xref: /dragonfly/sys/dev/drm/i915/intel_ddi.c (revision 5cef369f)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <asm/int-ll64.h>
31 
32 struct ddi_buf_trans {
33 	u32 trans1;	/* balance leg enable, de-emph level */
34 	u32 trans2;	/* vref sel, vswing */
35 };
36 
37 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
38  * them for both DP and FDI transports, allowing those ports to
39  * automatically adapt to HDMI connections as well
40  */
41 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 	{ 0x00FFFFFF, 0x0006000E },
43 	{ 0x00D75FFF, 0x0005000A },
44 	{ 0x00C30FFF, 0x00040006 },
45 	{ 0x80AAAFFF, 0x000B0000 },
46 	{ 0x00FFFFFF, 0x0005000A },
47 	{ 0x00D75FFF, 0x000C0004 },
48 	{ 0x80C30FFF, 0x000B0000 },
49 	{ 0x00FFFFFF, 0x00040006 },
50 	{ 0x80D75FFF, 0x000B0000 },
51 };
52 
53 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 	{ 0x00FFFFFF, 0x0007000E },
55 	{ 0x00D75FFF, 0x000F000A },
56 	{ 0x00C30FFF, 0x00060006 },
57 	{ 0x00AAAFFF, 0x001E0000 },
58 	{ 0x00FFFFFF, 0x000F000A },
59 	{ 0x00D75FFF, 0x00160004 },
60 	{ 0x00C30FFF, 0x001E0000 },
61 	{ 0x00FFFFFF, 0x00060006 },
62 	{ 0x00D75FFF, 0x001E0000 },
63 };
64 
65 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
66 					/* Idx	NT mV d	T mV d	db	*/
67 	{ 0x00FFFFFF, 0x0006000E },	/* 0:	400	400	0	*/
68 	{ 0x00E79FFF, 0x000E000C },	/* 1:	400	500	2	*/
69 	{ 0x00D75FFF, 0x0005000A },	/* 2:	400	600	3.5	*/
70 	{ 0x00FFFFFF, 0x0005000A },	/* 3:	600	600	0	*/
71 	{ 0x00E79FFF, 0x001D0007 },	/* 4:	600	750	2	*/
72 	{ 0x00D75FFF, 0x000C0004 },	/* 5:	600	900	3.5	*/
73 	{ 0x00FFFFFF, 0x00040006 },	/* 6:	800	800	0	*/
74 	{ 0x80E79FFF, 0x00030002 },	/* 7:	800	1000	2	*/
75 	{ 0x00FFFFFF, 0x00140005 },	/* 8:	850	850	0	*/
76 	{ 0x00FFFFFF, 0x000C0004 },	/* 9:	900	900	0	*/
77 	{ 0x00FFFFFF, 0x001C0003 },	/* 10:	950	950	0	*/
78 	{ 0x80FFFFFF, 0x00030002 },	/* 11:	1000	1000	0	*/
79 };
80 
81 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 	{ 0x00FFFFFF, 0x00000012 },
83 	{ 0x00EBAFFF, 0x00020011 },
84 	{ 0x00C71FFF, 0x0006000F },
85 	{ 0x00AAAFFF, 0x000E000A },
86 	{ 0x00FFFFFF, 0x00020011 },
87 	{ 0x00DB6FFF, 0x0005000F },
88 	{ 0x00BEEFFF, 0x000A000C },
89 	{ 0x00FFFFFF, 0x0005000F },
90 	{ 0x00DB6FFF, 0x000A000C },
91 };
92 
93 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 	{ 0x00FFFFFF, 0x0007000E },
95 	{ 0x00D75FFF, 0x000E000A },
96 	{ 0x00BEFFFF, 0x00140006 },
97 	{ 0x80B2CFFF, 0x001B0002 },
98 	{ 0x00FFFFFF, 0x000E000A },
99 	{ 0x00DB6FFF, 0x00160005 },
100 	{ 0x80C71FFF, 0x001A0002 },
101 	{ 0x00F7DFFF, 0x00180004 },
102 	{ 0x80D75FFF, 0x001B0002 },
103 };
104 
105 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 	{ 0x00FFFFFF, 0x0001000E },
107 	{ 0x00D75FFF, 0x0004000A },
108 	{ 0x00C30FFF, 0x00070006 },
109 	{ 0x00AAAFFF, 0x000C0000 },
110 	{ 0x00FFFFFF, 0x0004000A },
111 	{ 0x00D75FFF, 0x00090004 },
112 	{ 0x00C30FFF, 0x000C0000 },
113 	{ 0x00FFFFFF, 0x00070006 },
114 	{ 0x00D75FFF, 0x000C0000 },
115 };
116 
117 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
118 					/* Idx	NT mV d	T mV df	db	*/
119 	{ 0x00FFFFFF, 0x0007000E },	/* 0:	400	400	0	*/
120 	{ 0x00D75FFF, 0x000E000A },	/* 1:	400	600	3.5	*/
121 	{ 0x00BEFFFF, 0x00140006 },	/* 2:	400	800	6	*/
122 	{ 0x00FFFFFF, 0x0009000D },	/* 3:	450	450	0	*/
123 	{ 0x00FFFFFF, 0x000E000A },	/* 4:	600	600	0	*/
124 	{ 0x00D7FFFF, 0x00140006 },	/* 5:	600	800	2.5	*/
125 	{ 0x80CB2FFF, 0x001B0002 },	/* 6:	600	1000	4.5	*/
126 	{ 0x00FFFFFF, 0x00140006 },	/* 7:	800	800	0	*/
127 	{ 0x80E79FFF, 0x001B0002 },	/* 8:	800	1000	2	*/
128 	{ 0x80FFFFFF, 0x001B0002 },	/* 9:	1000	1000	0	*/
129 };
130 
131 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
132 	{ 0x00000018, 0x000000a2 },
133 	{ 0x00004014, 0x0000009B },
134 	{ 0x00006012, 0x00000088 },
135 	{ 0x00008010, 0x00000087 },
136 	{ 0x00000018, 0x0000009B },
137 	{ 0x00004014, 0x00000088 },
138 	{ 0x00006012, 0x00000087 },
139 	{ 0x00000018, 0x00000088 },
140 	{ 0x00004014, 0x00000087 },
141 };
142 
143 /* eDP 1.4 low vswing translation parameters */
144 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
145 	{ 0x00000018, 0x000000a8 },
146 	{ 0x00002016, 0x000000ab },
147 	{ 0x00006012, 0x000000a2 },
148 	{ 0x00008010, 0x00000088 },
149 	{ 0x00000018, 0x000000ab },
150 	{ 0x00004014, 0x000000a2 },
151 	{ 0x00006012, 0x000000a6 },
152 	{ 0x00000018, 0x000000a2 },
153 	{ 0x00005013, 0x0000009c },
154 	{ 0x00000018, 0x00000088 },
155 };
156 
157 
158 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
159 	{ 0x00000018, 0x000000ac },
160 	{ 0x00005012, 0x0000009d },
161 	{ 0x00007011, 0x00000088 },
162 	{ 0x00000018, 0x000000a1 },
163 	{ 0x00000018, 0x00000098 },
164 	{ 0x00004013, 0x00000088 },
165 	{ 0x00006012, 0x00000087 },
166 	{ 0x00000018, 0x000000df },
167 	{ 0x00003015, 0x00000087 },
168 	{ 0x00003015, 0x000000c7 },
169 	{ 0x00000018, 0x000000c7 },
170 };
171 
172 struct bxt_ddi_buf_trans {
173 	u32 margin;	/* swing value */
174 	u32 scale;	/* scale value */
175 	u32 enable;	/* scale enable */
176 	u32 deemphasis;
177 	bool default_index; /* true if the entry represents default value */
178 };
179 
180 /* BSpec does not define separate vswing/pre-emphasis values for eDP.
181  * Using DP values for eDP as well.
182  */
183 static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
184 					/* Idx	NT mV diff	db  */
185 	{ 52,  0,    0, 128, true  },	/* 0:	400		0   */
186 	{ 78,  0,    0, 85,  false },	/* 1:	400		3.5 */
187 	{ 104, 0,    0, 64,  false },	/* 2:	400		6   */
188 	{ 154, 0,    0, 43,  false },	/* 3:	400		9.5 */
189 	{ 77,  0,    0, 128, false },	/* 4:	600		0   */
190 	{ 116, 0,    0, 85,  false },	/* 5:	600		3.5 */
191 	{ 154, 0,    0, 64,  false },	/* 6:	600		6   */
192 	{ 102, 0,    0, 128, false },	/* 7:	800		0   */
193 	{ 154, 0,    0, 85,  false },	/* 8:	800		3.5 */
194 	{ 154, 0x9A, 1, 128, false },  /* 9:	1200		0   */
195 };
196 
197 /* BSpec has 2 recommended values - entries 0 and 8.
198  * Using the entry with higher vswing.
