xref: /dragonfly/sys/dev/drm/i915/intel_display.c (revision 99d38c70)
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_gem_dmabuf.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50 
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53 	return work->mmio_work.func;
54 }
55 
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58 	DRM_FORMAT_C8,
59 	DRM_FORMAT_RGB565,
60 	DRM_FORMAT_XRGB1555,
61 	DRM_FORMAT_XRGB8888,
62 };
63 
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66 	DRM_FORMAT_C8,
67 	DRM_FORMAT_RGB565,
68 	DRM_FORMAT_XRGB8888,
69 	DRM_FORMAT_XBGR8888,
70 	DRM_FORMAT_XRGB2101010,
71 	DRM_FORMAT_XBGR2101010,
72 };
73 
74 static const uint32_t skl_primary_formats[] = {
75 	DRM_FORMAT_C8,
76 	DRM_FORMAT_RGB565,
77 	DRM_FORMAT_XRGB8888,
78 	DRM_FORMAT_XBGR8888,
79 	DRM_FORMAT_ARGB8888,
80 	DRM_FORMAT_ABGR8888,
81 	DRM_FORMAT_XRGB2101010,
82 	DRM_FORMAT_XBGR2101010,
83 	DRM_FORMAT_YUYV,
84 	DRM_FORMAT_YVYU,
85 	DRM_FORMAT_UYVY,
86 	DRM_FORMAT_VYUY,
87 };
88 
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91 	DRM_FORMAT_ARGB8888,
92 };
93 
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 				struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 				   struct intel_crtc_state *pipe_config);
98 
99 static int intel_framebuffer_init(struct drm_device *dev,
100 				  struct intel_framebuffer *ifb,
101 				  struct drm_mode_fb_cmd2 *mode_cmd,
102 				  struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 					 struct intel_link_m_n *m_n,
108 					 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 			    const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 			    const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
119 	struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126 static int bxt_calc_cdclk(int max_pixclk);
127 
128 struct intel_limit {
129 	struct {
130 		int min, max;
131 	} dot, vco, n, m, m1, m2, p, p1;
132 
133 	struct {
134 		int dot_limit;
135 		int p2_slow, p2_fast;
136 	} p2;
137 };
138 
139 /* returns HPLL frequency in kHz */
140 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
141 {
142 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
143 
144 	/* Obtain SKU information */
145 	mutex_lock(&dev_priv->sb_lock);
146 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
147 		CCK_FUSE_HPLL_FREQ_MASK;
148 	mutex_unlock(&dev_priv->sb_lock);
149 
150 	return vco_freq[hpll_freq] * 1000;
151 }
152 
153 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
154 		      const char *name, u32 reg, int ref_freq)
155 {
156 	u32 val;
157 	int divider;
158 
159 	mutex_lock(&dev_priv->sb_lock);
160 	val = vlv_cck_read(dev_priv, reg);
161 	mutex_unlock(&dev_priv->sb_lock);
162 
163 	divider = val & CCK_FREQUENCY_VALUES;
164 
165 	WARN((val & CCK_FREQUENCY_STATUS) !=
166 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 	     "%s change in progress\n", name);
168 
169 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
170 }
171 
172 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
173 				  const char *name, u32 reg)
174 {
175 	if (dev_priv->hpll_freq == 0)
176 		dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
177 
178 	return vlv_get_cck_clock(dev_priv, name, reg,
179 				 dev_priv->hpll_freq);
180 }
181 
182 static int
183 intel_pch_rawclk(struct drm_i915_private *dev_priv)
184 {
185 	return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
186 }
187 
188 static int
189 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
190 {
191 	/* RAWCLK_FREQ_VLV register updated from power well code */
192 	return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
193 				      CCK_DISPLAY_REF_CLOCK_CONTROL);
194 }
195 
196 static int
197 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
198 {
199 	uint32_t clkcfg;
200 
201 	/* hrawclock is 1/4 the FSB frequency */
202 	clkcfg = I915_READ(CLKCFG);
203 	switch (clkcfg & CLKCFG_FSB_MASK) {
204 	case CLKCFG_FSB_400:
205 		return 100000;
206 	case CLKCFG_FSB_533:
207 		return 133333;
208 	case CLKCFG_FSB_667:
209 		return 166667;
210 	case CLKCFG_FSB_800:
211 		return 200000;
212 	case CLKCFG_FSB_1067:
213 		return 266667;
214 	case CLKCFG_FSB_1333:
215 		return 333333;
216 	/* these two are just a guess; one of them might be right */
217 	case CLKCFG_FSB_1600:
218 	case CLKCFG_FSB_1600_ALT:
219 		return 400000;
220 	default:
221 		return 133333;
222 	}
223 }
224 
225 void intel_update_rawclk(struct drm_i915_private *dev_priv)
226 {
227 	if (HAS_PCH_SPLIT(dev_priv))
228 		dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
229 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
230 		dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
231 	else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
232 		dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
233 	else
234 		return; /* no rawclk on other platforms, or no need to know it */
235 
236 	DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
237 }
238 
239 static void intel_update_czclk(struct drm_i915_private *dev_priv)
240 {
241 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
242 		return;
243 
244 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
245 						      CCK_CZ_CLOCK_CONTROL);
246 
247 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
248 }
249 
250 static inline u32 /* units of 100MHz */
251 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
252 		    const struct intel_crtc_state *pipe_config)
253 {
254 	if (HAS_DDI(dev_priv))
255 		return pipe_config->port_clock; /* SPLL */
256 	else if (IS_GEN5(dev_priv))
257 		return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
258 	else
259 		return 270000;
260 }
261 
262 static const struct intel_limit intel_limits_i8xx_dac = {
263 	.dot = { .min = 25000, .max = 350000 },
264 	.vco = { .min = 908000, .max = 1512000 },
265 	.n = { .min = 2, .max = 16 },
266 	.m = { .min = 96, .max = 140 },
267 	.m1 = { .min = 18, .max = 26 },
268 	.m2 = { .min = 6, .max = 16 },
269 	.p = { .min = 4, .max = 128 },
270 	.p1 = { .min = 2, .max = 33 },
271 	.p2 = { .dot_limit = 165000,
272 		.p2_slow = 4, .p2_fast = 2 },
273 };
274 
275 static const struct intel_limit intel_limits_i8xx_dvo = {
276 	.dot = { .min = 25000, .max = 350000 },
277 	.vco = { .min = 908000, .max = 1512000 },
278 	.n = { .min = 2, .max = 16 },
279 	.m = { .min = 96, .max = 140 },
280 	.m1 = { .min = 18, .max = 26 },
281 	.m2 = { .min = 6, .max = 16 },
282 	.p = { .min = 4, .max = 128 },
283 	.p1 = { .min = 2, .max = 33 },
284 	.p2 = { .dot_limit = 165000,
285 		.p2_slow = 4, .p2_fast = 4 },
286 };
287 
288 static const struct intel_limit intel_limits_i8xx_lvds = {
289 	.dot = { .min = 25000, .max = 350000 },
290 	.vco = { .min = 908000, .max = 1512000 },
291 	.n = { .min = 2, .max = 16 },
292 	.m = { .min = 96, .max = 140 },
293 	.m1 = { .min = 18, .max = 26 },
294 	.m2 = { .min = 6, .max = 16 },
295 	.p = { .min = 4, .max = 128 },
296 	.p1 = { .min = 1, .max = 6 },
297 	.p2 = { .dot_limit = 165000,
298 		.p2_slow = 14, .p2_fast = 7 },
299 };
300 
301 static const struct intel_limit intel_limits_i9xx_sdvo = {
302 	.dot = { .min = 20000, .max = 400000 },
303 	.vco = { .min = 1400000, .max = 2800000 },
304 	.n = { .min = 1, .max = 6 },
305 	.m = { .min = 70, .max = 120 },
306 	.m1 = { .min = 8, .max = 18 },
307 	.m2 = { .min = 3, .max = 7 },
308 	.p = { .min = 5, .max = 80 },
309 	.p1 = { .min = 1, .max = 8 },
310 	.p2 = { .dot_limit = 200000,
311 		.p2_slow = 10, .p2_fast = 5 },
312 };
313 
314 static const struct intel_limit intel_limits_i9xx_lvds = {
315 	.dot = { .min = 20000, .max = 400000 },
316 	.vco = { .min = 1400000, .max = 2800000 },
317 	.n = { .min = 1, .max = 6 },
318 	.m = { .min = 70, .max = 120 },
319 	.m1 = { .min = 8, .max = 18 },
320 	.m2 = { .min = 3, .max = 7 },
321 	.p = { .min = 7, .max = 98 },
322 	.p1 = { .min = 1, .max = 8 },
323 	.p2 = { .dot_limit = 112000,
324 		.p2_slow = 14, .p2_fast = 7 },
325 };
326 
327 
328 static const struct intel_limit intel_limits_g4x_sdvo = {
329 	.dot = { .min = 25000, .max = 270000 },
330 	.vco = { .min = 1750000, .max = 3500000},
331 	.n = { .min = 1, .max = 4 },
332 	.m = { .min = 104, .max = 138 },
333 	.m1 = { .min = 17, .max = 23 },
334 	.m2 = { .min = 5, .max = 11 },
335 	.p = { .min = 10, .max = 30 },
336 	.p1 = { .min = 1, .max = 3},
337 	.p2 = { .dot_limit = 270000,
338 		.p2_slow = 10,
339 		.p2_fast = 10
340 	},
341 };
342 
343 static const struct intel_limit intel_limits_g4x_hdmi = {
344 	.dot = { .min = 22000, .max = 400000 },
345 	.vco = { .min = 1750000, .max = 3500000},
346 	.n = { .min = 1, .max = 4 },
347 	.m = { .min = 104, .max = 138 },
348 	.m1 = { .min = 16, .max = 23 },
349 	.m2 = { .min = 5, .max = 11 },
350 	.p = { .min = 5, .max = 80 },
351 	.p1 = { .min = 1, .max = 8},
352 	.p2 = { .dot_limit = 165000,
353 		.p2_slow = 10, .p2_fast = 5 },
354 };
355 
356 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
357 	.dot = { .min = 20000, .max = 115000 },
358 	.vco = { .min = 1750000, .max = 3500000 },
359 	.n = { .min = 1, .max = 3 },
360 	.m = { .min = 104, .max = 138 },
361 	.m1 = { .min = 17, .max = 23 },
362 	.m2 = { .min = 5, .max = 11 },
363 	.p = { .min = 28, .max = 112 },
364 	.p1 = { .min = 2, .max = 8 },
365 	.p2 = { .dot_limit = 0,
366 		.p2_slow = 14, .p2_fast = 14
367 	},
368 };
369 
370 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
371 	.dot = { .min = 80000, .max = 224000 },
372 	.vco = { .min = 1750000, .max = 3500000 },
373 	.n = { .min = 1, .max = 3 },
374 	.m = { .min = 104, .max = 138 },
375 	.m1 = { .min = 17, .max = 23 },
376 	.m2 = { .min = 5, .max = 11 },
377 	.p = { .min = 14, .max = 42 },
378 	.p1 = { .min = 2, .max = 6 },
379 	.p2 = { .dot_limit = 0,
380 		.p2_slow = 7, .p2_fast = 7
381 	},
382 };
383 
384 static const struct intel_limit intel_limits_pineview_sdvo = {
385 	.dot = { .min = 20000, .max = 400000},
386 	.vco = { .min = 1700000, .max = 3500000 },
387 	/* Pineview's Ncounter is a ring counter */
388 	.n = { .min = 3, .max = 6 },
389 	.m = { .min = 2, .max = 256 },
390 	/* Pineview only has one combined m divider, which we treat as m2. */
391 	.m1 = { .min = 0, .max = 0 },
392 	.m2 = { .min = 0, .max = 254 },
393 	.p = { .min = 5, .max = 80 },
394 	.p1 = { .min = 1, .max = 8 },
395 	.p2 = { .dot_limit = 200000,
396 		.p2_slow = 10, .p2_fast = 5 },
397 };
398 
399 static const struct intel_limit intel_limits_pineview_lvds = {
400 	.dot = { .min = 20000, .max = 400000 },
401 	.vco = { .min = 1700000, .max = 3500000 },
402 	.n = { .min = 3, .max = 6 },
403 	.m = { .min = 2, .max = 256 },
404 	.m1 = { .min = 0, .max = 0 },
405 	.m2 = { .min = 0, .max = 254 },
406 	.p = { .min = 7, .max = 112 },
407 	.p1 = { .min = 1, .max = 8 },
408 	.p2 = { .dot_limit = 112000,
409 		.p2_slow = 14, .p2_fast = 14 },
410 };
411 
412 /* Ironlake / Sandybridge
413  *
414  * We calculate clock using (register_value + 2) for N/M1/M2, so here
415  * the range value for them is (actual_value - 2).
416  */
417 static const struct intel_limit intel_limits_ironlake_dac = {
418 	.dot = { .min = 25000, .max = 350000 },
419 	.vco = { .min = 1760000, .max = 3510000 },
420 	.n = { .min = 1, .max = 5 },
421 	.m = { .min = 79, .max = 127 },
422 	.m1 = { .min = 12, .max = 22 },
423 	.m2 = { .min = 5, .max = 9 },
424 	.p = { .min = 5, .max = 80 },
425 	.p1 = { .min = 1, .max = 8 },
426 	.p2 = { .dot_limit = 225000,
427 		.p2_slow = 10, .p2_fast = 5 },
428 };
429 
430 static const struct intel_limit intel_limits_ironlake_single_lvds = {
431 	.dot = { .min = 25000, .max = 350000 },
432 	.vco = { .min = 1760000, .max = 3510000 },
433 	.n = { .min = 1, .max = 3 },
434 	.m = { .min = 79, .max = 118 },
435 	.m1 = { .min = 12, .max = 22 },
436 	.m2 = { .min = 5, .max = 9 },
437 	.p = { .min = 28, .max = 112 },
438 	.p1 = { .min = 2, .max = 8 },
439 	.p2 = { .dot_limit = 225000,
440 		.p2_slow = 14, .p2_fast = 14 },
441 };
442 
443 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
444 	.dot = { .min = 25000, .max = 350000 },
445 	.vco = { .min = 1760000, .max = 3510000 },
446 	.n = { .min = 1, .max = 3 },
447 	.m = { .min = 79, .max = 127 },
448 	.m1 = { .min = 12, .max = 22 },
449 	.m2 = { .min = 5, .max = 9 },
450 	.p = { .min = 14, .max = 56 },
451 	.p1 = { .min = 2, .max = 8 },
452 	.p2 = { .dot_limit = 225000,
453 		.p2_slow = 7, .p2_fast = 7 },
454 };
455 
456 /* LVDS 100mhz refclk limits. */
457 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
458 	.dot = { .min = 25000, .max = 350000 },
459 	.vco = { .min = 1760000, .max = 3510000 },
460 	.n = { .min = 1, .max = 2 },
461 	.m = { .min = 79, .max = 126 },
462 	.m1 = { .min = 12, .max = 22 },
463 	.m2 = { .min = 5, .max = 9 },
464 	.p = { .min = 28, .max = 112 },
465 	.p1 = { .min = 2, .max = 8 },
466 	.p2 = { .dot_limit = 225000,
467 		.p2_slow = 14, .p2_fast = 14 },
468 };
469 
470 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
471 	.dot = { .min = 25000, .max = 350000 },
472 	.vco = { .min = 1760000, .max = 3510000 },
473 	.n = { .min = 1, .max = 3 },
474 	.m = { .min = 79, .max = 126 },
475 	.m1 = { .min = 12, .max = 22 },
476 	.m2 = { .min = 5, .max = 9 },
477 	.p = { .min = 14, .max = 42 },
478 	.p1 = { .min = 2, .max = 6 },
479 	.p2 = { .dot_limit = 225000,
480 		.p2_slow = 7, .p2_fast = 7 },
481 };
482 
483 static const struct intel_limit intel_limits_vlv = {
484 	 /*
485 	  * These are the data rate limits (measured in fast clocks)
486 	  * since those are the strictest limits we have. The fast
487 	  * clock and actual rate limits are more relaxed, so checking
488 	  * them would make no difference.
489 	  */
490 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
491 	.vco = { .min = 4000000, .max = 6000000 },
492 	.n = { .min = 1, .max = 7 },
493 	.m1 = { .min = 2, .max = 3 },
494 	.m2 = { .min = 11, .max = 156 },
495 	.p1 = { .min = 2, .max = 3 },
496 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
497 };
498 
499 static const struct intel_limit intel_limits_chv = {
500 	/*
501 	 * These are the data rate limits (measured in fast clocks)
502 	 * since those are the strictest limits we have.  The fast
503 	 * clock and actual rate limits are more relaxed, so checking
504 	 * them would make no difference.
505 	 */
506 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
507 	.vco = { .min = 4800000, .max = 6480000 },
508 	.n = { .min = 1, .max = 1 },
509 	.m1 = { .min = 2, .max = 2 },
510 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
511 	.p1 = { .min = 2, .max = 4 },
512 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
513 };
514 
515 static const struct intel_limit intel_limits_bxt = {
516 	/* FIXME: find real dot limits */
517 	.dot = { .min = 0, .max = INT_MAX },
518 	.vco = { .min = 4800000, .max = 6700000 },
519 	.n = { .min = 1, .max = 1 },
520 	.m1 = { .min = 2, .max = 2 },
521 	/* FIXME: find real m2 limits */
522 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
523 	.p1 = { .min = 2, .max = 4 },
524 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
525 };
526 
527 static bool
528 needs_modeset(struct drm_crtc_state *state)
529 {
530 	return drm_atomic_crtc_needs_modeset(state);
531 }
532 
533 /*
534  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
535  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
536  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
537  * The helpers' return value is the rate of the clock that is fed to the
538  * display engine's pipe which can be the above fast dot clock rate or a
539  * divided-down version of it.
540  */
541 /* m1 is reserved as 0 in Pineview, n is a ring counter */
542 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
543 {
544 	clock->m = clock->m2 + 2;
545 	clock->p = clock->p1 * clock->p2;
546 	if (WARN_ON(clock->n == 0 || clock->p == 0))
547 		return 0;
548 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
549 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
550 
551 	return clock->dot;
552 }
553 
554 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
555 {
556 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
557 }
558 
559 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
560 {
561 	clock->m = i9xx_dpll_compute_m(clock);
562 	clock->p = clock->p1 * clock->p2;
563 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
564 		return 0;
565 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
566 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
567 
568 	return clock->dot;
569 }
570 
571 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
572 {
573 	clock->m = clock->m1 * clock->m2;
574 	clock->p = clock->p1 * clock->p2;
575 	if (WARN_ON(clock->n == 0 || clock->p == 0))
576 		return 0;
577 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
578 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
579 
580 	return clock->dot / 5;
581 }
582 
583 int chv_calc_dpll_params(int refclk, struct dpll *clock)
584 {
585 	clock->m = clock->m1 * clock->m2;
586 	clock->p = clock->p1 * clock->p2;
587 	if (WARN_ON(clock->n == 0 || clock->p == 0))
588 		return 0;
589 	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
590 			clock->n << 22);
591 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592 
593 	return clock->dot / 5;
594 }
595 
596 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
597 /**
598  * Returns whether the given set of divisors are valid for a given refclk with
599  * the given connectors.
600  */
601 
602 static bool intel_PLL_is_valid(struct drm_device *dev,
603 			       const struct intel_limit *limit,
604 			       const struct dpll *clock)
605 {
606 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
607 		INTELPllInvalid("n out of range\n");
608 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
609 		INTELPllInvalid("p1 out of range\n");
610 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
611 		INTELPllInvalid("m2 out of range\n");
612 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
613 		INTELPllInvalid("m1 out of range\n");
614 
615 	if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
616 	    !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
617 		if (clock->m1 <= clock->m2)
618 			INTELPllInvalid("m1 <= m2\n");
619 
620 	if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
621 		if (clock->p < limit->p.min || limit->p.max < clock->p)
622 			INTELPllInvalid("p out of range\n");
623 		if (clock->m < limit->m.min || limit->m.max < clock->m)
624 			INTELPllInvalid("m out of range\n");
625 	}
626 
627 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628 		INTELPllInvalid("vco out of range\n");
629 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630 	 * connector, etc., rather than just a single range.
631 	 */
632 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633 		INTELPllInvalid("dot out of range\n");
634 
635 	return true;
636 }
637 
638 static int
639 i9xx_select_p2_div(const struct intel_limit *limit,
640 		   const struct intel_crtc_state *crtc_state,
641 		   int target)
642 {
643 	struct drm_device *dev = crtc_state->base.crtc->dev;
644 
645 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
646 		/*
647 		 * For LVDS just rely on its current settings for dual-channel.
648 		 * We haven't figured out how to reliably set up different
649 		 * single/dual channel state, if we even can.
650 		 */
651 		if (intel_is_dual_link_lvds(dev))
652 			return limit->p2.p2_fast;
653 		else
654 			return limit->p2.p2_slow;
655 	} else {
656 		if (target < limit->p2.dot_limit)
657 			return limit->p2.p2_slow;
658 		else
659 			return limit->p2.p2_fast;
660 	}
661 }
662 
663 /*
664  * Returns a set of divisors for the desired target clock with the given
665  * refclk, or FALSE.  The returned values represent the clock equation:
666  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
667  *
668  * Target and reference clocks are specified in kHz.
669  *
670  * If match_clock is provided, then best_clock P divider must match the P
671  * divider from @match_clock used for LVDS downclocking.
672  */
673 static bool
674 i9xx_find_best_dpll(const struct intel_limit *limit,
675 		    struct intel_crtc_state *crtc_state,
676 		    int target, int refclk, struct dpll *match_clock,
677 		    struct dpll *best_clock)
678 {
679 	struct drm_device *dev = crtc_state->base.crtc->dev;
680 	struct dpll clock;
681 	int err = target;
682 
683 	memset(best_clock, 0, sizeof(*best_clock));
684 
685 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
686 
687 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 	     clock.m1++) {
689 		for (clock.m2 = limit->m2.min;
690 		     clock.m2 <= limit->m2.max; clock.m2++) {
691 			if (clock.m2 >= clock.m1)
692 				break;
693 			for (clock.n = limit->n.min;
694 			     clock.n <= limit->n.max; clock.n++) {
695 				for (clock.p1 = limit->p1.min;
696 					clock.p1 <= limit->p1.max; clock.p1++) {
697 					int this_err;
698 
699 					i9xx_calc_dpll_params(refclk, &clock);
700 					if (!intel_PLL_is_valid(dev, limit,
701 								&clock))
702 						continue;
703 					if (match_clock &&
704 					    clock.p != match_clock->p)
705 						continue;
706 
707 					this_err = abs(clock.dot - target);
708 					if (this_err < err) {
709 						*best_clock = clock;
710 						err = this_err;
711 					}
712 				}
713 			}
714 		}
715 	}
716 
717 	return (err != target);
718 }
719 
720 /*
721  * Returns a set of divisors for the desired target clock with the given
722  * refclk, or FALSE.  The returned values represent the clock equation:
723  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724  *
725  * Target and reference clocks are specified in kHz.
726  *
727  * If match_clock is provided, then best_clock P divider must match the P
728  * divider from @match_clock used for LVDS downclocking.
729  */
730 static bool
731 pnv_find_best_dpll(const struct intel_limit *limit,
732 		   struct intel_crtc_state *crtc_state,
733 		   int target, int refclk, struct dpll *match_clock,
734 		   struct dpll *best_clock)
735 {
736 	struct drm_device *dev = crtc_state->base.crtc->dev;
737 	struct dpll clock;
738 	int err = target;
739 
740 	memset(best_clock, 0, sizeof(*best_clock));
741 
742 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
743 
744 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
745 	     clock.m1++) {
746 		for (clock.m2 = limit->m2.min;
747 		     clock.m2 <= limit->m2.max; clock.m2++) {
748 			for (clock.n = limit->n.min;
749 			     clock.n <= limit->n.max; clock.n++) {
750 				for (clock.p1 = limit->p1.min;
751 					clock.p1 <= limit->p1.max; clock.p1++) {
752 					int this_err;
753 
754 					pnv_calc_dpll_params(refclk, &clock);
755 					if (!intel_PLL_is_valid(dev, limit,
756 								&clock))
757 						continue;
758 					if (match_clock &&
759 					    clock.p != match_clock->p)
760 						continue;
761 
762 					this_err = abs(clock.dot - target);
763 					if (this_err < err) {
764 						*best_clock = clock;
765 						err = this_err;
766 					}
767 				}
768 			}
769 		}
770 	}
771 
772 	return (err != target);
773 }
774 
775 /*
776  * Returns a set of divisors for the desired target clock with the given
777  * refclk, or FALSE.  The returned values represent the clock equation:
778  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
779  *
780  * Target and reference clocks are specified in kHz.
781  *
782  * If match_clock is provided, then best_clock P divider must match the P
783  * divider from @match_clock used for LVDS downclocking.
784  */
785 static bool
786 g4x_find_best_dpll(const struct intel_limit *limit,
787 		   struct intel_crtc_state *crtc_state,
788 		   int target, int refclk, struct dpll *match_clock,
789 		   struct dpll *best_clock)
790 {
791 	struct drm_device *dev = crtc_state->base.crtc->dev;
792 	struct dpll clock;
793 	int max_n;
794 	bool found = false;
795 	/* approximately equals target * 0.00585 */
796 	int err_most = (target >> 8) + (target >> 9);
797 
798 	memset(best_clock, 0, sizeof(*best_clock));
799 
800 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
801 
802 	max_n = limit->n.max;
803 	/* based on hardware requirement, prefer smaller n to precision */
804 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
805 		/* based on hardware requirement, prefere larger m1,m2 */
806 		for (clock.m1 = limit->m1.max;
807 		     clock.m1 >= limit->m1.min; clock.m1--) {
808 			for (clock.m2 = limit->m2.max;
809 			     clock.m2 >= limit->m2.min; clock.m2--) {
810 				for (clock.p1 = limit->p1.max;
811 				     clock.p1 >= limit->p1.min; clock.p1--) {
812 					int this_err;
813 
814 					i9xx_calc_dpll_params(refclk, &clock);
815 					if (!intel_PLL_is_valid(dev, limit,
816 								&clock))
817 						continue;
818 
819 					this_err = abs(clock.dot - target);
820 					if (this_err < err_most) {
821 						*best_clock = clock;
822 						err_most = this_err;
823 						max_n = clock.n;
824 						found = true;
825 					}
826 				}
827 			}
828 		}
829 	}
830 	return found;
831 }
832 
833 /*
834  * Check if the calculated PLL configuration is more optimal compared to the
835  * best configuration and error found so far. Return the calculated error.
836  */
837 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
838 			       const struct dpll *calculated_clock,
839 			       const struct dpll *best_clock,
840 			       unsigned int best_error_ppm,
841 			       unsigned int *error_ppm)
842 {
843 	/*
844 	 * For CHV ignore the error and consider only the P value.
845 	 * Prefer a bigger P value based on HW requirements.
846 	 */
847 	if (IS_CHERRYVIEW(dev)) {
848 		*error_ppm = 0;
849 
850 		return calculated_clock->p > best_clock->p;
851 	}
852 
853 	if (WARN_ON_ONCE(!target_freq))
854 		return false;
855 
856 	*error_ppm = div_u64(1000000ULL *
857 				abs(target_freq - calculated_clock->dot),
858 			     target_freq);
859 	/*
860 	 * Prefer a better P value over a better (smaller) error if the error
861 	 * is small. Ensure this preference for future configurations too by
862 	 * setting the error to 0.
863 	 */
864 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
865 		*error_ppm = 0;
866 
867 		return true;
868 	}
869 
870 	return *error_ppm + 10 < best_error_ppm;
871 }
872 
873 /*
874  * Returns a set of divisors for the desired target clock with the given
875  * refclk, or FALSE.  The returned values represent the clock equation:
876  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
877  */
878 static bool
879 vlv_find_best_dpll(const struct intel_limit *limit,
880 		   struct intel_crtc_state *crtc_state,
881 		   int target, int refclk, struct dpll *match_clock,
882 		   struct dpll *best_clock)
883 {
884 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
885 	struct drm_device *dev = crtc->base.dev;
886 	struct dpll clock;
887 	unsigned int bestppm = 1000000;
888 	/* min update 19.2 MHz */
889 	int max_n = min(limit->n.max, refclk / 19200);
890 	bool found = false;
891 
892 	target *= 5; /* fast clock */
893 
894 	memset(best_clock, 0, sizeof(*best_clock));
895 
896 	/* based on hardware requirement, prefer smaller n to precision */
897 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
898 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
899 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
900 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
901 				clock.p = clock.p1 * clock.p2;
902 				/* based on hardware requirement, prefer bigger m1,m2 values */
903 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
904 					unsigned int ppm;
905 
906 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
907 								     refclk * clock.m1);
908 
909 					vlv_calc_dpll_params(refclk, &clock);
910 
911 					if (!intel_PLL_is_valid(dev, limit,
912 								&clock))
913 						continue;
914 
915 					if (!vlv_PLL_is_optimal(dev, target,
916 								&clock,
917 								best_clock,
918 								bestppm, &ppm))
919 						continue;
920 
921 					*best_clock = clock;
922 					bestppm = ppm;
923 					found = true;
924 				}
925 			}
926 		}
927 	}
928 
929 	return found;
930 }
931 
932 /*
933  * Returns a set of divisors for the desired target clock with the given
934  * refclk, or FALSE.  The returned values represent the clock equation:
935  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
936  */
937 static bool
938 chv_find_best_dpll(const struct intel_limit *limit,
939 		   struct intel_crtc_state *crtc_state,
940 		   int target, int refclk, struct dpll *match_clock,
941 		   struct dpll *best_clock)
942 {
943 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
944 	struct drm_device *dev = crtc->base.dev;
945 	unsigned int best_error_ppm;
946 	struct dpll clock;
947 	uint64_t m2;
948 	int found = false;
949 
950 	memset(best_clock, 0, sizeof(*best_clock));
951 	best_error_ppm = 1000000;
952 
953 	/*
954 	 * Based on hardware doc, the n always set to 1, and m1 always
955 	 * set to 2.  If requires to support 200Mhz refclk, we need to
956 	 * revisit this because n may not 1 anymore.
957 	 */
958 	clock.n = 1, clock.m1 = 2;
959 	target *= 5;	/* fast clock */
960 
961 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
962 		for (clock.p2 = limit->p2.p2_fast;
963 				clock.p2 >= limit->p2.p2_slow;
964 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
965 			unsigned int error_ppm;
966 
967 			clock.p = clock.p1 * clock.p2;
968 
969 			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
970 					clock.n) << 22, refclk * clock.m1);
971 
972 			if (m2 > INT_MAX/clock.m1)
973 				continue;
974 
975 			clock.m2 = m2;
976 
977 			chv_calc_dpll_params(refclk, &clock);
978 
979 			if (!intel_PLL_is_valid(dev, limit, &clock))
980 				continue;
981 
982 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
983 						best_error_ppm, &error_ppm))
984 				continue;
985 
986 			*best_clock = clock;
987 			best_error_ppm = error_ppm;
988 			found = true;
989 		}
990 	}
991 
992 	return found;
993 }
994 
995 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
996 			struct dpll *best_clock)
997 {
998 	int refclk = 100000;
999 	const struct intel_limit *limit = &intel_limits_bxt;
1000 
1001 	return chv_find_best_dpll(limit, crtc_state,
1002 				  target_clock, refclk, NULL, best_clock);
1003 }
1004 
1005 bool intel_crtc_active(struct drm_crtc *crtc)
1006 {
1007 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1008 
1009 	/* Be paranoid as we can arrive here with only partial
1010 	 * state retrieved from the hardware during setup.
1011 	 *
1012 	 * We can ditch the adjusted_mode.crtc_clock check as soon
1013 	 * as Haswell has gained clock readout/fastboot support.
1014 	 *
1015 	 * We can ditch the crtc->primary->fb check as soon as we can
1016 	 * properly reconstruct framebuffers.
1017 	 *
1018 	 * FIXME: The intel_crtc->active here should be switched to
1019 	 * crtc->state->active once we have proper CRTC states wired up
1020 	 * for atomic.
1021 	 */
1022 	return intel_crtc->active && crtc->primary->state->fb &&
1023 		intel_crtc->config->base.adjusted_mode.crtc_clock;
1024 }
1025 
1026 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1027 					     enum i915_pipe pipe)
1028 {
1029 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1030 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1031 
1032 	return intel_crtc->config->cpu_transcoder;
1033 }
1034 
1035 static bool pipe_dsl_stopped(struct drm_device *dev, enum i915_pipe pipe)
1036 {
1037 	struct drm_i915_private *dev_priv = to_i915(dev);
1038 	i915_reg_t reg = PIPEDSL(pipe);
1039 	u32 line1, line2;
1040 	u32 line_mask;
1041 
1042 	if (IS_GEN2(dev))
1043 		line_mask = DSL_LINEMASK_GEN2;
1044 	else
1045 		line_mask = DSL_LINEMASK_GEN3;
1046 
1047 	line1 = I915_READ(reg) & line_mask;
1048 	msleep(5);
1049 	line2 = I915_READ(reg) & line_mask;
1050 
1051 	return line1 == line2;
1052 }
1053 
1054 /*
1055  * intel_wait_for_pipe_off - wait for pipe to turn off
1056  * @crtc: crtc whose pipe to wait for
1057  *
1058  * After disabling a pipe, we can't wait for vblank in the usual way,
1059  * spinning on the vblank interrupt status bit, since we won't actually
1060  * see an interrupt when the pipe is disabled.
1061  *
1062  * On Gen4 and above:
1063  *   wait for the pipe register state bit to turn off
1064  *
1065  * Otherwise:
1066  *   wait for the display line value to settle (it usually
1067  *   ends up stopping at the start of the next frame).
1068  *
1069  */
1070 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1071 {
1072 	struct drm_device *dev = crtc->base.dev;
1073 	struct drm_i915_private *dev_priv = to_i915(dev);
1074 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1075 	enum i915_pipe pipe = crtc->pipe;
1076 
1077 	if (INTEL_INFO(dev)->gen >= 4) {
1078 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1079 
1080 		/* Wait for the Pipe State to go off */
1081 		if (intel_wait_for_register(dev_priv,
1082 					    reg, I965_PIPECONF_ACTIVE, 0,
1083 					    100))
1084 			WARN(1, "pipe_off wait timed out\n");
1085 	} else {
1086 		/* Wait for the display line to settle */
1087 		if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1088 			WARN(1, "pipe_off wait timed out\n");
1089 	}
1090 }
1091 
1092 /* Only for pre-ILK configs */
1093 void assert_pll(struct drm_i915_private *dev_priv,
1094 		enum i915_pipe pipe, bool state)
1095 {
1096 	u32 val;
1097 	bool cur_state;
1098 
1099 	val = I915_READ(DPLL(pipe));
1100 	cur_state = !!(val & DPLL_VCO_ENABLE);
1101 	I915_STATE_WARN(cur_state != state,
1102 	     "PLL state assertion failure (expected %s, current %s)\n",
1103 			onoff(state), onoff(cur_state));
1104 }
1105 
1106 /* XXX: the dsi pll is shared between MIPI DSI ports */
1107 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1108 {
1109 	u32 val;
1110 	bool cur_state;
1111 
1112 	mutex_lock(&dev_priv->sb_lock);
1113 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1114 	mutex_unlock(&dev_priv->sb_lock);
1115 
1116 	cur_state = val & DSI_PLL_VCO_EN;
1117 	I915_STATE_WARN(cur_state != state,
1118 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1119 			onoff(state), onoff(cur_state));
1120 }
1121 
1122 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1123 			  enum i915_pipe pipe, bool state)
1124 {
1125 	bool cur_state;
1126 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1127 								      pipe);
1128 
1129 	if (HAS_DDI(dev_priv)) {
1130 		/* DDI does not have a specific FDI_TX register */
1131 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1132 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133 	} else {
1134 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1135 		cur_state = !!(val & FDI_TX_ENABLE);
1136 	}
1137 	I915_STATE_WARN(cur_state != state,
1138 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1139 			onoff(state), onoff(cur_state));
1140 }
1141 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143 
1144 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 			  enum i915_pipe pipe, bool state)
1146 {
1147 	u32 val;
1148 	bool cur_state;
1149 
1150 	val = I915_READ(FDI_RX_CTL(pipe));
1151 	cur_state = !!(val & FDI_RX_ENABLE);
1152 	I915_STATE_WARN(cur_state != state,
1153 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1154 			onoff(state), onoff(cur_state));
1155 }
1156 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1157 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1158 
1159 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1160 				      enum i915_pipe pipe)
1161 {
1162 	u32 val;
1163 
1164 	/* ILK FDI PLL is always enabled */
1165 	if (IS_GEN5(dev_priv))
1166 		return;
1167 
1168 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169 	if (HAS_DDI(dev_priv))
1170 		return;
1171 
1172 	val = I915_READ(FDI_TX_CTL(pipe));
1173 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1174 }
1175 
1176 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1177 		       enum i915_pipe pipe, bool state)
1178 {
1179 	u32 val;
1180 	bool cur_state;
1181 
1182 	val = I915_READ(FDI_RX_CTL(pipe));
1183 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 	I915_STATE_WARN(cur_state != state,
1185 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 			onoff(state), onoff(cur_state));
1187 }
1188 
1189 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 			   enum i915_pipe pipe)
1191 {
1192 	struct drm_device *dev = &dev_priv->drm;
1193 	i915_reg_t pp_reg;
1194 	u32 val;
1195 	enum i915_pipe panel_pipe = PIPE_A;
1196 	bool locked = true;
1197 
1198 	if (WARN_ON(HAS_DDI(dev)))
1199 		return;
1200 
1201 	if (HAS_PCH_SPLIT(dev)) {
1202 		u32 port_sel;
1203 
1204 		pp_reg = PCH_PP_CONTROL;
1205 		port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1206 
1207 		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1208 		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1209 			panel_pipe = PIPE_B;
1210 		/* XXX: else fix for eDP */
1211 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1212 		/* presumably write lock depends on pipe, not port select */
1213 		pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1214 		panel_pipe = pipe;
1215 	} else {
1216 		pp_reg = PP_CONTROL;
1217 		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1218 			panel_pipe = PIPE_B;
1219 	}
1220 
1221 	val = I915_READ(pp_reg);
1222 	if (!(val & PANEL_POWER_ON) ||
1223 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1224 		locked = false;
1225 
1226 	I915_STATE_WARN(panel_pipe == pipe && locked,
1227 	     "panel assertion failure, pipe %c regs locked\n",
1228 	     pipe_name(pipe));
1229 }
1230 
1231 static void assert_cursor(struct drm_i915_private *dev_priv,
1232 			  enum i915_pipe pipe, bool state)
1233 {
1234 	struct drm_device *dev = &dev_priv->drm;
1235 	bool cur_state;
1236 
1237 	if (IS_845G(dev) || IS_I865G(dev))
1238 		cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1239 	else
1240 		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1241 
1242 	I915_STATE_WARN(cur_state != state,
1243 	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1244 			pipe_name(pipe), onoff(state), onoff(cur_state));
1245 }
1246 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1247 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1248 
1249 void assert_pipe(struct drm_i915_private *dev_priv,
1250 		 enum i915_pipe pipe, bool state)
1251 {
1252 	bool cur_state;
1253 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1254 								      pipe);
1255 	enum intel_display_power_domain power_domain;
1256 
1257 	/* if we need the pipe quirk it must be always on */
1258 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1259 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1260 		state = true;
1261 
1262 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1263 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1264 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1265 		cur_state = !!(val & PIPECONF_ENABLE);
1266 
1267 		intel_display_power_put(dev_priv, power_domain);
1268 	} else {
1269 		cur_state = false;
1270 	}
1271 
1272 	I915_STATE_WARN(cur_state != state,
1273 	     "pipe %c assertion failure (expected %s, current %s)\n",
1274 			pipe_name(pipe), onoff(state), onoff(cur_state));
1275 }
1276 
1277 static void assert_plane(struct drm_i915_private *dev_priv,
1278 			 enum plane plane, bool state)
1279 {
1280 	u32 val;
1281 	bool cur_state;
1282 
1283 	val = I915_READ(DSPCNTR(plane));
1284 	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1285 	I915_STATE_WARN(cur_state != state,
1286 	     "plane %c assertion failure (expected %s, current %s)\n",
1287 			plane_name(plane), onoff(state), onoff(cur_state));
1288 }
1289 
1290 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1291 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1292 
1293 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1294 				   enum i915_pipe pipe)
1295 {
1296 	struct drm_device *dev = &dev_priv->drm;
1297 	int i;
1298 
1299 	/* Primary planes are fixed to pipes on gen4+ */
1300 	if (INTEL_INFO(dev)->gen >= 4) {
1301 		u32 val = I915_READ(DSPCNTR(pipe));
1302 		I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1303 		     "plane %c assertion failure, should be disabled but not\n",
1304 		     plane_name(pipe));
1305 		return;
1306 	}
1307 
1308 	/* Need to check both planes against the pipe */
1309 	for_each_pipe(dev_priv, i) {
1310 		u32 val = I915_READ(DSPCNTR(i));
1311 		enum i915_pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1312 			DISPPLANE_SEL_PIPE_SHIFT;
1313 		I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1314 		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1315 		     plane_name(i), pipe_name(pipe));
1316 	}
1317 }
1318 
1319 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1320 				    enum i915_pipe pipe)
1321 {
1322 	struct drm_device *dev = &dev_priv->drm;
1323 	int sprite;
1324 
1325 	if (INTEL_INFO(dev)->gen >= 9) {
1326 		for_each_sprite(dev_priv, pipe, sprite) {
1327 			u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1328 			I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1329 			     "plane %d assertion failure, should be off on pipe %c but is still active\n",
1330 			     sprite, pipe_name(pipe));
1331 		}
1332 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1333 		for_each_sprite(dev_priv, pipe, sprite) {
1334 			u32 val = I915_READ(SPCNTR(pipe, sprite));
1335 			I915_STATE_WARN(val & SP_ENABLE,
1336 			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1337 			     sprite_name(pipe, sprite), pipe_name(pipe));
1338 		}
1339 	} else if (INTEL_INFO(dev)->gen >= 7) {
1340 		u32 val = I915_READ(SPRCTL(pipe));
1341 		I915_STATE_WARN(val & SPRITE_ENABLE,
1342 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1343 		     plane_name(pipe), pipe_name(pipe));
1344 	} else if (INTEL_INFO(dev)->gen >= 5) {
1345 		u32 val = I915_READ(DVSCNTR(pipe));
1346 		I915_STATE_WARN(val & DVS_ENABLE,
1347 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1348 		     plane_name(pipe), pipe_name(pipe));
1349 	}
1350 }
1351 
1352 static void assert_vblank_disabled(struct drm_crtc *crtc)
1353 {
1354 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1355 		drm_crtc_vblank_put(crtc);
1356 }
1357 
1358 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1359 				    enum i915_pipe pipe)
1360 {
1361 	u32 val;
1362 	bool enabled;
1363 
1364 	val = I915_READ(PCH_TRANSCONF(pipe));
1365 	enabled = !!(val & TRANS_ENABLE);
1366 	I915_STATE_WARN(enabled,
1367 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1368 	     pipe_name(pipe));
1369 }
1370 
1371 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1372 			    enum i915_pipe pipe, u32 port_sel, u32 val)
1373 {
1374 	if ((val & DP_PORT_EN) == 0)
1375 		return false;
1376 
1377 	if (HAS_PCH_CPT(dev_priv)) {
1378 		u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1379 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1380 			return false;
1381 	} else if (IS_CHERRYVIEW(dev_priv)) {
1382 		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1383 			return false;
1384 	} else {
1385 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1386 			return false;
1387 	}
1388 	return true;
1389 }
1390 
1391 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1392 			      enum i915_pipe pipe, u32 val)
1393 {
1394 	if ((val & SDVO_ENABLE) == 0)
1395 		return false;
1396 
1397 	if (HAS_PCH_CPT(dev_priv)) {
1398 		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1399 			return false;
1400 	} else if (IS_CHERRYVIEW(dev_priv)) {
1401 		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1402 			return false;
1403 	} else {
1404 		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1405 			return false;
1406 	}
1407 	return true;
1408 }
1409 
1410 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1411 			      enum i915_pipe pipe, u32 val)
1412 {
1413 	if ((val & LVDS_PORT_EN) == 0)
1414 		return false;
1415 
1416 	if (HAS_PCH_CPT(dev_priv)) {
1417 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1418 			return false;
1419 	} else {
1420 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1421 			return false;
1422 	}
1423 	return true;
1424 }
1425 
1426 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1427 			      enum i915_pipe pipe, u32 val)
1428 {
1429 	if ((val & ADPA_DAC_ENABLE) == 0)
1430 		return false;
1431 	if (HAS_PCH_CPT(dev_priv)) {
1432 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1433 			return false;
1434 	} else {
1435 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1436 			return false;
1437 	}
1438 	return true;
1439 }
1440 
1441 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1442 				   enum i915_pipe pipe, i915_reg_t reg,
1443 				   u32 port_sel)
1444 {
1445 	u32 val = I915_READ(reg);
1446 	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1447 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1448 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1449 
1450 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1451 	     && (val & DP_PIPEB_SELECT),
1452 	     "IBX PCH dp port still using transcoder B\n");
1453 }
1454 
1455 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1456 				     enum i915_pipe pipe, i915_reg_t reg)
1457 {
1458 	u32 val = I915_READ(reg);
1459 	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1460 	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1461 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1462 
1463 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1464 	     && (val & SDVO_PIPE_B_SELECT),
1465 	     "IBX PCH hdmi port still using transcoder B\n");
1466 }
1467 
1468 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1469 				      enum i915_pipe pipe)
1470 {
1471 	u32 val;
1472 
1473 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1474 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1475 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1476 
1477 	val = I915_READ(PCH_ADPA);
1478 	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1479 	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1480 	     pipe_name(pipe));
1481 
1482 	val = I915_READ(PCH_LVDS);
1483 	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1484 	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1485 	     pipe_name(pipe));
1486 
1487 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1488 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1489 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1490 }
1491 
1492 static void _vlv_enable_pll(struct intel_crtc *crtc,
1493 			    const struct intel_crtc_state *pipe_config)
1494 {
1495 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1496 	enum i915_pipe pipe = crtc->pipe;
1497 
1498 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1499 	POSTING_READ(DPLL(pipe));
1500 	udelay(150);
1501 
1502 	if (intel_wait_for_register(dev_priv,
1503 				    DPLL(pipe),
1504 				    DPLL_LOCK_VLV,
1505 				    DPLL_LOCK_VLV,
1506 				    1))
1507 		DRM_ERROR("DPLL %d failed to lock\n", pipe);
1508 }
1509 
1510 static void vlv_enable_pll(struct intel_crtc *crtc,
1511 			   const struct intel_crtc_state *pipe_config)
1512 {
1513 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1514 	enum i915_pipe pipe = crtc->pipe;
1515 
1516 	assert_pipe_disabled(dev_priv, pipe);
1517 
1518 	/* PLL is protected by panel, make sure we can write it */
1519 	assert_panel_unlocked(dev_priv, pipe);
1520 
1521 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1522 		_vlv_enable_pll(crtc, pipe_config);
1523 
1524 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1525 	POSTING_READ(DPLL_MD(pipe));
1526 }
1527 
1528 
1529 static void _chv_enable_pll(struct intel_crtc *crtc,
1530 			    const struct intel_crtc_state *pipe_config)
1531 {
1532 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1533 	enum i915_pipe pipe = crtc->pipe;
1534 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1535 	u32 tmp;
1536 
1537 	mutex_lock(&dev_priv->sb_lock);
1538 
1539 	/* Enable back the 10bit clock to display controller */
1540 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1541 	tmp |= DPIO_DCLKP_EN;
1542 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1543 
1544 	mutex_unlock(&dev_priv->sb_lock);
1545 
1546 	/*
1547 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1548 	 */
1549 	udelay(1);
1550 
1551 	/* Enable PLL */
1552 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1553 
1554 	/* Check PLL is locked */
1555 	if (intel_wait_for_register(dev_priv,
1556 				    DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1557 				    1))
1558 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1559 }
1560 
1561 static void chv_enable_pll(struct intel_crtc *crtc,
1562 			   const struct intel_crtc_state *pipe_config)
1563 {
1564 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1565 	enum i915_pipe pipe = crtc->pipe;
1566 
1567 	assert_pipe_disabled(dev_priv, pipe);
1568 
1569 	/* PLL is protected by panel, make sure we can write it */
1570 	assert_panel_unlocked(dev_priv, pipe);
1571 
1572 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1573 		_chv_enable_pll(crtc, pipe_config);
1574 
1575 	if (pipe != PIPE_A) {
1576 		/*
1577 		 * WaPixelRepeatModeFixForC0:chv
1578 		 *
1579 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1580 		 * the value from DPLLBMD to either pipe B or C.
1581 		 */
1582 		I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1583 		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1584 		I915_WRITE(CBR4_VLV, 0);
1585 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1586 
1587 		/*
1588 		 * DPLLB VGA mode also seems to cause problems.
1589 		 * We should always have it disabled.
1590 		 */
1591 		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1592 	} else {
1593 		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1594 		POSTING_READ(DPLL_MD(pipe));
1595 	}
1596 }
1597 
1598 static int intel_num_dvo_pipes(struct drm_device *dev)
1599 {
1600 	struct intel_crtc *crtc;
1601 	int count = 0;
1602 
1603 	for_each_intel_crtc(dev, crtc) {
1604 		count += crtc->base.state->active &&
1605 			intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1606 	}
1607 
1608 	return count;
1609 }
1610 
1611 static void i9xx_enable_pll(struct intel_crtc *crtc)
1612 {
1613 	struct drm_device *dev = crtc->base.dev;
1614 	struct drm_i915_private *dev_priv = to_i915(dev);
1615 	i915_reg_t reg = DPLL(crtc->pipe);
1616 	u32 dpll = crtc->config->dpll_hw_state.dpll;
1617 
1618 	assert_pipe_disabled(dev_priv, crtc->pipe);
1619 
1620 	/* PLL is protected by panel, make sure we can write it */
1621 	if (IS_MOBILE(dev) && !IS_I830(dev))
1622 		assert_panel_unlocked(dev_priv, crtc->pipe);
1623 
1624 	/* Enable DVO 2x clock on both PLLs if necessary */
1625 	if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1626 		/*
1627 		 * It appears to be important that we don't enable this
1628 		 * for the current pipe before otherwise configuring the
1629 		 * PLL. No idea how this should be handled if multiple
1630 		 * DVO outputs are enabled simultaneosly.
1631 		 */
1632 		dpll |= DPLL_DVO_2X_MODE;
1633 		I915_WRITE(DPLL(!crtc->pipe),
1634 			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1635 	}
1636 
1637 	/*
1638 	 * Apparently we need to have VGA mode enabled prior to changing
1639 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1640 	 * dividers, even though the register value does change.
1641 	 */
1642 	I915_WRITE(reg, 0);
1643 
1644 	I915_WRITE(reg, dpll);
1645 
1646 	/* Wait for the clocks to stabilize. */
1647 	POSTING_READ(reg);
1648 	udelay(150);
1649 
1650 	if (INTEL_INFO(dev)->gen >= 4) {
1651 		I915_WRITE(DPLL_MD(crtc->pipe),
1652 			   crtc->config->dpll_hw_state.dpll_md);
1653 	} else {
1654 		/* The pixel multiplier can only be updated once the
1655 		 * DPLL is enabled and the clocks are stable.
1656 		 *
1657 		 * So write it again.
1658 		 */
1659 		I915_WRITE(reg, dpll);
1660 	}
1661 
1662 	/* We do this three times for luck */
1663 	I915_WRITE(reg, dpll);
1664 	POSTING_READ(reg);
1665 	udelay(150); /* wait for warmup */
1666 	I915_WRITE(reg, dpll);
1667 	POSTING_READ(reg);
1668 	udelay(150); /* wait for warmup */
1669 	I915_WRITE(reg, dpll);
1670 	POSTING_READ(reg);
1671 	udelay(150); /* wait for warmup */
1672 }
1673 
1674 /**
1675  * i9xx_disable_pll - disable a PLL
1676  * @dev_priv: i915 private structure
1677  * @pipe: pipe PLL to disable
1678  *
1679  * Disable the PLL for @pipe, making sure the pipe is off first.
1680  *
1681  * Note!  This is for pre-ILK only.
1682  */
1683 static void i9xx_disable_pll(struct intel_crtc *crtc)
1684 {
1685 	struct drm_device *dev = crtc->base.dev;
1686 	struct drm_i915_private *dev_priv = to_i915(dev);
1687 	enum i915_pipe pipe = crtc->pipe;
1688 
1689 	/* Disable DVO 2x clock on both PLLs if necessary */
1690 	if (IS_I830(dev) &&
1691 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1692 	    !intel_num_dvo_pipes(dev)) {
1693 		I915_WRITE(DPLL(PIPE_B),
1694 			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1695 		I915_WRITE(DPLL(PIPE_A),
1696 			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1697 	}
1698 
1699 	/* Don't disable pipe or pipe PLLs if needed */
1700 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1701 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1702 		return;
1703 
1704 	/* Make sure the pipe isn't still relying on us */
1705 	assert_pipe_disabled(dev_priv, pipe);
1706 
1707 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1708 	POSTING_READ(DPLL(pipe));
1709 }
1710 
1711 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1712 {
1713 	u32 val;
1714 
1715 	/* Make sure the pipe isn't still relying on us */
1716 	assert_pipe_disabled(dev_priv, pipe);
1717 
1718 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1719 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1720 	if (pipe != PIPE_A)
1721 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1722 
1723 	I915_WRITE(DPLL(pipe), val);
1724 	POSTING_READ(DPLL(pipe));
1725 }
1726 
1727 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1728 {
1729 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1730 	u32 val;
1731 
1732 	/* Make sure the pipe isn't still relying on us */
1733 	assert_pipe_disabled(dev_priv, pipe);
1734 
1735 	val = DPLL_SSC_REF_CLK_CHV |
1736 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1737 	if (pipe != PIPE_A)
1738 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1739 
1740 	I915_WRITE(DPLL(pipe), val);
1741 	POSTING_READ(DPLL(pipe));
1742 
1743 	mutex_lock(&dev_priv->sb_lock);
1744 
1745 	/* Disable 10bit clock to display controller */
1746 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1747 	val &= ~DPIO_DCLKP_EN;
1748 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1749 
1750 	mutex_unlock(&dev_priv->sb_lock);
1751 }
1752 
1753 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1754 			 struct intel_digital_port *dport,
1755 			 unsigned int expected_mask)
1756 {
1757 	u32 port_mask;
1758 	i915_reg_t dpll_reg;
1759 
1760 	switch (dport->port) {
1761 	case PORT_B:
1762 		port_mask = DPLL_PORTB_READY_MASK;
1763 		dpll_reg = DPLL(0);
1764 		break;
1765 	case PORT_C:
1766 		port_mask = DPLL_PORTC_READY_MASK;
1767 		dpll_reg = DPLL(0);
1768 		expected_mask <<= 4;
1769 		break;
1770 	case PORT_D:
1771 		port_mask = DPLL_PORTD_READY_MASK;
1772 		dpll_reg = DPIO_PHY_STATUS;
1773 		break;
1774 	default:
1775 		BUG();
1776 	}
1777 
1778 	if (intel_wait_for_register(dev_priv,
1779 				    dpll_reg, port_mask, expected_mask,
1780 				    1000))
1781 		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1782 		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1783 }
1784 
1785 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1786 					   enum i915_pipe pipe)
1787 {
1788 	struct drm_device *dev = &dev_priv->drm;
1789 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1790 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1791 	i915_reg_t reg;
1792 	uint32_t val, pipeconf_val;
1793 
1794 	/* Make sure PCH DPLL is enabled */
1795 	assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1796 
1797 	/* FDI must be feeding us bits for PCH ports */
1798 	assert_fdi_tx_enabled(dev_priv, pipe);
1799 	assert_fdi_rx_enabled(dev_priv, pipe);
1800 
1801 	if (HAS_PCH_CPT(dev)) {
1802 		/* Workaround: Set the timing override bit before enabling the
1803 		 * pch transcoder. */
1804 		reg = TRANS_CHICKEN2(pipe);
1805 		val = I915_READ(reg);
1806 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1807 		I915_WRITE(reg, val);
1808 	}
1809 
1810 	reg = PCH_TRANSCONF(pipe);
1811 	val = I915_READ(reg);
1812 	pipeconf_val = I915_READ(PIPECONF(pipe));
1813 
1814 	if (HAS_PCH_IBX(dev_priv)) {
1815 		/*
1816 		 * Make the BPC in transcoder be consistent with
1817 		 * that in pipeconf reg. For HDMI we must use 8bpc
1818 		 * here for both 8bpc and 12bpc.
1819 		 */
1820 		val &= ~PIPECONF_BPC_MASK;
1821 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1822 			val |= PIPECONF_8BPC;
1823 		else
1824 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1825 	}
1826 
1827 	val &= ~TRANS_INTERLACE_MASK;
1828 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1829 		if (HAS_PCH_IBX(dev_priv) &&
1830 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1831 			val |= TRANS_LEGACY_INTERLACED_ILK;
1832 		else
1833 			val |= TRANS_INTERLACED;
1834 	else
1835 		val |= TRANS_PROGRESSIVE;
1836 
1837 	I915_WRITE(reg, val | TRANS_ENABLE);
1838 	if (intel_wait_for_register(dev_priv,
1839 				    reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1840 				    100))
1841 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1842 }
1843 
1844 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1845 				      enum transcoder cpu_transcoder)
1846 {
1847 	u32 val, pipeconf_val;
1848 
1849 	/* FDI must be feeding us bits for PCH ports */
1850 	assert_fdi_tx_enabled(dev_priv, (enum i915_pipe) cpu_transcoder);
1851 	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1852 
1853 	/* Workaround: set timing override bit. */
1854 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1855 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1856 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1857 
1858 	val = TRANS_ENABLE;
1859 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1860 
1861 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1862 	    PIPECONF_INTERLACED_ILK)
1863 		val |= TRANS_INTERLACED;
1864 	else
1865 		val |= TRANS_PROGRESSIVE;
1866 
1867 	I915_WRITE(LPT_TRANSCONF, val);
1868 	if (intel_wait_for_register(dev_priv,
1869 				    LPT_TRANSCONF,
1870 				    TRANS_STATE_ENABLE,
1871 				    TRANS_STATE_ENABLE,
1872 				    100))
1873 		DRM_ERROR("Failed to enable PCH transcoder\n");
1874 }
1875 
1876 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1877 					    enum i915_pipe pipe)
1878 {
1879 	struct drm_device *dev = &dev_priv->drm;
1880 	i915_reg_t reg;
1881 	uint32_t val;
1882 
1883 	/* FDI relies on the transcoder */
1884 	assert_fdi_tx_disabled(dev_priv, pipe);
1885 	assert_fdi_rx_disabled(dev_priv, pipe);
1886 
1887 	/* Ports must be off as well */
1888 	assert_pch_ports_disabled(dev_priv, pipe);
1889 
1890 	reg = PCH_TRANSCONF(pipe);
1891 	val = I915_READ(reg);
1892 	val &= ~TRANS_ENABLE;
1893 	I915_WRITE(reg, val);
1894 	/* wait for PCH transcoder off, transcoder state */
1895 	if (intel_wait_for_register(dev_priv,
1896 				    reg, TRANS_STATE_ENABLE, 0,
1897 				    50))
1898 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1899 
1900 	if (HAS_PCH_CPT(dev)) {
1901 		/* Workaround: Clear the timing override chicken bit again. */
1902 		reg = TRANS_CHICKEN2(pipe);
1903 		val = I915_READ(reg);
1904 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1905 		I915_WRITE(reg, val);
1906 	}
1907 }
1908 
1909 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1910 {
1911 	u32 val;
1912 
1913 	val = I915_READ(LPT_TRANSCONF);
1914 	val &= ~TRANS_ENABLE;
1915 	I915_WRITE(LPT_TRANSCONF, val);
1916 	/* wait for PCH transcoder off, transcoder state */
1917 	if (intel_wait_for_register(dev_priv,
1918 				    LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1919 				    50))
1920 		DRM_ERROR("Failed to disable PCH transcoder\n");
1921 
1922 	/* Workaround: clear timing override bit. */
1923 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1924 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1925 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1926 }
1927 
1928 /**
1929  * intel_enable_pipe - enable a pipe, asserting requirements
1930  * @crtc: crtc responsible for the pipe
1931  *
1932  * Enable @crtc's pipe, making sure that various hardware specific requirements
1933  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1934  */
1935 static void intel_enable_pipe(struct intel_crtc *crtc)
1936 {
1937 	struct drm_device *dev = crtc->base.dev;
1938 	struct drm_i915_private *dev_priv = to_i915(dev);
1939 	enum i915_pipe pipe = crtc->pipe;
1940 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1941 	enum i915_pipe pch_transcoder;
1942 	i915_reg_t reg;
1943 	u32 val;
1944 
1945 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1946 
1947 	assert_planes_disabled(dev_priv, pipe);
1948 	assert_cursor_disabled(dev_priv, pipe);
1949 	assert_sprites_disabled(dev_priv, pipe);
1950 
1951 	if (HAS_PCH_LPT(dev_priv))
1952 		pch_transcoder = TRANSCODER_A;
1953 	else
1954 		pch_transcoder = pipe;
1955 
1956 	/*
1957 	 * A pipe without a PLL won't actually be able to drive bits from
1958 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1959 	 * need the check.
