xref: /dragonfly/sys/dev/drm/i915/intel_ddi.c (revision fbc9049b)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <asm/int-ll64.h>
31 
32 struct ddi_buf_trans {
33 	u32 trans1;	/* balance leg enable, de-emph level */
34 	u32 trans2;	/* vref sel, vswing */
35 };
36 
37 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
38  * them for both DP and FDI transports, allowing those ports to
39  * automatically adapt to HDMI connections as well
40  */
41 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 	{ 0x00FFFFFF, 0x0006000E },
43 	{ 0x00D75FFF, 0x0005000A },
44 	{ 0x00C30FFF, 0x00040006 },
45 	{ 0x80AAAFFF, 0x000B0000 },
46 	{ 0x00FFFFFF, 0x0005000A },
47 	{ 0x00D75FFF, 0x000C0004 },
48 	{ 0x80C30FFF, 0x000B0000 },
49 	{ 0x00FFFFFF, 0x00040006 },
50 	{ 0x80D75FFF, 0x000B0000 },
51 };
52 
53 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 	{ 0x00FFFFFF, 0x0007000E },
55 	{ 0x00D75FFF, 0x000F000A },
56 	{ 0x00C30FFF, 0x00060006 },
57 	{ 0x00AAAFFF, 0x001E0000 },
58 	{ 0x00FFFFFF, 0x000F000A },
59 	{ 0x00D75FFF, 0x00160004 },
60 	{ 0x00C30FFF, 0x001E0000 },
61 	{ 0x00FFFFFF, 0x00060006 },
62 	{ 0x00D75FFF, 0x001E0000 },
63 };
64 
65 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
66 					/* Idx	NT mV d	T mV d	db	*/
67 	{ 0x00FFFFFF, 0x0006000E },	/* 0:	400	400	0	*/
68 	{ 0x00E79FFF, 0x000E000C },	/* 1:	400	500	2	*/
69 	{ 0x00D75FFF, 0x0005000A },	/* 2:	400	600	3.5	*/
70 	{ 0x00FFFFFF, 0x0005000A },	/* 3:	600	600	0	*/
71 	{ 0x00E79FFF, 0x001D0007 },	/* 4:	600	750	2	*/
72 	{ 0x00D75FFF, 0x000C0004 },	/* 5:	600	900	3.5	*/
73 	{ 0x00FFFFFF, 0x00040006 },	/* 6:	800	800	0	*/
74 	{ 0x80E79FFF, 0x00030002 },	/* 7:	800	1000	2	*/
75 	{ 0x00FFFFFF, 0x00140005 },	/* 8:	850	850	0	*/
76 	{ 0x00FFFFFF, 0x000C0004 },	/* 9:	900	900	0	*/
77 	{ 0x00FFFFFF, 0x001C0003 },	/* 10:	950	950	0	*/
78 	{ 0x80FFFFFF, 0x00030002 },	/* 11:	1000	1000	0	*/
79 };
80 
81 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 	{ 0x00FFFFFF, 0x00000012 },
83 	{ 0x00EBAFFF, 0x00020011 },
84 	{ 0x00C71FFF, 0x0006000F },
85 	{ 0x00AAAFFF, 0x000E000A },
86 	{ 0x00FFFFFF, 0x00020011 },
87 	{ 0x00DB6FFF, 0x0005000F },
88 	{ 0x00BEEFFF, 0x000A000C },
89 	{ 0x00FFFFFF, 0x0005000F },
90 	{ 0x00DB6FFF, 0x000A000C },
91 };
92 
93 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 	{ 0x00FFFFFF, 0x0007000E },
95 	{ 0x00D75FFF, 0x000E000A },
96 	{ 0x00BEFFFF, 0x00140006 },
97 	{ 0x80B2CFFF, 0x001B0002 },
98 	{ 0x00FFFFFF, 0x000E000A },
99 	{ 0x00DB6FFF, 0x00160005 },
100 	{ 0x80C71FFF, 0x001A0002 },
101 	{ 0x00F7DFFF, 0x00180004 },
102 	{ 0x80D75FFF, 0x001B0002 },
103 };
104 
105 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 	{ 0x00FFFFFF, 0x0001000E },
107 	{ 0x00D75FFF, 0x0004000A },
108 	{ 0x00C30FFF, 0x00070006 },
109 	{ 0x00AAAFFF, 0x000C0000 },
110 	{ 0x00FFFFFF, 0x0004000A },
111 	{ 0x00D75FFF, 0x00090004 },
112 	{ 0x00C30FFF, 0x000C0000 },
113 	{ 0x00FFFFFF, 0x00070006 },
114 	{ 0x00D75FFF, 0x000C0000 },
115 };
116 
117 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
118 					/* Idx	NT mV d	T mV df	db	*/
119 	{ 0x00FFFFFF, 0x0007000E },	/* 0:	400	400	0	*/
120 	{ 0x00D75FFF, 0x000E000A },	/* 1:	400	600	3.5	*/
121 	{ 0x00BEFFFF, 0x00140006 },	/* 2:	400	800	6	*/
122 	{ 0x00FFFFFF, 0x0009000D },	/* 3:	450	450	0	*/
123 	{ 0x00FFFFFF, 0x000E000A },	/* 4:	600	600	0	*/
124 	{ 0x00D7FFFF, 0x00140006 },	/* 5:	600	800	2.5	*/
125 	{ 0x80CB2FFF, 0x001B0002 },	/* 6:	600	1000	4.5	*/
126 	{ 0x00FFFFFF, 0x00140006 },	/* 7:	800	800	0	*/
127 	{ 0x80E79FFF, 0x001B0002 },	/* 8:	800	1000	2	*/
128 	{ 0x80FFFFFF, 0x001B0002 },	/* 9:	1000	1000	0	*/
129 };
130 
131 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
132 	{ 0x00000018, 0x000000a2 },
133 	{ 0x00004014, 0x0000009B },
134 	{ 0x00006012, 0x00000088 },
135 	{ 0x00008010, 0x00000087 },
136 	{ 0x00000018, 0x0000009B },
137 	{ 0x00004014, 0x00000088 },
138 	{ 0x00006012, 0x00000087 },
139 	{ 0x00000018, 0x00000088 },
140 	{ 0x00004014, 0x00000087 },
141 };
142 
143 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
144 					/* Idx	NT mV   T mV    db  */
145 	{ 0x00000018, 0x000000a0 },	/* 0:	400	400	0   */
146 	{ 0x00004014, 0x00000098 },	/* 1:	400	600	3.5 */
147 	{ 0x00006012, 0x00000088 },	/* 2:	400	800	6   */
148 	{ 0x00000018, 0x0000003c },	/* 3:	450	450	0   */
149 	{ 0x00000018, 0x00000098 },	/* 4:	600	600	0   */
150 	{ 0x00003015, 0x00000088 },	/* 5:	600	800	2.5 */
151 	{ 0x00005013, 0x00000080 },	/* 6:	600	1000	4.5 */
152 	{ 0x00000018, 0x00000088 },	/* 7:	800	800	0   */
153 	{ 0x00000096, 0x00000080 },	/* 8:	800	1000	2   */
154 	{ 0x00000018, 0x00000080 },	/* 9:	1200	1200	0   */
155 };
156 
157 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
158 {
159 	struct drm_encoder *encoder = &intel_encoder->base;
160 	int type = intel_encoder->type;
161 
162 	if (type == INTEL_OUTPUT_DP_MST) {
163 		struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
164 		return intel_dig_port->port;
165 	} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
166 	    type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
167 		struct intel_digital_port *intel_dig_port =
168 			enc_to_dig_port(encoder);
169 		return intel_dig_port->port;
170 
171 	} else if (type == INTEL_OUTPUT_ANALOG) {
172 		return PORT_E;
173 
174 	} else {
175 		DRM_ERROR("Invalid DDI encoder type %d\n", type);
176 		BUG();
177 	}
178 }
179 
180 /*
181  * Starting with Haswell, DDI port buffers must be programmed with correct
182  * values in advance. The buffer values are different for FDI and DP modes,
183  * but the HDMI/DVI fields are shared among those. So we program the DDI
184  * in either FDI or DP modes only, as HDMI connections will work with both
185  * of those
186  */
187 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
188 {
189 	struct drm_i915_private *dev_priv = dev->dev_private;
190 	u32 reg;
191 	int i, n_hdmi_entries, hdmi_800mV_0dB;
192 	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
193 	const struct ddi_buf_trans *ddi_translations_fdi;
194 	const struct ddi_buf_trans *ddi_translations_dp;
195 	const struct ddi_buf_trans *ddi_translations_edp;
196 	const struct ddi_buf_trans *ddi_translations_hdmi;
197 	const struct ddi_buf_trans *ddi_translations;
198 
199 	if (IS_SKYLAKE(dev)) {
200 		ddi_translations_fdi = NULL;
201 		ddi_translations_dp = skl_ddi_translations_dp;
202 		ddi_translations_edp = skl_ddi_translations_dp;
203 		ddi_translations_hdmi = skl_ddi_translations_hdmi;
204 		n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
205 		hdmi_800mV_0dB = 7;
206 	} else if (IS_BROADWELL(dev)) {
207 		ddi_translations_fdi = bdw_ddi_translations_fdi;
208 		ddi_translations_dp = bdw_ddi_translations_dp;
209 		ddi_translations_edp = bdw_ddi_translations_edp;
210 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
211 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
212 		hdmi_800mV_0dB = 7;
213 	} else if (IS_HASWELL(dev)) {
214 		ddi_translations_fdi = hsw_ddi_translations_fdi;
215 		ddi_translations_dp = hsw_ddi_translations_dp;
216 		ddi_translations_edp = hsw_ddi_translations_dp;
217 		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
218 		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
219 		hdmi_800mV_0dB = 6;
220 	} else {
221 		WARN(1, "ddi translation table missing\n");
222 		ddi_translations_edp = bdw_ddi_translations_dp;
223 		ddi_translations_fdi = bdw_ddi_translations_fdi;
224 		ddi_translations_dp = bdw_ddi_translations_dp;
225 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
226 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
227 		hdmi_800mV_0dB = 7;
228 	}
229 
230 	switch (port) {
231 	case PORT_A:
232 		ddi_translations = ddi_translations_edp;
233 		break;
234 	case PORT_B:
235 	case PORT_C:
236 		ddi_translations = ddi_translations_dp;
237 		break;
238 	case PORT_D:
239 		if (intel_dp_is_edp(dev, PORT_D))
240 			ddi_translations = ddi_translations_edp;
241 		else
242 			ddi_translations = ddi_translations_dp;
243 		break;
244 	case PORT_E:
245 		if (ddi_translations_fdi)
246 			ddi_translations = ddi_translations_fdi;
247 		else
248 			ddi_translations = ddi_translations_dp;
249 		break;
250 	default:
251 		BUG();
252 	}
253 
254 	for (i = 0, reg = DDI_BUF_TRANS(port);
255 	     i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
256 		I915_WRITE(reg, ddi_translations[i].trans1);
257 		reg += 4;
258 		I915_WRITE(reg, ddi_translations[i].trans2);
259 		reg += 4;
260 	}
261 
262 	/* Choose a good default if VBT is badly populated */
263 	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
264 	    hdmi_level >= n_hdmi_entries)
265 		hdmi_level = hdmi_800mV_0dB;
266 
267 	/* Entry 9 is for HDMI: */
268 	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
269 	reg += 4;
270 	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
271 	reg += 4;
272 }
273 
274 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
275  * mode and port E for FDI.
