
2268 
2269 			if (IS_GEN9(dev))
2270 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2271 			else
2272 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2273 
2274 			if (flip_done) {
2275 				intel_prepare_page_flip(dev, pipe);
2276 				intel_finish_page_flip_plane(dev, pipe);
2277 			}
2278 
2279 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2280 				hsw_pipe_crc_irq_handler(dev, pipe);
2281 
2282 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2283 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2284 								    pipe);
2285 
2286 
2287 			if (IS_GEN9(dev))
2288 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2289 			else
2290 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2291 
2292 			if (fault_errors)
2293 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2294 					  pipe_name(pipe),
2295 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2296 		} else
2297 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2298 	}
2299 
2300 	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2301 	    master_ctl & GEN8_DE_PCH_IRQ) {
2302 		/*
2303 		 * FIXME(BDW): Assume for now that the new interrupt handling
2304 		 * scheme also closed the SDE interrupt handling race we've seen
2305 		 * on older pch-split platforms. But this needs testing.
2306 		 */
2307 		u32 pch_iir = I915_READ(SDEIIR);
2308 		if (pch_iir) {
2309 			I915_WRITE(SDEIIR, pch_iir);
2310 			cpt_irq_handler(dev, pch_iir);
2311 		} else
2312 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2313 
2314 	}
2315 
2316 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2317 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2318 
2319 }
2320 
2321 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2322 			       bool reset_completed)
2323 {
2324 	struct intel_engine_cs *ring;
2325 	int i;
2326 
2327 	/*
2328 	 * Notify all waiters for GPU completion events that reset state has
2329 	 * been changed, and that they need to restart their wait after
2330 	 * checking for potential errors (and bail out to drop locks if there is
2331 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2332 	 */
2333 
2334 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2335 	for_each_ring(ring, dev_priv, i)
2336 		wake_up_all(&ring->irq_queue);
2337 
2338 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2339 	wake_up_all(&dev_priv->pending_flip_queue);
2340 
2341 	/*
2342 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2343 	 * reset state is cleared.
2344 	 */
2345 	if (reset_completed)
2346 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2347 }
2348 
2349 /**
2350  * i915_reset_and_wakeup - do process context error handling work
2351  *
2352  * Fire an error uevent so userspace can see that a hang or error
2353  * was detected.
2354  */
2355 static void i915_reset_and_wakeup(struct drm_device *dev)
2356 {
2357 	struct drm_i915_private *dev_priv = to_i915(dev);
2358 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2359 #if 0
2360 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2361 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2362 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2363 #endif
2364 	int ret;
2365 
2366 #if 0
2367 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2368 #endif
2369 
2370 	/*
2371 	 * Note that there's only one work item which does gpu resets, so we
2372 	 * need not worry about concurrent gpu resets potentially incrementing
2373 	 * error->reset_counter twice. We only need to take care of another
2374 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2375 	 * quick check for that is good enough: schedule_work ensures the
2376 	 * correct ordering between hang detection and this work item, and since
2377 	 * the reset in-progress bit is only ever set by code outside of this
2378 	 * work we don't need to worry about any other races.
2379 	 */
2380 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2381 		DRM_DEBUG_DRIVER("resetting chip\n");
2382 #if 0
2383 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2384 				   reset_event);
2385 #endif
2386 
2387 		/*
2388 		 * In most cases it's guaranteed that we get here with an RPM
2389 		 * reference held, for example because there is a pending GPU
2390 		 * request that won't finish until the reset is done. This
2391 		 * isn't the case at least when we get here by doing a
2392 		 * simulated reset via debugs, so get an RPM reference.
2393 		 */
2394 		intel_runtime_pm_get(dev_priv);
2395 
2396 		intel_prepare_reset(dev);
2397 
2398 		/*
2399 		 * All state reset _must_ be completed before we update the
2400 		 * reset counter, for otherwise waiters might miss the reset
2401 		 * pending state and not properly drop locks, resulting in
2402 		 * deadlocks with the reset work.
2403 		 */
2404 		ret = i915_reset(dev);
2405 
2406 		intel_finish_reset(dev);
2407 
2408 		intel_runtime_pm_put(dev_priv);
2409 
2410 		if (ret == 0) {
2411 			/*
2412 			 * After all the gem state is reset, increment the reset
2413 			 * counter and wake up everyone waiting for the reset to
2414 			 * complete.
2415 			 *
2416 			 * Since unlock operations are a one-sided barrier only,
2417 			 * we need to insert a barrier here to order any seqno
2418 			 * updates before
2419 			 * the counter increment.
2420 			 */
2421 			smp_mb__before_atomic();
2422 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2423 
2424 #if 0
2425 			kobject_uevent_env(&dev->primary->kdev->kobj,
2426 					   KOBJ_CHANGE, reset_done_event);
2427 #endif
2428 		} else {
2429 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2430 		}
2431 
2432 		/*
2433 		 * Note: The wake_up also serves as a memory barrier so that
2434 		 * waiters see the update value of the reset counter atomic_t.
2435 		 */
2436 		i915_error_wake_up(dev_priv, true);
2437 	}
2438 }
2439 
2440 static void i915_report_and_clear_eir(struct drm_device *dev)
2441 {
2442 	struct drm_i915_private *dev_priv = dev->dev_private;
2443 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2444 	u32 eir = I915_READ(EIR);
2445 	int pipe, i;
2446 
2447 	if (!eir)
2448 		return;
2449 
2450 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2451 
2452 #if 0
2453 	i915_get_extra_instdone(dev, instdone);
2454 #endif
2455 
2456 	if (IS_G4X(dev)) {
2457 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2458 			u32 ipeir = I915_READ(IPEIR_I965);
2459 
2460 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2461 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2462 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2463 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2464 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2465 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2466 			I915_WRITE(IPEIR_I965, ipeir);
2467 			POSTING_READ(IPEIR_I965);
2468 		}
2469 		if (eir & GM45_ERROR_PAGE_TABLE) {
2470 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2471 			pr_err("page table error\n");
2472 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2473 			I915_WRITE(PGTBL_ER, pgtbl_err);
2474 			POSTING_READ(PGTBL_ER);
2475 		}
2476 	}
2477 
2478 	if (!IS_GEN2(dev)) {
2479 		if (eir & I915_ERROR_PAGE_TABLE) {
2480 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2481 			pr_err("page table error\n");
2482 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2483 			I915_WRITE(PGTBL_ER, pgtbl_err);
2484 			POSTING_READ(PGTBL_ER);
2485 		}
2486 	}
2487 
2488 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2489 		pr_err("memory refresh error:\n");
2490 		for_each_pipe(dev_priv, pipe)
2491 			pr_err("pipe %c stat: 0x%08x\n",
2492 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2493 		/* pipestat has already been acked */
2494 	}
2495 	if (eir & I915_ERROR_INSTRUCTION) {
2496 		pr_err("instruction error\n");
2497 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2498 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2499 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2500 		if (INTEL_INFO(dev)->gen < 4) {
2501 			u32 ipeir = I915_READ(IPEIR);
2502 
2503 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2504 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2505 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2506 			I915_WRITE(IPEIR, ipeir);
2507 			POSTING_READ(IPEIR);
2508 		} else {
2509 			u32 ipeir = I915_READ(IPEIR_I965);
2510 
2511 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2512 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2513 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2514 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2515 			I915_WRITE(IPEIR_I965, ipeir);
2516 			POSTING_READ(IPEIR_I965);
2517 		}
2518 	}
2519 
2520 	I915_WRITE(EIR, eir);
2521 	POSTING_READ(EIR);
2522 	eir = I915_READ(EIR);
2523 	if (eir) {
2524 		/*
2525 		 * some errors might have become stuck,
2526 		 * mask them.
2527 		 */
2528 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2529 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2530 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2531 	}
2532 }
2533 
2534 /**
2535  * i915_handle_error - handle a gpu error
2536  * @dev: drm device
2537  *
2538  * Do some basic checking of regsiter state at error time and
2539  * dump it to the syslog.  Also call i915_capture_error_state() to make
2540  * sure we get a record and make it available in debugfs.  Fire a uevent
2541  * so userspace knows something bad happened (should trigger collection
2542  * of a ring dump etc.).
2543  */
2544 void i915_handle_error(struct drm_device *dev, bool wedged,
2545 		       const char *fmt, ...)
