xref: /dragonfly/sys/dev/drm/i915/intel_ddi.c (revision 0720b42f)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <asm/int-ll64.h>
31 
32 struct ddi_buf_trans {
33 	u32 trans1;	/* balance leg enable, de-emph level */
34 	u32 trans2;	/* vref sel, vswing */
35 };
36 
37 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
38  * them for both DP and FDI transports, allowing those ports to
39  * automatically adapt to HDMI connections as well
40  */
41 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 	{ 0x00FFFFFF, 0x0006000E },
43 	{ 0x00D75FFF, 0x0005000A },
44 	{ 0x00C30FFF, 0x00040006 },
45 	{ 0x80AAAFFF, 0x000B0000 },
46 	{ 0x00FFFFFF, 0x0005000A },
47 	{ 0x00D75FFF, 0x000C0004 },
48 	{ 0x80C30FFF, 0x000B0000 },
49 	{ 0x00FFFFFF, 0x00040006 },
50 	{ 0x80D75FFF, 0x000B0000 },
51 };
52 
53 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 	{ 0x00FFFFFF, 0x0007000E },
55 	{ 0x00D75FFF, 0x000F000A },
56 	{ 0x00C30FFF, 0x00060006 },
57 	{ 0x00AAAFFF, 0x001E0000 },
58 	{ 0x00FFFFFF, 0x000F000A },
59 	{ 0x00D75FFF, 0x00160004 },
60 	{ 0x00C30FFF, 0x001E0000 },
61 	{ 0x00FFFFFF, 0x00060006 },
62 	{ 0x00D75FFF, 0x001E0000 },
63 };
64 
65 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
66 					/* Idx	NT mV d	T mV d	db	*/
67 	{ 0x00FFFFFF, 0x0006000E },	/* 0:	400	400	0	*/
68 	{ 0x00E79FFF, 0x000E000C },	/* 1:	400	500	2	*/
69 	{ 0x00D75FFF, 0x0005000A },	/* 2:	400	600	3.5	*/
70 	{ 0x00FFFFFF, 0x0005000A },	/* 3:	600	600	0	*/
71 	{ 0x00E79FFF, 0x001D0007 },	/* 4:	600	750	2	*/
72 	{ 0x00D75FFF, 0x000C0004 },	/* 5:	600	900	3.5	*/
73 	{ 0x00FFFFFF, 0x00040006 },	/* 6:	800	800	0	*/
74 	{ 0x80E79FFF, 0x00030002 },	/* 7:	800	1000	2	*/
75 	{ 0x00FFFFFF, 0x00140005 },	/* 8:	850	850	0	*/
76 	{ 0x00FFFFFF, 0x000C0004 },	/* 9:	900	900	0	*/
77 	{ 0x00FFFFFF, 0x001C0003 },	/* 10:	950	950	0	*/
78 	{ 0x80FFFFFF, 0x00030002 },	/* 11:	1000	1000	0	*/
79 };
80 
81 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 	{ 0x00FFFFFF, 0x00000012 },
83 	{ 0x00EBAFFF, 0x00020011 },
84 	{ 0x00C71FFF, 0x0006000F },
85 	{ 0x00AAAFFF, 0x000E000A },
86 	{ 0x00FFFFFF, 0x00020011 },
87 	{ 0x00DB6FFF, 0x0005000F },
88 	{ 0x00BEEFFF, 0x000A000C },
89 	{ 0x00FFFFFF, 0x0005000F },
90 	{ 0x00DB6FFF, 0x000A000C },
91 };
92 
93 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 	{ 0x00FFFFFF, 0x0007000E },
95 	{ 0x00D75FFF, 0x000E000A },
96 	{ 0x00BEFFFF, 0x00140006 },
97 	{ 0x80B2CFFF, 0x001B0002 },
98 	{ 0x00FFFFFF, 0x000E000A },
99 	{ 0x00DB6FFF, 0x00160005 },
100 	{ 0x80C71FFF, 0x001A0002 },
101 	{ 0x00F7DFFF, 0x00180004 },
102 	{ 0x80D75FFF, 0x001B0002 },
103 };
104 
105 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 	{ 0x00FFFFFF, 0x0001000E },
107 	{ 0x00D75FFF, 0x0004000A },
108 	{ 0x00C30FFF, 0x00070006 },
109 	{ 0x00AAAFFF, 0x000C0000 },
110 	{ 0x00FFFFFF, 0x0004000A },
111 	{ 0x00D75FFF, 0x00090004 },
112 	{ 0x00C30FFF, 0x000C0000 },
113 	{ 0x00FFFFFF, 0x00070006 },
114 	{ 0x00D75FFF, 0x000C0000 },
115 };
116 
117 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
118 					/* Idx	NT mV d	T mV df	db	*/
119 	{ 0x00FFFFFF, 0x0007000E },	/* 0:	400	400	0	*/
120 	{ 0x00D75FFF, 0x000E000A },	/* 1:	400	600	3.5	*/
121 	{ 0x00BEFFFF, 0x00140006 },	/* 2:	400	800	6	*/
122 	{ 0x00FFFFFF, 0x0009000D },	/* 3:	450	450	0	*/
123 	{ 0x00FFFFFF, 0x000E000A },	/* 4:	600	600	0	*/
124 	{ 0x00D7FFFF, 0x00140006 },	/* 5:	600	800	2.5	*/
125 	{ 0x80CB2FFF, 0x001B0002 },	/* 6:	600	1000	4.5	*/
126 	{ 0x00FFFFFF, 0x00140006 },	/* 7:	800	800	0	*/
127 	{ 0x80E79FFF, 0x001B0002 },	/* 8:	800	1000	2	*/
128 	{ 0x80FFFFFF, 0x001B0002 },	/* 9:	1000	1000	0	*/
129 };
130 
131 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
132 	{ 0x00000018, 0x000000a2 },
133 	{ 0x00004014, 0x0000009B },
134 	{ 0x00006012, 0x00000088 },
135 	{ 0x00008010, 0x00000087 },
136 	{ 0x00000018, 0x0000009B },
137 	{ 0x00004014, 0x00000088 },
138 	{ 0x00006012, 0x00000087 },
139 	{ 0x00000018, 0x00000088 },
140 	{ 0x00004014, 0x00000087 },
141 };
142 
143 /* eDP 1.4 low vswing translation parameters */
144 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
145 	{ 0x00000018, 0x000000a8 },
146 	{ 0x00002016, 0x000000ab },
147 	{ 0x00006012, 0x000000a2 },
148 	{ 0x00008010, 0x00000088 },
149 	{ 0x00000018, 0x000000ab },
150 	{ 0x00004014, 0x000000a2 },
151 	{ 0x00006012, 0x000000a6 },
152 	{ 0x00000018, 0x000000a2 },
153 	{ 0x00005013, 0x0000009c },
154 	{ 0x00000018, 0x00000088 },
155 };
156 
157 
158 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
159 					/* Idx	NT mV   T mV    db  */
160 	{ 0x00004014, 0x00000087 },	/* 0:	800	1000	2   */
161 };
162 
163 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
164 {
165 	struct drm_encoder *encoder = &intel_encoder->base;
166 	int type = intel_encoder->type;
167 
168 	if (type == INTEL_OUTPUT_DP_MST) {
169 		struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
170 		return intel_dig_port->port;
171 	} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
172 	    type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
173 		struct intel_digital_port *intel_dig_port =
174 			enc_to_dig_port(encoder);
175 		return intel_dig_port->port;
176 
177 	} else if (type == INTEL_OUTPUT_ANALOG) {
178 		return PORT_E;
179 
180 	} else {
181 		DRM_ERROR("Invalid DDI encoder type %d\n", type);
182 		BUG();
183 	}
184 }
185 
186 /*
187  * Starting with Haswell, DDI port buffers must be programmed with correct
188  * values in advance. The buffer values are different for FDI and DP modes,
189  * but the HDMI/DVI fields are shared among those. So we program the DDI
190  * in either FDI or DP modes only, as HDMI connections will work with both
191  * of those
192  */
193 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
194 {
195 	struct drm_i915_private *dev_priv = dev->dev_private;
196 	u32 reg;
197 	int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
198 	    size;
199 	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
200 	const struct ddi_buf_trans *ddi_translations_fdi;
201 	const struct ddi_buf_trans *ddi_translations_dp;
202 	const struct ddi_buf_trans *ddi_translations_edp;
203 	const struct ddi_buf_trans *ddi_translations_hdmi;
204 	const struct ddi_buf_trans *ddi_translations;
205 
206 	if (IS_SKYLAKE(dev)) {
207 		ddi_translations_fdi = NULL;
208 		ddi_translations_dp = skl_ddi_translations_dp;
209 		n_dp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
210 		if (dev_priv->vbt.edp_low_vswing) {
211 			ddi_translations_edp = skl_ddi_translations_edp;
212 			n_edp_entries = ARRAY_SIZE(skl_ddi_translations_edp);
213 		} else {
214 			ddi_translations_edp = skl_ddi_translations_dp;
215 			n_edp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
216 		}
217 
218 		/*
219 		 * On SKL, the recommendation from the hw team is to always use
220 		 * a certain type of level shifter (and thus the corresponding
221 		 * 800mV+2dB entry). Given that's the only validated entry, we
222 		 * override what is in the VBT, at least until further notice.