276  */
277 void intel_prepare_ddi(struct drm_device *dev)
278 {
279 	int port;
280 
281 	if (!HAS_DDI(dev))
282 		return;
283 
284 	for (port = PORT_A; port <= PORT_E; port++)
285 		intel_prepare_ddi_buffers(dev, port);
286 }
287 
288 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
289 				    enum port port)
290 {
291 	uint32_t reg = DDI_BUF_CTL(port);
292 	int i;
293 
294 	for (i = 0; i < 8; i++) {
295 		udelay(1);
296 		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
297 			return;
298 	}
299 	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
300 }
301 
302 /* Starting with Haswell, different DDI ports can work in FDI mode for
303  * connection to the PCH-located connectors. For this, it is necessary to train
304  * both the DDI port and PCH receiver for the desired DDI buffer settings.
305  *
306  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
307  * please note that when FDI mode is active on DDI E, it shares 2 lines with
308  * DDI A (which is used for eDP)
309  */
310 
311 void hsw_fdi_link_train(struct drm_crtc *crtc)
312 {
313 	struct drm_device *dev = crtc->dev;
314 	struct drm_i915_private *dev_priv = dev->dev_private;
315 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
316 	u32 temp, i, rx_ctl_val;
317 
318 	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
319 	 * mode set "sequence for CRT port" document:
320 	 * - TP1 to TP2 time with the default value
321 	 * - FDI delay to 90h
322 	 *
323 	 * WaFDIAutoLinkSetTimingOverrride:hsw
324 	 */
325 	I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
326 				  FDI_RX_PWRDN_LANE0_VAL(2) |
327 				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
328 
329 	/* Enable the PCH Receiver FDI PLL */
330 	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
331 		     FDI_RX_PLL_ENABLE |
332 		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
333 	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
334 	POSTING_READ(_FDI_RXA_CTL);
335 	udelay(220);
336 
337 	/* Switch from Rawclk to PCDclk */
338 	rx_ctl_val |= FDI_PCDCLK;
339 	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
340 
341 	/* Configure Port Clock Select */
342 	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
343 	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
344 
345 	/* Start the training iterating through available voltages and emphasis,
346 	 * testing each value twice. */
347 	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
348 		/* Configure DP_TP_CTL with auto-training */
349 		I915_WRITE(DP_TP_CTL(PORT_E),
350 					DP_TP_CTL_FDI_AUTOTRAIN |
351 					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
352 					DP_TP_CTL_LINK_TRAIN_PAT1 |
353 					DP_TP_CTL_ENABLE);
354 
355 		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
356 		 * DDI E does not support port reversal, the functionality is
357 		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
358 		 * port reversal bit */
359 		I915_WRITE(DDI_BUF_CTL(PORT_E),
360 			   DDI_BUF_CTL_ENABLE |
361 			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
362 			   DDI_BUF_TRANS_SELECT(i / 2));
363 		POSTING_READ(DDI_BUF_CTL(PORT_E));
364 
365 		udelay(600);
366 
367 		/* Program PCH FDI Receiver TU */
368 		I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
369 
370 		/* Enable PCH FDI Receiver with auto-training */
371 		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
372 		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
373 		POSTING_READ(_FDI_RXA_CTL);
374 
375 		/* Wait for FDI receiver lane calibration */
376 		udelay(30);
377 
378 		/* Unset FDI_RX_MISC pwrdn lanes */
379 		temp = I915_READ(_FDI_RXA_MISC);
380 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
381 		I915_WRITE(_FDI_RXA_MISC, temp);
382 		POSTING_READ(_FDI_RXA_MISC);
383 
384 		/* Wait for FDI auto training time */
385 		udelay(5);
386 
387 		temp = I915_READ(DP_TP_STATUS(PORT_E));
388 		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
389 			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
390 
391 			/* Enable normal pixel sending for FDI */
392 			I915_WRITE(DP_TP_CTL(PORT_E),
393 				   DP_TP_CTL_FDI_AUTOTRAIN |
394 				   DP_TP_CTL_LINK_TRAIN_NORMAL |
395 				   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
396 				   DP_TP_CTL_ENABLE);
397 
398 			return;
399 		}
400 
401 		temp = I915_READ(DDI_BUF_CTL(PORT_E));
402 		temp &= ~DDI_BUF_CTL_ENABLE;
403 		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
404 		POSTING_READ(DDI_BUF_CTL(PORT_E));
405 
406 		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
407 		temp = I915_READ(DP_TP_CTL(PORT_E));
408 		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
409 		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
410 		I915_WRITE(DP_TP_CTL(PORT_E), temp);
411 		POSTING_READ(DP_TP_CTL(PORT_E));
412 
413 		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
414 
415 		rx_ctl_val &= ~FDI_RX_ENABLE;
416 		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
417 		POSTING_READ(_FDI_RXA_CTL);
418 
419 		/* Reset FDI_RX_MISC pwrdn lanes */
420 		temp = I915_READ(_FDI_RXA_MISC);
421 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
422 		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
423 		I915_WRITE(_FDI_RXA_MISC, temp);
424 		POSTING_READ(_FDI_RXA_MISC);
425 	}
426 
427 	DRM_ERROR("FDI link training failed!\n");
428 }
429 
430 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
431 {
432 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
433 	struct intel_digital_port *intel_dig_port =
434 		enc_to_dig_port(&encoder->base);
435 
436 	intel_dp->DP = intel_dig_port->saved_port_bits |
437 		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
438 	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
439 
440 }
441 
442 static struct intel_encoder *
443 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
444 {
445 	struct drm_device *dev = crtc->dev;
446 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
447 	struct intel_encoder *intel_encoder, *ret = NULL;
448 	int num_encoders = 0;
449 
450 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
451 		ret = intel_encoder;
452 		num_encoders++;
453 	}
454 
455 	if (num_encoders != 1)
456 		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
457 		     pipe_name(intel_crtc->pipe));
458 
459 	BUG_ON(ret == NULL);
460 	return ret;
461 }
462 
463 static struct intel_encoder *
464 intel_ddi_get_crtc_new_encoder(struct intel_crtc *crtc)
465 {
466 	struct drm_device *dev = crtc->base.dev;
467 	struct intel_encoder *intel_encoder, *ret = NULL;
468 	int num_encoders = 0;
469 
470 	for_each_intel_encoder(dev, intel_encoder) {
471 		if (intel_encoder->new_crtc == crtc) {
472 			ret = intel_encoder;
473 			num_encoders++;
474 		}
475 	}
476 
477 	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
478 	     pipe_name(crtc->pipe));
479 
480 	BUG_ON(ret == NULL);
481 	return ret;
482 }
483 
484 #define LC_FREQ 2700
485 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
486 
487 #define P_MIN 2
488 #define P_MAX 64
489 #define P_INC 2
490 
491 /* Constraints for PLL good behavior */
492 #define REF_MIN 48
493 #define REF_MAX 400
494 #define VCO_MIN 2400
495 #define VCO_MAX 4800
496 
497 #define abs_diff(a, b) ({			\
498 	typeof(a) __a = (a);			\
499 	typeof(b) __b = (b);			\
500 	(void) (&__a == &__b);			\
501 	__a > __b ? (__a - __b) : (__b - __a); })
502 
503 struct wrpll_rnp {
504 	unsigned p, n2, r2;
505 };
506 
507 static unsigned wrpll_get_budget_for_freq(int clock)
508 {
509 	unsigned budget;
510 
511 	switch (clock) {
512 	case 25175000:
513 	case 25200000:
514 	case 27000000:
515 	case 27027000:
516 	case 37762500:
517 	case 37800000:
518 	case 40500000:
519 	case 40541000:
520 	case 54000000:
521 	case 54054000:
522 	case 59341000:
523 	case 59400000:
524 	case 72000000:
525 	case 74176000:
526 	case 74250000:
527 	case 81000000:
528 	case 81081000:
529 	case 89012000:
530 	case 89100000:
531 	case 108000000:
532 	case 108108000:
533 	case 111264000:
534 	case 111375000:
535 	case 148352000:
536 	case 148500000:
537 	case 162000000:
538 	case 162162000:
539 	case 222525000:
540 	case 222750000:
541 	case 296703000:
542 	case 297000000:
543 		budget = 0;
544 		break;
545 	case 233500000:
546 	case 245250000:
547 	case 247750000:
548 	case 253250000:
549 	case 298000000:
550 		budget = 1500;
551 		break;
552 	case 169128000:
553 	case 169500000:
554 	case 179500000:
555 	case 202000000:
556 		budget = 2000;
557 		break;
558 	case 256250000:
559 	case 262500000:
560 	case 270000000:
561 	case 272500000:
562 	case 273750000:
563 	case 280750000:
564 	case 281250000:
565 	case 286000000:
566 	case 291750000:
567 		budget = 4000;
568 		break;
569 	case 267250000:
570 	case 268500000:
571 		budget = 5000;
572 		break;
573 	default:
574 		budget = 1000;
575 		break;
576 	}
577 
578 	return budget;
579 }
580 
581 static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
582 			     unsigned r2, unsigned n2, unsigned p,
583 			     struct wrpll_rnp *best)
584 {
585 	uint64_t a, b, c, d, diff, diff_best;
586 
587 	/* No best (r,n,p) yet */
588 	if (best->p == 0) {
589 		best->p = p;
590 		best->n2 = n2;
591 		best->r2 = r2;
592 		return;
593 	}
594 
595 	/*
596 	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
597 	 * freq2k.