1960 	 */
1961 	if (HAS_GMCH_DISPLAY(dev_priv))
1962 		if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1963 			assert_dsi_pll_enabled(dev_priv);
1964 		else
1965 			assert_pll_enabled(dev_priv, pipe);
1966 	else {
1967 		if (crtc->config->has_pch_encoder) {
1968 			/* if driving the PCH, we need FDI enabled */
1969 			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1970 			assert_fdi_tx_pll_enabled(dev_priv,
1971 						  (enum i915_pipe) cpu_transcoder);
1972 		}
1973 		/* FIXME: assert CPU port conditions for SNB+ */
1974 	}
1975 
1976 	reg = PIPECONF(cpu_transcoder);
1977 	val = I915_READ(reg);
1978 	if (val & PIPECONF_ENABLE) {
1979 		WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1980 			  (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1981 		return;
1982 	}
1983 
1984 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1985 	POSTING_READ(reg);
1986 
1987 	/*
1988 	 * Until the pipe starts DSL will read as 0, which would cause
1989 	 * an apparent vblank timestamp jump, which messes up also the
1990 	 * frame count when it's derived from the timestamps. So let's
1991 	 * wait for the pipe to start properly before we call
1992 	 * drm_crtc_vblank_on()
1993 	 */
1994 	if (dev->max_vblank_count == 0 &&
1995 	    wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1996 		DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1997 }
1998 
1999 /**
2000  * intel_disable_pipe - disable a pipe, asserting requirements
2001  * @crtc: crtc whose pipes is to be disabled
2002  *
2003  * Disable the pipe of @crtc, making sure that various hardware
2004  * specific requirements are met, if applicable, e.g. plane
2005  * disabled, panel fitter off, etc.
2006  *
2007  * Will wait until the pipe has shut down before returning.
2008  */
2009 static void intel_disable_pipe(struct intel_crtc *crtc)
2010 {
2011 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2012 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2013 	enum i915_pipe pipe = crtc->pipe;
2014 	i915_reg_t reg;
2015 	u32 val;
2016 
2017 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2018 
2019 	/*
2020 	 * Make sure planes won't keep trying to pump pixels to us,
2021 	 * or we might hang the display.
2022 	 */
2023 	assert_planes_disabled(dev_priv, pipe);
2024 	assert_cursor_disabled(dev_priv, pipe);
2025 	assert_sprites_disabled(dev_priv, pipe);
2026 
2027 	reg = PIPECONF(cpu_transcoder);
2028 	val = I915_READ(reg);
2029 	if ((val & PIPECONF_ENABLE) == 0)
2030 		return;
2031 
2032 	/*
2033 	 * Double wide has implications for planes
2034 	 * so best keep it disabled when not needed.
2035 	 */
2036 	if (crtc->config->double_wide)
2037 		val &= ~PIPECONF_DOUBLE_WIDE;
2038 
2039 	/* Don't disable pipe or pipe PLLs if needed */
2040 	if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2041 	    !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2042 		val &= ~PIPECONF_ENABLE;
2043 
2044 	I915_WRITE(reg, val);
2045 	if ((val & PIPECONF_ENABLE) == 0)
2046 		intel_wait_for_pipe_off(crtc);
2047 }
2048 
2049 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2050 {
2051 	return IS_GEN2(dev_priv) ? 2048 : 4096;
2052 }
2053 
2054 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2055 					   uint64_t fb_modifier, unsigned int cpp)
2056 {
2057 	switch (fb_modifier) {
2058 	case DRM_FORMAT_MOD_NONE:
2059 		return cpp;
2060 	case I915_FORMAT_MOD_X_TILED:
2061 		if (IS_GEN2(dev_priv))
2062 			return 128;
2063 		else
2064 			return 512;
2065 	case I915_FORMAT_MOD_Y_TILED:
2066 		if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2067 			return 128;
2068 		else
2069 			return 512;
2070 	case I915_FORMAT_MOD_Yf_TILED:
2071 		switch (cpp) {
2072 		case 1:
2073 			return 64;
2074 		case 2:
2075 		case 4:
2076 			return 128;
2077 		case 8:
2078 		case 16:
2079 			return 256;
2080 		default:
2081 			MISSING_CASE(cpp);
2082 			return cpp;
2083 		}
2084 		break;
2085 	default:
2086 		MISSING_CASE(fb_modifier);
2087 		return cpp;
2088 	}
2089 }
2090 
2091 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2092 			       uint64_t fb_modifier, unsigned int cpp)
2093 {
2094 	if (fb_modifier == DRM_FORMAT_MOD_NONE)
2095 		return 1;
2096 	else
2097 		return intel_tile_size(dev_priv) /
2098 			intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2099 }
2100 
2101 /* Return the tile dimensions in pixel units */
2102 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2103 			    unsigned int *tile_width,
2104 			    unsigned int *tile_height,
2105 			    uint64_t fb_modifier,
2106 			    unsigned int cpp)
2107 {
2108 	unsigned int tile_width_bytes =
2109 		intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2110 
2111 	*tile_width = tile_width_bytes / cpp;
2112 	*tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2113 }
2114 
2115 unsigned int
2116 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2117 		      uint32_t pixel_format, uint64_t fb_modifier)
2118 {
2119 	unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2120 	unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2121 
2122 	return ALIGN(height, tile_height);
2123 }
2124 
2125 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2126 {
2127 	unsigned int size = 0;
2128 	int i;
2129 
2130 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2131 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2132 
2133 	return size;
2134 }
2135 
2136 static void
2137 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2138 			struct drm_framebuffer *fb,
2139 			unsigned int rotation)
2140 {
2141 	if (intel_rotation_90_or_270(rotation)) {
2142 		*view = i915_ggtt_view_rotated;
2143 		view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2144 	} else {
2145 		*view = i915_ggtt_view_normal;
2146 	}
2147 }
2148 
2149 static void
2150 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2151 		   struct drm_framebuffer *fb)
2152 {
2153 	struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2154 	unsigned int tile_size, tile_width, tile_height, cpp;
2155 
2156 	tile_size = intel_tile_size(dev_priv);
2157 
2158 	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2159 	intel_tile_dims(dev_priv, &tile_width, &tile_height,
2160 			fb->modifier[0], cpp);
2161 
2162 	info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2163 	info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2164 
2165 	if (info->pixel_format == DRM_FORMAT_NV12) {
2166 		cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2167 		intel_tile_dims(dev_priv, &tile_width, &tile_height,
2168 				fb->modifier[1], cpp);
2169 
2170 		info->uv_offset = fb->offsets[1];
2171 		info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2172 		info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2173 	}
2174 }
2175 
2176 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2177 {
2178 	if (INTEL_INFO(dev_priv)->gen >= 9)
2179 		return 256 * 1024;
2180 	else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2181 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2182 		return 128 * 1024;
2183 	else if (INTEL_INFO(dev_priv)->gen >= 4)
2184 		return 4 * 1024;
2185 	else
2186 		return 0;
2187 }
2188 
2189 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2190 					 uint64_t fb_modifier)
2191 {
2192 	switch (fb_modifier) {
2193 	case DRM_FORMAT_MOD_NONE:
2194 		return intel_linear_alignment(dev_priv);
2195 	case I915_FORMAT_MOD_X_TILED:
2196 		if (INTEL_INFO(dev_priv)->gen >= 9)
2197 			return 256 * 1024;
2198 		return 0;
2199 	case I915_FORMAT_MOD_Y_TILED:
2200 	case I915_FORMAT_MOD_Yf_TILED:
2201 		return 1 * 1024 * 1024;
2202 	default:
2203 		MISSING_CASE(fb_modifier);
2204 		return 0;
2205 	}
2206 }
2207 
2208 int
2209 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2210 			   unsigned int rotation)
2211 {
2212 	struct drm_device *dev = fb->dev;
2213 	struct drm_i915_private *dev_priv = to_i915(dev);
2214 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2215 	struct i915_ggtt_view view;
2216 	u32 alignment;
2217 	int ret;
2218 
2219 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2220 
2221 	alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2222 
2223 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2224 
2225 	/* Note that the w/a also requires 64 PTE of padding following the
2226 	 * bo. We currently fill all unused PTE with the shadow page and so
2227 	 * we should always have valid PTE following the scanout preventing
2228 	 * the VT-d warning.
2229 	 */
2230 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2231 		alignment = 256 * 1024;
2232 
2233 	/*
2234 	 * Global gtt pte registers are special registers which actually forward
2235 	 * writes to a chunk of system memory. Which means that there is no risk
2236 	 * that the register values disappear as soon as we call
2237 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2238 	 * pin/unpin/fence and not more.
2239 	 */
2240 	intel_runtime_pm_get(dev_priv);
2241 
2242 	ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2243 						   &view);
2244 	if (ret)
2245 		goto err_pm;
2246 
2247 	/* Install a fence for tiled scan-out. Pre-i965 always needs a
2248 	 * fence, whereas 965+ only requires a fence if using
2249 	 * framebuffer compression.  For simplicity, we always install
2250 	 * a fence as the cost is not that onerous.
2251 	 */
2252 	if (view.type == I915_GGTT_VIEW_NORMAL) {
2253 		ret = i915_gem_object_get_fence(obj);
2254 		if (ret == -EDEADLK) {
2255 			/*
2256 			 * -EDEADLK means there are no free fences
2257 			 * no pending flips.
2258 			 *
2259 			 * This is propagated to atomic, but it uses
2260 			 * -EDEADLK to force a locking recovery, so
2261 			 * change the returned error to -EBUSY.
2262 			 */
2263 			ret = -EBUSY;
2264 			goto err_unpin;
2265 		} else if (ret)
2266 			goto err_unpin;
2267 
2268 		i915_gem_object_pin_fence(obj);
2269 	}
2270 
2271 	intel_runtime_pm_put(dev_priv);
2272 	return 0;
2273 
2274 err_unpin:
2275 	i915_gem_object_unpin_from_display_plane(obj, &view);
2276 err_pm:
2277 	intel_runtime_pm_put(dev_priv);
2278 	return ret;
2279 }
2280 
2281 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2282 {
2283 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2284 	struct i915_ggtt_view view;
2285 
2286 	WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2287 
2288 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2289 
2290 	if (view.type == I915_GGTT_VIEW_NORMAL)
2291 		i915_gem_object_unpin_fence(obj);
2292 
2293 	i915_gem_object_unpin_from_display_plane(obj, &view);
2294 }
2295 
2296 /*
2297  * Adjust the tile offset by moving the difference into
2298  * the x/y offsets.
2299  *
2300  * Input tile dimensions and pitch must already be
2301  * rotated to match x and y, and in pixel units.
2302  */
2303 static u32 intel_adjust_tile_offset(int *x, int *y,
2304 				    unsigned int tile_width,
2305 				    unsigned int tile_height,
2306 				    unsigned int tile_size,
2307 				    unsigned int pitch_tiles,
2308 				    u32 old_offset,
2309 				    u32 new_offset)
2310 {
2311 	unsigned int tiles;
2312 
2313 	WARN_ON(old_offset & (tile_size - 1));
2314 	WARN_ON(new_offset & (tile_size - 1));
2315 	WARN_ON(new_offset > old_offset);
2316 
2317 	tiles = (old_offset - new_offset) / tile_size;
2318 
2319 	*y += tiles / pitch_tiles * tile_height;
2320 	*x += tiles % pitch_tiles * tile_width;
2321 
2322 	return new_offset;
2323 }
2324 
2325 /*
2326  * Computes the linear offset to the base tile and adjusts
2327  * x, y. bytes per pixel is assumed to be a power-of-two.
2328  *
2329  * In the 90/270 rotated case, x and y are assumed
2330  * to be already rotated to match the rotated GTT view, and
2331  * pitch is the tile_height aligned framebuffer height.
2332  */
2333 u32 intel_compute_tile_offset(int *x, int *y,
2334 			      const struct drm_framebuffer *fb, int plane,
2335 			      unsigned int pitch,
2336 			      unsigned int rotation)
2337 {
2338 	const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2339 	uint64_t fb_modifier = fb->modifier[plane];
2340 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2341 	u32 offset, offset_aligned, alignment;
2342 
2343 	alignment = intel_surf_alignment(dev_priv, fb_modifier);
2344 	if (alignment)
2345 		alignment--;
2346 
2347 	if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2348 		unsigned int tile_size, tile_width, tile_height;
2349 		unsigned int tile_rows, tiles, pitch_tiles;
2350 
2351 		tile_size = intel_tile_size(dev_priv);
2352 		intel_tile_dims(dev_priv, &tile_width, &tile_height,
2353 				fb_modifier, cpp);
2354 
2355 		if (intel_rotation_90_or_270(rotation)) {
2356 			pitch_tiles = pitch / tile_height;
2357 			swap(tile_width, tile_height);
2358 		} else {
2359 			pitch_tiles = pitch / (tile_width * cpp);
2360 		}
2361 
2362 		tile_rows = *y / tile_height;
2363 		*y %= tile_height;
2364 
2365 		tiles = *x / tile_width;
2366 		*x %= tile_width;
2367 
2368 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2369 		offset_aligned = offset & ~alignment;
2370 
2371 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2372 					 tile_size, pitch_tiles,
2373 					 offset, offset_aligned);
2374 	} else {
2375 		offset = *y * pitch + *x * cpp;
2376 		offset_aligned = offset & ~alignment;
2377 
2378 		*y = (offset & alignment) / pitch;
2379 		*x = ((offset & alignment) - *y * pitch) / cpp;
2380 	}
2381 
2382 	return offset_aligned;
2383 }
2384 
2385 static int i9xx_format_to_fourcc(int format)
2386 {
2387 	switch (format) {
2388 	case DISPPLANE_8BPP:
2389 		return DRM_FORMAT_C8;
2390 	case DISPPLANE_BGRX555:
2391 		return DRM_FORMAT_XRGB1555;
2392 	case DISPPLANE_BGRX565:
2393 		return DRM_FORMAT_RGB565;
2394 	default:
2395 	case DISPPLANE_BGRX888:
2396 		return DRM_FORMAT_XRGB8888;
2397 	case DISPPLANE_RGBX888:
2398 		return DRM_FORMAT_XBGR8888;
2399 	case DISPPLANE_BGRX101010:
2400 		return DRM_FORMAT_XRGB2101010;
2401 	case DISPPLANE_RGBX101010:
2402 		return DRM_FORMAT_XBGR2101010;
2403 	}
2404 }
2405 
2406 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2407 {
2408 	switch (format) {
2409 	case PLANE_CTL_FORMAT_RGB_565:
2410 		return DRM_FORMAT_RGB565;
2411 	default:
2412 	case PLANE_CTL_FORMAT_XRGB_8888:
2413 		if (rgb_order) {
2414 			if (alpha)
2415 				return DRM_FORMAT_ABGR8888;
2416 			else
2417 				return DRM_FORMAT_XBGR8888;
2418 		} else {
2419 			if (alpha)
2420 				return DRM_FORMAT_ARGB8888;
2421 			else
2422 				return DRM_FORMAT_XRGB8888;
2423 		}
2424 	case PLANE_CTL_FORMAT_XRGB_2101010:
2425 		if (rgb_order)
2426 			return DRM_FORMAT_XBGR2101010;
2427 		else
2428 			return DRM_FORMAT_XRGB2101010;
2429 	}
2430 }
2431 
2432 static bool
2433 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2434 			      struct intel_initial_plane_config *plane_config)
2435 {
2436 	struct drm_device *dev = crtc->base.dev;
2437 	struct drm_i915_private *dev_priv = to_i915(dev);
2438 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2439 	struct drm_i915_gem_object *obj = NULL;
2440 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2441 	struct drm_framebuffer *fb = &plane_config->fb->base;
2442 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2443 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2444 				    PAGE_SIZE);
2445 
2446 	size_aligned -= base_aligned;
2447 
2448 	if (plane_config->size == 0)
2449 		return false;
2450 
2451 	/* If the FB is too big, just don't use it since fbdev is not very
2452 	 * important and we should probably use that space with FBC or other
2453 	 * features. */
2454 	if (size_aligned * 2 > ggtt->stolen_usable_size)
2455 		return false;
2456 
2457 	mutex_lock(&dev->struct_mutex);
2458 
2459 	obj = i915_gem_object_create_stolen_for_preallocated(dev,
2460 							     base_aligned,
2461 							     base_aligned,
2462 							     size_aligned);
2463 	if (!obj) {
2464 		mutex_unlock(&dev->struct_mutex);
2465 		return false;
2466 	}
2467 
2468 	obj->tiling_mode = plane_config->tiling;
2469 	if (obj->tiling_mode == I915_TILING_X)
2470 		obj->stride = fb->pitches[0];
2471 
2472 	mode_cmd.pixel_format = fb->pixel_format;
2473 	mode_cmd.width = fb->width;
2474 	mode_cmd.height = fb->height;
2475 	mode_cmd.pitches[0] = fb->pitches[0];
2476 	mode_cmd.modifier[0] = fb->modifier[0];
2477 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2478 
2479 	if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2480 				   &mode_cmd, obj)) {
2481 		DRM_DEBUG_KMS("intel fb init failed\n");
2482 		goto out_unref_obj;
2483 	}
2484 
2485 	mutex_unlock(&dev->struct_mutex);
2486 
2487 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2488 	return true;
2489 
2490 out_unref_obj:
2491 	i915_gem_object_put(obj);
2492 	mutex_unlock(&dev->struct_mutex);
2493 	return false;
2494 }
2495 
2496 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2497 static void
2498 update_state_fb(struct drm_plane *plane)
2499 {
2500 	if (plane->fb == plane->state->fb)
2501 		return;
2502 
2503 	if (plane->state->fb)
2504 		drm_framebuffer_unreference(plane->state->fb);
2505 	plane->state->fb = plane->fb;
2506 	if (plane->state->fb)
2507 		drm_framebuffer_reference(plane->state->fb);
2508 }
2509 
2510 static void
2511 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2512 			     struct intel_initial_plane_config *plane_config)
2513 {
2514 	struct drm_device *dev = intel_crtc->base.dev;
2515 	struct drm_i915_private *dev_priv = to_i915(dev);
2516 	struct drm_crtc *c;
2517 	struct intel_crtc *i;
2518 	struct drm_i915_gem_object *obj;
2519 	struct drm_plane *primary = intel_crtc->base.primary;
2520 	struct drm_plane_state *plane_state = primary->state;
2521 	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2522 	struct intel_plane *intel_plane = to_intel_plane(primary);
2523 	struct intel_plane_state *intel_state =
2524 		to_intel_plane_state(plane_state);
2525 	struct drm_framebuffer *fb;
2526 
2527 	if (!plane_config->fb)
2528 		return;
2529 
2530 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2531 		fb = &plane_config->fb->base;
2532 		goto valid_fb;
2533 	}
2534 
2535 	kfree(plane_config->fb);
2536 
2537 	/*
2538 	 * Failed to alloc the obj, check to see if we should share
2539 	 * an fb with another CRTC instead
2540 	 */
2541 	for_each_crtc(dev, c) {
2542 		i = to_intel_crtc(c);
2543 
2544 		if (c == &intel_crtc->base)
2545 			continue;
2546 
2547 		if (!i->active)
2548 			continue;
2549 
2550 		fb = c->primary->fb;
2551 		if (!fb)
2552 			continue;
2553 
2554 		obj = intel_fb_obj(fb);
2555 		if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2556 			drm_framebuffer_reference(fb);
2557 			goto valid_fb;
2558 		}
2559 	}
2560 
2561 	/*
2562 	 * We've failed to reconstruct the BIOS FB.  Current display state
2563 	 * indicates that the primary plane is visible, but has a NULL FB,
2564 	 * which will lead to problems later if we don't fix it up.  The
2565 	 * simplest solution is to just disable the primary plane now and
2566 	 * pretend the BIOS never had it enabled.
2567 	 */
2568 	to_intel_plane_state(plane_state)->visible = false;
2569 	crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2570 	intel_pre_disable_primary_noatomic(&intel_crtc->base);
2571 	intel_plane->disable_plane(primary, &intel_crtc->base);
2572 
2573 	return;
2574 
2575 valid_fb:
2576 	plane_state->src_x = 0;
2577 	plane_state->src_y = 0;
2578 	plane_state->src_w = fb->width << 16;
2579 	plane_state->src_h = fb->height << 16;
2580 
2581 	plane_state->crtc_x = 0;
2582 	plane_state->crtc_y = 0;
2583 	plane_state->crtc_w = fb->width;
2584 	plane_state->crtc_h = fb->height;
2585 
2586 	intel_state->src.x1 = plane_state->src_x;
2587 	intel_state->src.y1 = plane_state->src_y;
2588 	intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2589 	intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2590 	intel_state->dst.x1 = plane_state->crtc_x;
2591 	intel_state->dst.y1 = plane_state->crtc_y;
2592 	intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2593 	intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2594 
2595 	obj = intel_fb_obj(fb);
2596 	if (obj->tiling_mode != I915_TILING_NONE)
2597 		dev_priv->preserve_bios_swizzle = true;
2598 
2599 	drm_framebuffer_reference(fb);
2600 	primary->fb = primary->state->fb = fb;
2601 	primary->crtc = primary->state->crtc = &intel_crtc->base;
2602 	intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2603 	obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2604 }
2605 
2606 static void i9xx_update_primary_plane(struct drm_plane *primary,
2607 				      const struct intel_crtc_state *crtc_state,
2608 				      const struct intel_plane_state *plane_state)
2609 {
2610 	struct drm_device *dev = primary->dev;
2611 	struct drm_i915_private *dev_priv = to_i915(dev);
2612 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2613 	struct drm_framebuffer *fb = plane_state->base.fb;
2614 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2615 	int plane = intel_crtc->plane;
2616 	u32 linear_offset;
2617 	u32 dspcntr;
2618 	i915_reg_t reg = DSPCNTR(plane);
2619 	unsigned int rotation = plane_state->base.rotation;
2620 	int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2621 	int x = plane_state->src.x1 >> 16;
2622 	int y = plane_state->src.y1 >> 16;
2623 
2624 	dspcntr = DISPPLANE_GAMMA_ENABLE;
2625 
2626 	dspcntr |= DISPLAY_PLANE_ENABLE;
2627 
2628 	if (INTEL_INFO(dev)->gen < 4) {
2629 		if (intel_crtc->pipe == PIPE_B)
2630 			dspcntr |= DISPPLANE_SEL_PIPE_B;
2631 
2632 		/* pipesrc and dspsize control the size that is scaled from,
2633 		 * which should always be the user's requested size.
2634 		 */
2635 		I915_WRITE(DSPSIZE(plane),
2636 			   ((crtc_state->pipe_src_h - 1) << 16) |
2637 			   (crtc_state->pipe_src_w - 1));
2638 		I915_WRITE(DSPPOS(plane), 0);
2639 	} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2640 		I915_WRITE(PRIMSIZE(plane),
2641 			   ((crtc_state->pipe_src_h - 1) << 16) |
2642 			   (crtc_state->pipe_src_w - 1));
2643 		I915_WRITE(PRIMPOS(plane), 0);
2644 		I915_WRITE(PRIMCNSTALPHA(plane), 0);
2645 	}
2646 
2647 	switch (fb->pixel_format) {
2648 	case DRM_FORMAT_C8:
2649 		dspcntr |= DISPPLANE_8BPP;
2650 		break;
2651 	case DRM_FORMAT_XRGB1555:
2652 		dspcntr |= DISPPLANE_BGRX555;
2653 		break;
2654 	case DRM_FORMAT_RGB565:
2655 		dspcntr |= DISPPLANE_BGRX565;
2656 		break;
2657 	case DRM_FORMAT_XRGB8888:
2658 		dspcntr |= DISPPLANE_BGRX888;
2659 		break;
2660 	case DRM_FORMAT_XBGR8888:
2661 		dspcntr |= DISPPLANE_RGBX888;
2662 		break;
2663 	case DRM_FORMAT_XRGB2101010:
2664 		dspcntr |= DISPPLANE_BGRX101010;
2665 		break;
2666 	case DRM_FORMAT_XBGR2101010:
2667 		dspcntr |= DISPPLANE_RGBX101010;
2668 		break;
2669 	default:
2670 		BUG();
2671 	}
2672 
2673 	if (INTEL_INFO(dev)->gen >= 4 &&
2674 	    obj->tiling_mode != I915_TILING_NONE)
2675 		dspcntr |= DISPPLANE_TILED;
2676 
2677 	if (IS_G4X(dev))
2678 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2679 
2680 	linear_offset = y * fb->pitches[0] + x * cpp;
2681 
2682 	if (INTEL_INFO(dev)->gen >= 4) {
2683 		intel_crtc->dspaddr_offset =
2684 			intel_compute_tile_offset(&x, &y, fb, 0,
2685 						  fb->pitches[0], rotation);
2686 		linear_offset -= intel_crtc->dspaddr_offset;
2687 	} else {
2688 		intel_crtc->dspaddr_offset = linear_offset;
2689 	}
2690 
2691 	if (rotation == DRM_ROTATE_180) {
2692 		dspcntr |= DISPPLANE_ROTATE_180;
2693 
2694 		x += (crtc_state->pipe_src_w - 1);
2695 		y += (crtc_state->pipe_src_h - 1);
2696 
2697 		/* Finding the last pixel of the last line of the display
2698 		data and adding to linear_offset*/
2699 		linear_offset +=
2700 			(crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2701 			(crtc_state->pipe_src_w - 1) * cpp;
2702 	}
2703 
2704 	intel_crtc->adjusted_x = x;
2705 	intel_crtc->adjusted_y = y;
2706 
2707 	I915_WRITE(reg, dspcntr);
2708 
2709 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2710 	if (INTEL_INFO(dev)->gen >= 4) {
2711 		I915_WRITE(DSPSURF(plane),
2712 			   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2713 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2714 		I915_WRITE(DSPLINOFF(plane), linear_offset);
2715 	} else
2716 		I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2717 	POSTING_READ(reg);
2718 }
2719 
2720 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2721 				       struct drm_crtc *crtc)
2722 {
2723 	struct drm_device *dev = crtc->dev;
2724 	struct drm_i915_private *dev_priv = to_i915(dev);
2725 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2726 	int plane = intel_crtc->plane;
2727 
2728 	I915_WRITE(DSPCNTR(plane), 0);
2729 	if (INTEL_INFO(dev_priv)->gen >= 4)
2730 		I915_WRITE(DSPSURF(plane), 0);
2731 	else
2732 		I915_WRITE(DSPADDR(plane), 0);
2733 	POSTING_READ(DSPCNTR(plane));
2734 }
2735 
2736 static void ironlake_update_primary_plane(struct drm_plane *primary,
2737 					  const struct intel_crtc_state *crtc_state,
2738 					  const struct intel_plane_state *plane_state)
2739 {
2740 	struct drm_device *dev = primary->dev;
2741 	struct drm_i915_private *dev_priv = to_i915(dev);
2742 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2743 	struct drm_framebuffer *fb = plane_state->base.fb;
2744 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2745 	int plane = intel_crtc->plane;
2746 	u32 linear_offset;
2747 	u32 dspcntr;
2748 	i915_reg_t reg = DSPCNTR(plane);
2749 	unsigned int rotation = plane_state->base.rotation;
2750 	int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2751 	int x = plane_state->src.x1 >> 16;
2752 	int y = plane_state->src.y1 >> 16;
2753 
2754 	dspcntr = DISPPLANE_GAMMA_ENABLE;
2755 	dspcntr |= DISPLAY_PLANE_ENABLE;
2756 
2757 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2758 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2759 
2760 	switch (fb->pixel_format) {
2761 	case DRM_FORMAT_C8:
2762 		dspcntr |= DISPPLANE_8BPP;
2763 		break;
2764 	case DRM_FORMAT_RGB565:
2765 		dspcntr |= DISPPLANE_BGRX565;
2766 		break;
2767 	case DRM_FORMAT_XRGB8888:
2768 		dspcntr |= DISPPLANE_BGRX888;
2769 		break;
2770 	case DRM_FORMAT_XBGR8888:
2771 		dspcntr |= DISPPLANE_RGBX888;
2772 		break;
2773 	case DRM_FORMAT_XRGB2101010:
2774 		dspcntr |= DISPPLANE_BGRX101010;
2775 		break;
2776 	case DRM_FORMAT_XBGR2101010:
2777 		dspcntr |= DISPPLANE_RGBX101010;
2778 		break;
2779 	default:
2780 		BUG();
2781 	}
2782 
2783 	if (obj->tiling_mode != I915_TILING_NONE)
2784 		dspcntr |= DISPPLANE_TILED;
2785 
2786 	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2787 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2788 
2789 	linear_offset = y * fb->pitches[0] + x * cpp;
2790 	intel_crtc->dspaddr_offset =
2791 		intel_compute_tile_offset(&x, &y, fb, 0,
2792 					  fb->pitches[0], rotation);
2793 	linear_offset -= intel_crtc->dspaddr_offset;
2794 	if (rotation == DRM_ROTATE_180) {
2795 		dspcntr |= DISPPLANE_ROTATE_180;
2796 
2797 		if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2798 			x += (crtc_state->pipe_src_w - 1);
2799 			y += (crtc_state->pipe_src_h - 1);
2800 
2801 			/* Finding the last pixel of the last line of the display
2802 			data and adding to linear_offset*/
2803 			linear_offset +=
2804 				(crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2805 				(crtc_state->pipe_src_w - 1) * cpp;
2806 		}
2807 	}
2808 
2809 	intel_crtc->adjusted_x = x;
2810 	intel_crtc->adjusted_y = y;
2811 
2812 	I915_WRITE(reg, dspcntr);
2813 
2814 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2815 	I915_WRITE(DSPSURF(plane),
2816 		   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2817 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2818 		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2819 	} else {
2820 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2821 		I915_WRITE(DSPLINOFF(plane), linear_offset);
2822 	}
2823 	POSTING_READ(reg);
2824 }
2825 
2826 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2827 			      uint64_t fb_modifier, uint32_t pixel_format)
2828 {
2829 	if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2830 		return 64;
2831 	} else {
2832 		int cpp = drm_format_plane_cpp(pixel_format, 0);
2833 
2834 		return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2835 	}
2836 }
2837 
2838 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2839 			   struct drm_i915_gem_object *obj,
2840 			   unsigned int plane)
2841 {
2842 	struct i915_ggtt_view view;
2843 	struct i915_vma *vma;
2844 	u64 offset;
2845 
2846 	intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2847 				intel_plane->base.state->rotation);
2848 
2849 	vma = i915_gem_obj_to_ggtt_view(obj, &view);
2850 	if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2851 		view.type))
2852 		return -1;
2853 
2854 	offset = vma->node.start;
2855 
2856 	if (plane == 1) {
2857 		offset += vma->ggtt_view.params.rotated.uv_start_page *
2858 			  PAGE_SIZE;
2859 	}
2860 
2861 	WARN_ON(upper_32_bits(offset));
2862 
2863 	return lower_32_bits(offset);
2864 }
2865 
2866 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2867 {
2868 	struct drm_device *dev = intel_crtc->base.dev;
2869 	struct drm_i915_private *dev_priv = to_i915(dev);
2870 
2871 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2872 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2873 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2874 }
2875 
2876 /*
2877  * This function detaches (aka. unbinds) unused scalers in hardware
2878  */
2879 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2880 {
2881 	struct intel_crtc_scaler_state *scaler_state;
2882 	int i;
2883 
2884 	scaler_state = &intel_crtc->config->scaler_state;
2885 
2886 	/* loop through and disable scalers that aren't in use */
2887 	for (i = 0; i < intel_crtc->num_scalers; i++) {
2888 		if (!scaler_state->scalers[i].in_use)
2889 			skl_detach_scaler(intel_crtc, i);
2890 	}
2891 }
2892 
2893 u32 skl_plane_ctl_format(uint32_t pixel_format)
2894 {
2895 	switch (pixel_format) {
2896 	case DRM_FORMAT_C8:
2897 		return PLANE_CTL_FORMAT_INDEXED;
2898 	case DRM_FORMAT_RGB565:
2899 		return PLANE_CTL_FORMAT_RGB_565;
2900 	case DRM_FORMAT_XBGR8888:
2901 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2902 	case DRM_FORMAT_XRGB8888:
2903 		return PLANE_CTL_FORMAT_XRGB_8888;
2904 	/*
2905 	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2906 	 * to be already pre-multiplied. We need to add a knob (or a different
2907 	 * DRM_FORMAT) for user-space to configure that.
2908 	 */
2909 	case DRM_FORMAT_ABGR8888:
2910 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2911 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2912 	case DRM_FORMAT_ARGB8888:
2913 		return PLANE_CTL_FORMAT_XRGB_8888 |
2914 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2915 	case DRM_FORMAT_XRGB2101010:
2916 		return PLANE_CTL_FORMAT_XRGB_2101010;
2917 	case DRM_FORMAT_XBGR2101010:
2918 		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2919 	case DRM_FORMAT_YUYV:
2920 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2921 	case DRM_FORMAT_YVYU:
2922 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2923 	case DRM_FORMAT_UYVY:
2924 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2925 	case DRM_FORMAT_VYUY:
2926 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2927 	default:
2928 		MISSING_CASE(pixel_format);
2929 	}
2930 
2931 	return 0;
2932 }
2933 
2934 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2935 {
2936 	switch (fb_modifier) {
2937 	case DRM_FORMAT_MOD_NONE:
2938 		break;
2939 	case I915_FORMAT_MOD_X_TILED:
2940 		return PLANE_CTL_TILED_X;
2941 	case I915_FORMAT_MOD_Y_TILED:
2942 		return PLANE_CTL_TILED_Y;
2943 	case I915_FORMAT_MOD_Yf_TILED:
2944 		return PLANE_CTL_TILED_YF;
2945 	default:
2946 		MISSING_CASE(fb_modifier);
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 u32 skl_plane_ctl_rotation(unsigned int rotation)
2953 {
2954 	switch (rotation) {
2955 	case DRM_ROTATE_0:
2956 		break;
2957 	/*
2958 	 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2959 	 * while i915 HW rotation is clockwise, thats why this swapping.
2960 	 */
2961 	case DRM_ROTATE_90:
2962 		return PLANE_CTL_ROTATE_270;
2963 	case DRM_ROTATE_180:
2964 		return PLANE_CTL_ROTATE_180;
2965 	case DRM_ROTATE_270:
2966 		return PLANE_CTL_ROTATE_90;
2967 	default:
2968 		MISSING_CASE(rotation);
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 static void skylake_update_primary_plane(struct drm_plane *plane,
2975 					 const struct intel_crtc_state *crtc_state,
2976 					 const struct intel_plane_state *plane_state)
2977 {
2978 	struct drm_device *dev = plane->dev;
2979 	struct drm_i915_private *dev_priv = to_i915(dev);
2980 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2981 	struct drm_framebuffer *fb = plane_state->base.fb;
2982 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2983 	int pipe = intel_crtc->pipe;
2984 	u32 plane_ctl, stride_div, stride;
2985 	u32 tile_height, plane_offset, plane_size;
2986 	unsigned int rotation = plane_state->base.rotation;
2987 	int x_offset, y_offset;
2988 	u32 surf_addr;
2989 	int scaler_id = plane_state->scaler_id;
2990 	int src_x = plane_state->src.x1 >> 16;
2991 	int src_y = plane_state->src.y1 >> 16;
2992 	int src_w = drm_rect_width(&plane_state->src) >> 16;
2993 	int src_h = drm_rect_height(&plane_state->src) >> 16;
2994 	int dst_x = plane_state->dst.x1;
2995 	int dst_y = plane_state->dst.y1;
2996 	int dst_w = drm_rect_width(&plane_state->dst);
2997 	int dst_h = drm_rect_height(&plane_state->dst);
2998 
2999 	plane_ctl = PLANE_CTL_ENABLE |
3000 		    PLANE_CTL_PIPE_GAMMA_ENABLE |
3001 		    PLANE_CTL_PIPE_CSC_ENABLE;
3002 
3003 	plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3004 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3005 	plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3006 	plane_ctl |= skl_plane_ctl_rotation(rotation);
3007 
3008 	stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3009 					       fb->pixel_format);
3010 	surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3011 
3012 	WARN_ON(drm_rect_width(&plane_state->src) == 0);
3013 
3014 	if (intel_rotation_90_or_270(rotation)) {
3015 		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3016 
3017 		/* stride = Surface height in tiles */
3018 		tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3019 		stride = DIV_ROUND_UP(fb->height, tile_height);
3020 		x_offset = stride * tile_height - src_y - src_h;
3021 		y_offset = src_x;
3022 		plane_size = (src_w - 1) << 16 | (src_h - 1);
3023 	} else {
3024 		stride = fb->pitches[0] / stride_div;
3025 		x_offset = src_x;
3026 		y_offset = src_y;
3027 		plane_size = (src_h - 1) << 16 | (src_w - 1);
3028 	}
3029 	plane_offset = y_offset << 16 | x_offset;
3030 
3031 	intel_crtc->adjusted_x = x_offset;
3032 	intel_crtc->adjusted_y = y_offset;
3033 
3034 	I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3035 	I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3036 	I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3037 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3038 
3039 	if (scaler_id >= 0) {
3040 		uint32_t ps_ctrl = 0;
3041 
3042 		WARN_ON(!dst_w || !dst_h);
3043 		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3044 			crtc_state->scaler_state.scalers[scaler_id].mode;
3045 		I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3046 		I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3047 		I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3048 		I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3049 		I915_WRITE(PLANE_POS(pipe, 0), 0);
3050 	} else {
3051 		I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3052 	}
3053 
3054 	I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3055 
3056 	POSTING_READ(PLANE_SURF(pipe, 0));
3057 }
3058 
3059 static void skylake_disable_primary_plane(struct drm_plane *primary,
3060 					  struct drm_crtc *crtc)
3061 {
3062 	struct drm_device *dev = crtc->dev;
3063 	struct drm_i915_private *dev_priv = to_i915(dev);
3064 	int pipe = to_intel_crtc(crtc)->pipe;
3065 
3066 	I915_WRITE(PLANE_CTL(pipe, 0), 0);
3067 	I915_WRITE(PLANE_SURF(pipe, 0), 0);
3068 	POSTING_READ(PLANE_SURF(pipe, 0));
3069 }
3070 
3071 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3072 static int
3073 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3074 			   int x, int y, enum mode_set_atomic state)
3075 {
3076 	/* Support for kgdboc is disabled, this needs a major rework. */
3077 	DRM_ERROR("legacy panic handler not supported any more.\n");
3078 
3079 	return -ENODEV;
3080 }
3081 
3082 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3083 {
3084 	struct intel_crtc *crtc;
3085 
3086 	for_each_intel_crtc(&dev_priv->drm, crtc)
3087 		intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3088 }
3089 
3090 static void intel_update_primary_planes(struct drm_device *dev)
3091 {
3092 	struct drm_crtc *crtc;
3093 
3094 	for_each_crtc(dev, crtc) {
3095 		struct intel_plane *plane = to_intel_plane(crtc->primary);
3096 		struct intel_plane_state *plane_state;
3097 
3098 		drm_modeset_lock_crtc(crtc, &plane->base);
3099 		plane_state = to_intel_plane_state(plane->base.state);
3100 
3101 		if (plane_state->visible)
3102 			plane->update_plane(&plane->base,
3103 					    to_intel_crtc_state(crtc->state),
3104 					    plane_state);
3105 
3106 		drm_modeset_unlock_crtc(crtc);
3107 	}
3108 }
3109 
3110 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3111 {
3112 	/* no reset support for gen2 */
3113 	if (IS_GEN2(dev_priv))
3114 		return;
3115 
3116 	/* reset doesn't touch the display */
3117 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3118 		return;
3119 
3120 	drm_modeset_lock_all(&dev_priv->drm);
3121 	/*
3122 	 * Disabling the crtcs gracefully seems nicer. Also the
3123 	 * g33 docs say we should at least disable all the planes.
3124 	 */
3125 	intel_display_suspend(&dev_priv->drm);
3126 }
3127 
3128 void intel_finish_reset(struct drm_i915_private *dev_priv)
3129 {
3130 	/*
3131 	 * Flips in the rings will be nuked by the reset,
3132 	 * so complete all pending flips so that user space
3133 	 * will get its events and not get stuck.
3134 	 */
3135 	intel_complete_page_flips(dev_priv);
3136 
3137 	/* no reset support for gen2 */
3138 	if (IS_GEN2(dev_priv))
3139 		return;
3140 
3141 	/* reset doesn't touch the display */
3142 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3143 		/*
3144 		 * Flips in the rings have been nuked by the reset,
3145 		 * so update the base address of all primary
3146 		 * planes to the the last fb to make sure we're
3147 		 * showing the correct fb after a reset.
3148 		 *
3149 		 * FIXME: Atomic will make this obsolete since we won't schedule
3150 		 * CS-based flips (which might get lost in gpu resets) any more.
3151 		 */
3152 		intel_update_primary_planes(&dev_priv->drm);
3153 		return;
3154 	}
3155 
3156 	/*
3157 	 * The display has been reset as well,
3158 	 * so need a full re-initialization.
3159 	 */
3160 	intel_runtime_pm_disable_interrupts(dev_priv);
3161 	intel_runtime_pm_enable_interrupts(dev_priv);
3162 
3163 	intel_modeset_init_hw(&dev_priv->drm);
3164 
3165 	spin_lock_irq(&dev_priv->irq_lock);
3166 	if (dev_priv->display.hpd_irq_setup)
3167 		dev_priv->display.hpd_irq_setup(dev_priv);
3168 	spin_unlock_irq(&dev_priv->irq_lock);
3169 
3170 	intel_display_resume(&dev_priv->drm);
3171 
3172 	intel_hpd_init(dev_priv);
3173 
3174 	drm_modeset_unlock_all(&dev_priv->drm);
3175 }
3176 
3177 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3178 {
3179 	struct drm_device *dev = crtc->dev;
3180 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181 	unsigned reset_counter;
3182 	bool pending;
3183 
3184 	reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3185 	if (intel_crtc->reset_counter != reset_counter)
3186 		return false;
3187 
3188 	spin_lock_irq(&dev->event_lock);
3189 	pending = to_intel_crtc(crtc)->flip_work != NULL;
3190 	spin_unlock_irq(&dev->event_lock);
3191 
3192 	return pending;
3193 }
3194 
3195 static void intel_update_pipe_config(struct intel_crtc *crtc,
3196 				     struct intel_crtc_state *old_crtc_state)
3197 {
3198 	struct drm_device *dev = crtc->base.dev;
3199 	struct drm_i915_private *dev_priv = to_i915(dev);
3200 	struct intel_crtc_state *pipe_config =
3201 		to_intel_crtc_state(crtc->base.state);
3202 
3203 	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3204 	crtc->base.mode = crtc->base.state->mode;
3205 
3206 	DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3207 		      old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3208 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3209 
3210 	/*
3211 	 * Update pipe size and adjust fitter if needed: the reason for this is
3212 	 * that in compute_mode_changes we check the native mode (not the pfit
3213 	 * mode) to see if we can flip rather than do a full mode set. In the
3214 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3215 	 * pfit state, we'll end up with a big fb scanned out into the wrong
3216 	 * sized surface.
3217 	 */
3218 
3219 	I915_WRITE(PIPESRC(crtc->pipe),
3220 		   ((pipe_config->pipe_src_w - 1) << 16) |
3221 		   (pipe_config->pipe_src_h - 1));
3222 
3223 	/* on skylake this is done by detaching scalers */
3224 	if (INTEL_INFO(dev)->gen >= 9) {
3225 		skl_detach_scalers(crtc);
3226 
3227 		if (pipe_config->pch_pfit.enabled)
3228 			skylake_pfit_enable(crtc);
3229 	} else if (HAS_PCH_SPLIT(dev)) {
3230 		if (pipe_config->pch_pfit.enabled)
3231 			ironlake_pfit_enable(crtc);
3232 		else if (old_crtc_state->pch_pfit.enabled)
3233 			ironlake_pfit_disable(crtc, true);
3234 	}
3235 }
3236 
3237 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3238 {
3239 	struct drm_device *dev = crtc->dev;
3240 	struct drm_i915_private *dev_priv = to_i915(dev);
3241 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242 	int pipe = intel_crtc->pipe;
3243 	i915_reg_t reg;
3244 	u32 temp;
3245 
3246 	/* enable normal train */
3247 	reg = FDI_TX_CTL(pipe);
3248 	temp = I915_READ(reg);
3249 	if (IS_IVYBRIDGE(dev)) {
3250 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3251 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3252 	} else {
3253 		temp &= ~FDI_LINK_TRAIN_NONE;
3254 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3255 	}
3256 	I915_WRITE(reg, temp);
3257 
3258 	reg = FDI_RX_CTL(pipe);
3259 	temp = I915_READ(reg);
3260 	if (HAS_PCH_CPT(dev)) {
3261 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3262 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3263 	} else {
3264 		temp &= ~FDI_LINK_TRAIN_NONE;
3265 		temp |= FDI_LINK_TRAIN_NONE;
3266 	}
3267 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3268 
3269 	/* wait one idle pattern time */
3270 	POSTING_READ(reg);
3271 	udelay(1000);
3272 
3273 	/* IVB wants error correction enabled */
3274 	if (IS_IVYBRIDGE(dev))
3275 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3276 			   FDI_FE_ERRC_ENABLE);
3277 }
3278 
3279 /* The FDI link training functions for ILK/Ibexpeak. */
3280 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3281 {
3282 	struct drm_device *dev = crtc->dev;
3283 	struct drm_i915_private *dev_priv = to_i915(dev);
3284 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3285 	int pipe = intel_crtc->pipe;
3286 	i915_reg_t reg;
3287 	u32 temp, tries;
3288 
3289 	/* FDI needs bits from pipe first */
3290 	assert_pipe_enabled(dev_priv, pipe);
3291 
3292 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3293 	   for train result */
3294 	reg = FDI_RX_IMR(pipe);
3295 	temp = I915_READ(reg);
3296 	temp &= ~FDI_RX_SYMBOL_LOCK;
3297 	temp &= ~FDI_RX_BIT_LOCK;
3298 	I915_WRITE(reg, temp);
3299 	I915_READ(reg);
3300 	udelay(150);
3301 
3302 	/* enable CPU FDI TX and PCH FDI RX */
3303 	reg = FDI_TX_CTL(pipe);
3304 	temp = I915_READ(reg);
3305 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3306 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3307 	temp &= ~FDI_LINK_TRAIN_NONE;
3308 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3309 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3310 
3311 	reg = FDI_RX_CTL(pipe);
3312 	temp = I915_READ(reg);
3313 	temp &= ~FDI_LINK_TRAIN_NONE;
3314 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3315 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3316 
3317 	POSTING_READ(reg);
3318 	udelay(150);
3319 
3320 	/* Ironlake workaround, enable clock pointer after FDI enable*/
3321 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3322 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3323 		   FDI_RX_PHASE_SYNC_POINTER_EN);
3324 
3325 	reg = FDI_RX_IIR(pipe);
3326 	for (tries = 0; tries < 5; tries++) {
3327 		temp = I915_READ(reg);
3328 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329 
3330 		if ((temp & FDI_RX_BIT_LOCK)) {
3331 			DRM_DEBUG_KMS("FDI train 1 done.\n");
3332 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3333 			break;
3334 		}
3335 	}
3336 	if (tries == 5)
3337 		DRM_ERROR("FDI train 1 fail!\n");
3338 
3339 	/* Train 2 */
3340 	reg = FDI_TX_CTL(pipe);
3341 	temp = I915_READ(reg);
3342 	temp &= ~FDI_LINK_TRAIN_NONE;
3343 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3344 	I915_WRITE(reg, temp);
3345 
3346 	reg = FDI_RX_CTL(pipe);
3347 	temp = I915_READ(reg);
3348 	temp &= ~FDI_LINK_TRAIN_NONE;
3349 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3350 	I915_WRITE(reg, temp);
3351 
3352 	POSTING_READ(reg);
3353 	udelay(150);
3354 
3355 	reg = FDI_RX_IIR(pipe);
3356 	for (tries = 0; tries < 5; tries++) {
3357 		temp = I915_READ(reg);
3358 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3359 
3360 		if (temp & FDI_RX_SYMBOL_LOCK) {
3361 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3362 			DRM_DEBUG_KMS("FDI train 2 done.\n");
3363 			break;
3364 		}
3365 	}
3366 	if (tries == 5)
3367 		DRM_ERROR("FDI train 2 fail!\n");
3368 
3369 	DRM_DEBUG_KMS("FDI train done\n");
3370 
3371 }
3372 
3373 static const int snb_b_fdi_train_param[] = {
3374 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3375 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3376 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3377 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3378 };
3379 
3380 /* The FDI link training functions for SNB/Cougarpoint. */
3381 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3382 {
3383 	struct drm_device *dev = crtc->dev;
3384 	struct drm_i915_private *dev_priv = to_i915(dev);
3385 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386 	int pipe = intel_crtc->pipe;
3387 	i915_reg_t reg;
3388 	u32 temp, i, retry;
3389 
3390 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3391 	   for train result */
3392 	reg = FDI_RX_IMR(pipe);
3393 	temp = I915_READ(reg);
3394 	temp &= ~FDI_RX_SYMBOL_LOCK;
3395 	temp &= ~FDI_RX_BIT_LOCK;
3396 	I915_WRITE(reg, temp);
3397 
3398 	POSTING_READ(reg);
3399 	udelay(150);
3400 
3401 	/* enable CPU FDI TX and PCH FDI RX */
3402 	reg = FDI_TX_CTL(pipe);
3403 	temp = I915_READ(reg);
3404 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3405 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3406 	temp &= ~FDI_LINK_TRAIN_NONE;
3407 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3408 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3409 	/* SNB-B */
3410 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3411 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3412 
3413 	I915_WRITE(FDI_RX_MISC(pipe),
3414 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3415 
3416 	reg = FDI_RX_CTL(pipe);
3417 	temp = I915_READ(reg);
3418 	if (HAS_PCH_CPT(dev)) {
3419 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3420 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3421 	} else {
3422 		temp &= ~FDI_LINK_TRAIN_NONE;
3423 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3424 	}
3425 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3426 
3427 	POSTING_READ(reg);
3428 	udelay(150);
3429 
3430 	for (i = 0; i < 4; i++) {
3431 		reg = FDI_TX_CTL(pipe);
3432 		temp = I915_READ(reg);
3433 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3434 		temp |= snb_b_fdi_train_param[i];
3435 		I915_WRITE(reg, temp);
3436 
3437 		POSTING_READ(reg);
3438 		udelay(500);
3439 
3440 		for (retry = 0; retry < 5; retry++) {
3441 			reg = FDI_RX_IIR(pipe);
3442 			temp = I915_READ(reg);
3443 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3444 			if (temp & FDI_RX_BIT_LOCK) {
3445 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3446 				DRM_DEBUG_KMS("FDI train 1 done.\n");
3447 				break;
3448 			}
3449 			udelay(50);
3450 		}
3451 		if (retry < 5)
3452 			break;
3453 	}
3454 	if (i == 4)
3455 		DRM_ERROR("FDI train 1 fail!\n");
3456 
3457 	/* Train 2 */
3458 	reg = FDI_TX_CTL(pipe);
3459 	temp = I915_READ(reg);
3460 	temp &= ~FDI_LINK_TRAIN_NONE;
3461 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3462 	if (IS_GEN6(dev)) {
3463 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3464 		/* SNB-B */
3465 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3466 	}
3467 	I915_WRITE(reg, temp);
3468 
3469 	reg = FDI_RX_CTL(pipe);
3470 	temp = I915_READ(reg);
3471 	if (HAS_PCH_CPT(dev)) {
3472 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3473 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3474 	} else {
3475 		temp &= ~FDI_LINK_TRAIN_NONE;
3476 		temp |= FDI_LINK_TRAIN_PATTERN_2;
3477 	}
3478 	I915_WRITE(reg, temp);
3479 
3480 	POSTING_READ(reg);
3481 	udelay(150);
3482 
3483 	for (i = 0; i < 4; i++) {
3484 		reg = FDI_TX_CTL(pipe);
3485 		temp = I915_READ(reg);
3486 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3487 		temp |= snb_b_fdi_train_param[i];
3488 		I915_WRITE(reg, temp);
3489 
3490 		POSTING_READ(reg);
3491 		udelay(500);
3492 
3493 		for (retry = 0; retry < 5; retry++) {
3494 			reg = FDI_RX_IIR(pipe);
3495 			temp = I915_READ(reg);
3496 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3497 			if (temp & FDI_RX_SYMBOL_LOCK) {
3498 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3499 				DRM_DEBUG_KMS("FDI train 2 done.\n");
3500 				break;
3501 			}
3502 			udelay(50);
3503 		}
3504 		if (retry < 5)
3505 			break;
3506 	}
3507 	if (i == 4)
3508 		DRM_ERROR("FDI train 2 fail!\n");
3509 
3510 	DRM_DEBUG_KMS("FDI train done.\n");
3511 }
3512 
3513 /* Manual link training for Ivy Bridge A0 parts */
3514 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3515 {
3516 	struct drm_device *dev = crtc->dev;
3517 	struct drm_i915_private *dev_priv = to_i915(dev);
3518 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3519 	int pipe = intel_crtc->pipe;
3520 	i915_reg_t reg;
3521 	u32 temp, i, j;
3522 
3523 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3524 	   for train result */
3525 	reg = FDI_RX_IMR(pipe);
3526 	temp = I915_READ(reg);
3527 	temp &= ~FDI_RX_SYMBOL_LOCK;
3528 	temp &= ~FDI_RX_BIT_LOCK;
3529 	I915_WRITE(reg, temp);
3530 
3531 	POSTING_READ(reg);
3532 	udelay(150);
3533 
3534 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3535 		      I915_READ(FDI_RX_IIR(pipe)));
3536 
3537 	/* Try each vswing and preemphasis setting twice before moving on */
3538 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3539 		/* disable first in case we need to retry */
3540 		reg = FDI_TX_CTL(pipe);
3541 		temp = I915_READ(reg);
3542 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3543 		temp &= ~FDI_TX_ENABLE;
3544 		I915_WRITE(reg, temp);
3545 
3546 		reg = FDI_RX_CTL(pipe);
3547 		temp = I915_READ(reg);
3548 		temp &= ~FDI_LINK_TRAIN_AUTO;
3549 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550 		temp &= ~FDI_RX_ENABLE;
3551 		I915_WRITE(reg, temp);
3552 
3553 		/* enable CPU FDI TX and PCH FDI RX */
3554 		reg = FDI_TX_CTL(pipe);
3555 		temp = I915_READ(reg);
3556 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
3557 		temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3558 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3559 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3560 		temp |= snb_b_fdi_train_param[j/2];
3561 		temp |= FDI_COMPOSITE_SYNC;
3562 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
3563 
3564 		I915_WRITE(FDI_RX_MISC(pipe),
3565 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3566 
3567 		reg = FDI_RX_CTL(pipe);
3568 		temp = I915_READ(reg);
3569 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3570 		temp |= FDI_COMPOSITE_SYNC;
3571 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
3572 
3573 		POSTING_READ(reg);
3574 		udelay(1); /* should be 0.5us */
3575 
3576 		for (i = 0; i < 4; i++) {
3577 			reg = FDI_RX_IIR(pipe);
3578 			temp = I915_READ(reg);
3579 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3580 
3581 			if (temp & FDI_RX_BIT_LOCK ||
3582 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3583 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3584 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3585 					      i);
3586 				break;
3587 			}
3588 			udelay(1); /* should be 0.5us */
3589 		}
3590 		if (i == 4) {
3591 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3592 			continue;
3593 		}
3594 
3595 		/* Train 2 */
3596 		reg = FDI_TX_CTL(pipe);
3597 		temp = I915_READ(reg);
3598 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3599 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3600 		I915_WRITE(reg, temp);
3601 
3602 		reg = FDI_RX_CTL(pipe);
3603 		temp = I915_READ(reg);
3604 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3605 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3606 		I915_WRITE(reg, temp);
3607 
3608 		POSTING_READ(reg);
3609 		udelay(2); /* should be 1.5us */
3610 
3611 		for (i = 0; i < 4; i++) {
3612 			reg = FDI_RX_IIR(pipe);
3613 			temp = I915_READ(reg);
3614 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3615 
3616 			if (temp & FDI_RX_SYMBOL_LOCK ||
3617 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3618 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3619 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3620 					      i);
3621 				goto train_done;
3622 			}
3623 			udelay(2); /* should be 1.5us */
3624 		}
3625 		if (i == 4)
3626 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3627 	}
3628 
3629 train_done:
3630 	DRM_DEBUG_KMS("FDI train done.\n");
3631 }
3632 
3633 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3634 {
3635 	struct drm_device *dev = intel_crtc->base.dev;
3636 	struct drm_i915_private *dev_priv = to_i915(dev);
3637 	int pipe = intel_crtc->pipe;
3638 	i915_reg_t reg;
3639 	u32 temp;
3640 
3641 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3642 	reg = FDI_RX_CTL(pipe);
3643 	temp = I915_READ(reg);
3644 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3645 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3646 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3647 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3648 
3649 	POSTING_READ(reg);
3650 	udelay(200);
3651 
3652 	/* Switch from Rawclk to PCDclk */
3653 	temp = I915_READ(reg);
3654 	I915_WRITE(reg, temp | FDI_PCDCLK);
3655 
3656 	POSTING_READ(reg);
3657 	udelay(200);
3658 
3659 	/* Enable CPU FDI TX PLL, always on for Ironlake */
3660 	reg = FDI_TX_CTL(pipe);
3661 	temp = I915_READ(reg);
3662 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3663 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3664 
3665 		POSTING_READ(reg);
3666 		udelay(100);
3667 	}
3668 }
3669 
3670 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3671 {
3672 	struct drm_device *dev = intel_crtc->base.dev;
3673 	struct drm_i915_private *dev_priv = to_i915(dev);
3674 	int pipe = intel_crtc->pipe;
3675 	i915_reg_t reg;
3676 	u32 temp;
3677 
3678 	/* Switch from PCDclk to Rawclk */
3679 	reg = FDI_RX_CTL(pipe);
3680 	temp = I915_READ(reg);
3681 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
3682 
3683 	/* Disable CPU FDI TX PLL */
3684 	reg = FDI_TX_CTL(pipe);
3685 	temp = I915_READ(reg);
3686 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3687 
3688 	POSTING_READ(reg);
3689 	udelay(100);
3690 
3691 	reg = FDI_RX_CTL(pipe);
3692 	temp = I915_READ(reg);
3693 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3694 
3695 	/* Wait for the clocks to turn off. */
3696 	POSTING_READ(reg);
3697 	udelay(100);
3698 }
3699 
3700 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3701 {
3702 	struct drm_device *dev = crtc->dev;
3703 	struct drm_i915_private *dev_priv = to_i915(dev);
3704 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3705 	int pipe = intel_crtc->pipe;
3706 	i915_reg_t reg;
3707 	u32 temp;
3708 
3709 	/* disable CPU FDI tx and PCH FDI rx */
3710 	reg = FDI_TX_CTL(pipe);
3711 	temp = I915_READ(reg);
3712 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3713 	POSTING_READ(reg);
3714 
3715 	reg = FDI_RX_CTL(pipe);
3716 	temp = I915_READ(reg);
3717 	temp &= ~(0x7 << 16);
3718 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3719 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3720 
3721 	POSTING_READ(reg);
3722 	udelay(100);
3723 
3724 	/* Ironlake workaround, disable clock pointer after downing FDI */
3725 	if (HAS_PCH_IBX(dev))
3726 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3727 
3728 	/* still set train pattern 1 */
3729 	reg = FDI_TX_CTL(pipe);
3730 	temp = I915_READ(reg);
3731 	temp &= ~FDI_LINK_TRAIN_NONE;
3732 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3733 	I915_WRITE(reg, temp);
3734 
3735 	reg = FDI_RX_CTL(pipe);
3736 	temp = I915_READ(reg);
3737 	if (HAS_PCH_CPT(dev)) {
3738 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3739 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3740 	} else {
3741 		temp &= ~FDI_LINK_TRAIN_NONE;
3742 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3743 	}
3744 	/* BPC in FDI rx is consistent with that in PIPECONF */
3745 	temp &= ~(0x07 << 16);
3746 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3747 	I915_WRITE(reg, temp);
3748 
3749 	POSTING_READ(reg);
3750 	udelay(100);
3751 }
3752 
3753 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3754 {
3755 	struct intel_crtc *crtc;
3756 
3757 	/* Note that we don't need to be called with mode_config.lock here
3758 	 * as our list of CRTC objects is static for the lifetime of the
3759 	 * device and so cannot disappear as we iterate. Similarly, we can
3760 	 * happily treat the predicates as racy, atomic checks as userspace
3761 	 * cannot claim and pin a new fb without at least acquring the
3762 	 * struct_mutex and so serialising with us.