199  */
200 static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
201 					/* Idx	NT mV diff	db  */
202 	{ 52,  0,    0, 128, false },	/* 0:	400		0   */
203 	{ 52,  0,    0, 85,  false },	/* 1:	400		3.5 */
204 	{ 52,  0,    0, 64,  false },	/* 2:	400		6   */
205 	{ 42,  0,    0, 43,  false },	/* 3:	400		9.5 */
206 	{ 77,  0,    0, 128, false },	/* 4:	600		0   */
207 	{ 77,  0,    0, 85,  false },	/* 5:	600		3.5 */
208 	{ 77,  0,    0, 64,  false },	/* 6:	600		6   */
209 	{ 102, 0,    0, 128, false },	/* 7:	800		0   */
210 	{ 102, 0,    0, 85,  false },	/* 8:	800		3.5 */
211 	{ 154, 0x9A, 1, 128, true },	/* 9:	1200		0   */
212 };
213 
214 static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
215 				 struct intel_digital_port **dig_port,
216 				 enum port *port)
217 {
218 	struct drm_encoder *encoder = &intel_encoder->base;
219 	int type = intel_encoder->type;
220 
221 	if (type == INTEL_OUTPUT_DP_MST) {
222 		*dig_port = enc_to_mst(encoder)->primary;
223 		*port = (*dig_port)->port;
224 	} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
225 	    type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
226 		*dig_port = enc_to_dig_port(encoder);
227 		*port = (*dig_port)->port;
228 	} else if (type == INTEL_OUTPUT_ANALOG) {
229 		*dig_port = NULL;
230 		*port = PORT_E;
231 	} else {
232 		DRM_ERROR("Invalid DDI encoder type %d\n", type);
233 		BUG();
234 	}
235 }
236 
237 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
238 {
239 	struct intel_digital_port *dig_port;
240 	enum port port;
241 
242 	ddi_get_encoder_port(intel_encoder, &dig_port, &port);
243 
244 	return port;
245 }
246 
247 static bool
248 intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
249 {
250 	return intel_dig_port->hdmi.hdmi_reg;
251 }
252 
253 /*
254  * Starting with Haswell, DDI port buffers must be programmed with correct
255  * values in advance. The buffer values are different for FDI and DP modes,
256  * but the HDMI/DVI fields are shared among those. So we program the DDI
257  * in either FDI or DP modes only, as HDMI connections will work with both
258  * of those
259  */
260 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
261 				      bool supports_hdmi)
262 {
263 	struct drm_i915_private *dev_priv = dev->dev_private;
264 	u32 reg;
265 	int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
266 	    size;
267 	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
268 	const struct ddi_buf_trans *ddi_translations_fdi;
269 	const struct ddi_buf_trans *ddi_translations_dp;
270 	const struct ddi_buf_trans *ddi_translations_edp;
271 	const struct ddi_buf_trans *ddi_translations_hdmi;
272 	const struct ddi_buf_trans *ddi_translations;
273 
274 	if (IS_BROXTON(dev)) {
275 		if (!supports_hdmi)
276 			return;
277 
278 		/* Vswing programming for HDMI */
279 		bxt_ddi_vswing_sequence(dev, hdmi_level, port,
280 					INTEL_OUTPUT_HDMI);
281 		return;
282 	} else if (IS_SKYLAKE(dev)) {
283 		ddi_translations_fdi = NULL;
284 		ddi_translations_dp = skl_ddi_translations_dp;
285 		n_dp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
286 		if (dev_priv->edp_low_vswing) {
287 			ddi_translations_edp = skl_ddi_translations_edp;
288 			n_edp_entries = ARRAY_SIZE(skl_ddi_translations_edp);
289 		} else {
290 			ddi_translations_edp = skl_ddi_translations_dp;
291 			n_edp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
292 		}
293 
294 		ddi_translations_hdmi = skl_ddi_translations_hdmi;
295 		n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
296 		hdmi_default_entry = 7;
297 	} else if (IS_BROADWELL(dev)) {
298 		ddi_translations_fdi = bdw_ddi_translations_fdi;
299 		ddi_translations_dp = bdw_ddi_translations_dp;
300 		ddi_translations_edp = bdw_ddi_translations_edp;
301 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
302 		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
303 		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
304 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
305 		hdmi_default_entry = 7;
306 	} else if (IS_HASWELL(dev)) {
307 		ddi_translations_fdi = hsw_ddi_translations_fdi;
308 		ddi_translations_dp = hsw_ddi_translations_dp;
309 		ddi_translations_edp = hsw_ddi_translations_dp;
310 		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
311 		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
312 		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
313 		hdmi_default_entry = 6;
314 	} else {
315 		WARN(1, "ddi translation table missing\n");
316 		ddi_translations_edp = bdw_ddi_translations_dp;
317 		ddi_translations_fdi = bdw_ddi_translations_fdi;
318 		ddi_translations_dp = bdw_ddi_translations_dp;
319 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
320 		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
321 		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
322 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
323 		hdmi_default_entry = 7;
324 	}
325 
326 	switch (port) {
327 	case PORT_A:
328 		ddi_translations = ddi_translations_edp;
329 		size = n_edp_entries;
330 		break;
331 	case PORT_B:
332 	case PORT_C:
333 		ddi_translations = ddi_translations_dp;
334 		size = n_dp_entries;
335 		break;
336 	case PORT_D:
337 		if (intel_dp_is_edp(dev, PORT_D)) {
338 			ddi_translations = ddi_translations_edp;
339 			size = n_edp_entries;
340 		} else {
341 			ddi_translations = ddi_translations_dp;
342 			size = n_dp_entries;
343 		}
344 		break;
345 	case PORT_E:
346 		if (ddi_translations_fdi)
347 			ddi_translations = ddi_translations_fdi;
348 		else
349 			ddi_translations = ddi_translations_dp;
350 		size = n_dp_entries;
351 		break;
352 	default:
353 		BUG();
354 	}
355 
356 	for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
357 		I915_WRITE(reg, ddi_translations[i].trans1);
358 		reg += 4;
359 		I915_WRITE(reg, ddi_translations[i].trans2);
360 		reg += 4;
361 	}
362 
363 	if (!supports_hdmi)
364 		return;
365 
366 	/* Choose a good default if VBT is badly populated */
367 	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
368 	    hdmi_level >= n_hdmi_entries)
369 		hdmi_level = hdmi_default_entry;
370 
371 	/* Entry 9 is for HDMI: */
372 	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
373 	reg += 4;
374 	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
375 	reg += 4;
376 }
377 
378 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
379  * mode and port E for FDI.
380  */
381 void intel_prepare_ddi(struct drm_device *dev)
382 {
383 	struct intel_encoder *intel_encoder;
384 	bool visited[I915_MAX_PORTS] = { 0, };
385 
386 	if (!HAS_DDI(dev))
387 		return;
388 
389 	for_each_intel_encoder(dev, intel_encoder) {
390 		struct intel_digital_port *intel_dig_port;
391 		enum port port;
392 		bool supports_hdmi;
393 
394 		ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
395 
396 		if (visited[port])
397 			continue;
398 
399 		supports_hdmi = intel_dig_port &&
400 				intel_dig_port_supports_hdmi(intel_dig_port);
401 
402 		intel_prepare_ddi_buffers(dev, port, supports_hdmi);
403 		visited[port] = true;
404 	}
405 }
406 
407 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
408 				    enum port port)
409 {
410 	uint32_t reg = DDI_BUF_CTL(port);
411 	int i;
412 
413 	for (i = 0; i < 16; i++) {
414 		udelay(1);
415 		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
416 			return;
417 	}
418 	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
419 }
420 
421 /* Starting with Haswell, different DDI ports can work in FDI mode for
422  * connection to the PCH-located connectors. For this, it is necessary to train
423  * both the DDI port and PCH receiver for the desired DDI buffer settings.
424  *
425  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
426  * please note that when FDI mode is active on DDI E, it shares 2 lines with
427  * DDI A (which is used for eDP)
428  */
429 
430 void hsw_fdi_link_train(struct drm_crtc *crtc)
431 {
432 	struct drm_device *dev = crtc->dev;
433 	struct drm_i915_private *dev_priv = dev->dev_private;
434 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
435 	u32 temp, i, rx_ctl_val;
436 
437 	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
438 	 * mode set "sequence for CRT port" document:
439 	 * - TP1 to TP2 time with the default value
440 	 * - FDI delay to 90h
441 	 *
442 	 * WaFDIAutoLinkSetTimingOverrride:hsw
443 	 */
444 	I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
445 				  FDI_RX_PWRDN_LANE0_VAL(2) |
446 				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
447 
448 	/* Enable the PCH Receiver FDI PLL */
449 	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
450 		     FDI_RX_PLL_ENABLE |
451 		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
452 	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
453 	POSTING_READ(_FDI_RXA_CTL);
454 	udelay(220);
455 
456 	/* Switch from Rawclk to PCDclk */
457 	rx_ctl_val |= FDI_PCDCLK;
458 	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
459 
460 	/* Configure Port Clock Select */
461 	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
462 	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
463 
464 	/* Start the training iterating through available voltages and emphasis,
465 	 * testing each value twice. */
466 	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
467 		/* Configure DP_TP_CTL with auto-training */
468 		I915_WRITE(DP_TP_CTL(PORT_E),
469 					DP_TP_CTL_FDI_AUTOTRAIN |
470 					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
471 					DP_TP_CTL_LINK_TRAIN_PAT1 |
472 					DP_TP_CTL_ENABLE);
473 
474 		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
475 		 * DDI E does not support port reversal, the functionality is
476 		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
477 		 * port reversal bit */
478 		I915_WRITE(DDI_BUF_CTL(PORT_E),
479 			   DDI_BUF_CTL_ENABLE |
480 			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
481 			   DDI_BUF_TRANS_SELECT(i / 2));
482 		POSTING_READ(DDI_BUF_CTL(PORT_E));
483 
484 		udelay(600);
485 
486 		/* Program PCH FDI Receiver TU */
487 		I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
488 
489 		/* Enable PCH FDI Receiver with auto-training */
490 		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
491 		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
492 		POSTING_READ(_FDI_RXA_CTL);
493 
494 		/* Wait for FDI receiver lane calibration */
495 		udelay(30);
496 
497 		/* Unset FDI_RX_MISC pwrdn lanes */
498 		temp = I915_READ(_FDI_RXA_MISC);
499 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
500 		I915_WRITE(_FDI_RXA_MISC, temp);
501 		POSTING_READ(_FDI_RXA_MISC);
502 
503 		/* Wait for FDI auto training time */
504 		udelay(5);
505 
506 		temp = I915_READ(DP_TP_STATUS(PORT_E));
507 		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
508 			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
509 
510 			/* Enable normal pixel sending for FDI */
511 			I915_WRITE(DP_TP_CTL(PORT_E),
512 				   DP_TP_CTL_FDI_AUTOTRAIN |
513 				   DP_TP_CTL_LINK_TRAIN_NORMAL |
514 				   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
515 				   DP_TP_CTL_ENABLE);
516 
517 			return;
518 		}
519 
520 		temp = I915_READ(DDI_BUF_CTL(PORT_E));
521 		temp &= ~DDI_BUF_CTL_ENABLE;
522 		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
523 		POSTING_READ(DDI_BUF_CTL(PORT_E));
524 
525 		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
526 		temp = I915_READ(DP_TP_CTL(PORT_E));
527 		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
528 		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
529 		I915_WRITE(DP_TP_CTL(PORT_E), temp);
530 		POSTING_READ(DP_TP_CTL(PORT_E));
531 
532 		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
533 
534 		rx_ctl_val &= ~FDI_RX_ENABLE;
535 		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
536 		POSTING_READ(_FDI_RXA_CTL);
537 
538 		/* Reset FDI_RX_MISC pwrdn lanes */
539 		temp = I915_READ(_FDI_RXA_MISC);
540 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
541 		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
542 		I915_WRITE(_FDI_RXA_MISC, temp);
543 		POSTING_READ(_FDI_RXA_MISC);
544 	}
545 
546 	DRM_ERROR("FDI link training failed!\n");
547 }
548 
549 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
550 {
551 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
552 	struct intel_digital_port *intel_dig_port =
553 		enc_to_dig_port(&encoder->base);
554 
555 	intel_dp->DP = intel_dig_port->saved_port_bits |
556 		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
557 	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
558 
559 }
560 
561 static struct intel_encoder *
562 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
563 {
564 	struct drm_device *dev = crtc->dev;
565 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
566 	struct intel_encoder *intel_encoder, *ret = NULL;
567 	int num_encoders = 0;
568 
569 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
570 		ret = intel_encoder;
571 		num_encoders++;
572 	}
573 
574 	if (num_encoders != 1)
575 		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
576 		     pipe_name(intel_crtc->pipe));
577 
578 	BUG_ON(ret == NULL);
579 	return ret;
580 }
581 
582 struct intel_encoder *
583 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
584 {
585 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
586 	struct intel_encoder *ret = NULL;
587 	struct drm_atomic_state *state;
588 	struct drm_connector *connector;
589 	struct drm_connector_state *connector_state;
590 	int num_encoders = 0;
591 	int i;
592 
593 	state = crtc_state->base.state;
594 
595 	for_each_connector_in_state(state, connector, connector_state, i) {
596 		if (connector_state->crtc != crtc_state->base.crtc)
597 			continue;
598 
599 		ret = to_intel_encoder(connector_state->best_encoder);
600 		num_encoders++;
601 	}
602 
603 	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
604 	     pipe_name(crtc->pipe));
605 
606 	BUG_ON(ret == NULL);
607 	return ret;
608 }
609 
610 #define LC_FREQ 2700
611 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
612 
613 #define P_MIN 2
614 #define P_MAX 64
615 #define P_INC 2
616 
617 /* Constraints for PLL good behavior */
618 #define REF_MIN 48
619 #define REF_MAX 400
620 #define VCO_MIN 2400
621 #define VCO_MAX 4800
622 
623 #define abs_diff(a, b) ({			\
624 	typeof(a) __a = (a);			\
625 	typeof(b) __b = (b);			\
626 	(void) (&__a == &__b);			\
627 	__a > __b ? (__a - __b) : (__b - __a); })
628 
629 struct wrpll_rnp {
630 	unsigned p, n2, r2;
631 };
632 
633 static unsigned wrpll_get_budget_for_freq(int clock)
634 {
635 	unsigned budget;
636 
637 	switch (clock) {
638 	case 25175000:
639 	case 25200000:
640 	case 27000000:
641 	case 27027000:
642 	case 37762500:
643 	case 37800000:
644 	case 40500000:
645 	case 40541000:
646 	case 54000000:
647 	case 54054000:
648 	case 59341000:
649 	case 59400000:
650 	case 72000000:
651 	case 74176000:
652 	case 74250000:
653 	case 81000000:
654 	case 81081000:
655 	case 89012000:
656 	case 89100000:
657 	case 108000000:
658 	case 108108000:
659 	case 111264000:
660 	case 111375000:
661 	case 148352000:
662 	case 148500000:
663 	case 162000000:
664 	case 162162000:
665 	case 222525000:
666 	case 222750000:
667 	case 296703000:
668 	case 297000000:
669 		budget = 0;
670 		break;
671 	case 233500000:
672 	case 245250000:
673 	case 247750000:
674 	case 253250000:
675 	case 298000000:
676 		budget = 1500;
677 		break;
678 	case 169128000:
679 	case 169500000:
680 	case 179500000:
681 	case 202000000:
682 		budget = 2000;
683 		break;
684 	case 256250000:
685 	case 262500000:
686 	case 270000000:
687 	case 272500000:
688 	case 273750000:
689 	case 280750000:
690 	case 281250000:
691 	case 286000000:
692 	case 291750000:
693 		budget = 4000;
694 		break;
695 	case 267250000:
696 	case 268500000:
697 		budget = 5000;
698 		break;
699 	default:
700 		budget = 1000;
701 		break;
702 	}
703 
704 	return budget;
705 }
706 
707 static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
708 			     unsigned r2, unsigned n2, unsigned p,
709 			     struct wrpll_rnp *best)
710 {
711 	uint64_t a, b, c, d, diff, diff_best;
712 
713 	/* No best (r,n,p) yet */
714 	if (best->p == 0) {
715 		best->p = p;
716 		best->n2 = n2;
717 		best->r2 = r2;
718 		return;
719 	}
720 
721 	/*
722 	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
723 	 * freq2k.