598 	 *
599 	 * delta = 1e6 *
600 	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
601 	 *	   freq2k;
602 	 *
603 	 * and we would like delta <= budget.
604 	 *
605 	 * If the discrepancy is above the PPM-based budget, always prefer to
606 	 * improve upon the previous solution.  However, if you're within the
607 	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
608 	 */
609 	a = freq2k * budget * p * r2;
610 	b = freq2k * budget * best->p * best->r2;
611 	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
612 	diff_best = abs_diff(freq2k * best->p * best->r2,
613 			     LC_FREQ_2K * best->n2);
614 	c = 1000000 * diff;
615 	d = 1000000 * diff_best;
616 
617 	if (a < c && b < d) {
618 		/* If both are above the budget, pick the closer */
619 		if (best->p * best->r2 * diff < p * r2 * diff_best) {
620 			best->p = p;
621 			best->n2 = n2;
622 			best->r2 = r2;
623 		}
624 	} else if (a >= c && b < d) {
625 		/* If A is below the threshold but B is above it?  Update. */
626 		best->p = p;
627 		best->n2 = n2;
628 		best->r2 = r2;
629 	} else if (a >= c && b >= d) {
630 		/* Both are below the limit, so pick the higher n2/(r2*r2) */
631 		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
632 			best->p = p;
633 			best->n2 = n2;
634 			best->r2 = r2;
635 		}
636 	}
637 	/* Otherwise a < c && b >= d, do nothing */
638 }
639 
640 static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
641 				     int reg)
642 {
643 	int refclk = LC_FREQ;
644 	int n, p, r;
645 	u32 wrpll;
646 
647 	wrpll = I915_READ(reg);
648 	switch (wrpll & WRPLL_PLL_REF_MASK) {
649 	case WRPLL_PLL_SSC:
650 	case WRPLL_PLL_NON_SSC:
651 		/*
652 		 * We could calculate spread here, but our checking
653 		 * code only cares about 5% accuracy, and spread is a max of
654 		 * 0.5% downspread.
655 		 */
656 		refclk = 135;
657 		break;
658 	case WRPLL_PLL_LCPLL:
659 		refclk = LC_FREQ;
660 		break;
661 	default:
662 		WARN(1, "bad wrpll refclk\n");
663 		return 0;
664 	}
665 
666 	r = wrpll & WRPLL_DIVIDER_REF_MASK;
667 	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
668 	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
669 
670 	/* Convert to KHz, p & r have a fixed point portion */
671 	return (refclk * n * 100) / (p * r);
672 }
673 
674 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
675 			       uint32_t dpll)
676 {
677 	uint32_t cfgcr1_reg, cfgcr2_reg;
678 	uint32_t cfgcr1_val, cfgcr2_val;
679 	uint32_t p0, p1, p2, dco_freq;
680 
681 	cfgcr1_reg = GET_CFG_CR1_REG(dpll);
682 	cfgcr2_reg = GET_CFG_CR2_REG(dpll);
683 
684 	cfgcr1_val = I915_READ(cfgcr1_reg);
685 	cfgcr2_val = I915_READ(cfgcr2_reg);
686 
687 	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
688 	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
689 
690 	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
691 		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
692 	else
693 		p1 = 1;
694 
695 
696 	switch (p0) {
697 	case DPLL_CFGCR2_PDIV_1:
698 		p0 = 1;
699 		break;
700 	case DPLL_CFGCR2_PDIV_2:
701 		p0 = 2;
702 		break;
703 	case DPLL_CFGCR2_PDIV_3:
704 		p0 = 3;
705 		break;
706 	case DPLL_CFGCR2_PDIV_7:
707 		p0 = 7;
708 		break;
709 	}
710 
711 	switch (p2) {
712 	case DPLL_CFGCR2_KDIV_5:
713 		p2 = 5;
714 		break;
715 	case DPLL_CFGCR2_KDIV_2:
716 		p2 = 2;
717 		break;
718 	case DPLL_CFGCR2_KDIV_3:
719 		p2 = 3;
720 		break;
721 	case DPLL_CFGCR2_KDIV_1:
722 		p2 = 1;
723 		break;
724 	}
725 
726 	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
727 
728 	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
729 		1000) / 0x8000;
730 
731 	return dco_freq / (p0 * p1 * p2 * 5);
732 }
733 
734 
735 static void skl_ddi_clock_get(struct intel_encoder *encoder,
736 				struct intel_crtc_state *pipe_config)
737 {
738 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
739 	int link_clock = 0;
740 	uint32_t dpll_ctl1, dpll;
741 
742 	dpll = pipe_config->ddi_pll_sel;
743 
744 	dpll_ctl1 = I915_READ(DPLL_CTRL1);
745 
746 	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
747 		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
748 	} else {
749 		link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll);
750 		link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll);
751 
752 		switch (link_clock) {
753 		case DPLL_CRTL1_LINK_RATE_810:
754 			link_clock = 81000;
755 			break;
756 		case DPLL_CRTL1_LINK_RATE_1350:
757 			link_clock = 135000;
758 			break;
759 		case DPLL_CRTL1_LINK_RATE_2700:
760 			link_clock = 270000;
761 			break;
762 		default:
763 			WARN(1, "Unsupported link rate\n");
764 			break;
765 		}
766 		link_clock *= 2;
767 	}
768 
769 	pipe_config->port_clock = link_clock;
770 
771 	if (pipe_config->has_dp_encoder)
772 		pipe_config->base.adjusted_mode.crtc_clock =
773 			intel_dotclock_calculate(pipe_config->port_clock,
774 						 &pipe_config->dp_m_n);
775 	else
776 		pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
777 }
778 
779 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
780 			      struct intel_crtc_state *pipe_config)
781 {
782 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
783 	int link_clock = 0;
784 	u32 val, pll;
785 
786 	val = pipe_config->ddi_pll_sel;
787 	switch (val & PORT_CLK_SEL_MASK) {
788 	case PORT_CLK_SEL_LCPLL_810:
789 		link_clock = 81000;
790 		break;
791 	case PORT_CLK_SEL_LCPLL_1350:
792 		link_clock = 135000;
793 		break;
794 	case PORT_CLK_SEL_LCPLL_2700:
795 		link_clock = 270000;
796 		break;
797 	case PORT_CLK_SEL_WRPLL1:
798 		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
799 		break;
800 	case PORT_CLK_SEL_WRPLL2:
801 		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
802 		break;
803 	case PORT_CLK_SEL_SPLL:
804 		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
805 		if (pll == SPLL_PLL_FREQ_810MHz)
806 			link_clock = 81000;
807 		else if (pll == SPLL_PLL_FREQ_1350MHz)
808 			link_clock = 135000;
809 		else if (pll == SPLL_PLL_FREQ_2700MHz)
810 			link_clock = 270000;
811 		else {
812 			WARN(1, "bad spll freq\n");
813 			return;
814 		}
815 		break;
816 	default:
817 		WARN(1, "bad port clock sel\n");
818 		return;
819 	}
820 
821 	pipe_config->port_clock = link_clock * 2;
822 
823 	if (pipe_config->has_pch_encoder)
824 		pipe_config->base.adjusted_mode.crtc_clock =
825 			intel_dotclock_calculate(pipe_config->port_clock,
826 						 &pipe_config->fdi_m_n);
827 	else if (pipe_config->has_dp_encoder)
828 		pipe_config->base.adjusted_mode.crtc_clock =
829 			intel_dotclock_calculate(pipe_config->port_clock,
830 						 &pipe_config->dp_m_n);
831 	else
832 		pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
833 }
834 
835 void intel_ddi_clock_get(struct intel_encoder *encoder,
836 			 struct intel_crtc_state *pipe_config)
837 {
838 	struct drm_device *dev = encoder->base.dev;
839 
840 	if (INTEL_INFO(dev)->gen <= 8)
841 		hsw_ddi_clock_get(encoder, pipe_config);
842 	else
843 		skl_ddi_clock_get(encoder, pipe_config);
844 }
845 
846 static void
847 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
848 			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
849 {
850 	uint64_t freq2k;
851 	unsigned p, n2, r2;
852 	struct wrpll_rnp best = { 0, 0, 0 };
853 	unsigned budget;
854 
855 	freq2k = clock / 100;
856 
857 	budget = wrpll_get_budget_for_freq(clock);
858 
859 	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
860 	 * and directly pass the LC PLL to it. */
861 	if (freq2k == 5400000) {
862 		*n2_out = 2;
863 		*p_out = 1;
864 		*r2_out = 2;
865 		return;
866 	}
867 
868 	/*
869 	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
870 	 * the WR PLL.