2546 {
2547 	struct drm_i915_private *dev_priv = dev->dev_private;
2548 #if 0
2549 	va_list args;
2550 	char error_msg[80];
2551 
2552 	va_start(args, fmt);
2553 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2554 	va_end(args);
2555 
2556 	i915_capture_error_state(dev, wedged, error_msg);
2557 #endif
2558 	i915_report_and_clear_eir(dev);
2559 
2560 	if (wedged) {
2561 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2562 				&dev_priv->gpu_error.reset_counter);
2563 
2564 		/*
2565 		 * Wakeup waiting processes so that the reset function
2566 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2567 		 * various locks. By bumping the reset counter first, the woken
2568 		 * processes will see a reset in progress and back off,
2569 		 * releasing their locks and then wait for the reset completion.
2570 		 * We must do this for _all_ gpu waiters that might hold locks
2571 		 * that the reset work needs to acquire.
2572 		 *
2573 		 * Note: The wake_up serves as the required memory barrier to
2574 		 * ensure that the waiters see the updated value of the reset
2575 		 * counter atomic_t.
2576 		 */
2577 		i915_error_wake_up(dev_priv, false);
2578 	}
2579 
2580 	i915_reset_and_wakeup(dev);
2581 }
2582 
2583 /* Called from drm generic code, passed 'crtc' which
2584  * we use as a pipe index
2585  */
2586 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2587 {
2588 	struct drm_i915_private *dev_priv = dev->dev_private;
2589 
2590 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2591 	if (INTEL_INFO(dev)->gen >= 4)
2592 		i915_enable_pipestat(dev_priv, pipe,
2593 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2594 		i915_enable_pipestat(dev_priv, pipe,
2595 				     PIPE_VBLANK_INTERRUPT_STATUS);
2596 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2597 
2598 	return 0;
2599 }
2600 
2601 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2602 {
2603 	struct drm_i915_private *dev_priv = dev->dev_private;
2604 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2605 						     DE_PIPE_VBLANK(pipe);
2606 
2607 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2608 	ironlake_enable_display_irq(dev_priv, bit);
2609 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2610 
2611 	return 0;
2612 }
2613 
2614 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2615 {
2616 	struct drm_i915_private *dev_priv = dev->dev_private;
2617 
2618 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2619 	i915_enable_pipestat(dev_priv, pipe,
2620 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2621 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2622 
2623 	return 0;
2624 }
2625 
2626 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2627 {
2628 	struct drm_i915_private *dev_priv = dev->dev_private;
2629 
2630 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2631 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2632 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2633 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2634 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2635 	return 0;
2636 }
2637 
2638 /* Called from drm generic code, passed 'crtc' which
2639  * we use as a pipe index
2640  */
2641 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2642 {
2643 	struct drm_i915_private *dev_priv = dev->dev_private;
2644 
2645 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2646 	i915_disable_pipestat(dev_priv, pipe,
2647 			      PIPE_VBLANK_INTERRUPT_STATUS |
2648 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2649 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2650 }
2651 
2652 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2653 {
2654 	struct drm_i915_private *dev_priv = dev->dev_private;
2655 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2656 						     DE_PIPE_VBLANK(pipe);
2657 
2658 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2659 	ironlake_disable_display_irq(dev_priv, bit);
2660 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2661 }
2662 
2663 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2664 {
2665 	struct drm_i915_private *dev_priv = dev->dev_private;
2666 
2667 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2668 	i915_disable_pipestat(dev_priv, pipe,
2669 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2670 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2671 }
2672 
2673 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2674 {
2675 	struct drm_i915_private *dev_priv = dev->dev_private;
2676 
2677 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2678 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2679 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2680 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2681 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2682 }
2683 
2684 static bool
2685 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2686 {
2687 	return (list_empty(&ring->request_list) ||
2688 		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2689 }
2690 
2691 static bool
2692 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2693 {
2694 	if (INTEL_INFO(dev)->gen >= 8) {
2695 		return (ipehr >> 23) == 0x1c;
2696 	} else {
2697 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2698 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2699 				 MI_SEMAPHORE_REGISTER);
2700 	}
2701 }
2702 
2703 static struct intel_engine_cs *
2704 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2705 {
2706 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2707 	struct intel_engine_cs *signaller;
2708 	int i;
2709 
2710 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2711 		for_each_ring(signaller, dev_priv, i) {
2712 			if (ring == signaller)
2713 				continue;
2714 
2715 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2716 				return signaller;
2717 		}
2718 	} else {
2719 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2720 
2721 		for_each_ring(signaller, dev_priv, i) {
2722 			if(ring == signaller)
2723 				continue;
2724 
2725 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2726 				return signaller;
2727 		}
2728 	}
2729 
2730 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016lx\n",
2731 		  ring->id, ipehr, offset);
2732 
2733 	return NULL;
2734 }
2735 
2736 static struct intel_engine_cs *
2737 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2738 {
2739 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2740 	u32 cmd, ipehr, head;
2741 	u64 offset = 0;
2742 	int i, backwards;
2743 
2744 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2745 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2746 		return NULL;
2747 
2748 	/*
2749 	 * HEAD is likely pointing to the dword after the actual command,
2750 	 * so scan backwards until we find the MBOX. But limit it to just 3
2751 	 * or 4 dwords depending on the semaphore wait command size.
2752 	 * Note that we don't care about ACTHD here since that might
2753 	 * point at at batch, and semaphores are always emitted into the
2754 	 * ringbuffer itself.
2755 	 */
2756 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2757 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2758 
2759 	for (i = backwards; i; --i) {
2760 		/*
2761 		 * Be paranoid and presume the hw has gone off into the wild -
2762 		 * our ring is smaller than what the hardware (and hence
2763 		 * HEAD_ADDR) allows. Also handles wrap-around.
2764 		 */
2765 		head &= ring->buffer->size - 1;
2766 
2767 		/* This here seems to blow up */
2768 		cmd = ioread32(ring->buffer->virtual_start + head);
2769 		if (cmd == ipehr)
2770 			break;
2771 
2772 		head -= 4;
2773 	}
2774 
2775 	if (!i)
2776 		return NULL;
2777 
2778 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2779 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2780 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2781 		offset <<= 32;
2782 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2783 	}
2784 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2785 }
2786 
2787 static int semaphore_passed(struct intel_engine_cs *ring)
2788 {
2789 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2790 	struct intel_engine_cs *signaller;
2791 	u32 seqno;
2792 
2793 	ring->hangcheck.deadlock++;
2794 
2795 	signaller = semaphore_waits_for(ring, &seqno);
2796 	if (signaller == NULL)
2797 		return -1;
2798 
2799 	/* Prevent pathological recursion due to driver bugs */
2800 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2801 		return -1;
2802 
2803 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2804 		return 1;
2805 
2806 	/* cursory check for an unkickable deadlock */
2807 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2808 	    semaphore_passed(signaller) < 0)
2809 		return -1;
2810 
2811 	return 0;
2812 }
2813 
2814 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2815 {
2816 	struct intel_engine_cs *ring;
2817 	int i;
2818 
2819 	for_each_ring(ring, dev_priv, i)
2820 		ring->hangcheck.deadlock = 0;
2821 }
2822 
2823 static enum intel_ring_hangcheck_action
2824 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2825 {
2826 	struct drm_device *dev = ring->dev;
2827 	struct drm_i915_private *dev_priv = dev->dev_private;
2828 	u32 tmp;
2829 
2830 	if (acthd != ring->hangcheck.acthd) {
2831 		if (acthd > ring->hangcheck.max_acthd) {
2832 			ring->hangcheck.max_acthd = acthd;
2833 			return HANGCHECK_ACTIVE;
2834 		}
2835 
2836 		return HANGCHECK_ACTIVE_LOOP;
2837 	}
2838 
2839 	if (IS_GEN2(dev))
2840 		return HANGCHECK_HUNG;
2841 
2842 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2843 	 * If so we can simply poke the RB_WAIT bit
2844 	 * and break the hang. This should work on
2845 	 * all but the second generation chipsets.
2846 	 */
2847 	tmp = I915_READ_CTL(ring);
2848 	if (tmp & RING_WAIT) {
2849 		i915_handle_error(dev, false,
2850 				  "Kicking stuck wait on %s",
2851 				  ring->name);
2852 		I915_WRITE_CTL(ring, tmp);
2853 		return HANGCHECK_KICK;
2854 	}
2855 
2856 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2857 		switch (semaphore_passed(ring)) {
2858 		default:
2859 			return HANGCHECK_HUNG;
2860 		case 1:
2861 			i915_handle_error(dev, false,
2862 					  "Kicking stuck semaphore on %s",
2863 					  ring->name);
2864 			I915_WRITE_CTL(ring, tmp);
2865 			return HANGCHECK_KICK;
2866 		case 0:
2867 			return HANGCHECK_WAIT;
2868 		}
2869 	}
2870 
2871 	return HANGCHECK_HUNG;
2872 }
2873 
2874 /*
2875  * This is called when the chip hasn't reported back with completed
2876  * batchbuffers in a long time. We keep track per ring seqno progress and
2877  * if there are no progress, hangcheck score for that ring is increased.