724 	 *
725 	 * delta = 1e6 *
726 	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
727 	 *	   freq2k;
728 	 *
729 	 * and we would like delta <= budget.
730 	 *
731 	 * If the discrepancy is above the PPM-based budget, always prefer to
732 	 * improve upon the previous solution.  However, if you're within the
733 	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
734 	 */
735 	a = freq2k * budget * p * r2;
736 	b = freq2k * budget * best->p * best->r2;
737 	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
738 	diff_best = abs_diff(freq2k * best->p * best->r2,
739 			     LC_FREQ_2K * best->n2);
740 	c = 1000000 * diff;
741 	d = 1000000 * diff_best;
742 
743 	if (a < c && b < d) {
744 		/* If both are above the budget, pick the closer */
745 		if (best->p * best->r2 * diff < p * r2 * diff_best) {
746 			best->p = p;
747 			best->n2 = n2;
748 			best->r2 = r2;
749 		}
750 	} else if (a >= c && b < d) {
751 		/* If A is below the threshold but B is above it?  Update. */
752 		best->p = p;
753 		best->n2 = n2;
754 		best->r2 = r2;
755 	} else if (a >= c && b >= d) {
756 		/* Both are below the limit, so pick the higher n2/(r2*r2) */
757 		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
758 			best->p = p;
759 			best->n2 = n2;
760 			best->r2 = r2;
761 		}
762 	}
763 	/* Otherwise a < c && b >= d, do nothing */
764 }
765 
766 static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
767 				     int reg)
768 {
769 	int refclk = LC_FREQ;
770 	int n, p, r;
771 	u32 wrpll;
772 
773 	wrpll = I915_READ(reg);
774 	switch (wrpll & WRPLL_PLL_REF_MASK) {
775 	case WRPLL_PLL_SSC:
776 	case WRPLL_PLL_NON_SSC:
777 		/*
778 		 * We could calculate spread here, but our checking
779 		 * code only cares about 5% accuracy, and spread is a max of
780 		 * 0.5% downspread.
781 		 */
782 		refclk = 135;
783 		break;
784 	case WRPLL_PLL_LCPLL:
785 		refclk = LC_FREQ;
786 		break;
787 	default:
788 		WARN(1, "bad wrpll refclk\n");
789 		return 0;
790 	}
791 
792 	r = wrpll & WRPLL_DIVIDER_REF_MASK;
793 	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
794 	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
795 
796 	/* Convert to KHz, p & r have a fixed point portion */
797 	return (refclk * n * 100) / (p * r);
798 }
799 
800 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
801 			       uint32_t dpll)
802 {
803 	uint32_t cfgcr1_reg, cfgcr2_reg;
804 	uint32_t cfgcr1_val, cfgcr2_val;
805 	uint32_t p0, p1, p2, dco_freq;
806 
807 	cfgcr1_reg = GET_CFG_CR1_REG(dpll);
808 	cfgcr2_reg = GET_CFG_CR2_REG(dpll);
809 
810 	cfgcr1_val = I915_READ(cfgcr1_reg);
811 	cfgcr2_val = I915_READ(cfgcr2_reg);
812 
813 	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
814 	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
815 
816 	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
817 		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
818 	else
819 		p1 = 1;
820 
821 
822 	switch (p0) {
823 	case DPLL_CFGCR2_PDIV_1:
824 		p0 = 1;
825 		break;
826 	case DPLL_CFGCR2_PDIV_2:
827 		p0 = 2;
828 		break;
829 	case DPLL_CFGCR2_PDIV_3:
830 		p0 = 3;
831 		break;
832 	case DPLL_CFGCR2_PDIV_7:
833 		p0 = 7;
834 		break;
835 	}
836 
837 	switch (p2) {
838 	case DPLL_CFGCR2_KDIV_5:
839 		p2 = 5;
840 		break;
841 	case DPLL_CFGCR2_KDIV_2:
842 		p2 = 2;
843 		break;
844 	case DPLL_CFGCR2_KDIV_3:
845 		p2 = 3;
846 		break;
847 	case DPLL_CFGCR2_KDIV_1:
848 		p2 = 1;
849 		break;
850 	}
851 
852 	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
853 
854 	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
855 		1000) / 0x8000;
856 
857 	return dco_freq / (p0 * p1 * p2 * 5);
858 }
859 
860 
861 static void skl_ddi_clock_get(struct intel_encoder *encoder,
862 				struct intel_crtc_state *pipe_config)
863 {
864 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
865 	int link_clock = 0;
866 	uint32_t dpll_ctl1, dpll;
867 
868 	dpll = pipe_config->ddi_pll_sel;
869 
870 	dpll_ctl1 = I915_READ(DPLL_CTRL1);
871 
872 	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
873 		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
874 	} else {
875 		link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
876 		link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
877 
878 		switch (link_clock) {
879 		case DPLL_CTRL1_LINK_RATE_810:
880 			link_clock = 81000;
881 			break;
882 		case DPLL_CTRL1_LINK_RATE_1080:
883 			link_clock = 108000;
884 			break;
885 		case DPLL_CTRL1_LINK_RATE_1350:
886 			link_clock = 135000;
887 			break;
888 		case DPLL_CTRL1_LINK_RATE_1620:
889 			link_clock = 162000;
890 			break;
891 		case DPLL_CTRL1_LINK_RATE_2160:
892 			link_clock = 216000;
893 			break;
894 		case DPLL_CTRL1_LINK_RATE_2700:
895 			link_clock = 270000;
896 			break;
897 		default:
898 			WARN(1, "Unsupported link rate\n");
899 			break;
900 		}
901 		link_clock *= 2;
902 	}
903 
904 	pipe_config->port_clock = link_clock;
905 
906 	if (pipe_config->has_dp_encoder)
907 		pipe_config->base.adjusted_mode.crtc_clock =
908 			intel_dotclock_calculate(pipe_config->port_clock,
909 						 &pipe_config->dp_m_n);
910 	else
911 		pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
912 }
913 
914 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
915 			      struct intel_crtc_state *pipe_config)
916 {
917 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
918 	int link_clock = 0;
919 	u32 val, pll;
920 
921 	val = pipe_config->ddi_pll_sel;
922 	switch (val & PORT_CLK_SEL_MASK) {
923 	case PORT_CLK_SEL_LCPLL_810:
924 		link_clock = 81000;
925 		break;
926 	case PORT_CLK_SEL_LCPLL_1350:
927 		link_clock = 135000;
928 		break;
929 	case PORT_CLK_SEL_LCPLL_2700:
930 		link_clock = 270000;
931 		break;
932 	case PORT_CLK_SEL_WRPLL1:
933 		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
934 		break;
935 	case PORT_CLK_SEL_WRPLL2:
936 		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
937 		break;
938 	case PORT_CLK_SEL_SPLL:
939 		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
940 		if (pll == SPLL_PLL_FREQ_810MHz)
941 			link_clock = 81000;
942 		else if (pll == SPLL_PLL_FREQ_1350MHz)
943 			link_clock = 135000;
944 		else if (pll == SPLL_PLL_FREQ_2700MHz)
945 			link_clock = 270000;
946 		else {
947 			WARN(1, "bad spll freq\n");
948 			return;
949 		}
950 		break;
951 	default:
952 		WARN(1, "bad port clock sel\n");
953 		return;
954 	}
955 
956 	pipe_config->port_clock = link_clock * 2;
957 
958 	if (pipe_config->has_pch_encoder)
959 		pipe_config->base.adjusted_mode.crtc_clock =
960 			intel_dotclock_calculate(pipe_config->port_clock,
961 						 &pipe_config->fdi_m_n);
962 	else if (pipe_config->has_dp_encoder)
963 		pipe_config->base.adjusted_mode.crtc_clock =
964 			intel_dotclock_calculate(pipe_config->port_clock,
965 						 &pipe_config->dp_m_n);
966 	else
967 		pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
968 }
969 
970 static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
971 				enum intel_dpll_id dpll)
972 {
973 	/* FIXME formula not available in bspec */
974 	return 0;
975 }
976 
977 static void bxt_ddi_clock_get(struct intel_encoder *encoder,
978 				struct intel_crtc_state *pipe_config)
979 {
980 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
981 	enum port port = intel_ddi_get_encoder_port(encoder);
982 	uint32_t dpll = port;
983 
984 	pipe_config->port_clock =
985 		bxt_calc_pll_link(dev_priv, dpll);
986 
987 	if (pipe_config->has_dp_encoder)
988 		pipe_config->base.adjusted_mode.crtc_clock =
989 			intel_dotclock_calculate(pipe_config->port_clock,
990 							&pipe_config->dp_m_n);
991 	else
992 		pipe_config->base.adjusted_mode.crtc_clock =
993 							pipe_config->port_clock;
994 }
995 
996 void intel_ddi_clock_get(struct intel_encoder *encoder,
997 			 struct intel_crtc_state *pipe_config)
998 {
999 	struct drm_device *dev = encoder->base.dev;
1000 
1001 	if (INTEL_INFO(dev)->gen <= 8)
1002 		hsw_ddi_clock_get(encoder, pipe_config);
1003 	else if (IS_SKYLAKE(dev))
1004 		skl_ddi_clock_get(encoder, pipe_config);
1005 	else if (IS_BROXTON(dev))
1006 		bxt_ddi_clock_get(encoder, pipe_config);
1007 }
1008 
1009 static void
1010 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
1011 			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1012 {
1013 	uint64_t freq2k;
1014 	unsigned p, n2, r2;
1015 	struct wrpll_rnp best = { 0, 0, 0 };
1016 	unsigned budget;
1017 
1018 	freq2k = clock / 100;
1019 
1020 	budget = wrpll_get_budget_for_freq(clock);
1021 
1022 	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
1023 	 * and directly pass the LC PLL to it. */
1024 	if (freq2k == 5400000) {
1025 		*n2_out = 2;
1026 		*p_out = 1;
1027 		*r2_out = 2;
1028 		return;
1029 	}
1030 
1031 	/*
1032 	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
1033 	 * the WR PLL.
1034 	 *
1035 	 * We want R so that REF_MIN <= Ref <= REF_MAX.