3763 	 */
3764 	for_each_intel_crtc(dev, crtc) {
3765 		if (atomic_read(&crtc->unpin_work_count) == 0)
3766 			continue;
3767 
3768 		if (crtc->flip_work)
3769 			intel_wait_for_vblank(dev, crtc->pipe);
3770 
3771 		return true;
3772 	}
3773 
3774 	return false;
3775 }
3776 
3777 static void page_flip_completed(struct intel_crtc *intel_crtc)
3778 {
3779 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3780 	struct intel_flip_work *work = intel_crtc->flip_work;
3781 
3782 	intel_crtc->flip_work = NULL;
3783 
3784 	if (work->event)
3785 		drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3786 
3787 	drm_crtc_vblank_put(&intel_crtc->base);
3788 
3789 	wake_up_all(&dev_priv->pending_flip_queue);
3790 	queue_work(dev_priv->wq, &work->unpin_work);
3791 
3792 	trace_i915_flip_complete(intel_crtc->plane,
3793 				 work->pending_flip_obj);
3794 }
3795 
3796 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3797 {
3798 	struct drm_device *dev = crtc->dev;
3799 	struct drm_i915_private *dev_priv = to_i915(dev);
3800 	long ret;
3801 
3802 	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3803 
3804 	ret = wait_event_interruptible_timeout(
3805 					dev_priv->pending_flip_queue,
3806 					!intel_crtc_has_pending_flip(crtc),
3807 					60*HZ);
3808 
3809 	if (ret < 0)
3810 		return ret;
3811 
3812 	if (ret == 0) {
3813 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814 		struct intel_flip_work *work;
3815 
3816 		spin_lock_irq(&dev->event_lock);
3817 		work = intel_crtc->flip_work;
3818 		if (work && !is_mmio_work(work)) {
3819 			WARN_ONCE(1, "Removing stuck page flip\n");
3820 			page_flip_completed(intel_crtc);
3821 		}
3822 		spin_unlock_irq(&dev->event_lock);
3823 	}
3824 
3825 	return 0;
3826 }
3827 
3828 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3829 {
3830 	u32 temp;
3831 
3832 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3833 
3834 	mutex_lock(&dev_priv->sb_lock);
3835 
3836 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3837 	temp |= SBI_SSCCTL_DISABLE;
3838 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3839 
3840 	mutex_unlock(&dev_priv->sb_lock);
3841 }
3842 
3843 /* Program iCLKIP clock to the desired frequency */
3844 static void lpt_program_iclkip(struct drm_crtc *crtc)
3845 {
3846 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3847 	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3848 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
3849 	u32 temp;
3850 
3851 	lpt_disable_iclkip(dev_priv);
3852 
3853 	/* The iCLK virtual clock root frequency is in MHz,
3854 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
3855 	 * divisors, it is necessary to divide one by another, so we
3856 	 * convert the virtual clock precision to KHz here for higher
3857 	 * precision.
3858 	 */
3859 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3860 		u32 iclk_virtual_root_freq = 172800 * 1000;
3861 		u32 iclk_pi_range = 64;
3862 		u32 desired_divisor;
3863 
3864 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3865 						    clock << auxdiv);
3866 		divsel = (desired_divisor / iclk_pi_range) - 2;
3867 		phaseinc = desired_divisor % iclk_pi_range;
3868 
3869 		/*
3870 		 * Near 20MHz is a corner case which is
3871 		 * out of range for the 7-bit divisor
3872 		 */
3873 		if (divsel <= 0x7f)
3874 			break;
3875 	}
3876 
3877 	/* This should not happen with any sane values */
3878 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3879 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3880 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3881 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3882 
3883 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3884 			clock,
3885 			auxdiv,
3886 			divsel,
3887 			phasedir,
3888 			phaseinc);
3889 
3890 	mutex_lock(&dev_priv->sb_lock);
3891 
3892 	/* Program SSCDIVINTPHASE6 */
3893 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3894 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3895 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3896 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3897 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3898 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3899 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3900 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3901 
3902 	/* Program SSCAUXDIV */
3903 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3904 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3905 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3906 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3907 
3908 	/* Enable modulator and associated divider */
3909 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3910 	temp &= ~SBI_SSCCTL_DISABLE;
3911 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3912 
3913 	mutex_unlock(&dev_priv->sb_lock);
3914 
3915 	/* Wait for initialization time */
3916 	udelay(24);
3917 
3918 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3919 }
3920 
3921 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3922 {
3923 	u32 divsel, phaseinc, auxdiv;
3924 	u32 iclk_virtual_root_freq = 172800 * 1000;
3925 	u32 iclk_pi_range = 64;
3926 	u32 desired_divisor;
3927 	u32 temp;
3928 
3929 	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3930 		return 0;
3931 
3932 	mutex_lock(&dev_priv->sb_lock);
3933 
3934 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3935 	if (temp & SBI_SSCCTL_DISABLE) {
3936 		mutex_unlock(&dev_priv->sb_lock);
3937 		return 0;
3938 	}
3939 
3940 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3941 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3942 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3943 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3944 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3945 
3946 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3947 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3948 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3949 
3950 	mutex_unlock(&dev_priv->sb_lock);
3951 
3952 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3953 
3954 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3955 				 desired_divisor << auxdiv);
3956 }
3957 
3958 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3959 						enum i915_pipe pch_transcoder)
3960 {
3961 	struct drm_device *dev = crtc->base.dev;
3962 	struct drm_i915_private *dev_priv = to_i915(dev);
3963 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3964 
3965 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3966 		   I915_READ(HTOTAL(cpu_transcoder)));
3967 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3968 		   I915_READ(HBLANK(cpu_transcoder)));
3969 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3970 		   I915_READ(HSYNC(cpu_transcoder)));
3971 
3972 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3973 		   I915_READ(VTOTAL(cpu_transcoder)));
3974 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3975 		   I915_READ(VBLANK(cpu_transcoder)));
3976 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3977 		   I915_READ(VSYNC(cpu_transcoder)));
3978 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3979 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
3980 }
3981 
3982 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3983 {
3984 	struct drm_i915_private *dev_priv = to_i915(dev);
3985 	uint32_t temp;
3986 
3987 	temp = I915_READ(SOUTH_CHICKEN1);
3988 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3989 		return;
3990 
3991 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3992 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3993 
3994 	temp &= ~FDI_BC_BIFURCATION_SELECT;
3995 	if (enable)
3996 		temp |= FDI_BC_BIFURCATION_SELECT;
3997 
3998 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3999 	I915_WRITE(SOUTH_CHICKEN1, temp);
4000 	POSTING_READ(SOUTH_CHICKEN1);
4001 }
4002 
4003 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4004 {
4005 	struct drm_device *dev = intel_crtc->base.dev;
4006 
4007 	switch (intel_crtc->pipe) {
4008 	case PIPE_A:
4009 		break;
4010 	case PIPE_B:
4011 		if (intel_crtc->config->fdi_lanes > 2)
4012 			cpt_set_fdi_bc_bifurcation(dev, false);
4013 		else
4014 			cpt_set_fdi_bc_bifurcation(dev, true);
4015 
4016 		break;
4017 	case PIPE_C:
4018 		cpt_set_fdi_bc_bifurcation(dev, true);
4019 
4020 		break;
4021 	default:
4022 		BUG();
4023 	}
4024 }
4025 
4026 /* Return which DP Port should be selected for Transcoder DP control */
4027 static enum port
4028 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4029 {
4030 	struct drm_device *dev = crtc->dev;
4031 	struct intel_encoder *encoder;
4032 
4033 	for_each_encoder_on_crtc(dev, crtc, encoder) {
4034 		if (encoder->type == INTEL_OUTPUT_DP ||
4035 		    encoder->type == INTEL_OUTPUT_EDP)
4036 			return enc_to_dig_port(&encoder->base)->port;
4037 	}
4038 
4039 	return -1;
4040 }
4041 
4042 /*
4043  * Enable PCH resources required for PCH ports:
4044  *   - PCH PLLs
4045  *   - FDI training & RX/TX
4046  *   - update transcoder timings
4047  *   - DP transcoding bits
4048  *   - transcoder
4049  */
4050 static void ironlake_pch_enable(struct drm_crtc *crtc)
4051 {
4052 	struct drm_device *dev = crtc->dev;
4053 	struct drm_i915_private *dev_priv = to_i915(dev);
4054 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4055 	int pipe = intel_crtc->pipe;
4056 	u32 temp;
4057 
4058 	assert_pch_transcoder_disabled(dev_priv, pipe);
4059 
4060 	if (IS_IVYBRIDGE(dev))
4061 		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4062 
4063 	/* Write the TU size bits before fdi link training, so that error
4064 	 * detection works. */
4065 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4066 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4067 
4068 	/* For PCH output, training FDI link */
4069 	dev_priv->display.fdi_link_train(crtc);
4070 
4071 	/* We need to program the right clock selection before writing the pixel
4072 	 * mutliplier into the DPLL. */
4073 	if (HAS_PCH_CPT(dev)) {
4074 		u32 sel;
4075 
4076 		temp = I915_READ(PCH_DPLL_SEL);
4077 		temp |= TRANS_DPLL_ENABLE(pipe);
4078 		sel = TRANS_DPLLB_SEL(pipe);
4079 		if (intel_crtc->config->shared_dpll ==
4080 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4081 			temp |= sel;
4082 		else
4083 			temp &= ~sel;
4084 		I915_WRITE(PCH_DPLL_SEL, temp);
4085 	}
4086 
4087 	/* XXX: pch pll's can be enabled any time before we enable the PCH
4088 	 * transcoder, and we actually should do this to not upset any PCH
4089 	 * transcoder that already use the clock when we share it.
4090 	 *
4091 	 * Note that enable_shared_dpll tries to do the right thing, but
4092 	 * get_shared_dpll unconditionally resets the pll - we need that to have
4093 	 * the right LVDS enable sequence. */
4094 	intel_enable_shared_dpll(intel_crtc);
4095 
4096 	/* set transcoder timing, panel must allow it */
4097 	assert_panel_unlocked(dev_priv, pipe);
4098 	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4099 
4100 	intel_fdi_normal_train(crtc);
4101 
4102 	/* For PCH DP, enable TRANS_DP_CTL */
4103 	if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4104 		const struct drm_display_mode *adjusted_mode =
4105 			&intel_crtc->config->base.adjusted_mode;
4106 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4107 		i915_reg_t reg = TRANS_DP_CTL(pipe);
4108 		temp = I915_READ(reg);
4109 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4110 			  TRANS_DP_SYNC_MASK |
4111 			  TRANS_DP_BPC_MASK);
4112 		temp |= TRANS_DP_OUTPUT_ENABLE;
4113 		temp |= bpc << 9; /* same format but at 11:9 */
4114 
4115 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4116 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4117 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4118 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4119 
4120 		switch (intel_trans_dp_port_sel(crtc)) {
4121 		case PORT_B:
4122 			temp |= TRANS_DP_PORT_SEL_B;
4123 			break;
4124 		case PORT_C:
4125 			temp |= TRANS_DP_PORT_SEL_C;
4126 			break;
4127 		case PORT_D:
4128 			temp |= TRANS_DP_PORT_SEL_D;
4129 			break;
4130 		default:
4131 			BUG();
4132 		}
4133 
4134 		I915_WRITE(reg, temp);
4135 	}
4136 
4137 	ironlake_enable_pch_transcoder(dev_priv, pipe);
4138 }
4139 
4140 static void lpt_pch_enable(struct drm_crtc *crtc)
4141 {
4142 	struct drm_device *dev = crtc->dev;
4143 	struct drm_i915_private *dev_priv = to_i915(dev);
4144 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4145 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4146 
4147 	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4148 
4149 	lpt_program_iclkip(crtc);
4150 
4151 	/* Set transcoder timing. */
4152 	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4153 
4154 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4155 }
4156 
4157 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4158 {
4159 	struct drm_i915_private *dev_priv = to_i915(dev);
4160 	i915_reg_t dslreg = PIPEDSL(pipe);
4161 	u32 temp;
4162 
4163 	temp = I915_READ(dslreg);
4164 	udelay(500);
4165 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4166 		if (wait_for(I915_READ(dslreg) != temp, 5))
4167 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4168 	}
4169 }
4170 
4171 static int
4172 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4173 		  unsigned scaler_user, int *scaler_id, unsigned int rotation,
4174 		  int src_w, int src_h, int dst_w, int dst_h)
4175 {
4176 	struct intel_crtc_scaler_state *scaler_state =
4177 		&crtc_state->scaler_state;
4178 	struct intel_crtc *intel_crtc =
4179 		to_intel_crtc(crtc_state->base.crtc);
4180 	int need_scaling;
4181 
4182 	need_scaling = intel_rotation_90_or_270(rotation) ?
4183 		(src_h != dst_w || src_w != dst_h):
4184 		(src_w != dst_w || src_h != dst_h);
4185 
4186 	/*
4187 	 * if plane is being disabled or scaler is no more required or force detach
4188 	 *  - free scaler binded to this plane/crtc
4189 	 *  - in order to do this, update crtc->scaler_usage
4190 	 *
4191 	 * Here scaler state in crtc_state is set free so that
4192 	 * scaler can be assigned to other user. Actual register
4193 	 * update to free the scaler is done in plane/panel-fit programming.
4194 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4195 	 */
4196 	if (force_detach || !need_scaling) {
4197 		if (*scaler_id >= 0) {
4198 			scaler_state->scaler_users &= ~(1 << scaler_user);
4199 			scaler_state->scalers[*scaler_id].in_use = 0;
4200 
4201 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4202 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4203 				intel_crtc->pipe, scaler_user, *scaler_id,
4204 				scaler_state->scaler_users);
4205 			*scaler_id = -1;
4206 		}
4207 		return 0;
4208 	}
4209 
4210 	/* range checks */
4211 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4212 		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4213 
4214 		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4215 		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4216 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4217 			"size is out of scaler range\n",
4218 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4219 		return -EINVAL;
4220 	}
4221 
4222 	/* mark this plane as a scaler user in crtc_state */
4223 	scaler_state->scaler_users |= (1 << scaler_user);
4224 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4225 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4226 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4227 		scaler_state->scaler_users);
4228 
4229 	return 0;
4230 }
4231 
4232 /**
4233  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4234  *
4235  * @state: crtc's scaler state
4236  *
4237  * Return
4238  *     0 - scaler_usage updated successfully
4239  *    error - requested scaling cannot be supported or other error condition
4240  */
4241 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4242 {
4243 	struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4244 	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4245 
4246 	DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4247 		      intel_crtc->base.base.id, intel_crtc->base.name,
4248 		      intel_crtc->pipe, SKL_CRTC_INDEX);
4249 
4250 	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4251 		&state->scaler_state.scaler_id, DRM_ROTATE_0,
4252 		state->pipe_src_w, state->pipe_src_h,
4253 		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4254 }
4255 
4256 /**
4257  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4258  *
4259  * @state: crtc's scaler state
4260  * @plane_state: atomic plane state to update
4261  *
4262  * Return
4263  *     0 - scaler_usage updated successfully
4264  *    error - requested scaling cannot be supported or other error condition
4265  */
4266 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4267 				   struct intel_plane_state *plane_state)
4268 {
4269 
4270 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4271 	struct intel_plane *intel_plane =
4272 		to_intel_plane(plane_state->base.plane);
4273 	struct drm_framebuffer *fb = plane_state->base.fb;
4274 	int ret;
4275 
4276 	bool force_detach = !fb || !plane_state->visible;
4277 
4278 	DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4279 		      intel_plane->base.base.id, intel_plane->base.name,
4280 		      intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4281 
4282 	ret = skl_update_scaler(crtc_state, force_detach,
4283 				drm_plane_index(&intel_plane->base),
4284 				&plane_state->scaler_id,
4285 				plane_state->base.rotation,
4286 				drm_rect_width(&plane_state->src) >> 16,
4287 				drm_rect_height(&plane_state->src) >> 16,
4288 				drm_rect_width(&plane_state->dst),
4289 				drm_rect_height(&plane_state->dst));
4290 
4291 	if (ret || plane_state->scaler_id < 0)
4292 		return ret;
4293 
4294 	/* check colorkey */
4295 	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4296 		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4297 			      intel_plane->base.base.id,
4298 			      intel_plane->base.name);
4299 		return -EINVAL;
4300 	}
4301 
4302 	/* Check src format */
4303 	switch (fb->pixel_format) {
4304 	case DRM_FORMAT_RGB565:
4305 	case DRM_FORMAT_XBGR8888:
4306 	case DRM_FORMAT_XRGB8888:
4307 	case DRM_FORMAT_ABGR8888:
4308 	case DRM_FORMAT_ARGB8888:
4309 	case DRM_FORMAT_XRGB2101010:
4310 	case DRM_FORMAT_XBGR2101010:
4311 	case DRM_FORMAT_YUYV:
4312 	case DRM_FORMAT_YVYU:
4313 	case DRM_FORMAT_UYVY:
4314 	case DRM_FORMAT_VYUY:
4315 		break;
4316 	default:
4317 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4318 			      intel_plane->base.base.id, intel_plane->base.name,
4319 			      fb->base.id, fb->pixel_format);
4320 		return -EINVAL;
4321 	}
4322 
4323 	return 0;
4324 }
4325 
4326 static void skylake_scaler_disable(struct intel_crtc *crtc)
4327 {
4328 	int i;
4329 
4330 	for (i = 0; i < crtc->num_scalers; i++)
4331 		skl_detach_scaler(crtc, i);
4332 }
4333 
4334 static void skylake_pfit_enable(struct intel_crtc *crtc)
4335 {
4336 	struct drm_device *dev = crtc->base.dev;
4337 	struct drm_i915_private *dev_priv = to_i915(dev);
4338 	int pipe = crtc->pipe;
4339 	struct intel_crtc_scaler_state *scaler_state =
4340 		&crtc->config->scaler_state;
4341 
4342 	DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4343 
4344 	if (crtc->config->pch_pfit.enabled) {
4345 		int id;
4346 
4347 		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4348 			DRM_ERROR("Requesting pfit without getting a scaler first\n");
4349 			return;
4350 		}
4351 
4352 		id = scaler_state->scaler_id;
4353 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4354 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4355 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4356 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4357 
4358 		DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4359 	}
4360 }
4361 
4362 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4363 {
4364 	struct drm_device *dev = crtc->base.dev;
4365 	struct drm_i915_private *dev_priv = to_i915(dev);
4366 	int pipe = crtc->pipe;
4367 
4368 	if (crtc->config->pch_pfit.enabled) {
4369 		/* Force use of hard-coded filter coefficients
4370 		 * as some pre-programmed values are broken,
4371 		 * e.g. x201.
4372 		 */
4373 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4374 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4375 						 PF_PIPE_SEL_IVB(pipe));
4376 		else
4377 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4378 		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4379 		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4380 	}
4381 }
4382 
4383 void hsw_enable_ips(struct intel_crtc *crtc)
4384 {
4385 	struct drm_device *dev = crtc->base.dev;
4386 	struct drm_i915_private *dev_priv = to_i915(dev);
4387 
4388 	if (!crtc->config->ips_enabled)
4389 		return;
4390 
4391 	/*
4392 	 * We can only enable IPS after we enable a plane and wait for a vblank
4393 	 * This function is called from post_plane_update, which is run after
4394 	 * a vblank wait.
4395 	 */
4396 
4397 	assert_plane_enabled(dev_priv, crtc->plane);
4398 	if (IS_BROADWELL(dev)) {
4399 		mutex_lock(&dev_priv->rps.hw_lock);
4400 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4401 		mutex_unlock(&dev_priv->rps.hw_lock);
4402 		/* Quoting Art Runyan: "its not safe to expect any particular
4403 		 * value in IPS_CTL bit 31 after enabling IPS through the
4404 		 * mailbox." Moreover, the mailbox may return a bogus state,
4405 		 * so we need to just enable it and continue on.
4406 		 */
4407 	} else {
4408 		I915_WRITE(IPS_CTL, IPS_ENABLE);
4409 		/* The bit only becomes 1 in the next vblank, so this wait here
4410 		 * is essentially intel_wait_for_vblank. If we don't have this
4411 		 * and don't wait for vblanks until the end of crtc_enable, then
4412 		 * the HW state readout code will complain that the expected
4413 		 * IPS_CTL value is not the one we read. */
4414 		if (intel_wait_for_register(dev_priv,
4415 					    IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4416 					    50))
4417 			DRM_ERROR("Timed out waiting for IPS enable\n");
4418 	}
4419 }
4420 
4421 void hsw_disable_ips(struct intel_crtc *crtc)
4422 {
4423 	struct drm_device *dev = crtc->base.dev;
4424 	struct drm_i915_private *dev_priv = to_i915(dev);
4425 
4426 	if (!crtc->config->ips_enabled)
4427 		return;
4428 
4429 	assert_plane_enabled(dev_priv, crtc->plane);
4430 	if (IS_BROADWELL(dev)) {
4431 		mutex_lock(&dev_priv->rps.hw_lock);
4432 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4433 		mutex_unlock(&dev_priv->rps.hw_lock);
4434 		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4435 		if (intel_wait_for_register(dev_priv,
4436 					    IPS_CTL, IPS_ENABLE, 0,
4437 					    42))
4438 			DRM_ERROR("Timed out waiting for IPS disable\n");
4439 	} else {
4440 		I915_WRITE(IPS_CTL, 0);
4441 		POSTING_READ(IPS_CTL);
4442 	}
4443 
4444 	/* We need to wait for a vblank before we can disable the plane. */
4445 	intel_wait_for_vblank(dev, crtc->pipe);
4446 }
4447 
4448 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4449 {
4450 	if (intel_crtc->overlay) {
4451 		struct drm_device *dev = intel_crtc->base.dev;
4452 		struct drm_i915_private *dev_priv = to_i915(dev);
4453 
4454 		mutex_lock(&dev->struct_mutex);
4455 		dev_priv->mm.interruptible = false;
4456 		(void) intel_overlay_switch_off(intel_crtc->overlay);
4457 		dev_priv->mm.interruptible = true;
4458 		mutex_unlock(&dev->struct_mutex);
4459 	}
4460 
4461 	/* Let userspace switch the overlay on again. In most cases userspace
4462 	 * has to recompute where to put it anyway.
4463 	 */
4464 }
4465 
4466 /**
4467  * intel_post_enable_primary - Perform operations after enabling primary plane
4468  * @crtc: the CRTC whose primary plane was just enabled
4469  *
4470  * Performs potentially sleeping operations that must be done after the primary
4471  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4472  * called due to an explicit primary plane update, or due to an implicit
4473  * re-enable that is caused when a sprite plane is updated to no longer
4474  * completely hide the primary plane.
4475  */
4476 static void
4477 intel_post_enable_primary(struct drm_crtc *crtc)
4478 {
4479 	struct drm_device *dev = crtc->dev;
4480 	struct drm_i915_private *dev_priv = to_i915(dev);
4481 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4482 	int pipe = intel_crtc->pipe;
4483 
4484 	/*
4485 	 * FIXME IPS should be fine as long as one plane is
4486 	 * enabled, but in practice it seems to have problems
4487 	 * when going from primary only to sprite only and vice
4488 	 * versa.
4489 	 */
4490 	hsw_enable_ips(intel_crtc);
4491 
4492 	/*
4493 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4494 	 * So don't enable underrun reporting before at least some planes
4495 	 * are enabled.
4496 	 * FIXME: Need to fix the logic to work when we turn off all planes
4497 	 * but leave the pipe running.
4498 	 */
4499 	if (IS_GEN2(dev))
4500 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4501 
4502 	/* Underruns don't always raise interrupts, so check manually. */
4503 	intel_check_cpu_fifo_underruns(dev_priv);
4504 	intel_check_pch_fifo_underruns(dev_priv);
4505 }
4506 
4507 /* FIXME move all this to pre_plane_update() with proper state tracking */
4508 static void
4509 intel_pre_disable_primary(struct drm_crtc *crtc)
4510 {
4511 	struct drm_device *dev = crtc->dev;
4512 	struct drm_i915_private *dev_priv = to_i915(dev);
4513 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4514 	int pipe = intel_crtc->pipe;
4515 
4516 	/*
4517 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4518 	 * So diasble underrun reporting before all the planes get disabled.
4519 	 * FIXME: Need to fix the logic to work when we turn off all planes
4520 	 * but leave the pipe running.
4521 	 */
4522 	if (IS_GEN2(dev))
4523 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4524 
4525 	/*
4526 	 * FIXME IPS should be fine as long as one plane is
4527 	 * enabled, but in practice it seems to have problems
4528 	 * when going from primary only to sprite only and vice
4529 	 * versa.
4530 	 */
4531 	hsw_disable_ips(intel_crtc);
4532 }
4533 
4534 /* FIXME get rid of this and use pre_plane_update */
4535 static void
4536 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4537 {
4538 	struct drm_device *dev = crtc->dev;
4539 	struct drm_i915_private *dev_priv = to_i915(dev);
4540 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4541 	int pipe = intel_crtc->pipe;
4542 
4543 	intel_pre_disable_primary(crtc);
4544 
4545 	/*
4546 	 * Vblank time updates from the shadow to live plane control register
4547 	 * are blocked if the memory self-refresh mode is active at that
4548 	 * moment. So to make sure the plane gets truly disabled, disable
4549 	 * first the self-refresh mode. The self-refresh enable bit in turn
4550 	 * will be checked/applied by the HW only at the next frame start
4551 	 * event which is after the vblank start event, so we need to have a
4552 	 * wait-for-vblank between disabling the plane and the pipe.
4553 	 */
4554 	if (HAS_GMCH_DISPLAY(dev)) {
4555 		intel_set_memory_cxsr(dev_priv, false);
4556 		dev_priv->wm.vlv.cxsr = false;
4557 		intel_wait_for_vblank(dev, pipe);
4558 	}
4559 }
4560 
4561 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4562 {
4563 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4564 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
4565 	struct intel_crtc_state *pipe_config =
4566 		to_intel_crtc_state(crtc->base.state);
4567 	struct drm_device *dev = crtc->base.dev;
4568 	struct drm_plane *primary = crtc->base.primary;
4569 	struct drm_plane_state *old_pri_state =
4570 		drm_atomic_get_existing_plane_state(old_state, primary);
4571 
4572 	intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4573 
4574 	crtc->wm.cxsr_allowed = true;
4575 
4576 	if (pipe_config->update_wm_post && pipe_config->base.active)
4577 		intel_update_watermarks(&crtc->base);
4578 
4579 	if (old_pri_state) {
4580 		struct intel_plane_state *primary_state =
4581 			to_intel_plane_state(primary->state);
4582 		struct intel_plane_state *old_primary_state =
4583 			to_intel_plane_state(old_pri_state);
4584 
4585 		intel_fbc_post_update(crtc);
4586 
4587 		if (primary_state->visible &&
4588 		    (needs_modeset(&pipe_config->base) ||
4589 		     !old_primary_state->visible))
4590 			intel_post_enable_primary(&crtc->base);
4591 	}
4592 }
4593 
4594 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4595 {
4596 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4597 	struct drm_device *dev = crtc->base.dev;
4598 	struct drm_i915_private *dev_priv = to_i915(dev);
4599 	struct intel_crtc_state *pipe_config =
4600 		to_intel_crtc_state(crtc->base.state);
4601 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
4602 	struct drm_plane *primary = crtc->base.primary;
4603 	struct drm_plane_state *old_pri_state =
4604 		drm_atomic_get_existing_plane_state(old_state, primary);
4605 	bool modeset = needs_modeset(&pipe_config->base);
4606 
4607 	if (old_pri_state) {
4608 		struct intel_plane_state *primary_state =
4609 			to_intel_plane_state(primary->state);
4610 		struct intel_plane_state *old_primary_state =
4611 			to_intel_plane_state(old_pri_state);
4612 
4613 		intel_fbc_pre_update(crtc, pipe_config, primary_state);
4614 
4615 		if (old_primary_state->visible &&
4616 		    (modeset || !primary_state->visible))
4617 			intel_pre_disable_primary(&crtc->base);
4618 	}
4619 
4620 	if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
4621 		crtc->wm.cxsr_allowed = false;
4622 
4623 		/*
4624 		 * Vblank time updates from the shadow to live plane control register
4625 		 * are blocked if the memory self-refresh mode is active at that
4626 		 * moment. So to make sure the plane gets truly disabled, disable
4627 		 * first the self-refresh mode. The self-refresh enable bit in turn
4628 		 * will be checked/applied by the HW only at the next frame start
4629 		 * event which is after the vblank start event, so we need to have a
4630 		 * wait-for-vblank between disabling the plane and the pipe.
4631 		 */
4632 		if (old_crtc_state->base.active) {
4633 			intel_set_memory_cxsr(dev_priv, false);
4634 			dev_priv->wm.vlv.cxsr = false;
4635 			intel_wait_for_vblank(dev, crtc->pipe);
4636 		}
4637 	}
4638 
4639 	/*
4640 	 * IVB workaround: must disable low power watermarks for at least
4641 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
4642 	 * when scaling is disabled.
4643 	 *
4644 	 * WaCxSRDisabledForSpriteScaling:ivb
4645 	 */
4646 	if (pipe_config->disable_lp_wm) {
4647 		ilk_disable_lp_wm(dev);
4648 		intel_wait_for_vblank(dev, crtc->pipe);
4649 	}
4650 
4651 	/*
4652 	 * If we're doing a modeset, we're done.  No need to do any pre-vblank
4653 	 * watermark programming here.
4654 	 */
4655 	if (needs_modeset(&pipe_config->base))
4656 		return;
4657 
4658 	/*
4659 	 * For platforms that support atomic watermarks, program the
4660 	 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4661 	 * will be the intermediate values that are safe for both pre- and
4662 	 * post- vblank; when vblank happens, the 'active' values will be set
4663 	 * to the final 'target' values and we'll do this again to get the
4664 	 * optimal watermarks.  For gen9+ platforms, the values we program here
4665 	 * will be the final target values which will get automatically latched
4666 	 * at vblank time; no further programming will be necessary.
4667 	 *
4668 	 * If a platform hasn't been transitioned to atomic watermarks yet,
4669 	 * we'll continue to update watermarks the old way, if flags tell
4670 	 * us to.
4671 	 */
4672 	if (dev_priv->display.initial_watermarks != NULL)
4673 		dev_priv->display.initial_watermarks(pipe_config);
4674 	else if (pipe_config->update_wm_pre)
4675 		intel_update_watermarks(&crtc->base);
4676 }
4677 
4678 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4679 {
4680 	struct drm_device *dev = crtc->dev;
4681 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4682 	struct drm_plane *p;
4683 	int pipe = intel_crtc->pipe;
4684 
4685 	intel_crtc_dpms_overlay_disable(intel_crtc);
4686 
4687 	drm_for_each_plane_mask(p, dev, plane_mask)
4688 		to_intel_plane(p)->disable_plane(p, crtc);
4689 
4690 	/*
4691 	 * FIXME: Once we grow proper nuclear flip support out of this we need
4692 	 * to compute the mask of flip planes precisely. For the time being
4693 	 * consider this a flip to a NULL plane.
4694 	 */
4695 	intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4696 }
4697 
4698 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4699 {
4700 	struct drm_device *dev = crtc->dev;
4701 	struct drm_i915_private *dev_priv = to_i915(dev);
4702 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4703 	struct intel_encoder *encoder;
4704 	int pipe = intel_crtc->pipe;
4705 	struct intel_crtc_state *pipe_config =
4706 		to_intel_crtc_state(crtc->state);
4707 
4708 	if (WARN_ON(intel_crtc->active))
4709 		return;
4710 
4711 	/*
4712 	 * Sometimes spurious CPU pipe underruns happen during FDI
4713 	 * training, at least with VGA+HDMI cloning. Suppress them.
4714 	 *
4715 	 * On ILK we get an occasional spurious CPU pipe underruns
4716 	 * between eDP port A enable and vdd enable. Also PCH port
4717 	 * enable seems to result in the occasional CPU pipe underrun.
4718 	 *
4719 	 * Spurious PCH underruns also occur during PCH enabling.
4720 	 */
4721 	if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4722 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4723 	if (intel_crtc->config->has_pch_encoder)
4724 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4725 
4726 	if (intel_crtc->config->has_pch_encoder)
4727 		intel_prepare_shared_dpll(intel_crtc);
4728 
4729 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
4730 		intel_dp_set_m_n(intel_crtc, M1_N1);
4731 
4732 	intel_set_pipe_timings(intel_crtc);
4733 	intel_set_pipe_src_size(intel_crtc);
4734 
4735 	if (intel_crtc->config->has_pch_encoder) {
4736 		intel_cpu_transcoder_set_m_n(intel_crtc,
4737 				     &intel_crtc->config->fdi_m_n, NULL);
4738 	}
4739 
4740 	ironlake_set_pipeconf(crtc);
4741 
4742 	intel_crtc->active = true;
4743 
4744 	for_each_encoder_on_crtc(dev, crtc, encoder)
4745 		if (encoder->pre_enable)
4746 			encoder->pre_enable(encoder);
4747 
4748 	if (intel_crtc->config->has_pch_encoder) {
4749 		/* Note: FDI PLL enabling _must_ be done before we enable the
4750 		 * cpu pipes, hence this is separate from all the other fdi/pch
4751 		 * enabling. */
4752 		ironlake_fdi_pll_enable(intel_crtc);
4753 	} else {
4754 		assert_fdi_tx_disabled(dev_priv, pipe);
4755 		assert_fdi_rx_disabled(dev_priv, pipe);
4756 	}
4757 
4758 	ironlake_pfit_enable(intel_crtc);
4759 
4760 	/*
4761 	 * On ILK+ LUT must be loaded before the pipe is running but with
4762 	 * clocks enabled
4763 	 */
4764 	intel_color_load_luts(&pipe_config->base);
4765 
4766 	if (dev_priv->display.initial_watermarks != NULL)
4767 		dev_priv->display.initial_watermarks(intel_crtc->config);
4768 	intel_enable_pipe(intel_crtc);
4769 
4770 	if (intel_crtc->config->has_pch_encoder)
4771 		ironlake_pch_enable(crtc);
4772 
4773 	assert_vblank_disabled(crtc);
4774 	drm_crtc_vblank_on(crtc);
4775 
4776 	for_each_encoder_on_crtc(dev, crtc, encoder)
4777 		encoder->enable(encoder);
4778 
4779 	if (HAS_PCH_CPT(dev))
4780 		cpt_verify_modeset(dev, intel_crtc->pipe);
4781 
4782 	/* Must wait for vblank to avoid spurious PCH FIFO underruns */
4783 	if (intel_crtc->config->has_pch_encoder)
4784 		intel_wait_for_vblank(dev, pipe);
4785 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4786 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4787 }
4788 
4789 /* IPS only exists on ULT machines and is tied to pipe A. */
4790 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4791 {
4792 	return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4793 }
4794 
4795 static void haswell_crtc_enable(struct drm_crtc *crtc)
4796 {
4797 	struct drm_device *dev = crtc->dev;
4798 	struct drm_i915_private *dev_priv = to_i915(dev);
4799 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4800 	struct intel_encoder *encoder;
4801 	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4802 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4803 	struct intel_crtc_state *pipe_config =
4804 		to_intel_crtc_state(crtc->state);
4805 
4806 	if (WARN_ON(intel_crtc->active))
4807 		return;
4808 
4809 	if (intel_crtc->config->has_pch_encoder)
4810 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4811 						      false);
4812 
4813 	for_each_encoder_on_crtc(dev, crtc, encoder)
4814 		if (encoder->pre_pll_enable)
4815 			encoder->pre_pll_enable(encoder);
4816 
4817 	if (intel_crtc->config->shared_dpll)
4818 		intel_enable_shared_dpll(intel_crtc);
4819 
4820 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
4821 		intel_dp_set_m_n(intel_crtc, M1_N1);
4822 
4823 	if (!transcoder_is_dsi(cpu_transcoder))
4824 		intel_set_pipe_timings(intel_crtc);
4825 
4826 	intel_set_pipe_src_size(intel_crtc);
4827 
4828 	if (cpu_transcoder != TRANSCODER_EDP &&
4829 	    !transcoder_is_dsi(cpu_transcoder)) {
4830 		I915_WRITE(PIPE_MULT(cpu_transcoder),
4831 			   intel_crtc->config->pixel_multiplier - 1);
4832 	}
4833 
4834 	if (intel_crtc->config->has_pch_encoder) {
4835 		intel_cpu_transcoder_set_m_n(intel_crtc,
4836 				     &intel_crtc->config->fdi_m_n, NULL);
4837 	}
4838 
4839 	if (!transcoder_is_dsi(cpu_transcoder))
4840 		haswell_set_pipeconf(crtc);
4841 
4842 	haswell_set_pipemisc(crtc);
4843 
4844 	intel_color_set_csc(&pipe_config->base);
4845 
4846 	intel_crtc->active = true;
4847 
4848 	if (intel_crtc->config->has_pch_encoder)
4849 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4850 	else
4851 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4852 
4853 	for_each_encoder_on_crtc(dev, crtc, encoder) {
4854 		if (encoder->pre_enable)
4855 			encoder->pre_enable(encoder);
4856 	}
4857 
4858 	if (intel_crtc->config->has_pch_encoder)
4859 		dev_priv->display.fdi_link_train(crtc);
4860 
4861 	if (!transcoder_is_dsi(cpu_transcoder))
4862 		intel_ddi_enable_pipe_clock(intel_crtc);
4863 
4864 	if (INTEL_INFO(dev)->gen >= 9)
4865 		skylake_pfit_enable(intel_crtc);
4866 	else
4867 		ironlake_pfit_enable(intel_crtc);
4868 
4869 	/*
4870 	 * On ILK+ LUT must be loaded before the pipe is running but with
4871 	 * clocks enabled
4872 	 */
4873 	intel_color_load_luts(&pipe_config->base);
4874 
4875 	intel_ddi_set_pipe_settings(crtc);
4876 	if (!transcoder_is_dsi(cpu_transcoder))
4877 		intel_ddi_enable_transcoder_func(crtc);
4878 
4879 	if (dev_priv->display.initial_watermarks != NULL)
4880 		dev_priv->display.initial_watermarks(pipe_config);
4881 	else
4882 		intel_update_watermarks(crtc);
4883 
4884 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
4885 	if (!transcoder_is_dsi(cpu_transcoder))
4886 		intel_enable_pipe(intel_crtc);
4887 
4888 	if (intel_crtc->config->has_pch_encoder)
4889 		lpt_pch_enable(crtc);
4890 
4891 	if (intel_crtc->config->dp_encoder_is_mst)
4892 		intel_ddi_set_vc_payload_alloc(crtc, true);
4893 
4894 	assert_vblank_disabled(crtc);
4895 	drm_crtc_vblank_on(crtc);
4896 
4897 	for_each_encoder_on_crtc(dev, crtc, encoder) {
4898 		encoder->enable(encoder);
4899 		intel_opregion_notify_encoder(encoder, true);
4900 	}
4901 
4902 	if (intel_crtc->config->has_pch_encoder) {
4903 		intel_wait_for_vblank(dev, pipe);
4904 		intel_wait_for_vblank(dev, pipe);
4905 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4906 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4907 						      true);
4908 	}
4909 
4910 	/* If we change the relative order between pipe/planes enabling, we need
4911 	 * to change the workaround. */
4912 	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4913 	if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4914 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
4915 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
4916 	}
4917 }
4918 
4919 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4920 {
4921 	struct drm_device *dev = crtc->base.dev;
4922 	struct drm_i915_private *dev_priv = to_i915(dev);
4923 	int pipe = crtc->pipe;
4924 
4925 	/* To avoid upsetting the power well on haswell only disable the pfit if
4926 	 * it's in use. The hw state code will make sure we get this right. */
4927 	if (force || crtc->config->pch_pfit.enabled) {
4928 		I915_WRITE(PF_CTL(pipe), 0);
4929 		I915_WRITE(PF_WIN_POS(pipe), 0);
4930 		I915_WRITE(PF_WIN_SZ(pipe), 0);
4931 	}
4932 }
4933 
4934 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4935 {
4936 	struct drm_device *dev = crtc->dev;
4937 	struct drm_i915_private *dev_priv = to_i915(dev);
4938 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4939 	struct intel_encoder *encoder;
4940 	int pipe = intel_crtc->pipe;
4941 
4942 	/*
4943 	 * Sometimes spurious CPU pipe underruns happen when the
4944 	 * pipe is already disabled, but FDI RX/TX is still enabled.
4945 	 * Happens at least with VGA+HDMI cloning. Suppress them.
4946 	 */
4947 	if (intel_crtc->config->has_pch_encoder) {
4948 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4949 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4950 	}
4951 
4952 	for_each_encoder_on_crtc(dev, crtc, encoder)
4953 		encoder->disable(encoder);
4954 
4955 	drm_crtc_vblank_off(crtc);
4956 	assert_vblank_disabled(crtc);
4957 
4958 	intel_disable_pipe(intel_crtc);
4959 
4960 	ironlake_pfit_disable(intel_crtc, false);
4961 
4962 	if (intel_crtc->config->has_pch_encoder)
4963 		ironlake_fdi_disable(crtc);
4964 
4965 	for_each_encoder_on_crtc(dev, crtc, encoder)
4966 		if (encoder->post_disable)
4967 			encoder->post_disable(encoder);
4968 
4969 	if (intel_crtc->config->has_pch_encoder) {
4970 		ironlake_disable_pch_transcoder(dev_priv, pipe);
4971 
4972 		if (HAS_PCH_CPT(dev)) {
4973 			i915_reg_t reg;
4974 			u32 temp;
4975 
4976 			/* disable TRANS_DP_CTL */
4977 			reg = TRANS_DP_CTL(pipe);
4978 			temp = I915_READ(reg);
4979 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4980 				  TRANS_DP_PORT_SEL_MASK);
4981 			temp |= TRANS_DP_PORT_SEL_NONE;
4982 			I915_WRITE(reg, temp);
4983 
4984 			/* disable DPLL_SEL */
4985 			temp = I915_READ(PCH_DPLL_SEL);
4986 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4987 			I915_WRITE(PCH_DPLL_SEL, temp);
4988 		}
4989 
4990 		ironlake_fdi_pll_disable(intel_crtc);
4991 	}
4992 
4993 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4994 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4995 }
4996 
4997 static void haswell_crtc_disable(struct drm_crtc *crtc)
4998 {
4999 	struct drm_device *dev = crtc->dev;
5000 	struct drm_i915_private *dev_priv = to_i915(dev);
5001 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5002 	struct intel_encoder *encoder;
5003 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5004 
5005 	if (intel_crtc->config->has_pch_encoder)
5006 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5007 						      false);
5008 
5009 	for_each_encoder_on_crtc(dev, crtc, encoder) {
5010 		intel_opregion_notify_encoder(encoder, false);
5011 		encoder->disable(encoder);
5012 	}
5013 
5014 	drm_crtc_vblank_off(crtc);
5015 	assert_vblank_disabled(crtc);
5016 
5017 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5018 	if (!transcoder_is_dsi(cpu_transcoder))
5019 		intel_disable_pipe(intel_crtc);
5020 
5021 	if (intel_crtc->config->dp_encoder_is_mst)
5022 		intel_ddi_set_vc_payload_alloc(crtc, false);
5023 
5024 	if (!transcoder_is_dsi(cpu_transcoder))
5025 		intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5026 
5027 	if (INTEL_INFO(dev)->gen >= 9)
5028 		skylake_scaler_disable(intel_crtc);
5029 	else
5030 		ironlake_pfit_disable(intel_crtc, false);
5031 
5032 	if (!transcoder_is_dsi(cpu_transcoder))
5033 		intel_ddi_disable_pipe_clock(intel_crtc);
5034 
5035 	for_each_encoder_on_crtc(dev, crtc, encoder)
5036 		if (encoder->post_disable)
5037 			encoder->post_disable(encoder);
5038 
5039 	if (intel_crtc->config->has_pch_encoder) {
5040 		lpt_disable_pch_transcoder(dev_priv);
5041 		lpt_disable_iclkip(dev_priv);
5042 		intel_ddi_fdi_disable(crtc);
5043 
5044 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5045 						      true);
5046 	}
5047 }
5048 
5049 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5050 {
5051 	struct drm_device *dev = crtc->base.dev;
5052 	struct drm_i915_private *dev_priv = to_i915(dev);
5053 	struct intel_crtc_state *pipe_config = crtc->config;
5054 
5055 	if (!pipe_config->gmch_pfit.control)
5056 		return;
5057 
5058 	/*
5059 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5060 	 * according to register description and PRM.
5061 	 */
5062 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5063 	assert_pipe_disabled(dev_priv, crtc->pipe);
5064 
5065 	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5066 	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5067 
5068 	/* Border color in case we don't scale up to the full screen. Black by
5069 	 * default, change to something else for debugging. */
5070 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5071 }
5072 
5073 static enum intel_display_power_domain port_to_power_domain(enum port port)
5074 {
5075 	switch (port) {
5076 	case PORT_A:
5077 		return POWER_DOMAIN_PORT_DDI_A_LANES;
5078 	case PORT_B:
5079 		return POWER_DOMAIN_PORT_DDI_B_LANES;
5080 	case PORT_C:
5081 		return POWER_DOMAIN_PORT_DDI_C_LANES;
5082 	case PORT_D:
5083 		return POWER_DOMAIN_PORT_DDI_D_LANES;
5084 	case PORT_E:
5085 		return POWER_DOMAIN_PORT_DDI_E_LANES;
5086 	default:
5087 		MISSING_CASE(port);
5088 		return POWER_DOMAIN_PORT_OTHER;
5089 	}
5090 }
5091 
5092 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5093 {
5094 	switch (port) {
5095 	case PORT_A:
5096 		return POWER_DOMAIN_AUX_A;
5097 	case PORT_B:
5098 		return POWER_DOMAIN_AUX_B;
5099 	case PORT_C:
5100 		return POWER_DOMAIN_AUX_C;
5101 	case PORT_D:
5102 		return POWER_DOMAIN_AUX_D;
5103 	case PORT_E:
5104 		/* FIXME: Check VBT for actual wiring of PORT E */
5105 		return POWER_DOMAIN_AUX_D;
5106 	default:
5107 		MISSING_CASE(port);
5108 		return POWER_DOMAIN_AUX_A;
5109 	}
5110 }
5111 
5112 enum intel_display_power_domain
5113 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5114 {
5115 	struct drm_device *dev = intel_encoder->base.dev;
5116 	struct intel_digital_port *intel_dig_port;
5117 
5118 	switch (intel_encoder->type) {
5119 	case INTEL_OUTPUT_UNKNOWN:
5120 		/* Only DDI platforms should ever use this output type */
5121 		WARN_ON_ONCE(!HAS_DDI(dev));
5122 	case INTEL_OUTPUT_DP:
5123 	case INTEL_OUTPUT_HDMI:
5124 	case INTEL_OUTPUT_EDP:
5125 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5126 		return port_to_power_domain(intel_dig_port->port);
5127 	case INTEL_OUTPUT_DP_MST:
5128 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5129 		return port_to_power_domain(intel_dig_port->port);
5130 	case INTEL_OUTPUT_ANALOG:
5131 		return POWER_DOMAIN_PORT_CRT;
5132 	case INTEL_OUTPUT_DSI:
5133 		return POWER_DOMAIN_PORT_DSI;
5134 	default:
5135 		return POWER_DOMAIN_PORT_OTHER;
5136 	}
5137 }
5138 
5139 enum intel_display_power_domain
5140 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5141 {
5142 	struct drm_device *dev = intel_encoder->base.dev;
5143 	struct intel_digital_port *intel_dig_port;
5144 
5145 	switch (intel_encoder->type) {
5146 	case INTEL_OUTPUT_UNKNOWN:
5147 	case INTEL_OUTPUT_HDMI:
5148 		/*
5149 		 * Only DDI platforms should ever use these output types.
5150 		 * We can get here after the HDMI detect code has already set
5151 		 * the type of the shared encoder. Since we can't be sure
5152 		 * what's the status of the given connectors, play safe and
5153 		 * run the DP detection too.
5154 		 */
5155 		WARN_ON_ONCE(!HAS_DDI(dev));
5156 	case INTEL_OUTPUT_DP:
5157 	case INTEL_OUTPUT_EDP:
5158 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5159 		return port_to_aux_power_domain(intel_dig_port->port);
5160 	case INTEL_OUTPUT_DP_MST:
5161 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5162 		return port_to_aux_power_domain(intel_dig_port->port);
5163 	default:
5164 		MISSING_CASE(intel_encoder->type);
5165 		return POWER_DOMAIN_AUX_A;
5166 	}
5167 }
5168 
5169 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5170 					    struct intel_crtc_state *crtc_state)
5171 {
5172 	struct drm_device *dev = crtc->dev;
5173 	struct drm_encoder *encoder;
5174 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5175 	enum i915_pipe pipe = intel_crtc->pipe;
5176 	unsigned long mask;
5177 	enum transcoder transcoder = crtc_state->cpu_transcoder;
5178 
5179 	if (!crtc_state->base.active)
5180 		return 0;
5181 
5182 	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5183 	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5184 	if (crtc_state->pch_pfit.enabled ||
5185 	    crtc_state->pch_pfit.force_thru)
5186 		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5187 
5188 	drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5189 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5190 
5191 		mask |= BIT(intel_display_port_power_domain(intel_encoder));
5192 	}
5193 
5194 	if (crtc_state->shared_dpll)
5195 		mask |= BIT(POWER_DOMAIN_PLLS);
5196 
5197 	return mask;
5198 }
5199 
5200 static unsigned long
5201 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5202 			       struct intel_crtc_state *crtc_state)
5203 {
5204 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5205 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5206 	enum intel_display_power_domain domain;
5207 	unsigned long domains, new_domains, old_domains;
5208 
5209 	old_domains = intel_crtc->enabled_power_domains;
5210 	intel_crtc->enabled_power_domains = new_domains =
5211 		get_crtc_power_domains(crtc, crtc_state);
5212 
5213 	domains = new_domains & ~old_domains;
5214 
5215 	for_each_power_domain(domain, domains)
5216 		intel_display_power_get(dev_priv, domain);
5217 
5218 	return old_domains & ~new_domains;
5219 }
5220 
5221 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5222 				      unsigned long domains)
5223 {
5224 	enum intel_display_power_domain domain;
5225 
5226 	for_each_power_domain(domain, domains)
5227 		intel_display_power_put(dev_priv, domain);
5228 }
5229 
5230 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5231 {
5232 	int max_cdclk_freq = dev_priv->max_cdclk_freq;
5233 
5234 	if (INTEL_INFO(dev_priv)->gen >= 9 ||
5235 	    IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5236 		return max_cdclk_freq;
5237 	else if (IS_CHERRYVIEW(dev_priv))
5238 		return max_cdclk_freq*95/100;
5239 	else if (INTEL_INFO(dev_priv)->gen < 4)
5240 		return 2*max_cdclk_freq*90/100;
5241 	else
5242 		return max_cdclk_freq*90/100;
5243 }
5244 
5245 static int skl_calc_cdclk(int max_pixclk, int vco);
5246 
5247 static void intel_update_max_cdclk(struct drm_device *dev)
5248 {
5249 	struct drm_i915_private *dev_priv = to_i915(dev);
5250 
5251 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5252 		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5253 		int max_cdclk, vco;
5254 
5255 		vco = dev_priv->skl_preferred_vco_freq;
5256 		WARN_ON(vco != 8100000 && vco != 8640000);
5257 
5258 		/*
5259 		 * Use the lower (vco 8640) cdclk values as a
5260 		 * first guess. skl_calc_cdclk() will correct it
5261 		 * if the preferred vco is 8100 instead.
5262 		 */
5263 		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5264 			max_cdclk = 617143;
5265 		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5266 			max_cdclk = 540000;
5267 		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5268 			max_cdclk = 432000;
5269 		else
5270 			max_cdclk = 308571;
5271 
5272 		dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5273 	} else if (IS_BROXTON(dev)) {
5274 		dev_priv->max_cdclk_freq = 624000;
5275 	} else if (IS_BROADWELL(dev))  {
5276 		/*
5277 		 * FIXME with extra cooling we can allow
5278 		 * 540 MHz for ULX and 675 Mhz for ULT.
5279 		 * How can we know if extra cooling is
5280 		 * available? PCI ID, VTB, something else?
5281 		 */
5282 		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5283 			dev_priv->max_cdclk_freq = 450000;
5284 		else if (IS_BDW_ULX(dev))
5285 			dev_priv->max_cdclk_freq = 450000;
5286 		else if (IS_BDW_ULT(dev))
5287 			dev_priv->max_cdclk_freq = 540000;
5288 		else
5289 			dev_priv->max_cdclk_freq = 675000;
5290 	} else if (IS_CHERRYVIEW(dev)) {
5291 		dev_priv->max_cdclk_freq = 320000;
5292 	} else if (IS_VALLEYVIEW(dev)) {
5293 		dev_priv->max_cdclk_freq = 400000;
5294 	} else {
5295 		/* otherwise assume cdclk is fixed */
5296 		dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5297 	}
5298 
5299 	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5300 
5301 	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5302 			 dev_priv->max_cdclk_freq);
5303 
5304 	DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5305 			 dev_priv->max_dotclk_freq);
5306 }
5307 
5308 static void intel_update_cdclk(struct drm_device *dev)
5309 {
5310 	struct drm_i915_private *dev_priv = to_i915(dev);
5311 
5312 	dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5313 
5314 	if (INTEL_GEN(dev_priv) >= 9)
5315 		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5316 				 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5317 				 dev_priv->cdclk_pll.ref);
5318 	else
5319 		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5320 				 dev_priv->cdclk_freq);
5321 
5322 	/*
5323 	 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5324 	 * Programmng [sic] note: bit[9:2] should be programmed to the number
5325 	 * of cdclk that generates 4MHz reference clock freq which is used to
5326 	 * generate GMBus clock. This will vary with the cdclk freq.
5327 	 */
5328 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5329 		I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5330 }
5331 
5332 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5333 static int skl_cdclk_decimal(int cdclk)
5334 {
5335 	return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5336 }
5337 
5338 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5339 {
5340 	int ratio;
5341 
5342 	if (cdclk == dev_priv->cdclk_pll.ref)
5343 		return 0;
5344 
5345 	switch (cdclk) {
5346 	default:
5347 		MISSING_CASE(cdclk);
5348 	case 144000:
5349 	case 288000:
5350 	case 384000:
5351 	case 576000:
5352 		ratio = 60;
5353 		break;
5354 	case 624000:
5355 		ratio = 65;
5356 		break;
5357 	}
5358 
5359 	return dev_priv->cdclk_pll.ref * ratio;
5360 }
5361 
5362 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5363 {
5364 	I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5365 
5366 	/* Timeout 200us */
5367 	if (intel_wait_for_register(dev_priv,
5368 				    BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5369 				    1))
5370 		DRM_ERROR("timeout waiting for DE PLL unlock\n");
5371 
5372 	dev_priv->cdclk_pll.vco = 0;
5373 }
5374 
5375 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5376 {
5377 	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5378 	u32 val;
5379 
5380 	val = I915_READ(BXT_DE_PLL_CTL);
5381 	val &= ~BXT_DE_PLL_RATIO_MASK;
5382 	val |= BXT_DE_PLL_RATIO(ratio);
5383 	I915_WRITE(BXT_DE_PLL_CTL, val);
5384 
5385 	I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5386 
5387 	/* Timeout 200us */
5388 	if (intel_wait_for_register(dev_priv,
5389 				    BXT_DE_PLL_ENABLE,
5390 				    BXT_DE_PLL_LOCK,
5391 				    BXT_DE_PLL_LOCK,
5392 				    1))
5393 		DRM_ERROR("timeout waiting for DE PLL lock\n");
5394 
5395 	dev_priv->cdclk_pll.vco = vco;
5396 }
5397 
5398 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5399 {
5400 	u32 val, divider;
5401 	int vco, ret;
5402 
5403 	vco = bxt_de_pll_vco(dev_priv, cdclk);
5404 
5405 	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5406 
5407 	/* cdclk = vco / 2 / div{1,1.5,2,4} */
5408 	switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5409 	case 8:
5410 		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5411 		break;
5412 	case 4:
5413 		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5414 		break;
5415 	case 3:
5416 		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5417 		break;
5418 	case 2:
5419 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5420 		break;
5421 	default:
5422 		WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5423 		WARN_ON(vco != 0);
5424 
5425 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5426 		break;
5427 	}
5428 
5429 	/* Inform power controller of upcoming frequency change */
5430 	mutex_lock(&dev_priv->rps.hw_lock);
5431 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5432 				      0x80000000);
5433 	mutex_unlock(&dev_priv->rps.hw_lock);
5434 
5435 	if (ret) {
5436 		DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5437 			  ret, cdclk);
5438 		return;
5439 	}
5440 
5441 	if (dev_priv->cdclk_pll.vco != 0 &&
5442 	    dev_priv->cdclk_pll.vco != vco)
5443 		bxt_de_pll_disable(dev_priv);
5444 
5445 	if (dev_priv->cdclk_pll.vco != vco)
5446 		bxt_de_pll_enable(dev_priv, vco);
5447 
5448 	val = divider | skl_cdclk_decimal(cdclk);
5449 	/*
5450 	 * FIXME if only the cd2x divider needs changing, it could be done
5451 	 * without shutting off the pipe (if only one pipe is active).
5452 	 */
5453 	val |= BXT_CDCLK_CD2X_PIPE_NONE;
5454 	/*
5455 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5456 	 * enable otherwise.
5457 	 */
5458 	if (cdclk >= 500000)
5459 		val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5460 	I915_WRITE(CDCLK_CTL, val);
5461 
5462 	mutex_lock(&dev_priv->rps.hw_lock);
5463 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5464 				      DIV_ROUND_UP(cdclk, 25000));
5465 	mutex_unlock(&dev_priv->rps.hw_lock);
5466 
5467 	if (ret) {
5468 		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5469 			  ret, cdclk);
5470 		return;
5471 	}
5472 
5473 	intel_update_cdclk(&dev_priv->drm);
5474 }
5475 
5476 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
5477 {
5478 	u32 cdctl, expected;
5479 
5480 	intel_update_cdclk(&dev_priv->drm);
5481 
5482 	if (dev_priv->cdclk_pll.vco == 0 ||
5483 	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5484 		goto sanitize;
5485 
5486 	/* DPLL okay; verify the cdclock
5487 	 *
5488 	 * Some BIOS versions leave an incorrect decimal frequency value and
5489 	 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5490 	 * so sanitize this register.
5491 	 */
5492 	cdctl = I915_READ(CDCLK_CTL);
5493 	/*
5494 	 * Let's ignore the pipe field, since BIOS could have configured the
5495 	 * dividers both synching to an active pipe, or asynchronously
5496 	 * (PIPE_NONE).
5497 	 */
5498 	cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5499 
5500 	expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5501 		   skl_cdclk_decimal(dev_priv->cdclk_freq);
5502 	/*
5503 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5504 	 * enable otherwise.
5505 	 */
5506 	if (dev_priv->cdclk_freq >= 500000)
5507 		expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5508 
5509 	if (cdctl == expected)
5510 		/* All well; nothing to sanitize */
5511 		return;
5512 
5513 sanitize:
5514 	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5515 
5516 	/* force cdclk programming */
5517 	dev_priv->cdclk_freq = 0;
5518 
5519 	/* force full PLL disable + enable */
5520 	dev_priv->cdclk_pll.vco = -1;
5521 }
5522 
5523 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
5524 {
5525 	bxt_sanitize_cdclk(dev_priv);
5526 
5527 	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
5528 		return;
5529 
5530 	/*
5531 	 * FIXME:
5532 	 * - The initial CDCLK needs to be read from VBT.