871 	 *
872 	 * We want R so that REF_MIN <= Ref <= REF_MAX.
873 	 * Injecting R2 = 2 * R gives:
874 	 *   REF_MAX * r2 > LC_FREQ * 2 and
875 	 *   REF_MIN * r2 < LC_FREQ * 2
876 	 *
877 	 * Which means the desired boundaries for r2 are:
878 	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
879 	 *
880 	 */
881 	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
882 	     r2 <= LC_FREQ * 2 / REF_MIN;
883 	     r2++) {
884 
885 		/*
886 		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
887 		 *
888 		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
889 		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
890 		 *   VCO_MAX * r2 > n2 * LC_FREQ and
891 		 *   VCO_MIN * r2 < n2 * LC_FREQ)
892 		 *
893 		 * Which means the desired boundaries for n2 are:
894 		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
895 		 */
896 		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
897 		     n2 <= VCO_MAX * r2 / LC_FREQ;
898 		     n2++) {
899 
900 			for (p = P_MIN; p <= P_MAX; p += P_INC)
901 				wrpll_update_rnp(freq2k, budget,
902 						 r2, n2, p, &best);
903 		}
904 	}
905 
906 	*n2_out = best.n2;
907 	*p_out = best.p;
908 	*r2_out = best.r2;
909 }
910 
911 static bool
912 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
913 		   struct intel_crtc_state *crtc_state,
914 		   struct intel_encoder *intel_encoder,
915 		   int clock)
916 {
917 	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
918 		struct intel_shared_dpll *pll;
919 		uint32_t val;
920 		unsigned p, n2, r2;
921 
922 		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
923 
924 		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
925 		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
926 		      WRPLL_DIVIDER_POST(p);
927 
928 		crtc_state->dpll_hw_state.wrpll = val;
929 
930 		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
931 		if (pll == NULL) {
932 			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
933 					 pipe_name(intel_crtc->pipe));
934 			return false;
935 		}
936 
937 		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
938 	}
939 
940 	return true;
941 }
942 
943 struct skl_wrpll_params {
944 	uint32_t        dco_fraction;
945 	uint32_t        dco_integer;
946 	uint32_t        qdiv_ratio;
947 	uint32_t        qdiv_mode;
948 	uint32_t        kdiv;
949 	uint32_t        pdiv;
950 	uint32_t        central_freq;
951 };
952 
953 static void
954 skl_ddi_calculate_wrpll(int clock /* in Hz */,
955 			struct skl_wrpll_params *wrpll_params)
956 {
957 	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
958 	uint64_t dco_central_freq[3] = {8400000000ULL,
959 					9000000000ULL,
960 					9600000000ULL};
961 	uint32_t min_dco_deviation = 400;
962 	uint32_t min_dco_index = 3;
963 	uint32_t P0[4] = {1, 2, 3, 7};
964 	uint32_t P2[4] = {1, 2, 3, 5};
965 	bool found = false;
966 	uint32_t candidate_p = 0;
967 	uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
968 	uint32_t candidate_p2[3] = {0};
969 	uint32_t dco_central_freq_deviation[3];
970 	uint32_t i, P1, k, dco_count;
971 	bool retry_with_odd = false;
972 	uint64_t dco_freq;
973 
974 	/* Determine P0, P1 or P2 */
975 	for (dco_count = 0; dco_count < 3; dco_count++) {
976 		found = false;
977 		candidate_p =
978 			div64_u64(dco_central_freq[dco_count], afe_clock);
979 		if (retry_with_odd == false)
980 			candidate_p = (candidate_p % 2 == 0 ?
981 				candidate_p : candidate_p + 1);
982 
983 		for (P1 = 1; P1 < candidate_p; P1++) {
984 			for (i = 0; i < 4; i++) {
985 				if (!(P0[i] != 1 || P1 == 1))
986 					continue;
987 
988 				for (k = 0; k < 4; k++) {
989 					if (P1 != 1 && P2[k] != 2)
990 						continue;
991 
992 					if (candidate_p == P0[i] * P1 * P2[k]) {
993 						/* Found possible P0, P1, P2 */
994 						found = true;
995 						candidate_p0[dco_count] = P0[i];
996 						candidate_p1[dco_count] = P1;
997 						candidate_p2[dco_count] = P2[k];
998 						goto found;
999 					}
1000 
1001 				}
1002 			}
1003 		}
1004 
1005 found:
1006 		if (found) {
1007 			dco_central_freq_deviation[dco_count] =
1008 				div64_u64(10000 *
1009 					  abs_diff((candidate_p * afe_clock),
1010 						   dco_central_freq[dco_count]),
1011 					  dco_central_freq[dco_count]);
1012 
1013 			if (dco_central_freq_deviation[dco_count] <
1014 				min_dco_deviation) {
1015 				min_dco_deviation =
1016 					dco_central_freq_deviation[dco_count];
1017 				min_dco_index = dco_count;
1018 			}
1019 		}
1020 
1021 		if (min_dco_index > 2 && dco_count == 2) {
1022 			retry_with_odd = true;
1023 			dco_count = 0;
1024 		}
1025 	}
1026 
1027 	if (min_dco_index > 2) {
1028 		WARN(1, "No valid values found for the given pixel clock\n");
1029 	} else {
1030 		 wrpll_params->central_freq = dco_central_freq[min_dco_index];
1031 
1032 		 switch (dco_central_freq[min_dco_index]) {
1033 		 case 9600000000ULL:
1034 			wrpll_params->central_freq = 0;
1035 			break;
1036 		 case 9000000000ULL:
1037 			wrpll_params->central_freq = 1;
1038 			break;
1039 		 case 8400000000ULL:
1040 			wrpll_params->central_freq = 3;
1041 		 }
1042 
1043 		 switch (candidate_p0[min_dco_index]) {
1044 		 case 1:
1045 			wrpll_params->pdiv = 0;
1046 			break;
1047 		 case 2:
1048 			wrpll_params->pdiv = 1;
1049 			break;
1050 		 case 3:
1051 			wrpll_params->pdiv = 2;
1052 			break;
1053 		 case 7:
1054 			wrpll_params->pdiv = 4;
1055 			break;
1056 		 default:
1057 			WARN(1, "Incorrect PDiv\n");
1058 		 }
1059 
1060 		 switch (candidate_p2[min_dco_index]) {
1061 		 case 5:
1062 			wrpll_params->kdiv = 0;
1063 			break;
1064 		 case 2:
1065 			wrpll_params->kdiv = 1;
1066 			break;
1067 		 case 3:
1068 			wrpll_params->kdiv = 2;
1069 			break;
1070 		 case 1:
1071 			wrpll_params->kdiv = 3;
1072 			break;
1073 		 default:
1074 			WARN(1, "Incorrect KDiv\n");
1075 		 }
1076 
1077 		 wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
1078 		 wrpll_params->qdiv_mode =
1079 			(wrpll_params->qdiv_ratio == 1) ? 0 : 1;
1080 
1081 		 dco_freq = candidate_p0[min_dco_index] *
1082 			 candidate_p1[min_dco_index] *
1083 			 candidate_p2[min_dco_index] * afe_clock;
1084 
1085 		/*
1086 		* Intermediate values are in Hz.