223 		 */
224 		hdmi_level = 0;
225 		ddi_translations_hdmi = skl_ddi_translations_hdmi;
226 		n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
227 		hdmi_default_entry = 0;
228 	} else if (IS_BROADWELL(dev)) {
229 		ddi_translations_fdi = bdw_ddi_translations_fdi;
230 		ddi_translations_dp = bdw_ddi_translations_dp;
231 		ddi_translations_edp = bdw_ddi_translations_edp;
232 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
233 		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
234 		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
235 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
236 		hdmi_default_entry = 7;
237 	} else if (IS_HASWELL(dev)) {
238 		ddi_translations_fdi = hsw_ddi_translations_fdi;
239 		ddi_translations_dp = hsw_ddi_translations_dp;
240 		ddi_translations_edp = hsw_ddi_translations_dp;
241 		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
242 		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
243 		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
244 		hdmi_default_entry = 6;
245 	} else {
246 		WARN(1, "ddi translation table missing\n");
247 		ddi_translations_edp = bdw_ddi_translations_dp;
248 		ddi_translations_fdi = bdw_ddi_translations_fdi;
249 		ddi_translations_dp = bdw_ddi_translations_dp;
250 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
251 		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
252 		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
253 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
254 		hdmi_default_entry = 7;
255 	}
256 
257 	switch (port) {
258 	case PORT_A:
259 		ddi_translations = ddi_translations_edp;
260 		size = n_edp_entries;
261 		break;
262 	case PORT_B:
263 	case PORT_C:
264 		ddi_translations = ddi_translations_dp;
265 		size = n_dp_entries;
266 		break;
267 	case PORT_D:
268 		if (intel_dp_is_edp(dev, PORT_D)) {
269 			ddi_translations = ddi_translations_edp;
270 			size = n_edp_entries;
271 		} else {
272 			ddi_translations = ddi_translations_dp;
273 			size = n_dp_entries;
274 		}
275 		break;
276 	case PORT_E:
277 		if (ddi_translations_fdi)
278 			ddi_translations = ddi_translations_fdi;
279 		else
280 			ddi_translations = ddi_translations_dp;
281 		size = n_dp_entries;
282 		break;
283 	default:
284 		BUG();
285 	}
286 
287 	for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
288 		I915_WRITE(reg, ddi_translations[i].trans1);
289 		reg += 4;
290 		I915_WRITE(reg, ddi_translations[i].trans2);
291 		reg += 4;
292 	}
293 
294 	/* Choose a good default if VBT is badly populated */
295 	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
296 	    hdmi_level >= n_hdmi_entries)
297 		hdmi_level = hdmi_default_entry;
298 
299 	/* Entry 9 is for HDMI: */
300 	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
301 	reg += 4;
302 	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
303 	reg += 4;
304 }
305 
306 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
307  * mode and port E for FDI.
308  */
309 void intel_prepare_ddi(struct drm_device *dev)
310 {
311 	int port;
312 
313 	if (!HAS_DDI(dev))
314 		return;
315 
316 	for (port = PORT_A; port <= PORT_E; port++)
317 		intel_prepare_ddi_buffers(dev, port);
318 }
319 
320 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
321 				    enum port port)
322 {
323 	uint32_t reg = DDI_BUF_CTL(port);
324 	int i;
325 
326 	for (i = 0; i < 8; i++) {
327 		udelay(1);
328 		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
329 			return;
330 	}
331 	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
332 }
333 
334 /* Starting with Haswell, different DDI ports can work in FDI mode for
335  * connection to the PCH-located connectors. For this, it is necessary to train
336  * both the DDI port and PCH receiver for the desired DDI buffer settings.
337  *
338  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
339  * please note that when FDI mode is active on DDI E, it shares 2 lines with
340  * DDI A (which is used for eDP)
341  */
342 
343 void hsw_fdi_link_train(struct drm_crtc *crtc)
344 {
345 	struct drm_device *dev = crtc->dev;
346 	struct drm_i915_private *dev_priv = dev->dev_private;
347 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
348 	u32 temp, i, rx_ctl_val;
349 
350 	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
351 	 * mode set "sequence for CRT port" document:
352 	 * - TP1 to TP2 time with the default value
353 	 * - FDI delay to 90h
354 	 *
355 	 * WaFDIAutoLinkSetTimingOverrride:hsw
356 	 */
357 	I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
358 				  FDI_RX_PWRDN_LANE0_VAL(2) |
359 				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
360 
361 	/* Enable the PCH Receiver FDI PLL */
362 	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
363 		     FDI_RX_PLL_ENABLE |
364 		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
365 	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
366 	POSTING_READ(_FDI_RXA_CTL);
367 	udelay(220);
368 
369 	/* Switch from Rawclk to PCDclk */
370 	rx_ctl_val |= FDI_PCDCLK;
371 	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
372 
373 	/* Configure Port Clock Select */
374 	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
375 	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
376 
377 	/* Start the training iterating through available voltages and emphasis,
378 	 * testing each value twice. */
379 	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
380 		/* Configure DP_TP_CTL with auto-training */
381 		I915_WRITE(DP_TP_CTL(PORT_E),
382 					DP_TP_CTL_FDI_AUTOTRAIN |
383 					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
384 					DP_TP_CTL_LINK_TRAIN_PAT1 |
385 					DP_TP_CTL_ENABLE);
386 
387 		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
388 		 * DDI E does not support port reversal, the functionality is
389 		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
390 		 * port reversal bit */
391 		I915_WRITE(DDI_BUF_CTL(PORT_E),
392 			   DDI_BUF_CTL_ENABLE |
393 			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
394 			   DDI_BUF_TRANS_SELECT(i / 2));
395 		POSTING_READ(DDI_BUF_CTL(PORT_E));
396 
397 		udelay(600);
398 
399 		/* Program PCH FDI Receiver TU */
400 		I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
401 
402 		/* Enable PCH FDI Receiver with auto-training */
403 		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
404 		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
405 		POSTING_READ(_FDI_RXA_CTL);
406 
407 		/* Wait for FDI receiver lane calibration */
408 		udelay(30);
409 
410 		/* Unset FDI_RX_MISC pwrdn lanes */
411 		temp = I915_READ(_FDI_RXA_MISC);
412 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
413 		I915_WRITE(_FDI_RXA_MISC, temp);
414 		POSTING_READ(_FDI_RXA_MISC);
415 
416 		/* Wait for FDI auto training time */
417 		udelay(5);
418 
419 		temp = I915_READ(DP_TP_STATUS(PORT_E));
420 		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
421 			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
422 
423 			/* Enable normal pixel sending for FDI */
424 			I915_WRITE(DP_TP_CTL(PORT_E),
425 				   DP_TP_CTL_FDI_AUTOTRAIN |
426 				   DP_TP_CTL_LINK_TRAIN_NORMAL |
427 				   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
428 				   DP_TP_CTL_ENABLE);
429 
430 			return;
431 		}
432 
433 		temp = I915_READ(DDI_BUF_CTL(PORT_E));
434 		temp &= ~DDI_BUF_CTL_ENABLE;
435 		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
436 		POSTING_READ(DDI_BUF_CTL(PORT_E));
437 
438 		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
439 		temp = I915_READ(DP_TP_CTL(PORT_E));
440 		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
441 		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
442 		I915_WRITE(DP_TP_CTL(PORT_E), temp);
443 		POSTING_READ(DP_TP_CTL(PORT_E));
444 
445 		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
446 
447 		rx_ctl_val &= ~FDI_RX_ENABLE;
448 		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
449 		POSTING_READ(_FDI_RXA_CTL);
450 
451 		/* Reset FDI_RX_MISC pwrdn lanes */
452 		temp = I915_READ(_FDI_RXA_MISC);
453 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
454 		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
455 		I915_WRITE(_FDI_RXA_MISC, temp);
456 		POSTING_READ(_FDI_RXA_MISC);
457 	}
458 
459 	DRM_ERROR("FDI link training failed!\n");
460 }
461 
462 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
463 {
464 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
465 	struct intel_digital_port *intel_dig_port =
466 		enc_to_dig_port(&encoder->base);
467 
468 	intel_dp->DP = intel_dig_port->saved_port_bits |
469 		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
470 	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
471 
472 }
473 
474 static struct intel_encoder *
475 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
476 {
477 	struct drm_device *dev = crtc->dev;
478 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
479 	struct intel_encoder *intel_encoder, *ret = NULL;
480 	int num_encoders = 0;
481 
482 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
483 		ret = intel_encoder;
484 		num_encoders++;
485 	}
486 
487 	if (num_encoders != 1)
488 		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
489 		     pipe_name(intel_crtc->pipe));
490 
491 	BUG_ON(ret == NULL);
492 	return ret;
493 }
494 
495 static struct intel_encoder *
496 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
497 {
498 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
499 	struct intel_encoder *ret = NULL;
500 	struct drm_atomic_state *state;
501 	int num_encoders = 0;
502 	int i;
503 
504 	state = crtc_state->base.state;
505 
506 	for (i = 0; i < state->num_connector; i++) {
507 		if (!state->connectors[i] ||
508 		    state->connector_states[i]->crtc != crtc_state->base.crtc)
509 			continue;
510 
511 		ret = to_intel_encoder(state->connector_states[i]->best_encoder);
512 		num_encoders++;
513 	}
514 
515 	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
516 	     pipe_name(crtc->pipe));
517 
518 	BUG_ON(ret == NULL);
519 	return ret;
520 }
521 
522 #define LC_FREQ 2700
523 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