5533 	 *   Need to make this change after VBT has changes for BXT.
5534 	 */
5535 	bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
5536 }
5537 
5538 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
5539 {
5540 	bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
5541 }
5542 
5543 static int skl_calc_cdclk(int max_pixclk, int vco)
5544 {
5545 	if (vco == 8640000) {
5546 		if (max_pixclk > 540000)
5547 			return 617143;
5548 		else if (max_pixclk > 432000)
5549 			return 540000;
5550 		else if (max_pixclk > 308571)
5551 			return 432000;
5552 		else
5553 			return 308571;
5554 	} else {
5555 		if (max_pixclk > 540000)
5556 			return 675000;
5557 		else if (max_pixclk > 450000)
5558 			return 540000;
5559 		else if (max_pixclk > 337500)
5560 			return 450000;
5561 		else
5562 			return 337500;
5563 	}
5564 }
5565 
5566 static void
5567 skl_dpll0_update(struct drm_i915_private *dev_priv)
5568 {
5569 	u32 val;
5570 
5571 	dev_priv->cdclk_pll.ref = 24000;
5572 	dev_priv->cdclk_pll.vco = 0;
5573 
5574 	val = I915_READ(LCPLL1_CTL);
5575 	if ((val & LCPLL_PLL_ENABLE) == 0)
5576 		return;
5577 
5578 	if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
5579 		return;
5580 
5581 	val = I915_READ(DPLL_CTRL1);
5582 
5583 	if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
5584 			    DPLL_CTRL1_SSC(SKL_DPLL0) |
5585 			    DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
5586 		    DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
5587 		return;
5588 
5589 	switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5590 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5591 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5592 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5593 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
5594 		dev_priv->cdclk_pll.vco = 8100000;
5595 		break;
5596 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5597 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
5598 		dev_priv->cdclk_pll.vco = 8640000;
5599 		break;
5600 	default:
5601 		MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5602 		break;
5603 	}
5604 }
5605 
5606 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5607 {
5608 	bool changed = dev_priv->skl_preferred_vco_freq != vco;
5609 
5610 	dev_priv->skl_preferred_vco_freq = vco;
5611 
5612 	if (changed)
5613 		intel_update_max_cdclk(&dev_priv->drm);
5614 }
5615 
5616 static void
5617 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5618 {
5619 	int min_cdclk = skl_calc_cdclk(0, vco);
5620 	u32 val;
5621 
5622 	WARN_ON(vco != 8100000 && vco != 8640000);
5623 
5624 	/* select the minimum CDCLK before enabling DPLL 0 */
5625 	val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5626 	I915_WRITE(CDCLK_CTL, val);
5627 	POSTING_READ(CDCLK_CTL);
5628 
5629 	/*
5630 	 * We always enable DPLL0 with the lowest link rate possible, but still
5631 	 * taking into account the VCO required to operate the eDP panel at the
5632 	 * desired frequency. The usual DP link rates operate with a VCO of
5633 	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5634 	 * The modeset code is responsible for the selection of the exact link
5635 	 * rate later on, with the constraint of choosing a frequency that
5636 	 * works with vco.
5637 	 */
5638 	val = I915_READ(DPLL_CTRL1);
5639 
5640 	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5641 		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5642 	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5643 	if (vco == 8640000)
5644 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5645 					    SKL_DPLL0);
5646 	else
5647 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5648 					    SKL_DPLL0);
5649 
5650 	I915_WRITE(DPLL_CTRL1, val);
5651 	POSTING_READ(DPLL_CTRL1);
5652 
5653 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5654 
5655 	if (intel_wait_for_register(dev_priv,
5656 				    LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
5657 				    5))
5658 		DRM_ERROR("DPLL0 not locked\n");
5659 
5660 	dev_priv->cdclk_pll.vco = vco;
5661 
5662 	/* We'll want to keep using the current vco from now on. */
5663 	skl_set_preferred_cdclk_vco(dev_priv, vco);
5664 }
5665 
5666 static void
5667 skl_dpll0_disable(struct drm_i915_private *dev_priv)
5668 {
5669 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5670 	if (intel_wait_for_register(dev_priv,
5671 				   LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
5672 				   1))
5673 		DRM_ERROR("Couldn't disable DPLL0\n");
5674 
5675 	dev_priv->cdclk_pll.vco = 0;
5676 }
5677 
5678 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5679 {
5680 	int ret;
5681 	u32 val;
5682 
5683 	/* inform PCU we want to change CDCLK */
5684 	val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5685 	mutex_lock(&dev_priv->rps.hw_lock);
5686 	ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5687 	mutex_unlock(&dev_priv->rps.hw_lock);
5688 
5689 	return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5690 }
5691 
5692 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5693 {
5694 	unsigned int i;
5695 
5696 	for (i = 0; i < 15; i++) {
5697 		if (skl_cdclk_pcu_ready(dev_priv))
5698 			return true;
5699 		udelay(10);
5700 	}
5701 
5702 	return false;
5703 }
5704 
5705 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5706 {
5707 	struct drm_device *dev = &dev_priv->drm;
5708 	u32 freq_select, pcu_ack;
5709 
5710 	WARN_ON((cdclk == 24000) != (vco == 0));
5711 
5712 	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5713 
5714 	if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5715 		DRM_ERROR("failed to inform PCU about cdclk change\n");
5716 		return;
5717 	}
5718 
5719 	/* set CDCLK_CTL */
5720 	switch (cdclk) {
5721 	case 450000:
5722 	case 432000:
5723 		freq_select = CDCLK_FREQ_450_432;
5724 		pcu_ack = 1;
5725 		break;
5726 	case 540000:
5727 		freq_select = CDCLK_FREQ_540;
5728 		pcu_ack = 2;
5729 		break;
5730 	case 308571:
5731 	case 337500:
5732 	default:
5733 		freq_select = CDCLK_FREQ_337_308;
5734 		pcu_ack = 0;
5735 		break;
5736 	case 617143:
5737 	case 675000:
5738 		freq_select = CDCLK_FREQ_675_617;
5739 		pcu_ack = 3;
5740 		break;
5741 	}
5742 
5743 	if (dev_priv->cdclk_pll.vco != 0 &&
5744 	    dev_priv->cdclk_pll.vco != vco)
5745 		skl_dpll0_disable(dev_priv);
5746 
5747 	if (dev_priv->cdclk_pll.vco != vco)
5748 		skl_dpll0_enable(dev_priv, vco);
5749 
5750 	I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5751 	POSTING_READ(CDCLK_CTL);
5752 
5753 	/* inform PCU of the change */
5754 	mutex_lock(&dev_priv->rps.hw_lock);
5755 	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5756 	mutex_unlock(&dev_priv->rps.hw_lock);
5757 
5758 	intel_update_cdclk(dev);
5759 }
5760 
5761 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
5762 
5763 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5764 {
5765 	skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5766 }
5767 
5768 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5769 {
5770 	int cdclk, vco;
5771 
5772 	skl_sanitize_cdclk(dev_priv);
5773 
5774 	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
5775 		/*
5776 		 * Use the current vco as our initial
5777 		 * guess as to what the preferred vco is.
5778 		 */
5779 		if (dev_priv->skl_preferred_vco_freq == 0)
5780 			skl_set_preferred_cdclk_vco(dev_priv,
5781 						    dev_priv->cdclk_pll.vco);
5782 		return;
5783 	}
5784 
5785 	vco = dev_priv->skl_preferred_vco_freq;
5786 	if (vco == 0)
5787 		vco = 8100000;
5788 	cdclk = skl_calc_cdclk(0, vco);
5789 
5790 	skl_set_cdclk(dev_priv, cdclk, vco);
5791 }
5792 
5793 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5794 {
5795 	uint32_t cdctl, expected;
5796 
5797 	/*
5798 	 * check if the pre-os intialized the display
5799 	 * There is SWF18 scratchpad register defined which is set by the
5800 	 * pre-os which can be used by the OS drivers to check the status
5801 	 */
5802 	if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5803 		goto sanitize;
5804 
5805 	intel_update_cdclk(&dev_priv->drm);
5806 	/* Is PLL enabled and locked ? */
5807 	if (dev_priv->cdclk_pll.vco == 0 ||
5808 	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5809 		goto sanitize;
5810 
5811 	/* DPLL okay; verify the cdclock
5812 	 *
5813 	 * Noticed in some instances that the freq selection is correct but
5814 	 * decimal part is programmed wrong from BIOS where pre-os does not
5815 	 * enable display. Verify the same as well.
5816 	 */
5817 	cdctl = I915_READ(CDCLK_CTL);
5818 	expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
5819 		skl_cdclk_decimal(dev_priv->cdclk_freq);
5820 	if (cdctl == expected)
5821 		/* All well; nothing to sanitize */
5822 		return;
5823 
5824 sanitize:
5825 	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5826 
5827 	/* force cdclk programming */
5828 	dev_priv->cdclk_freq = 0;
5829 	/* force full PLL disable + enable */
5830 	dev_priv->cdclk_pll.vco = -1;
5831 }
5832 
5833 /* Adjust CDclk dividers to allow high res or save power if possible */
5834 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5835 {
5836 	struct drm_i915_private *dev_priv = to_i915(dev);
5837 	u32 val, cmd;
5838 
5839 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5840 					!= dev_priv->cdclk_freq);
5841 
5842 	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5843 		cmd = 2;
5844 	else if (cdclk == 266667)
5845 		cmd = 1;
5846 	else
5847 		cmd = 0;
5848 
5849 	mutex_lock(&dev_priv->rps.hw_lock);
5850 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5851 	val &= ~DSPFREQGUAR_MASK;
5852 	val |= (cmd << DSPFREQGUAR_SHIFT);
5853 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5854 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5855 		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5856 		     50)) {
5857 		DRM_ERROR("timed out waiting for CDclk change\n");
5858 	}
5859 	mutex_unlock(&dev_priv->rps.hw_lock);
5860 
5861 	mutex_lock(&dev_priv->sb_lock);
5862 
5863 	if (cdclk == 400000) {
5864 		u32 divider;
5865 
5866 		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5867 
5868 		/* adjust cdclk divider */
5869 		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5870 		val &= ~CCK_FREQUENCY_VALUES;
5871 		val |= divider;
5872 		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5873 
5874 		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5875 			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5876 			     50))
5877 			DRM_ERROR("timed out waiting for CDclk change\n");
5878 	}
5879 
5880 	/* adjust self-refresh exit latency value */
5881 	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5882 	val &= ~0x7f;
5883 
5884 	/*
5885 	 * For high bandwidth configs, we set a higher latency in the bunit
5886 	 * so that the core display fetch happens in time to avoid underruns.
5887 	 */
5888 	if (cdclk == 400000)
5889 		val |= 4500 / 250; /* 4.5 usec */
5890 	else
5891 		val |= 3000 / 250; /* 3.0 usec */
5892 	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5893 
5894 	mutex_unlock(&dev_priv->sb_lock);
5895 
5896 	intel_update_cdclk(dev);
5897 }
5898 
5899 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5900 {
5901 	struct drm_i915_private *dev_priv = to_i915(dev);
5902 	u32 val, cmd;
5903 
5904 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5905 						!= dev_priv->cdclk_freq);
5906 
5907 	switch (cdclk) {
5908 	case 333333:
5909 	case 320000:
5910 	case 266667:
5911 	case 200000:
5912 		break;
5913 	default:
5914 		MISSING_CASE(cdclk);
5915 		return;
5916 	}
5917 
5918 	/*
5919 	 * Specs are full of misinformation, but testing on actual
5920 	 * hardware has shown that we just need to write the desired
5921 	 * CCK divider into the Punit register.
5922 	 */
5923 	cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5924 
5925 	mutex_lock(&dev_priv->rps.hw_lock);
5926 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5927 	val &= ~DSPFREQGUAR_MASK_CHV;
5928 	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5929 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5930 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5931 		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5932 		     50)) {
5933 		DRM_ERROR("timed out waiting for CDclk change\n");
5934 	}
5935 	mutex_unlock(&dev_priv->rps.hw_lock);
5936 
5937 	intel_update_cdclk(dev);
5938 }
5939 
5940 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5941 				 int max_pixclk)
5942 {
5943 	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5944 	int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5945 
5946 	/*
5947 	 * Really only a few cases to deal with, as only 4 CDclks are supported:
5948 	 *   200MHz
5949 	 *   267MHz
5950 	 *   320/333MHz (depends on HPLL freq)
5951 	 *   400MHz (VLV only)
5952 	 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5953 	 * of the lower bin and adjust if needed.
5954 	 *
5955 	 * We seem to get an unstable or solid color picture at 200MHz.
5956 	 * Not sure what's wrong. For now use 200MHz only when all pipes
5957 	 * are off.
5958 	 */
5959 	if (!IS_CHERRYVIEW(dev_priv) &&
5960 	    max_pixclk > freq_320*limit/100)
5961 		return 400000;
5962 	else if (max_pixclk > 266667*limit/100)
5963 		return freq_320;
5964 	else if (max_pixclk > 0)
5965 		return 266667;
5966 	else
5967 		return 200000;
5968 }
5969 
5970 static int bxt_calc_cdclk(int max_pixclk)
5971 {
5972 	if (max_pixclk > 576000)
5973 		return 624000;
5974 	else if (max_pixclk > 384000)
5975 		return 576000;
5976 	else if (max_pixclk > 288000)
5977 		return 384000;
5978 	else if (max_pixclk > 144000)
5979 		return 288000;
5980 	else
5981 		return 144000;
5982 }
5983 
5984 /* Compute the max pixel clock for new configuration. */
5985 static int intel_mode_max_pixclk(struct drm_device *dev,
5986 				 struct drm_atomic_state *state)
5987 {
5988 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5989 	struct drm_i915_private *dev_priv = to_i915(dev);
5990 	struct drm_crtc *crtc;
5991 	struct drm_crtc_state *crtc_state;
5992 	unsigned max_pixclk = 0, i;
5993 	enum i915_pipe pipe;
5994 
5995 	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5996 	       sizeof(intel_state->min_pixclk));
5997 
5998 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
5999 		int pixclk = 0;
6000 
6001 		if (crtc_state->enable)
6002 			pixclk = crtc_state->adjusted_mode.crtc_clock;
6003 
6004 		intel_state->min_pixclk[i] = pixclk;
6005 	}
6006 
6007 	for_each_pipe(dev_priv, pipe)
6008 		max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6009 
6010 	return max_pixclk;
6011 }
6012 
6013 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6014 {
6015 	struct drm_device *dev = state->dev;
6016 	struct drm_i915_private *dev_priv = to_i915(dev);
6017 	int max_pixclk = intel_mode_max_pixclk(dev, state);
6018 	struct intel_atomic_state *intel_state =
6019 		to_intel_atomic_state(state);
6020 
6021 	intel_state->cdclk = intel_state->dev_cdclk =
6022 		valleyview_calc_cdclk(dev_priv, max_pixclk);
6023 
6024 	if (!intel_state->active_crtcs)
6025 		intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6026 
6027 	return 0;
6028 }
6029 
6030 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6031 {
6032 	int max_pixclk = ilk_max_pixel_rate(state);
6033 	struct intel_atomic_state *intel_state =
6034 		to_intel_atomic_state(state);
6035 
6036 	intel_state->cdclk = intel_state->dev_cdclk =
6037 		bxt_calc_cdclk(max_pixclk);
6038 
6039 	if (!intel_state->active_crtcs)
6040 		intel_state->dev_cdclk = bxt_calc_cdclk(0);
6041 
6042 	return 0;
6043 }
6044 
6045 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6046 {
6047 	unsigned int credits, default_credits;
6048 
6049 	if (IS_CHERRYVIEW(dev_priv))
6050 		default_credits = PFI_CREDIT(12);
6051 	else
6052 		default_credits = PFI_CREDIT(8);
6053 
6054 	if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6055 		/* CHV suggested value is 31 or 63 */
6056 		if (IS_CHERRYVIEW(dev_priv))
6057 			credits = PFI_CREDIT_63;
6058 		else
6059 			credits = PFI_CREDIT(15);
6060 	} else {
6061 		credits = default_credits;
6062 	}
6063 
6064 	/*
6065 	 * WA - write default credits before re-programming
6066 	 * FIXME: should we also set the resend bit here?
6067 	 */
6068 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6069 		   default_credits);
6070 
6071 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6072 		   credits | PFI_CREDIT_RESEND);
6073 
6074 	/*
6075 	 * FIXME is this guaranteed to clear
6076 	 * immediately or should we poll for it?
6077 	 */
6078 	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6079 }
6080 
6081 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6082 {
6083 	struct drm_device *dev = old_state->dev;
6084 	struct drm_i915_private *dev_priv = to_i915(dev);
6085 	struct intel_atomic_state *old_intel_state =
6086 		to_intel_atomic_state(old_state);
6087 	unsigned req_cdclk = old_intel_state->dev_cdclk;
6088 
6089 	/*
6090 	 * FIXME: We can end up here with all power domains off, yet
6091 	 * with a CDCLK frequency other than the minimum. To account
6092 	 * for this take the PIPE-A power domain, which covers the HW
6093 	 * blocks needed for the following programming. This can be
6094 	 * removed once it's guaranteed that we get here either with
6095 	 * the minimum CDCLK set, or the required power domains
6096 	 * enabled.
6097 	 */
6098 	intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6099 
6100 	if (IS_CHERRYVIEW(dev))
6101 		cherryview_set_cdclk(dev, req_cdclk);
6102 	else
6103 		valleyview_set_cdclk(dev, req_cdclk);
6104 
6105 	vlv_program_pfi_credits(dev_priv);
6106 
6107 	intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6108 }
6109 
6110 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6111 {
6112 	struct drm_device *dev = crtc->dev;
6113 	struct drm_i915_private *dev_priv = to_i915(dev);
6114 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6115 	struct intel_encoder *encoder;
6116 	struct intel_crtc_state *pipe_config =
6117 		to_intel_crtc_state(crtc->state);
6118 	int pipe = intel_crtc->pipe;
6119 
6120 	if (WARN_ON(intel_crtc->active))
6121 		return;
6122 
6123 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
6124 		intel_dp_set_m_n(intel_crtc, M1_N1);
6125 
6126 	intel_set_pipe_timings(intel_crtc);
6127 	intel_set_pipe_src_size(intel_crtc);
6128 
6129 	if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6130 		struct drm_i915_private *dev_priv = to_i915(dev);
6131 
6132 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6133 		I915_WRITE(CHV_CANVAS(pipe), 0);
6134 	}
6135 
6136 	i9xx_set_pipeconf(intel_crtc);
6137 
6138 	intel_crtc->active = true;
6139 
6140 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6141 
6142 	for_each_encoder_on_crtc(dev, crtc, encoder)
6143 		if (encoder->pre_pll_enable)
6144 			encoder->pre_pll_enable(encoder);
6145 
6146 	if (IS_CHERRYVIEW(dev)) {
6147 		chv_prepare_pll(intel_crtc, intel_crtc->config);
6148 		chv_enable_pll(intel_crtc, intel_crtc->config);
6149 	} else {
6150 		vlv_prepare_pll(intel_crtc, intel_crtc->config);
6151 		vlv_enable_pll(intel_crtc, intel_crtc->config);
6152 	}
6153 
6154 	for_each_encoder_on_crtc(dev, crtc, encoder)
6155 		if (encoder->pre_enable)
6156 			encoder->pre_enable(encoder);
6157 
6158 	i9xx_pfit_enable(intel_crtc);
6159 
6160 	intel_color_load_luts(&pipe_config->base);
6161 
6162 	intel_update_watermarks(crtc);
6163 	intel_enable_pipe(intel_crtc);
6164 
6165 	assert_vblank_disabled(crtc);
6166 	drm_crtc_vblank_on(crtc);
6167 
6168 	for_each_encoder_on_crtc(dev, crtc, encoder)
6169 		encoder->enable(encoder);
6170 }
6171 
6172 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6173 {
6174 	struct drm_device *dev = crtc->base.dev;
6175 	struct drm_i915_private *dev_priv = to_i915(dev);
6176 
6177 	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6178 	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6179 }
6180 
6181 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6182 {
6183 	struct drm_device *dev = crtc->dev;
6184 	struct drm_i915_private *dev_priv = to_i915(dev);
6185 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6186 	struct intel_encoder *encoder;
6187 	struct intel_crtc_state *pipe_config =
6188 		to_intel_crtc_state(crtc->state);
6189 	enum i915_pipe pipe = intel_crtc->pipe;
6190 
6191 	if (WARN_ON(intel_crtc->active))
6192 		return;
6193 
6194 	i9xx_set_pll_dividers(intel_crtc);
6195 
6196 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
6197 		intel_dp_set_m_n(intel_crtc, M1_N1);
6198 
6199 	intel_set_pipe_timings(intel_crtc);
6200 	intel_set_pipe_src_size(intel_crtc);
6201 
6202 	i9xx_set_pipeconf(intel_crtc);
6203 
6204 	intel_crtc->active = true;
6205 
6206 	if (!IS_GEN2(dev))
6207 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6208 
6209 	for_each_encoder_on_crtc(dev, crtc, encoder)
6210 		if (encoder->pre_enable)
6211 			encoder->pre_enable(encoder);
6212 
6213 	i9xx_enable_pll(intel_crtc);
6214 
6215 	i9xx_pfit_enable(intel_crtc);
6216 
6217 	intel_color_load_luts(&pipe_config->base);
6218 
6219 	intel_update_watermarks(crtc);
6220 	intel_enable_pipe(intel_crtc);
6221 
6222 	assert_vblank_disabled(crtc);
6223 	drm_crtc_vblank_on(crtc);
6224 
6225 	for_each_encoder_on_crtc(dev, crtc, encoder)
6226 		encoder->enable(encoder);
6227 }
6228 
6229 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6230 {
6231 	struct drm_device *dev = crtc->base.dev;
6232 	struct drm_i915_private *dev_priv = to_i915(dev);
6233 
6234 	if (!crtc->config->gmch_pfit.control)
6235 		return;
6236 
6237 	assert_pipe_disabled(dev_priv, crtc->pipe);
6238 
6239 	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6240 			 I915_READ(PFIT_CONTROL));
6241 	I915_WRITE(PFIT_CONTROL, 0);
6242 }
6243 
6244 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6245 {
6246 	struct drm_device *dev = crtc->dev;
6247 	struct drm_i915_private *dev_priv = to_i915(dev);
6248 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6249 	struct intel_encoder *encoder;
6250 	int pipe = intel_crtc->pipe;
6251 
6252 	/*
6253 	 * On gen2 planes are double buffered but the pipe isn't, so we must
6254 	 * wait for planes to fully turn off before disabling the pipe.
6255 	 */
6256 	if (IS_GEN2(dev))
6257 		intel_wait_for_vblank(dev, pipe);
6258 
6259 	for_each_encoder_on_crtc(dev, crtc, encoder)
6260 		encoder->disable(encoder);
6261 
6262 	drm_crtc_vblank_off(crtc);
6263 	assert_vblank_disabled(crtc);
6264 
6265 	intel_disable_pipe(intel_crtc);
6266 
6267 	i9xx_pfit_disable(intel_crtc);
6268 
6269 	for_each_encoder_on_crtc(dev, crtc, encoder)
6270 		if (encoder->post_disable)
6271 			encoder->post_disable(encoder);
6272 
6273 	if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6274 		if (IS_CHERRYVIEW(dev))
6275 			chv_disable_pll(dev_priv, pipe);
6276 		else if (IS_VALLEYVIEW(dev))
6277 			vlv_disable_pll(dev_priv, pipe);
6278 		else
6279 			i9xx_disable_pll(intel_crtc);
6280 	}
6281 
6282 	for_each_encoder_on_crtc(dev, crtc, encoder)
6283 		if (encoder->post_pll_disable)
6284 			encoder->post_pll_disable(encoder);
6285 
6286 	if (!IS_GEN2(dev))
6287 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6288 }
6289 
6290 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6291 {
6292 	struct intel_encoder *encoder;
6293 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6294 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6295 	enum intel_display_power_domain domain;
6296 	unsigned long domains;
6297 
6298 	if (!intel_crtc->active)
6299 		return;
6300 
6301 	if (to_intel_plane_state(crtc->primary->state)->visible) {
6302 		WARN_ON(intel_crtc->flip_work);
6303 
6304 		intel_pre_disable_primary_noatomic(crtc);
6305 
6306 		intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6307 		to_intel_plane_state(crtc->primary->state)->visible = false;
6308 	}
6309 
6310 	dev_priv->display.crtc_disable(crtc);
6311 
6312 	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6313 		      crtc->base.id, crtc->name);
6314 
6315 	WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6316 	crtc->state->active = false;
6317 	intel_crtc->active = false;
6318 	crtc->enabled = false;
6319 	crtc->state->connector_mask = 0;
6320 	crtc->state->encoder_mask = 0;
6321 
6322 	for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6323 		encoder->base.crtc = NULL;
6324 
6325 	intel_fbc_disable(intel_crtc);
6326 	intel_update_watermarks(crtc);
6327 	intel_disable_shared_dpll(intel_crtc);
6328 
6329 	domains = intel_crtc->enabled_power_domains;
6330 	for_each_power_domain(domain, domains)
6331 		intel_display_power_put(dev_priv, domain);
6332 	intel_crtc->enabled_power_domains = 0;
6333 
6334 	dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6335 	dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6336 }
6337 
6338 /*
6339  * turn all crtc's off, but do not adjust state
6340  * This has to be paired with a call to intel_modeset_setup_hw_state.
6341  */
6342 int intel_display_suspend(struct drm_device *dev)
6343 {
6344 	struct drm_i915_private *dev_priv = to_i915(dev);
6345 	struct drm_atomic_state *state;
6346 	int ret;
6347 
6348 	state = drm_atomic_helper_suspend(dev);
6349 	ret = PTR_ERR_OR_ZERO(state);
6350 	if (ret)
6351 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6352 	else
6353 		dev_priv->modeset_restore_state = state;
6354 	return ret;
6355 }
6356 
6357 void intel_encoder_destroy(struct drm_encoder *encoder)
6358 {
6359 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6360 
6361 	drm_encoder_cleanup(encoder);
6362 	kfree(intel_encoder);
6363 }
6364 
6365 /* Cross check the actual hw state with our own modeset state tracking (and it's
6366  * internal consistency). */
6367 static void intel_connector_verify_state(struct intel_connector *connector)
6368 {
6369 	struct drm_crtc *crtc = connector->base.state->crtc;
6370 
6371 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6372 		      connector->base.base.id,
6373 		      connector->base.name);
6374 
6375 	if (connector->get_hw_state(connector)) {
6376 		struct intel_encoder *encoder = connector->encoder;
6377 		struct drm_connector_state *conn_state = connector->base.state;
6378 
6379 		I915_STATE_WARN(!crtc,
6380 			 "connector enabled without attached crtc\n");
6381 
6382 		if (!crtc)
6383 			return;
6384 
6385 		I915_STATE_WARN(!crtc->state->active,
6386 		      "connector is active, but attached crtc isn't\n");
6387 
6388 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6389 			return;
6390 
6391 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6392 			"atomic encoder doesn't match attached encoder\n");
6393 
6394 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6395 			"attached encoder crtc differs from connector crtc\n");
6396 	} else {
6397 		I915_STATE_WARN(crtc && crtc->state->active,
6398 			"attached crtc is active, but connector isn't\n");
6399 		I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6400 			"best encoder set without crtc!\n");
6401 	}
6402 }
6403 
6404 int intel_connector_init(struct intel_connector *connector)
6405 {
6406 	drm_atomic_helper_connector_reset(&connector->base);
6407 
6408 	if (!connector->base.state)
6409 		return -ENOMEM;
6410 
6411 	return 0;
6412 }
6413 
6414 struct intel_connector *intel_connector_alloc(void)
6415 {
6416 	struct intel_connector *connector;
6417 
6418 	connector = kzalloc(sizeof *connector, GFP_KERNEL);
6419 	if (!connector)
6420 		return NULL;
6421 
6422 	if (intel_connector_init(connector) < 0) {
6423 		kfree(connector);
6424 		return NULL;
6425 	}
6426 
6427 	return connector;
6428 }
6429 
6430 /* Simple connector->get_hw_state implementation for encoders that support only
6431  * one connector and no cloning and hence the encoder state determines the state
6432  * of the connector. */
6433 bool intel_connector_get_hw_state(struct intel_connector *connector)
6434 {
6435 	enum i915_pipe pipe = 0;
6436 	struct intel_encoder *encoder = connector->encoder;
6437 
6438 	return encoder->get_hw_state(encoder, &pipe);
6439 }
6440 
6441 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6442 {
6443 	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6444 		return crtc_state->fdi_lanes;
6445 
6446 	return 0;
6447 }
6448 
6449 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum i915_pipe pipe,
6450 				     struct intel_crtc_state *pipe_config)
6451 {
6452 	struct drm_atomic_state *state = pipe_config->base.state;
6453 	struct intel_crtc *other_crtc;
6454 	struct intel_crtc_state *other_crtc_state;
6455 
6456 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6457 		      pipe_name(pipe), pipe_config->fdi_lanes);
6458 	if (pipe_config->fdi_lanes > 4) {
6459 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6460 			      pipe_name(pipe), pipe_config->fdi_lanes);
6461 		return -EINVAL;
6462 	}
6463 
6464 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6465 		if (pipe_config->fdi_lanes > 2) {
6466 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6467 				      pipe_config->fdi_lanes);
6468 			return -EINVAL;
6469 		} else {
6470 			return 0;
6471 		}
6472 	}
6473 
6474 	if (INTEL_INFO(dev)->num_pipes == 2)
6475 		return 0;
6476 
6477 	/* Ivybridge 3 pipe is really complicated */
6478 	switch (pipe) {
6479 	case PIPE_A:
6480 		return 0;
6481 	case PIPE_B:
6482 		if (pipe_config->fdi_lanes <= 2)
6483 			return 0;
6484 
6485 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6486 		other_crtc_state =
6487 			intel_atomic_get_crtc_state(state, other_crtc);
6488 		if (IS_ERR(other_crtc_state))
6489 			return PTR_ERR(other_crtc_state);
6490 
6491 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6492 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6493 				      pipe_name(pipe), pipe_config->fdi_lanes);
6494 			return -EINVAL;
6495 		}
6496 		return 0;
6497 	case PIPE_C:
6498 		if (pipe_config->fdi_lanes > 2) {
6499 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6500 				      pipe_name(pipe), pipe_config->fdi_lanes);
6501 			return -EINVAL;
6502 		}
6503 
6504 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6505 		other_crtc_state =
6506 			intel_atomic_get_crtc_state(state, other_crtc);
6507 		if (IS_ERR(other_crtc_state))
6508 			return PTR_ERR(other_crtc_state);
6509 
6510 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6511 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6512 			return -EINVAL;
6513 		}
6514 		return 0;
6515 	default:
6516 		BUG();
6517 	}
6518 }
6519 
6520 #define RETRY 1
6521 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6522 				       struct intel_crtc_state *pipe_config)
6523 {
6524 	struct drm_device *dev = intel_crtc->base.dev;
6525 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6526 	int lane, link_bw, fdi_dotclock, ret;
6527 	bool needs_recompute = false;
6528 
6529 retry:
6530 	/* FDI is a binary signal running at ~2.7GHz, encoding
6531 	 * each output octet as 10 bits. The actual frequency
6532 	 * is stored as a divider into a 100MHz clock, and the
6533 	 * mode pixel clock is stored in units of 1KHz.
6534 	 * Hence the bw of each lane in terms of the mode signal
6535 	 * is:
6536 	 */
6537 	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6538 
6539 	fdi_dotclock = adjusted_mode->crtc_clock;
6540 
6541 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6542 					   pipe_config->pipe_bpp);
6543 
6544 	pipe_config->fdi_lanes = lane;
6545 
6546 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6547 			       link_bw, &pipe_config->fdi_m_n);
6548 
6549 	ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6550 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6551 		pipe_config->pipe_bpp -= 2*3;
6552 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6553 			      pipe_config->pipe_bpp);
6554 		needs_recompute = true;
6555 		pipe_config->bw_constrained = true;
6556 
6557 		goto retry;
6558 	}
6559 
6560 	if (needs_recompute)
6561 		return RETRY;
6562 
6563 	return ret;
6564 }
6565 
6566 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6567 				     struct intel_crtc_state *pipe_config)
6568 {
6569 	if (pipe_config->pipe_bpp > 24)
6570 		return false;
6571 
6572 	/* HSW can handle pixel rate up to cdclk? */
6573 	if (IS_HASWELL(dev_priv))
6574 		return true;
6575 
6576 	/*
6577 	 * We compare against max which means we must take
6578 	 * the increased cdclk requirement into account when
6579 	 * calculating the new cdclk.
6580 	 *
6581 	 * Should measure whether using a lower cdclk w/o IPS
6582 	 */
6583 	return ilk_pipe_pixel_rate(pipe_config) <=
6584 		dev_priv->max_cdclk_freq * 95 / 100;
6585 }
6586 
6587 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6588 				   struct intel_crtc_state *pipe_config)
6589 {
6590 	struct drm_device *dev = crtc->base.dev;
6591 	struct drm_i915_private *dev_priv = to_i915(dev);
6592 
6593 	pipe_config->ips_enabled = i915.enable_ips &&
6594 		hsw_crtc_supports_ips(crtc) &&
6595 		pipe_config_supports_ips(dev_priv, pipe_config);
6596 }
6597 
6598 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6599 {
6600 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6601 
6602 	/* GDG double wide on either pipe, otherwise pipe A only */
6603 	return INTEL_INFO(dev_priv)->gen < 4 &&
6604 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6605 }
6606 
6607 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6608 				     struct intel_crtc_state *pipe_config)
6609 {
6610 	struct drm_device *dev = crtc->base.dev;
6611 	struct drm_i915_private *dev_priv = to_i915(dev);
6612 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6613 	int clock_limit = dev_priv->max_dotclk_freq;
6614 
6615 	if (INTEL_INFO(dev)->gen < 4) {
6616 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6617 
6618 		/*
6619 		 * Enable double wide mode when the dot clock
6620 		 * is > 90% of the (display) core speed.
6621 		 */
6622 		if (intel_crtc_supports_double_wide(crtc) &&
6623 		    adjusted_mode->crtc_clock > clock_limit) {
6624 			clock_limit = dev_priv->max_dotclk_freq;
6625 			pipe_config->double_wide = true;
6626 		}
6627 	}
6628 
6629 	if (adjusted_mode->crtc_clock > clock_limit) {
6630 		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6631 			      adjusted_mode->crtc_clock, clock_limit,
6632 			      yesno(pipe_config->double_wide));
6633 		return -EINVAL;
6634 	}
6635 
6636 	/*
6637 	 * Pipe horizontal size must be even in:
6638 	 * - DVO ganged mode
6639 	 * - LVDS dual channel mode
6640 	 * - Double wide pipe
6641 	 */
6642 	if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6643 	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6644 		pipe_config->pipe_src_w &= ~1;
6645 
6646 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
6647 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6648 	 */
6649 	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6650 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6651 		return -EINVAL;
6652 
6653 	if (HAS_IPS(dev))
6654 		hsw_compute_ips_config(crtc, pipe_config);
6655 
6656 	if (pipe_config->has_pch_encoder)
6657 		return ironlake_fdi_compute_config(crtc, pipe_config);
6658 
6659 	return 0;
6660 }
6661 
6662 static int skylake_get_display_clock_speed(struct drm_device *dev)
6663 {
6664 	struct drm_i915_private *dev_priv = to_i915(dev);
6665 	uint32_t cdctl;
6666 
6667 	skl_dpll0_update(dev_priv);
6668 
6669 	if (dev_priv->cdclk_pll.vco == 0)
6670 		return dev_priv->cdclk_pll.ref;
6671 
6672 	cdctl = I915_READ(CDCLK_CTL);
6673 
6674 	if (dev_priv->cdclk_pll.vco == 8640000) {
6675 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6676 		case CDCLK_FREQ_450_432:
6677 			return 432000;
6678 		case CDCLK_FREQ_337_308:
6679 			return 308571;
6680 		case CDCLK_FREQ_540:
6681 			return 540000;
6682 		case CDCLK_FREQ_675_617:
6683 			return 617143;
6684 		default:
6685 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6686 		}
6687 	} else {
6688 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6689 		case CDCLK_FREQ_450_432:
6690 			return 450000;
6691 		case CDCLK_FREQ_337_308:
6692 			return 337500;
6693 		case CDCLK_FREQ_540:
6694 			return 540000;
6695 		case CDCLK_FREQ_675_617:
6696 			return 675000;
6697 		default:
6698 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6699 		}
6700 	}
6701 
6702 	return dev_priv->cdclk_pll.ref;
6703 }
6704 
6705 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
6706 {
6707 	u32 val;
6708 
6709 	dev_priv->cdclk_pll.ref = 19200;
6710 	dev_priv->cdclk_pll.vco = 0;
6711 
6712 	val = I915_READ(BXT_DE_PLL_ENABLE);
6713 	if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
6714 		return;
6715 
6716 	if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
6717 		return;
6718 
6719 	val = I915_READ(BXT_DE_PLL_CTL);
6720 	dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
6721 		dev_priv->cdclk_pll.ref;
6722 }
6723 
6724 static int broxton_get_display_clock_speed(struct drm_device *dev)
6725 {
6726 	struct drm_i915_private *dev_priv = to_i915(dev);
6727 	u32 divider;
6728 	int div, vco;
6729 
6730 	bxt_de_pll_update(dev_priv);
6731 
6732 	vco = dev_priv->cdclk_pll.vco;
6733 	if (vco == 0)
6734 		return dev_priv->cdclk_pll.ref;
6735 
6736 	divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
6737 
6738 	switch (divider) {
6739 	case BXT_CDCLK_CD2X_DIV_SEL_1:
6740 		div = 2;
6741 		break;
6742 	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6743 		div = 3;
6744 		break;
6745 	case BXT_CDCLK_CD2X_DIV_SEL_2:
6746 		div = 4;
6747 		break;
6748 	case BXT_CDCLK_CD2X_DIV_SEL_4:
6749 		div = 8;
6750 		break;
6751 	default:
6752 		MISSING_CASE(divider);
6753 		return dev_priv->cdclk_pll.ref;
6754 	}
6755 
6756 	return DIV_ROUND_CLOSEST(vco, div);
6757 }
6758 
6759 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6760 {
6761 	struct drm_i915_private *dev_priv = to_i915(dev);
6762 	uint32_t lcpll = I915_READ(LCPLL_CTL);
6763 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6764 
6765 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6766 		return 800000;
6767 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6768 		return 450000;
6769 	else if (freq == LCPLL_CLK_FREQ_450)
6770 		return 450000;
6771 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6772 		return 540000;
6773 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6774 		return 337500;
6775 	else
6776 		return 675000;
6777 }
6778 
6779 static int haswell_get_display_clock_speed(struct drm_device *dev)
6780 {
6781 	struct drm_i915_private *dev_priv = to_i915(dev);
6782 	uint32_t lcpll = I915_READ(LCPLL_CTL);
6783 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6784 
6785 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6786 		return 800000;
6787 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6788 		return 450000;
6789 	else if (freq == LCPLL_CLK_FREQ_450)
6790 		return 450000;
6791 	else if (IS_HSW_ULT(dev))
6792 		return 337500;
6793 	else
6794 		return 540000;
6795 }
6796 
6797 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6798 {
6799 	return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6800 				      CCK_DISPLAY_CLOCK_CONTROL);
6801 }
6802 
6803 static int ilk_get_display_clock_speed(struct drm_device *dev)
6804 {
6805 	return 450000;
6806 }
6807 
6808 static int i945_get_display_clock_speed(struct drm_device *dev)
6809 {
6810 	return 400000;
6811 }
6812 
6813 static int i915_get_display_clock_speed(struct drm_device *dev)
6814 {
6815 	return 333333;
6816 }
6817 
6818 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6819 {
6820 	return 200000;
6821 }
6822 
6823 static int pnv_get_display_clock_speed(struct drm_device *dev)
6824 {
6825 	u16 gcfgc = 0;
6826 
6827 	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6828 
6829 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6830 	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6831 		return 266667;
6832 	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6833 		return 333333;
6834 	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6835 		return 444444;
6836 	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6837 		return 200000;
6838 	default:
6839 		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6840 	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6841 		return 133333;
6842 	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6843 		return 166667;
6844 	}
6845 }
6846 
6847 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6848 {
6849 	u16 gcfgc = 0;
6850 
6851 	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6852 
6853 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6854 		return 133333;
6855 	else {
6856 		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6857 		case GC_DISPLAY_CLOCK_333_MHZ:
6858 			return 333333;
6859 		default:
6860 		case GC_DISPLAY_CLOCK_190_200_MHZ:
6861 			return 190000;
6862 		}
6863 	}
6864 }
6865 
6866 static int i865_get_display_clock_speed(struct drm_device *dev)
6867 {
6868 	return 266667;
6869 }
6870 
6871 static int i85x_get_display_clock_speed(struct drm_device *dev)
6872 {
6873 	u16 hpllcc = 0;
6874 
6875 	/*
6876 	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6877 	 * encoding is different :(
6878 	 * FIXME is this the right way to detect 852GM/852GMV?
6879 	 */
6880 	if (dev->pdev->revision == 0x1)
6881 		return 133333;
6882 
6883 	pci_bus_read_config_word(dev->pdev->bus,
6884 				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6885 
6886 	/* Assume that the hardware is in the high speed state.  This
6887 	 * should be the default.
6888 	 */
6889 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6890 	case GC_CLOCK_133_200:
6891 	case GC_CLOCK_133_200_2:
6892 	case GC_CLOCK_100_200:
6893 		return 200000;
6894 	case GC_CLOCK_166_250:
6895 		return 250000;
6896 	case GC_CLOCK_100_133:
6897 		return 133333;
6898 	case GC_CLOCK_133_266:
6899 	case GC_CLOCK_133_266_2:
6900 	case GC_CLOCK_166_266:
6901 		return 266667;
6902 	}
6903 
6904 	/* Shouldn't happen */
6905 	return 0;
6906 }
6907 
6908 static int i830_get_display_clock_speed(struct drm_device *dev)
6909 {
6910 	return 133333;
6911 }
6912 
6913 static unsigned int intel_hpll_vco(struct drm_device *dev)
6914 {
6915 	struct drm_i915_private *dev_priv = to_i915(dev);
6916 	static const unsigned int blb_vco[8] = {
6917 		[0] = 3200000,
6918 		[1] = 4000000,
6919 		[2] = 5333333,
6920 		[3] = 4800000,
6921 		[4] = 6400000,
6922 	};
6923 	static const unsigned int pnv_vco[8] = {
6924 		[0] = 3200000,
6925 		[1] = 4000000,
6926 		[2] = 5333333,
6927 		[3] = 4800000,
6928 		[4] = 2666667,
6929 	};
6930 	static const unsigned int cl_vco[8] = {
6931 		[0] = 3200000,
6932 		[1] = 4000000,
6933 		[2] = 5333333,
6934 		[3] = 6400000,
6935 		[4] = 3333333,
6936 		[5] = 3566667,
6937 		[6] = 4266667,
6938 	};
6939 	static const unsigned int elk_vco[8] = {
6940 		[0] = 3200000,
6941 		[1] = 4000000,
6942 		[2] = 5333333,
6943 		[3] = 4800000,
6944 	};
6945 	static const unsigned int ctg_vco[8] = {
6946 		[0] = 3200000,
6947 		[1] = 4000000,
6948 		[2] = 5333333,
6949 		[3] = 6400000,
6950 		[4] = 2666667,
6951 		[5] = 4266667,
6952 	};
6953 	const unsigned int *vco_table;
6954 	unsigned int vco;
6955 	uint8_t tmp = 0;
6956 
6957 	/* FIXME other chipsets? */
6958 	if (IS_GM45(dev))
6959 		vco_table = ctg_vco;
6960 	else if (IS_G4X(dev))
6961 		vco_table = elk_vco;
6962 	else if (IS_CRESTLINE(dev))
6963 		vco_table = cl_vco;
6964 	else if (IS_PINEVIEW(dev))
6965 		vco_table = pnv_vco;
6966 	else if (IS_G33(dev))
6967 		vco_table = blb_vco;
6968 	else
6969 		return 0;
6970 
6971 	tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6972 
6973 	vco = vco_table[tmp & 0x7];
6974 	if (vco == 0)
6975 		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6976 	else
6977 		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6978 
6979 	return vco;
6980 }
6981 
6982 static int gm45_get_display_clock_speed(struct drm_device *dev)
6983 {
6984 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6985 	uint16_t tmp = 0;
6986 
6987 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
6988 
6989 	cdclk_sel = (tmp >> 12) & 0x1;
6990 
6991 	switch (vco) {
6992 	case 2666667:
6993 	case 4000000:
6994 	case 5333333:
6995 		return cdclk_sel ? 333333 : 222222;
6996 	case 3200000:
6997 		return cdclk_sel ? 320000 : 228571;
6998 	default:
6999 		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7000 		return 222222;
7001 	}
7002 }
7003 
7004 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7005 {
7006 	static const uint8_t div_3200[] = { 16, 10,  8 };
7007 	static const uint8_t div_4000[] = { 20, 12, 10 };
7008 	static const uint8_t div_5333[] = { 24, 16, 14 };
7009 	const uint8_t *div_table;
7010 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7011 	uint16_t tmp = 0;
7012 
7013 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7014 
7015 	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7016 
7017 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7018 		goto fail;
7019 
7020 	switch (vco) {
7021 	case 3200000:
7022 		div_table = div_3200;
7023 		break;
7024 	case 4000000:
7025 		div_table = div_4000;
7026 		break;
7027 	case 5333333:
7028 		div_table = div_5333;
7029 		break;
7030 	default:
7031 		goto fail;
7032 	}
7033 
7034 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7035 
7036 fail:
7037 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7038 	return 200000;
7039 }
7040 
7041 static int g33_get_display_clock_speed(struct drm_device *dev)
7042 {
7043 	static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7044 	static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7045 	static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7046 	static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7047 	const uint8_t *div_table;
7048 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7049 	uint16_t tmp = 0;
7050 
7051 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7052 
7053 	cdclk_sel = (tmp >> 4) & 0x7;
7054 
7055 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7056 		goto fail;
7057 
7058 	switch (vco) {
7059 	case 3200000:
7060 		div_table = div_3200;
7061 		break;
7062 	case 4000000:
7063 		div_table = div_4000;
7064 		break;
7065 	case 4800000:
7066 		div_table = div_4800;
7067 		break;
7068 	case 5333333:
7069 		div_table = div_5333;
7070 		break;
7071 	default:
7072 		goto fail;
7073 	}
7074 
7075 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7076 
7077 fail:
7078 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7079 	return 190476;
7080 }
7081 
7082 static void
7083 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7084 {
7085 	while (*num > DATA_LINK_M_N_MASK ||
7086 	       *den > DATA_LINK_M_N_MASK) {
7087 		*num >>= 1;
7088 		*den >>= 1;
7089 	}
7090 }
7091 
7092 static void compute_m_n(unsigned int m, unsigned int n,
7093 			uint32_t *ret_m, uint32_t *ret_n)
7094 {
7095 	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7096 	*ret_m = div_u64((uint64_t) m * *ret_n, n);
7097 	intel_reduce_m_n_ratio(ret_m, ret_n);
7098 }
7099 
7100 void
7101 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7102 		       int pixel_clock, int link_clock,
7103 		       struct intel_link_m_n *m_n)
7104 {
7105 	m_n->tu = 64;
7106 
7107 	compute_m_n(bits_per_pixel * pixel_clock,
7108 		    link_clock * nlanes * 8,
7109 		    &m_n->gmch_m, &m_n->gmch_n);
7110 
7111 	compute_m_n(pixel_clock, link_clock,
7112 		    &m_n->link_m, &m_n->link_n);
7113 }
7114 
7115 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7116 {
7117 	if (i915.panel_use_ssc >= 0)
7118 		return i915.panel_use_ssc != 0;
7119 	return dev_priv->vbt.lvds_use_ssc
7120 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7121 }
7122 
7123 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7124 {
7125 	return (1 << dpll->n) << 16 | dpll->m2;
7126 }
7127 
7128 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7129 {
7130 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7131 }
7132 
7133 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7134 				     struct intel_crtc_state *crtc_state,
7135 				     struct dpll *reduced_clock)
7136 {
7137 	struct drm_device *dev = crtc->base.dev;
7138 	u32 fp, fp2 = 0;
7139 
7140 	if (IS_PINEVIEW(dev)) {
7141 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7142 		if (reduced_clock)
7143 			fp2 = pnv_dpll_compute_fp(reduced_clock);
7144 	} else {
7145 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7146 		if (reduced_clock)
7147 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
7148 	}
7149 
7150 	crtc_state->dpll_hw_state.fp0 = fp;
7151 
7152 	crtc->lowfreq_avail = false;
7153 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7154 	    reduced_clock) {
7155 		crtc_state->dpll_hw_state.fp1 = fp2;
7156 		crtc->lowfreq_avail = true;
7157 	} else {
7158 		crtc_state->dpll_hw_state.fp1 = fp;
7159 	}
7160 }
7161 
7162 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum i915_pipe
7163 		pipe)
7164 {
7165 	u32 reg_val;
7166 
7167 	/*
7168 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7169 	 * and set it to a reasonable value instead.
7170 	 */
7171 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7172 	reg_val &= 0xffffff00;
7173 	reg_val |= 0x00000030;
7174 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7175 
7176 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7177 	reg_val &= 0x8cffffff;
7178 	reg_val = 0x8c000000;
7179 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7180 
7181 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7182 	reg_val &= 0xffffff00;
7183 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7184 
7185 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7186 	reg_val &= 0x00ffffff;
7187 	reg_val |= 0xb0000000;
7188 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7189 }
7190 
7191 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7192 					 struct intel_link_m_n *m_n)
7193 {
7194 	struct drm_device *dev = crtc->base.dev;
7195 	struct drm_i915_private *dev_priv = to_i915(dev);
7196 	int pipe = crtc->pipe;
7197 
7198 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7199 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7200 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7201 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7202 }
7203 
7204 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7205 					 struct intel_link_m_n *m_n,
7206 					 struct intel_link_m_n *m2_n2)
7207 {
7208 	struct drm_device *dev = crtc->base.dev;
7209 	struct drm_i915_private *dev_priv = to_i915(dev);
7210 	int pipe = crtc->pipe;
7211 	enum transcoder transcoder = crtc->config->cpu_transcoder;
7212 
7213 	if (INTEL_INFO(dev)->gen >= 5) {
7214 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7215 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7216 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7217 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7218 		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7219 		 * for gen < 8) and if DRRS is supported (to make sure the
7220 		 * registers are not unnecessarily accessed).
7221 		 */
7222 		if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7223 			crtc->config->has_drrs) {
7224 			I915_WRITE(PIPE_DATA_M2(transcoder),
7225 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7226 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7227 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7228 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7229 		}
7230 	} else {
7231 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7232 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7233 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7234 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7235 	}
7236 }
7237 
7238 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7239 {
7240 	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7241 
7242 	if (m_n == M1_N1) {
7243 		dp_m_n = &crtc->config->dp_m_n;
7244 		dp_m2_n2 = &crtc->config->dp_m2_n2;
7245 	} else if (m_n == M2_N2) {
7246 
7247 		/*
7248 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
7249 		 * needs to be programmed into M1_N1.
7250 		 */
7251 		dp_m_n = &crtc->config->dp_m2_n2;
7252 	} else {
7253 		DRM_ERROR("Unsupported divider value\n");
7254 		return;
7255 	}
7256 
7257 	if (crtc->config->has_pch_encoder)
7258 		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7259 	else
7260 		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7261 }
7262 
7263 static void vlv_compute_dpll(struct intel_crtc *crtc,
7264 			     struct intel_crtc_state *pipe_config)
7265 {
7266 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7267 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7268 	if (crtc->pipe != PIPE_A)
7269 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7270 
7271 	/* DPLL not used with DSI, but still need the rest set up */
7272 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7273 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7274 			DPLL_EXT_BUFFER_ENABLE_VLV;
7275 
7276 	pipe_config->dpll_hw_state.dpll_md =
7277 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7278 }
7279 
7280 static void chv_compute_dpll(struct intel_crtc *crtc,
7281 			     struct intel_crtc_state *pipe_config)
7282 {
7283 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7284 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7285 	if (crtc->pipe != PIPE_A)
7286 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7287 
7288 	/* DPLL not used with DSI, but still need the rest set up */
7289 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7290 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7291 
7292 	pipe_config->dpll_hw_state.dpll_md =
7293 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7294 }
7295 
7296 static void vlv_prepare_pll(struct intel_crtc *crtc,
7297 			    const struct intel_crtc_state *pipe_config)
7298 {
7299 	struct drm_device *dev = crtc->base.dev;
7300 	struct drm_i915_private *dev_priv = to_i915(dev);
7301 	enum i915_pipe pipe = crtc->pipe;
7302 	u32 mdiv;
7303 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
7304 	u32 coreclk, reg_val;
7305 
7306 	/* Enable Refclk */
7307 	I915_WRITE(DPLL(pipe),
7308 		   pipe_config->dpll_hw_state.dpll &
7309 		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7310 
7311 	/* No need to actually set up the DPLL with DSI */
7312 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7313 		return;
7314 
7315 	mutex_lock(&dev_priv->sb_lock);
7316 
7317 	bestn = pipe_config->dpll.n;
7318 	bestm1 = pipe_config->dpll.m1;
7319 	bestm2 = pipe_config->dpll.m2;
7320 	bestp1 = pipe_config->dpll.p1;
7321 	bestp2 = pipe_config->dpll.p2;
7322 
7323 	/* See eDP HDMI DPIO driver vbios notes doc */
7324 
7325 	/* PLL B needs special handling */
7326 	if (pipe == PIPE_B)
7327 		vlv_pllb_recal_opamp(dev_priv, pipe);
7328 
7329 	/* Set up Tx target for periodic Rcomp update */
7330 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7331 
7332 	/* Disable target IRef on PLL */
7333 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7334 	reg_val &= 0x00ffffff;
7335 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7336 
7337 	/* Disable fast lock */
7338 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7339 
7340 	/* Set idtafcrecal before PLL is enabled */
7341 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7342 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7343 	mdiv |= ((bestn << DPIO_N_SHIFT));
7344 	mdiv |= (1 << DPIO_K_SHIFT);
7345 
7346 	/*
7347 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7348 	 * but we don't support that).
7349 	 * Note: don't use the DAC post divider as it seems unstable.
7350 	 */
7351 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7352 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7353 
7354 	mdiv |= DPIO_ENABLE_CALIBRATION;
7355 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7356 
7357 	/* Set HBR and RBR LPF coefficients */
7358 	if (pipe_config->port_clock == 162000 ||
7359 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7360 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7361 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7362 				 0x009f0003);
7363 	else
7364 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7365 				 0x00d0000f);
7366 
7367 	if (intel_crtc_has_dp_encoder(pipe_config)) {
7368 		/* Use SSC source */
7369 		if (pipe == PIPE_A)
7370 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7371 					 0x0df40000);
7372 		else
7373 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7374 					 0x0df70000);
7375 	} else { /* HDMI or VGA */
7376 		/* Use bend source */
7377 		if (pipe == PIPE_A)
7378 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7379 					 0x0df70000);
7380 		else
7381 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7382 					 0x0df40000);
7383 	}
7384 
7385 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7386 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7387 	if (intel_crtc_has_dp_encoder(crtc->config))
7388 		coreclk |= 0x01000000;
7389 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7390 
7391 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7392 	mutex_unlock(&dev_priv->sb_lock);
7393 }
7394 
7395 static void chv_prepare_pll(struct intel_crtc *crtc,
7396 			    const struct intel_crtc_state *pipe_config)
7397 {
7398 	struct drm_device *dev = crtc->base.dev;
7399 	struct drm_i915_private *dev_priv = to_i915(dev);
7400 	enum i915_pipe pipe = crtc->pipe;
7401 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
7402 	u32 loopfilter, tribuf_calcntr;
7403 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7404 	u32 dpio_val;
7405 	int vco;
7406 
7407 	/* Enable Refclk and SSC */
7408 	I915_WRITE(DPLL(pipe),
7409 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7410 
7411 	/* No need to actually set up the DPLL with DSI */
7412 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7413 		return;
7414 
7415 	bestn = pipe_config->dpll.n;
7416 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7417 	bestm1 = pipe_config->dpll.m1;
7418 	bestm2 = pipe_config->dpll.m2 >> 22;
7419 	bestp1 = pipe_config->dpll.p1;
7420 	bestp2 = pipe_config->dpll.p2;
7421 	vco = pipe_config->dpll.vco;
7422 	dpio_val = 0;
7423 	loopfilter = 0;
7424 
7425 	mutex_lock(&dev_priv->sb_lock);
7426 
7427 	/* p1 and p2 divider */
7428 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7429 			5 << DPIO_CHV_S1_DIV_SHIFT |
7430 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7431 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7432 			1 << DPIO_CHV_K_DIV_SHIFT);
7433 
7434 	/* Feedback post-divider - m2 */
7435 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7436 
7437 	/* Feedback refclk divider - n and m1 */
7438 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7439 			DPIO_CHV_M1_DIV_BY_2 |
7440 			1 << DPIO_CHV_N_DIV_SHIFT);
7441 
7442 	/* M2 fraction division */
7443 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7444 
7445 	/* M2 fraction division enable */
7446 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7447 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7448 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7449 	if (bestm2_frac)
7450 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7451 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7452 
7453 	/* Program digital lock detect threshold */
7454 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7455 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7456 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7457 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7458 	if (!bestm2_frac)
7459 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7460 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7461 
7462 	/* Loop filter */
7463 	if (vco == 5400000) {
7464 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7465 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7466 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7467 		tribuf_calcntr = 0x9;
7468 	} else if (vco <= 6200000) {
7469 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7470 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7471 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7472 		tribuf_calcntr = 0x9;
7473 	} else if (vco <= 6480000) {
7474 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7475 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7476 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7477 		tribuf_calcntr = 0x8;
7478 	} else {
7479 		/* Not supported. Apply the same limits as in the max case */
7480 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7481 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7482 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7483 		tribuf_calcntr = 0;
7484 	}
7485 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7486 
7487 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7488 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7489 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7490 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7491 
7492 	/* AFC Recal */
7493 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7494 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7495 			DPIO_AFC_RECAL);
7496 
7497 	mutex_unlock(&dev_priv->sb_lock);
7498 }
7499 
7500 /**
7501  * vlv_force_pll_on - forcibly enable just the PLL
7502  * @dev_priv: i915 private structure
7503  * @pipe: pipe PLL to enable
7504  * @dpll: PLL configuration
7505  *
7506  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7507  * in cases where we need the PLL enabled even when @pipe is not going to
7508  * be enabled.
7509  */
7510 int vlv_force_pll_on(struct drm_device *dev, enum i915_pipe pipe,
7511 		     const struct dpll *dpll)
7512 {
7513 	struct intel_crtc *crtc =
7514 		to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7515 	struct intel_crtc_state *pipe_config;
7516 
7517 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7518 	if (!pipe_config)
7519 		return -ENOMEM;
7520 
7521 	pipe_config->base.crtc = &crtc->base;
7522 	pipe_config->pixel_multiplier = 1;
7523 	pipe_config->dpll = *dpll;
7524 
7525 	if (IS_CHERRYVIEW(dev)) {
7526 		chv_compute_dpll(crtc, pipe_config);
7527 		chv_prepare_pll(crtc, pipe_config);
7528 		chv_enable_pll(crtc, pipe_config);
7529 	} else {
7530 		vlv_compute_dpll(crtc, pipe_config);
7531 		vlv_prepare_pll(crtc, pipe_config);
7532 		vlv_enable_pll(crtc, pipe_config);
7533 	}
7534 
7535 	kfree(pipe_config);
7536 
7537 	return 0;
7538 }
7539 
7540 /**
7541  * vlv_force_pll_off - forcibly disable just the PLL
7542  * @dev_priv: i915 private structure
7543  * @pipe: pipe PLL to disable
7544  *
7545  * Disable the PLL for @pipe. To be used in cases where we need
7546  * the PLL enabled even when @pipe is not going to be enabled.