2878  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2879  * we kick the ring. If we see no progress on three subsequent calls
2880  * we assume chip is wedged and try to fix it by resetting the chip.
2881  */
2882 static void i915_hangcheck_elapsed(struct work_struct *work)
2883 {
2884 	struct drm_i915_private *dev_priv =
2885 		container_of(work, typeof(*dev_priv),
2886 			     gpu_error.hangcheck_work.work);
2887 	struct drm_device *dev = dev_priv->dev;
2888 	struct intel_engine_cs *ring;
2889 	int i;
2890 	int busy_count = 0, rings_hung = 0;
2891 	bool stuck[I915_NUM_RINGS] = { 0 };
2892 #define BUSY 1
2893 #define KICK 5
2894 #define HUNG 20
2895 
2896 	if (!i915.enable_hangcheck)
2897 		return;
2898 
2899 	for_each_ring(ring, dev_priv, i) {
2900 		u64 acthd;
2901 		u32 seqno;
2902 		bool busy = true;
2903 
2904 		semaphore_clear_deadlocks(dev_priv);
2905 
2906 		seqno = ring->get_seqno(ring, false);
2907 		acthd = intel_ring_get_active_head(ring);
2908 
2909 		if (ring->hangcheck.seqno == seqno) {
2910 			if (ring_idle(ring, seqno)) {
2911 				ring->hangcheck.action = HANGCHECK_IDLE;
2912 
2913 				if (waitqueue_active(&ring->irq_queue)) {
2914 					/* Issue a wake-up to catch stuck h/w. */
2915 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2916 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2917 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2918 								  ring->name);
2919 						else
2920 							DRM_INFO("Fake missed irq on %s\n",
2921 								 ring->name);
2922 						wake_up_all(&ring->irq_queue);
2923 					}
2924 					/* Safeguard against driver failure */
2925 					ring->hangcheck.score += BUSY;
2926 				} else
2927 					busy = false;
2928 			} else {
2929 				/* We always increment the hangcheck score
2930 				 * if the ring is busy and still processing
2931 				 * the same request, so that no single request
2932 				 * can run indefinitely (such as a chain of
2933 				 * batches). The only time we do not increment
2934 				 * the hangcheck score on this ring, if this
2935 				 * ring is in a legitimate wait for another
2936 				 * ring. In that case the waiting ring is a
2937 				 * victim and we want to be sure we catch the
2938 				 * right culprit. Then every time we do kick
2939 				 * the ring, add a small increment to the
2940 				 * score so that we can catch a batch that is
2941 				 * being repeatedly kicked and so responsible
2942 				 * for stalling the machine.
2943 				 */
2944 				ring->hangcheck.action = ring_stuck(ring,
2945 								    acthd);
2946 
2947 				switch (ring->hangcheck.action) {
2948 				case HANGCHECK_IDLE:
2949 				case HANGCHECK_WAIT:
2950 				case HANGCHECK_ACTIVE:
2951 					break;
2952 				case HANGCHECK_ACTIVE_LOOP:
2953 					ring->hangcheck.score += BUSY;
2954 					break;
2955 				case HANGCHECK_KICK:
2956 					ring->hangcheck.score += KICK;
2957 					break;
2958 				case HANGCHECK_HUNG:
2959 					ring->hangcheck.score += HUNG;
2960 					stuck[i] = true;
2961 					break;
2962 				}
2963 			}
2964 		} else {
2965 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2966 
2967 			/* Gradually reduce the count so that we catch DoS
2968 			 * attempts across multiple batches.
2969 			 */
2970 			if (ring->hangcheck.score > 0)
2971 				ring->hangcheck.score--;
2972 
2973 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2974 		}
2975 
2976 		ring->hangcheck.seqno = seqno;
2977 		ring->hangcheck.acthd = acthd;
2978 		busy_count += busy;
2979 	}
2980 
2981 	for_each_ring(ring, dev_priv, i) {
2982 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2983 			DRM_INFO("%s on %s\n",
2984 				 stuck[i] ? "stuck" : "no progress",
2985 				 ring->name);
2986 			rings_hung++;
2987 		}
2988 	}
2989 
2990 	if (rings_hung)
2991 		return i915_handle_error(dev, true, "Ring hung");
2992 
2993 	if (busy_count)
2994 		/* Reset timer case chip hangs without another request
2995 		 * being added */
2996 		i915_queue_hangcheck(dev);
2997 }
2998 
2999 void i915_queue_hangcheck(struct drm_device *dev)
3000 {
3001 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3002 
3003 	if (!i915.enable_hangcheck)
3004 		return;
3005 
3006 	/* Don't continually defer the hangcheck so that it is always run at
3007 	 * least once after work has been scheduled on any ring. Otherwise,
3008 	 * we will ignore a hung ring if a second ring is kept busy.
3009 	 */
3010 
3011 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3012 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3013 }
3014 
3015 static void ibx_irq_reset(struct drm_device *dev)
3016 {
3017 	struct drm_i915_private *dev_priv = dev->dev_private;
3018 
3019 	if (HAS_PCH_NOP(dev))
3020 		return;
3021 
3022 	GEN5_IRQ_RESET(SDE);
3023 
3024 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3025 		I915_WRITE(SERR_INT, 0xffffffff);
3026 }
3027 
3028 /*
3029  * SDEIER is also touched by the interrupt handler to work around missed PCH
3030  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3031  * instead we unconditionally enable all PCH interrupt sources here, but then
3032  * only unmask them as needed with SDEIMR.
3033  *
3034  * This function needs to be called before interrupts are enabled.
3035  */
3036 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3037 {
3038 	struct drm_i915_private *dev_priv = dev->dev_private;
3039 
3040 	if (HAS_PCH_NOP(dev))
3041 		return;
3042 
3043 	WARN_ON(I915_READ(SDEIER) != 0);
3044 	I915_WRITE(SDEIER, 0xffffffff);
3045 	POSTING_READ(SDEIER);
3046 }
3047 
3048 static void gen5_gt_irq_reset(struct drm_device *dev)
3049 {
3050 	struct drm_i915_private *dev_priv = dev->dev_private;
3051 
3052 	GEN5_IRQ_RESET(GT);
3053 	if (INTEL_INFO(dev)->gen >= 6)
3054 		GEN5_IRQ_RESET(GEN6_PM);
3055 }
3056 
3057 /* drm_dma.h hooks
3058 */
3059 static void ironlake_irq_reset(struct drm_device *dev)
3060 {
3061 	struct drm_i915_private *dev_priv = dev->dev_private;
3062 
3063 	I915_WRITE(HWSTAM, 0xffffffff);
3064 
3065 	GEN5_IRQ_RESET(DE);
3066 	if (IS_GEN7(dev))
3067 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3068 
3069 	gen5_gt_irq_reset(dev);
3070 
3071 	ibx_irq_reset(dev);
3072 }
3073 
3074 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3075 {
3076 	enum i915_pipe pipe;
3077 
3078 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3079 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3080 
3081 	for_each_pipe(dev_priv, pipe)
3082 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3083 
3084 	GEN5_IRQ_RESET(VLV_);
3085 }
3086 
3087 static void valleyview_irq_preinstall(struct drm_device *dev)
3088 {
3089 	struct drm_i915_private *dev_priv = dev->dev_private;
3090 
3091 	/* VLV magic */
3092 	I915_WRITE(VLV_IMR, 0);
3093 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3094 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3095 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3096 
3097 	gen5_gt_irq_reset(dev);
3098 
3099 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3100 
3101 	vlv_display_irq_reset(dev_priv);
3102 }
3103 
3104 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3105 {
3106 	GEN8_IRQ_RESET_NDX(GT, 0);
3107 	GEN8_IRQ_RESET_NDX(GT, 1);
3108 	GEN8_IRQ_RESET_NDX(GT, 2);
3109 	GEN8_IRQ_RESET_NDX(GT, 3);
3110 }
3111 
3112 static void gen8_irq_reset(struct drm_device *dev)
3113 {
3114 	struct drm_i915_private *dev_priv = dev->dev_private;
3115 	int pipe;
3116 
3117 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3118 	POSTING_READ(GEN8_MASTER_IRQ);
3119 
3120 	gen8_gt_irq_reset(dev_priv);
3121 
3122 	for_each_pipe(dev_priv, pipe)
3123 		if (intel_display_power_is_enabled(dev_priv,
3124 						   POWER_DOMAIN_PIPE(pipe)))
3125 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3126 
3127 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3128 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3129 	GEN5_IRQ_RESET(GEN8_PCU_);
3130 
3131 	if (HAS_PCH_SPLIT(dev))
3132 		ibx_irq_reset(dev);
3133 }
3134 
3135 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3136 				     unsigned int pipe_mask)
3137 {
3138 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3139 
3140 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3141 	if (pipe_mask & 1 << PIPE_A)
3142 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3143 				  dev_priv->de_irq_mask[PIPE_A],
3144 				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3145 	if (pipe_mask & 1 << PIPE_B)
3146 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3147 				  dev_priv->de_irq_mask[PIPE_B],
3148 				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3149 	if (pipe_mask & 1 << PIPE_C)
3150 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3151 				  dev_priv->de_irq_mask[PIPE_C],
3152 				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3153 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3154 }
3155 
3156 static void cherryview_irq_preinstall(struct drm_device *dev)
3157 {
3158 	struct drm_i915_private *dev_priv = dev->dev_private;
3159 
3160 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3161 	POSTING_READ(GEN8_MASTER_IRQ);
3162 
3163 	gen8_gt_irq_reset(dev_priv);
3164 
3165 	GEN5_IRQ_RESET(GEN8_PCU_);
3166 
3167 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3168 
3169 	vlv_display_irq_reset(dev_priv);
3170 }
3171 
3172 static void ibx_hpd_irq_setup(struct drm_device *dev)
3173 {
3174 	struct drm_i915_private *dev_priv = dev->dev_private;
3175 	struct intel_encoder *intel_encoder;
3176 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3177 
3178 	if (HAS_PCH_IBX(dev)) {
3179 		hotplug_irqs = SDE_HOTPLUG_MASK;
3180 		for_each_intel_encoder(dev, intel_encoder)
3181 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3182 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3183 	} else {
3184 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3185 		for_each_intel_encoder(dev, intel_encoder)
3186 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3187 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3188 	}
3189 
3190 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3191 
3192 	/*
3193 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3194 	 * duration to 2ms (which is the minimum in the Display Port spec)
3195 	 *
3196 	 * This register is the same on all known PCH chips.