524 
525 #define P_MIN 2
526 #define P_MAX 64
527 #define P_INC 2
528 
529 /* Constraints for PLL good behavior */
530 #define REF_MIN 48
531 #define REF_MAX 400
532 #define VCO_MIN 2400
533 #define VCO_MAX 4800
534 
535 #define abs_diff(a, b) ({			\
536 	typeof(a) __a = (a);			\
537 	typeof(b) __b = (b);			\
538 	(void) (&__a == &__b);			\
539 	__a > __b ? (__a - __b) : (__b - __a); })
540 
541 struct wrpll_rnp {
542 	unsigned p, n2, r2;
543 };
544 
545 static unsigned wrpll_get_budget_for_freq(int clock)
546 {
547 	unsigned budget;
548 
549 	switch (clock) {
550 	case 25175000:
551 	case 25200000:
552 	case 27000000:
553 	case 27027000:
554 	case 37762500:
555 	case 37800000:
556 	case 40500000:
557 	case 40541000:
558 	case 54000000:
559 	case 54054000:
560 	case 59341000:
561 	case 59400000:
562 	case 72000000:
563 	case 74176000:
564 	case 74250000:
565 	case 81000000:
566 	case 81081000:
567 	case 89012000:
568 	case 89100000:
569 	case 108000000:
570 	case 108108000:
571 	case 111264000:
572 	case 111375000:
573 	case 148352000:
574 	case 148500000:
575 	case 162000000:
576 	case 162162000:
577 	case 222525000:
578 	case 222750000:
579 	case 296703000:
580 	case 297000000:
581 		budget = 0;
582 		break;
583 	case 233500000:
584 	case 245250000:
585 	case 247750000:
586 	case 253250000:
587 	case 298000000:
588 		budget = 1500;
589 		break;
590 	case 169128000:
591 	case 169500000:
592 	case 179500000:
593 	case 202000000:
594 		budget = 2000;
595 		break;
596 	case 256250000:
597 	case 262500000:
598 	case 270000000:
599 	case 272500000:
600 	case 273750000:
601 	case 280750000:
602 	case 281250000:
603 	case 286000000:
604 	case 291750000:
605 		budget = 4000;
606 		break;
607 	case 267250000:
608 	case 268500000:
609 		budget = 5000;
610 		break;
611 	default:
612 		budget = 1000;
613 		break;
614 	}
615 
616 	return budget;
617 }
618 
619 static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
620 			     unsigned r2, unsigned n2, unsigned p,
621 			     struct wrpll_rnp *best)
622 {
623 	uint64_t a, b, c, d, diff, diff_best;
624 
625 	/* No best (r,n,p) yet */
626 	if (best->p == 0) {
627 		best->p = p;
628 		best->n2 = n2;
629 		best->r2 = r2;
630 		return;
631 	}
632 
633 	/*
634 	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
635 	 * freq2k.
636 	 *
637 	 * delta = 1e6 *
638 	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
639 	 *	   freq2k;
640 	 *
641 	 * and we would like delta <= budget.
642 	 *
643 	 * If the discrepancy is above the PPM-based budget, always prefer to
644 	 * improve upon the previous solution.  However, if you're within the
645 	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
646 	 */
647 	a = freq2k * budget * p * r2;
648 	b = freq2k * budget * best->p * best->r2;
649 	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
650 	diff_best = abs_diff(freq2k * best->p * best->r2,
651 			     LC_FREQ_2K * best->n2);
652 	c = 1000000 * diff;
653 	d = 1000000 * diff_best;
654 
655 	if (a < c && b < d) {
656 		/* If both are above the budget, pick the closer */
657 		if (best->p * best->r2 * diff < p * r2 * diff_best) {
658 			best->p = p;
659 			best->n2 = n2;
660 			best->r2 = r2;
661 		}
662 	} else if (a >= c && b < d) {
663 		/* If A is below the threshold but B is above it?  Update. */
664 		best->p = p;
665 		best->n2 = n2;
666 		best->r2 = r2;
667 	} else if (a >= c && b >= d) {
668 		/* Both are below the limit, so pick the higher n2/(r2*r2) */
669 		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
670 			best->p = p;
671 			best->n2 = n2;
672 			best->r2 = r2;
673 		}
674 	}
675 	/* Otherwise a < c && b >= d, do nothing */
676 }
677 
678 static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
679 				     int reg)
680 {
681 	int refclk = LC_FREQ;
682 	int n, p, r;
683 	u32 wrpll;
684 
685 	wrpll = I915_READ(reg);
686 	switch (wrpll & WRPLL_PLL_REF_MASK) {
687 	case WRPLL_PLL_SSC:
688 	case WRPLL_PLL_NON_SSC:
689 		/*
690 		 * We could calculate spread here, but our checking
691 		 * code only cares about 5% accuracy, and spread is a max of
692 		 * 0.5% downspread.
693 		 */
694 		refclk = 135;
695 		break;
696 	case WRPLL_PLL_LCPLL:
697 		refclk = LC_FREQ;
698 		break;
699 	default:
700 		WARN(1, "bad wrpll refclk\n");
701 		return 0;
702 	}
703 
704 	r = wrpll & WRPLL_DIVIDER_REF_MASK;
705 	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
706 	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
707 
708 	/* Convert to KHz, p & r have a fixed point portion */
709 	return (refclk * n * 100) / (p * r);
710 }
711 
712 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
713 			       uint32_t dpll)
714 {
715 	uint32_t cfgcr1_reg, cfgcr2_reg;
716 	uint32_t cfgcr1_val, cfgcr2_val;
717 	uint32_t p0, p1, p2, dco_freq;
718 
719 	cfgcr1_reg = GET_CFG_CR1_REG(dpll);
720 	cfgcr2_reg = GET_CFG_CR2_REG(dpll);
721 
722 	cfgcr1_val = I915_READ(cfgcr1_reg);
723 	cfgcr2_val = I915_READ(cfgcr2_reg);
724 
725 	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
726 	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
727 
728 	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
729 		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
730 	else
731 		p1 = 1;
732 
733 
734 	switch (p0) {
735 	case DPLL_CFGCR2_PDIV_1:
736 		p0 = 1;
737 		break;
738 	case DPLL_CFGCR2_PDIV_2:
739 		p0 = 2;
740 		break;
741 	case DPLL_CFGCR2_PDIV_3:
742 		p0 = 3;
743 		break;
744 	case DPLL_CFGCR2_PDIV_7:
745 		p0 = 7;
746 		break;
747 	}
748 
749 	switch (p2) {
750 	case DPLL_CFGCR2_KDIV_5:
751 		p2 = 5;
752 		break;
753 	case DPLL_CFGCR2_KDIV_2:
754 		p2 = 2;
755 		break;
756 	case DPLL_CFGCR2_KDIV_3:
757 		p2 = 3;
758 		break;
759 	case DPLL_CFGCR2_KDIV_1:
760 		p2 = 1;
761 		break;
762 	}
763 
764 	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
765 
766 	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
767 		1000) / 0x8000;
768 
769 	return dco_freq / (p0 * p1 * p2 * 5);
770 }
771 
772 
773 static void skl_ddi_clock_get(struct intel_encoder *encoder,
774 				struct intel_crtc_state *pipe_config)
775 {
776 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
777 	int link_clock = 0;
778 	uint32_t dpll_ctl1, dpll;
779 
780 	dpll = pipe_config->ddi_pll_sel;
781 
782 	dpll_ctl1 = I915_READ(DPLL_CTRL1);
783 
784 	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
785 		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
786 	} else {
787 		link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll);
788 		link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll);
789 
790 		switch (link_clock) {
791 		case DPLL_CRTL1_LINK_RATE_810:
792 			link_clock = 81000;
793 			break;
794 		case DPLL_CRTL1_LINK_RATE_1080:
795 			link_clock = 108000;
796 			break;
797 		case DPLL_CRTL1_LINK_RATE_1350:
798 			link_clock = 135000;
799 			break;
800 		case DPLL_CRTL1_LINK_RATE_1620:
801 			link_clock = 162000;
802 			break;
803 		case DPLL_CRTL1_LINK_RATE_2160:
804 			link_clock = 216000;
805 			break;
806 		case DPLL_CRTL1_LINK_RATE_2700:
807 			link_clock = 270000;
808 			break;
809 		default:
810 			WARN(1, "Unsupported link rate\n");
811 			break;
812 		}
813 		link_clock *= 2;
814 	}
815 
816 	pipe_config->port_clock = link_clock;
817 
818 	if (pipe_config->has_dp_encoder)
819 		pipe_config->base.adjusted_mode.crtc_clock =
820 			intel_dotclock_calculate(pipe_config->port_clock,
821 						 &pipe_config->dp_m_n);
822 	else
823 		pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
824 }
825 
826 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
827 			      struct intel_crtc_state *pipe_config)
828 {
829 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
830 	int link_clock = 0;
831 	u32 val, pll;
832 
833 	val = pipe_config->ddi_pll_sel;
834 	switch (val & PORT_CLK_SEL_MASK) {
835 	case PORT_CLK_SEL_LCPLL_810:
836 		link_clock = 81000;
837 		break;
838 	case PORT_CLK_SEL_LCPLL_1350:
839 		link_clock = 135000;
840 		break;
841 	case PORT_CLK_SEL_LCPLL_2700:
842 		link_clock = 270000;
843 		break;
844 	case PORT_CLK_SEL_WRPLL1:
845 		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
846 		break;
847 	case PORT_CLK_SEL_WRPLL2:
848 		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
849 		break;
850 	case PORT_CLK_SEL_SPLL:
851 		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
852 		if (pll == SPLL_PLL_FREQ_810MHz)
853 			link_clock = 81000;
854 		else if (pll == SPLL_PLL_FREQ_1350MHz)
855 			link_clock = 135000;
856 		else if (pll == SPLL_PLL_FREQ_2700MHz)
857 			link_clock = 270000;
858 		else {
859 			WARN(1, "bad spll freq\n");
860 			return;
861 		}
862 		break;
863 	default:
864 		WARN(1, "bad port clock sel\n");
865 		return;
866 	}
867 
868 	pipe_config->port_clock = link_clock * 2;
869 
870 	if (pipe_config->has_pch_encoder)
871 		pipe_config->base.adjusted_mode.crtc_clock =
872 			intel_dotclock_calculate(pipe_config->port_clock,
873 						 &pipe_config->fdi_m_n);
874 	else if (pipe_config->has_dp_encoder)
875 		pipe_config->base.adjusted_mode.crtc_clock =
876 			intel_dotclock_calculate(pipe_config->port_clock,
877 						 &pipe_config->dp_m_n);
878 	else
879 		pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
880 }
881 
882 void intel_ddi_clock_get(struct intel_encoder *encoder,
883 			 struct intel_crtc_state *pipe_config)
884 {
885 	struct drm_device *dev = encoder->base.dev;
886 
887 	if (INTEL_INFO(dev)->gen <= 8)
888 		hsw_ddi_clock_get(encoder, pipe_config);
889 	else
890 		skl_ddi_clock_get(encoder, pipe_config);
891 }
892 
893 static void
894 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
895 			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
896 {
897 	uint64_t freq2k;
898 	unsigned p, n2, r2;
899 	struct wrpll_rnp best = { 0, 0, 0 };
900 	unsigned budget;
901 
902 	freq2k = clock / 100;
903 
904 	budget = wrpll_get_budget_for_freq(clock);
905 
906 	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
907 	 * and directly pass the LC PLL to it. */
908 	if (freq2k == 5400000) {
909 		*n2_out = 2;
910 		*p_out = 1;
911 		*r2_out = 2;
912 		return;
913 	}
914 
915 	/*
916 	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
917 	 * the WR PLL.