7547  */
7548 void vlv_force_pll_off(struct drm_device *dev, enum i915_pipe pipe)
7549 {
7550 	if (IS_CHERRYVIEW(dev))
7551 		chv_disable_pll(to_i915(dev), pipe);
7552 	else
7553 		vlv_disable_pll(to_i915(dev), pipe);
7554 }
7555 
7556 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7557 			      struct intel_crtc_state *crtc_state,
7558 			      struct dpll *reduced_clock)
7559 {
7560 	struct drm_device *dev = crtc->base.dev;
7561 	struct drm_i915_private *dev_priv = to_i915(dev);
7562 	u32 dpll;
7563 	struct dpll *clock = &crtc_state->dpll;
7564 
7565 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7566 
7567 	dpll = DPLL_VGA_MODE_DIS;
7568 
7569 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
7570 		dpll |= DPLLB_MODE_LVDS;
7571 	else
7572 		dpll |= DPLLB_MODE_DAC_SERIAL;
7573 
7574 	if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7575 		dpll |= (crtc_state->pixel_multiplier - 1)
7576 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
7577 	}
7578 
7579 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7580 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
7581 		dpll |= DPLL_SDVO_HIGH_SPEED;
7582 
7583 	if (intel_crtc_has_dp_encoder(crtc_state))
7584 		dpll |= DPLL_SDVO_HIGH_SPEED;
7585 
7586 	/* compute bitmask from p1 value */
7587 	if (IS_PINEVIEW(dev))
7588 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7589 	else {
7590 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7591 		if (IS_G4X(dev) && reduced_clock)
7592 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7593 	}
7594 	switch (clock->p2) {
7595 	case 5:
7596 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7597 		break;
7598 	case 7:
7599 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7600 		break;
7601 	case 10:
7602 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7603 		break;
7604 	case 14:
7605 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7606 		break;
7607 	}
7608 	if (INTEL_INFO(dev)->gen >= 4)
7609 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7610 
7611 	if (crtc_state->sdvo_tv_clock)
7612 		dpll |= PLL_REF_INPUT_TVCLKINBC;
7613 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7614 		 intel_panel_use_ssc(dev_priv))
7615 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7616 	else
7617 		dpll |= PLL_REF_INPUT_DREFCLK;
7618 
7619 	dpll |= DPLL_VCO_ENABLE;
7620 	crtc_state->dpll_hw_state.dpll = dpll;
7621 
7622 	if (INTEL_INFO(dev)->gen >= 4) {
7623 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7624 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
7625 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
7626 	}
7627 }
7628 
7629 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7630 			      struct intel_crtc_state *crtc_state,
7631 			      struct dpll *reduced_clock)
7632 {
7633 	struct drm_device *dev = crtc->base.dev;
7634 	struct drm_i915_private *dev_priv = to_i915(dev);
7635 	u32 dpll;
7636 	struct dpll *clock = &crtc_state->dpll;
7637 
7638 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7639 
7640 	dpll = DPLL_VGA_MODE_DIS;
7641 
7642 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7643 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7644 	} else {
7645 		if (clock->p1 == 2)
7646 			dpll |= PLL_P1_DIVIDE_BY_TWO;
7647 		else
7648 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7649 		if (clock->p2 == 4)
7650 			dpll |= PLL_P2_DIVIDE_BY_4;
7651 	}
7652 
7653 	if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
7654 		dpll |= DPLL_DVO_2X_MODE;
7655 
7656 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7657 	    intel_panel_use_ssc(dev_priv))
7658 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7659 	else
7660 		dpll |= PLL_REF_INPUT_DREFCLK;
7661 
7662 	dpll |= DPLL_VCO_ENABLE;
7663 	crtc_state->dpll_hw_state.dpll = dpll;
7664 }
7665 
7666 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7667 {
7668 	struct drm_device *dev = intel_crtc->base.dev;
7669 	struct drm_i915_private *dev_priv = to_i915(dev);
7670 	enum i915_pipe pipe = intel_crtc->pipe;
7671 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7672 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7673 	uint32_t crtc_vtotal, crtc_vblank_end;
7674 	int vsyncshift = 0;
7675 
7676 	/* We need to be careful not to changed the adjusted mode, for otherwise
7677 	 * the hw state checker will get angry at the mismatch. */
7678 	crtc_vtotal = adjusted_mode->crtc_vtotal;
7679 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7680 
7681 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7682 		/* the chip adds 2 halflines automatically */
7683 		crtc_vtotal -= 1;
7684 		crtc_vblank_end -= 1;
7685 
7686 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7687 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7688 		else
7689 			vsyncshift = adjusted_mode->crtc_hsync_start -
7690 				adjusted_mode->crtc_htotal / 2;
7691 		if (vsyncshift < 0)
7692 			vsyncshift += adjusted_mode->crtc_htotal;
7693 	}
7694 
7695 	if (INTEL_INFO(dev)->gen > 3)
7696 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7697 
7698 	I915_WRITE(HTOTAL(cpu_transcoder),
7699 		   (adjusted_mode->crtc_hdisplay - 1) |
7700 		   ((adjusted_mode->crtc_htotal - 1) << 16));
7701 	I915_WRITE(HBLANK(cpu_transcoder),
7702 		   (adjusted_mode->crtc_hblank_start - 1) |
7703 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
7704 	I915_WRITE(HSYNC(cpu_transcoder),
7705 		   (adjusted_mode->crtc_hsync_start - 1) |
7706 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
7707 
7708 	I915_WRITE(VTOTAL(cpu_transcoder),
7709 		   (adjusted_mode->crtc_vdisplay - 1) |
7710 		   ((crtc_vtotal - 1) << 16));
7711 	I915_WRITE(VBLANK(cpu_transcoder),
7712 		   (adjusted_mode->crtc_vblank_start - 1) |
7713 		   ((crtc_vblank_end - 1) << 16));
7714 	I915_WRITE(VSYNC(cpu_transcoder),
7715 		   (adjusted_mode->crtc_vsync_start - 1) |
7716 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
7717 
7718 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7719 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7720 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7721 	 * bits. */
7722 	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7723 	    (pipe == PIPE_B || pipe == PIPE_C))
7724 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7725 
7726 }
7727 
7728 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7729 {
7730 	struct drm_device *dev = intel_crtc->base.dev;
7731 	struct drm_i915_private *dev_priv = to_i915(dev);
7732 	enum i915_pipe pipe = intel_crtc->pipe;
7733 
7734 	/* pipesrc controls the size that is scaled from, which should
7735 	 * always be the user's requested size.
7736 	 */
7737 	I915_WRITE(PIPESRC(pipe),
7738 		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
7739 		   (intel_crtc->config->pipe_src_h - 1));
7740 }
7741 
7742 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7743 				   struct intel_crtc_state *pipe_config)
7744 {
7745 	struct drm_device *dev = crtc->base.dev;
7746 	struct drm_i915_private *dev_priv = to_i915(dev);
7747 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7748 	uint32_t tmp;
7749 
7750 	tmp = I915_READ(HTOTAL(cpu_transcoder));
7751 	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7752 	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7753 	tmp = I915_READ(HBLANK(cpu_transcoder));
7754 	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7755 	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7756 	tmp = I915_READ(HSYNC(cpu_transcoder));
7757 	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7758 	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7759 
7760 	tmp = I915_READ(VTOTAL(cpu_transcoder));
7761 	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7762 	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7763 	tmp = I915_READ(VBLANK(cpu_transcoder));
7764 	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7765 	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7766 	tmp = I915_READ(VSYNC(cpu_transcoder));
7767 	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7768 	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7769 
7770 	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7771 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7772 		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7773 		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7774 	}
7775 }
7776 
7777 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7778 				    struct intel_crtc_state *pipe_config)
7779 {
7780 	struct drm_device *dev = crtc->base.dev;
7781 	struct drm_i915_private *dev_priv = to_i915(dev);
7782 	u32 tmp;
7783 
7784 	tmp = I915_READ(PIPESRC(crtc->pipe));
7785 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7786 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7787 
7788 	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7789 	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7790 }
7791 
7792 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7793 				 struct intel_crtc_state *pipe_config)
7794 {
7795 	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7796 	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7797 	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7798 	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7799 
7800 	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7801 	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7802 	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7803 	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7804 
7805 	mode->flags = pipe_config->base.adjusted_mode.flags;
7806 	mode->type = DRM_MODE_TYPE_DRIVER;
7807 
7808 	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7809 	mode->flags |= pipe_config->base.adjusted_mode.flags;
7810 
7811 	mode->hsync = drm_mode_hsync(mode);
7812 	mode->vrefresh = drm_mode_vrefresh(mode);
7813 	drm_mode_set_name(mode);
7814 }
7815 
7816 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7817 {
7818 	struct drm_device *dev = intel_crtc->base.dev;
7819 	struct drm_i915_private *dev_priv = to_i915(dev);
7820 	uint32_t pipeconf;
7821 
7822 	pipeconf = 0;
7823 
7824 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7825 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7826 		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7827 
7828 	if (intel_crtc->config->double_wide)
7829 		pipeconf |= PIPECONF_DOUBLE_WIDE;
7830 
7831 	/* only g4x and later have fancy bpc/dither controls */
7832 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7833 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
7834 		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7835 			pipeconf |= PIPECONF_DITHER_EN |
7836 				    PIPECONF_DITHER_TYPE_SP;
7837 
7838 		switch (intel_crtc->config->pipe_bpp) {
7839 		case 18:
7840 			pipeconf |= PIPECONF_6BPC;
7841 			break;
7842 		case 24:
7843 			pipeconf |= PIPECONF_8BPC;
7844 			break;
7845 		case 30:
7846 			pipeconf |= PIPECONF_10BPC;
7847 			break;
7848 		default:
7849 			/* Case prevented by intel_choose_pipe_bpp_dither. */
7850 			BUG();
7851 		}
7852 	}
7853 
7854 	if (HAS_PIPE_CXSR(dev)) {
7855 		if (intel_crtc->lowfreq_avail) {
7856 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7857 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7858 		} else {
7859 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7860 		}
7861 	}
7862 
7863 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7864 		if (INTEL_INFO(dev)->gen < 4 ||
7865 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7866 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7867 		else
7868 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7869 	} else
7870 		pipeconf |= PIPECONF_PROGRESSIVE;
7871 
7872 	if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7873 	     intel_crtc->config->limited_color_range)
7874 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7875 
7876 	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7877 	POSTING_READ(PIPECONF(intel_crtc->pipe));
7878 }
7879 
7880 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7881 				   struct intel_crtc_state *crtc_state)
7882 {
7883 	struct drm_device *dev = crtc->base.dev;
7884 	struct drm_i915_private *dev_priv = to_i915(dev);
7885 	const struct intel_limit *limit;
7886 	int refclk = 48000;
7887 
7888 	memset(&crtc_state->dpll_hw_state, 0,
7889 	       sizeof(crtc_state->dpll_hw_state));
7890 
7891 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7892 		if (intel_panel_use_ssc(dev_priv)) {
7893 			refclk = dev_priv->vbt.lvds_ssc_freq;
7894 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7895 		}
7896 
7897 		limit = &intel_limits_i8xx_lvds;
7898 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7899 		limit = &intel_limits_i8xx_dvo;
7900 	} else {
7901 		limit = &intel_limits_i8xx_dac;
7902 	}
7903 
7904 	if (!crtc_state->clock_set &&
7905 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7906 				 refclk, NULL, &crtc_state->dpll)) {
7907 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7908 		return -EINVAL;
7909 	}
7910 
7911 	i8xx_compute_dpll(crtc, crtc_state, NULL);
7912 
7913 	return 0;
7914 }
7915 
7916 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7917 				  struct intel_crtc_state *crtc_state)
7918 {
7919 	struct drm_device *dev = crtc->base.dev;
7920 	struct drm_i915_private *dev_priv = to_i915(dev);
7921 	const struct intel_limit *limit;
7922 	int refclk = 96000;
7923 
7924 	memset(&crtc_state->dpll_hw_state, 0,
7925 	       sizeof(crtc_state->dpll_hw_state));
7926 
7927 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7928 		if (intel_panel_use_ssc(dev_priv)) {
7929 			refclk = dev_priv->vbt.lvds_ssc_freq;
7930 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7931 		}
7932 
7933 		if (intel_is_dual_link_lvds(dev))
7934 			limit = &intel_limits_g4x_dual_channel_lvds;
7935 		else
7936 			limit = &intel_limits_g4x_single_channel_lvds;
7937 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7938 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7939 		limit = &intel_limits_g4x_hdmi;
7940 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7941 		limit = &intel_limits_g4x_sdvo;
7942 	} else {
7943 		/* The option is for other outputs */
7944 		limit = &intel_limits_i9xx_sdvo;
7945 	}
7946 
7947 	if (!crtc_state->clock_set &&
7948 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7949 				refclk, NULL, &crtc_state->dpll)) {
7950 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7951 		return -EINVAL;
7952 	}
7953 
7954 	i9xx_compute_dpll(crtc, crtc_state, NULL);
7955 
7956 	return 0;
7957 }
7958 
7959 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7960 				  struct intel_crtc_state *crtc_state)
7961 {
7962 	struct drm_device *dev = crtc->base.dev;
7963 	struct drm_i915_private *dev_priv = to_i915(dev);
7964 	const struct intel_limit *limit;
7965 	int refclk = 96000;
7966 
7967 	memset(&crtc_state->dpll_hw_state, 0,
7968 	       sizeof(crtc_state->dpll_hw_state));
7969 
7970 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7971 		if (intel_panel_use_ssc(dev_priv)) {
7972 			refclk = dev_priv->vbt.lvds_ssc_freq;
7973 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7974 		}
7975 
7976 		limit = &intel_limits_pineview_lvds;
7977 	} else {
7978 		limit = &intel_limits_pineview_sdvo;
7979 	}
7980 
7981 	if (!crtc_state->clock_set &&
7982 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7983 				refclk, NULL, &crtc_state->dpll)) {
7984 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7985 		return -EINVAL;
7986 	}
7987 
7988 	i9xx_compute_dpll(crtc, crtc_state, NULL);
7989 
7990 	return 0;
7991 }
7992 
7993 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7994 				   struct intel_crtc_state *crtc_state)
7995 {
7996 	struct drm_device *dev = crtc->base.dev;
7997 	struct drm_i915_private *dev_priv = to_i915(dev);
7998 	const struct intel_limit *limit;
7999 	int refclk = 96000;
8000 
8001 	memset(&crtc_state->dpll_hw_state, 0,
8002 	       sizeof(crtc_state->dpll_hw_state));
8003 
8004 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8005 		if (intel_panel_use_ssc(dev_priv)) {
8006 			refclk = dev_priv->vbt.lvds_ssc_freq;
8007 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8008 		}
8009 
8010 		limit = &intel_limits_i9xx_lvds;
8011 	} else {
8012 		limit = &intel_limits_i9xx_sdvo;
8013 	}
8014 
8015 	if (!crtc_state->clock_set &&
8016 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8017 				 refclk, NULL, &crtc_state->dpll)) {
8018 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8019 		return -EINVAL;
8020 	}
8021 
8022 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8023 
8024 	return 0;
8025 }
8026 
8027 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8028 				  struct intel_crtc_state *crtc_state)
8029 {
8030 	int refclk = 100000;
8031 	const struct intel_limit *limit = &intel_limits_chv;
8032 
8033 	memset(&crtc_state->dpll_hw_state, 0,
8034 	       sizeof(crtc_state->dpll_hw_state));
8035 
8036 	if (!crtc_state->clock_set &&
8037 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8038 				refclk, NULL, &crtc_state->dpll)) {
8039 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8040 		return -EINVAL;
8041 	}
8042 
8043 	chv_compute_dpll(crtc, crtc_state);
8044 
8045 	return 0;
8046 }
8047 
8048 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8049 				  struct intel_crtc_state *crtc_state)
8050 {
8051 	int refclk = 100000;
8052 	const struct intel_limit *limit = &intel_limits_vlv;
8053 
8054 	memset(&crtc_state->dpll_hw_state, 0,
8055 	       sizeof(crtc_state->dpll_hw_state));
8056 
8057 	if (!crtc_state->clock_set &&
8058 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8059 				refclk, NULL, &crtc_state->dpll)) {
8060 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8061 		return -EINVAL;
8062 	}
8063 
8064 	vlv_compute_dpll(crtc, crtc_state);
8065 
8066 	return 0;
8067 }
8068 
8069 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8070 				 struct intel_crtc_state *pipe_config)
8071 {
8072 	struct drm_device *dev = crtc->base.dev;
8073 	struct drm_i915_private *dev_priv = to_i915(dev);
8074 	uint32_t tmp;
8075 
8076 	if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8077 		return;
8078 
8079 	tmp = I915_READ(PFIT_CONTROL);
8080 	if (!(tmp & PFIT_ENABLE))
8081 		return;
8082 
8083 	/* Check whether the pfit is attached to our pipe. */
8084 	if (INTEL_INFO(dev)->gen < 4) {
8085 		if (crtc->pipe != PIPE_B)
8086 			return;
8087 	} else {
8088 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8089 			return;
8090 	}
8091 
8092 	pipe_config->gmch_pfit.control = tmp;
8093 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8094 }
8095 
8096 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8097 			       struct intel_crtc_state *pipe_config)
8098 {
8099 	struct drm_device *dev = crtc->base.dev;
8100 	struct drm_i915_private *dev_priv = to_i915(dev);
8101 	int pipe = pipe_config->cpu_transcoder;
8102 	struct dpll clock;
8103 	u32 mdiv;
8104 	int refclk = 100000;
8105 
8106 	/* In case of DSI, DPLL will not be used */
8107 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8108 		return;
8109 
8110 	mutex_lock(&dev_priv->sb_lock);
8111 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8112 	mutex_unlock(&dev_priv->sb_lock);
8113 
8114 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8115 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
8116 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8117 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8118 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8119 
8120 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8121 }
8122 
8123 static void
8124 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8125 			      struct intel_initial_plane_config *plane_config)
8126 {
8127 	struct drm_device *dev = crtc->base.dev;
8128 	struct drm_i915_private *dev_priv = to_i915(dev);
8129 	u32 val, base, offset;
8130 	int pipe = crtc->pipe, plane = crtc->plane;
8131 	int fourcc, pixel_format;
8132 	unsigned int aligned_height;
8133 	struct drm_framebuffer *fb;
8134 	struct intel_framebuffer *intel_fb;
8135 
8136 	val = I915_READ(DSPCNTR(plane));
8137 	if (!(val & DISPLAY_PLANE_ENABLE))
8138 		return;
8139 
8140 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8141 	if (!intel_fb) {
8142 		DRM_DEBUG_KMS("failed to alloc fb\n");
8143 		return;
8144 	}
8145 
8146 	fb = &intel_fb->base;
8147 
8148 	if (INTEL_INFO(dev)->gen >= 4) {
8149 		if (val & DISPPLANE_TILED) {
8150 			plane_config->tiling = I915_TILING_X;
8151 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8152 		}
8153 	}
8154 
8155 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8156 	fourcc = i9xx_format_to_fourcc(pixel_format);
8157 	fb->pixel_format = fourcc;
8158 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8159 
8160 	if (INTEL_INFO(dev)->gen >= 4) {
8161 		if (plane_config->tiling)
8162 			offset = I915_READ(DSPTILEOFF(plane));
8163 		else
8164 			offset = I915_READ(DSPLINOFF(plane));
8165 		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8166 	} else {
8167 		base = I915_READ(DSPADDR(plane));
8168 	}
8169 	plane_config->base = base;
8170 
8171 	val = I915_READ(PIPESRC(pipe));
8172 	fb->width = ((val >> 16) & 0xfff) + 1;
8173 	fb->height = ((val >> 0) & 0xfff) + 1;
8174 
8175 	val = I915_READ(DSPSTRIDE(pipe));
8176 	fb->pitches[0] = val & 0xffffffc0;
8177 
8178 	aligned_height = intel_fb_align_height(dev, fb->height,
8179 					       fb->pixel_format,
8180 					       fb->modifier[0]);
8181 
8182 	plane_config->size = fb->pitches[0] * aligned_height;
8183 
8184 	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8185 		      pipe_name(pipe), plane, fb->width, fb->height,
8186 		      fb->bits_per_pixel, base, fb->pitches[0],
8187 		      plane_config->size);
8188 
8189 	plane_config->fb = intel_fb;
8190 }
8191 
8192 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8193 			       struct intel_crtc_state *pipe_config)
8194 {
8195 	struct drm_device *dev = crtc->base.dev;
8196 	struct drm_i915_private *dev_priv = to_i915(dev);
8197 	int pipe = pipe_config->cpu_transcoder;
8198 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8199 	struct dpll clock;
8200 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8201 	int refclk = 100000;
8202 
8203 	/* In case of DSI, DPLL will not be used */
8204 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8205 		return;
8206 
8207 	mutex_lock(&dev_priv->sb_lock);
8208 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8209 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8210 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8211 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8212 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8213 	mutex_unlock(&dev_priv->sb_lock);
8214 
8215 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8216 	clock.m2 = (pll_dw0 & 0xff) << 22;
8217 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8218 		clock.m2 |= pll_dw2 & 0x3fffff;
8219 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8220 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8221 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8222 
8223 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8224 }
8225 
8226 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8227 				 struct intel_crtc_state *pipe_config)
8228 {
8229 	struct drm_device *dev = crtc->base.dev;
8230 	struct drm_i915_private *dev_priv = to_i915(dev);
8231 	enum intel_display_power_domain power_domain;
8232 	uint32_t tmp;
8233 	bool ret;
8234 
8235 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8236 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8237 		return false;
8238 
8239 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8240 	pipe_config->shared_dpll = NULL;
8241 
8242 	ret = false;
8243 
8244 	tmp = I915_READ(PIPECONF(crtc->pipe));
8245 	if (!(tmp & PIPECONF_ENABLE))
8246 		goto out;
8247 
8248 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8249 		switch (tmp & PIPECONF_BPC_MASK) {
8250 		case PIPECONF_6BPC:
8251 			pipe_config->pipe_bpp = 18;
8252 			break;
8253 		case PIPECONF_8BPC:
8254 			pipe_config->pipe_bpp = 24;
8255 			break;
8256 		case PIPECONF_10BPC:
8257 			pipe_config->pipe_bpp = 30;
8258 			break;
8259 		default:
8260 			break;
8261 		}
8262 	}
8263 
8264 	if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8265 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
8266 		pipe_config->limited_color_range = true;
8267 
8268 	if (INTEL_INFO(dev)->gen < 4)
8269 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8270 
8271 	intel_get_pipe_timings(crtc, pipe_config);
8272 	intel_get_pipe_src_size(crtc, pipe_config);
8273 
8274 	i9xx_get_pfit_config(crtc, pipe_config);
8275 
8276 	if (INTEL_INFO(dev)->gen >= 4) {
8277 		/* No way to read it out on pipes B and C */
8278 		if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8279 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
8280 		else
8281 			tmp = I915_READ(DPLL_MD(crtc->pipe));
8282 		pipe_config->pixel_multiplier =
8283 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8284 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8285 		pipe_config->dpll_hw_state.dpll_md = tmp;
8286 	} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8287 		tmp = I915_READ(DPLL(crtc->pipe));
8288 		pipe_config->pixel_multiplier =
8289 			((tmp & SDVO_MULTIPLIER_MASK)
8290 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8291 	} else {
8292 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
8293 		 * port and will be fixed up in the encoder->get_config
8294 		 * function. */
8295 		pipe_config->pixel_multiplier = 1;
8296 	}
8297 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8298 	if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8299 		/*
8300 		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8301 		 * on 830. Filter it out here so that we don't
8302 		 * report errors due to that.
8303 		 */
8304 		if (IS_I830(dev))
8305 			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8306 
8307 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8308 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8309 	} else {
8310 		/* Mask out read-only status bits. */
8311 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8312 						     DPLL_PORTC_READY_MASK |
8313 						     DPLL_PORTB_READY_MASK);
8314 	}
8315 
8316 	if (IS_CHERRYVIEW(dev))
8317 		chv_crtc_clock_get(crtc, pipe_config);
8318 	else if (IS_VALLEYVIEW(dev))
8319 		vlv_crtc_clock_get(crtc, pipe_config);
8320 	else
8321 		i9xx_crtc_clock_get(crtc, pipe_config);
8322 
8323 	/*
8324 	 * Normally the dotclock is filled in by the encoder .get_config()
8325 	 * but in case the pipe is enabled w/o any ports we need a sane
8326 	 * default.
8327 	 */
8328 	pipe_config->base.adjusted_mode.crtc_clock =
8329 		pipe_config->port_clock / pipe_config->pixel_multiplier;
8330 
8331 	ret = true;
8332 
8333 out:
8334 	intel_display_power_put(dev_priv, power_domain);
8335 
8336 	return ret;
8337 }
8338 
8339 static void ironlake_init_pch_refclk(struct drm_device *dev)
8340 {
8341 	struct drm_i915_private *dev_priv = to_i915(dev);
8342 	struct intel_encoder *encoder;
8343 	int i;
8344 	u32 val, final;
8345 	bool has_lvds = false;
8346 	bool has_cpu_edp = false;
8347 	bool has_panel = false;
8348 	bool has_ck505 = false;
8349 	bool can_ssc = false;
8350 	bool using_ssc_source = false;
8351 
8352 	/* We need to take the global config into account */
8353 	for_each_intel_encoder(dev, encoder) {
8354 		switch (encoder->type) {
8355 		case INTEL_OUTPUT_LVDS:
8356 			has_panel = true;
8357 			has_lvds = true;
8358 			break;
8359 		case INTEL_OUTPUT_EDP:
8360 			has_panel = true;
8361 			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8362 				has_cpu_edp = true;
8363 			break;
8364 		default:
8365 			break;
8366 		}
8367 	}
8368 
8369 	if (HAS_PCH_IBX(dev)) {
8370 		has_ck505 = dev_priv->vbt.display_clock_mode;
8371 		can_ssc = has_ck505;
8372 	} else {
8373 		has_ck505 = false;
8374 		can_ssc = true;
8375 	}
8376 
8377 	/* Check if any DPLLs are using the SSC source */
8378 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8379 		u32 temp = I915_READ(PCH_DPLL(i));
8380 
8381 		if (!(temp & DPLL_VCO_ENABLE))
8382 			continue;
8383 
8384 		if ((temp & PLL_REF_INPUT_MASK) ==
8385 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8386 			using_ssc_source = true;
8387 			break;
8388 		}
8389 	}
8390 
8391 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8392 		      has_panel, has_lvds, has_ck505, using_ssc_source);
8393 
8394 	/* Ironlake: try to setup display ref clock before DPLL
8395 	 * enabling. This is only under driver's control after
8396 	 * PCH B stepping, previous chipset stepping should be
8397 	 * ignoring this setting.
8398 	 */
8399 	val = I915_READ(PCH_DREF_CONTROL);
8400 
8401 	/* As we must carefully and slowly disable/enable each source in turn,
8402 	 * compute the final state we want first and check if we need to
8403 	 * make any changes at all.
8404 	 */
8405 	final = val;
8406 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
8407 	if (has_ck505)
8408 		final |= DREF_NONSPREAD_CK505_ENABLE;
8409 	else
8410 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
8411 
8412 	final &= ~DREF_SSC_SOURCE_MASK;
8413 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8414 	final &= ~DREF_SSC1_ENABLE;
8415 
8416 	if (has_panel) {
8417 		final |= DREF_SSC_SOURCE_ENABLE;
8418 
8419 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
8420 			final |= DREF_SSC1_ENABLE;
8421 
8422 		if (has_cpu_edp) {
8423 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
8424 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8425 			else
8426 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8427 		} else
8428 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8429 	} else if (using_ssc_source) {
8430 		final |= DREF_SSC_SOURCE_ENABLE;
8431 		final |= DREF_SSC1_ENABLE;
8432 	}
8433 
8434 	if (final == val)
8435 		return;
8436 
8437 	/* Always enable nonspread source */
8438 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
8439 
8440 	if (has_ck505)
8441 		val |= DREF_NONSPREAD_CK505_ENABLE;
8442 	else
8443 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
8444 
8445 	if (has_panel) {
8446 		val &= ~DREF_SSC_SOURCE_MASK;
8447 		val |= DREF_SSC_SOURCE_ENABLE;
8448 
8449 		/* SSC must be turned on before enabling the CPU output  */
8450 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8451 			DRM_DEBUG_KMS("Using SSC on panel\n");
8452 			val |= DREF_SSC1_ENABLE;
8453 		} else
8454 			val &= ~DREF_SSC1_ENABLE;
8455 
8456 		/* Get SSC going before enabling the outputs */
8457 		I915_WRITE(PCH_DREF_CONTROL, val);
8458 		POSTING_READ(PCH_DREF_CONTROL);
8459 		udelay(200);
8460 
8461 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8462 
8463 		/* Enable CPU source on CPU attached eDP */
8464 		if (has_cpu_edp) {
8465 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8466 				DRM_DEBUG_KMS("Using SSC on eDP\n");
8467 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8468 			} else
8469 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8470 		} else
8471 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8472 
8473 		I915_WRITE(PCH_DREF_CONTROL, val);
8474 		POSTING_READ(PCH_DREF_CONTROL);
8475 		udelay(200);
8476 	} else {
8477 		DRM_DEBUG_KMS("Disabling CPU source output\n");
8478 
8479 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8480 
8481 		/* Turn off CPU output */
8482 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8483 
8484 		I915_WRITE(PCH_DREF_CONTROL, val);
8485 		POSTING_READ(PCH_DREF_CONTROL);
8486 		udelay(200);
8487 
8488 		if (!using_ssc_source) {
8489 			DRM_DEBUG_KMS("Disabling SSC source\n");
8490 
8491 			/* Turn off the SSC source */
8492 			val &= ~DREF_SSC_SOURCE_MASK;
8493 			val |= DREF_SSC_SOURCE_DISABLE;
8494 
8495 			/* Turn off SSC1 */
8496 			val &= ~DREF_SSC1_ENABLE;
8497 
8498 			I915_WRITE(PCH_DREF_CONTROL, val);
8499 			POSTING_READ(PCH_DREF_CONTROL);
8500 			udelay(200);
8501 		}
8502 	}
8503 
8504 	BUG_ON(val != final);
8505 }
8506 
8507 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8508 {
8509 	uint32_t tmp;
8510 
8511 	tmp = I915_READ(SOUTH_CHICKEN2);
8512 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8513 	I915_WRITE(SOUTH_CHICKEN2, tmp);
8514 
8515 	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8516 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8517 		DRM_ERROR("FDI mPHY reset assert timeout\n");
8518 
8519 	tmp = I915_READ(SOUTH_CHICKEN2);
8520 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8521 	I915_WRITE(SOUTH_CHICKEN2, tmp);
8522 
8523 	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8524 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8525 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8526 }
8527 
8528 /* WaMPhyProgramming:hsw */
8529 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8530 {
8531 	uint32_t tmp;
8532 
8533 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8534 	tmp &= ~(0xFF << 24);
8535 	tmp |= (0x12 << 24);
8536 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8537 
8538 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8539 	tmp |= (1 << 11);
8540 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8541 
8542 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8543 	tmp |= (1 << 11);
8544 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8545 
8546 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8547 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8548 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8549 
8550 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8551 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8552 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8553 
8554 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8555 	tmp &= ~(7 << 13);
8556 	tmp |= (5 << 13);
8557 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8558 
8559 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8560 	tmp &= ~(7 << 13);
8561 	tmp |= (5 << 13);
8562 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8563 
8564 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8565 	tmp &= ~0xFF;
8566 	tmp |= 0x1C;
8567 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8568 
8569 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8570 	tmp &= ~0xFF;
8571 	tmp |= 0x1C;
8572 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8573 
8574 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8575 	tmp &= ~(0xFF << 16);
8576 	tmp |= (0x1C << 16);
8577 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8578 
8579 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8580 	tmp &= ~(0xFF << 16);
8581 	tmp |= (0x1C << 16);
8582 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8583 
8584 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8585 	tmp |= (1 << 27);
8586 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8587 
8588 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8589 	tmp |= (1 << 27);
8590 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8591 
8592 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8593 	tmp &= ~(0xF << 28);
8594 	tmp |= (4 << 28);
8595 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8596 
8597 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8598 	tmp &= ~(0xF << 28);
8599 	tmp |= (4 << 28);
8600 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8601 }
8602 
8603 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8604  * Programming" based on the parameters passed:
8605  * - Sequence to enable CLKOUT_DP
8606  * - Sequence to enable CLKOUT_DP without spread
8607  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8608  */
8609 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8610 				 bool with_fdi)
8611 {
8612 	struct drm_i915_private *dev_priv = to_i915(dev);
8613 	uint32_t reg, tmp;
8614 
8615 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8616 		with_spread = true;
8617 	if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8618 		with_fdi = false;
8619 
8620 	mutex_lock(&dev_priv->sb_lock);
8621 
8622 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8623 	tmp &= ~SBI_SSCCTL_DISABLE;
8624 	tmp |= SBI_SSCCTL_PATHALT;
8625 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8626 
8627 	udelay(24);
8628 
8629 	if (with_spread) {
8630 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8631 		tmp &= ~SBI_SSCCTL_PATHALT;
8632 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8633 
8634 		if (with_fdi) {
8635 			lpt_reset_fdi_mphy(dev_priv);
8636 			lpt_program_fdi_mphy(dev_priv);
8637 		}
8638 	}
8639 
8640 	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8641 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8642 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8643 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8644 
8645 	mutex_unlock(&dev_priv->sb_lock);
8646 }
8647 
8648 /* Sequence to disable CLKOUT_DP */
8649 static void lpt_disable_clkout_dp(struct drm_device *dev)
8650 {
8651 	struct drm_i915_private *dev_priv = to_i915(dev);
8652 	uint32_t reg, tmp;
8653 
8654 	mutex_lock(&dev_priv->sb_lock);
8655 
8656 	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8657 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8658 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8659 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8660 
8661 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8662 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
8663 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
8664 			tmp |= SBI_SSCCTL_PATHALT;
8665 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8666 			udelay(32);
8667 		}
8668 		tmp |= SBI_SSCCTL_DISABLE;
8669 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8670 	}
8671 
8672 	mutex_unlock(&dev_priv->sb_lock);
8673 }
8674 
8675 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8676 
8677 static const uint16_t sscdivintphase[] = {
8678 	[BEND_IDX( 50)] = 0x3B23,
8679 	[BEND_IDX( 45)] = 0x3B23,
8680 	[BEND_IDX( 40)] = 0x3C23,
8681 	[BEND_IDX( 35)] = 0x3C23,
8682 	[BEND_IDX( 30)] = 0x3D23,
8683 	[BEND_IDX( 25)] = 0x3D23,
8684 	[BEND_IDX( 20)] = 0x3E23,
8685 	[BEND_IDX( 15)] = 0x3E23,
8686 	[BEND_IDX( 10)] = 0x3F23,
8687 	[BEND_IDX(  5)] = 0x3F23,
8688 	[BEND_IDX(  0)] = 0x0025,
8689 	[BEND_IDX( -5)] = 0x0025,
8690 	[BEND_IDX(-10)] = 0x0125,
8691 	[BEND_IDX(-15)] = 0x0125,
8692 	[BEND_IDX(-20)] = 0x0225,
8693 	[BEND_IDX(-25)] = 0x0225,
8694 	[BEND_IDX(-30)] = 0x0325,
8695 	[BEND_IDX(-35)] = 0x0325,
8696 	[BEND_IDX(-40)] = 0x0425,
8697 	[BEND_IDX(-45)] = 0x0425,
8698 	[BEND_IDX(-50)] = 0x0525,
8699 };
8700 
8701 /*
8702  * Bend CLKOUT_DP
8703  * steps -50 to 50 inclusive, in steps of 5
8704  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8705  * change in clock period = -(steps / 10) * 5.787 ps
8706  */
8707 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8708 {
8709 	uint32_t tmp;
8710 	int idx = BEND_IDX(steps);
8711 
8712 	if (WARN_ON(steps % 5 != 0))
8713 		return;
8714 
8715 	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8716 		return;
8717 
8718 	mutex_lock(&dev_priv->sb_lock);
8719 
8720 	if (steps % 10 != 0)
8721 		tmp = 0xAAAAAAAB;
8722 	else
8723 		tmp = 0x00000000;
8724 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8725 
8726 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8727 	tmp &= 0xffff0000;
8728 	tmp |= sscdivintphase[idx];
8729 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8730 
8731 	mutex_unlock(&dev_priv->sb_lock);
8732 }
8733 
8734 #undef BEND_IDX
8735 
8736 static void lpt_init_pch_refclk(struct drm_device *dev)
8737 {
8738 	struct intel_encoder *encoder;
8739 	bool has_vga = false;
8740 
8741 	for_each_intel_encoder(dev, encoder) {
8742 		switch (encoder->type) {
8743 		case INTEL_OUTPUT_ANALOG:
8744 			has_vga = true;
8745 			break;
8746 		default:
8747 			break;
8748 		}
8749 	}
8750 
8751 	if (has_vga) {
8752 		lpt_bend_clkout_dp(to_i915(dev), 0);
8753 		lpt_enable_clkout_dp(dev, true, true);
8754 	} else {
8755 		lpt_disable_clkout_dp(dev);
8756 	}
8757 }
8758 
8759 /*
8760  * Initialize reference clocks when the driver loads
8761  */
8762 void intel_init_pch_refclk(struct drm_device *dev)
8763 {
8764 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8765 		ironlake_init_pch_refclk(dev);
8766 	else if (HAS_PCH_LPT(dev))
8767 		lpt_init_pch_refclk(dev);
8768 }
8769 
8770 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8771 {
8772 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8773 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8774 	int pipe = intel_crtc->pipe;
8775 	uint32_t val;
8776 
8777 	val = 0;
8778 
8779 	switch (intel_crtc->config->pipe_bpp) {
8780 	case 18:
8781 		val |= PIPECONF_6BPC;
8782 		break;
8783 	case 24:
8784 		val |= PIPECONF_8BPC;
8785 		break;
8786 	case 30:
8787 		val |= PIPECONF_10BPC;
8788 		break;
8789 	case 36:
8790 		val |= PIPECONF_12BPC;
8791 		break;
8792 	default:
8793 		/* Case prevented by intel_choose_pipe_bpp_dither. */
8794 		BUG();
8795 	}
8796 
8797 	if (intel_crtc->config->dither)
8798 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8799 
8800 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8801 		val |= PIPECONF_INTERLACED_ILK;
8802 	else
8803 		val |= PIPECONF_PROGRESSIVE;
8804 
8805 	if (intel_crtc->config->limited_color_range)
8806 		val |= PIPECONF_COLOR_RANGE_SELECT;
8807 
8808 	I915_WRITE(PIPECONF(pipe), val);
8809 	POSTING_READ(PIPECONF(pipe));
8810 }
8811 
8812 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8813 {
8814 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8815 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8816 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8817 	u32 val = 0;
8818 
8819 	if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8820 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8821 
8822 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8823 		val |= PIPECONF_INTERLACED_ILK;
8824 	else
8825 		val |= PIPECONF_PROGRESSIVE;
8826 
8827 	I915_WRITE(PIPECONF(cpu_transcoder), val);
8828 	POSTING_READ(PIPECONF(cpu_transcoder));
8829 }
8830 
8831 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8832 {
8833 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8834 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8835 
8836 	if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8837 		u32 val = 0;
8838 
8839 		switch (intel_crtc->config->pipe_bpp) {
8840 		case 18:
8841 			val |= PIPEMISC_DITHER_6_BPC;
8842 			break;
8843 		case 24:
8844 			val |= PIPEMISC_DITHER_8_BPC;
8845 			break;
8846 		case 30:
8847 			val |= PIPEMISC_DITHER_10_BPC;
8848 			break;
8849 		case 36:
8850 			val |= PIPEMISC_DITHER_12_BPC;
8851 			break;
8852 		default:
8853 			/* Case prevented by pipe_config_set_bpp. */
8854 			BUG();
8855 		}
8856 
8857 		if (intel_crtc->config->dither)
8858 			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8859 
8860 		I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8861 	}
8862 }
8863 
8864 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8865 {
8866 	/*
8867 	 * Account for spread spectrum to avoid
8868 	 * oversubscribing the link. Max center spread
8869 	 * is 2.5%; use 5% for safety's sake.
8870 	 */
8871 	u32 bps = target_clock * bpp * 21 / 20;
8872 	return DIV_ROUND_UP(bps, link_bw * 8);
8873 }
8874 
8875 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8876 {
8877 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8878 }
8879 
8880 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8881 				  struct intel_crtc_state *crtc_state,
8882 				  struct dpll *reduced_clock)
8883 {
8884 	struct drm_crtc *crtc = &intel_crtc->base;
8885 	struct drm_device *dev = crtc->dev;
8886 	struct drm_i915_private *dev_priv = to_i915(dev);
8887 	u32 dpll, fp, fp2;
8888 	int factor;
8889 
8890 	/* Enable autotuning of the PLL clock (if permissible) */
8891 	factor = 21;
8892 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8893 		if ((intel_panel_use_ssc(dev_priv) &&
8894 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
8895 		    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8896 			factor = 25;
8897 	} else if (crtc_state->sdvo_tv_clock)
8898 		factor = 20;
8899 
8900 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8901 
8902 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8903 		fp |= FP_CB_TUNE;
8904 
8905 	if (reduced_clock) {
8906 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
8907 
8908 		if (reduced_clock->m < factor * reduced_clock->n)
8909 			fp2 |= FP_CB_TUNE;
8910 	} else {
8911 		fp2 = fp;
8912 	}
8913 
8914 	dpll = 0;
8915 
8916 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8917 		dpll |= DPLLB_MODE_LVDS;
8918 	else
8919 		dpll |= DPLLB_MODE_DAC_SERIAL;
8920 
8921 	dpll |= (crtc_state->pixel_multiplier - 1)
8922 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8923 
8924 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8925 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8926 		dpll |= DPLL_SDVO_HIGH_SPEED;
8927 
8928 	if (intel_crtc_has_dp_encoder(crtc_state))
8929 		dpll |= DPLL_SDVO_HIGH_SPEED;
8930 
8931 	/* compute bitmask from p1 value */
8932 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8933 	/* also FPA1 */
8934 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8935 
8936 	switch (crtc_state->dpll.p2) {
8937 	case 5:
8938 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8939 		break;
8940 	case 7:
8941 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8942 		break;
8943 	case 10:
8944 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8945 		break;
8946 	case 14:
8947 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8948 		break;
8949 	}
8950 
8951 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8952 	    intel_panel_use_ssc(dev_priv))
8953 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8954 	else
8955 		dpll |= PLL_REF_INPUT_DREFCLK;
8956 
8957 	dpll |= DPLL_VCO_ENABLE;
8958 
8959 	crtc_state->dpll_hw_state.dpll = dpll;
8960 	crtc_state->dpll_hw_state.fp0 = fp;
8961 	crtc_state->dpll_hw_state.fp1 = fp2;
8962 }
8963 
8964 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8965 				       struct intel_crtc_state *crtc_state)
8966 {
8967 	struct drm_device *dev = crtc->base.dev;
8968 	struct drm_i915_private *dev_priv = to_i915(dev);
8969 	struct dpll reduced_clock;
8970 	bool has_reduced_clock = false;
8971 	struct intel_shared_dpll *pll;
8972 	const struct intel_limit *limit;
8973 	int refclk = 120000;
8974 
8975 	memset(&crtc_state->dpll_hw_state, 0,
8976 	       sizeof(crtc_state->dpll_hw_state));
8977 
8978 	crtc->lowfreq_avail = false;
8979 
8980 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8981 	if (!crtc_state->has_pch_encoder)
8982 		return 0;
8983 
8984 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8985 		if (intel_panel_use_ssc(dev_priv)) {
8986 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8987 				      dev_priv->vbt.lvds_ssc_freq);
8988 			refclk = dev_priv->vbt.lvds_ssc_freq;
8989 		}
8990 
8991 		if (intel_is_dual_link_lvds(dev)) {
8992 			if (refclk == 100000)
8993 				limit = &intel_limits_ironlake_dual_lvds_100m;
8994 			else
8995 				limit = &intel_limits_ironlake_dual_lvds;
8996 		} else {
8997 			if (refclk == 100000)
8998 				limit = &intel_limits_ironlake_single_lvds_100m;
8999 			else
9000 				limit = &intel_limits_ironlake_single_lvds;
9001 		}
9002 	} else {
9003 		limit = &intel_limits_ironlake_dac;
9004 	}
9005 
9006 	if (!crtc_state->clock_set &&
9007 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9008 				refclk, NULL, &crtc_state->dpll)) {
9009 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
9010 		return -EINVAL;
9011 	}
9012 
9013 	ironlake_compute_dpll(crtc, crtc_state,
9014 			      has_reduced_clock ? &reduced_clock : NULL);
9015 
9016 	pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9017 	if (pll == NULL) {
9018 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9019 				 pipe_name(crtc->pipe));
9020 		return -EINVAL;
9021 	}
9022 
9023 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9024 	    has_reduced_clock)
9025 		crtc->lowfreq_avail = true;
9026 
9027 	return 0;
9028 }
9029 
9030 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9031 					 struct intel_link_m_n *m_n)
9032 {
9033 	struct drm_device *dev = crtc->base.dev;
9034 	struct drm_i915_private *dev_priv = to_i915(dev);
9035 	enum i915_pipe pipe = crtc->pipe;
9036 
9037 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9038 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9039 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9040 		& ~TU_SIZE_MASK;
9041 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9042 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9043 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9044 }
9045 
9046 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9047 					 enum transcoder transcoder,
9048 					 struct intel_link_m_n *m_n,
9049 					 struct intel_link_m_n *m2_n2)
9050 {
9051 	struct drm_device *dev = crtc->base.dev;
9052 	struct drm_i915_private *dev_priv = to_i915(dev);
9053 	enum i915_pipe pipe = crtc->pipe;
9054 
9055 	if (INTEL_INFO(dev)->gen >= 5) {
9056 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9057 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9058 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9059 			& ~TU_SIZE_MASK;
9060 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9061 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9062 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9063 		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9064 		 * gen < 8) and if DRRS is supported (to make sure the
9065 		 * registers are not unnecessarily read).
9066 		 */
9067 		if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9068 			crtc->config->has_drrs) {
9069 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9070 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
9071 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
9072 					& ~TU_SIZE_MASK;
9073 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
9074 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9075 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9076 		}
9077 	} else {
9078 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9079 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9080 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9081 			& ~TU_SIZE_MASK;
9082 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9083 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9084 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9085 	}
9086 }
9087 
9088 void intel_dp_get_m_n(struct intel_crtc *crtc,
9089 		      struct intel_crtc_state *pipe_config)
9090 {
9091 	if (pipe_config->has_pch_encoder)
9092 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9093 	else
9094 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9095 					     &pipe_config->dp_m_n,
9096 					     &pipe_config->dp_m2_n2);
9097 }
9098 
9099 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9100 					struct intel_crtc_state *pipe_config)
9101 {
9102 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9103 				     &pipe_config->fdi_m_n, NULL);
9104 }
9105 
9106 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9107 				    struct intel_crtc_state *pipe_config)
9108 {
9109 	struct drm_device *dev = crtc->base.dev;
9110 	struct drm_i915_private *dev_priv = to_i915(dev);
9111 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9112 	uint32_t ps_ctrl = 0;
9113 	int id = -1;
9114 	int i;
9115 
9116 	/* find scaler attached to this pipe */
9117 	for (i = 0; i < crtc->num_scalers; i++) {
9118 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9119 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9120 			id = i;
9121 			pipe_config->pch_pfit.enabled = true;
9122 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9123 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9124 			break;
9125 		}
9126 	}
9127 
9128 	scaler_state->scaler_id = id;
9129 	if (id >= 0) {
9130 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9131 	} else {
9132 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9133 	}
9134 }
9135 
9136 static void
9137 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9138 				 struct intel_initial_plane_config *plane_config)
9139 {
9140 	struct drm_device *dev = crtc->base.dev;
9141 	struct drm_i915_private *dev_priv = to_i915(dev);
9142 	u32 val, base, offset, stride_mult, tiling;
9143 	int pipe = crtc->pipe;
9144 	int fourcc, pixel_format;
9145 	unsigned int aligned_height;
9146 	struct drm_framebuffer *fb;
9147 	struct intel_framebuffer *intel_fb;
9148 
9149 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9150 	if (!intel_fb) {
9151 		DRM_DEBUG_KMS("failed to alloc fb\n");
9152 		return;
9153 	}
9154 
9155 	fb = &intel_fb->base;
9156 
9157 	val = I915_READ(PLANE_CTL(pipe, 0));
9158 	if (!(val & PLANE_CTL_ENABLE))
9159 		goto error;
9160 
9161 	pixel_format = val & PLANE_CTL_FORMAT_MASK;
9162 	fourcc = skl_format_to_fourcc(pixel_format,
9163 				      val & PLANE_CTL_ORDER_RGBX,
9164 				      val & PLANE_CTL_ALPHA_MASK);
9165 	fb->pixel_format = fourcc;
9166 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9167 
9168 	tiling = val & PLANE_CTL_TILED_MASK;
9169 	switch (tiling) {
9170 	case PLANE_CTL_TILED_LINEAR:
9171 		fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9172 		break;
9173 	case PLANE_CTL_TILED_X:
9174 		plane_config->tiling = I915_TILING_X;
9175 		fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9176 		break;
9177 	case PLANE_CTL_TILED_Y:
9178 		fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9179 		break;
9180 	case PLANE_CTL_TILED_YF:
9181 		fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9182 		break;
9183 	default:
9184 		MISSING_CASE(tiling);
9185 		goto error;
9186 	}
9187 
9188 	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9189 	plane_config->base = base;
9190 
9191 	offset = I915_READ(PLANE_OFFSET(pipe, 0));
9192 
9193 	val = I915_READ(PLANE_SIZE(pipe, 0));
9194 	fb->height = ((val >> 16) & 0xfff) + 1;
9195 	fb->width = ((val >> 0) & 0x1fff) + 1;
9196 
9197 	val = I915_READ(PLANE_STRIDE(pipe, 0));
9198 	stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9199 						fb->pixel_format);
9200 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
9201 
9202 	aligned_height = intel_fb_align_height(dev, fb->height,
9203 					       fb->pixel_format,
9204 					       fb->modifier[0]);
9205 
9206 	plane_config->size = fb->pitches[0] * aligned_height;
9207 
9208 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9209 		      pipe_name(pipe), fb->width, fb->height,
9210 		      fb->bits_per_pixel, base, fb->pitches[0],
9211 		      plane_config->size);
9212 
9213 	plane_config->fb = intel_fb;
9214 	return;
9215 
9216 error:
9217 	kfree(fb);
9218 }
9219 
9220 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9221 				     struct intel_crtc_state *pipe_config)
9222 {
9223 	struct drm_device *dev = crtc->base.dev;
9224 	struct drm_i915_private *dev_priv = to_i915(dev);
9225 	uint32_t tmp;
9226 
9227 	tmp = I915_READ(PF_CTL(crtc->pipe));
9228 
9229 	if (tmp & PF_ENABLE) {
9230 		pipe_config->pch_pfit.enabled = true;
9231 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9232 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9233 
9234 		/* We currently do not free assignements of panel fitters on
9235 		 * ivb/hsw (since we don't use the higher upscaling modes which
9236 		 * differentiates them) so just WARN about this case for now. */
9237 		if (IS_GEN7(dev)) {
9238 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9239 				PF_PIPE_SEL_IVB(crtc->pipe));
9240 		}
9241 	}
9242 }
9243 
9244 static void
9245 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9246 				  struct intel_initial_plane_config *plane_config)
9247 {
9248 	struct drm_device *dev = crtc->base.dev;
9249 	struct drm_i915_private *dev_priv = to_i915(dev);
9250 	u32 val, base, offset;
9251 	int pipe = crtc->pipe;
9252 	int fourcc, pixel_format;
9253 	unsigned int aligned_height;
9254 	struct drm_framebuffer *fb;
9255 	struct intel_framebuffer *intel_fb;
9256 
9257 	val = I915_READ(DSPCNTR(pipe));
9258 	if (!(val & DISPLAY_PLANE_ENABLE))
9259 		return;
9260 
9261 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9262 	if (!intel_fb) {
9263 		DRM_DEBUG_KMS("failed to alloc fb\n");
9264 		return;
9265 	}
9266 
9267 	fb = &intel_fb->base;
9268 
9269 	if (INTEL_INFO(dev)->gen >= 4) {
9270 		if (val & DISPPLANE_TILED) {
9271 			plane_config->tiling = I915_TILING_X;
9272 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9273 		}
9274 	}
9275 
9276 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9277 	fourcc = i9xx_format_to_fourcc(pixel_format);
9278 	fb->pixel_format = fourcc;
9279 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9280 
9281 	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9282 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9283 		offset = I915_READ(DSPOFFSET(pipe));
9284 	} else {
9285 		if (plane_config->tiling)
9286 			offset = I915_READ(DSPTILEOFF(pipe));
9287 		else
9288 			offset = I915_READ(DSPLINOFF(pipe));
9289 	}
9290 	plane_config->base = base;
9291 
9292 	val = I915_READ(PIPESRC(pipe));
9293 	fb->width = ((val >> 16) & 0xfff) + 1;
9294 	fb->height = ((val >> 0) & 0xfff) + 1;
9295 
9296 	val = I915_READ(DSPSTRIDE(pipe));
9297 	fb->pitches[0] = val & 0xffffffc0;
9298 
9299 	aligned_height = intel_fb_align_height(dev, fb->height,
9300 					       fb->pixel_format,
9301 					       fb->modifier[0]);
9302 
9303 	plane_config->size = fb->pitches[0] * aligned_height;
9304 
9305 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9306 		      pipe_name(pipe), fb->width, fb->height,
9307 		      fb->bits_per_pixel, base, fb->pitches[0],
9308 		      plane_config->size);
9309 
9310 	plane_config->fb = intel_fb;
9311 }
9312 
9313 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9314 				     struct intel_crtc_state *pipe_config)
9315 {
9316 	struct drm_device *dev = crtc->base.dev;
9317 	struct drm_i915_private *dev_priv = to_i915(dev);
9318 	enum intel_display_power_domain power_domain;
9319 	uint32_t tmp;
9320 	bool ret;
9321 
9322 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9323 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9324 		return false;
9325 
9326 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9327 	pipe_config->shared_dpll = NULL;
9328 
9329 	ret = false;
9330 	tmp = I915_READ(PIPECONF(crtc->pipe));
9331 	if (!(tmp & PIPECONF_ENABLE))
9332 		goto out;
9333 
9334 	switch (tmp & PIPECONF_BPC_MASK) {
9335 	case PIPECONF_6BPC:
9336 		pipe_config->pipe_bpp = 18;
9337 		break;
9338 	case PIPECONF_8BPC:
9339 		pipe_config->pipe_bpp = 24;
9340 		break;
9341 	case PIPECONF_10BPC:
9342 		pipe_config->pipe_bpp = 30;
9343 		break;
9344 	case PIPECONF_12BPC:
9345 		pipe_config->pipe_bpp = 36;
9346 		break;
9347 	default:
9348 		break;
9349 	}
9350 
9351 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9352 		pipe_config->limited_color_range = true;
9353 
9354 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9355 		struct intel_shared_dpll *pll;
9356 		enum intel_dpll_id pll_id;
9357 
9358 		pipe_config->has_pch_encoder = true;
9359 
9360 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9361 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9362 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9363 
9364 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9365 
9366 		if (HAS_PCH_IBX(dev_priv)) {
9367 			/*
9368 			 * The pipe->pch transcoder and pch transcoder->pll
9369 			 * mapping is fixed.
9370 			 */
9371 			pll_id = (enum intel_dpll_id) crtc->pipe;
9372 		} else {
9373 			tmp = I915_READ(PCH_DPLL_SEL);
9374 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9375 				pll_id = DPLL_ID_PCH_PLL_B;
9376 			else
9377 				pll_id= DPLL_ID_PCH_PLL_A;
9378 		}
9379 
9380 		pipe_config->shared_dpll =
9381 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
9382 		pll = pipe_config->shared_dpll;
9383 
9384 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9385 						 &pipe_config->dpll_hw_state));
9386 
9387 		tmp = pipe_config->dpll_hw_state.dpll;
9388 		pipe_config->pixel_multiplier =
9389 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9390 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9391 
9392 		ironlake_pch_clock_get(crtc, pipe_config);
9393 	} else {
9394 		pipe_config->pixel_multiplier = 1;
9395 	}
9396 
9397 	intel_get_pipe_timings(crtc, pipe_config);
9398 	intel_get_pipe_src_size(crtc, pipe_config);
9399 
9400 	ironlake_get_pfit_config(crtc, pipe_config);
9401 
9402 	ret = true;
9403 
9404 out:
9405 	intel_display_power_put(dev_priv, power_domain);
9406 
9407 	return ret;
9408 }
9409 
9410 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9411 {
9412 	struct drm_device *dev = &dev_priv->drm;
9413 	struct intel_crtc *crtc;
9414 
9415 	for_each_intel_crtc(dev, crtc)
9416 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9417 		     pipe_name(crtc->pipe));
9418 
9419 	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9420 	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9421 	I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9422 	I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9423 	I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9424 	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9425 	     "CPU PWM1 enabled\n");
9426 	if (IS_HASWELL(dev))
9427 		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9428 		     "CPU PWM2 enabled\n");
9429 	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9430 	     "PCH PWM1 enabled\n");
9431 	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9432 	     "Utility pin enabled\n");
9433 	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9434 
9435 	/*
9436 	 * In theory we can still leave IRQs enabled, as long as only the HPD
9437 	 * interrupts remain enabled. We used to check for that, but since it's
9438 	 * gen-specific and since we only disable LCPLL after we fully disable
9439 	 * the interrupts, the check below should be enough.
9440 	 */
9441 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9442 }
9443 
9444 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9445 {
9446 	struct drm_device *dev = &dev_priv->drm;
9447 
9448 	if (IS_HASWELL(dev))
9449 		return I915_READ(D_COMP_HSW);
9450 	else
9451 		return I915_READ(D_COMP_BDW);
9452 }
9453 
9454 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9455 {
9456 	struct drm_device *dev = &dev_priv->drm;
9457 
9458 	if (IS_HASWELL(dev)) {
9459 		mutex_lock(&dev_priv->rps.hw_lock);
9460 		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9461 					    val))
9462 			DRM_ERROR("Failed to write to D_COMP\n");
9463 		mutex_unlock(&dev_priv->rps.hw_lock);
9464 	} else {
9465 		I915_WRITE(D_COMP_BDW, val);
9466 		POSTING_READ(D_COMP_BDW);
9467 	}
9468 }
9469 
9470 /*
9471  * This function implements pieces of two sequences from BSpec:
9472  * - Sequence for display software to disable LCPLL
9473  * - Sequence for display software to allow package C8+
9474  * The steps implemented here are just the steps that actually touch the LCPLL
9475  * register. Callers should take care of disabling all the display engine
9476  * functions, doing the mode unset, fixing interrupts, etc.
9477  */
9478 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9479 			      bool switch_to_fclk, bool allow_power_down)
9480 {
9481 	uint32_t val;
9482 
9483 	assert_can_disable_lcpll(dev_priv);
9484 
9485 	val = I915_READ(LCPLL_CTL);
9486 
9487 	if (switch_to_fclk) {
9488 		val |= LCPLL_CD_SOURCE_FCLK;
9489 		I915_WRITE(LCPLL_CTL, val);
9490 
9491 		if (wait_for_us(I915_READ(LCPLL_CTL) &
9492 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
9493 			DRM_ERROR("Switching to FCLK failed\n");
9494 
9495 		val = I915_READ(LCPLL_CTL);
9496 	}
9497 
9498 	val |= LCPLL_PLL_DISABLE;
9499 	I915_WRITE(LCPLL_CTL, val);
9500 	POSTING_READ(LCPLL_CTL);
9501 
9502 	if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
9503 		DRM_ERROR("LCPLL still locked\n");
9504 
9505 	val = hsw_read_dcomp(dev_priv);
9506 	val |= D_COMP_COMP_DISABLE;
9507 	hsw_write_dcomp(dev_priv, val);
9508 	ndelay(100);
9509 
9510 	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9511 		     1))
9512 		DRM_ERROR("D_COMP RCOMP still in progress\n");
9513 
9514 	if (allow_power_down) {
9515 		val = I915_READ(LCPLL_CTL);
9516 		val |= LCPLL_POWER_DOWN_ALLOW;
9517 		I915_WRITE(LCPLL_CTL, val);
9518 		POSTING_READ(LCPLL_CTL);
9519 	}
9520 }
9521 
9522 /*
9523  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9524  * source.