3197 	 */
3198 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3199 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3200 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3201 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3202 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3203 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3204 }
3205 
3206 static void bxt_hpd_irq_setup(struct drm_device *dev)
3207 {
3208 	struct drm_i915_private *dev_priv = dev->dev_private;
3209 	struct intel_encoder *intel_encoder;
3210 	u32 hotplug_port = 0;
3211 	u32 hotplug_ctrl;
3212 
3213 	/* Now, enable HPD */
3214 	for_each_intel_encoder(dev, intel_encoder) {
3215 		if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark
3216 				== HPD_ENABLED)
3217 			hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3218 	}
3219 
3220 	/* Mask all HPD control bits */
3221 	hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3222 
3223 	/* Enable requested port in hotplug control */
3224 	/* TODO: implement (short) HPD support on port A */
3225 	WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3226 	if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3227 		hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3228 	if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3229 		hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3230 	I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3231 
3232 	/* Unmask DDI hotplug in IMR */
3233 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3234 	I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3235 
3236 	/* Enable DDI hotplug in IER */
3237 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3238 	I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3239 	POSTING_READ(GEN8_DE_PORT_IER);
3240 }
3241 
3242 static void ibx_irq_postinstall(struct drm_device *dev)
3243 {
3244 	struct drm_i915_private *dev_priv = dev->dev_private;
3245 	u32 mask;
3246 
3247 	if (HAS_PCH_NOP(dev))
3248 		return;
3249 
3250 	if (HAS_PCH_IBX(dev))
3251 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3252 	else
3253 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3254 
3255 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3256 	I915_WRITE(SDEIMR, ~mask);
3257 }
3258 
3259 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3260 {
3261 	struct drm_i915_private *dev_priv = dev->dev_private;
3262 	u32 pm_irqs, gt_irqs;
3263 
3264 	pm_irqs = gt_irqs = 0;
3265 
3266 	dev_priv->gt_irq_mask = ~0;
3267 	if (HAS_L3_DPF(dev)) {
3268 		/* L3 parity interrupt is always unmasked. */
3269 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3270 		gt_irqs |= GT_PARITY_ERROR(dev);
3271 	}
3272 
3273 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3274 	if (IS_GEN5(dev)) {
3275 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3276 			   ILK_BSD_USER_INTERRUPT;
3277 	} else {
3278 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3279 	}
3280 
3281 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3282 
3283 	if (INTEL_INFO(dev)->gen >= 6) {
3284 		/*
3285 		 * RPS interrupts will get enabled/disabled on demand when RPS
3286 		 * itself is enabled/disabled.
3287 		 */
3288 		if (HAS_VEBOX(dev))
3289 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3290 
3291 		dev_priv->pm_irq_mask = 0xffffffff;
3292 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3293 	}
3294 }
3295 
3296 static int ironlake_irq_postinstall(struct drm_device *dev)
3297 {
3298 	struct drm_i915_private *dev_priv = dev->dev_private;
3299 	u32 display_mask, extra_mask;
3300 
3301 	if (INTEL_INFO(dev)->gen >= 7) {
3302 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3303 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3304 				DE_PLANEB_FLIP_DONE_IVB |
3305 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3306 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3307 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3308 	} else {
3309 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3310 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3311 				DE_AUX_CHANNEL_A |
3312 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3313 				DE_POISON);
3314 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3315 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3316 	}
3317 
3318 	dev_priv->irq_mask = ~display_mask;
3319 
3320 	I915_WRITE(HWSTAM, 0xeffe);
3321 
3322 	ibx_irq_pre_postinstall(dev);
3323 
3324 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3325 
3326 	gen5_gt_irq_postinstall(dev);
3327 
3328 	ibx_irq_postinstall(dev);
3329 
3330 	if (IS_IRONLAKE_M(dev)) {
3331 		/* Enable PCU event interrupts
3332 		 *
3333 		 * spinlocking not required here for correctness since interrupt
3334 		 * setup is guaranteed to run in single-threaded context. But we
3335 		 * need it to make the assert_spin_locked happy. */
3336 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3337 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3338 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3339 	}
3340 
3341 	return 0;
3342 }
3343 
3344 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3345 {
3346 	u32 pipestat_mask;
3347 	u32 iir_mask;
3348 	enum i915_pipe pipe;
3349 
3350 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3351 			PIPE_FIFO_UNDERRUN_STATUS;
3352 
3353 	for_each_pipe(dev_priv, pipe)
3354 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3355 	POSTING_READ(PIPESTAT(PIPE_A));
3356 
3357 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3358 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3359 
3360 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3361 	for_each_pipe(dev_priv, pipe)
3362 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3363 
3364 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3365 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3366 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3367 	if (IS_CHERRYVIEW(dev_priv))
3368 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3369 	dev_priv->irq_mask &= ~iir_mask;
3370 
3371 	I915_WRITE(VLV_IIR, iir_mask);
3372 	I915_WRITE(VLV_IIR, iir_mask);
3373 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3374 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3375 	POSTING_READ(VLV_IMR);
3376 }
3377 
3378 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3379 {
3380 	u32 pipestat_mask;
3381 	u32 iir_mask;
3382 	enum i915_pipe pipe;
3383 
3384 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3385 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3386 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3387 	if (IS_CHERRYVIEW(dev_priv))
3388 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3389 
3390 	dev_priv->irq_mask |= iir_mask;
3391 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3392 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3393 	I915_WRITE(VLV_IIR, iir_mask);
3394 	I915_WRITE(VLV_IIR, iir_mask);
3395 	POSTING_READ(VLV_IIR);
3396 
3397 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3398 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3399 
3400 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3401 	for_each_pipe(dev_priv, pipe)
3402 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3403 
3404 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3405 			PIPE_FIFO_UNDERRUN_STATUS;
3406 
3407 	for_each_pipe(dev_priv, pipe)
3408 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3409 	POSTING_READ(PIPESTAT(PIPE_A));
3410 }
3411 
3412 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3413 {
3414 	assert_spin_locked(&dev_priv->irq_lock);
3415 
3416 	if (dev_priv->display_irqs_enabled)
3417 		return;
3418 
3419 	dev_priv->display_irqs_enabled = true;
3420 
3421 	if (intel_irqs_enabled(dev_priv))
3422 		valleyview_display_irqs_install(dev_priv);
3423 }
3424 
3425 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3426 {
3427 	assert_spin_locked(&dev_priv->irq_lock);
3428 
3429 	if (!dev_priv->display_irqs_enabled)
3430 		return;
3431 
3432 	dev_priv->display_irqs_enabled = false;
3433 
3434 	if (intel_irqs_enabled(dev_priv))
3435 		valleyview_display_irqs_uninstall(dev_priv);
3436 }
3437 
3438 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3439 {
3440 	dev_priv->irq_mask = ~0;
3441 
3442 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3443 	POSTING_READ(PORT_HOTPLUG_EN);
3444 
3445 	I915_WRITE(VLV_IIR, 0xffffffff);
3446 	I915_WRITE(VLV_IIR, 0xffffffff);
3447 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3448 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3449 	POSTING_READ(VLV_IMR);
3450 
3451 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3452 	 * just to make the assert_spin_locked check happy. */
3453 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3454 	if (dev_priv->display_irqs_enabled)
3455 		valleyview_display_irqs_install(dev_priv);
3456 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3457 }
3458 
3459 static int valleyview_irq_postinstall(struct drm_device *dev)
3460 {
3461 	struct drm_i915_private *dev_priv = dev->dev_private;
3462 
3463 	vlv_display_irq_postinstall(dev_priv);
3464 
3465 	gen5_gt_irq_postinstall(dev);
3466 
3467 	/* ack & enable invalid PTE error interrupts */
3468 #if 0 /* FIXME: add support to irq handler for checking these bits */
3469 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3470 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3471 #endif
3472 
3473 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3474 
3475 	return 0;
3476 }
3477 
3478 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3479 {
3480 	/* These are interrupts we'll toggle with the ring mask register */
3481 	uint32_t gt_interrupts[] = {
3482 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3483 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3484 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3485 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3486 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3487 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3488 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3489 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3490 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3491 		0,
3492 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3493 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3494 		};
3495 
3496 	dev_priv->pm_irq_mask = 0xffffffff;
3497 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3498 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3499 	/*
3500 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3501 	 * is enabled/disabled.