918 	 *
919 	 * We want R so that REF_MIN <= Ref <= REF_MAX.
920 	 * Injecting R2 = 2 * R gives:
921 	 *   REF_MAX * r2 > LC_FREQ * 2 and
922 	 *   REF_MIN * r2 < LC_FREQ * 2
923 	 *
924 	 * Which means the desired boundaries for r2 are:
925 	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
926 	 *
927 	 */
928 	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
929 	     r2 <= LC_FREQ * 2 / REF_MIN;
930 	     r2++) {
931 
932 		/*
933 		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
934 		 *
935 		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
936 		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
937 		 *   VCO_MAX * r2 > n2 * LC_FREQ and
938 		 *   VCO_MIN * r2 < n2 * LC_FREQ)
939 		 *
940 		 * Which means the desired boundaries for n2 are:
941 		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
942 		 */
943 		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
944 		     n2 <= VCO_MAX * r2 / LC_FREQ;
945 		     n2++) {
946 
947 			for (p = P_MIN; p <= P_MAX; p += P_INC)
948 				wrpll_update_rnp(freq2k, budget,
949 						 r2, n2, p, &best);
950 		}
951 	}
952 
953 	*n2_out = best.n2;
954 	*p_out = best.p;
955 	*r2_out = best.r2;
956 }
957 
958 static bool
959 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
960 		   struct intel_crtc_state *crtc_state,
961 		   struct intel_encoder *intel_encoder,
962 		   int clock)
963 {
964 	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
965 		struct intel_shared_dpll *pll;
966 		uint32_t val;
967 		unsigned p, n2, r2;
968 
969 		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
970 
971 		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
972 		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
973 		      WRPLL_DIVIDER_POST(p);
974 
975 		crtc_state->dpll_hw_state.wrpll = val;
976 
977 		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
978 		if (pll == NULL) {
979 			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
980 					 pipe_name(intel_crtc->pipe));
981 			return false;
982 		}
983 
984 		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
985 	}
986 
987 	return true;
988 }
989 
990 struct skl_wrpll_params {
991 	uint32_t        dco_fraction;
992 	uint32_t        dco_integer;
993 	uint32_t        qdiv_ratio;
994 	uint32_t        qdiv_mode;
995 	uint32_t        kdiv;
996 	uint32_t        pdiv;
997 	uint32_t        central_freq;
998 };
999 
1000 static void
1001 skl_ddi_calculate_wrpll(int clock /* in Hz */,
1002 			struct skl_wrpll_params *wrpll_params)
1003 {
1004 	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1005 	uint64_t dco_central_freq[3] = {8400000000ULL,
1006 					9000000000ULL,
1007 					9600000000ULL};
1008 	uint32_t min_dco_deviation = 400;
1009 	uint32_t min_dco_index = 3;
1010 	uint32_t P0[4] = {1, 2, 3, 7};
1011 	uint32_t P2[4] = {1, 2, 3, 5};
1012 	bool found = false;
1013 	uint32_t candidate_p = 0;
1014 	uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
1015 	uint32_t candidate_p2[3] = {0};
1016 	uint32_t dco_central_freq_deviation[3];
1017 	uint32_t i, P1, k, dco_count;
1018 	bool retry_with_odd = false;
1019 	uint64_t dco_freq;
1020 
1021 	/* Determine P0, P1 or P2 */
1022 	for (dco_count = 0; dco_count < 3; dco_count++) {
1023 		found = false;
1024 		candidate_p =
1025 			div64_u64(dco_central_freq[dco_count], afe_clock);
1026 		if (retry_with_odd == false)
1027 			candidate_p = (candidate_p % 2 == 0 ?
1028 				candidate_p : candidate_p + 1);
1029 
1030 		for (P1 = 1; P1 < candidate_p; P1++) {
1031 			for (i = 0; i < 4; i++) {
1032 				if (!(P0[i] != 1 || P1 == 1))
1033 					continue;
1034 
1035 				for (k = 0; k < 4; k++) {
1036 					if (P1 != 1 && P2[k] != 2)
1037 						continue;
1038 
1039 					if (candidate_p == P0[i] * P1 * P2[k]) {
1040 						/* Found possible P0, P1, P2 */
1041 						found = true;
1042 						candidate_p0[dco_count] = P0[i];
1043 						candidate_p1[dco_count] = P1;
1044 						candidate_p2[dco_count] = P2[k];
1045 						goto found;
1046 					}
1047 
1048 				}
1049 			}
1050 		}
1051 
1052 found:
1053 		if (found) {
1054 			dco_central_freq_deviation[dco_count] =
1055 				div64_u64(10000 *
1056 					  abs_diff((candidate_p * afe_clock),
1057 						   dco_central_freq[dco_count]),
1058 					  dco_central_freq[dco_count]);
1059 
1060 			if (dco_central_freq_deviation[dco_count] <
1061 				min_dco_deviation) {
1062 				min_dco_deviation =
1063 					dco_central_freq_deviation[dco_count];
1064 				min_dco_index = dco_count;
1065 			}
1066 		}
1067 
1068 		if (min_dco_index > 2 && dco_count == 2) {
1069 			retry_with_odd = true;
1070 			dco_count = 0;
1071 		}
1072 	}
1073 
1074 	if (min_dco_index > 2) {
1075 		WARN(1, "No valid values found for the given pixel clock\n");
1076 	} else {
1077 		 wrpll_params->central_freq = dco_central_freq[min_dco_index];
1078 
1079 		 switch (dco_central_freq[min_dco_index]) {
1080 		 case 9600000000ULL:
1081 			wrpll_params->central_freq = 0;
1082 			break;
1083 		 case 9000000000ULL:
1084 			wrpll_params->central_freq = 1;
1085 			break;
1086 		 case 8400000000ULL:
1087 			wrpll_params->central_freq = 3;
1088 		 }
1089 
1090 		 switch (candidate_p0[min_dco_index]) {
1091 		 case 1:
1092 			wrpll_params->pdiv = 0;
1093 			break;
1094 		 case 2:
1095 			wrpll_params->pdiv = 1;
1096 			break;
1097 		 case 3:
1098 			wrpll_params->pdiv = 2;
1099 			break;
1100 		 case 7:
1101 			wrpll_params->pdiv = 4;
1102 			break;
1103 		 default:
1104 			WARN(1, "Incorrect PDiv\n");
1105 		 }
1106 
1107 		 switch (candidate_p2[min_dco_index]) {
1108 		 case 5:
1109 			wrpll_params->kdiv = 0;
1110 			break;
1111 		 case 2:
1112 			wrpll_params->kdiv = 1;
1113 			break;
1114 		 case 3:
1115 			wrpll_params->kdiv = 2;
1116 			break;
1117 		 case 1:
1118 			wrpll_params->kdiv = 3;
1119 			break;
1120 		 default:
1121 			WARN(1, "Incorrect KDiv\n");
1122 		 }
1123 
1124 		 wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
1125 		 wrpll_params->qdiv_mode =
1126 			(wrpll_params->qdiv_ratio == 1) ? 0 : 1;
1127 
1128 		 dco_freq = candidate_p0[min_dco_index] *
1129 			 candidate_p1[min_dco_index] *
1130 			 candidate_p2[min_dco_index] * afe_clock;
1131 
1132 		/*
1133 		* Intermediate values are in Hz.