9525  */
9526 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9527 {
9528 	uint32_t val;
9529 
9530 	val = I915_READ(LCPLL_CTL);
9531 
9532 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9533 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9534 		return;
9535 
9536 	/*
9537 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
9538 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9539 	 */
9540 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9541 
9542 	if (val & LCPLL_POWER_DOWN_ALLOW) {
9543 		val &= ~LCPLL_POWER_DOWN_ALLOW;
9544 		I915_WRITE(LCPLL_CTL, val);
9545 		POSTING_READ(LCPLL_CTL);
9546 	}
9547 
9548 	val = hsw_read_dcomp(dev_priv);
9549 	val |= D_COMP_COMP_FORCE;
9550 	val &= ~D_COMP_COMP_DISABLE;
9551 	hsw_write_dcomp(dev_priv, val);
9552 
9553 	val = I915_READ(LCPLL_CTL);
9554 	val &= ~LCPLL_PLL_DISABLE;
9555 	I915_WRITE(LCPLL_CTL, val);
9556 
9557 	if (intel_wait_for_register(dev_priv,
9558 				    LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
9559 				    5))
9560 		DRM_ERROR("LCPLL not locked yet\n");
9561 
9562 	if (val & LCPLL_CD_SOURCE_FCLK) {
9563 		val = I915_READ(LCPLL_CTL);
9564 		val &= ~LCPLL_CD_SOURCE_FCLK;
9565 		I915_WRITE(LCPLL_CTL, val);
9566 
9567 		if (wait_for_us((I915_READ(LCPLL_CTL) &
9568 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9569 			DRM_ERROR("Switching back to LCPLL failed\n");
9570 	}
9571 
9572 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9573 	intel_update_cdclk(&dev_priv->drm);
9574 }
9575 
9576 /*
9577  * Package states C8 and deeper are really deep PC states that can only be
9578  * reached when all the devices on the system allow it, so even if the graphics
9579  * device allows PC8+, it doesn't mean the system will actually get to these
9580  * states. Our driver only allows PC8+ when going into runtime PM.
9581  *
9582  * The requirements for PC8+ are that all the outputs are disabled, the power
9583  * well is disabled and most interrupts are disabled, and these are also
9584  * requirements for runtime PM. When these conditions are met, we manually do
9585  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9586  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9587  * hang the machine.
9588  *
9589  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9590  * the state of some registers, so when we come back from PC8+ we need to
9591  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9592  * need to take care of the registers kept by RC6. Notice that this happens even
9593  * if we don't put the device in PCI D3 state (which is what currently happens
9594  * because of the runtime PM support).
9595  *
9596  * For more, read "Display Sequences for Package C8" on the hardware
9597  * documentation.
9598  */
9599 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9600 {
9601 	struct drm_device *dev = &dev_priv->drm;
9602 	uint32_t val;
9603 
9604 	DRM_DEBUG_KMS("Enabling package C8+\n");
9605 
9606 	if (HAS_PCH_LPT_LP(dev)) {
9607 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9608 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9609 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9610 	}
9611 
9612 	lpt_disable_clkout_dp(dev);
9613 	hsw_disable_lcpll(dev_priv, true, true);
9614 }
9615 
9616 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9617 {
9618 	struct drm_device *dev = &dev_priv->drm;
9619 	uint32_t val;
9620 
9621 	DRM_DEBUG_KMS("Disabling package C8+\n");
9622 
9623 	hsw_restore_lcpll(dev_priv);
9624 	lpt_init_pch_refclk(dev);
9625 
9626 	if (HAS_PCH_LPT_LP(dev)) {
9627 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9628 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9629 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9630 	}
9631 }
9632 
9633 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9634 {
9635 	struct drm_device *dev = old_state->dev;
9636 	struct intel_atomic_state *old_intel_state =
9637 		to_intel_atomic_state(old_state);
9638 	unsigned int req_cdclk = old_intel_state->dev_cdclk;
9639 
9640 	bxt_set_cdclk(to_i915(dev), req_cdclk);
9641 }
9642 
9643 /* compute the max rate for new configuration */
9644 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9645 {
9646 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9647 	struct drm_i915_private *dev_priv = to_i915(state->dev);
9648 	struct drm_crtc *crtc;
9649 	struct drm_crtc_state *cstate;
9650 	struct intel_crtc_state *crtc_state;
9651 	unsigned max_pixel_rate = 0, i;
9652 	enum i915_pipe pipe;
9653 
9654 	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9655 	       sizeof(intel_state->min_pixclk));
9656 
9657 	for_each_crtc_in_state(state, crtc, cstate, i) {
9658 		int pixel_rate;
9659 
9660 		crtc_state = to_intel_crtc_state(cstate);
9661 		if (!crtc_state->base.enable) {
9662 			intel_state->min_pixclk[i] = 0;
9663 			continue;
9664 		}
9665 
9666 		pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9667 
9668 		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9669 		if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9670 			pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9671 
9672 		intel_state->min_pixclk[i] = pixel_rate;
9673 	}
9674 
9675 	for_each_pipe(dev_priv, pipe)
9676 		max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9677 
9678 	return max_pixel_rate;
9679 }
9680 
9681 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9682 {
9683 	struct drm_i915_private *dev_priv = to_i915(dev);
9684 	uint32_t val, data;
9685 	int ret;
9686 
9687 	if (WARN((I915_READ(LCPLL_CTL) &
9688 		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9689 		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9690 		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9691 		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9692 		 "trying to change cdclk frequency with cdclk not enabled\n"))
9693 		return;
9694 
9695 	mutex_lock(&dev_priv->rps.hw_lock);
9696 	ret = sandybridge_pcode_write(dev_priv,
9697 				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9698 	mutex_unlock(&dev_priv->rps.hw_lock);
9699 	if (ret) {
9700 		DRM_ERROR("failed to inform pcode about cdclk change\n");
9701 		return;
9702 	}
9703 
9704 	val = I915_READ(LCPLL_CTL);
9705 	val |= LCPLL_CD_SOURCE_FCLK;
9706 	I915_WRITE(LCPLL_CTL, val);
9707 
9708 	if (wait_for_us(I915_READ(LCPLL_CTL) &
9709 			LCPLL_CD_SOURCE_FCLK_DONE, 1))
9710 		DRM_ERROR("Switching to FCLK failed\n");
9711 
9712 	val = I915_READ(LCPLL_CTL);
9713 	val &= ~LCPLL_CLK_FREQ_MASK;
9714 
9715 	switch (cdclk) {
9716 	case 450000:
9717 		val |= LCPLL_CLK_FREQ_450;
9718 		data = 0;
9719 		break;
9720 	case 540000:
9721 		val |= LCPLL_CLK_FREQ_54O_BDW;
9722 		data = 1;
9723 		break;
9724 	case 337500:
9725 		val |= LCPLL_CLK_FREQ_337_5_BDW;
9726 		data = 2;
9727 		break;
9728 	case 675000:
9729 		val |= LCPLL_CLK_FREQ_675_BDW;
9730 		data = 3;
9731 		break;
9732 	default:
9733 		WARN(1, "invalid cdclk frequency\n");
9734 		return;
9735 	}
9736 
9737 	I915_WRITE(LCPLL_CTL, val);
9738 
9739 	val = I915_READ(LCPLL_CTL);
9740 	val &= ~LCPLL_CD_SOURCE_FCLK;
9741 	I915_WRITE(LCPLL_CTL, val);
9742 
9743 	if (wait_for_us((I915_READ(LCPLL_CTL) &
9744 			LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9745 		DRM_ERROR("Switching back to LCPLL failed\n");
9746 
9747 	mutex_lock(&dev_priv->rps.hw_lock);
9748 	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9749 	mutex_unlock(&dev_priv->rps.hw_lock);
9750 
9751 	I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9752 
9753 	intel_update_cdclk(dev);
9754 
9755 	WARN(cdclk != dev_priv->cdclk_freq,
9756 	     "cdclk requested %d kHz but got %d kHz\n",
9757 	     cdclk, dev_priv->cdclk_freq);
9758 }
9759 
9760 static int broadwell_calc_cdclk(int max_pixclk)
9761 {
9762 	if (max_pixclk > 540000)
9763 		return 675000;
9764 	else if (max_pixclk > 450000)
9765 		return 540000;
9766 	else if (max_pixclk > 337500)
9767 		return 450000;
9768 	else
9769 		return 337500;
9770 }
9771 
9772 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9773 {
9774 	struct drm_i915_private *dev_priv = to_i915(state->dev);
9775 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9776 	int max_pixclk = ilk_max_pixel_rate(state);
9777 	int cdclk;
9778 
9779 	/*
9780 	 * FIXME should also account for plane ratio
9781 	 * once 64bpp pixel formats are supported.
9782 	 */
9783 	cdclk = broadwell_calc_cdclk(max_pixclk);
9784 
9785 	if (cdclk > dev_priv->max_cdclk_freq) {
9786 		DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9787 			      cdclk, dev_priv->max_cdclk_freq);
9788 		return -EINVAL;
9789 	}
9790 
9791 	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9792 	if (!intel_state->active_crtcs)
9793 		intel_state->dev_cdclk = broadwell_calc_cdclk(0);
9794 
9795 	return 0;
9796 }
9797 
9798 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9799 {
9800 	struct drm_device *dev = old_state->dev;
9801 	struct intel_atomic_state *old_intel_state =
9802 		to_intel_atomic_state(old_state);
9803 	unsigned req_cdclk = old_intel_state->dev_cdclk;
9804 
9805 	broadwell_set_cdclk(dev, req_cdclk);
9806 }
9807 
9808 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9809 {
9810 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9811 	struct drm_i915_private *dev_priv = to_i915(state->dev);
9812 	const int max_pixclk = ilk_max_pixel_rate(state);
9813 	int vco = intel_state->cdclk_pll_vco;
9814 	int cdclk;
9815 
9816 	/*
9817 	 * FIXME should also account for plane ratio
9818 	 * once 64bpp pixel formats are supported.
9819 	 */
9820 	cdclk = skl_calc_cdclk(max_pixclk, vco);
9821 
9822 	/*
9823 	 * FIXME move the cdclk caclulation to
9824 	 * compute_config() so we can fail gracegully.
9825 	 */
9826 	if (cdclk > dev_priv->max_cdclk_freq) {
9827 		DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9828 			  cdclk, dev_priv->max_cdclk_freq);
9829 		cdclk = dev_priv->max_cdclk_freq;
9830 	}
9831 
9832 	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9833 	if (!intel_state->active_crtcs)
9834 		intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
9835 
9836 	return 0;
9837 }
9838 
9839 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9840 {
9841 	struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9842 	struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9843 	unsigned int req_cdclk = intel_state->dev_cdclk;
9844 	unsigned int req_vco = intel_state->cdclk_pll_vco;
9845 
9846 	skl_set_cdclk(dev_priv, req_cdclk, req_vco);
9847 }
9848 
9849 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9850 				      struct intel_crtc_state *crtc_state)
9851 {
9852 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
9853 		if (!intel_ddi_pll_select(crtc, crtc_state))
9854 			return -EINVAL;
9855 	}
9856 
9857 	crtc->lowfreq_avail = false;
9858 
9859 	return 0;
9860 }
9861 
9862 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9863 				enum port port,
9864 				struct intel_crtc_state *pipe_config)
9865 {
9866 	enum intel_dpll_id id;
9867 
9868 	switch (port) {
9869 	case PORT_A:
9870 		pipe_config->ddi_pll_sel = SKL_DPLL0;
9871 		id = DPLL_ID_SKL_DPLL0;
9872 		break;
9873 	case PORT_B:
9874 		pipe_config->ddi_pll_sel = SKL_DPLL1;
9875 		id = DPLL_ID_SKL_DPLL1;
9876 		break;
9877 	case PORT_C:
9878 		pipe_config->ddi_pll_sel = SKL_DPLL2;
9879 		id = DPLL_ID_SKL_DPLL2;
9880 		break;
9881 	default:
9882 		DRM_ERROR("Incorrect port type\n");
9883 		return;
9884 	}
9885 
9886 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9887 }
9888 
9889 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9890 				enum port port,
9891 				struct intel_crtc_state *pipe_config)
9892 {
9893 	enum intel_dpll_id id;
9894 	u32 temp;
9895 
9896 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9897 	pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9898 
9899 	switch (pipe_config->ddi_pll_sel) {
9900 	case SKL_DPLL0:
9901 		id = DPLL_ID_SKL_DPLL0;
9902 		break;
9903 	case SKL_DPLL1:
9904 		id = DPLL_ID_SKL_DPLL1;
9905 		break;
9906 	case SKL_DPLL2:
9907 		id = DPLL_ID_SKL_DPLL2;
9908 		break;
9909 	case SKL_DPLL3:
9910 		id = DPLL_ID_SKL_DPLL3;
9911 		break;
9912 	default:
9913 		MISSING_CASE(pipe_config->ddi_pll_sel);
9914 		return;
9915 	}
9916 
9917 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9918 }
9919 
9920 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9921 				enum port port,
9922 				struct intel_crtc_state *pipe_config)
9923 {
9924 	enum intel_dpll_id id;
9925 
9926 	pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9927 
9928 	switch (pipe_config->ddi_pll_sel) {
9929 	case PORT_CLK_SEL_WRPLL1:
9930 		id = DPLL_ID_WRPLL1;
9931 		break;
9932 	case PORT_CLK_SEL_WRPLL2:
9933 		id = DPLL_ID_WRPLL2;
9934 		break;
9935 	case PORT_CLK_SEL_SPLL:
9936 		id = DPLL_ID_SPLL;
9937 		break;
9938 	case PORT_CLK_SEL_LCPLL_810:
9939 		id = DPLL_ID_LCPLL_810;
9940 		break;
9941 	case PORT_CLK_SEL_LCPLL_1350:
9942 		id = DPLL_ID_LCPLL_1350;
9943 		break;
9944 	case PORT_CLK_SEL_LCPLL_2700:
9945 		id = DPLL_ID_LCPLL_2700;
9946 		break;
9947 	default:
9948 		MISSING_CASE(pipe_config->ddi_pll_sel);
9949 		/* fall through */
9950 	case PORT_CLK_SEL_NONE:
9951 		return;
9952 	}
9953 
9954 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9955 }
9956 
9957 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9958 				     struct intel_crtc_state *pipe_config,
9959 				     unsigned long *power_domain_mask)
9960 {
9961 	struct drm_device *dev = crtc->base.dev;
9962 	struct drm_i915_private *dev_priv = to_i915(dev);
9963 	enum intel_display_power_domain power_domain;
9964 	u32 tmp;
9965 
9966 	/*
9967 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
9968 	 * transcoder handled below.
9969 	 */
9970 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9971 
9972 	/*
9973 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9974 	 * consistency and less surprising code; it's in always on power).
9975 	 */
9976 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9977 	if (tmp & TRANS_DDI_FUNC_ENABLE) {
9978 		enum i915_pipe trans_edp_pipe;
9979 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9980 		default:
9981 			WARN(1, "unknown pipe linked to edp transcoder\n");
9982 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
9983 		case TRANS_DDI_EDP_INPUT_A_ON:
9984 			trans_edp_pipe = PIPE_A;
9985 			break;
9986 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
9987 			trans_edp_pipe = PIPE_B;
9988 			break;
9989 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
9990 			trans_edp_pipe = PIPE_C;
9991 			break;
9992 		}
9993 
9994 		if (trans_edp_pipe == crtc->pipe)
9995 			pipe_config->cpu_transcoder = TRANSCODER_EDP;
9996 	}
9997 
9998 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9999 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10000 		return false;
10001 	*power_domain_mask |= BIT(power_domain);
10002 
10003 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10004 
10005 	return tmp & PIPECONF_ENABLE;
10006 }
10007 
10008 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10009 					 struct intel_crtc_state *pipe_config,
10010 					 unsigned long *power_domain_mask)
10011 {
10012 	struct drm_device *dev = crtc->base.dev;
10013 	struct drm_i915_private *dev_priv = to_i915(dev);
10014 	enum intel_display_power_domain power_domain;
10015 	enum port port;
10016 	enum transcoder cpu_transcoder;
10017 	u32 tmp;
10018 
10019 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10020 		if (port == PORT_A)
10021 			cpu_transcoder = TRANSCODER_DSI_A;
10022 		else
10023 			cpu_transcoder = TRANSCODER_DSI_C;
10024 
10025 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10026 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10027 			continue;
10028 		*power_domain_mask |= BIT(power_domain);
10029 
10030 		/*
10031 		 * The PLL needs to be enabled with a valid divider
10032 		 * configuration, otherwise accessing DSI registers will hang
10033 		 * the machine. See BSpec North Display Engine
10034 		 * registers/MIPI[BXT]. We can break out here early, since we
10035 		 * need the same DSI PLL to be enabled for both DSI ports.
10036 		 */
10037 		if (!intel_dsi_pll_is_enabled(dev_priv))
10038 			break;
10039 
10040 		/* XXX: this works for video mode only */
10041 		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10042 		if (!(tmp & DPI_ENABLE))
10043 			continue;
10044 
10045 		tmp = I915_READ(MIPI_CTRL(port));
10046 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10047 			continue;
10048 
10049 		pipe_config->cpu_transcoder = cpu_transcoder;
10050 		break;
10051 	}
10052 
10053 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
10054 }
10055 
10056 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10057 				       struct intel_crtc_state *pipe_config)
10058 {
10059 	struct drm_device *dev = crtc->base.dev;
10060 	struct drm_i915_private *dev_priv = to_i915(dev);
10061 	struct intel_shared_dpll *pll;
10062 	enum port port;
10063 	uint32_t tmp;
10064 
10065 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10066 
10067 	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10068 
10069 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10070 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
10071 	else if (IS_BROXTON(dev))
10072 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
10073 	else
10074 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
10075 
10076 	pll = pipe_config->shared_dpll;
10077 	if (pll) {
10078 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10079 						 &pipe_config->dpll_hw_state));
10080 	}
10081 
10082 	/*
10083 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10084 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
10085 	 * the PCH transcoder is on.
10086 	 */
10087 	if (INTEL_INFO(dev)->gen < 9 &&
10088 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10089 		pipe_config->has_pch_encoder = true;
10090 
10091 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10092 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10093 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10094 
10095 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
10096 	}
10097 }
10098 
10099 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10100 				    struct intel_crtc_state *pipe_config)
10101 {
10102 	struct drm_device *dev = crtc->base.dev;
10103 	struct drm_i915_private *dev_priv = to_i915(dev);
10104 	enum intel_display_power_domain power_domain;
10105 	unsigned long power_domain_mask;
10106 	bool active;
10107 
10108 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10109 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10110 		return false;
10111 	power_domain_mask = BIT(power_domain);
10112 
10113 	pipe_config->shared_dpll = NULL;
10114 
10115 	active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10116 
10117 	if (IS_BROXTON(dev_priv) &&
10118 	    bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10119 		WARN_ON(active);
10120 		active = true;
10121 	}
10122 
10123 	if (!active)
10124 		goto out;
10125 
10126 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10127 		haswell_get_ddi_port_state(crtc, pipe_config);
10128 		intel_get_pipe_timings(crtc, pipe_config);
10129 	}
10130 
10131 	intel_get_pipe_src_size(crtc, pipe_config);
10132 
10133 	pipe_config->gamma_mode =
10134 		I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10135 
10136 	if (INTEL_INFO(dev)->gen >= 9) {
10137 		skl_init_scalers(dev, crtc, pipe_config);
10138 	}
10139 
10140 	if (INTEL_INFO(dev)->gen >= 9) {
10141 		pipe_config->scaler_state.scaler_id = -1;
10142 		pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10143 	}
10144 
10145 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10146 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10147 		power_domain_mask |= BIT(power_domain);
10148 		if (INTEL_INFO(dev)->gen >= 9)
10149 			skylake_get_pfit_config(crtc, pipe_config);
10150 		else
10151 			ironlake_get_pfit_config(crtc, pipe_config);
10152 	}
10153 
10154 	if (IS_HASWELL(dev))
10155 		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10156 			(I915_READ(IPS_CTL) & IPS_ENABLE);
10157 
10158 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10159 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10160 		pipe_config->pixel_multiplier =
10161 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10162 	} else {
10163 		pipe_config->pixel_multiplier = 1;
10164 	}
10165 
10166 out:
10167 	for_each_power_domain(power_domain, power_domain_mask)
10168 		intel_display_power_put(dev_priv, power_domain);
10169 
10170 	return active;
10171 }
10172 
10173 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10174 			       const struct intel_plane_state *plane_state)
10175 {
10176 	struct drm_device *dev = crtc->dev;
10177 	struct drm_i915_private *dev_priv = to_i915(dev);
10178 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10179 	uint32_t cntl = 0, size = 0;
10180 
10181 	if (plane_state && plane_state->visible) {
10182 		unsigned int width = plane_state->base.crtc_w;
10183 		unsigned int height = plane_state->base.crtc_h;
10184 		unsigned int stride = roundup_pow_of_two(width) * 4;
10185 
10186 		switch (stride) {
10187 		default:
10188 			WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10189 				  width, stride);
10190 			stride = 256;
10191 			/* fallthrough */
10192 		case 256:
10193 		case 512:
10194 		case 1024:
10195 		case 2048:
10196 			break;
10197 		}
10198 
10199 		cntl |= CURSOR_ENABLE |
10200 			CURSOR_GAMMA_ENABLE |
10201 			CURSOR_FORMAT_ARGB |
10202 			CURSOR_STRIDE(stride);
10203 
10204 		size = (height << 12) | width;
10205 	}
10206 
10207 	if (intel_crtc->cursor_cntl != 0 &&
10208 	    (intel_crtc->cursor_base != base ||
10209 	     intel_crtc->cursor_size != size ||
10210 	     intel_crtc->cursor_cntl != cntl)) {
10211 		/* On these chipsets we can only modify the base/size/stride
10212 		 * whilst the cursor is disabled.
10213 		 */
10214 		I915_WRITE(CURCNTR(PIPE_A), 0);
10215 		POSTING_READ(CURCNTR(PIPE_A));
10216 		intel_crtc->cursor_cntl = 0;
10217 	}
10218 
10219 	if (intel_crtc->cursor_base != base) {
10220 		I915_WRITE(CURBASE(PIPE_A), base);
10221 		intel_crtc->cursor_base = base;
10222 	}
10223 
10224 	if (intel_crtc->cursor_size != size) {
10225 		I915_WRITE(CURSIZE, size);
10226 		intel_crtc->cursor_size = size;
10227 	}
10228 
10229 	if (intel_crtc->cursor_cntl != cntl) {
10230 		I915_WRITE(CURCNTR(PIPE_A), cntl);
10231 		POSTING_READ(CURCNTR(PIPE_A));
10232 		intel_crtc->cursor_cntl = cntl;
10233 	}
10234 }
10235 
10236 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10237 			       const struct intel_plane_state *plane_state)
10238 {
10239 	struct drm_device *dev = crtc->dev;
10240 	struct drm_i915_private *dev_priv = to_i915(dev);
10241 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10242 	int pipe = intel_crtc->pipe;
10243 	uint32_t cntl = 0;
10244 
10245 	if (plane_state && plane_state->visible) {
10246 		cntl = MCURSOR_GAMMA_ENABLE;
10247 		switch (plane_state->base.crtc_w) {
10248 			case 64:
10249 				cntl |= CURSOR_MODE_64_ARGB_AX;
10250 				break;
10251 			case 128:
10252 				cntl |= CURSOR_MODE_128_ARGB_AX;
10253 				break;
10254 			case 256:
10255 				cntl |= CURSOR_MODE_256_ARGB_AX;
10256 				break;
10257 			default:
10258 				MISSING_CASE(plane_state->base.crtc_w);
10259 				return;
10260 		}
10261 		cntl |= pipe << 28; /* Connect to correct pipe */
10262 
10263 		if (HAS_DDI(dev))
10264 			cntl |= CURSOR_PIPE_CSC_ENABLE;
10265 
10266 		if (plane_state->base.rotation == DRM_ROTATE_180)
10267 			cntl |= CURSOR_ROTATE_180;
10268 	}
10269 
10270 	if (intel_crtc->cursor_cntl != cntl) {
10271 		I915_WRITE(CURCNTR(pipe), cntl);
10272 		POSTING_READ(CURCNTR(pipe));
10273 		intel_crtc->cursor_cntl = cntl;
10274 	}
10275 
10276 	/* and commit changes on next vblank */
10277 	I915_WRITE(CURBASE(pipe), base);
10278 	POSTING_READ(CURBASE(pipe));
10279 
10280 	intel_crtc->cursor_base = base;
10281 }
10282 
10283 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10284 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10285 				     const struct intel_plane_state *plane_state)
10286 {
10287 	struct drm_device *dev = crtc->dev;
10288 	struct drm_i915_private *dev_priv = to_i915(dev);
10289 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10290 	int pipe = intel_crtc->pipe;
10291 	u32 base = intel_crtc->cursor_addr;
10292 	u32 pos = 0;
10293 
10294 	if (plane_state) {
10295 		int x = plane_state->base.crtc_x;
10296 		int y = plane_state->base.crtc_y;
10297 
10298 		if (x < 0) {
10299 			pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10300 			x = -x;
10301 		}
10302 		pos |= x << CURSOR_X_SHIFT;
10303 
10304 		if (y < 0) {
10305 			pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10306 			y = -y;
10307 		}
10308 		pos |= y << CURSOR_Y_SHIFT;
10309 
10310 		/* ILK+ do this automagically */
10311 		if (HAS_GMCH_DISPLAY(dev) &&
10312 		    plane_state->base.rotation == DRM_ROTATE_180) {
10313 			base += (plane_state->base.crtc_h *
10314 				 plane_state->base.crtc_w - 1) * 4;
10315 		}
10316 	}
10317 
10318 	I915_WRITE(CURPOS(pipe), pos);
10319 
10320 	if (IS_845G(dev) || IS_I865G(dev))
10321 		i845_update_cursor(crtc, base, plane_state);
10322 	else
10323 		i9xx_update_cursor(crtc, base, plane_state);
10324 }
10325 
10326 static bool cursor_size_ok(struct drm_device *dev,
10327 			   uint32_t width, uint32_t height)
10328 {
10329 	if (width == 0 || height == 0)
10330 		return false;
10331 
10332 	/*
10333 	 * 845g/865g are special in that they are only limited by
10334 	 * the width of their cursors, the height is arbitrary up to
10335 	 * the precision of the register. Everything else requires
10336 	 * square cursors, limited to a few power-of-two sizes.
10337 	 */
10338 	if (IS_845G(dev) || IS_I865G(dev)) {
10339 		if ((width & 63) != 0)
10340 			return false;
10341 
10342 		if (width > (IS_845G(dev) ? 64 : 512))
10343 			return false;
10344 
10345 		if (height > 1023)
10346 			return false;
10347 	} else {
10348 		switch (width | height) {
10349 		case 256:
10350 		case 128:
10351 			if (IS_GEN2(dev))
10352 				return false;
10353 		case 64:
10354 			break;
10355 		default:
10356 			return false;
10357 		}
10358 	}
10359 
10360 	return true;
10361 }
10362 
10363 /* VESA 640x480x72Hz mode to set on the pipe */
10364 static struct drm_display_mode load_detect_mode = {
10365 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10366 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10367 };
10368 
10369 struct drm_framebuffer *
10370 __intel_framebuffer_create(struct drm_device *dev,
10371 			   struct drm_mode_fb_cmd2 *mode_cmd,
10372 			   struct drm_i915_gem_object *obj)
10373 {
10374 	struct intel_framebuffer *intel_fb;
10375 	int ret;
10376 
10377 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10378 	if (!intel_fb)
10379 		return ERR_PTR(-ENOMEM);
10380 
10381 	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10382 	if (ret)
10383 		goto err;
10384 
10385 	return &intel_fb->base;
10386 
10387 err:
10388 	kfree(intel_fb);
10389 	return ERR_PTR(ret);
10390 }
10391 
10392 static struct drm_framebuffer *
10393 intel_framebuffer_create(struct drm_device *dev,
10394 			 struct drm_mode_fb_cmd2 *mode_cmd,
10395 			 struct drm_i915_gem_object *obj)
10396 {
10397 	struct drm_framebuffer *fb;
10398 	int ret;
10399 
10400 	ret = i915_mutex_lock_interruptible(dev);
10401 	if (ret)
10402 		return ERR_PTR(ret);
10403 	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10404 	mutex_unlock(&dev->struct_mutex);
10405 
10406 	return fb;
10407 }
10408 
10409 static u32
10410 intel_framebuffer_pitch_for_width(int width, int bpp)
10411 {
10412 	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10413 	return ALIGN(pitch, 64);
10414 }
10415 
10416 static u32
10417 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10418 {
10419 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10420 	return PAGE_ALIGN(pitch * mode->vdisplay);
10421 }
10422 
10423 static struct drm_framebuffer *
10424 intel_framebuffer_create_for_mode(struct drm_device *dev,
10425 				  struct drm_display_mode *mode,
10426 				  int depth, int bpp)
10427 {
10428 	struct drm_framebuffer *fb;
10429 	struct drm_i915_gem_object *obj;
10430 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10431 
10432 	obj = i915_gem_object_create(dev,
10433 				    intel_framebuffer_size_for_mode(mode, bpp));
10434 	if (IS_ERR(obj))
10435 		return ERR_CAST(obj);
10436 
10437 	mode_cmd.width = mode->hdisplay;
10438 	mode_cmd.height = mode->vdisplay;
10439 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10440 								bpp);
10441 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10442 
10443 	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10444 	if (IS_ERR(fb))
10445 		i915_gem_object_put_unlocked(obj);
10446 
10447 	return fb;
10448 }
10449 
10450 static struct drm_framebuffer *
10451 mode_fits_in_fbdev(struct drm_device *dev,
10452 		   struct drm_display_mode *mode)
10453 {
10454 #ifdef CONFIG_DRM_FBDEV_EMULATION
10455 	struct drm_i915_private *dev_priv = to_i915(dev);
10456 	struct drm_i915_gem_object *obj;
10457 	struct drm_framebuffer *fb;
10458 
10459 	if (!dev_priv->fbdev)
10460 		return NULL;
10461 
10462 	if (!dev_priv->fbdev->fb)
10463 		return NULL;
10464 
10465 	obj = dev_priv->fbdev->fb->obj;
10466 	BUG_ON(!obj);
10467 
10468 	fb = &dev_priv->fbdev->fb->base;
10469 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10470 							       fb->bits_per_pixel))
10471 		return NULL;
10472 
10473 	if (obj->base.size < mode->vdisplay * fb->pitches[0])
10474 		return NULL;
10475 
10476 	drm_framebuffer_reference(fb);
10477 	return fb;
10478 #else
10479 	return NULL;
10480 #endif
10481 }
10482 
10483 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10484 					   struct drm_crtc *crtc,
10485 					   struct drm_display_mode *mode,
10486 					   struct drm_framebuffer *fb,
10487 					   int x, int y)
10488 {
10489 	struct drm_plane_state *plane_state;
10490 	int hdisplay, vdisplay;
10491 	int ret;
10492 
10493 	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10494 	if (IS_ERR(plane_state))
10495 		return PTR_ERR(plane_state);
10496 
10497 	if (mode)
10498 		drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10499 	else
10500 		hdisplay = vdisplay = 0;
10501 
10502 	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10503 	if (ret)
10504 		return ret;
10505 	drm_atomic_set_fb_for_plane(plane_state, fb);
10506 	plane_state->crtc_x = 0;
10507 	plane_state->crtc_y = 0;
10508 	plane_state->crtc_w = hdisplay;
10509 	plane_state->crtc_h = vdisplay;
10510 	plane_state->src_x = x << 16;
10511 	plane_state->src_y = y << 16;
10512 	plane_state->src_w = hdisplay << 16;
10513 	plane_state->src_h = vdisplay << 16;
10514 
10515 	return 0;
10516 }
10517 
10518 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10519 				struct drm_display_mode *mode,
10520 				struct intel_load_detect_pipe *old,
10521 				struct drm_modeset_acquire_ctx *ctx)
10522 {
10523 	struct intel_crtc *intel_crtc;
10524 	struct intel_encoder *intel_encoder =
10525 		intel_attached_encoder(connector);
10526 	struct drm_crtc *possible_crtc;
10527 	struct drm_encoder *encoder = &intel_encoder->base;
10528 	struct drm_crtc *crtc = NULL;
10529 	struct drm_device *dev = encoder->dev;
10530 	struct drm_framebuffer *fb;
10531 	struct drm_mode_config *config = &dev->mode_config;
10532 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
10533 	struct drm_connector_state *connector_state;
10534 	struct intel_crtc_state *crtc_state;
10535 	int ret, i = -1;
10536 
10537 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10538 		      connector->base.id, connector->name,
10539 		      encoder->base.id, encoder->name);
10540 
10541 	old->restore_state = NULL;
10542 
10543 retry:
10544 	ret = drm_modeset_lock(&config->connection_mutex, ctx);
10545 	if (ret)
10546 		goto fail;
10547 
10548 	/*
10549 	 * Algorithm gets a little messy:
10550 	 *
10551 	 *   - if the connector already has an assigned crtc, use it (but make
10552 	 *     sure it's on first)
10553 	 *
10554 	 *   - try to find the first unused crtc that can drive this connector,
10555 	 *     and use that if we find one
10556 	 */
10557 
10558 	/* See if we already have a CRTC for this connector */
10559 	if (connector->state->crtc) {
10560 		crtc = connector->state->crtc;
10561 
10562 		ret = drm_modeset_lock(&crtc->mutex, ctx);
10563 		if (ret)
10564 			goto fail;
10565 
10566 		/* Make sure the crtc and connector are running */
10567 		goto found;
10568 	}
10569 
10570 	/* Find an unused one (if possible) */
10571 	for_each_crtc(dev, possible_crtc) {
10572 		i++;
10573 		if (!(encoder->possible_crtcs & (1 << i)))
10574 			continue;
10575 
10576 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10577 		if (ret)
10578 			goto fail;
10579 
10580 		if (possible_crtc->state->enable) {
10581 			drm_modeset_unlock(&possible_crtc->mutex);
10582 			continue;
10583 		}
10584 
10585 		crtc = possible_crtc;
10586 		break;
10587 	}
10588 
10589 	/*
10590 	 * If we didn't find an unused CRTC, don't use any.
10591 	 */
10592 	if (!crtc) {
10593 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
10594 		goto fail;
10595 	}
10596 
10597 found:
10598 	intel_crtc = to_intel_crtc(crtc);
10599 
10600 	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10601 	if (ret)
10602 		goto fail;
10603 
10604 	state = drm_atomic_state_alloc(dev);
10605 	restore_state = drm_atomic_state_alloc(dev);
10606 	if (!state || !restore_state) {
10607 		ret = -ENOMEM;
10608 		goto fail;
10609 	}
10610 
10611 	state->acquire_ctx = ctx;
10612 	restore_state->acquire_ctx = ctx;
10613 
10614 	connector_state = drm_atomic_get_connector_state(state, connector);
10615 	if (IS_ERR(connector_state)) {
10616 		ret = PTR_ERR(connector_state);
10617 		goto fail;
10618 	}
10619 
10620 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10621 	if (ret)
10622 		goto fail;
10623 
10624 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10625 	if (IS_ERR(crtc_state)) {
10626 		ret = PTR_ERR(crtc_state);
10627 		goto fail;
10628 	}
10629 
10630 	crtc_state->base.active = crtc_state->base.enable = true;
10631 
10632 	if (!mode)
10633 		mode = &load_detect_mode;
10634 
10635 	/* We need a framebuffer large enough to accommodate all accesses
10636 	 * that the plane may generate whilst we perform load detection.
10637 	 * We can not rely on the fbcon either being present (we get called
10638 	 * during its initialisation to detect all boot displays, or it may
10639 	 * not even exist) or that it is large enough to satisfy the
10640 	 * requested mode.
10641 	 */
10642 	fb = mode_fits_in_fbdev(dev, mode);
10643 	if (fb == NULL) {
10644 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10645 		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10646 	} else
10647 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10648 	if (IS_ERR(fb)) {
10649 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10650 		goto fail;
10651 	}
10652 
10653 	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10654 	if (ret)
10655 		goto fail;
10656 
10657 	drm_framebuffer_unreference(fb);
10658 
10659 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10660 	if (ret)
10661 		goto fail;
10662 
10663 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10664 	if (!ret)
10665 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10666 	if (!ret)
10667 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10668 	if (ret) {
10669 		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10670 		goto fail;
10671 	}
10672 
10673 	ret = drm_atomic_commit(state);
10674 	if (ret) {
10675 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10676 		goto fail;
10677 	}
10678 
10679 	old->restore_state = restore_state;
10680 
10681 	/* let the connector get through one full cycle before testing */
10682 	intel_wait_for_vblank(dev, intel_crtc->pipe);
10683 	return true;
10684 
10685 fail:
10686 	drm_atomic_state_free(state);
10687 	drm_atomic_state_free(restore_state);
10688 	restore_state = state = NULL;
10689 
10690 	if (ret == -EDEADLK) {
10691 		drm_modeset_backoff(ctx);
10692 		goto retry;
10693 	}
10694 
10695 	return false;
10696 }
10697 
10698 void intel_release_load_detect_pipe(struct drm_connector *connector,
10699 				    struct intel_load_detect_pipe *old,
10700 				    struct drm_modeset_acquire_ctx *ctx)
10701 {
10702 	struct intel_encoder *intel_encoder =
10703 		intel_attached_encoder(connector);
10704 	struct drm_encoder *encoder = &intel_encoder->base;
10705 	struct drm_atomic_state *state = old->restore_state;
10706 	int ret;
10707 
10708 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10709 		      connector->base.id, connector->name,
10710 		      encoder->base.id, encoder->name);
10711 
10712 	if (!state)
10713 		return;
10714 
10715 	ret = drm_atomic_commit(state);
10716 	if (ret) {
10717 		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10718 		drm_atomic_state_free(state);
10719 	}
10720 }
10721 
10722 static int i9xx_pll_refclk(struct drm_device *dev,
10723 			   const struct intel_crtc_state *pipe_config)
10724 {
10725 	struct drm_i915_private *dev_priv = to_i915(dev);
10726 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10727 
10728 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10729 		return dev_priv->vbt.lvds_ssc_freq;
10730 	else if (HAS_PCH_SPLIT(dev))
10731 		return 120000;
10732 	else if (!IS_GEN2(dev))
10733 		return 96000;
10734 	else
10735 		return 48000;
10736 }
10737 
10738 /* Returns the clock of the currently programmed mode of the given pipe. */
10739 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10740 				struct intel_crtc_state *pipe_config)
10741 {
10742 	struct drm_device *dev = crtc->base.dev;
10743 	struct drm_i915_private *dev_priv = to_i915(dev);
10744 	int pipe = pipe_config->cpu_transcoder;
10745 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10746 	u32 fp;
10747 	struct dpll clock;
10748 	int port_clock;
10749 	int refclk = i9xx_pll_refclk(dev, pipe_config);
10750 
10751 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10752 		fp = pipe_config->dpll_hw_state.fp0;
10753 	else
10754 		fp = pipe_config->dpll_hw_state.fp1;
10755 
10756 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10757 	if (IS_PINEVIEW(dev)) {
10758 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10759 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10760 	} else {
10761 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10762 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10763 	}
10764 
10765 	if (!IS_GEN2(dev)) {
10766 		if (IS_PINEVIEW(dev))
10767 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10768 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10769 		else
10770 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10771 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
10772 
10773 		switch (dpll & DPLL_MODE_MASK) {
10774 		case DPLLB_MODE_DAC_SERIAL:
10775 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10776 				5 : 10;
10777 			break;
10778 		case DPLLB_MODE_LVDS:
10779 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10780 				7 : 14;
10781 			break;
10782 		default:
10783 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10784 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
10785 			return;
10786 		}
10787 
10788 		if (IS_PINEVIEW(dev))
10789 			port_clock = pnv_calc_dpll_params(refclk, &clock);
10790 		else
10791 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
10792 	} else {
10793 		u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10794 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10795 
10796 		if (is_lvds) {
10797 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10798 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
10799 
10800 			if (lvds & LVDS_CLKB_POWER_UP)
10801 				clock.p2 = 7;
10802 			else
10803 				clock.p2 = 14;
10804 		} else {
10805 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
10806 				clock.p1 = 2;
10807 			else {
10808 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10809 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10810 			}
10811 			if (dpll & PLL_P2_DIVIDE_BY_4)
10812 				clock.p2 = 4;
10813 			else
10814 				clock.p2 = 2;
10815 		}
10816 
10817 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
10818 	}
10819 
10820 	/*
10821 	 * This value includes pixel_multiplier. We will use
10822 	 * port_clock to compute adjusted_mode.crtc_clock in the
10823 	 * encoder's get_config() function.
10824 	 */
10825 	pipe_config->port_clock = port_clock;
10826 }
10827 
10828 int intel_dotclock_calculate(int link_freq,
10829 			     const struct intel_link_m_n *m_n)
10830 {
10831 	/*
10832 	 * The calculation for the data clock is:
10833 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10834 	 * But we want to avoid losing precison if possible, so:
10835 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10836 	 *
10837 	 * and the link clock is simpler:
10838 	 * link_clock = (m * link_clock) / n
10839 	 */
10840 
10841 	if (!m_n->link_n)
10842 		return 0;
10843 
10844 	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10845 }
10846 
10847 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10848 				   struct intel_crtc_state *pipe_config)
10849 {
10850 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10851 
10852 	/* read out port_clock from the DPLL */
10853 	i9xx_crtc_clock_get(crtc, pipe_config);
10854 
10855 	/*
10856 	 * In case there is an active pipe without active ports,
10857 	 * we may need some idea for the dotclock anyway.
10858 	 * Calculate one based on the FDI configuration.
10859 	 */
10860 	pipe_config->base.adjusted_mode.crtc_clock =
10861 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10862 					 &pipe_config->fdi_m_n);
10863 }
10864 
10865 /** Returns the currently programmed mode of the given pipe. */
10866 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10867 					     struct drm_crtc *crtc)
10868 {
10869 	struct drm_i915_private *dev_priv = to_i915(dev);
10870 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10871 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10872 	struct drm_display_mode *mode;
10873 	struct intel_crtc_state *pipe_config;
10874 	int htot = I915_READ(HTOTAL(cpu_transcoder));
10875 	int hsync = I915_READ(HSYNC(cpu_transcoder));
10876 	int vtot = I915_READ(VTOTAL(cpu_transcoder));
10877 	int vsync = I915_READ(VSYNC(cpu_transcoder));
10878 	enum i915_pipe pipe = intel_crtc->pipe;
10879 
10880 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10881 	if (!mode)
10882 		return NULL;
10883 
10884 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10885 	if (!pipe_config) {
10886 		kfree(mode);
10887 		return NULL;
10888 	}
10889 
10890 	/*
10891 	 * Construct a pipe_config sufficient for getting the clock info
10892 	 * back out of crtc_clock_get.
10893 	 *
10894 	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10895 	 * to use a real value here instead.
10896 	 */
10897 	pipe_config->cpu_transcoder = (enum transcoder) pipe;
10898 	pipe_config->pixel_multiplier = 1;
10899 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10900 	pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10901 	pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10902 	i9xx_crtc_clock_get(intel_crtc, pipe_config);
10903 
10904 	mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10905 	mode->hdisplay = (htot & 0xffff) + 1;
10906 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10907 	mode->hsync_start = (hsync & 0xffff) + 1;
10908 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10909 	mode->vdisplay = (vtot & 0xffff) + 1;
10910 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10911 	mode->vsync_start = (vsync & 0xffff) + 1;
10912 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10913 
10914 	drm_mode_set_name(mode);
10915 
10916 	kfree(pipe_config);
10917 
10918 	return mode;
10919 }
10920 
10921 static void intel_crtc_destroy(struct drm_crtc *crtc)
10922 {
10923 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10924 	struct drm_device *dev = crtc->dev;
10925 	struct intel_flip_work *work;
10926 
10927 	spin_lock_irq(&dev->event_lock);
10928 	work = intel_crtc->flip_work;
10929 	intel_crtc->flip_work = NULL;
10930 	spin_unlock_irq(&dev->event_lock);
10931 
10932 	if (work) {
10933 		cancel_work_sync(&work->mmio_work);
10934 		cancel_work_sync(&work->unpin_work);
10935 		kfree(work);
10936 	}
10937 
10938 	drm_crtc_cleanup(crtc);
10939 
10940 	kfree(intel_crtc);
10941 }
10942 
10943 static void intel_unpin_work_fn(struct work_struct *__work)
10944 {
10945 	struct intel_flip_work *work =
10946 		container_of(__work, struct intel_flip_work, unpin_work);
10947 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10948 	struct drm_device *dev = crtc->base.dev;
10949 	struct drm_plane *primary = crtc->base.primary;
10950 
10951 	if (is_mmio_work(work))
10952 		flush_work(&work->mmio_work);
10953 
10954 	mutex_lock(&dev->struct_mutex);
10955 	intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10956 	i915_gem_object_put(work->pending_flip_obj);
10957 	mutex_unlock(&dev->struct_mutex);
10958 
10959 	i915_gem_request_put(work->flip_queued_req);
10960 
10961 	intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10962 	intel_fbc_post_update(crtc);
10963 	drm_framebuffer_unreference(work->old_fb);
10964 
10965 	BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10966 	atomic_dec(&crtc->unpin_work_count);
10967 
10968 	kfree(work);
10969 }
10970 
10971 /* Is 'a' after or equal to 'b'? */
10972 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10973 {
10974 	return !((a - b) & 0x80000000);
10975 }
10976 
10977 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
10978 				   struct intel_flip_work *work)
10979 {
10980 	struct drm_device *dev = crtc->base.dev;
10981 	struct drm_i915_private *dev_priv = to_i915(dev);
10982 	unsigned reset_counter;
10983 
10984 	reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10985 	if (crtc->reset_counter != reset_counter)
10986 		return true;
10987 
10988 	/*
10989 	 * The relevant registers doen't exist on pre-ctg.
10990 	 * As the flip done interrupt doesn't trigger for mmio
10991 	 * flips on gmch platforms, a flip count check isn't
10992 	 * really needed there. But since ctg has the registers,
10993 	 * include it in the check anyway.
10994 	 */
10995 	if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10996 		return true;
10997 
10998 	/*
10999 	 * BDW signals flip done immediately if the plane
11000 	 * is disabled, even if the plane enable is already
11001 	 * armed to occur at the next vblank :(
11002 	 */
11003 
11004 	/*
11005 	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11006 	 * used the same base address. In that case the mmio flip might
11007 	 * have completed, but the CS hasn't even executed the flip yet.
11008 	 *
11009 	 * A flip count check isn't enough as the CS might have updated
11010 	 * the base address just after start of vblank, but before we
11011 	 * managed to process the interrupt. This means we'd complete the
11012 	 * CS flip too soon.
11013 	 *
11014 	 * Combining both checks should get us a good enough result. It may
11015 	 * still happen that the CS flip has been executed, but has not
11016 	 * yet actually completed. But in case the base address is the same
11017 	 * anyway, we don't really care.
11018 	 */
11019 	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11020 		crtc->flip_work->gtt_offset &&
11021 		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11022 				    crtc->flip_work->flip_count);
11023 }
11024 
11025 static bool
11026 __pageflip_finished_mmio(struct intel_crtc *crtc,
11027 			       struct intel_flip_work *work)
11028 {
11029 	/*
11030 	 * MMIO work completes when vblank is different from
11031 	 * flip_queued_vblank.
11032 	 *
11033 	 * Reset counter value doesn't matter, this is handled by
11034 	 * i915_wait_request finishing early, so no need to handle
11035 	 * reset here.
11036 	 */
11037 	return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11038 }
11039 
11040 
11041 static bool pageflip_finished(struct intel_crtc *crtc,
11042 			      struct intel_flip_work *work)
11043 {
11044 	if (!atomic_read(&work->pending))
11045 		return false;
11046 
11047 	smp_rmb();
11048 
11049 	if (is_mmio_work(work))
11050 		return __pageflip_finished_mmio(crtc, work);
11051 	else
11052 		return __pageflip_finished_cs(crtc, work);
11053 }
11054 
11055 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11056 {
11057 	struct drm_device *dev = &dev_priv->drm;
11058 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11059 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11060 	struct intel_flip_work *work;
11061 	unsigned long flags;
11062 
11063 	/* Ignore early vblank irqs */
11064 	if (!crtc)
11065 		return;
11066 
11067 	/*
11068 	 * This is called both by irq handlers and the reset code (to complete
11069 	 * lost pageflips) so needs the full irqsave spinlocks.
11070 	 */
11071 	spin_lock_irqsave(&dev->event_lock, flags);
11072 	work = intel_crtc->flip_work;
11073 
11074 	if (work != NULL &&
11075 	    !is_mmio_work(work) &&
11076 	    pageflip_finished(intel_crtc, work))
11077 		page_flip_completed(intel_crtc);
11078 
11079 	spin_unlock_irqrestore(&dev->event_lock, flags);
11080 }
11081 
11082 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11083 {
11084 	struct drm_device *dev = &dev_priv->drm;
11085 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11086 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11087 	struct intel_flip_work *work;
11088 	unsigned long flags;
11089 
11090 	/* Ignore early vblank irqs */
11091 	if (!crtc)
11092 		return;
11093 
11094 	/*
11095 	 * This is called both by irq handlers and the reset code (to complete
11096 	 * lost pageflips) so needs the full irqsave spinlocks.
11097 	 */
11098 	spin_lock_irqsave(&dev->event_lock, flags);
11099 	work = intel_crtc->flip_work;
11100 
11101 	if (work != NULL &&
11102 	    is_mmio_work(work) &&
11103 	    pageflip_finished(intel_crtc, work))
11104 		page_flip_completed(intel_crtc);
11105 
11106 	spin_unlock_irqrestore(&dev->event_lock, flags);
11107 }
11108 
11109 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11110 					       struct intel_flip_work *work)
11111 {
11112 	work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11113 
11114 	/* Ensure that the work item is consistent when activating it ... */
11115 	smp_mb__before_atomic();
11116 	atomic_set(&work->pending, 1);
11117 }
11118 
11119 static int intel_gen2_queue_flip(struct drm_device *dev,
11120 				 struct drm_crtc *crtc,
11121 				 struct drm_framebuffer *fb,
11122 				 struct drm_i915_gem_object *obj,
11123 				 struct drm_i915_gem_request *req,
11124 				 uint32_t flags)
11125 {
11126 	struct intel_engine_cs *engine = req->engine;
11127 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11128 	u32 flip_mask;
11129 	int ret;
11130 
11131 	ret = intel_ring_begin(req, 6);
11132 	if (ret)
11133 		return ret;
11134 
11135 	/* Can't queue multiple flips, so wait for the previous
11136 	 * one to finish before executing the next.
11137 	 */
11138 	if (intel_crtc->plane)
11139 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11140 	else
11141 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11142 	intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11143 	intel_ring_emit(engine, MI_NOOP);
11144 	intel_ring_emit(engine, MI_DISPLAY_FLIP |
11145 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11146 	intel_ring_emit(engine, fb->pitches[0]);
11147 	intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11148 	intel_ring_emit(engine, 0); /* aux display base address, unused */
11149 
11150 	return 0;
11151 }
11152 
11153 static int intel_gen3_queue_flip(struct drm_device *dev,
11154 				 struct drm_crtc *crtc,
11155 				 struct drm_framebuffer *fb,
11156 				 struct drm_i915_gem_object *obj,
11157 				 struct drm_i915_gem_request *req,
11158 				 uint32_t flags)
11159 {
11160 	struct intel_engine_cs *engine = req->engine;
11161 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11162 	u32 flip_mask;
11163 	int ret;
11164 
11165 	ret = intel_ring_begin(req, 6);
11166 	if (ret)
11167 		return ret;
11168 
11169 	if (intel_crtc->plane)
11170 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11171 	else
11172 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11173 	intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11174 	intel_ring_emit(engine, MI_NOOP);
11175 	intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11176 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11177 	intel_ring_emit(engine, fb->pitches[0]);
11178 	intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11179 	intel_ring_emit(engine, MI_NOOP);
11180 
11181 	return 0;
11182 }
11183 
11184 static int intel_gen4_queue_flip(struct drm_device *dev,
11185 				 struct drm_crtc *crtc,
11186 				 struct drm_framebuffer *fb,
11187 				 struct drm_i915_gem_object *obj,
11188 				 struct drm_i915_gem_request *req,
11189 				 uint32_t flags)
11190 {
11191 	struct intel_engine_cs *engine = req->engine;
11192 	struct drm_i915_private *dev_priv = to_i915(dev);
11193 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11194 	uint32_t pf, pipesrc;
11195 	int ret;
11196 
11197 	ret = intel_ring_begin(req, 4);
11198 	if (ret)
11199 		return ret;
11200 
11201 	/* i965+ uses the linear or tiled offsets from the
11202 	 * Display Registers (which do not change across a page-flip)
11203 	 * so we need only reprogram the base address.
11204 	 */
11205 	intel_ring_emit(engine, MI_DISPLAY_FLIP |
11206 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11207 	intel_ring_emit(engine, fb->pitches[0]);
11208 	intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset |
11209 			obj->tiling_mode);
11210 
11211 	/* XXX Enabling the panel-fitter across page-flip is so far
11212 	 * untested on non-native modes, so ignore it for now.
11213 	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11214 	 */
11215 	pf = 0;
11216 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11217 	intel_ring_emit(engine, pf | pipesrc);
11218 
11219 	return 0;
11220 }
11221 
11222 static int intel_gen6_queue_flip(struct drm_device *dev,
11223 				 struct drm_crtc *crtc,
11224 				 struct drm_framebuffer *fb,
11225 				 struct drm_i915_gem_object *obj,
11226 				 struct drm_i915_gem_request *req,
11227 				 uint32_t flags)
11228 {
11229 	struct intel_engine_cs *engine = req->engine;
11230 	struct drm_i915_private *dev_priv = to_i915(dev);
11231 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11232 	uint32_t pf, pipesrc;
11233 	int ret;
11234 
11235 	ret = intel_ring_begin(req, 4);
11236 	if (ret)
11237 		return ret;
11238 
11239 	intel_ring_emit(engine, MI_DISPLAY_FLIP |
11240 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11241 	intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11242 	intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11243 
11244 	/* Contrary to the suggestions in the documentation,
11245 	 * "Enable Panel Fitter" does not seem to be required when page
11246 	 * flipping with a non-native mode, and worse causes a normal
11247 	 * modeset to fail.
11248 	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11249 	 */
11250 	pf = 0;
11251 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11252 	intel_ring_emit(engine, pf | pipesrc);
11253 
11254 	return 0;
11255 }
11256 
11257 static int intel_gen7_queue_flip(struct drm_device *dev,
11258 				 struct drm_crtc *crtc,
11259 				 struct drm_framebuffer *fb,
11260 				 struct drm_i915_gem_object *obj,
11261 				 struct drm_i915_gem_request *req,
11262 				 uint32_t flags)
11263 {
11264 	struct intel_engine_cs *engine = req->engine;
11265 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11266 	uint32_t plane_bit = 0;
11267 	int len, ret;
11268 
11269 	switch (intel_crtc->plane) {
11270 	case PLANE_A:
11271 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11272 		break;
11273 	case PLANE_B:
11274 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11275 		break;
11276 	case PLANE_C:
11277 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11278 		break;
11279 	default:
11280 		WARN_ONCE(1, "unknown plane in flip command\n");
11281 		return -ENODEV;
11282 	}
11283 
11284 	len = 4;
11285 	if (engine->id == RCS) {
11286 		len += 6;
11287 		/*
11288 		 * On Gen 8, SRM is now taking an extra dword to accommodate
11289 		 * 48bits addresses, and we need a NOOP for the batch size to
11290 		 * stay even.
11291 		 */
11292 		if (IS_GEN8(dev))
11293 			len += 2;
11294 	}
11295 
11296 	/*
11297 	 * BSpec MI_DISPLAY_FLIP for IVB:
11298 	 * "The full packet must be contained within the same cache line."
11299 	 *
11300 	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11301 	 * cacheline, if we ever start emitting more commands before
11302 	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11303 	 * then do the cacheline alignment, and finally emit the
11304 	 * MI_DISPLAY_FLIP.
11305 	 */
11306 	ret = intel_ring_cacheline_align(req);
11307 	if (ret)
11308 		return ret;
11309 
11310 	ret = intel_ring_begin(req, len);
11311 	if (ret)
11312 		return ret;
11313 
11314 	/* Unmask the flip-done completion message. Note that the bspec says that
11315 	 * we should do this for both the BCS and RCS, and that we must not unmask
11316 	 * more than one flip event at any time (or ensure that one flip message
11317 	 * can be sent by waiting for flip-done prior to queueing new flips).
11318 	 * Experimentation says that BCS works despite DERRMR masking all
11319 	 * flip-done completion events and that unmasking all planes at once
11320 	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11321 	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11322 	 */
11323 	if (engine->id == RCS) {
11324 		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11325 		intel_ring_emit_reg(engine, DERRMR);
11326 		intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11327 					  DERRMR_PIPEB_PRI_FLIP_DONE |
11328 					  DERRMR_PIPEC_PRI_FLIP_DONE));
11329 		if (IS_GEN8(dev))
11330 			intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11331 					      MI_SRM_LRM_GLOBAL_GTT);
11332 		else
11333 			intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11334 					      MI_SRM_LRM_GLOBAL_GTT);
11335 		intel_ring_emit_reg(engine, DERRMR);
11336 		intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11337 		if (IS_GEN8(dev)) {
11338 			intel_ring_emit(engine, 0);
11339 			intel_ring_emit(engine, MI_NOOP);
11340 		}
11341 	}
11342 
11343 	intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11344 	intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11345 	intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11346 	intel_ring_emit(engine, (MI_NOOP));
11347 
11348 	return 0;
11349 }
11350 
11351 static bool use_mmio_flip(struct intel_engine_cs *engine,
11352 			  struct drm_i915_gem_object *obj)
11353 {
11354 	struct reservation_object *resv;
11355 
11356 	/*
11357 	 * This is not being used for older platforms, because
11358 	 * non-availability of flip done interrupt forces us to use
11359 	 * CS flips. Older platforms derive flip done using some clever
11360 	 * tricks involving the flip_pending status bits and vblank irqs.
11361 	 * So using MMIO flips there would disrupt this mechanism.
11362 	 */
11363 
11364 	if (engine == NULL)
11365 		return true;
11366 
11367 	if (INTEL_GEN(engine->i915) < 5)
11368 		return false;
11369 
11370 	if (i915.use_mmio_flip < 0)
11371 		return false;
11372 	else if (i915.use_mmio_flip > 0)
11373 		return true;
11374 	else if (i915.enable_execlists)
11375 		return true;
11376 
11377 	resv = i915_gem_object_get_dmabuf_resv(obj);
11378 	if (resv && !reservation_object_test_signaled_rcu(resv, false))
11379 		return true;
11380 
11381 	return engine != i915_gem_request_get_engine(obj->last_write_req);
11382 }
11383 
11384 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11385 			     unsigned int rotation,
11386 			     struct intel_flip_work *work)
11387 {
11388 	struct drm_device *dev = intel_crtc->base.dev;
11389 	struct drm_i915_private *dev_priv = to_i915(dev);
11390 	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11391 	const enum i915_pipe pipe = intel_crtc->pipe;
11392 	u32 ctl, stride, tile_height;
11393 
11394 	ctl = I915_READ(PLANE_CTL(pipe, 0));
11395 	ctl &= ~PLANE_CTL_TILED_MASK;
11396 	switch (fb->modifier[0]) {
11397 	case DRM_FORMAT_MOD_NONE:
11398 		break;
11399 	case I915_FORMAT_MOD_X_TILED:
11400 		ctl |= PLANE_CTL_TILED_X;
11401 		break;
11402 	case I915_FORMAT_MOD_Y_TILED:
11403 		ctl |= PLANE_CTL_TILED_Y;
11404 		break;
11405 	case I915_FORMAT_MOD_Yf_TILED:
11406 		ctl |= PLANE_CTL_TILED_YF;
11407 		break;
11408 	default:
11409 		MISSING_CASE(fb->modifier[0]);
11410 	}
11411 
11412 	/*
11413 	 * The stride is either expressed as a multiple of 64 bytes chunks for
11414 	 * linear buffers or in number of tiles for tiled buffers.