1036 	 * Injecting R2 = 2 * R gives:
1037 	 *   REF_MAX * r2 > LC_FREQ * 2 and
1038 	 *   REF_MIN * r2 < LC_FREQ * 2
1039 	 *
1040 	 * Which means the desired boundaries for r2 are:
1041 	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
1042 	 *
1043 	 */
1044 	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
1045 	     r2 <= LC_FREQ * 2 / REF_MIN;
1046 	     r2++) {
1047 
1048 		/*
1049 		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
1050 		 *
1051 		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
1052 		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
1053 		 *   VCO_MAX * r2 > n2 * LC_FREQ and
1054 		 *   VCO_MIN * r2 < n2 * LC_FREQ)
1055 		 *
1056 		 * Which means the desired boundaries for n2 are:
1057 		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
1058 		 */
1059 		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
1060 		     n2 <= VCO_MAX * r2 / LC_FREQ;
1061 		     n2++) {
1062 
1063 			for (p = P_MIN; p <= P_MAX; p += P_INC)
1064 				wrpll_update_rnp(freq2k, budget,
1065 						 r2, n2, p, &best);
1066 		}
1067 	}
1068 
1069 	*n2_out = best.n2;
1070 	*p_out = best.p;
1071 	*r2_out = best.r2;
1072 }
1073 
1074 static bool
1075 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1076 		   struct intel_crtc_state *crtc_state,
1077 		   struct intel_encoder *intel_encoder,
1078 		   int clock)
1079 {
1080 	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1081 		struct intel_shared_dpll *pll;
1082 		uint32_t val;
1083 		unsigned p, n2, r2;
1084 
1085 		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
1086 
1087 		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
1088 		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
1089 		      WRPLL_DIVIDER_POST(p);
1090 
1091 		memset(&crtc_state->dpll_hw_state, 0,
1092 		       sizeof(crtc_state->dpll_hw_state));
1093 
1094 		crtc_state->dpll_hw_state.wrpll = val;
1095 
1096 		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1097 		if (pll == NULL) {
1098 			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1099 					 pipe_name(intel_crtc->pipe));
1100 			return false;
1101 		}
1102 
1103 		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1104 	}
1105 
1106 	return true;
1107 }
1108 
1109 struct skl_wrpll_params {
1110 	uint32_t        dco_fraction;
1111 	uint32_t        dco_integer;
1112 	uint32_t        qdiv_ratio;
1113 	uint32_t        qdiv_mode;
1114 	uint32_t        kdiv;
1115 	uint32_t        pdiv;
1116 	uint32_t        central_freq;
1117 };
1118 
1119 static void
1120 skl_ddi_calculate_wrpll(int clock /* in Hz */,
1121 			struct skl_wrpll_params *wrpll_params)
1122 {
1123 	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1124 	uint64_t dco_central_freq[3] = {8400000000ULL,
1125 					9000000000ULL,
1126 					9600000000ULL};
1127 	uint32_t min_dco_deviation = 400;
1128 	uint32_t min_dco_index = 3;
1129 	uint32_t P0[4] = {1, 2, 3, 7};
1130 	uint32_t P2[4] = {1, 2, 3, 5};
1131 	bool found = false;
1132 	uint32_t candidate_p = 0;
1133 	uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
1134 	uint32_t candidate_p2[3] = {0};
1135 	uint32_t dco_central_freq_deviation[3];
1136 	uint32_t i, P1, k, dco_count;
1137 	bool retry_with_odd = false;
1138 	uint64_t dco_freq;
1139 
1140 	/* Determine P0, P1 or P2 */
1141 	for (dco_count = 0; dco_count < 3; dco_count++) {
1142 		found = false;
1143 		candidate_p =
1144 			div64_u64(dco_central_freq[dco_count], afe_clock);
1145 		if (retry_with_odd == false)
1146 			candidate_p = (candidate_p % 2 == 0 ?
1147 				candidate_p : candidate_p + 1);
1148 
1149 		for (P1 = 1; P1 < candidate_p; P1++) {
1150 			for (i = 0; i < 4; i++) {
1151 				if (!(P0[i] != 1 || P1 == 1))
1152 					continue;
1153 
1154 				for (k = 0; k < 4; k++) {
1155 					if (P1 != 1 && P2[k] != 2)
1156 						continue;
1157 
1158 					if (candidate_p == P0[i] * P1 * P2[k]) {
1159 						/* Found possible P0, P1, P2 */
1160 						found = true;
1161 						candidate_p0[dco_count] = P0[i];
1162 						candidate_p1[dco_count] = P1;
1163 						candidate_p2[dco_count] = P2[k];
1164 						goto found;
1165 					}
1166 
1167 				}
1168 			}
1169 		}
1170 
1171 found:
1172 		if (found) {
1173 			dco_central_freq_deviation[dco_count] =
1174 				div64_u64(10000 *
1175 					  abs_diff((candidate_p * afe_clock),
1176 						   dco_central_freq[dco_count]),
1177 					  dco_central_freq[dco_count]);
1178 
1179 			if (dco_central_freq_deviation[dco_count] <
1180 				min_dco_deviation) {
1181 				min_dco_deviation =
1182 					dco_central_freq_deviation[dco_count];
1183 				min_dco_index = dco_count;
1184 			}
1185 		}
1186 
1187 		if (min_dco_index > 2 && dco_count == 2) {
1188 			retry_with_odd = true;
1189 			dco_count = 0;
1190 		}
1191 	}
1192 
1193 	if (min_dco_index > 2) {
1194 		WARN(1, "No valid values found for the given pixel clock\n");
1195 	} else {
1196 		wrpll_params->central_freq = dco_central_freq[min_dco_index];
1197 
1198 		switch (dco_central_freq[min_dco_index]) {
1199 		case 9600000000ULL:
1200 			wrpll_params->central_freq = 0;
1201 			break;
1202 		case 9000000000ULL:
1203 			wrpll_params->central_freq = 1;
1204 			break;
1205 		case 8400000000ULL:
1206 			wrpll_params->central_freq = 3;
1207 		}
1208 
1209 		switch (candidate_p0[min_dco_index]) {
1210 		case 1:
1211 			wrpll_params->pdiv = 0;
1212 			break;
1213 		case 2:
1214 			wrpll_params->pdiv = 1;
1215 			break;
1216 		case 3:
1217 			wrpll_params->pdiv = 2;
1218 			break;
1219 		case 7:
1220 			wrpll_params->pdiv = 4;
1221 			break;
1222 		default:
1223 			WARN(1, "Incorrect PDiv\n");
1224 		}
1225 
1226 		switch (candidate_p2[min_dco_index]) {
1227 		case 5:
1228 			wrpll_params->kdiv = 0;
1229 			break;
1230 		case 2:
1231 			wrpll_params->kdiv = 1;
1232 			break;
1233 		case 3:
1234 			wrpll_params->kdiv = 2;
1235 			break;
1236 		case 1:
1237 			wrpll_params->kdiv = 3;
1238 			break;
1239 		default:
1240 			WARN(1, "Incorrect KDiv\n");
1241 		}
1242 
1243 		wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
1244 		wrpll_params->qdiv_mode =
1245 			(wrpll_params->qdiv_ratio == 1) ? 0 : 1;
1246 
1247 		dco_freq = candidate_p0[min_dco_index] *
1248 			candidate_p1[min_dco_index] *
1249 			candidate_p2[min_dco_index] * afe_clock;
1250 
1251 		/*
1252 		 * Intermediate values are in Hz.
1253 		 * Divide by MHz to match bsepc
1254 		 */
1255 		wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
1256 		wrpll_params->dco_fraction =
1257 			div_u64(((div_u64(dco_freq, 24) -
1258 				  wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
1259 
1260 	}
1261 }
1262 
1263 
1264 static bool
1265 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1266 		   struct intel_crtc_state *crtc_state,
1267 		   struct intel_encoder *intel_encoder,
1268 		   int clock)
1269 {
1270 	struct intel_shared_dpll *pll;
1271 	uint32_t ctrl1, cfgcr1, cfgcr2;
1272 
1273 	/*
1274 	 * See comment in intel_dpll_hw_state to understand why we always use 0
1275 	 * as the DPLL id in this function.
1276 	 */
1277 
1278 	ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1279 
1280 	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1281 		struct skl_wrpll_params wrpll_params = { 0, };
1282 
1283 		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1284 
1285 		skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
1286 
1287 		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1288 			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1289 			 wrpll_params.dco_integer;
1290 
1291 		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1292 			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1293 			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1294 			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1295 			 wrpll_params.central_freq;
1296 	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1297 		struct drm_encoder *encoder = &intel_encoder->base;
1298 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1299 
1300 		switch (intel_dp->link_bw) {
1301 		case DP_LINK_BW_1_62:
1302 			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1303 			break;
1304 		case DP_LINK_BW_2_7:
1305 			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1306 			break;
1307 		case DP_LINK_BW_5_4:
1308 			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1309 			break;
1310 		}
1311 
1312 		cfgcr1 = cfgcr2 = 0;
1313 	} else /* eDP */
1314 		return true;
1315 
1316 	memset(&crtc_state->dpll_hw_state, 0,
1317 	       sizeof(crtc_state->dpll_hw_state));
1318 
1319 	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1320 	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1321 	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1322 
1323 	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1324 	if (pll == NULL) {
1325 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1326 				 pipe_name(intel_crtc->pipe));
1327 		return false;
1328 	}
1329 
1330 	/* shared DPLL id 0 is DPLL 1 */
1331 	crtc_state->ddi_pll_sel = pll->id + 1;
1332 
1333 	return true;
1334 }
1335 
1336 /* bxt clock parameters */
1337 struct bxt_clk_div {
1338 	uint32_t p1;
1339 	uint32_t p2;
1340 	uint32_t m2_int;
1341 	uint32_t m2_frac;
1342 	bool m2_frac_en;
1343 	uint32_t n;
1344 };
1345 
1346 /* pre-calculated values for DP linkrates */
1347 static struct bxt_clk_div bxt_dp_clk_val[7] = {
1348 	/* 162 */ {4, 2, 32, 1677722, 1, 1},
1349 	/* 270 */ {4, 1, 27,       0, 0, 1},
1350 	/* 540 */ {2, 1, 27,       0, 0, 1},
1351 	/* 216 */ {3, 2, 32, 1677722, 1, 1},
1352 	/* 243 */ {4, 1, 24, 1258291, 1, 1},
1353 	/* 324 */ {4, 1, 32, 1677722, 1, 1},
1354 	/* 432 */ {3, 1, 32, 1677722, 1, 1}
1355 };
1356 
1357 static bool
1358 bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
1359 		   struct intel_crtc_state *crtc_state,
1360 		   struct intel_encoder *intel_encoder,
1361 		   int clock)
1362 {
1363 	struct intel_shared_dpll *pll;
1364 	struct bxt_clk_div clk_div = {0};
1365 	int vco = 0;
1366 	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1367 	uint32_t dcoampovr_en_h, dco_amp, lanestagger;
1368 
1369 	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1370 		intel_clock_t best_clock;
1371 
1372 		/* Calculate HDMI div */
1373 		/*
1374 		 * FIXME: tie the following calculation into
1375 		 * i9xx_crtc_compute_clock
1376 		 */
1377 		if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
1378 			DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
1379 					 clock, pipe_name(intel_crtc->pipe));
1380 			return false;
1381 		}
1382 
1383 		clk_div.p1 = best_clock.p1;
1384 		clk_div.p2 = best_clock.p2;
1385 		WARN_ON(best_clock.m1 != 2);
1386 		clk_div.n = best_clock.n;
1387 		clk_div.m2_int = best_clock.m2 >> 22;
1388 		clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
1389 		clk_div.m2_frac_en = clk_div.m2_frac != 0;
1390 
1391 		vco = best_clock.vco;
1392 	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
1393 			intel_encoder->type == INTEL_OUTPUT_EDP) {
1394 		struct drm_encoder *encoder = &intel_encoder->base;
1395 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1396 
1397 		switch (intel_dp->link_bw) {
1398 		case DP_LINK_BW_1_62:
1399 			clk_div = bxt_dp_clk_val[0];
1400 			break;
1401 		case DP_LINK_BW_2_7:
1402 			clk_div = bxt_dp_clk_val[1];
1403 			break;
1404 		case DP_LINK_BW_5_4:
1405 			clk_div = bxt_dp_clk_val[2];
1406 			break;
1407 		default:
1408 			clk_div = bxt_dp_clk_val[0];
1409 			DRM_ERROR("Unknown link rate\n");
1410 		}
1411 		vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
1412 	}
1413 
1414 	dco_amp = 15;
1415 	dcoampovr_en_h = 0;
1416 	if (vco >= 6200000 && vco <= 6480000) {
1417 		prop_coef = 4;
1418 		int_coef = 9;
1419 		gain_ctl = 3;
1420 		targ_cnt = 8;
1421 	} else if ((vco > 5400000 && vco < 6200000) ||
1422 			(vco >= 4800000 && vco < 5400000)) {
1423 		prop_coef = 5;
1424 		int_coef = 11;
1425 		gain_ctl = 3;
1426 		targ_cnt = 9;
1427 		if (vco >= 4800000 && vco < 5400000)
1428 			dcoampovr_en_h = 1;
1429 	} else if (vco == 5400000) {
1430 		prop_coef = 3;
1431 		int_coef = 8;
1432 		gain_ctl = 1;
1433 		targ_cnt = 9;
1434 	} else {
1435 		DRM_ERROR("Invalid VCO\n");
1436 		return false;
1437 	}
1438 
1439 	memset(&crtc_state->dpll_hw_state, 0,
1440 	       sizeof(crtc_state->dpll_hw_state));
1441 
1442 	if (clock > 270000)
1443 		lanestagger = 0x18;
1444 	else if (clock > 135000)
1445 		lanestagger = 0x0d;
1446 	else if (clock > 67000)
1447 		lanestagger = 0x07;
1448 	else if (clock > 33000)
1449 		lanestagger = 0x04;
1450 	else
1451 		lanestagger = 0x02;
1452 
1453 	crtc_state->dpll_hw_state.ebb0 =
1454 		PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