1087 		* Divide by MHz to match bsepc
1088 		*/
1089 		 wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
1090 		 wrpll_params->dco_fraction =
1091 			 div_u64(((div_u64(dco_freq, 24) -
1092 				   wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
1093 
1094 	}
1095 }
1096 
1097 
1098 static bool
1099 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1100 		   struct intel_crtc_state *crtc_state,
1101 		   struct intel_encoder *intel_encoder,
1102 		   int clock)
1103 {
1104 	struct intel_shared_dpll *pll;
1105 	uint32_t ctrl1, cfgcr1, cfgcr2;
1106 
1107 	/*
1108 	 * See comment in intel_dpll_hw_state to understand why we always use 0
1109 	 * as the DPLL id in this function.
1110 	 */
1111 
1112 	ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1113 
1114 	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1115 		struct skl_wrpll_params wrpll_params = { 0, };
1116 
1117 		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1118 
1119 		skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
1120 
1121 		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1122 			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1123 			 wrpll_params.dco_integer;
1124 
1125 		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1126 			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1127 			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1128 			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1129 			 wrpll_params.central_freq;
1130 	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1131 		struct drm_encoder *encoder = &intel_encoder->base;
1132 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1133 
1134 		switch (intel_dp->link_bw) {
1135 		case DP_LINK_BW_1_62:
1136 			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810, 0);
1137 			break;
1138 		case DP_LINK_BW_2_7:
1139 			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350, 0);
1140 			break;
1141 		case DP_LINK_BW_5_4:
1142 			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700, 0);
1143 			break;
1144 		}
1145 
1146 		cfgcr1 = cfgcr2 = 0;
1147 	} else /* eDP */
1148 		return true;
1149 
1150 	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1151 	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1152 	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1153 
1154 	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1155 	if (pll == NULL) {
1156 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1157 				 pipe_name(intel_crtc->pipe));
1158 		return false;
1159 	}
1160 
1161 	/* shared DPLL id 0 is DPLL 1 */
1162 	crtc_state->ddi_pll_sel = pll->id + 1;
1163 
1164 	return true;
1165 }
1166 
1167 /*
1168  * Tries to find a *shared* PLL for the CRTC and store it in
1169  * intel_crtc->ddi_pll_sel.
1170  *
1171  * For private DPLLs, compute_config() should do the selection for us. This
1172  * function should be folded into compute_config() eventually.
1173  */
1174 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1175 			  struct intel_crtc_state *crtc_state)
1176 {
1177 	struct drm_device *dev = intel_crtc->base.dev;
1178 	struct intel_encoder *intel_encoder =
1179 		intel_ddi_get_crtc_new_encoder(intel_crtc);
1180 	int clock = crtc_state->port_clock;
1181 
1182 	if (IS_SKYLAKE(dev))
1183 		return skl_ddi_pll_select(intel_crtc, crtc_state,
1184 					  intel_encoder, clock);
1185 	else
1186 		return hsw_ddi_pll_select(intel_crtc, crtc_state,
1187 					  intel_encoder, clock);
1188 }
1189 
1190 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1191 {
1192 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1193 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1194 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1195 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1196 	int type = intel_encoder->type;
1197 	uint32_t temp;
1198 
1199 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1200 		temp = TRANS_MSA_SYNC_CLK;
1201 		switch (intel_crtc->config->pipe_bpp) {
1202 		case 18:
1203 			temp |= TRANS_MSA_6_BPC;
1204 			break;
1205 		case 24:
1206 			temp |= TRANS_MSA_8_BPC;
1207 			break;
1208 		case 30:
1209 			temp |= TRANS_MSA_10_BPC;
1210 			break;
1211 		case 36:
1212 			temp |= TRANS_MSA_12_BPC;
1213 			break;
1214 		default:
1215 			BUG();
1216 		}
1217 		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1218 	}
1219 }
1220 
1221 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1222 {
1223 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1224 	struct drm_device *dev = crtc->dev;
1225 	struct drm_i915_private *dev_priv = dev->dev_private;
1226 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1227 	uint32_t temp;
1228 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1229 	if (state == true)
1230 		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1231 	else
1232 		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1233 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1234 }
1235 
1236 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1237 {
1238 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1239 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1240 	struct drm_encoder *encoder = &intel_encoder->base;
1241 	struct drm_device *dev = crtc->dev;
1242 	struct drm_i915_private *dev_priv = dev->dev_private;
1243 	enum i915_pipe pipe = intel_crtc->pipe;
1244 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1245 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1246 	int type = intel_encoder->type;
1247 	uint32_t temp;
1248 
1249 	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1250 	temp = TRANS_DDI_FUNC_ENABLE;
1251 	temp |= TRANS_DDI_SELECT_PORT(port);
1252 
1253 	switch (intel_crtc->config->pipe_bpp) {
1254 	case 18:
1255 		temp |= TRANS_DDI_BPC_6;
1256 		break;
1257 	case 24:
1258 		temp |= TRANS_DDI_BPC_8;
1259 		break;
1260 	case 30:
1261 		temp |= TRANS_DDI_BPC_10;
1262 		break;
1263 	case 36:
1264 		temp |= TRANS_DDI_BPC_12;
1265 		break;
1266 	default:
1267 		BUG();
1268 	}
1269 
1270 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1271 		temp |= TRANS_DDI_PVSYNC;
1272 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1273 		temp |= TRANS_DDI_PHSYNC;
1274 
1275 	if (cpu_transcoder == TRANSCODER_EDP) {
1276 		switch (pipe) {
1277 		case PIPE_A:
1278 			/* On Haswell, can only use the always-on power well for
1279 			 * eDP when not using the panel fitter, and when not
1280 			 * using motion blur mitigation (which we don't
1281 			 * support). */
1282 			if (IS_HASWELL(dev) &&
1283 			    (intel_crtc->config->pch_pfit.enabled ||
1284 			     intel_crtc->config->pch_pfit.force_thru))
1285 				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1286 			else
1287 				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1288 			break;
1289 		case PIPE_B:
1290 			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1291 			break;
1292 		case PIPE_C:
1293 			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1294 			break;
1295 		default:
1296 			BUG();
1297 			break;
1298 		}
1299 	}
1300 
1301 	if (type == INTEL_OUTPUT_HDMI) {
1302 		if (intel_crtc->config->has_hdmi_sink)
1303 			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1304 		else
1305 			temp |= TRANS_DDI_MODE_SELECT_DVI;
1306 
1307 	} else if (type == INTEL_OUTPUT_ANALOG) {
1308 		temp |= TRANS_DDI_MODE_SELECT_FDI;
1309 		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1310 
1311 	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1312 		   type == INTEL_OUTPUT_EDP) {
1313 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1314 
1315 		if (intel_dp->is_mst) {
1316 			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1317 		} else
1318 			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1319 
1320 		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1321 	} else if (type == INTEL_OUTPUT_DP_MST) {
1322 		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1323 
1324 		if (intel_dp->is_mst) {
1325 			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1326 		} else
1327 			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1328 
1329 		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1330 	} else {
1331 		WARN(1, "Invalid encoder type %d for pipe %c\n",
1332 		     intel_encoder->type, pipe_name(pipe));
1333 	}
1334 
1335 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1336 }
1337 
1338 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1339 				       enum transcoder cpu_transcoder)
1340 {
1341 	uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1342 	uint32_t val = I915_READ(reg);
1343 
1344 	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1345 	val |= TRANS_DDI_PORT_NONE;
1346 	I915_WRITE(reg, val);
1347 }
1348 
1349 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1350 {
1351 	struct drm_device *dev = intel_connector->base.dev;
1352 	struct drm_i915_private *dev_priv = dev->dev_private;
1353 	struct intel_encoder *intel_encoder = intel_connector->encoder;
1354 	int type = intel_connector->base.connector_type;
1355 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1356 	enum i915_pipe pipe = 0;
1357 	enum transcoder cpu_transcoder;
1358 	enum intel_display_power_domain power_domain;
1359 	uint32_t tmp;