1134 		* Divide by MHz to match bsepc
1135 		*/
1136 		 wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
1137 		 wrpll_params->dco_fraction =
1138 			 div_u64(((div_u64(dco_freq, 24) -
1139 				   wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
1140 
1141 	}
1142 }
1143 
1144 
1145 static bool
1146 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1147 		   struct intel_crtc_state *crtc_state,
1148 		   struct intel_encoder *intel_encoder,
1149 		   int clock)
1150 {
1151 	struct intel_shared_dpll *pll;
1152 	uint32_t ctrl1, cfgcr1, cfgcr2;
1153 
1154 	/*
1155 	 * See comment in intel_dpll_hw_state to understand why we always use 0
1156 	 * as the DPLL id in this function.
1157 	 */
1158 
1159 	ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1160 
1161 	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1162 		struct skl_wrpll_params wrpll_params = { 0, };
1163 
1164 		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1165 
1166 		skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
1167 
1168 		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1169 			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1170 			 wrpll_params.dco_integer;
1171 
1172 		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1173 			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1174 			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1175 			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1176 			 wrpll_params.central_freq;
1177 	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1178 		struct drm_encoder *encoder = &intel_encoder->base;
1179 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1180 
1181 		switch (intel_dp->link_bw) {
1182 		case DP_LINK_BW_1_62:
1183 			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810, 0);
1184 			break;
1185 		case DP_LINK_BW_2_7:
1186 			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350, 0);
1187 			break;
1188 		case DP_LINK_BW_5_4:
1189 			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700, 0);
1190 			break;
1191 		}
1192 
1193 		cfgcr1 = cfgcr2 = 0;
1194 	} else /* eDP */
1195 		return true;
1196 
1197 	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1198 	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1199 	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1200 
1201 	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1202 	if (pll == NULL) {
1203 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1204 				 pipe_name(intel_crtc->pipe));
1205 		return false;
1206 	}
1207 
1208 	/* shared DPLL id 0 is DPLL 1 */
1209 	crtc_state->ddi_pll_sel = pll->id + 1;
1210 
1211 	return true;
1212 }
1213 
1214 /*
1215  * Tries to find a *shared* PLL for the CRTC and store it in
1216  * intel_crtc->ddi_pll_sel.
1217  *
1218  * For private DPLLs, compute_config() should do the selection for us. This
1219  * function should be folded into compute_config() eventually.
1220  */
1221 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1222 			  struct intel_crtc_state *crtc_state)
1223 {
1224 	struct drm_device *dev = intel_crtc->base.dev;
1225 	struct intel_encoder *intel_encoder =
1226 		intel_ddi_get_crtc_new_encoder(crtc_state);
1227 	int clock = crtc_state->port_clock;
1228 
1229 	if (IS_SKYLAKE(dev))
1230 		return skl_ddi_pll_select(intel_crtc, crtc_state,
1231 					  intel_encoder, clock);
1232 	else
1233 		return hsw_ddi_pll_select(intel_crtc, crtc_state,
1234 					  intel_encoder, clock);
1235 }
1236 
1237 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1238 {
1239 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1240 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1241 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1242 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1243 	int type = intel_encoder->type;
1244 	uint32_t temp;
1245 
1246 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1247 		temp = TRANS_MSA_SYNC_CLK;
1248 		switch (intel_crtc->config->pipe_bpp) {
1249 		case 18:
1250 			temp |= TRANS_MSA_6_BPC;
1251 			break;
1252 		case 24:
1253 			temp |= TRANS_MSA_8_BPC;
1254 			break;
1255 		case 30:
1256 			temp |= TRANS_MSA_10_BPC;
1257 			break;
1258 		case 36:
1259 			temp |= TRANS_MSA_12_BPC;
1260 			break;
1261 		default:
1262 			BUG();
1263 		}
1264 		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1265 	}
1266 }
1267 
1268 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1269 {
1270 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1271 	struct drm_device *dev = crtc->dev;
1272 	struct drm_i915_private *dev_priv = dev->dev_private;
1273 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1274 	uint32_t temp;
1275 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1276 	if (state == true)
1277 		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1278 	else
1279 		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1280 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1281 }
1282 
1283 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1284 {
1285 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1286 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1287 	struct drm_encoder *encoder = &intel_encoder->base;
1288 	struct drm_device *dev = crtc->dev;
1289 	struct drm_i915_private *dev_priv = dev->dev_private;
1290 	enum i915_pipe pipe = intel_crtc->pipe;
1291 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1292 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1293 	int type = intel_encoder->type;
1294 	uint32_t temp;
1295 
1296 	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1297 	temp = TRANS_DDI_FUNC_ENABLE;
1298 	temp |= TRANS_DDI_SELECT_PORT(port);
1299 
1300 	switch (intel_crtc->config->pipe_bpp) {
1301 	case 18:
1302 		temp |= TRANS_DDI_BPC_6;
1303 		break;
1304 	case 24:
1305 		temp |= TRANS_DDI_BPC_8;
1306 		break;
1307 	case 30:
1308 		temp |= TRANS_DDI_BPC_10;
1309 		break;
1310 	case 36:
1311 		temp |= TRANS_DDI_BPC_12;
1312 		break;
1313 	default:
1314 		BUG();
1315 	}
1316 
1317 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1318 		temp |= TRANS_DDI_PVSYNC;
1319 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1320 		temp |= TRANS_DDI_PHSYNC;
1321 
1322 	if (cpu_transcoder == TRANSCODER_EDP) {
1323 		switch (pipe) {
1324 		case PIPE_A:
1325 			/* On Haswell, can only use the always-on power well for
1326 			 * eDP when not using the panel fitter, and when not
1327 			 * using motion blur mitigation (which we don't
1328 			 * support). */
1329 			if (IS_HASWELL(dev) &&
1330 			    (intel_crtc->config->pch_pfit.enabled ||
1331 			     intel_crtc->config->pch_pfit.force_thru))
1332 				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1333 			else
1334 				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1335 			break;
1336 		case PIPE_B:
1337 			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1338 			break;
1339 		case PIPE_C:
1340 			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1341 			break;
1342 		default:
1343 			BUG();
1344 			break;
1345 		}
1346 	}
1347 
1348 	if (type == INTEL_OUTPUT_HDMI) {
1349 		if (intel_crtc->config->has_hdmi_sink)
1350 			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1351 		else
1352 			temp |= TRANS_DDI_MODE_SELECT_DVI;
1353 
1354 	} else if (type == INTEL_OUTPUT_ANALOG) {
1355 		temp |= TRANS_DDI_MODE_SELECT_FDI;
1356 		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1357 
1358 	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1359 		   type == INTEL_OUTPUT_EDP) {
1360 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1361 
1362 		if (intel_dp->is_mst) {
1363 			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1364 		} else
1365 			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1366 
1367 		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1368 	} else if (type == INTEL_OUTPUT_DP_MST) {
1369 		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1370 
1371 		if (intel_dp->is_mst) {
1372 			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1373 		} else
1374 			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1375 
1376 		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1377 	} else {
1378 		WARN(1, "Invalid encoder type %d for pipe %c\n",
1379 		     intel_encoder->type, pipe_name(pipe));
1380 	}
1381 
1382 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1383 }
1384 
1385 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1386 				       enum transcoder cpu_transcoder)
1387 {
1388 	uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1389 	uint32_t val = I915_READ(reg);
1390 
1391 	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1392 	val |= TRANS_DDI_PORT_NONE;