1455 	crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
1456 	crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
1457 	crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
1458 
1459 	if (clk_div.m2_frac_en)
1460 		crtc_state->dpll_hw_state.pll3 =
1461 			PORT_PLL_M2_FRAC_ENABLE;
1462 
1463 	crtc_state->dpll_hw_state.pll6 =
1464 		prop_coef | PORT_PLL_INT_COEFF(int_coef);
1465 	crtc_state->dpll_hw_state.pll6 |=
1466 		PORT_PLL_GAIN_CTL(gain_ctl);
1467 
1468 	crtc_state->dpll_hw_state.pll8 = targ_cnt;
1469 
1470 	if (dcoampovr_en_h)
1471 		crtc_state->dpll_hw_state.pll10 = PORT_PLL_DCO_AMP_OVR_EN_H;
1472 
1473 	crtc_state->dpll_hw_state.pll10 |= PORT_PLL_DCO_AMP(dco_amp);
1474 
1475 	crtc_state->dpll_hw_state.pcsdw12 =
1476 		LANESTAGGER_STRAP_OVRD | lanestagger;
1477 
1478 	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1479 	if (pll == NULL) {
1480 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1481 			pipe_name(intel_crtc->pipe));
1482 		return false;
1483 	}
1484 
1485 	/* shared DPLL id 0 is DPLL A */
1486 	crtc_state->ddi_pll_sel = pll->id;
1487 
1488 	return true;
1489 }
1490 
1491 /*
1492  * Tries to find a *shared* PLL for the CRTC and store it in
1493  * intel_crtc->ddi_pll_sel.
1494  *
1495  * For private DPLLs, compute_config() should do the selection for us. This
1496  * function should be folded into compute_config() eventually.
1497  */
1498 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1499 			  struct intel_crtc_state *crtc_state)
1500 {
1501 	struct drm_device *dev = intel_crtc->base.dev;
1502 	struct intel_encoder *intel_encoder =
1503 		intel_ddi_get_crtc_new_encoder(crtc_state);
1504 	int clock = crtc_state->port_clock;
1505 
1506 	if (IS_SKYLAKE(dev))
1507 		return skl_ddi_pll_select(intel_crtc, crtc_state,
1508 					  intel_encoder, clock);
1509 	else if (IS_BROXTON(dev))
1510 		return bxt_ddi_pll_select(intel_crtc, crtc_state,
1511 					  intel_encoder, clock);
1512 	else
1513 		return hsw_ddi_pll_select(intel_crtc, crtc_state,
1514 					  intel_encoder, clock);
1515 }
1516 
1517 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1518 {
1519 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1520 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1521 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1522 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1523 	int type = intel_encoder->type;
1524 	uint32_t temp;
1525 
1526 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1527 		temp = TRANS_MSA_SYNC_CLK;
1528 		switch (intel_crtc->config->pipe_bpp) {
1529 		case 18:
1530 			temp |= TRANS_MSA_6_BPC;
1531 			break;
1532 		case 24:
1533 			temp |= TRANS_MSA_8_BPC;
1534 			break;
1535 		case 30:
1536 			temp |= TRANS_MSA_10_BPC;
1537 			break;
1538 		case 36:
1539 			temp |= TRANS_MSA_12_BPC;
1540 			break;
1541 		default:
1542 			BUG();
1543 		}
1544 		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1545 	}
1546 }
1547 
1548 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1549 {
1550 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1551 	struct drm_device *dev = crtc->dev;
1552 	struct drm_i915_private *dev_priv = dev->dev_private;
1553 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1554 	uint32_t temp;
1555 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1556 	if (state == true)
1557 		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1558 	else
1559 		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1560 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1561 }
1562 
1563 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1564 {
1565 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1566 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1567 	struct drm_encoder *encoder = &intel_encoder->base;
1568 	struct drm_device *dev = crtc->dev;
1569 	struct drm_i915_private *dev_priv = dev->dev_private;
1570 	enum i915_pipe pipe = intel_crtc->pipe;
1571 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1572 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1573 	int type = intel_encoder->type;
1574 	uint32_t temp;
1575 
1576 	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1577 	temp = TRANS_DDI_FUNC_ENABLE;
1578 	temp |= TRANS_DDI_SELECT_PORT(port);
1579 
1580 	switch (intel_crtc->config->pipe_bpp) {
1581 	case 18:
1582 		temp |= TRANS_DDI_BPC_6;
1583 		break;
1584 	case 24:
1585 		temp |= TRANS_DDI_BPC_8;
1586 		break;
1587 	case 30:
1588 		temp |= TRANS_DDI_BPC_10;
1589 		break;
1590 	case 36:
1591 		temp |= TRANS_DDI_BPC_12;
1592 		break;
1593 	default:
1594 		BUG();
1595 	}
1596 
1597 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1598 		temp |= TRANS_DDI_PVSYNC;
1599 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1600 		temp |= TRANS_DDI_PHSYNC;
1601 
1602 	if (cpu_transcoder == TRANSCODER_EDP) {
1603 		switch (pipe) {
1604 		case PIPE_A:
1605 			/* On Haswell, can only use the always-on power well for
1606 			 * eDP when not using the panel fitter, and when not
1607 			 * using motion blur mitigation (which we don't
1608 			 * support). */
1609 			if (IS_HASWELL(dev) &&
1610 			    (intel_crtc->config->pch_pfit.enabled ||
1611 			     intel_crtc->config->pch_pfit.force_thru))
1612 				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1613 			else
1614 				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1615 			break;
1616 		case PIPE_B:
1617 			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1618 			break;
1619 		case PIPE_C:
1620 			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1621 			break;
1622 		default:
1623 			BUG();
1624 			break;
1625 		}
1626 	}
1627 
1628 	if (type == INTEL_OUTPUT_HDMI) {
1629 		if (intel_crtc->config->has_hdmi_sink)
1630 			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1631 		else
1632 			temp |= TRANS_DDI_MODE_SELECT_DVI;
1633 
1634 	} else if (type == INTEL_OUTPUT_ANALOG) {
1635 		temp |= TRANS_DDI_MODE_SELECT_FDI;
1636 		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1637 
1638 	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1639 		   type == INTEL_OUTPUT_EDP) {
1640 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1641 
1642 		if (intel_dp->is_mst) {
1643 			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1644 		} else
1645 			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1646 
1647 		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1648 	} else if (type == INTEL_OUTPUT_DP_MST) {
1649 		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1650 
1651 		if (intel_dp->is_mst) {
1652 			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1653 		} else
1654 			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1655 
1656 		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1657 	} else {
1658 		WARN(1, "Invalid encoder type %d for pipe %c\n",
1659 		     intel_encoder->type, pipe_name(pipe));
1660 	}
1661 
1662 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1663 }
1664 
1665 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1666 				       enum transcoder cpu_transcoder)
1667 {
1668 	uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1669 	uint32_t val = I915_READ(reg);
1670 
1671 	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1672 	val |= TRANS_DDI_PORT_NONE;
1673 	I915_WRITE(reg, val);
1674 }
1675 
1676 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1677 {
1678 	struct drm_device *dev = intel_connector->base.dev;
1679 	struct drm_i915_private *dev_priv = dev->dev_private;
1680 	struct intel_encoder *intel_encoder = intel_connector->encoder;
1681 	int type = intel_connector->base.connector_type;
1682 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1683 	enum i915_pipe pipe = 0;
1684 	enum transcoder cpu_transcoder;
1685 	enum intel_display_power_domain power_domain;
1686 	uint32_t tmp;
1687 
1688 	power_domain = intel_display_port_power_domain(intel_encoder);
1689 	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1690 		return false;
1691 
1692 	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
1693 		return false;
1694 
1695 	if (port == PORT_A)
1696 		cpu_transcoder = TRANSCODER_EDP;
1697 	else
1698 		cpu_transcoder = (enum transcoder) pipe;
1699 
1700 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1701 
1702 	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1703 	case TRANS_DDI_MODE_SELECT_HDMI:
1704 	case TRANS_DDI_MODE_SELECT_DVI:
1705 		return (type == DRM_MODE_CONNECTOR_HDMIA);
1706 
1707 	case TRANS_DDI_MODE_SELECT_DP_SST:
1708 		if (type == DRM_MODE_CONNECTOR_eDP)
1709 			return true;
1710 		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1711 	case TRANS_DDI_MODE_SELECT_DP_MST:
1712 		/* if the transcoder is in MST state then
1713 		 * connector isn't connected */
1714 		return false;
1715 
1716 	case TRANS_DDI_MODE_SELECT_FDI:
1717 		return (type == DRM_MODE_CONNECTOR_VGA);
1718 
1719 	default:
1720 		return false;
1721 	}
1722 }
1723 
1724 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1725 			    enum i915_pipe *pipe)
1726 {
1727 	struct drm_device *dev = encoder->base.dev;
1728 	struct drm_i915_private *dev_priv = dev->dev_private;
1729 	enum port port = intel_ddi_get_encoder_port(encoder);
1730 	enum intel_display_power_domain power_domain;
1731 	u32 tmp;
1732 	int i;
1733 
1734 	power_domain = intel_display_port_power_domain(encoder);
1735 	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1736 		return false;
1737 
1738 	tmp = I915_READ(DDI_BUF_CTL(port));
1739 
1740 	if (!(tmp & DDI_BUF_CTL_ENABLE))
1741 		return false;
1742 
1743 	if (port == PORT_A) {
1744 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1745 
1746 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1747 		case TRANS_DDI_EDP_INPUT_A_ON:
1748 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
1749 			*pipe = PIPE_A;
1750 			break;
1751 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
1752 			*pipe = PIPE_B;
1753 			break;
1754 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
1755 			*pipe = PIPE_C;
1756 			break;
1757 		}
1758 
1759 		return true;
1760 	} else {
1761 		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1762 			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1763 
1764 			if ((tmp & TRANS_DDI_PORT_MASK)
1765 			    == TRANS_DDI_SELECT_PORT(port)) {
1766 				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
1767 					return false;
1768 
1769 				*pipe = i;
1770 				return true;
1771 			}
1772 		}
1773 	}
1774 
1775 	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1776 
1777 	return false;
1778 }
1779 
1780 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1781 {
1782 	struct drm_crtc *crtc = &intel_crtc->base;
1783 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1784 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1785 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1786 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1787 
1788 	if (cpu_transcoder != TRANSCODER_EDP)
1789 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1790 			   TRANS_CLK_SEL_PORT(port));
1791 }
1792 
1793 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1794 {
1795 	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1796 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1797 
1798 	if (cpu_transcoder != TRANSCODER_EDP)
1799 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1800 			   TRANS_CLK_SEL_DISABLED);
1801 }
1802 
1803 void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
1804 			     enum port port, int type)
1805 {
1806 	struct drm_i915_private *dev_priv = dev->dev_private;
1807 	const struct bxt_ddi_buf_trans *ddi_translations;
1808 	u32 n_entries, i;
1809 	uint32_t val;
1810 
1811 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1812 		n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
1813 		ddi_translations = bxt_ddi_translations_dp;
1814 	} else if (type == INTEL_OUTPUT_HDMI) {
1815 		n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
1816 		ddi_translations = bxt_ddi_translations_hdmi;
1817 	} else {
1818 		DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
1819 				type);
1820 		return;
1821 	}
1822 
1823 	/* Check if default value has to be used */
1824 	if (level >= n_entries ||
1825 	    (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
1826 		for (i = 0; i < n_entries; i++) {
1827 			if (ddi_translations[i].default_index) {
1828 				level = i;
1829 				break;
1830 			}
1831 		}
1832 	}
1833 
1834 	/*
1835 	 * While we write to the group register to program all lanes at once we
1836 	 * can read only lane registers and we pick lanes 0/1 for that.