3502 	 */
3503 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3504 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3505 }
3506 
3507 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3508 {
3509 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3510 	uint32_t de_pipe_enables;
3511 	int pipe;
3512 	u32 de_port_en = GEN8_AUX_CHANNEL_A;
3513 
3514 	if (IS_GEN9(dev_priv)) {
3515 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3516 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3517 		de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3518 			GEN9_AUX_CHANNEL_D;
3519 
3520 		if (IS_BROXTON(dev_priv))
3521 			de_port_en |= BXT_DE_PORT_GMBUS;
3522 	} else
3523 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3524 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3525 
3526 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3527 					   GEN8_PIPE_FIFO_UNDERRUN;
3528 
3529 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3530 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3531 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3532 
3533 	for_each_pipe(dev_priv, pipe)
3534 		if (intel_display_power_is_enabled(dev_priv,
3535 				POWER_DOMAIN_PIPE(pipe)))
3536 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3537 					  dev_priv->de_irq_mask[pipe],
3538 					  de_pipe_enables);
3539 
3540 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3541 }
3542 
3543 static int gen8_irq_postinstall(struct drm_device *dev)
3544 {
3545 	struct drm_i915_private *dev_priv = dev->dev_private;
3546 
3547 	if (HAS_PCH_SPLIT(dev))
3548 		ibx_irq_pre_postinstall(dev);
3549 
3550 	gen8_gt_irq_postinstall(dev_priv);
3551 	gen8_de_irq_postinstall(dev_priv);
3552 
3553 	if (HAS_PCH_SPLIT(dev))
3554 		ibx_irq_postinstall(dev);
3555 
3556 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3557 	POSTING_READ(GEN8_MASTER_IRQ);
3558 
3559 	return 0;
3560 }
3561 
3562 static int cherryview_irq_postinstall(struct drm_device *dev)
3563 {
3564 	struct drm_i915_private *dev_priv = dev->dev_private;
3565 
3566 	vlv_display_irq_postinstall(dev_priv);
3567 
3568 	gen8_gt_irq_postinstall(dev_priv);
3569 
3570 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3571 	POSTING_READ(GEN8_MASTER_IRQ);
3572 
3573 	return 0;
3574 }
3575 
3576 static void gen8_irq_uninstall(struct drm_device *dev)
3577 {
3578 	struct drm_i915_private *dev_priv = dev->dev_private;
3579 
3580 	if (!dev_priv)
3581 		return;
3582 
3583 	gen8_irq_reset(dev);
3584 }
3585 
3586 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3587 {
3588 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3589 	 * just to make the assert_spin_locked check happy. */
3590 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3591 	if (dev_priv->display_irqs_enabled)
3592 		valleyview_display_irqs_uninstall(dev_priv);
3593 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3594 
3595 	vlv_display_irq_reset(dev_priv);
3596 
3597 	dev_priv->irq_mask = ~0;
3598 }
3599 
3600 static void valleyview_irq_uninstall(struct drm_device *dev)
3601 {
3602 	struct drm_i915_private *dev_priv = dev->dev_private;
3603 
3604 	if (!dev_priv)
3605 		return;
3606 
3607 	I915_WRITE(VLV_MASTER_IER, 0);
3608 
3609 	gen5_gt_irq_reset(dev);
3610 
3611 	I915_WRITE(HWSTAM, 0xffffffff);
3612 
3613 	vlv_display_irq_uninstall(dev_priv);
3614 }
3615 
3616 static void cherryview_irq_uninstall(struct drm_device *dev)
3617 {
3618 	struct drm_i915_private *dev_priv = dev->dev_private;
3619 
3620 	if (!dev_priv)
3621 		return;
3622 
3623 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3624 	POSTING_READ(GEN8_MASTER_IRQ);
3625 
3626 	gen8_gt_irq_reset(dev_priv);
3627 
3628 	GEN5_IRQ_RESET(GEN8_PCU_);
3629 
3630 	vlv_display_irq_uninstall(dev_priv);
3631 }
3632 
3633 static void ironlake_irq_uninstall(struct drm_device *dev)
3634 {
3635 	struct drm_i915_private *dev_priv = dev->dev_private;
3636 
3637 	if (!dev_priv)
3638 		return;
3639 
3640 	ironlake_irq_reset(dev);
3641 }
3642 
3643 static void i8xx_irq_preinstall(struct drm_device * dev)
3644 {
3645 	struct drm_i915_private *dev_priv = dev->dev_private;
3646 	int pipe;
3647 
3648 	for_each_pipe(dev_priv, pipe)
3649 		I915_WRITE(PIPESTAT(pipe), 0);
3650 	I915_WRITE16(IMR, 0xffff);
3651 	I915_WRITE16(IER, 0x0);
3652 	POSTING_READ16(IER);
3653 }
3654 
3655 static int i8xx_irq_postinstall(struct drm_device *dev)
3656 {
3657 	struct drm_i915_private *dev_priv = dev->dev_private;
3658 
3659 	I915_WRITE16(EMR,
3660 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3661 
3662 	/* Unmask the interrupts that we always want on. */
3663 	dev_priv->irq_mask =
3664 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3665 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3666 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3667 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3668 	I915_WRITE16(IMR, dev_priv->irq_mask);
3669 
3670 	I915_WRITE16(IER,
3671 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3672 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3673 		     I915_USER_INTERRUPT);
3674 	POSTING_READ16(IER);
3675 
3676 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3677 	 * just to make the assert_spin_locked check happy. */
3678 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3679 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3680 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3681 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3682 
3683 	return 0;
3684 }
3685 
3686 /*
3687  * Returns true when a page flip has completed.
3688  */
3689 static bool i8xx_handle_vblank(struct drm_device *dev,
3690 			       int plane, int pipe, u32 iir)
3691 {
3692 	struct drm_i915_private *dev_priv = dev->dev_private;
3693 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3694 
3695 	if (!intel_pipe_handle_vblank(dev, pipe))
3696 		return false;
3697 
3698 	if ((iir & flip_pending) == 0)
3699 		goto check_page_flip;
3700 
3701 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3702 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3703 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3704 	 * the flip is completed (no longer pending). Since this doesn't raise
3705 	 * an interrupt per se, we watch for the change at vblank.