1393 	I915_WRITE(reg, val);
1394 }
1395 
1396 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1397 {
1398 	struct drm_device *dev = intel_connector->base.dev;
1399 	struct drm_i915_private *dev_priv = dev->dev_private;
1400 	struct intel_encoder *intel_encoder = intel_connector->encoder;
1401 	int type = intel_connector->base.connector_type;
1402 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1403 	enum i915_pipe pipe = 0;
1404 	enum transcoder cpu_transcoder;
1405 	enum intel_display_power_domain power_domain;
1406 	uint32_t tmp;
1407 
1408 	power_domain = intel_display_port_power_domain(intel_encoder);
1409 	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1410 		return false;
1411 
1412 	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
1413 		return false;
1414 
1415 	if (port == PORT_A)
1416 		cpu_transcoder = TRANSCODER_EDP;
1417 	else
1418 		cpu_transcoder = (enum transcoder) pipe;
1419 
1420 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1421 
1422 	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1423 	case TRANS_DDI_MODE_SELECT_HDMI:
1424 	case TRANS_DDI_MODE_SELECT_DVI:
1425 		return (type == DRM_MODE_CONNECTOR_HDMIA);
1426 
1427 	case TRANS_DDI_MODE_SELECT_DP_SST:
1428 		if (type == DRM_MODE_CONNECTOR_eDP)
1429 			return true;
1430 		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1431 	case TRANS_DDI_MODE_SELECT_DP_MST:
1432 		/* if the transcoder is in MST state then
1433 		 * connector isn't connected */
1434 		return false;
1435 
1436 	case TRANS_DDI_MODE_SELECT_FDI:
1437 		return (type == DRM_MODE_CONNECTOR_VGA);
1438 
1439 	default:
1440 		return false;
1441 	}
1442 }
1443 
1444 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1445 			    enum i915_pipe *pipe)
1446 {
1447 	struct drm_device *dev = encoder->base.dev;
1448 	struct drm_i915_private *dev_priv = dev->dev_private;
1449 	enum port port = intel_ddi_get_encoder_port(encoder);
1450 	enum intel_display_power_domain power_domain;
1451 	u32 tmp;
1452 	int i;
1453 
1454 	power_domain = intel_display_port_power_domain(encoder);
1455 	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1456 		return false;
1457 
1458 	tmp = I915_READ(DDI_BUF_CTL(port));
1459 
1460 	if (!(tmp & DDI_BUF_CTL_ENABLE))
1461 		return false;
1462 
1463 	if (port == PORT_A) {
1464 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1465 
1466 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1467 		case TRANS_DDI_EDP_INPUT_A_ON:
1468 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
1469 			*pipe = PIPE_A;
1470 			break;
1471 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
1472 			*pipe = PIPE_B;
1473 			break;
1474 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
1475 			*pipe = PIPE_C;
1476 			break;
1477 		}
1478 
1479 		return true;
1480 	} else {
1481 		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1482 			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1483 
1484 			if ((tmp & TRANS_DDI_PORT_MASK)
1485 			    == TRANS_DDI_SELECT_PORT(port)) {
1486 				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
1487 					return false;
1488 
1489 				*pipe = i;
1490 				return true;
1491 			}
1492 		}
1493 	}
1494 
1495 	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1496 
1497 	return false;
1498 }
1499 
1500 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1501 {
1502 	struct drm_crtc *crtc = &intel_crtc->base;
1503 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1504 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1505 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1506 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507 
1508 	if (cpu_transcoder != TRANSCODER_EDP)
1509 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1510 			   TRANS_CLK_SEL_PORT(port));
1511 }
1512 
1513 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1514 {
1515 	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1516 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1517 
1518 	if (cpu_transcoder != TRANSCODER_EDP)
1519 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1520 			   TRANS_CLK_SEL_DISABLED);
1521 }
1522 
1523 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1524 {
1525 	struct drm_encoder *encoder = &intel_encoder->base;
1526 	struct drm_device *dev = encoder->dev;
1527 	struct drm_i915_private *dev_priv = dev->dev_private;
1528 	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1529 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1530 	int type = intel_encoder->type;
1531 
1532 	if (type == INTEL_OUTPUT_EDP) {
1533 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1534 		intel_edp_panel_on(intel_dp);
1535 	}
1536 
1537 	if (IS_SKYLAKE(dev)) {
1538 		uint32_t dpll = crtc->config->ddi_pll_sel;
1539 		uint32_t val;
1540 
1541 		/*
1542 		 * DPLL0 is used for eDP and is the only "private" DPLL (as
1543 		 * opposed to shared) on SKL
1544 		 */
1545 		if (type == INTEL_OUTPUT_EDP) {
1546 			WARN_ON(dpll != SKL_DPLL0);
1547 
1548 			val = I915_READ(DPLL_CTRL1);
1549 
1550 			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
1551 				 DPLL_CTRL1_SSC(dpll) |
1552 				 DPLL_CRTL1_LINK_RATE_MASK(dpll));
1553 			val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
1554 
1555 			I915_WRITE(DPLL_CTRL1, val);
1556 			POSTING_READ(DPLL_CTRL1);
1557 		}
1558 
1559 		/* DDI -> PLL mapping  */
1560 		val = I915_READ(DPLL_CTRL2);
1561 
1562 		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
1563 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
1564 		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
1565 			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
1566 
1567 		I915_WRITE(DPLL_CTRL2, val);
1568 
1569 	} else {
1570 		WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
1571 		I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
1572 	}
1573 
1574 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1575 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1576 
1577 		intel_ddi_init_dp_buf_reg(intel_encoder);
1578 
1579 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1580 		intel_dp_start_link_train(intel_dp);
1581 		intel_dp_complete_link_train(intel_dp);
1582 		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
1583 			intel_dp_stop_link_train(intel_dp);
1584 	} else if (type == INTEL_OUTPUT_HDMI) {
1585 		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1586 
1587 		intel_hdmi->set_infoframes(encoder,
1588 					   crtc->config->has_hdmi_sink,
1589 					   &crtc->config->base.adjusted_mode);
1590 	}
1591 }
1592 
1593 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1594 {
1595 	struct drm_encoder *encoder = &intel_encoder->base;
1596 	struct drm_device *dev = encoder->dev;
1597 	struct drm_i915_private *dev_priv = dev->dev_private;
1598 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1599 	int type = intel_encoder->type;
1600 	uint32_t val;
1601 	bool wait = false;
1602 
1603 	val = I915_READ(DDI_BUF_CTL(port));
1604 	if (val & DDI_BUF_CTL_ENABLE) {
1605 		val &= ~DDI_BUF_CTL_ENABLE;
1606 		I915_WRITE(DDI_BUF_CTL(port), val);
1607 		wait = true;
1608 	}
1609 
1610 	val = I915_READ(DP_TP_CTL(port));
1611 	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1612 	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1613 	I915_WRITE(DP_TP_CTL(port), val);
1614 
1615 	if (wait)
1616 		intel_wait_ddi_buf_idle(dev_priv, port);
1617 
1618 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1619 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1620 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1621 		intel_edp_panel_vdd_on(intel_dp);
1622 		intel_edp_panel_off(intel_dp);
1623 	}
1624 
1625 	if (IS_SKYLAKE(dev))
1626 		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
1627 					DPLL_CTRL2_DDI_CLK_OFF(port)));
1628 	else
1629 		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1630 }
1631 
1632 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1633 {
1634 	struct drm_encoder *encoder = &intel_encoder->base;
1635 	struct drm_crtc *crtc = encoder->crtc;
1636 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1637 	struct drm_device *dev = encoder->dev;
1638 	struct drm_i915_private *dev_priv = dev->dev_private;
1639 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1640 	int type = intel_encoder->type;
1641 
1642 	if (type == INTEL_OUTPUT_HDMI) {
1643 		struct intel_digital_port *intel_dig_port =
1644 			enc_to_dig_port(encoder);
1645 
1646 		/* In HDMI/DVI mode, the port width, and swing/emphasis values
1647 		 * are ignored so nothing special needs to be done besides
1648 		 * enabling the port.