1837 	 */
1838 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
1839 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
1840 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
1841 
1842 	val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
1843 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
1844 	val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
1845 	       ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
1846 	I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
1847 
1848 	val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
1849 	val &= ~UNIQE_TRANGE_EN_METHOD;
1850 	if (ddi_translations[level].enable)
1851 		val |= UNIQE_TRANGE_EN_METHOD;
1852 	I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
1853 
1854 	val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
1855 	val &= ~DE_EMPHASIS;
1856 	val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
1857 	I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
1858 
1859 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
1860 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
1861 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
1862 }
1863 
1864 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1865 {
1866 	struct drm_encoder *encoder = &intel_encoder->base;
1867 	struct drm_device *dev = encoder->dev;
1868 	struct drm_i915_private *dev_priv = dev->dev_private;
1869 	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1870 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1871 	int type = intel_encoder->type;
1872 	int hdmi_level;
1873 
1874 	if (type == INTEL_OUTPUT_EDP) {
1875 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1876 		intel_edp_panel_on(intel_dp);
1877 	}
1878 
1879 	if (IS_SKYLAKE(dev)) {
1880 		uint32_t dpll = crtc->config->ddi_pll_sel;
1881 		uint32_t val;
1882 
1883 		/*
1884 		 * DPLL0 is used for eDP and is the only "private" DPLL (as
1885 		 * opposed to shared) on SKL
1886 		 */
1887 		if (type == INTEL_OUTPUT_EDP) {
1888 			WARN_ON(dpll != SKL_DPLL0);
1889 
1890 			val = I915_READ(DPLL_CTRL1);
1891 
1892 			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
1893 				 DPLL_CTRL1_SSC(dpll) |
1894 				 DPLL_CTRL1_LINK_RATE_MASK(dpll));
1895 			val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
1896 
1897 			I915_WRITE(DPLL_CTRL1, val);
1898 			POSTING_READ(DPLL_CTRL1);
1899 		}
1900 
1901 		/* DDI -> PLL mapping  */
1902 		val = I915_READ(DPLL_CTRL2);
1903 
1904 		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
1905 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
1906 		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
1907 			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
1908 
1909 		I915_WRITE(DPLL_CTRL2, val);
1910 
1911 	} else if (INTEL_INFO(dev)->gen < 9) {
1912 		WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
1913 		I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
1914 	}
1915 
1916 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1917 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1918 
1919 		intel_ddi_init_dp_buf_reg(intel_encoder);
1920 
1921 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1922 		intel_dp_start_link_train(intel_dp);
1923 		intel_dp_complete_link_train(intel_dp);
1924 		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
1925 			intel_dp_stop_link_train(intel_dp);
1926 	} else if (type == INTEL_OUTPUT_HDMI) {
1927 		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1928 
1929 		if (IS_BROXTON(dev)) {
1930 			hdmi_level = dev_priv->vbt.
1931 				ddi_port_info[port].hdmi_level_shift;
1932 			bxt_ddi_vswing_sequence(dev, hdmi_level, port,
1933 					INTEL_OUTPUT_HDMI);
1934 		}
1935 		intel_hdmi->set_infoframes(encoder,
1936 					   crtc->config->has_hdmi_sink,
1937 					   &crtc->config->base.adjusted_mode);
1938 	}
1939 }
1940 
1941 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1942 {
1943 	struct drm_encoder *encoder = &intel_encoder->base;
1944 	struct drm_device *dev = encoder->dev;
1945 	struct drm_i915_private *dev_priv = dev->dev_private;
1946 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1947 	int type = intel_encoder->type;
1948 	uint32_t val;
1949 	bool wait = false;
1950 
1951 	val = I915_READ(DDI_BUF_CTL(port));
1952 	if (val & DDI_BUF_CTL_ENABLE) {
1953 		val &= ~DDI_BUF_CTL_ENABLE;
1954 		I915_WRITE(DDI_BUF_CTL(port), val);
1955 		wait = true;
1956 	}
1957 
1958 	val = I915_READ(DP_TP_CTL(port));
1959 	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1960 	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1961 	I915_WRITE(DP_TP_CTL(port), val);
1962 
1963 	if (wait)
1964 		intel_wait_ddi_buf_idle(dev_priv, port);
1965 
1966 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1967 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1968 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1969 		intel_edp_panel_vdd_on(intel_dp);
1970 		intel_edp_panel_off(intel_dp);
1971 	}
1972 
1973 	if (IS_SKYLAKE(dev))
1974 		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
1975 					DPLL_CTRL2_DDI_CLK_OFF(port)));
1976 	else if (INTEL_INFO(dev)->gen < 9)
1977 		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1978 }
1979 
1980 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1981 {
1982 	struct drm_encoder *encoder = &intel_encoder->base;
1983 	struct drm_crtc *crtc = encoder->crtc;
1984 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1985 	struct drm_device *dev = encoder->dev;
1986 	struct drm_i915_private *dev_priv = dev->dev_private;
1987 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1988 	int type = intel_encoder->type;
1989 
1990 	if (type == INTEL_OUTPUT_HDMI) {
1991 		struct intel_digital_port *intel_dig_port =
1992 			enc_to_dig_port(encoder);
1993 
1994 		/* In HDMI/DVI mode, the port width, and swing/emphasis values
1995 		 * are ignored so nothing special needs to be done besides
1996 		 * enabling the port.
1997 		 */
1998 		I915_WRITE(DDI_BUF_CTL(port),
1999 			   intel_dig_port->saved_port_bits |
2000 			   DDI_BUF_CTL_ENABLE);
2001 	} else if (type == INTEL_OUTPUT_EDP) {
2002 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2003 
2004 		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2005 			intel_dp_stop_link_train(intel_dp);
2006 
2007 		intel_edp_backlight_on(intel_dp);
2008 		intel_psr_enable(intel_dp);
2009 		intel_edp_drrs_enable(intel_dp);
2010 	}
2011 
2012 	if (intel_crtc->config->has_audio) {
2013 		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2014 		intel_audio_codec_enable(intel_encoder);
2015 	}
2016 }
2017 
2018 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2019 {
2020 	struct drm_encoder *encoder = &intel_encoder->base;
2021 	struct drm_crtc *crtc = encoder->crtc;
2022 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2023 	int type = intel_encoder->type;
2024 	struct drm_device *dev = encoder->dev;
2025 	struct drm_i915_private *dev_priv = dev->dev_private;
2026 
2027 	if (intel_crtc->config->has_audio) {
2028 		intel_audio_codec_disable(intel_encoder);
2029 		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
2030 	}
2031 
2032 	if (type == INTEL_OUTPUT_EDP) {
2033 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2034 
2035 		intel_edp_drrs_disable(intel_dp);
2036 		intel_psr_disable(intel_dp);
2037 		intel_edp_backlight_off(intel_dp);
2038 	}
2039 }
2040 
2041 static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
2042 			       struct intel_shared_dpll *pll)
2043 {
2044 	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2045 	POSTING_READ(WRPLL_CTL(pll->id));
2046 	udelay(20);
2047 }
2048 
2049 static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
2050 				struct intel_shared_dpll *pll)
2051 {
2052 	uint32_t val;
2053 
2054 	val = I915_READ(WRPLL_CTL(pll->id));
2055 	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
2056 	POSTING_READ(WRPLL_CTL(pll->id));
2057 }
2058 
2059 static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2060 				     struct intel_shared_dpll *pll,
2061 				     struct intel_dpll_hw_state *hw_state)
2062 {
2063 	uint32_t val;
2064 
2065 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2066 		return false;
2067 
2068 	val = I915_READ(WRPLL_CTL(pll->id));
2069 	hw_state->wrpll = val;
2070 
2071 	return val & WRPLL_PLL_ENABLE;
2072 }
2073 
2074 static const char * const hsw_ddi_pll_names[] = {
2075 	"WRPLL 1",
2076 	"WRPLL 2",
2077 };
2078 
2079 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
2080 {
2081 	int i;
2082 
2083 	dev_priv->num_shared_dpll = 2;
2084 
2085 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2086 		dev_priv->shared_dplls[i].id = i;
2087 		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2088 		dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
2089 		dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
2090 		dev_priv->shared_dplls[i].get_hw_state =
2091 			hsw_ddi_pll_get_hw_state;
2092 	}
2093 }
2094 
2095 static const char * const skl_ddi_pll_names[] = {
2096 	"DPLL 1",
2097 	"DPLL 2",
2098 	"DPLL 3",
2099 };
2100 
2101 struct skl_dpll_regs {
2102 	u32 ctl, cfgcr1, cfgcr2;
2103 };
2104 
2105 /* this array is indexed by the *shared* pll id */
2106 static const struct skl_dpll_regs skl_dpll_regs[3] = {
2107 	{
2108 		/* DPLL 1 */
2109 		.ctl = LCPLL2_CTL,
2110 		.cfgcr1 = DPLL1_CFGCR1,
2111 		.cfgcr2 = DPLL1_CFGCR2,
2112 	},
2113 	{
2114 		/* DPLL 2 */
2115 		.ctl = WRPLL_CTL1,
2116 		.cfgcr1 = DPLL2_CFGCR1,
2117 		.cfgcr2 = DPLL2_CFGCR2,
2118 	},
2119 	{
2120 		/* DPLL 3 */
2121 		.ctl = WRPLL_CTL2,
2122 		.cfgcr1 = DPLL3_CFGCR1,
2123 		.cfgcr2 = DPLL3_CFGCR2,
2124 	},
2125 };
2126 
2127 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
2128 			       struct intel_shared_dpll *pll)
2129 {
2130 	uint32_t val;
2131 	unsigned int dpll;
2132 	const struct skl_dpll_regs *regs = skl_dpll_regs;
2133 
2134 	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2135 	dpll = pll->id + 1;
2136 
2137 	val = I915_READ(DPLL_CTRL1);
2138 
2139 	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2140 		 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2141 	val |= pll->config.hw_state.ctrl1 << (dpll * 6);
2142 
2143 	I915_WRITE(DPLL_CTRL1, val);
2144 	POSTING_READ(DPLL_CTRL1);
2145 
2146 	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
2147 	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
2148 	POSTING_READ(regs[pll->id].cfgcr1);
2149 	POSTING_READ(regs[pll->id].cfgcr2);
2150 
2151 	/* the enable bit is always bit 31 */
2152 	I915_WRITE(regs[pll->id].ctl,
2153 		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
2154 
2155 	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
2156 		DRM_ERROR("DPLL %d not locked\n", dpll);
2157 }
2158 
2159 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
2160 				struct intel_shared_dpll *pll)
2161 {
2162 	const struct skl_dpll_regs *regs = skl_dpll_regs;
2163 
2164 	/* the enable bit is always bit 31 */
2165 	I915_WRITE(regs[pll->id].ctl,
2166 		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
2167 	POSTING_READ(regs[pll->id].ctl);
2168 }
2169 
2170 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2171 				     struct intel_shared_dpll *pll,
2172 				     struct intel_dpll_hw_state *hw_state)
2173 {
2174 	uint32_t val;
2175 	unsigned int dpll;
2176 	const struct skl_dpll_regs *regs = skl_dpll_regs;
2177 
2178 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2179 		return false;
2180 
2181 	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2182 	dpll = pll->id + 1;
2183 
2184 	val = I915_READ(regs[pll->id].ctl);
2185 	if (!(val & LCPLL_PLL_ENABLE))
2186 		return false;
2187 
2188 	val = I915_READ(DPLL_CTRL1);
2189 	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
2190 
2191 	/* avoid reading back stale values if HDMI mode is not enabled */
2192 	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
2193 		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
2194 		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
2195 	}
2196 
2197 	return true;
2198 }
2199 
2200 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
2201 {
2202 	int i;
2203 
2204 	dev_priv->num_shared_dpll = 3;
2205 
2206 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2207 		dev_priv->shared_dplls[i].id = i;
2208 		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
2209 		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
2210 		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
2211 		dev_priv->shared_dplls[i].get_hw_state =
2212 			skl_ddi_pll_get_hw_state;
2213 	}
2214 }
2215 
2216 static void broxton_phy_init(struct drm_i915_private *dev_priv,
2217 			     enum dpio_phy phy)
2218 {
2219 	enum port port;
2220 	uint32_t val;
2221 
2222 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
2223 	val |= GT_DISPLAY_POWER_ON(phy);
2224 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
2225 
2226 	/* Considering 10ms timeout until BSpec is updated */
2227 	if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
2228 		DRM_ERROR("timeout during PHY%d power on\n", phy);
2229 
2230 	for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
2231 	     port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
2232 		int lane;
2233 
2234 		for (lane = 0; lane < 4; lane++) {
2235 			val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
2236 			/*
2237 			 * Note that on CHV this flag is called UPAR, but has
2238 			 * the same function.