1360 
1361 	power_domain = intel_display_port_power_domain(intel_encoder);
1362 	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1363 		return false;
1364 
1365 	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
1366 		return false;
1367 
1368 	if (port == PORT_A)
1369 		cpu_transcoder = TRANSCODER_EDP;
1370 	else
1371 		cpu_transcoder = (enum transcoder) pipe;
1372 
1373 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1374 
1375 	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1376 	case TRANS_DDI_MODE_SELECT_HDMI:
1377 	case TRANS_DDI_MODE_SELECT_DVI:
1378 		return (type == DRM_MODE_CONNECTOR_HDMIA);
1379 
1380 	case TRANS_DDI_MODE_SELECT_DP_SST:
1381 		if (type == DRM_MODE_CONNECTOR_eDP)
1382 			return true;
1383 		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1384 	case TRANS_DDI_MODE_SELECT_DP_MST:
1385 		/* if the transcoder is in MST state then
1386 		 * connector isn't connected */
1387 		return false;
1388 
1389 	case TRANS_DDI_MODE_SELECT_FDI:
1390 		return (type == DRM_MODE_CONNECTOR_VGA);
1391 
1392 	default:
1393 		return false;
1394 	}
1395 }
1396 
1397 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1398 			    enum i915_pipe *pipe)
1399 {
1400 	struct drm_device *dev = encoder->base.dev;
1401 	struct drm_i915_private *dev_priv = dev->dev_private;
1402 	enum port port = intel_ddi_get_encoder_port(encoder);
1403 	enum intel_display_power_domain power_domain;
1404 	u32 tmp;
1405 	int i;
1406 
1407 	power_domain = intel_display_port_power_domain(encoder);
1408 	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1409 		return false;
1410 
1411 	tmp = I915_READ(DDI_BUF_CTL(port));
1412 
1413 	if (!(tmp & DDI_BUF_CTL_ENABLE))
1414 		return false;
1415 
1416 	if (port == PORT_A) {
1417 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1418 
1419 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1420 		case TRANS_DDI_EDP_INPUT_A_ON:
1421 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
1422 			*pipe = PIPE_A;
1423 			break;
1424 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
1425 			*pipe = PIPE_B;
1426 			break;
1427 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
1428 			*pipe = PIPE_C;
1429 			break;
1430 		}
1431 
1432 		return true;
1433 	} else {
1434 		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1435 			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1436 
1437 			if ((tmp & TRANS_DDI_PORT_MASK)
1438 			    == TRANS_DDI_SELECT_PORT(port)) {
1439 				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
1440 					return false;
1441 
1442 				*pipe = i;
1443 				return true;
1444 			}
1445 		}
1446 	}
1447 
1448 	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1449 
1450 	return false;
1451 }
1452 
1453 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1454 {
1455 	struct drm_crtc *crtc = &intel_crtc->base;
1456 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1457 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1458 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1459 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1460 
1461 	if (cpu_transcoder != TRANSCODER_EDP)
1462 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1463 			   TRANS_CLK_SEL_PORT(port));
1464 }
1465 
1466 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1467 {
1468 	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1469 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1470 
1471 	if (cpu_transcoder != TRANSCODER_EDP)
1472 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1473 			   TRANS_CLK_SEL_DISABLED);
1474 }
1475 
1476 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1477 {
1478 	struct drm_encoder *encoder = &intel_encoder->base;
1479 	struct drm_device *dev = encoder->dev;
1480 	struct drm_i915_private *dev_priv = dev->dev_private;
1481 	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1482 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1483 	int type = intel_encoder->type;
1484 
1485 	if (type == INTEL_OUTPUT_EDP) {
1486 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1487 		intel_edp_panel_on(intel_dp);
1488 	}
1489 
1490 	if (IS_SKYLAKE(dev)) {
1491 		uint32_t dpll = crtc->config->ddi_pll_sel;
1492 		uint32_t val;
1493 
1494 		/*
1495 		 * DPLL0 is used for eDP and is the only "private" DPLL (as
1496 		 * opposed to shared) on SKL
1497 		 */
1498 		if (type == INTEL_OUTPUT_EDP) {
1499 			WARN_ON(dpll != SKL_DPLL0);
1500 
1501 			val = I915_READ(DPLL_CTRL1);
1502 
1503 			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
1504 				 DPLL_CTRL1_SSC(dpll) |
1505 				 DPLL_CRTL1_LINK_RATE_MASK(dpll));
1506 			val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
1507 
1508 			I915_WRITE(DPLL_CTRL1, val);
1509 			POSTING_READ(DPLL_CTRL1);
1510 		}
1511 
1512 		/* DDI -> PLL mapping  */
1513 		val = I915_READ(DPLL_CTRL2);
1514 
1515 		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
1516 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
1517 		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
1518 			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
1519 
1520 		I915_WRITE(DPLL_CTRL2, val);
1521 
1522 	} else {
1523 		WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
1524 		I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
1525 	}
1526 
1527 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1528 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1529 
1530 		intel_ddi_init_dp_buf_reg(intel_encoder);
1531 
1532 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1533 		intel_dp_start_link_train(intel_dp);
1534 		intel_dp_complete_link_train(intel_dp);
1535 		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
1536 			intel_dp_stop_link_train(intel_dp);
1537 	} else if (type == INTEL_OUTPUT_HDMI) {
1538 		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1539 
1540 		intel_hdmi->set_infoframes(encoder,
1541 					   crtc->config->has_hdmi_sink,
1542 					   &crtc->config->base.adjusted_mode);
1543 	}
1544 }
1545 
1546 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1547 {
1548 	struct drm_encoder *encoder = &intel_encoder->base;
1549 	struct drm_device *dev = encoder->dev;
1550 	struct drm_i915_private *dev_priv = dev->dev_private;
1551 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1552 	int type = intel_encoder->type;
1553 	uint32_t val;
1554 	bool wait = false;
1555 
1556 	val = I915_READ(DDI_BUF_CTL(port));
1557 	if (val & DDI_BUF_CTL_ENABLE) {
1558 		val &= ~DDI_BUF_CTL_ENABLE;
1559 		I915_WRITE(DDI_BUF_CTL(port), val);
1560 		wait = true;
1561 	}
1562 
1563 	val = I915_READ(DP_TP_CTL(port));
1564 	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1565 	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1566 	I915_WRITE(DP_TP_CTL(port), val);
1567 
1568 	if (wait)
1569 		intel_wait_ddi_buf_idle(dev_priv, port);
1570 
1571 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1572 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1573 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1574 		intel_edp_panel_vdd_on(intel_dp);
1575 		intel_edp_panel_off(intel_dp);
1576 	}
1577 
1578 	if (IS_SKYLAKE(dev))
1579 		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
1580 					DPLL_CTRL2_DDI_CLK_OFF(port)));
1581 	else
1582 		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1583 }
1584 
1585 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1586 {
1587 	struct drm_encoder *encoder = &intel_encoder->base;
1588 	struct drm_crtc *crtc = encoder->crtc;
1589 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1590 	struct drm_device *dev = encoder->dev;
1591 	struct drm_i915_private *dev_priv = dev->dev_private;
1592 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1593 	int type = intel_encoder->type;
1594 
1595 	if (type == INTEL_OUTPUT_HDMI) {
1596 		struct intel_digital_port *intel_dig_port =
1597 			enc_to_dig_port(encoder);
1598 
1599 		/* In HDMI/DVI mode, the port width, and swing/emphasis values
1600 		 * are ignored so nothing special needs to be done besides
1601 		 * enabling the port.
1602 		 */
1603 		I915_WRITE(DDI_BUF_CTL(port),
1604 			   intel_dig_port->saved_port_bits |
1605 			   DDI_BUF_CTL_ENABLE);
1606 	} else if (type == INTEL_OUTPUT_EDP) {
1607 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1608 
1609 		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
1610 			intel_dp_stop_link_train(intel_dp);
1611 
1612 		intel_edp_backlight_on(intel_dp);
1613 		intel_psr_enable(intel_dp);
1614 		intel_edp_drrs_enable(intel_dp);
1615 	}
1616 
1617 	if (intel_crtc->config->has_audio) {
1618 		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1619 		intel_audio_codec_enable(intel_encoder);
1620 	}
1621 }
1622 
1623 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1624 {
1625 	struct drm_encoder *encoder = &intel_encoder->base;
1626 	struct drm_crtc *crtc = encoder->crtc;
1627 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1628 	int type = intel_encoder->type;
1629 	struct drm_device *dev = encoder->dev;
1630 	struct drm_i915_private *dev_priv = dev->dev_private;
1631 
1632 	if (intel_crtc->config->has_audio) {
1633 		intel_audio_codec_disable(intel_encoder);
1634 		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