3706 	 */
3707 	if (I915_READ16(ISR) & flip_pending)
3708 		goto check_page_flip;
3709 
3710 	intel_prepare_page_flip(dev, plane);
3711 	intel_finish_page_flip(dev, pipe);
3712 	return true;
3713 
3714 check_page_flip:
3715 	intel_check_page_flip(dev, pipe);
3716 	return false;
3717 }
3718 
3719 static irqreturn_t i8xx_irq_handler(void *arg)
3720 {
3721 	struct drm_device *dev = arg;
3722 	struct drm_i915_private *dev_priv = dev->dev_private;
3723 	u16 iir, new_iir;
3724 	u32 pipe_stats[2];
3725 	int pipe;
3726 	u16 flip_mask =
3727 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3728 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3729 
3730 	if (!intel_irqs_enabled(dev_priv))
3731 		return IRQ_NONE;
3732 
3733 	iir = I915_READ16(IIR);
3734 	if (iir == 0)
3735 		return;
3736 
3737 	while (iir & ~flip_mask) {
3738 		/* Can't rely on pipestat interrupt bit in iir as it might
3739 		 * have been cleared after the pipestat interrupt was received.
3740 		 * It doesn't set the bit in iir again, but it still produces
3741 		 * interrupts (for non-MSI).
3742 		 */
3743 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3744 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3745 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3746 
3747 		for_each_pipe(dev_priv, pipe) {
3748 			int reg = PIPESTAT(pipe);
3749 			pipe_stats[pipe] = I915_READ(reg);
3750 
3751 			/*
3752 			 * Clear the PIPE*STAT regs before the IIR
3753 			 */
3754 			if (pipe_stats[pipe] & 0x8000ffff)
3755 				I915_WRITE(reg, pipe_stats[pipe]);
3756 		}
3757 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3758 
3759 		I915_WRITE16(IIR, iir & ~flip_mask);
3760 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3761 
3762 		if (iir & I915_USER_INTERRUPT)
3763 			notify_ring(&dev_priv->ring[RCS]);
3764 
3765 		for_each_pipe(dev_priv, pipe) {
3766 			int plane = pipe;
3767 			if (HAS_FBC(dev))
3768 				plane = !plane;
3769 
3770 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3771 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3772 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3773 
3774 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3775 				i9xx_pipe_crc_irq_handler(dev, pipe);
3776 
3777 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3778 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3779 								    pipe);
3780 		}
3781 
3782 		iir = new_iir;
3783 	}
3784 
3785 }
3786 
3787 static void i8xx_irq_uninstall(struct drm_device * dev)
3788 {
3789 	struct drm_i915_private *dev_priv = dev->dev_private;
3790 	int pipe;
3791 
3792 	for_each_pipe(dev_priv, pipe) {
3793 		/* Clear enable bits; then clear status bits */
3794 		I915_WRITE(PIPESTAT(pipe), 0);
3795 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3796 	}
3797 	I915_WRITE16(IMR, 0xffff);
3798 	I915_WRITE16(IER, 0x0);
3799 	I915_WRITE16(IIR, I915_READ16(IIR));
3800 }
3801 
3802 static void i915_irq_preinstall(struct drm_device * dev)
3803 {
3804 	struct drm_i915_private *dev_priv = dev->dev_private;
3805 	int pipe;
3806 
3807 	if (I915_HAS_HOTPLUG(dev)) {
3808 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3809 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3810 	}
3811 
3812 	I915_WRITE16(HWSTAM, 0xeffe);
3813 	for_each_pipe(dev_priv, pipe)
3814 		I915_WRITE(PIPESTAT(pipe), 0);
3815 	I915_WRITE(IMR, 0xffffffff);
3816 	I915_WRITE(IER, 0x0);
3817 	POSTING_READ(IER);
3818 }
3819 
3820 static int i915_irq_postinstall(struct drm_device *dev)
3821 {
3822 	struct drm_i915_private *dev_priv = dev->dev_private;
3823 	u32 enable_mask;
3824 
3825 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3826 
3827 	/* Unmask the interrupts that we always want on. */
3828 	dev_priv->irq_mask =
3829 		~(I915_ASLE_INTERRUPT |
3830 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3831 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3832 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3833 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3834 
3835 	enable_mask =
3836 		I915_ASLE_INTERRUPT |
3837 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3838 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3839 		I915_USER_INTERRUPT;
3840 
3841 	if (I915_HAS_HOTPLUG(dev)) {
3842 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3843 		POSTING_READ(PORT_HOTPLUG_EN);
3844 
3845 		/* Enable in IER... */
3846 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3847 		/* and unmask in IMR */
3848 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3849 	}
3850 
3851 	I915_WRITE(IMR, dev_priv->irq_mask);
3852 	I915_WRITE(IER, enable_mask);
3853 	POSTING_READ(IER);
3854 
3855 	i915_enable_asle_pipestat(dev);
3856 
3857 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3858 	 * just to make the assert_spin_locked check happy. */
3859 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3860 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3861 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3862 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3863 
3864 	return 0;
3865 }
3866 
3867 /*
3868  * Returns true when a page flip has completed.
3869  */
3870 static bool i915_handle_vblank(struct drm_device *dev,
3871 			       int plane, int pipe, u32 iir)
3872 {
3873 	struct drm_i915_private *dev_priv = dev->dev_private;
3874 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3875 
3876 	if (!intel_pipe_handle_vblank(dev, pipe))
3877 		return false;
3878 
3879 	if ((iir & flip_pending) == 0)
3880 		goto check_page_flip;
3881 
3882 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3883 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3884 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3885 	 * the flip is completed (no longer pending). Since this doesn't raise
3886 	 * an interrupt per se, we watch for the change at vblank.
3887 	 */
3888 	if (I915_READ(ISR) & flip_pending)
3889 		goto check_page_flip;
3890 
3891 	intel_prepare_page_flip(dev, plane);
3892 	intel_finish_page_flip(dev, pipe);
3893 	return true;
3894 
3895 check_page_flip:
3896 	intel_check_page_flip(dev, pipe);
3897 	return false;
3898 }
3899 
3900 static irqreturn_t i915_irq_handler(void *arg)
3901 {
3902 	struct drm_device *dev = arg;
3903 	struct drm_i915_private *dev_priv = dev->dev_private;
3904 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3905 	u32 flip_mask =
3906 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3907 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3908 	int pipe;
3909 
3910 	if (!intel_irqs_enabled(dev_priv))
3911 		return IRQ_NONE;
3912 
3913 	iir = I915_READ(IIR);
3914 	do {
3915 		bool irq_received = (iir & ~flip_mask) != 0;
3916 		bool blc_event = false;
3917 
3918 		/* Can't rely on pipestat interrupt bit in iir as it might
3919 		 * have been cleared after the pipestat interrupt was received.
3920 		 * It doesn't set the bit in iir again, but it still produces
3921 		 * interrupts (for non-MSI).
3922 		 */
3923 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3924 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3925 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3926 
3927 		for_each_pipe(dev_priv, pipe) {
3928 			int reg = PIPESTAT(pipe);
3929 			pipe_stats[pipe] = I915_READ(reg);
3930 
3931 			/* Clear the PIPE*STAT regs before the IIR */
3932 			if (pipe_stats[pipe] & 0x8000ffff) {
3933 				I915_WRITE(reg, pipe_stats[pipe]);
3934 				irq_received = true;
3935 			}
3936 		}
3937 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3938 
3939 		if (!irq_received)
3940 			break;
3941 
3942 		/* Consume port.  Then clear IIR or we'll miss events */
3943 		if (I915_HAS_HOTPLUG(dev) &&
3944 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3945 			i9xx_hpd_irq_handler(dev);
3946 
3947 		I915_WRITE(IIR, iir & ~flip_mask);
3948 		new_iir = I915_READ(IIR); /* Flush posted writes */
3949 
3950 		if (iir & I915_USER_INTERRUPT)
3951 			notify_ring(&dev_priv->ring[RCS]);
3952 
3953 		for_each_pipe(dev_priv, pipe) {
3954 			int plane = pipe;
3955 			if (HAS_FBC(dev))
3956 				plane = !plane;
3957 
3958 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3959 			    i915_handle_vblank(dev, plane, pipe, iir))
3960 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3961 
3962 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3963 				blc_event = true;
3964 
3965 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3966 				i9xx_pipe_crc_irq_handler(dev, pipe);
3967 
3968 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3969 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3970 								    pipe);
3971 		}
3972 
3973 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3974 			intel_opregion_asle_intr(dev);
3975 
3976 		/* With MSI, interrupts are only generated when iir
3977 		 * transitions from zero to nonzero.  If another bit got
3978 		 * set while we were handling the existing iir bits, then
3979 		 * we would never get another interrupt.
3980 		 *
3981 		 * This is fine on non-MSI as well, as if we hit this path
3982 		 * we avoid exiting the interrupt handler only to generate
3983 		 * another one.