11415 	 */
11416 	if (intel_rotation_90_or_270(rotation)) {
11417 		/* stride = Surface height in tiles */
11418 		tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11419 		stride = DIV_ROUND_UP(fb->height, tile_height);
11420 	} else {
11421 		stride = fb->pitches[0] /
11422 			intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11423 						  fb->pixel_format);
11424 	}
11425 
11426 	/*
11427 	 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11428 	 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11429 	 */
11430 	I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11431 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11432 
11433 	I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11434 	POSTING_READ(PLANE_SURF(pipe, 0));
11435 }
11436 
11437 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11438 			     struct intel_flip_work *work)
11439 {
11440 	struct drm_device *dev = intel_crtc->base.dev;
11441 	struct drm_i915_private *dev_priv = to_i915(dev);
11442 	struct intel_framebuffer *intel_fb =
11443 		to_intel_framebuffer(intel_crtc->base.primary->fb);
11444 	struct drm_i915_gem_object *obj = intel_fb->obj;
11445 	i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11446 	u32 dspcntr;
11447 
11448 	dspcntr = I915_READ(reg);
11449 
11450 	if (obj->tiling_mode != I915_TILING_NONE)
11451 		dspcntr |= DISPPLANE_TILED;
11452 	else
11453 		dspcntr &= ~DISPPLANE_TILED;
11454 
11455 	I915_WRITE(reg, dspcntr);
11456 
11457 	I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11458 	POSTING_READ(DSPSURF(intel_crtc->plane));
11459 }
11460 
11461 static void intel_mmio_flip_work_func(struct work_struct *w)
11462 {
11463 	struct intel_flip_work *work =
11464 		container_of(w, struct intel_flip_work, mmio_work);
11465 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11466 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11467 	struct intel_framebuffer *intel_fb =
11468 		to_intel_framebuffer(crtc->base.primary->fb);
11469 	struct drm_i915_gem_object *obj = intel_fb->obj;
11470 	struct reservation_object *resv;
11471 
11472 	if (work->flip_queued_req)
11473 		WARN_ON(__i915_wait_request(work->flip_queued_req,
11474 					    false, NULL,
11475 					    NO_WAITBOOST));
11476 
11477 	/* For framebuffer backed by dmabuf, wait for fence */
11478 	resv = i915_gem_object_get_dmabuf_resv(obj);
11479 	if (resv)
11480 		WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
11481 							    MAX_SCHEDULE_TIMEOUT) < 0);
11482 
11483 	intel_pipe_update_start(crtc);
11484 
11485 	if (INTEL_GEN(dev_priv) >= 9)
11486 		skl_do_mmio_flip(crtc, work->rotation, work);
11487 	else
11488 		/* use_mmio_flip() retricts MMIO flips to ilk+ */
11489 		ilk_do_mmio_flip(crtc, work);
11490 
11491 	intel_pipe_update_end(crtc, work);
11492 }
11493 
11494 static int intel_default_queue_flip(struct drm_device *dev,
11495 				    struct drm_crtc *crtc,
11496 				    struct drm_framebuffer *fb,
11497 				    struct drm_i915_gem_object *obj,
11498 				    struct drm_i915_gem_request *req,
11499 				    uint32_t flags)
11500 {
11501 	return -ENODEV;
11502 }
11503 
11504 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11505 				      struct intel_crtc *intel_crtc,
11506 				      struct intel_flip_work *work)
11507 {
11508 	u32 addr, vblank;
11509 
11510 	if (!atomic_read(&work->pending))
11511 		return false;
11512 
11513 	smp_rmb();
11514 
11515 	vblank = intel_crtc_get_vblank_counter(intel_crtc);
11516 	if (work->flip_ready_vblank == 0) {
11517 		if (work->flip_queued_req &&
11518 		    !i915_gem_request_completed(work->flip_queued_req))
11519 			return false;
11520 
11521 		work->flip_ready_vblank = vblank;
11522 	}
11523 
11524 	if (vblank - work->flip_ready_vblank < 3)
11525 		return false;
11526 
11527 	/* Potential stall - if we see that the flip has happened,
11528 	 * assume a missed interrupt. */
11529 	if (INTEL_GEN(dev_priv) >= 4)
11530 		addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11531 	else
11532 		addr = I915_READ(DSPADDR(intel_crtc->plane));
11533 
11534 	/* There is a potential issue here with a false positive after a flip
11535 	 * to the same address. We could address this by checking for a
11536 	 * non-incrementing frame counter.
11537 	 */
11538 	return addr == work->gtt_offset;
11539 }
11540 
11541 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11542 {
11543 	struct drm_device *dev = &dev_priv->drm;
11544 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11545 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11546 	struct intel_flip_work *work;
11547 
11548 //	WARN_ON(!in_interrupt());
11549 
11550 	if (crtc == NULL)
11551 		return;
11552 
11553 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
11554 	work = intel_crtc->flip_work;
11555 
11556 	if (work != NULL && !is_mmio_work(work) &&
11557 	    __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11558 		WARN_ONCE(1,
11559 			  "Kicking stuck page flip: queued at %d, now %d\n",
11560 			work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11561 		page_flip_completed(intel_crtc);
11562 		work = NULL;
11563 	}
11564 
11565 	if (work != NULL && !is_mmio_work(work) &&
11566 	    intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11567 		intel_queue_rps_boost_for_request(work->flip_queued_req);
11568 	lockmgr(&dev->event_lock, LK_RELEASE);
11569 }
11570 
11571 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11572 				struct drm_framebuffer *fb,
11573 				struct drm_pending_vblank_event *event,
11574 				uint32_t page_flip_flags)
11575 {
11576 	struct drm_device *dev = crtc->dev;
11577 	struct drm_i915_private *dev_priv = to_i915(dev);
11578 	struct drm_framebuffer *old_fb = crtc->primary->fb;
11579 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11580 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11581 	struct drm_plane *primary = crtc->primary;
11582 	enum i915_pipe pipe = intel_crtc->pipe;
11583 	struct intel_flip_work *work;
11584 	struct intel_engine_cs *engine;
11585 	bool mmio_flip;
11586 	struct drm_i915_gem_request *request = NULL;
11587 	int ret;
11588 
11589 	/*
11590 	 * drm_mode_page_flip_ioctl() should already catch this, but double
11591 	 * check to be safe.  In the future we may enable pageflipping from
11592 	 * a disabled primary plane.
11593 	 */
11594 	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11595 		return -EBUSY;
11596 
11597 	/* Can't change pixel format via MI display flips. */
11598 	if (fb->pixel_format != crtc->primary->fb->pixel_format)
11599 		return -EINVAL;
11600 
11601 	/*
11602 	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11603 	 * Note that pitch changes could also affect these register.
11604 	 */
11605 	if (INTEL_INFO(dev)->gen > 3 &&
11606 	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11607 	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
11608 		return -EINVAL;
11609 
11610 	if (i915_terminally_wedged(&dev_priv->gpu_error))
11611 		goto out_hang;
11612 
11613 	work = kzalloc(sizeof(*work), GFP_KERNEL);
11614 	if (work == NULL)
11615 		return -ENOMEM;
11616 
11617 	work->event = event;
11618 	work->crtc = crtc;
11619 	work->old_fb = old_fb;
11620 	INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11621 
11622 	ret = drm_crtc_vblank_get(crtc);
11623 	if (ret)
11624 		goto free_work;
11625 
11626 	/* We borrow the event spin lock for protecting flip_work */
11627 	spin_lock_irq(&dev->event_lock);
11628 	if (intel_crtc->flip_work) {
11629 		/* Before declaring the flip queue wedged, check if
11630 		 * the hardware completed the operation behind our backs.
11631 		 */
11632 		if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11633 			DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11634 			page_flip_completed(intel_crtc);
11635 		} else {
11636 			DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11637 			spin_unlock_irq(&dev->event_lock);
11638 
11639 			drm_crtc_vblank_put(crtc);
11640 			kfree(work);
11641 			return -EBUSY;
11642 		}
11643 	}
11644 	intel_crtc->flip_work = work;
11645 	spin_unlock_irq(&dev->event_lock);
11646 
11647 	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11648 		flush_workqueue(dev_priv->wq);
11649 
11650 	/* Reference the objects for the scheduled work. */
11651 	drm_framebuffer_reference(work->old_fb);
11652 
11653 	crtc->primary->fb = fb;
11654 	update_state_fb(crtc->primary);
11655 
11656 	intel_fbc_pre_update(intel_crtc, intel_crtc->config,
11657 			     to_intel_plane_state(primary->state));
11658 
11659 	work->pending_flip_obj = i915_gem_object_get(obj);
11660 
11661 	ret = i915_mutex_lock_interruptible(dev);
11662 	if (ret)
11663 		goto cleanup;
11664 
11665 	intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11666 	if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11667 		ret = -EIO;
11668 		goto cleanup;
11669 	}
11670 
11671 	atomic_inc(&intel_crtc->unpin_work_count);
11672 
11673 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11674 		work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11675 
11676 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11677 		engine = &dev_priv->engine[BCS];
11678 		if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11679 			/* vlv: DISPLAY_FLIP fails to change tiling */
11680 			engine = NULL;
11681 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11682 		engine = &dev_priv->engine[BCS];
11683 	} else if (INTEL_INFO(dev)->gen >= 7) {
11684 		engine = i915_gem_request_get_engine(obj->last_write_req);
11685 		if (engine == NULL || engine->id != RCS)
11686 			engine = &dev_priv->engine[BCS];
11687 	} else {
11688 		engine = &dev_priv->engine[RCS];
11689 	}
11690 
11691 	mmio_flip = use_mmio_flip(engine, obj);
11692 
11693 	/* When using CS flips, we want to emit semaphores between rings.
11694 	 * However, when using mmio flips we will create a task to do the
11695 	 * synchronisation, so all we want here is to pin the framebuffer
11696 	 * into the display plane and skip any waits.
11697 	 */
11698 	if (!mmio_flip) {
11699 		ret = i915_gem_object_sync(obj, engine, &request);
11700 		if (!ret && !request) {
11701 			request = i915_gem_request_alloc(engine, NULL);
11702 			ret = PTR_ERR_OR_ZERO(request);
11703 		}
11704 
11705 		if (ret)
11706 			goto cleanup_pending;
11707 	}
11708 
11709 	ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11710 	if (ret)
11711 		goto cleanup_pending;
11712 
11713 	work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11714 						  obj, 0);
11715 	work->gtt_offset += intel_crtc->dspaddr_offset;
11716 	work->rotation = crtc->primary->state->rotation;
11717 
11718 	if (mmio_flip) {
11719 		INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11720 
11721 		i915_gem_request_assign(&work->flip_queued_req,
11722 					obj->last_write_req);
11723 
11724 		schedule_work(&work->mmio_work);
11725 	} else {
11726 		i915_gem_request_assign(&work->flip_queued_req, request);
11727 		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11728 						   page_flip_flags);
11729 		if (ret)
11730 			goto cleanup_unpin;
11731 
11732 		intel_mark_page_flip_active(intel_crtc, work);
11733 
11734 		i915_add_request_no_flush(request);
11735 	}
11736 
11737 	i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11738 			  to_intel_plane(primary)->frontbuffer_bit);
11739 	mutex_unlock(&dev->struct_mutex);
11740 
11741 	intel_frontbuffer_flip_prepare(dev,
11742 				       to_intel_plane(primary)->frontbuffer_bit);
11743 
11744 	trace_i915_flip_request(intel_crtc->plane, obj);
11745 
11746 	return 0;
11747 
11748 cleanup_unpin:
11749 	intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11750 cleanup_pending:
11751 	if (!IS_ERR_OR_NULL(request))
11752 		i915_add_request_no_flush(request);
11753 	atomic_dec(&intel_crtc->unpin_work_count);
11754 	mutex_unlock(&dev->struct_mutex);
11755 cleanup:
11756 	crtc->primary->fb = old_fb;
11757 	update_state_fb(crtc->primary);
11758 
11759 	i915_gem_object_put_unlocked(obj);
11760 	drm_framebuffer_unreference(work->old_fb);
11761 
11762 	spin_lock_irq(&dev->event_lock);
11763 	intel_crtc->flip_work = NULL;
11764 	spin_unlock_irq(&dev->event_lock);
11765 
11766 	drm_crtc_vblank_put(crtc);
11767 free_work:
11768 	kfree(work);
11769 
11770 	if (ret == -EIO) {
11771 		struct drm_atomic_state *state;
11772 		struct drm_plane_state *plane_state;
11773 
11774 out_hang:
11775 		state = drm_atomic_state_alloc(dev);
11776 		if (!state)
11777 			return -ENOMEM;
11778 		state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11779 
11780 retry:
11781 		plane_state = drm_atomic_get_plane_state(state, primary);
11782 		ret = PTR_ERR_OR_ZERO(plane_state);
11783 		if (!ret) {
11784 			drm_atomic_set_fb_for_plane(plane_state, fb);
11785 
11786 			ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11787 			if (!ret)
11788 				ret = drm_atomic_commit(state);
11789 		}
11790 
11791 		if (ret == -EDEADLK) {
11792 			drm_modeset_backoff(state->acquire_ctx);
11793 			drm_atomic_state_clear(state);
11794 			goto retry;
11795 		}
11796 
11797 		if (ret)
11798 			drm_atomic_state_free(state);
11799 
11800 		if (ret == 0 && event) {
11801 			spin_lock_irq(&dev->event_lock);
11802 			drm_crtc_send_vblank_event(crtc, event);
11803 			spin_unlock_irq(&dev->event_lock);
11804 		}
11805 	}
11806 	return ret;
11807 }
11808 
11809 
11810 /**
11811  * intel_wm_need_update - Check whether watermarks need updating
11812  * @plane: drm plane
11813  * @state: new plane state
11814  *
11815  * Check current plane state versus the new one to determine whether
11816  * watermarks need to be recalculated.
11817  *
11818  * Returns true or false.
11819  */
11820 static bool intel_wm_need_update(struct drm_plane *plane,
11821 				 struct drm_plane_state *state)
11822 {
11823 	struct intel_plane_state *new = to_intel_plane_state(state);
11824 	struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11825 
11826 	/* Update watermarks on tiling or size changes. */
11827 	if (new->visible != cur->visible)
11828 		return true;
11829 
11830 	if (!cur->base.fb || !new->base.fb)
11831 		return false;
11832 
11833 	if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11834 	    cur->base.rotation != new->base.rotation ||
11835 	    drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11836 	    drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11837 	    drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11838 	    drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11839 		return true;
11840 
11841 	return false;
11842 }
11843 
11844 static bool needs_scaling(struct intel_plane_state *state)
11845 {
11846 	int src_w = drm_rect_width(&state->src) >> 16;
11847 	int src_h = drm_rect_height(&state->src) >> 16;
11848 	int dst_w = drm_rect_width(&state->dst);
11849 	int dst_h = drm_rect_height(&state->dst);
11850 
11851 	return (src_w != dst_w || src_h != dst_h);
11852 }
11853 
11854 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11855 				    struct drm_plane_state *plane_state)
11856 {
11857 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11858 	struct drm_crtc *crtc = crtc_state->crtc;
11859 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11860 	struct drm_plane *plane = plane_state->plane;
11861 	struct drm_device *dev = crtc->dev;
11862 	struct drm_i915_private *dev_priv = to_i915(dev);
11863 	struct intel_plane_state *old_plane_state =
11864 		to_intel_plane_state(plane->state);
11865 	bool mode_changed = needs_modeset(crtc_state);
11866 	bool was_crtc_enabled = crtc->state->active;
11867 	bool is_crtc_enabled = crtc_state->active;
11868 	bool turn_off, turn_on, visible, was_visible;
11869 	struct drm_framebuffer *fb = plane_state->fb;
11870 	int ret;
11871 
11872 	if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
11873 		ret = skl_update_scaler_plane(
11874 			to_intel_crtc_state(crtc_state),
11875 			to_intel_plane_state(plane_state));
11876 		if (ret)
11877 			return ret;
11878 	}
11879 
11880 	was_visible = old_plane_state->visible;
11881 	visible = to_intel_plane_state(plane_state)->visible;
11882 
11883 	if (!was_crtc_enabled && WARN_ON(was_visible))
11884 		was_visible = false;
11885 
11886 	/*
11887 	 * Visibility is calculated as if the crtc was on, but
11888 	 * after scaler setup everything depends on it being off
11889 	 * when the crtc isn't active.
11890 	 *
11891 	 * FIXME this is wrong for watermarks. Watermarks should also
11892 	 * be computed as if the pipe would be active. Perhaps move
11893 	 * per-plane wm computation to the .check_plane() hook, and
11894 	 * only combine the results from all planes in the current place?
11895 	 */
11896 	if (!is_crtc_enabled)
11897 		to_intel_plane_state(plane_state)->visible = visible = false;
11898 
11899 	if (!was_visible && !visible)
11900 		return 0;
11901 
11902 	if (fb != old_plane_state->base.fb)
11903 		pipe_config->fb_changed = true;
11904 
11905 	turn_off = was_visible && (!visible || mode_changed);
11906 	turn_on = visible && (!was_visible || mode_changed);
11907 
11908 	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11909 			 intel_crtc->base.base.id,
11910 			 intel_crtc->base.name,
11911 			 plane->base.id, plane->name,
11912 			 fb ? fb->base.id : -1);
11913 
11914 	DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11915 			 plane->base.id, plane->name,
11916 			 was_visible, visible,
11917 			 turn_off, turn_on, mode_changed);
11918 
11919 	if (turn_on) {
11920 		pipe_config->update_wm_pre = true;
11921 
11922 		/* must disable cxsr around plane enable/disable */
11923 		if (plane->type != DRM_PLANE_TYPE_CURSOR)
11924 			pipe_config->disable_cxsr = true;
11925 	} else if (turn_off) {
11926 		pipe_config->update_wm_post = true;
11927 
11928 		/* must disable cxsr around plane enable/disable */
11929 		if (plane->type != DRM_PLANE_TYPE_CURSOR)
11930 			pipe_config->disable_cxsr = true;
11931 	} else if (intel_wm_need_update(plane, plane_state)) {
11932 		/* FIXME bollocks */
11933 		pipe_config->update_wm_pre = true;
11934 		pipe_config->update_wm_post = true;
11935 	}
11936 
11937 	/* Pre-gen9 platforms need two-step watermark updates */
11938 	if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11939 	    INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11940 		to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11941 
11942 	if (visible || was_visible)
11943 		pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11944 
11945 	/*
11946 	 * WaCxSRDisabledForSpriteScaling:ivb
11947 	 *
11948 	 * cstate->update_wm was already set above, so this flag will
11949 	 * take effect when we commit and program watermarks.
11950 	 */
11951 	if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11952 	    needs_scaling(to_intel_plane_state(plane_state)) &&
11953 	    !needs_scaling(old_plane_state))
11954 		pipe_config->disable_lp_wm = true;
11955 
11956 	return 0;
11957 }
11958 
11959 static bool encoders_cloneable(const struct intel_encoder *a,
11960 			       const struct intel_encoder *b)
11961 {
11962 	/* masks could be asymmetric, so check both ways */
11963 	return a == b || (a->cloneable & (1 << b->type) &&
11964 			  b->cloneable & (1 << a->type));
11965 }
11966 
11967 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11968 					 struct intel_crtc *crtc,
11969 					 struct intel_encoder *encoder)
11970 {
11971 	struct intel_encoder *source_encoder;
11972 	struct drm_connector *connector;
11973 	struct drm_connector_state *connector_state;
11974 	int i;
11975 
11976 	for_each_connector_in_state(state, connector, connector_state, i) {
11977 		if (connector_state->crtc != &crtc->base)
11978 			continue;
11979 
11980 		source_encoder =
11981 			to_intel_encoder(connector_state->best_encoder);
11982 		if (!encoders_cloneable(encoder, source_encoder))
11983 			return false;
11984 	}
11985 
11986 	return true;
11987 }
11988 
11989 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11990 				   struct drm_crtc_state *crtc_state)
11991 {
11992 	struct drm_device *dev = crtc->dev;
11993 	struct drm_i915_private *dev_priv = to_i915(dev);
11994 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11995 	struct intel_crtc_state *pipe_config =
11996 		to_intel_crtc_state(crtc_state);
11997 	struct drm_atomic_state *state = crtc_state->state;
11998 	int ret;
11999 	bool mode_changed = needs_modeset(crtc_state);
12000 
12001 	if (mode_changed && !crtc_state->active)
12002 		pipe_config->update_wm_post = true;
12003 
12004 	if (mode_changed && crtc_state->enable &&
12005 	    dev_priv->display.crtc_compute_clock &&
12006 	    !WARN_ON(pipe_config->shared_dpll)) {
12007 		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12008 							   pipe_config);
12009 		if (ret)
12010 			return ret;
12011 	}
12012 
12013 	if (crtc_state->color_mgmt_changed) {
12014 		ret = intel_color_check(crtc, crtc_state);
12015 		if (ret)
12016 			return ret;
12017 
12018 		/*
12019 		 * Changing color management on Intel hardware is
12020 		 * handled as part of planes update.
12021 		 */
12022 		crtc_state->planes_changed = true;
12023 	}
12024 
12025 	ret = 0;
12026 	if (dev_priv->display.compute_pipe_wm) {
12027 		ret = dev_priv->display.compute_pipe_wm(pipe_config);
12028 		if (ret) {
12029 			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12030 			return ret;
12031 		}
12032 	}
12033 
12034 	if (dev_priv->display.compute_intermediate_wm &&
12035 	    !to_intel_atomic_state(state)->skip_intermediate_wm) {
12036 		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12037 			return 0;
12038 
12039 		/*
12040 		 * Calculate 'intermediate' watermarks that satisfy both the
12041 		 * old state and the new state.  We can program these
12042 		 * immediately.
12043 		 */
12044 		ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12045 								intel_crtc,
12046 								pipe_config);
12047 		if (ret) {
12048 			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12049 			return ret;
12050 		}
12051 	} else if (dev_priv->display.compute_intermediate_wm) {
12052 		if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12053 			pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12054 	}
12055 
12056 	if (INTEL_INFO(dev)->gen >= 9) {
12057 		if (mode_changed)
12058 			ret = skl_update_scaler_crtc(pipe_config);
12059 
12060 		if (!ret)
12061 			ret = intel_atomic_setup_scalers(dev, intel_crtc,
12062 							 pipe_config);
12063 	}
12064 
12065 	return ret;
12066 }
12067 
12068 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12069 	.mode_set_base_atomic = intel_pipe_set_base_atomic,
12070 	.atomic_begin = intel_begin_crtc_commit,
12071 	.atomic_flush = intel_finish_crtc_commit,
12072 	.atomic_check = intel_crtc_atomic_check,
12073 };
12074 
12075 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12076 {
12077 	struct intel_connector *connector;
12078 
12079 	for_each_intel_connector(dev, connector) {
12080 		if (connector->base.state->crtc)
12081 			drm_connector_unreference(&connector->base);
12082 
12083 		if (connector->base.encoder) {
12084 			connector->base.state->best_encoder =
12085 				connector->base.encoder;
12086 			connector->base.state->crtc =
12087 				connector->base.encoder->crtc;
12088 
12089 			drm_connector_reference(&connector->base);
12090 		} else {
12091 			connector->base.state->best_encoder = NULL;
12092 			connector->base.state->crtc = NULL;
12093 		}
12094 	}
12095 }
12096 
12097 static void
12098 connected_sink_compute_bpp(struct intel_connector *connector,
12099 			   struct intel_crtc_state *pipe_config)
12100 {
12101 	int bpp = pipe_config->pipe_bpp;
12102 
12103 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12104 		connector->base.base.id,
12105 		connector->base.name);
12106 
12107 	/* Don't use an invalid EDID bpc value */
12108 	if (connector->base.display_info.bpc &&
12109 	    connector->base.display_info.bpc * 3 < bpp) {
12110 		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12111 			      bpp, connector->base.display_info.bpc*3);
12112 		pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12113 	}
12114 
12115 	/* Clamp bpp to default limit on screens without EDID 1.4 */
12116 	if (connector->base.display_info.bpc == 0) {
12117 		int type = connector->base.connector_type;
12118 		int clamp_bpp = 24;
12119 
12120 		/* Fall back to 18 bpp when DP sink capability is unknown. */
12121 		if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12122 		    type == DRM_MODE_CONNECTOR_eDP)
12123 			clamp_bpp = 18;
12124 
12125 		if (bpp > clamp_bpp) {
12126 			DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12127 				      bpp, clamp_bpp);
12128 			pipe_config->pipe_bpp = clamp_bpp;
12129 		}
12130 	}
12131 }
12132 
12133 static int
12134 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12135 			  struct intel_crtc_state *pipe_config)
12136 {
12137 	struct drm_device *dev = crtc->base.dev;
12138 	struct drm_atomic_state *state;
12139 	struct drm_connector *connector;
12140 	struct drm_connector_state *connector_state;
12141 	int bpp, i;
12142 
12143 	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12144 		bpp = 10*3;
12145 	else if (INTEL_INFO(dev)->gen >= 5)
12146 		bpp = 12*3;
12147 	else
12148 		bpp = 8*3;
12149 
12150 
12151 	pipe_config->pipe_bpp = bpp;
12152 
12153 	state = pipe_config->base.state;
12154 
12155 	/* Clamp display bpp to EDID value */
12156 	for_each_connector_in_state(state, connector, connector_state, i) {
12157 		if (connector_state->crtc != &crtc->base)
12158 			continue;
12159 
12160 		connected_sink_compute_bpp(to_intel_connector(connector),
12161 					   pipe_config);
12162 	}
12163 
12164 	return bpp;
12165 }
12166 
12167 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12168 {
12169 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12170 			"type: 0x%x flags: 0x%x\n",
12171 		mode->crtc_clock,
12172 		mode->crtc_hdisplay, mode->crtc_hsync_start,
12173 		mode->crtc_hsync_end, mode->crtc_htotal,
12174 		mode->crtc_vdisplay, mode->crtc_vsync_start,
12175 		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12176 }
12177 
12178 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12179 				   struct intel_crtc_state *pipe_config,
12180 				   const char *context)
12181 {
12182 	struct drm_device *dev = crtc->base.dev;
12183 	struct drm_plane *plane;
12184 	struct intel_plane *intel_plane;
12185 	struct intel_plane_state *state;
12186 	struct drm_framebuffer *fb;
12187 
12188 	DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12189 		      crtc->base.base.id, crtc->base.name,
12190 		      context, pipe_config, pipe_name(crtc->pipe));
12191 
12192 	DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12193 	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12194 		      pipe_config->pipe_bpp, pipe_config->dither);
12195 	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12196 		      pipe_config->has_pch_encoder,
12197 		      pipe_config->fdi_lanes,
12198 		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12199 		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12200 		      pipe_config->fdi_m_n.tu);
12201 	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12202 		      intel_crtc_has_dp_encoder(pipe_config),
12203 		      pipe_config->lane_count,
12204 		      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12205 		      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12206 		      pipe_config->dp_m_n.tu);
12207 
12208 	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12209 		      intel_crtc_has_dp_encoder(pipe_config),
12210 		      pipe_config->lane_count,
12211 		      pipe_config->dp_m2_n2.gmch_m,
12212 		      pipe_config->dp_m2_n2.gmch_n,
12213 		      pipe_config->dp_m2_n2.link_m,
12214 		      pipe_config->dp_m2_n2.link_n,
12215 		      pipe_config->dp_m2_n2.tu);
12216 
12217 	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12218 		      pipe_config->has_audio,
12219 		      pipe_config->has_infoframe);
12220 
12221 	DRM_DEBUG_KMS("requested mode:\n");
12222 	drm_mode_debug_printmodeline(&pipe_config->base.mode);
12223 	DRM_DEBUG_KMS("adjusted mode:\n");
12224 	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12225 	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12226 	DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12227 	DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12228 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12229 	DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12230 		      crtc->num_scalers,
12231 		      pipe_config->scaler_state.scaler_users,
12232 		      pipe_config->scaler_state.scaler_id);
12233 	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12234 		      pipe_config->gmch_pfit.control,
12235 		      pipe_config->gmch_pfit.pgm_ratios,
12236 		      pipe_config->gmch_pfit.lvds_border_bits);
12237 	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12238 		      pipe_config->pch_pfit.pos,
12239 		      pipe_config->pch_pfit.size,
12240 		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12241 	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12242 	DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12243 
12244 	if (IS_BROXTON(dev)) {
12245 		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12246 			      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12247 			      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12248 			      pipe_config->ddi_pll_sel,
12249 			      pipe_config->dpll_hw_state.ebb0,
12250 			      pipe_config->dpll_hw_state.ebb4,
12251 			      pipe_config->dpll_hw_state.pll0,
12252 			      pipe_config->dpll_hw_state.pll1,
12253 			      pipe_config->dpll_hw_state.pll2,
12254 			      pipe_config->dpll_hw_state.pll3,
12255 			      pipe_config->dpll_hw_state.pll6,
12256 			      pipe_config->dpll_hw_state.pll8,
12257 			      pipe_config->dpll_hw_state.pll9,
12258 			      pipe_config->dpll_hw_state.pll10,
12259 			      pipe_config->dpll_hw_state.pcsdw12);
12260 	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12261 		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12262 			      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12263 			      pipe_config->ddi_pll_sel,
12264 			      pipe_config->dpll_hw_state.ctrl1,
12265 			      pipe_config->dpll_hw_state.cfgcr1,
12266 			      pipe_config->dpll_hw_state.cfgcr2);
12267 	} else if (HAS_DDI(dev)) {
12268 		DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12269 			      pipe_config->ddi_pll_sel,
12270 			      pipe_config->dpll_hw_state.wrpll,
12271 			      pipe_config->dpll_hw_state.spll);
12272 	} else {
12273 		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12274 			      "fp0: 0x%x, fp1: 0x%x\n",
12275 			      pipe_config->dpll_hw_state.dpll,
12276 			      pipe_config->dpll_hw_state.dpll_md,
12277 			      pipe_config->dpll_hw_state.fp0,
12278 			      pipe_config->dpll_hw_state.fp1);
12279 	}
12280 
12281 	DRM_DEBUG_KMS("planes on this crtc\n");
12282 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12283 		intel_plane = to_intel_plane(plane);
12284 		if (intel_plane->pipe != crtc->pipe)
12285 			continue;
12286 
12287 		state = to_intel_plane_state(plane->state);
12288 		fb = state->base.fb;
12289 		if (!fb) {
12290 			DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12291 				      plane->base.id, plane->name, state->scaler_id);
12292 			continue;
12293 		}
12294 
12295 		DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12296 			      plane->base.id, plane->name);
12297 		DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12298 			      fb->base.id, fb->width, fb->height,
12299 			      drm_get_format_name(fb->pixel_format));
12300 		DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12301 			      state->scaler_id,
12302 			      state->src.x1 >> 16, state->src.y1 >> 16,
12303 			      drm_rect_width(&state->src) >> 16,
12304 			      drm_rect_height(&state->src) >> 16,
12305 			      state->dst.x1, state->dst.y1,
12306 			      drm_rect_width(&state->dst),
12307 			      drm_rect_height(&state->dst));
12308 	}
12309 }
12310 
12311 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12312 {
12313 	struct drm_device *dev = state->dev;
12314 	struct drm_connector *connector;
12315 	unsigned int used_ports = 0;
12316 
12317 	/*
12318 	 * Walk the connector list instead of the encoder
12319 	 * list to detect the problem on ddi platforms
12320 	 * where there's just one encoder per digital port.
12321 	 */
12322 	drm_for_each_connector(connector, dev) {
12323 		struct drm_connector_state *connector_state;
12324 		struct intel_encoder *encoder;
12325 
12326 		connector_state = drm_atomic_get_existing_connector_state(state, connector);
12327 		if (!connector_state)
12328 			connector_state = connector->state;
12329 
12330 		if (!connector_state->best_encoder)
12331 			continue;
12332 
12333 		encoder = to_intel_encoder(connector_state->best_encoder);
12334 
12335 		WARN_ON(!connector_state->crtc);
12336 
12337 		switch (encoder->type) {
12338 			unsigned int port_mask;
12339 		case INTEL_OUTPUT_UNKNOWN:
12340 			if (WARN_ON(!HAS_DDI(dev)))
12341 				break;
12342 		case INTEL_OUTPUT_DP:
12343 		case INTEL_OUTPUT_HDMI:
12344 		case INTEL_OUTPUT_EDP:
12345 			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12346 
12347 			/* the same port mustn't appear more than once */
12348 			if (used_ports & port_mask)
12349 				return false;
12350 
12351 			used_ports |= port_mask;
12352 		default:
12353 			break;
12354 		}
12355 	}
12356 
12357 	return true;
12358 }
12359 
12360 static void
12361 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12362 {
12363 	struct drm_crtc_state tmp_state;
12364 	struct intel_crtc_scaler_state scaler_state;
12365 	struct intel_dpll_hw_state dpll_hw_state;
12366 	struct intel_shared_dpll *shared_dpll;
12367 	uint32_t ddi_pll_sel;
12368 	bool force_thru;
12369 
12370 	/* FIXME: before the switch to atomic started, a new pipe_config was
12371 	 * kzalloc'd. Code that depends on any field being zero should be
12372 	 * fixed, so that the crtc_state can be safely duplicated. For now,
12373 	 * only fields that are know to not cause problems are preserved. */
12374 
12375 	tmp_state = crtc_state->base;
12376 	scaler_state = crtc_state->scaler_state;
12377 	shared_dpll = crtc_state->shared_dpll;
12378 	dpll_hw_state = crtc_state->dpll_hw_state;
12379 	ddi_pll_sel = crtc_state->ddi_pll_sel;
12380 	force_thru = crtc_state->pch_pfit.force_thru;
12381 
12382 	memset(crtc_state, 0, sizeof *crtc_state);
12383 
12384 	crtc_state->base = tmp_state;
12385 	crtc_state->scaler_state = scaler_state;
12386 	crtc_state->shared_dpll = shared_dpll;
12387 	crtc_state->dpll_hw_state = dpll_hw_state;
12388 	crtc_state->ddi_pll_sel = ddi_pll_sel;
12389 	crtc_state->pch_pfit.force_thru = force_thru;
12390 }
12391 
12392 static int
12393 intel_modeset_pipe_config(struct drm_crtc *crtc,
12394 			  struct intel_crtc_state *pipe_config)
12395 {
12396 	struct drm_atomic_state *state = pipe_config->base.state;
12397 	struct intel_encoder *encoder;
12398 	struct drm_connector *connector;
12399 	struct drm_connector_state *connector_state;
12400 	int base_bpp, ret = -EINVAL;
12401 	int i;
12402 	bool retry = true;
12403 
12404 	clear_intel_crtc_state(pipe_config);
12405 
12406 	pipe_config->cpu_transcoder =
12407 		(enum transcoder) to_intel_crtc(crtc)->pipe;
12408 
12409 	/*
12410 	 * Sanitize sync polarity flags based on requested ones. If neither
12411 	 * positive or negative polarity is requested, treat this as meaning
12412 	 * negative polarity.
12413 	 */
12414 	if (!(pipe_config->base.adjusted_mode.flags &
12415 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12416 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12417 
12418 	if (!(pipe_config->base.adjusted_mode.flags &
12419 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12420 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12421 
12422 	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12423 					     pipe_config);
12424 	if (base_bpp < 0)
12425 		goto fail;
12426 
12427 	/*
12428 	 * Determine the real pipe dimensions. Note that stereo modes can
12429 	 * increase the actual pipe size due to the frame doubling and
12430 	 * insertion of additional space for blanks between the frame. This
12431 	 * is stored in the crtc timings. We use the requested mode to do this
12432 	 * computation to clearly distinguish it from the adjusted mode, which
12433 	 * can be changed by the connectors in the below retry loop.
12434 	 */
12435 	drm_crtc_get_hv_timing(&pipe_config->base.mode,
12436 			       &pipe_config->pipe_src_w,
12437 			       &pipe_config->pipe_src_h);
12438 
12439 	for_each_connector_in_state(state, connector, connector_state, i) {
12440 		if (connector_state->crtc != crtc)
12441 			continue;
12442 
12443 		encoder = to_intel_encoder(connector_state->best_encoder);
12444 
12445 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12446 			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12447 			goto fail;
12448 		}
12449 
12450 		/*
12451 		 * Determine output_types before calling the .compute_config()
12452 		 * hooks so that the hooks can use this information safely.
12453 		 */
12454 		pipe_config->output_types |= 1 << encoder->type;
12455 	}
12456 
12457 encoder_retry:
12458 	/* Ensure the port clock defaults are reset when retrying. */
12459 	pipe_config->port_clock = 0;
12460 	pipe_config->pixel_multiplier = 1;
12461 
12462 	/* Fill in default crtc timings, allow encoders to overwrite them. */
12463 	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12464 			      CRTC_STEREO_DOUBLE);
12465 
12466 	/* Pass our mode to the connectors and the CRTC to give them a chance to
12467 	 * adjust it according to limitations or connector properties, and also
12468 	 * a chance to reject the mode entirely.
12469 	 */
12470 	for_each_connector_in_state(state, connector, connector_state, i) {
12471 		if (connector_state->crtc != crtc)
12472 			continue;
12473 
12474 		encoder = to_intel_encoder(connector_state->best_encoder);
12475 
12476 		if (!(encoder->compute_config(encoder, pipe_config))) {
12477 			DRM_DEBUG_KMS("Encoder config failure\n");
12478 			goto fail;
12479 		}
12480 	}
12481 
12482 	/* Set default port clock if not overwritten by the encoder. Needs to be
12483 	 * done afterwards in case the encoder adjusts the mode. */
12484 	if (!pipe_config->port_clock)
12485 		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12486 			* pipe_config->pixel_multiplier;
12487 
12488 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12489 	if (ret < 0) {
12490 		DRM_DEBUG_KMS("CRTC fixup failed\n");
12491 		goto fail;
12492 	}
12493 
12494 	if (ret == RETRY) {
12495 		if (WARN(!retry, "loop in pipe configuration computation\n")) {
12496 			ret = -EINVAL;
12497 			goto fail;
12498 		}
12499 
12500 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12501 		retry = false;
12502 		goto encoder_retry;
12503 	}
12504 
12505 	/* Dithering seems to not pass-through bits correctly when it should, so
12506 	 * only enable it on 6bpc panels. */
12507 	pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12508 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12509 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12510 
12511 fail:
12512 	return ret;
12513 }
12514 
12515 static void
12516 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12517 {
12518 	struct drm_crtc *crtc;
12519 	struct drm_crtc_state *crtc_state;
12520 	int i;
12521 
12522 	/* Double check state. */
12523 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12524 		to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12525 
12526 		/* Update hwmode for vblank functions */
12527 		if (crtc->state->active)
12528 			crtc->hwmode = crtc->state->adjusted_mode;
12529 		else
12530 			crtc->hwmode.crtc_clock = 0;
12531 
12532 		/*
12533 		 * Update legacy state to satisfy fbc code. This can
12534 		 * be removed when fbc uses the atomic state.
12535 		 */
12536 		if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12537 			struct drm_plane_state *plane_state = crtc->primary->state;
12538 
12539 			crtc->primary->fb = plane_state->fb;
12540 			crtc->x = plane_state->src_x >> 16;
12541 			crtc->y = plane_state->src_y >> 16;
12542 		}
12543 	}
12544 }
12545 
12546 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12547 {
12548 	int diff;
12549 
12550 	if (clock1 == clock2)
12551 		return true;
12552 
12553 	if (!clock1 || !clock2)
12554 		return false;
12555 
12556 	diff = abs(clock1 - clock2);
12557 
12558 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12559 		return true;
12560 
12561 	return false;
12562 }
12563 
12564 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12565 	list_for_each_entry((intel_crtc), \
12566 			    &(dev)->mode_config.crtc_list, \
12567 			    base.head) \
12568 		for_each_if (mask & (1 <<(intel_crtc)->pipe))
12569 
12570 static bool
12571 intel_compare_m_n(unsigned int m, unsigned int n,
12572 		  unsigned int m2, unsigned int n2,
12573 		  bool exact)
12574 {
12575 	if (m == m2 && n == n2)
12576 		return true;
12577 
12578 	if (exact || !m || !n || !m2 || !n2)
12579 		return false;
12580 
12581 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12582 
12583 	if (n > n2) {
12584 		while (n > n2) {
12585 			m2 <<= 1;
12586 			n2 <<= 1;
12587 		}
12588 	} else if (n < n2) {
12589 		while (n < n2) {
12590 			m <<= 1;
12591 			n <<= 1;
12592 		}
12593 	}
12594 
12595 	if (n != n2)
12596 		return false;
12597 
12598 	return intel_fuzzy_clock_check(m, m2);
12599 }
12600 
12601 static bool
12602 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12603 		       struct intel_link_m_n *m2_n2,
12604 		       bool adjust)
12605 {
12606 	if (m_n->tu == m2_n2->tu &&
12607 	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12608 			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12609 	    intel_compare_m_n(m_n->link_m, m_n->link_n,
12610 			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
12611 		if (adjust)
12612 			*m2_n2 = *m_n;
12613 
12614 		return true;
12615 	}
12616 
12617 	return false;
12618 }
12619 
12620 static bool
12621 intel_pipe_config_compare(struct drm_device *dev,
12622 			  struct intel_crtc_state *current_config,
12623 			  struct intel_crtc_state *pipe_config,
12624 			  bool adjust)
12625 {
12626 	bool ret = true;
12627 
12628 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12629 	do { \
12630 		if (!adjust) \
12631 			DRM_ERROR(fmt, ##__VA_ARGS__); \
12632 		else \
12633 			DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12634 	} while (0)
12635 
12636 #define PIPE_CONF_CHECK_X(name)	\
12637 	if (current_config->name != pipe_config->name) { \
12638 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12639 			  "(expected 0x%08x, found 0x%08x)\n", \
12640 			  current_config->name, \
12641 			  pipe_config->name); \
12642 		ret = false; \
12643 	}
12644 
12645 #define PIPE_CONF_CHECK_I(name)	\
12646 	if (current_config->name != pipe_config->name) { \
12647 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12648 			  "(expected %i, found %i)\n", \
12649 			  current_config->name, \
12650 			  pipe_config->name); \
12651 		ret = false; \
12652 	}
12653 
12654 #define PIPE_CONF_CHECK_P(name)	\
12655 	if (current_config->name != pipe_config->name) { \
12656 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12657 			  "(expected %p, found %p)\n", \
12658 			  current_config->name, \
12659 			  pipe_config->name); \
12660 		ret = false; \
12661 	}
12662 
12663 #define PIPE_CONF_CHECK_M_N(name) \
12664 	if (!intel_compare_link_m_n(&current_config->name, \
12665 				    &pipe_config->name,\
12666 				    adjust)) { \
12667 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12668 			  "(expected tu %i gmch %i/%i link %i/%i, " \
12669 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12670 			  current_config->name.tu, \
12671 			  current_config->name.gmch_m, \
12672 			  current_config->name.gmch_n, \
12673 			  current_config->name.link_m, \
12674 			  current_config->name.link_n, \
12675 			  pipe_config->name.tu, \
12676 			  pipe_config->name.gmch_m, \
12677 			  pipe_config->name.gmch_n, \
12678 			  pipe_config->name.link_m, \
12679 			  pipe_config->name.link_n); \
12680 		ret = false; \
12681 	}
12682 
12683 /* This is required for BDW+ where there is only one set of registers for
12684  * switching between high and low RR.
12685  * This macro can be used whenever a comparison has to be made between one
12686  * hw state and multiple sw state variables.
12687  */
12688 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12689 	if (!intel_compare_link_m_n(&current_config->name, \
12690 				    &pipe_config->name, adjust) && \
12691 	    !intel_compare_link_m_n(&current_config->alt_name, \
12692 				    &pipe_config->name, adjust)) { \
12693 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12694 			  "(expected tu %i gmch %i/%i link %i/%i, " \
12695 			  "or tu %i gmch %i/%i link %i/%i, " \
12696 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12697 			  current_config->name.tu, \
12698 			  current_config->name.gmch_m, \
12699 			  current_config->name.gmch_n, \
12700 			  current_config->name.link_m, \
12701 			  current_config->name.link_n, \
12702 			  current_config->alt_name.tu, \
12703 			  current_config->alt_name.gmch_m, \
12704 			  current_config->alt_name.gmch_n, \
12705 			  current_config->alt_name.link_m, \
12706 			  current_config->alt_name.link_n, \
12707 			  pipe_config->name.tu, \
12708 			  pipe_config->name.gmch_m, \
12709 			  pipe_config->name.gmch_n, \
12710 			  pipe_config->name.link_m, \
12711 			  pipe_config->name.link_n); \
12712 		ret = false; \
12713 	}
12714 
12715 #define PIPE_CONF_CHECK_FLAGS(name, mask)	\
12716 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
12717 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12718 			  "(expected %i, found %i)\n", \
12719 			  current_config->name & (mask), \
12720 			  pipe_config->name & (mask)); \
12721 		ret = false; \
12722 	}
12723 
12724 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12725 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12726 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12727 			  "(expected %i, found %i)\n", \
12728 			  current_config->name, \
12729 			  pipe_config->name); \
12730 		ret = false; \
12731 	}
12732 
12733 #define PIPE_CONF_QUIRK(quirk)	\
12734 	((current_config->quirks | pipe_config->quirks) & (quirk))
12735 
12736 	PIPE_CONF_CHECK_I(cpu_transcoder);
12737 
12738 	PIPE_CONF_CHECK_I(has_pch_encoder);
12739 	PIPE_CONF_CHECK_I(fdi_lanes);
12740 	PIPE_CONF_CHECK_M_N(fdi_m_n);
12741 
12742 	PIPE_CONF_CHECK_I(lane_count);
12743 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
12744 
12745 	if (INTEL_INFO(dev)->gen < 8) {
12746 		PIPE_CONF_CHECK_M_N(dp_m_n);
12747 
12748 		if (current_config->has_drrs)
12749 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
12750 	} else
12751 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12752 
12753 	PIPE_CONF_CHECK_X(output_types);
12754 
12755 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12756 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12757 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12758 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12759 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12760 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12761 
12762 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12763 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12764 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12765 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12766 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12767 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12768 
12769 	PIPE_CONF_CHECK_I(pixel_multiplier);
12770 	PIPE_CONF_CHECK_I(has_hdmi_sink);
12771 	if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12772 	    IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12773 		PIPE_CONF_CHECK_I(limited_color_range);
12774 	PIPE_CONF_CHECK_I(has_infoframe);
12775 
12776 	PIPE_CONF_CHECK_I(has_audio);
12777 
12778 	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12779 			      DRM_MODE_FLAG_INTERLACE);
12780 
12781 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12782 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12783 				      DRM_MODE_FLAG_PHSYNC);
12784 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12785 				      DRM_MODE_FLAG_NHSYNC);
12786 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12787 				      DRM_MODE_FLAG_PVSYNC);
12788 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12789 				      DRM_MODE_FLAG_NVSYNC);
12790 	}
12791 
12792 	PIPE_CONF_CHECK_X(gmch_pfit.control);
12793 	/* pfit ratios are autocomputed by the hw on gen4+ */
12794 	if (INTEL_INFO(dev)->gen < 4)
12795 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12796 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12797 
12798 	if (!adjust) {
12799 		PIPE_CONF_CHECK_I(pipe_src_w);
12800 		PIPE_CONF_CHECK_I(pipe_src_h);
12801 
12802 		PIPE_CONF_CHECK_I(pch_pfit.enabled);
12803 		if (current_config->pch_pfit.enabled) {
12804 			PIPE_CONF_CHECK_X(pch_pfit.pos);
12805 			PIPE_CONF_CHECK_X(pch_pfit.size);
12806 		}
12807 
12808 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12809 	}
12810 
12811 	/* BDW+ don't expose a synchronous way to read the state */
12812 	if (IS_HASWELL(dev))
12813 		PIPE_CONF_CHECK_I(ips_enabled);
12814 
12815 	PIPE_CONF_CHECK_I(double_wide);
12816 
12817 	PIPE_CONF_CHECK_X(ddi_pll_sel);
12818 
12819 	PIPE_CONF_CHECK_P(shared_dpll);
12820 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12821 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12822 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12823 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12824 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12825 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12826 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12827 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12828 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12829 
12830 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12831 	PIPE_CONF_CHECK_X(dsi_pll.div);
12832 
12833 	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12834 		PIPE_CONF_CHECK_I(pipe_bpp);
12835 
12836 	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12837 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12838 
12839 #undef PIPE_CONF_CHECK_X
12840 #undef PIPE_CONF_CHECK_I
12841 #undef PIPE_CONF_CHECK_P
12842 #undef PIPE_CONF_CHECK_FLAGS
12843 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12844 #undef PIPE_CONF_QUIRK
12845 #undef INTEL_ERR_OR_DBG_KMS
12846 
12847 	return ret;
12848 }
12849 
12850 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12851 					   const struct intel_crtc_state *pipe_config)
12852 {
12853 	if (pipe_config->has_pch_encoder) {
12854 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12855 							    &pipe_config->fdi_m_n);
12856 		int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12857 
12858 		/*
12859 		 * FDI already provided one idea for the dotclock.
12860 		 * Yell if the encoder disagrees.
12861 		 */
12862 		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12863 		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12864 		     fdi_dotclock, dotclock);
12865 	}
12866 }
12867 
12868 static void verify_wm_state(struct drm_crtc *crtc,
12869 			    struct drm_crtc_state *new_state)
12870 {
12871 	struct drm_device *dev = crtc->dev;
12872 	struct drm_i915_private *dev_priv = to_i915(dev);
12873 	struct skl_ddb_allocation hw_ddb, *sw_ddb;
12874 	struct skl_ddb_entry *hw_entry, *sw_entry;
12875 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12876 	const enum i915_pipe pipe = intel_crtc->pipe;
12877 	int plane;
12878 
12879 	if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12880 		return;
12881 
12882 	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12883 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
12884 
12885 	/* planes */
12886 	for_each_plane(dev_priv, pipe, plane) {
12887 		hw_entry = &hw_ddb.plane[pipe][plane];
12888 		sw_entry = &sw_ddb->plane[pipe][plane];
12889 
12890 		if (skl_ddb_entry_equal(hw_entry, sw_entry))
12891 			continue;
12892 
12893 		DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12894 			  "(expected (%u,%u), found (%u,%u))\n",
12895 			  pipe_name(pipe), plane + 1,
12896 			  sw_entry->start, sw_entry->end,
12897 			  hw_entry->start, hw_entry->end);
12898 	}
12899 
12900 	/* cursor */
12901 	hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12902 	sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12903 
12904 	if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12905 		DRM_ERROR("mismatch in DDB state pipe %c cursor "
12906 			  "(expected (%u,%u), found (%u,%u))\n",
12907 			  pipe_name(pipe),
12908 			  sw_entry->start, sw_entry->end,
12909 			  hw_entry->start, hw_entry->end);
12910 	}
12911 }
12912 
12913 static void
12914 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12915 {
12916 	struct drm_connector *connector;
12917 
12918 	drm_for_each_connector(connector, dev) {
12919 		struct drm_encoder *encoder = connector->encoder;
12920 		struct drm_connector_state *state = connector->state;
12921 
12922 		if (state->crtc != crtc)
12923 			continue;
12924 
12925 		intel_connector_verify_state(to_intel_connector(connector));
12926 
12927 		I915_STATE_WARN(state->best_encoder != encoder,
12928 		     "connector's atomic encoder doesn't match legacy encoder\n");
12929 	}
12930 }
12931 
12932 static void
12933 verify_encoder_state(struct drm_device *dev)
12934 {
12935 	struct intel_encoder *encoder;
12936 	struct intel_connector *connector;
12937 
12938 	for_each_intel_encoder(dev, encoder) {
12939 		bool enabled = false;
12940 		enum i915_pipe pipe;
12941 
12942 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12943 			      encoder->base.base.id,
12944 			      encoder->base.name);
12945 
12946 		for_each_intel_connector(dev, connector) {
12947 			if (connector->base.state->best_encoder != &encoder->base)
12948 				continue;
12949 			enabled = true;
12950 
12951 			I915_STATE_WARN(connector->base.state->crtc !=
12952 					encoder->base.crtc,
12953 			     "connector's crtc doesn't match encoder crtc\n");
12954 		}
12955 
12956 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
12957 		     "encoder's enabled state mismatch "
12958 		     "(expected %i, found %i)\n",
12959 		     !!encoder->base.crtc, enabled);
12960 
12961 		if (!encoder->base.crtc) {
12962 			bool active;
12963 
12964 			active = encoder->get_hw_state(encoder, &pipe);
12965 			I915_STATE_WARN(active,
12966 			     "encoder detached but still enabled on pipe %c.\n",
12967 			     pipe_name(pipe));
12968 		}
12969 	}
12970 }
12971 
12972 static void
12973 verify_crtc_state(struct drm_crtc *crtc,
12974 		  struct drm_crtc_state *old_crtc_state,
12975 		  struct drm_crtc_state *new_crtc_state)
12976 {
12977 	struct drm_device *dev = crtc->dev;
12978 	struct drm_i915_private *dev_priv = to_i915(dev);
12979 	struct intel_encoder *encoder;
12980 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12981 	struct intel_crtc_state *pipe_config, *sw_config;
12982 	struct drm_atomic_state *old_state;
12983 	bool active;
12984 
12985 	old_state = old_crtc_state->state;
12986 	__drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12987 	pipe_config = to_intel_crtc_state(old_crtc_state);
12988 	memset(pipe_config, 0, sizeof(*pipe_config));
12989 	pipe_config->base.crtc = crtc;
12990 	pipe_config->base.state = old_state;
12991 
12992 	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12993 
12994 	active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12995 
12996 	/* hw state is inconsistent with the pipe quirk */
12997 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12998 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12999 		active = new_crtc_state->active;
13000 
13001 	I915_STATE_WARN(new_crtc_state->active != active,
13002 	     "crtc active state doesn't match with hw state "
13003 	     "(expected %i, found %i)\n", new_crtc_state->active, active);
13004 
13005 	I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13006 	     "transitional active state does not match atomic hw state "
13007 	     "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13008 
13009 	for_each_encoder_on_crtc(dev, crtc, encoder) {
13010 		enum i915_pipe pipe;
13011 
13012 		active = encoder->get_hw_state(encoder, &pipe);
13013 		I915_STATE_WARN(active != new_crtc_state->active,
13014 			"[ENCODER:%i] active %i with crtc active %i\n",
13015 			encoder->base.base.id, active, new_crtc_state->active);
13016 
13017 		I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13018 				"Encoder connected to wrong pipe %c\n",
13019 				pipe_name(pipe));
13020 
13021 		if (active) {
13022 			pipe_config->output_types |= 1 << encoder->type;
13023 			encoder->get_config(encoder, pipe_config);
13024 		}
13025 	}
13026 
13027 	if (!new_crtc_state->active)
13028 		return;
13029 
13030 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
13031 
13032 	sw_config = to_intel_crtc_state(crtc->state);
13033 	if (!intel_pipe_config_compare(dev, sw_config,
13034 				       pipe_config, false)) {
13035 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
13036 		intel_dump_pipe_config(intel_crtc, pipe_config,
13037 				       "[hw state]");
13038 		intel_dump_pipe_config(intel_crtc, sw_config,
13039 				       "[sw state]");
13040 	}
13041 }
13042 
13043 static void
13044 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13045 			 struct intel_shared_dpll *pll,
13046 			 struct drm_crtc *crtc,
13047 			 struct drm_crtc_state *new_state)
13048 {
13049 	struct intel_dpll_hw_state dpll_hw_state;
13050 	unsigned crtc_mask;
13051 	bool active;
13052 
13053 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13054 
13055 	DRM_DEBUG_KMS("%s\n", pll->name);
13056 
13057 	active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13058 
13059 	if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13060 		I915_STATE_WARN(!pll->on && pll->active_mask,
13061 		     "pll in active use but not on in sw tracking\n");
13062 		I915_STATE_WARN(pll->on && !pll->active_mask,
13063 		     "pll is on but not used by any active crtc\n");
13064 		I915_STATE_WARN(pll->on != active,
13065 		     "pll on state mismatch (expected %i, found %i)\n",
13066 		     pll->on, active);
13067 	}
13068 
13069 	if (!crtc) {
13070 		I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13071 				"more active pll users than references: %x vs %x\n",
13072 				pll->active_mask, pll->config.crtc_mask);
13073 
13074 		return;
13075 	}
13076 
13077 	crtc_mask = 1 << drm_crtc_index(crtc);
13078 
13079 	if (new_state->active)
13080 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13081 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13082 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13083 	else
13084 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13085 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13086 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13087 
13088 	I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13089 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13090 			crtc_mask, pll->config.crtc_mask);
13091 
13092 	I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13093 					  &dpll_hw_state,
13094 					  sizeof(dpll_hw_state)),
13095 			"pll hw state mismatch\n");
13096 }
13097 
13098 static void
13099 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13100 			 struct drm_crtc_state *old_crtc_state,
13101 			 struct drm_crtc_state *new_crtc_state)
13102 {
13103 	struct drm_i915_private *dev_priv = to_i915(dev);
13104 	struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13105 	struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13106 
13107 	if (new_state->shared_dpll)
13108 		verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13109 
13110 	if (old_state->shared_dpll &&
13111 	    old_state->shared_dpll != new_state->shared_dpll) {
13112 		unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13113 		struct intel_shared_dpll *pll = old_state->shared_dpll;
13114 
13115 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13116 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
13117 				pipe_name(drm_crtc_index(crtc)));
13118 		I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13119 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
13120 				pipe_name(drm_crtc_index(crtc)));
13121 	}
13122 }
13123 
13124 static void
13125 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13126 			 struct drm_crtc_state *old_state,
13127 			 struct drm_crtc_state *new_state)
13128 {
13129 	if (!needs_modeset(new_state) &&
13130 	    !to_intel_crtc_state(new_state)->update_pipe)
13131 		return;
13132 
13133 	verify_wm_state(crtc, new_state);
13134 	verify_connector_state(crtc->dev, crtc);
13135 	verify_crtc_state(crtc, old_state, new_state);
13136 	verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13137 }
13138 
13139 static void
13140 verify_disabled_dpll_state(struct drm_device *dev)
13141 {
13142 	struct drm_i915_private *dev_priv = to_i915(dev);
13143 	int i;
13144 
13145 	for (i = 0; i < dev_priv->num_shared_dpll; i++)
13146 		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13147 }
13148 
13149 static void
13150 intel_modeset_verify_disabled(struct drm_device *dev)
13151 {
13152 	verify_encoder_state(dev);
13153 	verify_connector_state(dev, NULL);
13154 	verify_disabled_dpll_state(dev);
13155 }
13156 
13157 static void update_scanline_offset(struct intel_crtc *crtc)
13158 {
13159 	struct drm_device *dev = crtc->base.dev;
13160 
13161 	/*
13162 	 * The scanline counter increments at the leading edge of hsync.
13163 	 *
13164 	 * On most platforms it starts counting from vtotal-1 on the
13165 	 * first active line. That means the scanline counter value is
13166 	 * always one less than what we would expect. Ie. just after
13167 	 * start of vblank, which also occurs at start of hsync (on the
13168 	 * last active line), the scanline counter will read vblank_start-1.
13169 	 *
13170 	 * On gen2 the scanline counter starts counting from 1 instead
13171 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13172 	 * to keep the value positive), instead of adding one.
13173 	 *
13174 	 * On HSW+ the behaviour of the scanline counter depends on the output
13175 	 * type. For DP ports it behaves like most other platforms, but on HDMI
13176 	 * there's an extra 1 line difference. So we need to add two instead of
13177 	 * one to the value.