2239 			 */
2240 			val &= ~LATENCY_OPTIM;
2241 			if (lane != 1)
2242 				val |= LATENCY_OPTIM;
2243 
2244 			I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
2245 		}
2246 	}
2247 
2248 	/* Program PLL Rcomp code offset */
2249 	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
2250 	val &= ~IREF0RC_OFFSET_MASK;
2251 	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
2252 	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
2253 
2254 	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
2255 	val &= ~IREF1RC_OFFSET_MASK;
2256 	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
2257 	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
2258 
2259 	/* Program power gating */
2260 	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
2261 	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
2262 		SUS_CLK_CONFIG;
2263 	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
2264 
2265 	if (phy == DPIO_PHY0) {
2266 		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
2267 		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
2268 		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
2269 	}
2270 
2271 	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
2272 	val &= ~OCL2_LDOFUSE_PWR_DIS;
2273 	/*
2274 	 * On PHY1 disable power on the second channel, since no port is
2275 	 * connected there. On PHY0 both channels have a port, so leave it
2276 	 * enabled.
2277 	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
2278 	 * power down the second channel on PHY0 as well.
2279 	 */
2280 	if (phy == DPIO_PHY1)
2281 		val |= OCL2_LDOFUSE_PWR_DIS;
2282 	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
2283 
2284 	if (phy == DPIO_PHY0) {
2285 		uint32_t grc_code;
2286 		/*
2287 		 * PHY0 isn't connected to an RCOMP resistor so copy over
2288 		 * the corresponding calibrated value from PHY1, and disable
2289 		 * the automatic calibration on PHY0.
2290 		 */
2291 		if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
2292 			     10))
2293 			DRM_ERROR("timeout waiting for PHY1 GRC\n");
2294 
2295 		val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
2296 		val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
2297 		grc_code = val << GRC_CODE_FAST_SHIFT |
2298 			   val << GRC_CODE_SLOW_SHIFT |
2299 			   val;
2300 		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
2301 
2302 		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
2303 		val |= GRC_DIS | GRC_RDY_OVRD;
2304 		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
2305 	}
2306 
2307 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2308 	val |= COMMON_RESET_DIS;
2309 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2310 }
2311 
2312 void broxton_ddi_phy_init(struct drm_device *dev)
2313 {
2314 	/* Enable PHY1 first since it provides Rcomp for PHY0 */
2315 	broxton_phy_init(dev->dev_private, DPIO_PHY1);
2316 	broxton_phy_init(dev->dev_private, DPIO_PHY0);
2317 }
2318 
2319 static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
2320 			       enum dpio_phy phy)
2321 {
2322 	uint32_t val;
2323 
2324 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2325 	val &= ~COMMON_RESET_DIS;
2326 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2327 }
2328 
2329 void broxton_ddi_phy_uninit(struct drm_device *dev)
2330 {
2331 	struct drm_i915_private *dev_priv = dev->dev_private;
2332 
2333 	broxton_phy_uninit(dev_priv, DPIO_PHY1);
2334 	broxton_phy_uninit(dev_priv, DPIO_PHY0);
2335 
2336 	/* FIXME: do this in broxton_phy_uninit per phy */
2337 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
2338 }
2339 
2340 static const char * const bxt_ddi_pll_names[] = {
2341 	"PORT PLL A",
2342 	"PORT PLL B",
2343 	"PORT PLL C",
2344 };
2345 
2346 static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
2347 				struct intel_shared_dpll *pll)
2348 {
2349 	uint32_t temp;
2350 	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
2351 
2352 	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2353 	temp &= ~PORT_PLL_REF_SEL;
2354 	/* Non-SSC reference */
2355 	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2356 
2357 	/* Disable 10 bit clock */
2358 	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2359 	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
2360 	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2361 
2362 	/* Write P1 & P2 */
2363 	temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
2364 	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
2365 	temp |= pll->config.hw_state.ebb0;
2366 	I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
2367 
2368 	/* Write M2 integer */
2369 	temp = I915_READ(BXT_PORT_PLL(port, 0));
2370 	temp &= ~PORT_PLL_M2_MASK;
2371 	temp |= pll->config.hw_state.pll0;
2372 	I915_WRITE(BXT_PORT_PLL(port, 0), temp);
2373 
2374 	/* Write N */
2375 	temp = I915_READ(BXT_PORT_PLL(port, 1));
2376 	temp &= ~PORT_PLL_N_MASK;
2377 	temp |= pll->config.hw_state.pll1;
2378 	I915_WRITE(BXT_PORT_PLL(port, 1), temp);
2379 
2380 	/* Write M2 fraction */
2381 	temp = I915_READ(BXT_PORT_PLL(port, 2));
2382 	temp &= ~PORT_PLL_M2_FRAC_MASK;
2383 	temp |= pll->config.hw_state.pll2;
2384 	I915_WRITE(BXT_PORT_PLL(port, 2), temp);
2385 
2386 	/* Write M2 fraction enable */
2387 	temp = I915_READ(BXT_PORT_PLL(port, 3));
2388 	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
2389 	temp |= pll->config.hw_state.pll3;
2390 	I915_WRITE(BXT_PORT_PLL(port, 3), temp);
2391 
2392 	/* Write coeff */
2393 	temp = I915_READ(BXT_PORT_PLL(port, 6));
2394 	temp &= ~PORT_PLL_PROP_COEFF_MASK;
2395 	temp &= ~PORT_PLL_INT_COEFF_MASK;
2396 	temp &= ~PORT_PLL_GAIN_CTL_MASK;
2397 	temp |= pll->config.hw_state.pll6;
2398 	I915_WRITE(BXT_PORT_PLL(port, 6), temp);
2399 
2400 	/* Write calibration val */
2401 	temp = I915_READ(BXT_PORT_PLL(port, 8));
2402 	temp &= ~PORT_PLL_TARGET_CNT_MASK;
2403 	temp |= pll->config.hw_state.pll8;
2404 	I915_WRITE(BXT_PORT_PLL(port, 8), temp);
2405 
2406 	temp = I915_READ(BXT_PORT_PLL(port, 9));
2407 	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2408 	temp |= (5 << 1);
2409 	I915_WRITE(BXT_PORT_PLL(port, 9), temp);
2410 
2411 	temp = I915_READ(BXT_PORT_PLL(port, 10));
2412 	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
2413 	temp &= ~PORT_PLL_DCO_AMP_MASK;
2414 	temp |= pll->config.hw_state.pll10;
2415 	I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2416 
2417 	/* Recalibrate with new settings */
2418 	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2419 	temp |= PORT_PLL_RECALIBRATE;
2420 	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2421 	/* Enable 10 bit clock */
2422 	temp |= PORT_PLL_10BIT_CLK_ENABLE;
2423 	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2424 
2425 	/* Enable PLL */
2426 	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2427 	temp |= PORT_PLL_ENABLE;
2428 	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2429 	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2430 
2431 	if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
2432 			PORT_PLL_LOCK), 200))
2433 		DRM_ERROR("PLL %d not locked\n", port);
2434 
2435 	/*
2436 	 * While we write to the group register to program all lanes at once we
2437 	 * can read only lane registers and we pick lanes 0/1 for that.
2438 	 */
2439 	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2440 	temp &= ~LANE_STAGGER_MASK;
2441 	temp &= ~LANESTAGGER_STRAP_OVRD;
2442 	temp |= pll->config.hw_state.pcsdw12;
2443 	I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
2444 }
2445 
2446 static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
2447 					struct intel_shared_dpll *pll)
2448 {
2449 	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
2450 	uint32_t temp;
2451 
2452 	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2453 	temp &= ~PORT_PLL_ENABLE;
2454 	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2455 	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2456 }
2457 
2458 static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2459 					struct intel_shared_dpll *pll,
2460 					struct intel_dpll_hw_state *hw_state)
2461 {
2462 	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
2463 	uint32_t val;
2464 
2465 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2466 		return false;
2467 
2468 	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
2469 	if (!(val & PORT_PLL_ENABLE))
2470 		return false;
2471 
2472 	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2473 	hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2474 	hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2475 	hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2476 	hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2477 	hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2478 	hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2479 	hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2480 	/*
2481 	 * While we write to the group register to program all lanes at once we
2482 	 * can read only lane registers. We configure all lanes the same way, so
2483 	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
2484 	 */
2485 	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2486 	if (I915_READ(BXT_PORT_PCS_DW12_LN23(port) != hw_state->pcsdw12))
2487 		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
2488 				 hw_state->pcsdw12,
2489 				 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2490 
2491 	return true;
2492 }
2493 
2494 static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
2495 {
2496 	int i;
2497 
2498 	dev_priv->num_shared_dpll = 3;
2499 
2500 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2501 		dev_priv->shared_dplls[i].id = i;
2502 		dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
2503 		dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
2504 		dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
2505 		dev_priv->shared_dplls[i].get_hw_state =
2506 			bxt_ddi_pll_get_hw_state;
2507 	}
2508 }
2509 
2510 void intel_ddi_pll_init(struct drm_device *dev)
2511 {
2512 	struct drm_i915_private *dev_priv = dev->dev_private;
2513 	uint32_t val = I915_READ(LCPLL_CTL);
2514 	int cdclk_freq;
2515 
2516 	if (IS_SKYLAKE(dev))
2517 		skl_shared_dplls_init(dev_priv);
2518 	else if (IS_BROXTON(dev))
2519 		bxt_shared_dplls_init(dev_priv);
2520 	else
2521 		hsw_shared_dplls_init(dev_priv);
2522 
2523 	cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2524 	DRM_DEBUG_KMS("CDCLK running at %dKHz\n", cdclk_freq);
2525 
2526 	if (IS_SKYLAKE(dev)) {
2527 		dev_priv->skl_boot_cdclk = cdclk_freq;
2528 		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
2529 			DRM_ERROR("LCPLL1 is disabled\n");
2530 		else
2531 			intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
2532 	} else if (IS_BROXTON(dev)) {
2533 		broxton_init_cdclk(dev);
2534 		broxton_ddi_phy_init(dev);
2535 	} else {
2536 		/*
2537 		 * The LCPLL register should be turned on by the BIOS. For now
2538 		 * let's just check its state and print errors in case
2539 		 * something is wrong.  Don't even try to turn it on.