1635 	}
1636 
1637 	if (type == INTEL_OUTPUT_EDP) {
1638 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1639 
1640 		intel_edp_drrs_disable(intel_dp);
1641 		intel_psr_disable(intel_dp);
1642 		intel_edp_backlight_off(intel_dp);
1643 	}
1644 }
1645 
1646 static int skl_get_cdclk_freq(struct drm_i915_private *dev_priv)
1647 {
1648 	uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
1649 	uint32_t cdctl = I915_READ(CDCLK_CTL);
1650 	uint32_t linkrate;
1651 
1652 	if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
1653 		WARN(1, "LCPLL1 not enabled\n");
1654 		return 24000; /* 24MHz is the cd freq with NSSC ref */
1655 	}
1656 
1657 	if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
1658 		return 540000;
1659 
1660 	linkrate = (I915_READ(DPLL_CTRL1) &
1661 		    DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1662 
1663 	if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
1664 	    linkrate == DPLL_CRTL1_LINK_RATE_1080) {
1665 		/* vco 8640 */
1666 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1667 		case CDCLK_FREQ_450_432:
1668 			return 432000;
1669 		case CDCLK_FREQ_337_308:
1670 			return 308570;
1671 		case CDCLK_FREQ_675_617:
1672 			return 617140;
1673 		default:
1674 			WARN(1, "Unknown cd freq selection\n");
1675 		}
1676 	} else {
1677 		/* vco 8100 */
1678 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1679 		case CDCLK_FREQ_450_432:
1680 			return 450000;
1681 		case CDCLK_FREQ_337_308:
1682 			return 337500;
1683 		case CDCLK_FREQ_675_617:
1684 			return 675000;
1685 		default:
1686 			WARN(1, "Unknown cd freq selection\n");
1687 		}
1688 	}
1689 
1690 	/* error case, do as if DPLL0 isn't enabled */
1691 	return 24000;
1692 }
1693 
1694 static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1695 {
1696 	uint32_t lcpll = I915_READ(LCPLL_CTL);
1697 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1698 
1699 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
1700 		return 800000;
1701 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1702 		return 450000;
1703 	else if (freq == LCPLL_CLK_FREQ_450)
1704 		return 450000;
1705 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
1706 		return 540000;
1707 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
1708 		return 337500;
1709 	else
1710 		return 675000;
1711 }
1712 
1713 static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1714 {
1715 	struct drm_device *dev = dev_priv->dev;
1716 	uint32_t lcpll = I915_READ(LCPLL_CTL);
1717 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1718 
1719 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
1720 		return 800000;
1721 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1722 		return 450000;
1723 	else if (freq == LCPLL_CLK_FREQ_450)
1724 		return 450000;
1725 	else if (IS_HSW_ULT(dev))
1726 		return 337500;
1727 	else
1728 		return 540000;
1729 }
1730 
1731 int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
1732 {
1733 	struct drm_device *dev = dev_priv->dev;
1734 
1735 	if (IS_SKYLAKE(dev))
1736 		return skl_get_cdclk_freq(dev_priv);
1737 
1738 	if (IS_BROADWELL(dev))
1739 		return bdw_get_cdclk_freq(dev_priv);
1740 
1741 	/* Haswell */
1742 	return hsw_get_cdclk_freq(dev_priv);
1743 }
1744 
1745 static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
1746 			       struct intel_shared_dpll *pll)
1747 {
1748 	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
1749 	POSTING_READ(WRPLL_CTL(pll->id));
1750 	udelay(20);
1751 }
1752 
1753 static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
1754 				struct intel_shared_dpll *pll)
1755 {
1756 	uint32_t val;
1757 
1758 	val = I915_READ(WRPLL_CTL(pll->id));
1759 	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
1760 	POSTING_READ(WRPLL_CTL(pll->id));
1761 }
1762 
1763 static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1764 				     struct intel_shared_dpll *pll,
1765 				     struct intel_dpll_hw_state *hw_state)
1766 {
1767 	uint32_t val;
1768 
1769 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1770 		return false;
1771 
1772 	val = I915_READ(WRPLL_CTL(pll->id));
1773 	hw_state->wrpll = val;
1774 
1775 	return val & WRPLL_PLL_ENABLE;
1776 }
1777 
1778 static const char * const hsw_ddi_pll_names[] = {
1779 	"WRPLL 1",
1780 	"WRPLL 2",
1781 };
1782 
1783 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
1784 {
1785 	int i;
1786 
1787 	dev_priv->num_shared_dpll = 2;
1788 
1789 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1790 		dev_priv->shared_dplls[i].id = i;
1791 		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
1792 		dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
1793 		dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
1794 		dev_priv->shared_dplls[i].get_hw_state =
1795 			hsw_ddi_pll_get_hw_state;
1796 	}
1797 }
1798 
1799 static const char * const skl_ddi_pll_names[] = {
1800 	"DPLL 1",
1801 	"DPLL 2",
1802 	"DPLL 3",
1803 };
1804 
1805 struct skl_dpll_regs {
1806 	u32 ctl, cfgcr1, cfgcr2;
1807 };
1808 
1809 /* this array is indexed by the *shared* pll id */
1810 static const struct skl_dpll_regs skl_dpll_regs[3] = {
1811 	{
1812 		/* DPLL 1 */
1813 		.ctl = LCPLL2_CTL,
1814 		.cfgcr1 = DPLL1_CFGCR1,
1815 		.cfgcr2 = DPLL1_CFGCR2,
1816 	},
1817 	{
1818 		/* DPLL 2 */
1819 		.ctl = WRPLL_CTL1,
1820 		.cfgcr1 = DPLL2_CFGCR1,
1821 		.cfgcr2 = DPLL2_CFGCR2,
1822 	},
1823 	{
1824 		/* DPLL 3 */
1825 		.ctl = WRPLL_CTL2,
1826 		.cfgcr1 = DPLL3_CFGCR1,
1827 		.cfgcr2 = DPLL3_CFGCR2,
1828 	},
1829 };
1830 
1831 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
1832 			       struct intel_shared_dpll *pll)
1833 {
1834 	uint32_t val;
1835 	unsigned int dpll;
1836 	const struct skl_dpll_regs *regs = skl_dpll_regs;
1837 
1838 	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
1839 	dpll = pll->id + 1;
1840 
1841 	val = I915_READ(DPLL_CTRL1);
1842 
1843 	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
1844 		 DPLL_CRTL1_LINK_RATE_MASK(dpll));
1845 	val |= pll->config.hw_state.ctrl1 << (dpll * 6);
1846 
1847 	I915_WRITE(DPLL_CTRL1, val);
1848 	POSTING_READ(DPLL_CTRL1);
1849 
1850 	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
1851 	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
1852 	POSTING_READ(regs[pll->id].cfgcr1);
1853 	POSTING_READ(regs[pll->id].cfgcr2);
1854 
1855 	/* the enable bit is always bit 31 */
1856 	I915_WRITE(regs[pll->id].ctl,
1857 		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
1858 
1859 	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
1860 		DRM_ERROR("DPLL %d not locked\n", dpll);
1861 }
1862 
1863 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
1864 				struct intel_shared_dpll *pll)
1865 {
1866 	const struct skl_dpll_regs *regs = skl_dpll_regs;
1867 
1868 	/* the enable bit is always bit 31 */
1869 	I915_WRITE(regs[pll->id].ctl,
1870 		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
1871 	POSTING_READ(regs[pll->id].ctl);
1872 }
1873 
1874 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1875 				     struct intel_shared_dpll *pll,
1876 				     struct intel_dpll_hw_state *hw_state)
1877 {
1878 	uint32_t val;
1879 	unsigned int dpll;
1880 	const struct skl_dpll_regs *regs = skl_dpll_regs;
1881 
1882 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1883 		return false;
1884 
1885 	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
1886 	dpll = pll->id + 1;
1887 
1888 	val = I915_READ(regs[pll->id].ctl);
1889 	if (!(val & LCPLL_PLL_ENABLE))
1890 		return false;
1891 
1892 	val = I915_READ(DPLL_CTRL1);
1893 	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
1894 
1895 	/* avoid reading back stale values if HDMI mode is not enabled */
1896 	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
1897 		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
1898 		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
1899 	}
1900 
1901 	return true;
1902 }
1903 
1904 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
1905 {
1906 	int i;
1907 
1908 	dev_priv->num_shared_dpll = 3;
1909 
1910 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1911 		dev_priv->shared_dplls[i].id = i;
1912 		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
1913 		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
1914 		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
1915 		dev_priv->shared_dplls[i].get_hw_state =
1916 			skl_ddi_pll_get_hw_state;
1917 	}
1918 }
1919 
1920 void intel_ddi_pll_init(struct drm_device *dev)
1921 {
1922 	struct drm_i915_private *dev_priv = dev->dev_private;
1923 	uint32_t val = I915_READ(LCPLL_CTL);
1924 
1925 	if (IS_SKYLAKE(dev))
1926 		skl_shared_dplls_init(dev_priv);
1927 	else
1928 		hsw_shared_dplls_init(dev_priv);
1929 
1930 	DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
1931 		      intel_ddi_get_cdclk_freq(dev_priv));
1932 
1933 	if (IS_SKYLAKE(dev)) {
1934 		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
1935 			DRM_ERROR("LCPLL1 is disabled\n");
1936 	} else {
1937 		/*
1938 		 * The LCPLL register should be turned on by the BIOS. For now
1939 		 * let's just check its state and print errors in case
1940 		 * something is wrong.  Don't even try to turn it on.