1649 		 */
1650 		I915_WRITE(DDI_BUF_CTL(port),
1651 			   intel_dig_port->saved_port_bits |
1652 			   DDI_BUF_CTL_ENABLE);
1653 	} else if (type == INTEL_OUTPUT_EDP) {
1654 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1655 
1656 		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
1657 			intel_dp_stop_link_train(intel_dp);
1658 
1659 		intel_edp_backlight_on(intel_dp);
1660 		intel_psr_enable(intel_dp);
1661 		intel_edp_drrs_enable(intel_dp);
1662 	}
1663 
1664 	if (intel_crtc->config->has_audio) {
1665 		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1666 		intel_audio_codec_enable(intel_encoder);
1667 	}
1668 }
1669 
1670 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1671 {
1672 	struct drm_encoder *encoder = &intel_encoder->base;
1673 	struct drm_crtc *crtc = encoder->crtc;
1674 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1675 	int type = intel_encoder->type;
1676 	struct drm_device *dev = encoder->dev;
1677 	struct drm_i915_private *dev_priv = dev->dev_private;
1678 
1679 	if (intel_crtc->config->has_audio) {
1680 		intel_audio_codec_disable(intel_encoder);
1681 		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
1682 	}
1683 
1684 	if (type == INTEL_OUTPUT_EDP) {
1685 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1686 
1687 		intel_edp_drrs_disable(intel_dp);
1688 		intel_psr_disable(intel_dp);
1689 		intel_edp_backlight_off(intel_dp);
1690 	}
1691 }
1692 
1693 static int skl_get_cdclk_freq(struct drm_i915_private *dev_priv)
1694 {
1695 	uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
1696 	uint32_t cdctl = I915_READ(CDCLK_CTL);
1697 	uint32_t linkrate;
1698 
1699 	if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
1700 		WARN(1, "LCPLL1 not enabled\n");
1701 		return 24000; /* 24MHz is the cd freq with NSSC ref */
1702 	}
1703 
1704 	if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
1705 		return 540000;
1706 
1707 	linkrate = (I915_READ(DPLL_CTRL1) &
1708 		    DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1709 
1710 	if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
1711 	    linkrate == DPLL_CRTL1_LINK_RATE_1080) {
1712 		/* vco 8640 */
1713 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1714 		case CDCLK_FREQ_450_432:
1715 			return 432000;
1716 		case CDCLK_FREQ_337_308:
1717 			return 308570;
1718 		case CDCLK_FREQ_675_617:
1719 			return 617140;
1720 		default:
1721 			WARN(1, "Unknown cd freq selection\n");
1722 		}
1723 	} else {
1724 		/* vco 8100 */
1725 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1726 		case CDCLK_FREQ_450_432:
1727 			return 450000;
1728 		case CDCLK_FREQ_337_308:
1729 			return 337500;
1730 		case CDCLK_FREQ_675_617:
1731 			return 675000;
1732 		default:
1733 			WARN(1, "Unknown cd freq selection\n");
1734 		}
1735 	}
1736 
1737 	/* error case, do as if DPLL0 isn't enabled */
1738 	return 24000;
1739 }
1740 
1741 static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1742 {
1743 	uint32_t lcpll = I915_READ(LCPLL_CTL);
1744 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1745 
1746 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
1747 		return 800000;
1748 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1749 		return 450000;
1750 	else if (freq == LCPLL_CLK_FREQ_450)
1751 		return 450000;
1752 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
1753 		return 540000;
1754 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
1755 		return 337500;
1756 	else
1757 		return 675000;
1758 }
1759 
1760 static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1761 {
1762 	struct drm_device *dev = dev_priv->dev;
1763 	uint32_t lcpll = I915_READ(LCPLL_CTL);
1764 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1765 
1766 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
1767 		return 800000;
1768 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1769 		return 450000;
1770 	else if (freq == LCPLL_CLK_FREQ_450)
1771 		return 450000;
1772 	else if (IS_HSW_ULT(dev))
1773 		return 337500;
1774 	else
1775 		return 540000;
1776 }
1777 
1778 int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
1779 {
1780 	struct drm_device *dev = dev_priv->dev;
1781 
1782 	if (IS_SKYLAKE(dev))
1783 		return skl_get_cdclk_freq(dev_priv);
1784 
1785 	if (IS_BROADWELL(dev))
1786 		return bdw_get_cdclk_freq(dev_priv);
1787 
1788 	/* Haswell */
1789 	return hsw_get_cdclk_freq(dev_priv);
1790 }
1791 
1792 static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
1793 			       struct intel_shared_dpll *pll)
1794 {
1795 	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
1796 	POSTING_READ(WRPLL_CTL(pll->id));
1797 	udelay(20);
1798 }
1799 
1800 static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
1801 				struct intel_shared_dpll *pll)
1802 {
1803 	uint32_t val;
1804 
1805 	val = I915_READ(WRPLL_CTL(pll->id));
1806 	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
1807 	POSTING_READ(WRPLL_CTL(pll->id));
1808 }
1809 
1810 static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1811 				     struct intel_shared_dpll *pll,
1812 				     struct intel_dpll_hw_state *hw_state)
1813 {
1814 	uint32_t val;
1815 
1816 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1817 		return false;
1818 
1819 	val = I915_READ(WRPLL_CTL(pll->id));
1820 	hw_state->wrpll = val;
1821 
1822 	return val & WRPLL_PLL_ENABLE;
1823 }
1824 
1825 static const char * const hsw_ddi_pll_names[] = {
1826 	"WRPLL 1",
1827 	"WRPLL 2",
1828 };
1829 
1830 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
1831 {
1832 	int i;
1833 
1834 	dev_priv->num_shared_dpll = 2;
1835 
1836 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1837 		dev_priv->shared_dplls[i].id = i;
1838 		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
1839 		dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
1840 		dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
1841 		dev_priv->shared_dplls[i].get_hw_state =
1842 			hsw_ddi_pll_get_hw_state;
1843 	}
1844 }
1845 
1846 static const char * const skl_ddi_pll_names[] = {
1847 	"DPLL 1",
1848 	"DPLL 2",
1849 	"DPLL 3",
1850 };
1851 
1852 struct skl_dpll_regs {
1853 	u32 ctl, cfgcr1, cfgcr2;
1854 };
1855 
1856 /* this array is indexed by the *shared* pll id */
1857 static const struct skl_dpll_regs skl_dpll_regs[3] = {
1858 	{
1859 		/* DPLL 1 */
1860 		.ctl = LCPLL2_CTL,
1861 		.cfgcr1 = DPLL1_CFGCR1,
1862 		.cfgcr2 = DPLL1_CFGCR2,
1863 	},
1864 	{
1865 		/* DPLL 2 */
1866 		.ctl = WRPLL_CTL1,
1867 		.cfgcr1 = DPLL2_CFGCR1,
1868 		.cfgcr2 = DPLL2_CFGCR2,
1869 	},
1870 	{
1871 		/* DPLL 3 */
1872 		.ctl = WRPLL_CTL2,
1873 		.cfgcr1 = DPLL3_CFGCR1,
1874 		.cfgcr2 = DPLL3_CFGCR2,
1875 	},
1876 };
1877 
1878 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
1879 			       struct intel_shared_dpll *pll)
1880 {
1881 	uint32_t val;
1882 	unsigned int dpll;
1883 	const struct skl_dpll_regs *regs = skl_dpll_regs;
1884 
1885 	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
1886 	dpll = pll->id + 1;
1887 
1888 	val = I915_READ(DPLL_CTRL1);
1889 
1890 	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
1891 		 DPLL_CRTL1_LINK_RATE_MASK(dpll));
1892 	val |= pll->config.hw_state.ctrl1 << (dpll * 6);
1893 
1894 	I915_WRITE(DPLL_CTRL1, val);
1895 	POSTING_READ(DPLL_CTRL1);
1896 
1897 	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
1898 	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
1899 	POSTING_READ(regs[pll->id].cfgcr1);
1900 	POSTING_READ(regs[pll->id].cfgcr2);
1901 
1902 	/* the enable bit is always bit 31 */
1903 	I915_WRITE(regs[pll->id].ctl,
1904 		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
1905 
1906 	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
1907 		DRM_ERROR("DPLL %d not locked\n", dpll);
1908 }
1909 
1910 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
1911 				struct intel_shared_dpll *pll)
1912 {
1913 	const struct skl_dpll_regs *regs = skl_dpll_regs;
1914 
1915 	/* the enable bit is always bit 31 */
1916 	I915_WRITE(regs[pll->id].ctl,
1917 		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
1918 	POSTING_READ(regs[pll->id].ctl);
1919 }
1920 
1921 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1922 				     struct intel_shared_dpll *pll,
1923 				     struct intel_dpll_hw_state *hw_state)
1924 {
1925 	uint32_t val;
1926 	unsigned int dpll;
1927 	const struct skl_dpll_regs *regs = skl_dpll_regs;
1928 
1929 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1930 		return false;
1931 
1932 	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
1933 	dpll = pll->id + 1;
1934 
1935 	val = I915_READ(regs[pll->id].ctl);
1936 	if (!(val & LCPLL_PLL_ENABLE))
1937 		return false;
1938 
1939 	val = I915_READ(DPLL_CTRL1);
1940 	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
1941 
1942 	/* avoid reading back stale values if HDMI mode is not enabled */
1943 	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
1944 		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
1945 		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
1946 	}
1947 
1948 	return true;
1949 }
1950 
1951 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
1952 {
1953 	int i;
1954 
1955 	dev_priv->num_shared_dpll = 3;
1956 
1957 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1958 		dev_priv->shared_dplls[i].id = i;
1959 		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
1960 		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
1961 		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
1962 		dev_priv->shared_dplls[i].get_hw_state =
1963 			skl_ddi_pll_get_hw_state;
1964 	}
1965 }
1966 
1967 void intel_ddi_pll_init(struct drm_device *dev)
1968 {
1969 	struct drm_i915_private *dev_priv = dev->dev_private;
1970 	uint32_t val = I915_READ(LCPLL_CTL);
1971 
1972 	if (IS_SKYLAKE(dev))
1973 		skl_shared_dplls_init(dev_priv);
1974 	else
1975 		hsw_shared_dplls_init(dev_priv);
1976 
1977 	DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
1978 		      intel_ddi_get_cdclk_freq(dev_priv));
1979 
1980 	if (IS_SKYLAKE(dev)) {
1981 		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
1982 			DRM_ERROR("LCPLL1 is disabled\n");
1983 	} else {
1984 		/*
1985 		 * The LCPLL register should be turned on by the BIOS. For now
1986 		 * let's just check its state and print errors in case
1987 		 * something is wrong.  Don't even try to turn it on.