3984 		 *
3985 		 * Note that for MSI this could cause a stray interrupt report
3986 		 * if an interrupt landed in the time between writing IIR and
3987 		 * the posting read.  This should be rare enough to never
3988 		 * trigger the 99% of 100,000 interrupts test for disabling
3989 		 * stray interrupts.
3990 		 */
3991 		iir = new_iir;
3992 	} while (iir & ~flip_mask);
3993 
3994 }
3995 
3996 static void i915_irq_uninstall(struct drm_device * dev)
3997 {
3998 	struct drm_i915_private *dev_priv = dev->dev_private;
3999 	int pipe;
4000 
4001 	if (I915_HAS_HOTPLUG(dev)) {
4002 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4003 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4004 	}
4005 
4006 	I915_WRITE16(HWSTAM, 0xffff);
4007 	for_each_pipe(dev_priv, pipe) {
4008 		/* Clear enable bits; then clear status bits */
4009 		I915_WRITE(PIPESTAT(pipe), 0);
4010 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4011 	}
4012 	I915_WRITE(IMR, 0xffffffff);
4013 	I915_WRITE(IER, 0x0);
4014 
4015 	I915_WRITE(IIR, I915_READ(IIR));
4016 }
4017 
4018 static void i965_irq_preinstall(struct drm_device * dev)
4019 {
4020 	struct drm_i915_private *dev_priv = dev->dev_private;
4021 	int pipe;
4022 
4023 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4024 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4025 
4026 	I915_WRITE(HWSTAM, 0xeffe);
4027 	for_each_pipe(dev_priv, pipe)
4028 		I915_WRITE(PIPESTAT(pipe), 0);
4029 	I915_WRITE(IMR, 0xffffffff);
4030 	I915_WRITE(IER, 0x0);
4031 	POSTING_READ(IER);
4032 }
4033 
4034 static int i965_irq_postinstall(struct drm_device *dev)
4035 {
4036 	struct drm_i915_private *dev_priv = dev->dev_private;
4037 	u32 enable_mask;
4038 	u32 error_mask;
4039 
4040 	/* Unmask the interrupts that we always want on. */
4041 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4042 			       I915_DISPLAY_PORT_INTERRUPT |
4043 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4044 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4045 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4046 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4047 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4048 
4049 	enable_mask = ~dev_priv->irq_mask;
4050 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4051 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4052 	enable_mask |= I915_USER_INTERRUPT;
4053 
4054 	if (IS_G4X(dev))
4055 		enable_mask |= I915_BSD_USER_INTERRUPT;
4056 
4057 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4058 	 * just to make the assert_spin_locked check happy. */
4059 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4060 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4061 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4062 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4063 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4064 
4065 	/*
4066 	 * Enable some error detection, note the instruction error mask
4067 	 * bit is reserved, so we leave it masked.
4068 	 */
4069 	if (IS_G4X(dev)) {
4070 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4071 			       GM45_ERROR_MEM_PRIV |
4072 			       GM45_ERROR_CP_PRIV |
4073 			       I915_ERROR_MEMORY_REFRESH);
4074 	} else {
4075 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4076 			       I915_ERROR_MEMORY_REFRESH);
4077 	}
4078 	I915_WRITE(EMR, error_mask);
4079 
4080 	I915_WRITE(IMR, dev_priv->irq_mask);
4081 	I915_WRITE(IER, enable_mask);
4082 	POSTING_READ(IER);
4083 
4084 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4085 	POSTING_READ(PORT_HOTPLUG_EN);
4086 
4087 	i915_enable_asle_pipestat(dev);
4088 
4089 	return 0;
4090 }
4091 
4092 static void i915_hpd_irq_setup(struct drm_device *dev)
4093 {
4094 	struct drm_i915_private *dev_priv = dev->dev_private;
4095 	struct intel_encoder *intel_encoder;
4096 	u32 hotplug_en;
4097 
4098 	assert_spin_locked(&dev_priv->irq_lock);
4099 
4100 	hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4101 	hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4102 	/* Note HDMI and DP share hotplug bits */
4103 	/* enable bits are the same for all generations */
4104 	for_each_intel_encoder(dev, intel_encoder)
4105 		if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4106 			hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4107 	/* Programming the CRT detection parameters tends
4108 	   to generate a spurious hotplug event about three
4109 	   seconds later.  So just do it once.
4110 	*/
4111 	if (IS_G4X(dev))
4112 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4113 	hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4114 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4115 
4116 	/* Ignore TV since it's buggy */
4117 	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4118 }
4119 
4120 static irqreturn_t i965_irq_handler(void *arg)
4121 {
4122 	struct drm_device *dev = arg;
4123 	struct drm_i915_private *dev_priv = dev->dev_private;
4124 	u32 iir, new_iir;
4125 	u32 pipe_stats[I915_MAX_PIPES];
4126 	int pipe;
4127 	u32 flip_mask =
4128 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4129 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4130 
4131 	if (!intel_irqs_enabled(dev_priv))
4132 		return IRQ_NONE;
4133 
4134 	iir = I915_READ(IIR);
4135 
4136 	for (;;) {
4137 		bool irq_received = (iir & ~flip_mask) != 0;
4138 		bool blc_event = false;
4139 
4140 		/* Can't rely on pipestat interrupt bit in iir as it might
4141 		 * have been cleared after the pipestat interrupt was received.
4142 		 * It doesn't set the bit in iir again, but it still produces
4143 		 * interrupts (for non-MSI).
4144 		 */
4145 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4146 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4147 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4148 
4149 		for_each_pipe(dev_priv, pipe) {
4150 			int reg = PIPESTAT(pipe);
4151 			pipe_stats[pipe] = I915_READ(reg);
4152 
4153 			/*
4154 			 * Clear the PIPE*STAT regs before the IIR
4155 			 */
4156 			if (pipe_stats[pipe] & 0x8000ffff) {
4157 				I915_WRITE(reg, pipe_stats[pipe]);
4158 				irq_received = true;
4159 			}
4160 		}
4161 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4162 
4163 		if (!irq_received)
4164 			break;
4165 
4166 		/* Consume port.  Then clear IIR or we'll miss events */
4167 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4168 			i9xx_hpd_irq_handler(dev);
4169 
4170 		I915_WRITE(IIR, iir & ~flip_mask);
4171 		new_iir = I915_READ(IIR); /* Flush posted writes */
4172 
4173 		if (iir & I915_USER_INTERRUPT)
4174 			notify_ring(&dev_priv->ring[RCS]);
4175 		if (iir & I915_BSD_USER_INTERRUPT)
4176 			notify_ring(&dev_priv->ring[VCS]);
4177 
4178 		for_each_pipe(dev_priv, pipe) {
4179 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4180 			    i915_handle_vblank(dev, pipe, pipe, iir))
4181 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4182 
4183 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4184 				blc_event = true;
4185 
4186 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4187 				i9xx_pipe_crc_irq_handler(dev, pipe);
4188 
4189 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4190 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4191 		}
4192 
4193 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4194 			intel_opregion_asle_intr(dev);
4195 
4196 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4197 			gmbus_irq_handler(dev);
4198 
4199 		/* With MSI, interrupts are only generated when iir
4200 		 * transitions from zero to nonzero.  If another bit got
4201 		 * set while we were handling the existing iir bits, then
4202 		 * we would never get another interrupt.
4203 		 *
4204 		 * This is fine on non-MSI as well, as if we hit this path
4205 		 * we avoid exiting the interrupt handler only to generate
4206 		 * another one.
4207 		 *
4208 		 * Note that for MSI this could cause a stray interrupt report
4209 		 * if an interrupt landed in the time between writing IIR and
4210 		 * the posting read.  This should be rare enough to never
4211 		 * trigger the 99% of 100,000 interrupts test for disabling
4212 		 * stray interrupts.