1941 		 */
1942 
1943 		if (val & LCPLL_CD_SOURCE_FCLK)
1944 			DRM_ERROR("CDCLK source is not LCPLL\n");
1945 
1946 		if (val & LCPLL_PLL_DISABLE)
1947 			DRM_ERROR("LCPLL is disabled\n");
1948 	}
1949 }
1950 
1951 void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
1952 {
1953 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
1954 	struct intel_dp *intel_dp = &intel_dig_port->dp;
1955 	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
1956 	enum port port = intel_dig_port->port;
1957 	uint32_t val;
1958 	bool wait = false;
1959 
1960 	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
1961 		val = I915_READ(DDI_BUF_CTL(port));
1962 		if (val & DDI_BUF_CTL_ENABLE) {
1963 			val &= ~DDI_BUF_CTL_ENABLE;
1964 			I915_WRITE(DDI_BUF_CTL(port), val);
1965 			wait = true;
1966 		}
1967 
1968 		val = I915_READ(DP_TP_CTL(port));
1969 		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1970 		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1971 		I915_WRITE(DP_TP_CTL(port), val);
1972 		POSTING_READ(DP_TP_CTL(port));
1973 
1974 		if (wait)
1975 			intel_wait_ddi_buf_idle(dev_priv, port);
1976 	}
1977 
1978 	val = DP_TP_CTL_ENABLE |
1979 	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
1980 	if (intel_dp->is_mst)
1981 		val |= DP_TP_CTL_MODE_MST;
1982 	else {
1983 		val |= DP_TP_CTL_MODE_SST;
1984 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1985 			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
1986 	}
1987 	I915_WRITE(DP_TP_CTL(port), val);
1988 	POSTING_READ(DP_TP_CTL(port));
1989 
1990 	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
1991 	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
1992 	POSTING_READ(DDI_BUF_CTL(port));
1993 
1994 	udelay(600);
1995 }
1996 
1997 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
1998 {
1999 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2000 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2001 	uint32_t val;
2002 
2003 	intel_ddi_post_disable(intel_encoder);
2004 
2005 	val = I915_READ(_FDI_RXA_CTL);
2006 	val &= ~FDI_RX_ENABLE;
2007 	I915_WRITE(_FDI_RXA_CTL, val);
2008 
2009 	val = I915_READ(_FDI_RXA_MISC);
2010 	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
2011 	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
2012 	I915_WRITE(_FDI_RXA_MISC, val);
2013 
2014 	val = I915_READ(_FDI_RXA_CTL);
2015 	val &= ~FDI_PCDCLK;
2016 	I915_WRITE(_FDI_RXA_CTL, val);
2017 
2018 	val = I915_READ(_FDI_RXA_CTL);
2019 	val &= ~FDI_RX_PLL_ENABLE;
2020 	I915_WRITE(_FDI_RXA_CTL, val);
2021 }
2022 
2023 static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
2024 {
2025 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
2026 	int type = intel_dig_port->base.type;
2027 
2028 	if (type != INTEL_OUTPUT_DISPLAYPORT &&
2029 	    type != INTEL_OUTPUT_EDP &&
2030 	    type != INTEL_OUTPUT_UNKNOWN) {
2031 		return;
2032 	}
2033 
2034 	intel_dp_hot_plug(intel_encoder);
2035 }
2036 
2037 void intel_ddi_get_config(struct intel_encoder *encoder,
2038 			  struct intel_crtc_state *pipe_config)
2039 {
2040 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
2041 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2042 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
2043 	struct intel_hdmi *intel_hdmi;
2044 	u32 temp, flags = 0;
2045 
2046 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
2047 	if (temp & TRANS_DDI_PHSYNC)
2048 		flags |= DRM_MODE_FLAG_PHSYNC;
2049 	else
2050 		flags |= DRM_MODE_FLAG_NHSYNC;
2051 	if (temp & TRANS_DDI_PVSYNC)
2052 		flags |= DRM_MODE_FLAG_PVSYNC;
2053 	else
2054 		flags |= DRM_MODE_FLAG_NVSYNC;
2055 
2056 	pipe_config->base.adjusted_mode.flags |= flags;
2057 
2058 	switch (temp & TRANS_DDI_BPC_MASK) {
2059 	case TRANS_DDI_BPC_6:
2060 		pipe_config->pipe_bpp = 18;
2061 		break;
2062 	case TRANS_DDI_BPC_8:
2063 		pipe_config->pipe_bpp = 24;
2064 		break;
2065 	case TRANS_DDI_BPC_10:
2066 		pipe_config->pipe_bpp = 30;
2067 		break;
2068 	case TRANS_DDI_BPC_12:
2069 		pipe_config->pipe_bpp = 36;
2070 		break;
2071 	default:
2072 		break;
2073 	}
2074 
2075 	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
2076 	case TRANS_DDI_MODE_SELECT_HDMI:
2077 		pipe_config->has_hdmi_sink = true;
2078 		intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2079 
2080 		if (intel_hdmi->infoframe_enabled(&encoder->base))
2081 			pipe_config->has_infoframe = true;
2082 		break;
2083 	case TRANS_DDI_MODE_SELECT_DVI:
2084 	case TRANS_DDI_MODE_SELECT_FDI:
2085 		break;
2086 	case TRANS_DDI_MODE_SELECT_DP_SST:
2087 	case TRANS_DDI_MODE_SELECT_DP_MST:
2088 		pipe_config->has_dp_encoder = true;
2089 		intel_dp_get_m_n(intel_crtc, pipe_config);
2090 		break;
2091 	default:
2092 		break;
2093 	}
2094 
2095 	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2096 		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2097 		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2098 			pipe_config->has_audio = true;
2099 	}
2100 
2101 	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
2102 	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2103 		/*
2104 		 * This is a big fat ugly hack.
2105 		 *
2106 		 * Some machines in UEFI boot mode provide us a VBT that has 18
2107 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2108 		 * unknown we fail to light up. Yet the same BIOS boots up with
2109 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2110 		 * max, not what it tells us to use.
2111 		 *
2112 		 * Note: This will still be broken if the eDP panel is not lit
2113 		 * up by the BIOS, and thus we can't get the mode at module
2114 		 * load.
2115 		 */
2116 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2117 			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2118 		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2119 	}
2120 
2121 	intel_ddi_clock_get(encoder, pipe_config);
2122 }
2123 
2124 static void intel_ddi_destroy(struct drm_encoder *encoder)
2125 {
2126 	/* HDMI has nothing special to destroy, so we can go with this. */
2127 	intel_dp_encoder_destroy(encoder);
2128 }
2129 
2130 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2131 				     struct intel_crtc_state *pipe_config)
2132 {
2133 	int type = encoder->type;
2134 	int port = intel_ddi_get_encoder_port(encoder);
2135 
2136 	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
2137 
2138 	if (port == PORT_A)
2139 		pipe_config->cpu_transcoder = TRANSCODER_EDP;
2140 
2141 	if (type == INTEL_OUTPUT_HDMI)
2142 		return intel_hdmi_compute_config(encoder, pipe_config);
2143 	else
2144 		return intel_dp_compute_config(encoder, pipe_config);
2145 }
2146 
2147 static const struct drm_encoder_funcs intel_ddi_funcs = {
2148 	.destroy = intel_ddi_destroy,
2149 };
2150 
2151 static struct intel_connector *
2152 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
2153 {
2154 	struct intel_connector *connector;
2155 	enum port port = intel_dig_port->port;
2156 
2157 	connector = kzalloc(sizeof(*connector), GFP_KERNEL);
2158 	if (!connector)
2159 		return NULL;
2160 
2161 	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
2162 	if (!intel_dp_init_connector(intel_dig_port, connector)) {
2163 		kfree(connector);
2164 		return NULL;
2165 	}
2166 
2167 	return connector;
2168 }
2169 
2170 static struct intel_connector *
2171 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
2172 {
2173 	struct intel_connector *connector;
2174 	enum port port = intel_dig_port->port;
2175 
2176 	connector = kzalloc(sizeof(*connector), GFP_KERNEL);
2177 	if (!connector)
2178 		return NULL;
2179 
2180 	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
2181 	intel_hdmi_init_connector(intel_dig_port, connector);
2182 
2183 	return connector;
2184 }
2185 
2186 void intel_ddi_init(struct drm_device *dev, enum port port)
2187 {
2188 	struct drm_i915_private *dev_priv = dev->dev_private;
2189 	struct intel_digital_port *intel_dig_port;
2190 	struct intel_encoder *intel_encoder;
2191 	struct drm_encoder *encoder;
2192 	bool init_hdmi, init_dp;
2193 
2194 	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
2195 		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
2196 	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
2197 	if (!init_dp && !init_hdmi) {
2198 		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
2199 			      port_name(port));
2200 		init_hdmi = true;
2201 		init_dp = true;
2202 	}
2203 
2204 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2205 	if (!intel_dig_port)
2206 		return;
2207 
2208 	intel_encoder = &intel_dig_port->base;
2209 	encoder = &intel_encoder->base;
2210 
2211 	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
2212 			 DRM_MODE_ENCODER_TMDS);
2213 
2214 	intel_encoder->compute_config = intel_ddi_compute_config;
2215 	intel_encoder->enable = intel_enable_ddi;
2216 	intel_encoder->pre_enable = intel_ddi_pre_enable;
2217 	intel_encoder->disable = intel_disable_ddi;
2218 	intel_encoder->post_disable = intel_ddi_post_disable;
2219 	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2220 	intel_encoder->get_config = intel_ddi_get_config;
2221 
2222 	intel_dig_port->port = port;
2223 	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
2224 					  (DDI_BUF_PORT_REVERSAL |
2225 					   DDI_A_4_LANES);
2226 
2227 	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2228 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2229 	intel_encoder->cloneable = 0;
2230 	intel_encoder->hot_plug = intel_ddi_hot_plug;
2231 
2232 	if (init_dp) {
2233 		if (!intel_ddi_init_dp_connector(intel_dig_port))
2234 			goto err;
2235 
2236 		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2237 		dev_priv->hpd_irq_port[port] = intel_dig_port;
2238 	}
2239 
2240 	/* In theory we don't need the encoder->type check, but leave it just in
2241 	 * case we have some really bad VBTs... */
2242 	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
2243 		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
2244 			goto err;
2245 	}
2246 
2247 	return;
2248 
2249 err:
2250 	drm_encoder_cleanup(encoder);
2251 	kfree(intel_dig_port);
2252 }
2253