1988 		 */
1989 
1990 		if (val & LCPLL_CD_SOURCE_FCLK)
1991 			DRM_ERROR("CDCLK source is not LCPLL\n");
1992 
1993 		if (val & LCPLL_PLL_DISABLE)
1994 			DRM_ERROR("LCPLL is disabled\n");
1995 	}
1996 }
1997 
1998 void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
1999 {
2000 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2001 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2002 	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
2003 	enum port port = intel_dig_port->port;
2004 	uint32_t val;
2005 	bool wait = false;
2006 
2007 	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
2008 		val = I915_READ(DDI_BUF_CTL(port));
2009 		if (val & DDI_BUF_CTL_ENABLE) {
2010 			val &= ~DDI_BUF_CTL_ENABLE;
2011 			I915_WRITE(DDI_BUF_CTL(port), val);
2012 			wait = true;
2013 		}
2014 
2015 		val = I915_READ(DP_TP_CTL(port));
2016 		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2017 		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2018 		I915_WRITE(DP_TP_CTL(port), val);
2019 		POSTING_READ(DP_TP_CTL(port));
2020 
2021 		if (wait)
2022 			intel_wait_ddi_buf_idle(dev_priv, port);
2023 	}
2024 
2025 	val = DP_TP_CTL_ENABLE |
2026 	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2027 	if (intel_dp->is_mst)
2028 		val |= DP_TP_CTL_MODE_MST;
2029 	else {
2030 		val |= DP_TP_CTL_MODE_SST;
2031 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2032 			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
2033 	}
2034 	I915_WRITE(DP_TP_CTL(port), val);
2035 	POSTING_READ(DP_TP_CTL(port));
2036 
2037 	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
2038 	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
2039 	POSTING_READ(DDI_BUF_CTL(port));
2040 
2041 	udelay(600);
2042 }
2043 
2044 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
2045 {
2046 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2047 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2048 	uint32_t val;
2049 
2050 	intel_ddi_post_disable(intel_encoder);
2051 
2052 	val = I915_READ(_FDI_RXA_CTL);
2053 	val &= ~FDI_RX_ENABLE;
2054 	I915_WRITE(_FDI_RXA_CTL, val);
2055 
2056 	val = I915_READ(_FDI_RXA_MISC);
2057 	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
2058 	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
2059 	I915_WRITE(_FDI_RXA_MISC, val);
2060 
2061 	val = I915_READ(_FDI_RXA_CTL);
2062 	val &= ~FDI_PCDCLK;
2063 	I915_WRITE(_FDI_RXA_CTL, val);
2064 
2065 	val = I915_READ(_FDI_RXA_CTL);
2066 	val &= ~FDI_RX_PLL_ENABLE;
2067 	I915_WRITE(_FDI_RXA_CTL, val);
2068 }
2069 
2070 static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
2071 {
2072 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
2073 	int type = intel_dig_port->base.type;
2074 
2075 	if (type != INTEL_OUTPUT_DISPLAYPORT &&
2076 	    type != INTEL_OUTPUT_EDP &&
2077 	    type != INTEL_OUTPUT_UNKNOWN) {
2078 		return;
2079 	}
2080 
2081 	intel_dp_hot_plug(intel_encoder);
2082 }
2083 
2084 void intel_ddi_get_config(struct intel_encoder *encoder,
2085 			  struct intel_crtc_state *pipe_config)
2086 {
2087 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
2088 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2089 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
2090 	struct intel_hdmi *intel_hdmi;
2091 	u32 temp, flags = 0;
2092 
2093 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
2094 	if (temp & TRANS_DDI_PHSYNC)
2095 		flags |= DRM_MODE_FLAG_PHSYNC;
2096 	else
2097 		flags |= DRM_MODE_FLAG_NHSYNC;
2098 	if (temp & TRANS_DDI_PVSYNC)
2099 		flags |= DRM_MODE_FLAG_PVSYNC;
2100 	else
2101 		flags |= DRM_MODE_FLAG_NVSYNC;
2102 
2103 	pipe_config->base.adjusted_mode.flags |= flags;
2104 
2105 	switch (temp & TRANS_DDI_BPC_MASK) {
2106 	case TRANS_DDI_BPC_6:
2107 		pipe_config->pipe_bpp = 18;
2108 		break;
2109 	case TRANS_DDI_BPC_8:
2110 		pipe_config->pipe_bpp = 24;
2111 		break;
2112 	case TRANS_DDI_BPC_10:
2113 		pipe_config->pipe_bpp = 30;
2114 		break;
2115 	case TRANS_DDI_BPC_12:
2116 		pipe_config->pipe_bpp = 36;
2117 		break;
2118 	default:
2119 		break;
2120 	}
2121 
2122 	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
2123 	case TRANS_DDI_MODE_SELECT_HDMI:
2124 		pipe_config->has_hdmi_sink = true;
2125 		intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2126 
2127 		if (intel_hdmi->infoframe_enabled(&encoder->base))
2128 			pipe_config->has_infoframe = true;
2129 		break;
2130 	case TRANS_DDI_MODE_SELECT_DVI:
2131 	case TRANS_DDI_MODE_SELECT_FDI:
2132 		break;
2133 	case TRANS_DDI_MODE_SELECT_DP_SST:
2134 	case TRANS_DDI_MODE_SELECT_DP_MST:
2135 		pipe_config->has_dp_encoder = true;
2136 		intel_dp_get_m_n(intel_crtc, pipe_config);
2137 		break;
2138 	default:
2139 		break;
2140 	}
2141 
2142 	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2143 		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2144 		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2145 			pipe_config->has_audio = true;
2146 	}
2147 
2148 	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
2149 	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2150 		/*
2151 		 * This is a big fat ugly hack.
2152 		 *
2153 		 * Some machines in UEFI boot mode provide us a VBT that has 18
2154 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2155 		 * unknown we fail to light up. Yet the same BIOS boots up with
2156 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2157 		 * max, not what it tells us to use.
2158 		 *
2159 		 * Note: This will still be broken if the eDP panel is not lit
2160 		 * up by the BIOS, and thus we can't get the mode at module
2161 		 * load.
2162 		 */
2163 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2164 			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2165 		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2166 	}
2167 
2168 	intel_ddi_clock_get(encoder, pipe_config);
2169 }
2170 
2171 static void intel_ddi_destroy(struct drm_encoder *encoder)
2172 {
2173 	/* HDMI has nothing special to destroy, so we can go with this. */
2174 	intel_dp_encoder_destroy(encoder);
2175 }
2176 
2177 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2178 				     struct intel_crtc_state *pipe_config)
2179 {
2180 	int type = encoder->type;
2181 	int port = intel_ddi_get_encoder_port(encoder);
2182 
2183 	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
2184 
2185 	if (port == PORT_A)
2186 		pipe_config->cpu_transcoder = TRANSCODER_EDP;
2187 
2188 	if (type == INTEL_OUTPUT_HDMI)
2189 		return intel_hdmi_compute_config(encoder, pipe_config);
2190 	else
2191 		return intel_dp_compute_config(encoder, pipe_config);
2192 }
2193 
2194 static const struct drm_encoder_funcs intel_ddi_funcs = {
2195 	.destroy = intel_ddi_destroy,
2196 };
2197 
2198 static struct intel_connector *
2199 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
2200 {
2201 	struct intel_connector *connector;
2202 	enum port port = intel_dig_port->port;
2203 
2204 	connector = intel_connector_alloc();
2205 	if (!connector)
2206 		return NULL;
2207 
2208 	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
2209 	if (!intel_dp_init_connector(intel_dig_port, connector)) {
2210 		kfree(connector);
2211 		return NULL;
2212 	}
2213 
2214 	return connector;
2215 }
2216 
2217 static struct intel_connector *
2218 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
2219 {
2220 	struct intel_connector *connector;
2221 	enum port port = intel_dig_port->port;
2222 
2223 	connector = intel_connector_alloc();
2224 	if (!connector)
2225 		return NULL;
2226 
2227 	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
2228 	intel_hdmi_init_connector(intel_dig_port, connector);
2229 
2230 	return connector;
2231 }
2232 
2233 void intel_ddi_init(struct drm_device *dev, enum port port)
2234 {
2235 	struct drm_i915_private *dev_priv = dev->dev_private;
2236 	struct intel_digital_port *intel_dig_port;
2237 	struct intel_encoder *intel_encoder;
2238 	struct drm_encoder *encoder;
2239 	bool init_hdmi, init_dp;
2240 
2241 	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
2242 		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
2243 	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
2244 	if (!init_dp && !init_hdmi) {
2245 		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
2246 			      port_name(port));
2247 		init_hdmi = true;
2248 		init_dp = true;
2249 	}
2250 
2251 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2252 	if (!intel_dig_port)
2253 		return;
2254 
2255 	intel_encoder = &intel_dig_port->base;
2256 	encoder = &intel_encoder->base;
2257 
2258 	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
2259 			 DRM_MODE_ENCODER_TMDS);
2260 
2261 	intel_encoder->compute_config = intel_ddi_compute_config;
2262 	intel_encoder->enable = intel_enable_ddi;
2263 	intel_encoder->pre_enable = intel_ddi_pre_enable;
2264 	intel_encoder->disable = intel_disable_ddi;
2265 	intel_encoder->post_disable = intel_ddi_post_disable;
2266 	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2267 	intel_encoder->get_config = intel_ddi_get_config;
2268 
2269 	intel_dig_port->port = port;
2270 	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
2271 					  (DDI_BUF_PORT_REVERSAL |
2272 					   DDI_A_4_LANES);
2273 
2274 	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2275 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2276 	intel_encoder->cloneable = 0;
2277 	intel_encoder->hot_plug = intel_ddi_hot_plug;
2278 
2279 	if (init_dp) {
2280 		if (!intel_ddi_init_dp_connector(intel_dig_port))
2281 			goto err;
2282 
2283 		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2284 		dev_priv->hpd_irq_port[port] = intel_dig_port;
2285 	}
2286 
2287 	/* In theory we don't need the encoder->type check, but leave it just in
2288 	 * case we have some really bad VBTs... */
2289 	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
2290 		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
2291 			goto err;
2292 	}
2293 
2294 	return;
2295 
2296 err:
2297 	drm_encoder_cleanup(encoder);
2298 	kfree(intel_dig_port);
2299 }
2300