4213 		 */
4214 		iir = new_iir;
4215 	}
4216 
4217 }
4218 
4219 static void i965_irq_uninstall(struct drm_device * dev)
4220 {
4221 	struct drm_i915_private *dev_priv = dev->dev_private;
4222 	int pipe;
4223 
4224 	if (!dev_priv)
4225 		return;
4226 
4227 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4228 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4229 
4230 	I915_WRITE(HWSTAM, 0xffffffff);
4231 	for_each_pipe(dev_priv, pipe)
4232 		I915_WRITE(PIPESTAT(pipe), 0);
4233 	I915_WRITE(IMR, 0xffffffff);
4234 	I915_WRITE(IER, 0x0);
4235 
4236 	for_each_pipe(dev_priv, pipe)
4237 		I915_WRITE(PIPESTAT(pipe),
4238 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4239 	I915_WRITE(IIR, I915_READ(IIR));
4240 }
4241 
4242 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4243 {
4244 	struct drm_i915_private *dev_priv =
4245 		container_of(work, typeof(*dev_priv),
4246 			     hotplug_reenable_work.work);
4247 	struct drm_device *dev = dev_priv->dev;
4248 	struct drm_mode_config *mode_config = &dev->mode_config;
4249 	int i;
4250 
4251 	intel_runtime_pm_get(dev_priv);
4252 
4253 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4254 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4255 		struct drm_connector *connector;
4256 
4257 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4258 			continue;
4259 
4260 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4261 
4262 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4263 			struct intel_connector *intel_connector = to_intel_connector(connector);
4264 
4265 			if (intel_connector->encoder->hpd_pin == i) {
4266 				if (connector->polled != intel_connector->polled)
4267 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4268 							 connector->name);
4269 				connector->polled = intel_connector->polled;
4270 				if (!connector->polled)
4271 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4272 			}
4273 		}
4274 	}
4275 	if (dev_priv->display.hpd_irq_setup)
4276 		dev_priv->display.hpd_irq_setup(dev);
4277 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4278 
4279 	intel_runtime_pm_put(dev_priv);
4280 }
4281 
4282 /**
4283  * intel_irq_init - initializes irq support
4284  * @dev_priv: i915 device instance
4285  *
4286  * This function initializes all the irq support including work items, timers
4287  * and all the vtables. It does not setup the interrupt itself though.
4288  */
4289 void intel_irq_init(struct drm_i915_private *dev_priv)
4290 {
4291 	struct drm_device *dev = dev_priv->dev;
4292 
4293 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4294 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4295 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4296 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4297 
4298 	/* Let's track the enabled rps events */
4299 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4300 		/* WaGsvRC0ResidencyMethod:vlv */
4301 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4302 	else
4303 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4304 
4305 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4306 			  i915_hangcheck_elapsed);
4307 	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4308 			  intel_hpd_irq_reenable_work);
4309 
4310 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4311 
4312 	if (IS_GEN2(dev_priv)) {
4313 		dev->max_vblank_count = 0;
4314 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4315 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4316 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4317 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4318 	} else {
4319 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4320 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4321 	}
4322 
4323 	/*
4324 	 * Opt out of the vblank disable timer on everything except gen2.
4325 	 * Gen2 doesn't have a hardware frame counter and so depends on
4326 	 * vblank interrupts to produce sane vblank seuquence numbers.
4327 	 */
4328 	if (!IS_GEN2(dev_priv))
4329 		dev->vblank_disable_immediate = true;
4330 
4331 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4332 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4333 
4334 	if (IS_CHERRYVIEW(dev_priv)) {
4335 		dev->driver->irq_handler = cherryview_irq_handler;
4336 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4337 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4338 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4339 		dev->driver->enable_vblank = valleyview_enable_vblank;
4340 		dev->driver->disable_vblank = valleyview_disable_vblank;
4341 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4342 	} else if (IS_VALLEYVIEW(dev_priv)) {
4343 		dev->driver->irq_handler = valleyview_irq_handler;
4344 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4345 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4346 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4347 		dev->driver->enable_vblank = valleyview_enable_vblank;
4348 		dev->driver->disable_vblank = valleyview_disable_vblank;
4349 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4350 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4351 		dev->driver->irq_handler = gen8_irq_handler;
4352 		dev->driver->irq_preinstall = gen8_irq_reset;
4353 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4354 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4355 		dev->driver->enable_vblank = gen8_enable_vblank;
4356 		dev->driver->disable_vblank = gen8_disable_vblank;
4357 		if (HAS_PCH_SPLIT(dev))
4358 			dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4359 		else
4360 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4361 	} else if (HAS_PCH_SPLIT(dev)) {
4362 		dev->driver->irq_handler = ironlake_irq_handler;
4363 		dev->driver->irq_preinstall = ironlake_irq_reset;
4364 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4365 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4366 		dev->driver->enable_vblank = ironlake_enable_vblank;
4367 		dev->driver->disable_vblank = ironlake_disable_vblank;
4368 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4369 	} else {
4370 		if (INTEL_INFO(dev_priv)->gen == 2) {
4371 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4372 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4373 			dev->driver->irq_handler = i8xx_irq_handler;
4374 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4375 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4376 			dev->driver->irq_preinstall = i915_irq_preinstall;
4377 			dev->driver->irq_postinstall = i915_irq_postinstall;
4378 			dev->driver->irq_uninstall = i915_irq_uninstall;
4379 			dev->driver->irq_handler = i915_irq_handler;
4380 		} else {
4381 			dev->driver->irq_preinstall = i965_irq_preinstall;
4382 			dev->driver->irq_postinstall = i965_irq_postinstall;
4383 			dev->driver->irq_uninstall = i965_irq_uninstall;
4384 			dev->driver->irq_handler = i965_irq_handler;
4385 		}
4386 		if (I915_HAS_HOTPLUG(dev_priv))
4387 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4388 		dev->driver->enable_vblank = i915_enable_vblank;
4389 		dev->driver->disable_vblank = i915_disable_vblank;
4390 	}
4391 }
4392 
4393 /**
4394  * intel_hpd_init - initializes and enables hpd support
4395  * @dev_priv: i915 device instance
4396  *
4397  * This function enables the hotplug support. It requires that interrupts have
4398  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4399  * poll request can run concurrently to other code, so locking rules must be
4400  * obeyed.
4401  *
4402  * This is a separate step from interrupt enabling to simplify the locking rules
4403  * in the driver load and resume code.
4404  */
4405 void intel_hpd_init(struct drm_i915_private *dev_priv)
4406 {
4407 	struct drm_device *dev = dev_priv->dev;
4408 	struct drm_mode_config *mode_config = &dev->mode_config;
4409 	struct drm_connector *connector;
4410 	int i;
4411 
4412 	for (i = 1; i < HPD_NUM_PINS; i++) {
4413 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4414 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4415 	}
4416 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4417 		struct intel_connector *intel_connector = to_intel_connector(connector);
4418 		connector->polled = intel_connector->polled;
4419 		if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4420 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4421 	}
4422 
4423 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4424 	 * just to make the assert_spin_locked checks happy. */
4425 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4426 	if (dev_priv->display.hpd_irq_setup)
4427 		dev_priv->display.hpd_irq_setup(dev);
4428 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4429 }
4430 
4431 /**
4432  * intel_irq_install - enables the hardware interrupt
4433  * @dev_priv: i915 device instance
4434  *
4435  * This function enables the hardware interrupt handling, but leaves the hotplug
4436  * handling still disabled. It is called after intel_irq_init().
4437  *
4438  * In the driver load and resume code we need working interrupts in a few places
4439  * but don't want to deal with the hassle of concurrent probe and hotplug
4440  * workers. Hence the split into this two-stage approach.
4441  */
4442 int intel_irq_install(struct drm_i915_private *dev_priv)
4443 {
4444 	/*
4445 	 * We enable some interrupt sources in our postinstall hooks, so mark
4446 	 * interrupts as enabled _before_ actually enabling them to avoid
4447 	 * special cases in our ordering checks.
4448 	 */
4449 	dev_priv->pm.irqs_enabled = true;
4450 
4451 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4452 }
4453 
4454 /**
4455  * intel_irq_uninstall - finilizes all irq handling
4456  * @dev_priv: i915 device instance
4457  *
4458  * This stops interrupt and hotplug handling and unregisters and frees all
4459  * resources acquired in the init functions.
4460  */
4461 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4462 {
4463 	drm_irq_uninstall(dev_priv->dev);
4464 	intel_hpd_cancel_work(dev_priv);
4465 	dev_priv->pm.irqs_enabled = false;
4466 }
4467 
4468 /**
4469  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4470  * @dev_priv: i915 device instance
4471  *
4472  * This function is used to disable interrupts at runtime, both in the runtime
4473  * pm and the system suspend/resume code.
4474  */
4475 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4476 {
4477 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4478 	dev_priv->pm.irqs_enabled = false;
4479 #if 0
4480 	synchronize_irq(dev_priv->dev->irq);
4481 #endif
4482 }
4483 
4484 /**
4485  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4486  * @dev_priv: i915 device instance
4487  *
4488  * This function is used to enable interrupts at runtime, both in the runtime
4489  * pm and the system suspend/resume code.
4490  */
4491 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4492 {
4493 	dev_priv->pm.irqs_enabled = true;
4494 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4495 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4496 }
4497