2540 		 */
2541 
2542 		if (val & LCPLL_CD_SOURCE_FCLK)
2543 			DRM_ERROR("CDCLK source is not LCPLL\n");
2544 
2545 		if (val & LCPLL_PLL_DISABLE)
2546 			DRM_ERROR("LCPLL is disabled\n");
2547 	}
2548 }
2549 
2550 void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
2551 {
2552 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2553 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2554 	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
2555 	enum port port = intel_dig_port->port;
2556 	uint32_t val;
2557 	bool wait = false;
2558 
2559 	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
2560 		val = I915_READ(DDI_BUF_CTL(port));
2561 		if (val & DDI_BUF_CTL_ENABLE) {
2562 			val &= ~DDI_BUF_CTL_ENABLE;
2563 			I915_WRITE(DDI_BUF_CTL(port), val);
2564 			wait = true;
2565 		}
2566 
2567 		val = I915_READ(DP_TP_CTL(port));
2568 		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2569 		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2570 		I915_WRITE(DP_TP_CTL(port), val);
2571 		POSTING_READ(DP_TP_CTL(port));
2572 
2573 		if (wait)
2574 			intel_wait_ddi_buf_idle(dev_priv, port);
2575 	}
2576 
2577 	val = DP_TP_CTL_ENABLE |
2578 	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2579 	if (intel_dp->is_mst)
2580 		val |= DP_TP_CTL_MODE_MST;
2581 	else {
2582 		val |= DP_TP_CTL_MODE_SST;
2583 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2584 			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
2585 	}
2586 	I915_WRITE(DP_TP_CTL(port), val);
2587 	POSTING_READ(DP_TP_CTL(port));
2588 
2589 	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
2590 	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
2591 	POSTING_READ(DDI_BUF_CTL(port));
2592 
2593 	udelay(600);
2594 }
2595 
2596 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
2597 {
2598 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2599 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2600 	uint32_t val;
2601 
2602 	intel_ddi_post_disable(intel_encoder);
2603 
2604 	val = I915_READ(_FDI_RXA_CTL);
2605 	val &= ~FDI_RX_ENABLE;
2606 	I915_WRITE(_FDI_RXA_CTL, val);
2607 
2608 	val = I915_READ(_FDI_RXA_MISC);
2609 	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
2610 	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
2611 	I915_WRITE(_FDI_RXA_MISC, val);
2612 
2613 	val = I915_READ(_FDI_RXA_CTL);
2614 	val &= ~FDI_PCDCLK;
2615 	I915_WRITE(_FDI_RXA_CTL, val);
2616 
2617 	val = I915_READ(_FDI_RXA_CTL);
2618 	val &= ~FDI_RX_PLL_ENABLE;
2619 	I915_WRITE(_FDI_RXA_CTL, val);
2620 }
2621 
2622 static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
2623 {
2624 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
2625 	int type = intel_dig_port->base.type;
2626 
2627 	if (type != INTEL_OUTPUT_DISPLAYPORT &&
2628 	    type != INTEL_OUTPUT_EDP &&
2629 	    type != INTEL_OUTPUT_UNKNOWN) {
2630 		return;
2631 	}
2632 
2633 	intel_dp_hot_plug(intel_encoder);
2634 }
2635 
2636 void intel_ddi_get_config(struct intel_encoder *encoder,
2637 			  struct intel_crtc_state *pipe_config)
2638 {
2639 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
2640 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2641 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
2642 	struct intel_hdmi *intel_hdmi;
2643 	u32 temp, flags = 0;
2644 
2645 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
2646 	if (temp & TRANS_DDI_PHSYNC)
2647 		flags |= DRM_MODE_FLAG_PHSYNC;
2648 	else
2649 		flags |= DRM_MODE_FLAG_NHSYNC;
2650 	if (temp & TRANS_DDI_PVSYNC)
2651 		flags |= DRM_MODE_FLAG_PVSYNC;
2652 	else
2653 		flags |= DRM_MODE_FLAG_NVSYNC;
2654 
2655 	pipe_config->base.adjusted_mode.flags |= flags;
2656 
2657 	switch (temp & TRANS_DDI_BPC_MASK) {
2658 	case TRANS_DDI_BPC_6:
2659 		pipe_config->pipe_bpp = 18;
2660 		break;
2661 	case TRANS_DDI_BPC_8:
2662 		pipe_config->pipe_bpp = 24;
2663 		break;
2664 	case TRANS_DDI_BPC_10:
2665 		pipe_config->pipe_bpp = 30;
2666 		break;
2667 	case TRANS_DDI_BPC_12:
2668 		pipe_config->pipe_bpp = 36;
2669 		break;
2670 	default:
2671 		break;
2672 	}
2673 
2674 	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
2675 	case TRANS_DDI_MODE_SELECT_HDMI:
2676 		pipe_config->has_hdmi_sink = true;
2677 		intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2678 
2679 		if (intel_hdmi->infoframe_enabled(&encoder->base))
2680 			pipe_config->has_infoframe = true;
2681 		break;
2682 	case TRANS_DDI_MODE_SELECT_DVI:
2683 	case TRANS_DDI_MODE_SELECT_FDI:
2684 		break;
2685 	case TRANS_DDI_MODE_SELECT_DP_SST:
2686 	case TRANS_DDI_MODE_SELECT_DP_MST:
2687 		pipe_config->has_dp_encoder = true;
2688 		intel_dp_get_m_n(intel_crtc, pipe_config);
2689 		break;
2690 	default:
2691 		break;
2692 	}
2693 
2694 	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2695 		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2696 		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2697 			pipe_config->has_audio = true;
2698 	}
2699 
2700 	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
2701 	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2702 		/*
2703 		 * This is a big fat ugly hack.
2704 		 *
2705 		 * Some machines in UEFI boot mode provide us a VBT that has 18
2706 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2707 		 * unknown we fail to light up. Yet the same BIOS boots up with
2708 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2709 		 * max, not what it tells us to use.
2710 		 *
2711 		 * Note: This will still be broken if the eDP panel is not lit
2712 		 * up by the BIOS, and thus we can't get the mode at module
2713 		 * load.
2714 		 */
2715 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2716 			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2717 		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2718 	}
2719 
2720 	intel_ddi_clock_get(encoder, pipe_config);
2721 }
2722 
2723 static void intel_ddi_destroy(struct drm_encoder *encoder)
2724 {
2725 	/* HDMI has nothing special to destroy, so we can go with this. */
2726 	intel_dp_encoder_destroy(encoder);
2727 }
2728 
2729 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2730 				     struct intel_crtc_state *pipe_config)
2731 {
2732 	int type = encoder->type;
2733 	int port = intel_ddi_get_encoder_port(encoder);
2734 
2735 	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
2736 
2737 	if (port == PORT_A)
2738 		pipe_config->cpu_transcoder = TRANSCODER_EDP;
2739 
2740 	if (type == INTEL_OUTPUT_HDMI)
2741 		return intel_hdmi_compute_config(encoder, pipe_config);
2742 	else
2743 		return intel_dp_compute_config(encoder, pipe_config);
2744 }
2745 
2746 static const struct drm_encoder_funcs intel_ddi_funcs = {
2747 	.destroy = intel_ddi_destroy,
2748 };
2749 
2750 static struct intel_connector *
2751 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
2752 {
2753 	struct intel_connector *connector;
2754 	enum port port = intel_dig_port->port;
2755 
2756 	connector = intel_connector_alloc();
2757 	if (!connector)
2758 		return NULL;
2759 
2760 	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
2761 	if (!intel_dp_init_connector(intel_dig_port, connector)) {
2762 		kfree(connector);
2763 		return NULL;
2764 	}
2765 
2766 	return connector;
2767 }
2768 
2769 static struct intel_connector *
2770 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
2771 {
2772 	struct intel_connector *connector;
2773 	enum port port = intel_dig_port->port;
2774 
2775 	connector = intel_connector_alloc();
2776 	if (!connector)
2777 		return NULL;
2778 
2779 	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
2780 	intel_hdmi_init_connector(intel_dig_port, connector);
2781 
2782 	return connector;
2783 }
2784 
2785 void intel_ddi_init(struct drm_device *dev, enum port port)
2786 {
2787 	struct drm_i915_private *dev_priv = dev->dev_private;
2788 	struct intel_digital_port *intel_dig_port;
2789 	struct intel_encoder *intel_encoder;
2790 	struct drm_encoder *encoder;
2791 	bool init_hdmi, init_dp;
2792 
2793 	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
2794 		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
2795 	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
2796 	if (!init_dp && !init_hdmi) {
2797 		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
2798 			      port_name(port));
2799 		init_hdmi = true;
2800 		init_dp = true;
2801 	}
2802 
2803 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2804 	if (!intel_dig_port)
2805 		return;
2806 
2807 	intel_encoder = &intel_dig_port->base;
2808 	encoder = &intel_encoder->base;
2809 
2810 	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
2811 			 DRM_MODE_ENCODER_TMDS);
2812 
2813 	intel_encoder->compute_config = intel_ddi_compute_config;
2814 	intel_encoder->enable = intel_enable_ddi;
2815 	intel_encoder->pre_enable = intel_ddi_pre_enable;
2816 	intel_encoder->disable = intel_disable_ddi;
2817 	intel_encoder->post_disable = intel_ddi_post_disable;
2818 	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2819 	intel_encoder->get_config = intel_ddi_get_config;
2820 
2821 	intel_dig_port->port = port;
2822 	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
2823 					  (DDI_BUF_PORT_REVERSAL |
2824 					   DDI_A_4_LANES);
2825 
2826 	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2827 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2828 	intel_encoder->cloneable = 0;
2829 	intel_encoder->hot_plug = intel_ddi_hot_plug;
2830 
2831 	if (init_dp) {
2832 		if (!intel_ddi_init_dp_connector(intel_dig_port))
2833 			goto err;
2834 
2835 		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2836 		dev_priv->hpd_irq_port[port] = intel_dig_port;
2837 	}
2838 
2839 	/* In theory we don't need the encoder->type check, but leave it just in
2840 	 * case we have some really bad VBTs... */
2841 	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
2842 		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
2843 			goto err;
2844 	}
2845 
2846 	return;
2847 
2848 err:
2849 	drm_encoder_cleanup(encoder);
2850 	kfree(intel_dig_port);
2851 }
2852