13178 	 */
13179 	if (IS_GEN2(dev)) {
13180 		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13181 		int vtotal;
13182 
13183 		vtotal = adjusted_mode->crtc_vtotal;
13184 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13185 			vtotal /= 2;
13186 
13187 		crtc->scanline_offset = vtotal - 1;
13188 	} else if (HAS_DDI(dev) &&
13189 		   intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13190 		crtc->scanline_offset = 2;
13191 	} else
13192 		crtc->scanline_offset = 1;
13193 }
13194 
13195 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13196 {
13197 	struct drm_device *dev = state->dev;
13198 	struct drm_i915_private *dev_priv = to_i915(dev);
13199 	struct intel_shared_dpll_config *shared_dpll = NULL;
13200 	struct drm_crtc *crtc;
13201 	struct drm_crtc_state *crtc_state;
13202 	int i;
13203 
13204 	if (!dev_priv->display.crtc_compute_clock)
13205 		return;
13206 
13207 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13208 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13209 		struct intel_shared_dpll *old_dpll =
13210 			to_intel_crtc_state(crtc->state)->shared_dpll;
13211 
13212 		if (!needs_modeset(crtc_state))
13213 			continue;
13214 
13215 		to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13216 
13217 		if (!old_dpll)
13218 			continue;
13219 
13220 		if (!shared_dpll)
13221 			shared_dpll = intel_atomic_get_shared_dpll_state(state);
13222 
13223 		intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13224 	}
13225 }
13226 
13227 /*
13228  * This implements the workaround described in the "notes" section of the mode
13229  * set sequence documentation. When going from no pipes or single pipe to
13230  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13231  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13232  */
13233 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13234 {
13235 	struct drm_crtc_state *crtc_state;
13236 	struct intel_crtc *intel_crtc;
13237 	struct drm_crtc *crtc;
13238 	struct intel_crtc_state *first_crtc_state = NULL;
13239 	struct intel_crtc_state *other_crtc_state = NULL;
13240 	enum i915_pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13241 	int i;
13242 
13243 	/* look at all crtc's that are going to be enabled in during modeset */
13244 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13245 		intel_crtc = to_intel_crtc(crtc);
13246 
13247 		if (!crtc_state->active || !needs_modeset(crtc_state))
13248 			continue;
13249 
13250 		if (first_crtc_state) {
13251 			other_crtc_state = to_intel_crtc_state(crtc_state);
13252 			break;
13253 		} else {
13254 			first_crtc_state = to_intel_crtc_state(crtc_state);
13255 			first_pipe = intel_crtc->pipe;
13256 		}
13257 	}
13258 
13259 	/* No workaround needed? */
13260 	if (!first_crtc_state)
13261 		return 0;
13262 
13263 	/* w/a possibly needed, check how many crtc's are already enabled. */
13264 	for_each_intel_crtc(state->dev, intel_crtc) {
13265 		struct intel_crtc_state *pipe_config;
13266 
13267 		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13268 		if (IS_ERR(pipe_config))
13269 			return PTR_ERR(pipe_config);
13270 
13271 		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13272 
13273 		if (!pipe_config->base.active ||
13274 		    needs_modeset(&pipe_config->base))
13275 			continue;
13276 
13277 		/* 2 or more enabled crtcs means no need for w/a */
13278 		if (enabled_pipe != INVALID_PIPE)
13279 			return 0;
13280 
13281 		enabled_pipe = intel_crtc->pipe;
13282 	}
13283 
13284 	if (enabled_pipe != INVALID_PIPE)
13285 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13286 	else if (other_crtc_state)
13287 		other_crtc_state->hsw_workaround_pipe = first_pipe;
13288 
13289 	return 0;
13290 }
13291 
13292 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13293 {
13294 	struct drm_crtc *crtc;
13295 	struct drm_crtc_state *crtc_state;
13296 	int ret = 0;
13297 
13298 	/* add all active pipes to the state */
13299 	for_each_crtc(state->dev, crtc) {
13300 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
13301 		if (IS_ERR(crtc_state))
13302 			return PTR_ERR(crtc_state);
13303 
13304 		if (!crtc_state->active || needs_modeset(crtc_state))
13305 			continue;
13306 
13307 		crtc_state->mode_changed = true;
13308 
13309 		ret = drm_atomic_add_affected_connectors(state, crtc);
13310 		if (ret)
13311 			break;
13312 
13313 		ret = drm_atomic_add_affected_planes(state, crtc);
13314 		if (ret)
13315 			break;
13316 	}
13317 
13318 	return ret;
13319 }
13320 
13321 static int intel_modeset_checks(struct drm_atomic_state *state)
13322 {
13323 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13324 	struct drm_i915_private *dev_priv = to_i915(state->dev);
13325 	struct drm_crtc *crtc;
13326 	struct drm_crtc_state *crtc_state;
13327 	int ret = 0, i;
13328 
13329 	if (!check_digital_port_conflicts(state)) {
13330 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13331 		return -EINVAL;
13332 	}
13333 
13334 	intel_state->modeset = true;
13335 	intel_state->active_crtcs = dev_priv->active_crtcs;
13336 
13337 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13338 		if (crtc_state->active)
13339 			intel_state->active_crtcs |= 1 << i;
13340 		else
13341 			intel_state->active_crtcs &= ~(1 << i);
13342 
13343 		if (crtc_state->active != crtc->state->active)
13344 			intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13345 	}
13346 
13347 	/*
13348 	 * See if the config requires any additional preparation, e.g.
13349 	 * to adjust global state with pipes off.  We need to do this
13350 	 * here so we can get the modeset_pipe updated config for the new
13351 	 * mode set on this crtc.  For other crtcs we need to use the
13352 	 * adjusted_mode bits in the crtc directly.
13353 	 */
13354 	if (dev_priv->display.modeset_calc_cdclk) {
13355 		if (!intel_state->cdclk_pll_vco)
13356 			intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13357 		if (!intel_state->cdclk_pll_vco)
13358 			intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13359 
13360 		ret = dev_priv->display.modeset_calc_cdclk(state);
13361 		if (ret < 0)
13362 			return ret;
13363 
13364 		if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13365 		    intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13366 			ret = intel_modeset_all_pipes(state);
13367 
13368 		if (ret < 0)
13369 			return ret;
13370 
13371 		DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13372 			      intel_state->cdclk, intel_state->dev_cdclk);
13373 	} else
13374 		to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13375 
13376 	intel_modeset_clear_plls(state);
13377 
13378 	if (IS_HASWELL(dev_priv))
13379 		return haswell_mode_set_planes_workaround(state);
13380 
13381 	return 0;
13382 }
13383 
13384 /*
13385  * Handle calculation of various watermark data at the end of the atomic check
13386  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13387  * handlers to ensure that all derived state has been updated.
13388  */
13389 static int calc_watermark_data(struct drm_atomic_state *state)
13390 {
13391 	struct drm_device *dev = state->dev;
13392 	struct drm_i915_private *dev_priv = to_i915(dev);
13393 
13394 	/* Is there platform-specific watermark information to calculate? */
13395 	if (dev_priv->display.compute_global_watermarks)
13396 		return dev_priv->display.compute_global_watermarks(state);
13397 
13398 	return 0;
13399 }
13400 
13401 /**
13402  * intel_atomic_check - validate state object
13403  * @dev: drm device
13404  * @state: state to validate
13405  */
13406 static int intel_atomic_check(struct drm_device *dev,
13407 			      struct drm_atomic_state *state)
13408 {
13409 	struct drm_i915_private *dev_priv = to_i915(dev);
13410 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13411 	struct drm_crtc *crtc;
13412 	struct drm_crtc_state *crtc_state;
13413 	int ret, i;
13414 	bool any_ms = false;
13415 
13416 	ret = drm_atomic_helper_check_modeset(dev, state);
13417 	if (ret)
13418 		return ret;
13419 
13420 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13421 		struct intel_crtc_state *pipe_config =
13422 			to_intel_crtc_state(crtc_state);
13423 
13424 		/* Catch I915_MODE_FLAG_INHERITED */
13425 		if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13426 			crtc_state->mode_changed = true;
13427 
13428 		if (!needs_modeset(crtc_state))
13429 			continue;
13430 
13431 		if (!crtc_state->enable) {
13432 			any_ms = true;
13433 			continue;
13434 		}
13435 
13436 		/* FIXME: For only active_changed we shouldn't need to do any
13437 		 * state recomputation at all. */
13438 
13439 		ret = drm_atomic_add_affected_connectors(state, crtc);
13440 		if (ret)
13441 			return ret;
13442 
13443 		ret = intel_modeset_pipe_config(crtc, pipe_config);
13444 		if (ret) {
13445 			intel_dump_pipe_config(to_intel_crtc(crtc),
13446 					       pipe_config, "[failed]");
13447 			return ret;
13448 		}
13449 
13450 		if (i915.fastboot &&
13451 		    intel_pipe_config_compare(dev,
13452 					to_intel_crtc_state(crtc->state),
13453 					pipe_config, true)) {
13454 			crtc_state->mode_changed = false;
13455 			to_intel_crtc_state(crtc_state)->update_pipe = true;
13456 		}
13457 
13458 		if (needs_modeset(crtc_state))
13459 			any_ms = true;
13460 
13461 		ret = drm_atomic_add_affected_planes(state, crtc);
13462 		if (ret)
13463 			return ret;
13464 
13465 		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13466 				       needs_modeset(crtc_state) ?
13467 				       "[modeset]" : "[fastset]");
13468 	}
13469 
13470 	if (any_ms) {
13471 		ret = intel_modeset_checks(state);
13472 
13473 		if (ret)
13474 			return ret;
13475 	} else
13476 		intel_state->cdclk = dev_priv->cdclk_freq;
13477 
13478 	ret = drm_atomic_helper_check_planes(dev, state);
13479 	if (ret)
13480 		return ret;
13481 
13482 	intel_fbc_choose_crtc(dev_priv, state);
13483 	return calc_watermark_data(state);
13484 }
13485 
13486 static int intel_atomic_prepare_commit(struct drm_device *dev,
13487 				       struct drm_atomic_state *state,
13488 				       bool nonblock)
13489 {
13490 	struct drm_i915_private *dev_priv = to_i915(dev);
13491 	struct drm_plane_state *plane_state;
13492 	struct drm_crtc_state *crtc_state;
13493 	struct drm_plane *plane;
13494 	struct drm_crtc *crtc;
13495 	int i, ret;
13496 
13497 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13498 		if (state->legacy_cursor_update)
13499 			continue;
13500 
13501 		ret = intel_crtc_wait_for_pending_flips(crtc);
13502 		if (ret)
13503 			return ret;
13504 
13505 		if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13506 			flush_workqueue(dev_priv->wq);
13507 	}
13508 
13509 	ret = mutex_lock_interruptible(&dev->struct_mutex);
13510 	if (ret)
13511 		return ret;
13512 
13513 	ret = drm_atomic_helper_prepare_planes(dev, state);
13514 	mutex_unlock(&dev->struct_mutex);
13515 
13516 	if (!ret && !nonblock) {
13517 		for_each_plane_in_state(state, plane, plane_state, i) {
13518 			struct intel_plane_state *intel_plane_state =
13519 				to_intel_plane_state(plane_state);
13520 
13521 			if (!intel_plane_state->wait_req)
13522 				continue;
13523 
13524 			ret = __i915_wait_request(intel_plane_state->wait_req,
13525 						  true, NULL, NULL);
13526 			if (ret) {
13527 				/* Any hang should be swallowed by the wait */
13528 				WARN_ON(ret == -EIO);
13529 				mutex_lock(&dev->struct_mutex);
13530 				drm_atomic_helper_cleanup_planes(dev, state);
13531 				mutex_unlock(&dev->struct_mutex);
13532 				break;
13533 			}
13534 		}
13535 	}
13536 
13537 	return ret;
13538 }
13539 
13540 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13541 {
13542 	struct drm_device *dev = crtc->base.dev;
13543 
13544 	if (!dev->max_vblank_count)
13545 		return drm_accurate_vblank_count(&crtc->base);
13546 
13547 	return dev->driver->get_vblank_counter(dev, crtc->pipe);
13548 }
13549 
13550 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13551 					  struct drm_i915_private *dev_priv,
13552 					  unsigned crtc_mask)
13553 {
13554 	unsigned last_vblank_count[I915_MAX_PIPES];
13555 	enum i915_pipe pipe;
13556 	int ret;
13557 
13558 	if (!crtc_mask)
13559 		return;
13560 
13561 	for_each_pipe(dev_priv, pipe) {
13562 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13563 
13564 		if (!((1 << pipe) & crtc_mask))
13565 			continue;
13566 
13567 		ret = drm_crtc_vblank_get(crtc);
13568 		if (WARN_ON(ret != 0)) {
13569 			crtc_mask &= ~(1 << pipe);
13570 			continue;
13571 		}
13572 
13573 		last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13574 	}
13575 
13576 	for_each_pipe(dev_priv, pipe) {
13577 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13578 		long lret;
13579 
13580 		if (!((1 << pipe) & crtc_mask))
13581 			continue;
13582 
13583 		lret = wait_event_timeout(dev->vblank[pipe].queue,
13584 				last_vblank_count[pipe] !=
13585 					drm_crtc_vblank_count(crtc),
13586 				msecs_to_jiffies(50));
13587 
13588 		WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13589 
13590 		drm_crtc_vblank_put(crtc);
13591 	}
13592 }
13593 
13594 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13595 {
13596 	/* fb updated, need to unpin old fb */
13597 	if (crtc_state->fb_changed)
13598 		return true;
13599 
13600 	/* wm changes, need vblank before final wm's */
13601 	if (crtc_state->update_wm_post)
13602 		return true;
13603 
13604 	/*
13605 	 * cxsr is re-enabled after vblank.
13606 	 * This is already handled by crtc_state->update_wm_post,
13607 	 * but added for clarity.
13608 	 */
13609 	if (crtc_state->disable_cxsr)
13610 		return true;
13611 
13612 	return false;
13613 }
13614 
13615 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13616 {
13617 	struct drm_device *dev = state->dev;
13618 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13619 	struct drm_i915_private *dev_priv = to_i915(dev);
13620 	struct drm_crtc_state *old_crtc_state;
13621 	struct drm_crtc *crtc;
13622 	struct intel_crtc_state *intel_cstate;
13623 	struct drm_plane *plane;
13624 	struct drm_plane_state *plane_state;
13625 	bool hw_check = intel_state->modeset;
13626 	unsigned long put_domains[I915_MAX_PIPES] = {};
13627 	unsigned crtc_vblank_mask = 0;
13628 	int i, ret;
13629 
13630 	for_each_plane_in_state(state, plane, plane_state, i) {
13631 		struct intel_plane_state *intel_plane_state =
13632 			to_intel_plane_state(plane_state);
13633 
13634 		if (!intel_plane_state->wait_req)
13635 			continue;
13636 
13637 		ret = __i915_wait_request(intel_plane_state->wait_req,
13638 					  true, NULL, NULL);
13639 		/* EIO should be eaten, and we can't get interrupted in the
13640 		 * worker, and blocking commits have waited already. */
13641 		WARN_ON(ret);
13642 	}
13643 
13644 	drm_atomic_helper_wait_for_dependencies(state);
13645 
13646 	if (intel_state->modeset) {
13647 		memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13648 		       sizeof(intel_state->min_pixclk));
13649 		dev_priv->active_crtcs = intel_state->active_crtcs;
13650 		dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13651 
13652 		intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13653 	}
13654 
13655 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13656 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13657 
13658 		if (needs_modeset(crtc->state) ||
13659 		    to_intel_crtc_state(crtc->state)->update_pipe) {
13660 			hw_check = true;
13661 
13662 			put_domains[to_intel_crtc(crtc)->pipe] =
13663 				modeset_get_crtc_power_domains(crtc,
13664 					to_intel_crtc_state(crtc->state));
13665 		}
13666 
13667 		if (!needs_modeset(crtc->state))
13668 			continue;
13669 
13670 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13671 
13672 		if (old_crtc_state->active) {
13673 			intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13674 			dev_priv->display.crtc_disable(crtc);
13675 			intel_crtc->active = false;
13676 			intel_fbc_disable(intel_crtc);
13677 			intel_disable_shared_dpll(intel_crtc);
13678 
13679 			/*
13680 			 * Underruns don't always raise
13681 			 * interrupts, so check manually.
13682 			 */
13683 			intel_check_cpu_fifo_underruns(dev_priv);
13684 			intel_check_pch_fifo_underruns(dev_priv);
13685 
13686 			if (!crtc->state->active)
13687 				intel_update_watermarks(crtc);
13688 		}
13689 	}
13690 
13691 	/* Only after disabling all output pipelines that will be changed can we
13692 	 * update the the output configuration. */
13693 	intel_modeset_update_crtc_state(state);
13694 
13695 	if (intel_state->modeset) {
13696 		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13697 
13698 		if (dev_priv->display.modeset_commit_cdclk &&
13699 		    (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13700 		     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
13701 			dev_priv->display.modeset_commit_cdclk(state);
13702 
13703 		intel_modeset_verify_disabled(dev);
13704 	}
13705 
13706 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
13707 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13708 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13709 		bool modeset = needs_modeset(crtc->state);
13710 		struct intel_crtc_state *pipe_config =
13711 			to_intel_crtc_state(crtc->state);
13712 
13713 		if (modeset && crtc->state->active) {
13714 			update_scanline_offset(to_intel_crtc(crtc));
13715 			dev_priv->display.crtc_enable(crtc);
13716 		}
13717 
13718 		/* Complete events for now disable pipes here. */
13719 		if (modeset && !crtc->state->active && crtc->state->event) {
13720 			spin_lock_irq(&dev->event_lock);
13721 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
13722 			spin_unlock_irq(&dev->event_lock);
13723 
13724 			crtc->state->event = NULL;
13725 		}
13726 
13727 		if (!modeset)
13728 			intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13729 
13730 		if (crtc->state->active &&
13731 		    drm_atomic_get_existing_plane_state(state, crtc->primary))
13732 			intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
13733 
13734 		if (crtc->state->active)
13735 			drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13736 
13737 		if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13738 			crtc_vblank_mask |= 1 << i;
13739 	}
13740 
13741 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13742 	 * already, but still need the state for the delayed optimization. To
13743 	 * fix this:
13744 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13745 	 * - schedule that vblank worker _before_ calling hw_done
13746 	 * - at the start of commit_tail, cancel it _synchrously
13747 	 * - switch over to the vblank wait helper in the core after that since
13748 	 *   we don't need out special handling any more.
13749 	 */
13750 	if (!state->legacy_cursor_update)
13751 		intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13752 
13753 	/*
13754 	 * Now that the vblank has passed, we can go ahead and program the
13755 	 * optimal watermarks on platforms that need two-step watermark
13756 	 * programming.
13757 	 *
13758 	 * TODO: Move this (and other cleanup) to an async worker eventually.
13759 	 */
13760 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13761 		intel_cstate = to_intel_crtc_state(crtc->state);
13762 
13763 		if (dev_priv->display.optimize_watermarks)
13764 			dev_priv->display.optimize_watermarks(intel_cstate);
13765 	}
13766 
13767 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13768 		intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13769 
13770 		if (put_domains[i])
13771 			modeset_put_power_domains(dev_priv, put_domains[i]);
13772 
13773 		intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13774 	}
13775 
13776 	drm_atomic_helper_commit_hw_done(state);
13777 
13778 	if (intel_state->modeset)
13779 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13780 
13781 	mutex_lock(&dev->struct_mutex);
13782 	drm_atomic_helper_cleanup_planes(dev, state);
13783 	mutex_unlock(&dev->struct_mutex);
13784 
13785 	drm_atomic_helper_commit_cleanup_done(state);
13786 
13787 	drm_atomic_state_free(state);
13788 
13789 	/* As one of the primary mmio accessors, KMS has a high likelihood
13790 	 * of triggering bugs in unclaimed access. After we finish
13791 	 * modesetting, see if an error has been flagged, and if so
13792 	 * enable debugging for the next modeset - and hope we catch
13793 	 * the culprit.
13794 	 *
13795 	 * XXX note that we assume display power is on at this point.
13796 	 * This might hold true now but we need to add pm helper to check
13797 	 * unclaimed only when the hardware is on, as atomic commits
13798 	 * can happen also when the device is completely off.
13799 	 */
13800 	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13801 }
13802 
13803 static void intel_atomic_commit_work(struct work_struct *work)
13804 {
13805 	struct drm_atomic_state *state = container_of(work,
13806 						      struct drm_atomic_state,
13807 						      commit_work);
13808 	intel_atomic_commit_tail(state);
13809 }
13810 
13811 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13812 {
13813 	struct drm_plane_state *old_plane_state;
13814 	struct drm_plane *plane;
13815 	struct drm_i915_gem_object *obj, *old_obj;
13816 	struct intel_plane *intel_plane;
13817 	int i;
13818 
13819 	mutex_lock(&state->dev->struct_mutex);
13820 	for_each_plane_in_state(state, plane, old_plane_state, i) {
13821 		obj = intel_fb_obj(plane->state->fb);
13822 		old_obj = intel_fb_obj(old_plane_state->fb);
13823 		intel_plane = to_intel_plane(plane);
13824 
13825 		i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13826 	}
13827 	mutex_unlock(&state->dev->struct_mutex);
13828 }
13829 
13830 /**
13831  * intel_atomic_commit - commit validated state object
13832  * @dev: DRM device
13833  * @state: the top-level driver state object
13834  * @nonblock: nonblocking commit
13835  *
13836  * This function commits a top-level state object that has been validated
13837  * with drm_atomic_helper_check().
13838  *
13839  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13840  * nonblocking commits are only safe for pure plane updates. Everything else
13841  * should work though.
13842  *
13843  * RETURNS
13844  * Zero for success or -errno.
13845  */
13846 static int intel_atomic_commit(struct drm_device *dev,
13847 			       struct drm_atomic_state *state,
13848 			       bool nonblock)
13849 {
13850 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13851 	struct drm_i915_private *dev_priv = to_i915(dev);
13852 	int ret = 0;
13853 
13854 	if (intel_state->modeset && nonblock) {
13855 		DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
13856 		return -EINVAL;
13857 	}
13858 
13859 	ret = drm_atomic_helper_setup_commit(state, nonblock);
13860 	if (ret)
13861 		return ret;
13862 
13863 	INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13864 
13865 	ret = intel_atomic_prepare_commit(dev, state, nonblock);
13866 	if (ret) {
13867 		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13868 		return ret;
13869 	}
13870 
13871 	drm_atomic_helper_swap_state(state, true);
13872 	dev_priv->wm.distrust_bios_wm = false;
13873 	dev_priv->wm.skl_results = intel_state->wm_results;
13874 	intel_shared_dpll_commit(state);
13875 	intel_atomic_track_fbs(state);
13876 
13877 	if (nonblock)
13878 		queue_work(system_unbound_wq, &state->commit_work);
13879 	else
13880 		intel_atomic_commit_tail(state);
13881 
13882 	return 0;
13883 }
13884 
13885 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13886 {
13887 	struct drm_device *dev = crtc->dev;
13888 	struct drm_atomic_state *state;
13889 	struct drm_crtc_state *crtc_state;
13890 	int ret;
13891 
13892 	state = drm_atomic_state_alloc(dev);
13893 	if (!state) {
13894 		DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13895 			      crtc->base.id, crtc->name);
13896 		return;
13897 	}
13898 
13899 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13900 
13901 retry:
13902 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
13903 	ret = PTR_ERR_OR_ZERO(crtc_state);
13904 	if (!ret) {
13905 		if (!crtc_state->active)
13906 			goto out;
13907 
13908 		crtc_state->mode_changed = true;
13909 		ret = drm_atomic_commit(state);
13910 	}
13911 
13912 	if (ret == -EDEADLK) {
13913 		drm_atomic_state_clear(state);
13914 		drm_modeset_backoff(state->acquire_ctx);
13915 		goto retry;
13916 	}
13917 
13918 	if (ret)
13919 out:
13920 		drm_atomic_state_free(state);
13921 }
13922 
13923 #undef for_each_intel_crtc_masked
13924 
13925 /*
13926  * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
13927  *        drm_atomic_helper_legacy_gamma_set() directly.
13928  */
13929 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
13930 					 u16 *red, u16 *green, u16 *blue,
13931 					 uint32_t size)
13932 {
13933 	struct drm_device *dev = crtc->dev;
13934 	struct drm_mode_config *config = &dev->mode_config;
13935 	struct drm_crtc_state *state;
13936 	int ret;
13937 
13938 	ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
13939 	if (ret)
13940 		return ret;
13941 
13942 	/*
13943 	 * Make sure we update the legacy properties so this works when
13944 	 * atomic is not enabled.
13945 	 */
13946 
13947 	state = crtc->state;
13948 
13949 	drm_object_property_set_value(&crtc->base,
13950 				      config->degamma_lut_property,
13951 				      (state->degamma_lut) ?
13952 				      state->degamma_lut->base.id : 0);
13953 
13954 	drm_object_property_set_value(&crtc->base,
13955 				      config->ctm_property,
13956 				      (state->ctm) ?
13957 				      state->ctm->base.id : 0);
13958 
13959 	drm_object_property_set_value(&crtc->base,
13960 				      config->gamma_lut_property,
13961 				      (state->gamma_lut) ?
13962 				      state->gamma_lut->base.id : 0);
13963 
13964 	return 0;
13965 }
13966 
13967 static const struct drm_crtc_funcs intel_crtc_funcs = {
13968 	.gamma_set = intel_atomic_legacy_gamma_set,
13969 	.set_config = drm_atomic_helper_set_config,
13970 	.set_property = drm_atomic_helper_crtc_set_property,
13971 	.destroy = intel_crtc_destroy,
13972 	.page_flip = intel_crtc_page_flip,
13973 	.atomic_duplicate_state = intel_crtc_duplicate_state,
13974 	.atomic_destroy_state = intel_crtc_destroy_state,
13975 };
13976 
13977 /**
13978  * intel_prepare_plane_fb - Prepare fb for usage on plane
13979  * @plane: drm plane to prepare for
13980  * @fb: framebuffer to prepare for presentation
13981  *
13982  * Prepares a framebuffer for usage on a display plane.  Generally this
13983  * involves pinning the underlying object and updating the frontbuffer tracking
13984  * bits.  Some older platforms need special physical address handling for
13985  * cursor planes.
13986  *
13987  * Must be called with struct_mutex held.
13988  *
13989  * Returns 0 on success, negative error code on failure.
13990  */
13991 int
13992 intel_prepare_plane_fb(struct drm_plane *plane,
13993 		       struct drm_plane_state *new_state)
13994 {
13995 	struct drm_device *dev = plane->dev;
13996 	struct drm_framebuffer *fb = new_state->fb;
13997 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13998 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13999 	struct reservation_object *resv;
14000 	int ret = 0;
14001 
14002 	if (!obj && !old_obj)
14003 		return 0;
14004 
14005 	if (old_obj) {
14006 		struct drm_crtc_state *crtc_state =
14007 			drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14008 
14009 		/* Big Hammer, we also need to ensure that any pending
14010 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14011 		 * current scanout is retired before unpinning the old
14012 		 * framebuffer. Note that we rely on userspace rendering
14013 		 * into the buffer attached to the pipe they are waiting
14014 		 * on. If not, userspace generates a GPU hang with IPEHR
14015 		 * point to the MI_WAIT_FOR_EVENT.
14016 		 *
14017 		 * This should only fail upon a hung GPU, in which case we
14018 		 * can safely continue.
14019 		 */
14020 		if (needs_modeset(crtc_state))
14021 			ret = i915_gem_object_wait_rendering(old_obj, true);
14022 		if (ret) {
14023 			/* GPU hangs should have been swallowed by the wait */
14024 			WARN_ON(ret == -EIO);
14025 			return ret;
14026 		}
14027 	}
14028 
14029 	if (!obj)
14030 		return 0;
14031 
14032 	/* For framebuffer backed by dmabuf, wait for fence */
14033 	resv = i915_gem_object_get_dmabuf_resv(obj);
14034 	if (resv) {
14035 		long lret;
14036 
14037 		lret = reservation_object_wait_timeout_rcu(resv, false, true,
14038 							   MAX_SCHEDULE_TIMEOUT);
14039 		if (lret == -ERESTARTSYS)
14040 			return lret;
14041 
14042 		WARN(lret < 0, "waiting returns %li\n", lret);
14043 	}
14044 
14045 	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14046 	    INTEL_INFO(dev)->cursor_needs_physical) {
14047 		int align = IS_I830(dev) ? 16 * 1024 : 256;
14048 		ret = i915_gem_object_attach_phys(obj, align);
14049 		if (ret)
14050 			DRM_DEBUG_KMS("failed to attach phys object\n");
14051 	} else {
14052 		ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14053 	}
14054 
14055 	if (ret == 0) {
14056 		struct intel_plane_state *plane_state =
14057 			to_intel_plane_state(new_state);
14058 
14059 		i915_gem_request_assign(&plane_state->wait_req,
14060 					obj->last_write_req);
14061 	}
14062 
14063 	return ret;
14064 }
14065 
14066 /**
14067  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14068  * @plane: drm plane to clean up for
14069  * @fb: old framebuffer that was on plane
14070  *
14071  * Cleans up a framebuffer that has just been removed from a plane.
14072  *
14073  * Must be called with struct_mutex held.
14074  */
14075 void
14076 intel_cleanup_plane_fb(struct drm_plane *plane,
14077 		       struct drm_plane_state *old_state)
14078 {
14079 	struct drm_device *dev = plane->dev;
14080 	struct intel_plane_state *old_intel_state;
14081 	struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14082 	struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14083 
14084 	old_intel_state = to_intel_plane_state(old_state);
14085 
14086 	if (!obj && !old_obj)
14087 		return;
14088 
14089 	if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14090 	    !INTEL_INFO(dev)->cursor_needs_physical))
14091 		intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14092 
14093 	i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14094 }
14095 
14096 int
14097 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14098 {
14099 	int max_scale;
14100 	int crtc_clock, cdclk;
14101 
14102 	if (!intel_crtc || !crtc_state->base.enable)
14103 		return DRM_PLANE_HELPER_NO_SCALING;
14104 
14105 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14106 	cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14107 
14108 	if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14109 		return DRM_PLANE_HELPER_NO_SCALING;
14110 
14111 	/*
14112 	 * skl max scale is lower of:
14113 	 *    close to 3 but not 3, -1 is for that purpose
14114 	 *            or
14115 	 *    cdclk/crtc_clock
14116 	 */
14117 	max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14118 
14119 	return max_scale;
14120 }
14121 
14122 static int
14123 intel_check_primary_plane(struct drm_plane *plane,
14124 			  struct intel_crtc_state *crtc_state,
14125 			  struct intel_plane_state *state)
14126 {
14127 	struct drm_crtc *crtc = state->base.crtc;
14128 	struct drm_framebuffer *fb = state->base.fb;
14129 	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14130 	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14131 	bool can_position = false;
14132 
14133 	if (INTEL_INFO(plane->dev)->gen >= 9) {
14134 		/* use scaler when colorkey is not required */
14135 		if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14136 			min_scale = 1;
14137 			max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14138 		}
14139 		can_position = true;
14140 	}
14141 
14142 	return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14143 					     &state->dst, &state->clip,
14144 					     state->base.rotation,
14145 					     min_scale, max_scale,
14146 					     can_position, true,
14147 					     &state->visible);
14148 }
14149 
14150 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14151 				    struct drm_crtc_state *old_crtc_state)
14152 {
14153 	struct drm_device *dev = crtc->dev;
14154 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14155 	struct intel_crtc_state *old_intel_state =
14156 		to_intel_crtc_state(old_crtc_state);
14157 	bool modeset = needs_modeset(crtc->state);
14158 
14159 	/* Perform vblank evasion around commit operation */
14160 	intel_pipe_update_start(intel_crtc);
14161 
14162 	if (modeset)
14163 		return;
14164 
14165 	if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14166 		intel_color_set_csc(crtc->state);
14167 		intel_color_load_luts(crtc->state);
14168 	}
14169 
14170 	if (to_intel_crtc_state(crtc->state)->update_pipe)
14171 		intel_update_pipe_config(intel_crtc, old_intel_state);
14172 	else if (INTEL_INFO(dev)->gen >= 9)
14173 		skl_detach_scalers(intel_crtc);
14174 }
14175 
14176 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14177 				     struct drm_crtc_state *old_crtc_state)
14178 {
14179 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14180 
14181 	intel_pipe_update_end(intel_crtc, NULL);
14182 }
14183 
14184 /**
14185  * intel_plane_destroy - destroy a plane
14186  * @plane: plane to destroy
14187  *
14188  * Common destruction function for all types of planes (primary, cursor,
14189  * sprite).
14190  */
14191 void intel_plane_destroy(struct drm_plane *plane)
14192 {
14193 	if (!plane)
14194 		return;
14195 
14196 	drm_plane_cleanup(plane);
14197 	kfree(to_intel_plane(plane));
14198 }
14199 
14200 const struct drm_plane_funcs intel_plane_funcs = {
14201 	.update_plane = drm_atomic_helper_update_plane,
14202 	.disable_plane = drm_atomic_helper_disable_plane,
14203 	.destroy = intel_plane_destroy,
14204 	.set_property = drm_atomic_helper_plane_set_property,
14205 	.atomic_get_property = intel_plane_atomic_get_property,
14206 	.atomic_set_property = intel_plane_atomic_set_property,
14207 	.atomic_duplicate_state = intel_plane_duplicate_state,
14208 	.atomic_destroy_state = intel_plane_destroy_state,
14209 
14210 };
14211 
14212 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14213 						    int pipe)
14214 {
14215 	struct intel_plane *primary = NULL;
14216 	struct intel_plane_state *state = NULL;
14217 	const uint32_t *intel_primary_formats;
14218 	unsigned int num_formats;
14219 	int ret;
14220 
14221 	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14222 	if (!primary)
14223 		goto fail;
14224 
14225 	state = intel_create_plane_state(&primary->base);
14226 	if (!state)
14227 		goto fail;
14228 	primary->base.state = &state->base;
14229 
14230 	primary->can_scale = false;
14231 	primary->max_downscale = 1;
14232 	if (INTEL_INFO(dev)->gen >= 9) {
14233 		primary->can_scale = true;
14234 		state->scaler_id = -1;
14235 	}
14236 	primary->pipe = pipe;
14237 	primary->plane = pipe;
14238 	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14239 	primary->check_plane = intel_check_primary_plane;
14240 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14241 		primary->plane = !pipe;
14242 
14243 	if (INTEL_INFO(dev)->gen >= 9) {
14244 		intel_primary_formats = skl_primary_formats;
14245 		num_formats = ARRAY_SIZE(skl_primary_formats);
14246 
14247 		primary->update_plane = skylake_update_primary_plane;
14248 		primary->disable_plane = skylake_disable_primary_plane;
14249 	} else if (HAS_PCH_SPLIT(dev)) {
14250 		intel_primary_formats = i965_primary_formats;
14251 		num_formats = ARRAY_SIZE(i965_primary_formats);
14252 
14253 		primary->update_plane = ironlake_update_primary_plane;
14254 		primary->disable_plane = i9xx_disable_primary_plane;
14255 	} else if (INTEL_INFO(dev)->gen >= 4) {
14256 		intel_primary_formats = i965_primary_formats;
14257 		num_formats = ARRAY_SIZE(i965_primary_formats);
14258 
14259 		primary->update_plane = i9xx_update_primary_plane;
14260 		primary->disable_plane = i9xx_disable_primary_plane;
14261 	} else {
14262 		intel_primary_formats = i8xx_primary_formats;
14263 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
14264 
14265 		primary->update_plane = i9xx_update_primary_plane;
14266 		primary->disable_plane = i9xx_disable_primary_plane;
14267 	}
14268 
14269 	if (INTEL_INFO(dev)->gen >= 9)
14270 		ret = drm_universal_plane_init(dev, &primary->base, 0,
14271 					       &intel_plane_funcs,
14272 					       intel_primary_formats, num_formats,
14273 					       DRM_PLANE_TYPE_PRIMARY,
14274 					       "plane 1%c", pipe_name(pipe));
14275 	else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14276 		ret = drm_universal_plane_init(dev, &primary->base, 0,
14277 					       &intel_plane_funcs,
14278 					       intel_primary_formats, num_formats,
14279 					       DRM_PLANE_TYPE_PRIMARY,
14280 					       "primary %c", pipe_name(pipe));
14281 	else
14282 		ret = drm_universal_plane_init(dev, &primary->base, 0,
14283 					       &intel_plane_funcs,
14284 					       intel_primary_formats, num_formats,
14285 					       DRM_PLANE_TYPE_PRIMARY,
14286 					       "plane %c", plane_name(primary->plane));
14287 	if (ret)
14288 		goto fail;
14289 
14290 	if (INTEL_INFO(dev)->gen >= 4)
14291 		intel_create_rotation_property(dev, primary);
14292 
14293 	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14294 
14295 	return &primary->base;
14296 
14297 fail:
14298 	kfree(state);
14299 	kfree(primary);
14300 
14301 	return NULL;
14302 }
14303 
14304 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14305 {
14306 	if (!dev->mode_config.rotation_property) {
14307 		unsigned long flags = DRM_ROTATE_0 |
14308 			DRM_ROTATE_180;
14309 
14310 		if (INTEL_INFO(dev)->gen >= 9)
14311 			flags |= DRM_ROTATE_90 | DRM_ROTATE_270;
14312 
14313 		dev->mode_config.rotation_property =
14314 			drm_mode_create_rotation_property(dev, flags);
14315 	}
14316 	if (dev->mode_config.rotation_property)
14317 		drm_object_attach_property(&plane->base.base,
14318 				dev->mode_config.rotation_property,
14319 				plane->base.state->rotation);
14320 }
14321 
14322 static int
14323 intel_check_cursor_plane(struct drm_plane *plane,
14324 			 struct intel_crtc_state *crtc_state,
14325 			 struct intel_plane_state *state)
14326 {
14327 	struct drm_crtc *crtc = crtc_state->base.crtc;
14328 	struct drm_framebuffer *fb = state->base.fb;
14329 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14330 	enum i915_pipe pipe = to_intel_plane(plane)->pipe;
14331 	unsigned stride;
14332 	int ret;
14333 
14334 	ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14335 					    &state->dst, &state->clip,
14336 					    state->base.rotation,
14337 					    DRM_PLANE_HELPER_NO_SCALING,
14338 					    DRM_PLANE_HELPER_NO_SCALING,
14339 					    true, true, &state->visible);
14340 	if (ret)
14341 		return ret;
14342 
14343 	/* if we want to turn off the cursor ignore width and height */
14344 	if (!obj)
14345 		return 0;
14346 
14347 	/* Check for which cursor types we support */
14348 	if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14349 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14350 			  state->base.crtc_w, state->base.crtc_h);
14351 		return -EINVAL;
14352 	}
14353 
14354 	stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14355 	if (obj->base.size < stride * state->base.crtc_h) {
14356 		DRM_DEBUG_KMS("buffer is too small\n");
14357 		return -ENOMEM;
14358 	}
14359 
14360 	if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14361 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
14362 		return -EINVAL;
14363 	}
14364 
14365 	/*
14366 	 * There's something wrong with the cursor on CHV pipe C.
14367 	 * If it straddles the left edge of the screen then
14368 	 * moving it away from the edge or disabling it often
14369 	 * results in a pipe underrun, and often that can lead to
14370 	 * dead pipe (constant underrun reported, and it scans
14371 	 * out just a solid color). To recover from that, the
14372 	 * display power well must be turned off and on again.
14373 	 * Refuse the put the cursor into that compromised position.
14374 	 */
14375 	if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14376 	    state->visible && state->base.crtc_x < 0) {
14377 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14378 		return -EINVAL;
14379 	}
14380 
14381 	return 0;
14382 }
14383 
14384 static void
14385 intel_disable_cursor_plane(struct drm_plane *plane,
14386 			   struct drm_crtc *crtc)
14387 {
14388 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14389 
14390 	intel_crtc->cursor_addr = 0;
14391 	intel_crtc_update_cursor(crtc, NULL);
14392 }
14393 
14394 static void
14395 intel_update_cursor_plane(struct drm_plane *plane,
14396 			  const struct intel_crtc_state *crtc_state,
14397 			  const struct intel_plane_state *state)
14398 {
14399 	struct drm_crtc *crtc = crtc_state->base.crtc;
14400 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14401 	struct drm_device *dev = plane->dev;
14402 	struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14403 	uint32_t addr;
14404 
14405 	if (!obj)
14406 		addr = 0;
14407 	else if (!INTEL_INFO(dev)->cursor_needs_physical)
14408 		addr = i915_gem_obj_ggtt_offset(obj);
14409 	else
14410 		addr = obj->phys_handle->busaddr;
14411 
14412 	intel_crtc->cursor_addr = addr;
14413 	intel_crtc_update_cursor(crtc, state);
14414 }
14415 
14416 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14417 						   int pipe)
14418 {
14419 	struct intel_plane *cursor = NULL;
14420 	struct intel_plane_state *state = NULL;
14421 	int ret;
14422 
14423 	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14424 	if (!cursor)
14425 		goto fail;
14426 
14427 	state = intel_create_plane_state(&cursor->base);
14428 	if (!state)
14429 		goto fail;
14430 	cursor->base.state = &state->base;
14431 
14432 	cursor->can_scale = false;
14433 	cursor->max_downscale = 1;
14434 	cursor->pipe = pipe;
14435 	cursor->plane = pipe;
14436 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14437 	cursor->check_plane = intel_check_cursor_plane;
14438 	cursor->update_plane = intel_update_cursor_plane;
14439 	cursor->disable_plane = intel_disable_cursor_plane;
14440 
14441 	ret = drm_universal_plane_init(dev, &cursor->base, 0,
14442 				       &intel_plane_funcs,
14443 				       intel_cursor_formats,
14444 				       ARRAY_SIZE(intel_cursor_formats),
14445 				       DRM_PLANE_TYPE_CURSOR,
14446 				       "cursor %c", pipe_name(pipe));
14447 	if (ret)
14448 		goto fail;
14449 
14450 	if (INTEL_INFO(dev)->gen >= 4) {
14451 		if (!dev->mode_config.rotation_property)
14452 			dev->mode_config.rotation_property =
14453 				drm_mode_create_rotation_property(dev,
14454 							DRM_ROTATE_0 |
14455 							DRM_ROTATE_180);
14456 		if (dev->mode_config.rotation_property)
14457 			drm_object_attach_property(&cursor->base.base,
14458 				dev->mode_config.rotation_property,
14459 				state->base.rotation);
14460 	}
14461 
14462 	if (INTEL_INFO(dev)->gen >=9)
14463 		state->scaler_id = -1;
14464 
14465 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14466 
14467 	return &cursor->base;
14468 
14469 fail:
14470 	kfree(state);
14471 	kfree(cursor);
14472 
14473 	return NULL;
14474 }
14475 
14476 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14477 	struct intel_crtc_state *crtc_state)
14478 {
14479 	int i;
14480 	struct intel_scaler *intel_scaler;
14481 	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14482 
14483 	for (i = 0; i < intel_crtc->num_scalers; i++) {
14484 		intel_scaler = &scaler_state->scalers[i];
14485 		intel_scaler->in_use = 0;
14486 		intel_scaler->mode = PS_SCALER_MODE_DYN;
14487 	}
14488 
14489 	scaler_state->scaler_id = -1;
14490 }
14491 
14492 static void intel_crtc_init(struct drm_device *dev, int pipe)
14493 {
14494 	struct drm_i915_private *dev_priv = to_i915(dev);
14495 	struct intel_crtc *intel_crtc;
14496 	struct intel_crtc_state *crtc_state = NULL;
14497 	struct drm_plane *primary = NULL;
14498 	struct drm_plane *cursor = NULL;
14499 	int ret;
14500 
14501 	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14502 	if (intel_crtc == NULL)
14503 		return;
14504 
14505 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14506 	if (!crtc_state)
14507 		goto fail;
14508 	intel_crtc->config = crtc_state;
14509 	intel_crtc->base.state = &crtc_state->base;
14510 	crtc_state->base.crtc = &intel_crtc->base;
14511 
14512 	/* initialize shared scalers */
14513 	if (INTEL_INFO(dev)->gen >= 9) {
14514 		if (pipe == PIPE_C)
14515 			intel_crtc->num_scalers = 1;
14516 		else
14517 			intel_crtc->num_scalers = SKL_NUM_SCALERS;
14518 
14519 		skl_init_scalers(dev, intel_crtc, crtc_state);
14520 	}
14521 
14522 	primary = intel_primary_plane_create(dev, pipe);
14523 	if (!primary)
14524 		goto fail;
14525 
14526 	cursor = intel_cursor_plane_create(dev, pipe);
14527 	if (!cursor)
14528 		goto fail;
14529 
14530 	ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14531 					cursor, &intel_crtc_funcs,
14532 					"pipe %c", pipe_name(pipe));
14533 	if (ret)
14534 		goto fail;
14535 
14536 	/*
14537 	 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14538 	 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14539 	 */
14540 	intel_crtc->pipe = pipe;
14541 	intel_crtc->plane = pipe;
14542 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14543 		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14544 		intel_crtc->plane = !pipe;
14545 	}
14546 
14547 	intel_crtc->cursor_base = ~0;
14548 	intel_crtc->cursor_cntl = ~0;
14549 	intel_crtc->cursor_size = ~0;
14550 
14551 	intel_crtc->wm.cxsr_allowed = true;
14552 
14553 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14554 	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14555 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14556 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14557 
14558 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14559 
14560 	intel_color_init(&intel_crtc->base);
14561 
14562 	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14563 	return;
14564 
14565 fail:
14566 	intel_plane_destroy(primary);
14567 	intel_plane_destroy(cursor);
14568 	kfree(crtc_state);
14569 	kfree(intel_crtc);
14570 }
14571 
14572 enum i915_pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14573 {
14574 	struct drm_encoder *encoder = connector->base.encoder;
14575 	struct drm_device *dev = connector->base.dev;
14576 
14577 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14578 
14579 	if (!encoder || WARN_ON(!encoder->crtc))
14580 		return INVALID_PIPE;
14581 
14582 	return to_intel_crtc(encoder->crtc)->pipe;
14583 }
14584 
14585 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14586 				struct drm_file *file)
14587 {
14588 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14589 	struct drm_crtc *drmmode_crtc;
14590 	struct intel_crtc *crtc;
14591 
14592 	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14593 	if (!drmmode_crtc)
14594 		return -ENOENT;
14595 
14596 	crtc = to_intel_crtc(drmmode_crtc);
14597 	pipe_from_crtc_id->pipe = crtc->pipe;
14598 
14599 	return 0;
14600 }
14601 
14602 static int intel_encoder_clones(struct intel_encoder *encoder)
14603 {
14604 	struct drm_device *dev = encoder->base.dev;
14605 	struct intel_encoder *source_encoder;
14606 	int index_mask = 0;
14607 	int entry = 0;
14608 
14609 	for_each_intel_encoder(dev, source_encoder) {
14610 		if (encoders_cloneable(encoder, source_encoder))
14611 			index_mask |= (1 << entry);
14612 
14613 		entry++;
14614 	}
14615 
14616 	return index_mask;
14617 }
14618 
14619 static bool has_edp_a(struct drm_device *dev)
14620 {
14621 	struct drm_i915_private *dev_priv = to_i915(dev);
14622 
14623 	if (!IS_MOBILE(dev))
14624 		return false;
14625 
14626 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14627 		return false;
14628 
14629 	if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14630 		return false;
14631 
14632 	return true;
14633 }
14634 
14635 static bool intel_crt_present(struct drm_device *dev)
14636 {
14637 	struct drm_i915_private *dev_priv = to_i915(dev);
14638 
14639 	if (INTEL_INFO(dev)->gen >= 9)
14640 		return false;
14641 
14642 	if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14643 		return false;
14644 
14645 	if (IS_CHERRYVIEW(dev))
14646 		return false;
14647 
14648 	if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14649 		return false;
14650 
14651 	/* DDI E can't be used if DDI A requires 4 lanes */
14652 	if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14653 		return false;
14654 
14655 	if (!dev_priv->vbt.int_crt_support)
14656 		return false;
14657 
14658 	return true;
14659 }
14660 
14661 static void intel_setup_outputs(struct drm_device *dev)
14662 {
14663 	struct drm_i915_private *dev_priv = to_i915(dev);
14664 	struct intel_encoder *encoder;
14665 	bool dpd_is_edp = false;
14666 
14667 	/*
14668 	 * intel_edp_init_connector() depends on this completing first, to
14669 	 * prevent the registeration of both eDP and LVDS and the incorrect
14670 	 * sharing of the PPS.
14671 	 */
14672 	intel_lvds_init(dev);
14673 
14674 	if (intel_crt_present(dev))
14675 		intel_crt_init(dev);
14676 
14677 	if (IS_BROXTON(dev)) {
14678 		/*
14679 		 * FIXME: Broxton doesn't support port detection via the
14680 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14681 		 * detect the ports.
14682 		 */
14683 		intel_ddi_init(dev, PORT_A);
14684 		intel_ddi_init(dev, PORT_B);
14685 		intel_ddi_init(dev, PORT_C);
14686 
14687 		intel_dsi_init(dev);
14688 	} else if (HAS_DDI(dev)) {
14689 		int found;
14690 
14691 		/*
14692 		 * Haswell uses DDI functions to detect digital outputs.
14693 		 * On SKL pre-D0 the strap isn't connected, so we assume
14694 		 * it's there.
14695 		 */
14696 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14697 		/* WaIgnoreDDIAStrap: skl */
14698 		if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14699 			intel_ddi_init(dev, PORT_A);
14700 
14701 		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
14702 		 * register */
14703 		found = I915_READ(SFUSE_STRAP);
14704 
14705 		if (found & SFUSE_STRAP_DDIB_DETECTED)
14706 			intel_ddi_init(dev, PORT_B);
14707 		if (found & SFUSE_STRAP_DDIC_DETECTED)
14708 			intel_ddi_init(dev, PORT_C);
14709 		if (found & SFUSE_STRAP_DDID_DETECTED)
14710 			intel_ddi_init(dev, PORT_D);
14711 		/*
14712 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14713 		 */
14714 		if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14715 		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14716 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14717 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14718 			intel_ddi_init(dev, PORT_E);
14719 
14720 	} else if (HAS_PCH_SPLIT(dev)) {
14721 		int found;
14722 		dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14723 
14724 		if (has_edp_a(dev))
14725 			intel_dp_init(dev, DP_A, PORT_A);
14726 
14727 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14728 			/* PCH SDVOB multiplex with HDMIB */
14729 			found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14730 			if (!found)
14731 				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14732 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14733 				intel_dp_init(dev, PCH_DP_B, PORT_B);
14734 		}
14735 
14736 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14737 			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14738 
14739 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14740 			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14741 
14742 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
14743 			intel_dp_init(dev, PCH_DP_C, PORT_C);
14744 
14745 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
14746 			intel_dp_init(dev, PCH_DP_D, PORT_D);
14747 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14748 		bool has_edp, has_port;
14749 
14750 		/*
14751 		 * The DP_DETECTED bit is the latched state of the DDC
14752 		 * SDA pin at boot. However since eDP doesn't require DDC
14753 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14754 		 * eDP ports may have been muxed to an alternate function.
14755 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
14756 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
14757 		 * detect eDP ports.
14758 		 *
14759 		 * Sadly the straps seem to be missing sometimes even for HDMI
14760 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14761 		 * and VBT for the presence of the port. Additionally we can't
14762 		 * trust the port type the VBT declares as we've seen at least
14763 		 * HDMI ports that the VBT claim are DP or eDP.
14764 		 */
14765 		has_edp = intel_dp_is_edp(dev, PORT_B);
14766 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14767 		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14768 			has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14769 		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14770 			intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14771 
14772 		has_edp = intel_dp_is_edp(dev, PORT_C);
14773 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14774 		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14775 			has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14776 		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14777 			intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14778 
14779 		if (IS_CHERRYVIEW(dev)) {
14780 			/*
14781 			 * eDP not supported on port D,
14782 			 * so no need to worry about it
14783 			 */
14784 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14785 			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14786 				intel_dp_init(dev, CHV_DP_D, PORT_D);
14787 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14788 				intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14789 		}
14790 
14791 		intel_dsi_init(dev);
14792 	} else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14793 		bool found = false;
14794 
14795 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14796 			DRM_DEBUG_KMS("probing SDVOB\n");
14797 			found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14798 			if (!found && IS_G4X(dev)) {
14799 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14800 				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14801 			}
14802 
14803 			if (!found && IS_G4X(dev))
14804 				intel_dp_init(dev, DP_B, PORT_B);
14805 		}
14806 
14807 		/* Before G4X SDVOC doesn't have its own detect register */
14808 
14809 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14810 			DRM_DEBUG_KMS("probing SDVOC\n");
14811 			found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14812 		}
14813 
14814 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14815 
14816 			if (IS_G4X(dev)) {
14817 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14818 				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14819 			}
14820 			if (IS_G4X(dev))
14821 				intel_dp_init(dev, DP_C, PORT_C);
14822 		}
14823 
14824 		if (IS_G4X(dev) &&
14825 		    (I915_READ(DP_D) & DP_DETECTED))
14826 			intel_dp_init(dev, DP_D, PORT_D);
14827 	} else if (IS_GEN2(dev))
14828 		intel_dvo_init(dev);
14829 
14830 	if (SUPPORTS_TV(dev))
14831 		intel_tv_init(dev);
14832 
14833 	intel_psr_init(dev);
14834 
14835 	for_each_intel_encoder(dev, encoder) {
14836 		encoder->base.possible_crtcs = encoder->crtc_mask;
14837 		encoder->base.possible_clones =
14838 			intel_encoder_clones(encoder);
14839 	}
14840 
14841 	intel_init_pch_refclk(dev);
14842 
14843 	drm_helper_move_panel_connectors_to_head(dev);
14844 }
14845 
14846 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14847 {
14848 	struct drm_device *dev = fb->dev;
14849 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14850 
14851 	drm_framebuffer_cleanup(fb);
14852 	mutex_lock(&dev->struct_mutex);
14853 	WARN_ON(!intel_fb->obj->framebuffer_references--);
14854 	i915_gem_object_put(intel_fb->obj);
14855 	mutex_unlock(&dev->struct_mutex);
14856 	kfree(intel_fb);
14857 }
14858 
14859 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14860 						struct drm_file *file,
14861 						unsigned int *handle)
14862 {
14863 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14864 	struct drm_i915_gem_object *obj = intel_fb->obj;
14865 
14866 	if (obj->userptr.mm) {
14867 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14868 		return -EINVAL;
14869 	}
14870 
14871 	return drm_gem_handle_create(file, &obj->base, handle);
14872 }
14873 
14874 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14875 					struct drm_file *file,
14876 					unsigned flags, unsigned color,
14877 					struct drm_clip_rect *clips,
14878 					unsigned num_clips)
14879 {
14880 	struct drm_device *dev = fb->dev;
14881 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14882 	struct drm_i915_gem_object *obj = intel_fb->obj;
14883 
14884 	mutex_lock(&dev->struct_mutex);
14885 	intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14886 	mutex_unlock(&dev->struct_mutex);
14887 
14888 	return 0;
14889 }
14890 
14891 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14892 	.destroy = intel_user_framebuffer_destroy,
14893 	.create_handle = intel_user_framebuffer_create_handle,
14894 	.dirty = intel_user_framebuffer_dirty,
14895 };
14896 
14897 static
14898 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14899 			 uint32_t pixel_format)
14900 {
14901 	u32 gen = INTEL_INFO(dev)->gen;
14902 
14903 	if (gen >= 9) {
14904 		int cpp = drm_format_plane_cpp(pixel_format, 0);
14905 
14906 		/* "The stride in bytes must not exceed the of the size of 8K
14907 		 *  pixels and 32K bytes."
14908 		 */
14909 		return min(8192 * cpp, 32768);
14910 	} else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14911 		return 32*1024;
14912 	} else if (gen >= 4) {
14913 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14914 			return 16*1024;
14915 		else
14916 			return 32*1024;
14917 	} else if (gen >= 3) {
14918 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14919 			return 8*1024;
14920 		else
14921 			return 16*1024;
14922 	} else {
14923 		/* XXX DSPC is limited to 4k tiled */
14924 		return 8*1024;
14925 	}
14926 }
14927 
14928 static int intel_framebuffer_init(struct drm_device *dev,
14929 				  struct intel_framebuffer *intel_fb,
14930 				  struct drm_mode_fb_cmd2 *mode_cmd,
14931 				  struct drm_i915_gem_object *obj)
14932 {
14933 	struct drm_i915_private *dev_priv = to_i915(dev);
14934 	unsigned int aligned_height;
14935 	int ret;
14936 	u32 pitch_limit, stride_alignment;
14937 
14938 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14939 
14940 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14941 		/* Enforce that fb modifier and tiling mode match, but only for
14942 		 * X-tiled. This is needed for FBC. */
14943 		if (!!(obj->tiling_mode == I915_TILING_X) !=
14944 		    !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14945 			DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14946 			return -EINVAL;
14947 		}
14948 	} else {
14949 		if (obj->tiling_mode == I915_TILING_X)
14950 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14951 		else if (obj->tiling_mode == I915_TILING_Y) {
14952 			DRM_DEBUG("No Y tiling for legacy addfb\n");
14953 			return -EINVAL;
14954 		}
14955 	}
14956 
14957 	/* Passed in modifier sanity checking. */
14958 	switch (mode_cmd->modifier[0]) {
14959 	case I915_FORMAT_MOD_Y_TILED:
14960 	case I915_FORMAT_MOD_Yf_TILED:
14961 		if (INTEL_INFO(dev)->gen < 9) {
14962 			DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14963 				  mode_cmd->modifier[0]);
14964 			return -EINVAL;
14965 		}
14966 	case DRM_FORMAT_MOD_NONE:
14967 	case I915_FORMAT_MOD_X_TILED:
14968 		break;
14969 	default:
14970 		DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14971 			  mode_cmd->modifier[0]);
14972 		return -EINVAL;
14973 	}
14974 
14975 	stride_alignment = intel_fb_stride_alignment(dev_priv,
14976 						     mode_cmd->modifier[0],
14977 						     mode_cmd->pixel_format);
14978 	if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14979 		DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14980 			  mode_cmd->pitches[0], stride_alignment);
14981 		return -EINVAL;
14982 	}
14983 
14984 	pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14985 					   mode_cmd->pixel_format);
14986 	if (mode_cmd->pitches[0] > pitch_limit) {
14987 		DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14988 			  mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14989 			  "tiled" : "linear",
14990 			  mode_cmd->pitches[0], pitch_limit);
14991 		return -EINVAL;
14992 	}
14993 
14994 	if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14995 	    mode_cmd->pitches[0] != obj->stride) {
14996 		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14997 			  mode_cmd->pitches[0], obj->stride);
14998 		return -EINVAL;
14999 	}
15000 
15001 	/* Reject formats not supported by any plane early. */
15002 	switch (mode_cmd->pixel_format) {
15003 	case DRM_FORMAT_C8:
15004 	case DRM_FORMAT_RGB565:
15005 	case DRM_FORMAT_XRGB8888:
15006 	case DRM_FORMAT_ARGB8888:
15007 		break;
15008 	case DRM_FORMAT_XRGB1555:
15009 		if (INTEL_INFO(dev)->gen > 3) {
15010 			DRM_DEBUG("unsupported pixel format: %s\n",
15011 				  drm_get_format_name(mode_cmd->pixel_format));
15012 			return -EINVAL;
15013 		}
15014 		break;
15015 	case DRM_FORMAT_ABGR8888:
15016 		if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15017 		    INTEL_INFO(dev)->gen < 9) {
15018 			DRM_DEBUG("unsupported pixel format: %s\n",
15019 				  drm_get_format_name(mode_cmd->pixel_format));
15020 			return -EINVAL;
15021 		}
15022 		break;
15023 	case DRM_FORMAT_XBGR8888:
15024 	case DRM_FORMAT_XRGB2101010:
15025 	case DRM_FORMAT_XBGR2101010:
15026 		if (INTEL_INFO(dev)->gen < 4) {
15027 			DRM_DEBUG("unsupported pixel format: %s\n",
15028 				  drm_get_format_name(mode_cmd->pixel_format));
15029 			return -EINVAL;
15030 		}
15031 		break;
15032 	case DRM_FORMAT_ABGR2101010:
15033 		if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15034 			DRM_DEBUG("unsupported pixel format: %s\n",
15035 				  drm_get_format_name(mode_cmd->pixel_format));
15036 			return -EINVAL;
15037 		}
15038 		break;
15039 	case DRM_FORMAT_YUYV:
15040 	case DRM_FORMAT_UYVY:
15041 	case DRM_FORMAT_YVYU:
15042 	case DRM_FORMAT_VYUY:
15043 		if (INTEL_INFO(dev)->gen < 5) {
15044 			DRM_DEBUG("unsupported pixel format: %s\n",
15045 				  drm_get_format_name(mode_cmd->pixel_format));
15046 			return -EINVAL;
15047 		}
15048 		break;
15049 	default:
15050 		DRM_DEBUG("unsupported pixel format: %s\n",
15051 			  drm_get_format_name(mode_cmd->pixel_format));
15052 		return -EINVAL;
15053 	}
15054 
15055 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15056 	if (mode_cmd->offsets[0] != 0)
15057 		return -EINVAL;
15058 
15059 	aligned_height = intel_fb_align_height(dev, mode_cmd->height,
15060 					       mode_cmd->pixel_format,
15061 					       mode_cmd->modifier[0]);
15062 	/* FIXME drm helper for size checks (especially planar formats)? */
15063 	if (obj->base.size < aligned_height * mode_cmd->pitches[0])
15064 		return -EINVAL;
15065 
15066 	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15067 	intel_fb->obj = obj;
15068 
15069 	intel_fill_fb_info(dev_priv, &intel_fb->base);
15070 
15071 	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15072 	if (ret) {
15073 		DRM_ERROR("framebuffer init failed %d\n", ret);
15074 		return ret;
15075 	}
15076 
15077 	intel_fb->obj->framebuffer_references++;
15078 
15079 	return 0;
15080 }
15081 
15082 static struct drm_framebuffer *
15083 intel_user_framebuffer_create(struct drm_device *dev,
15084 			      struct drm_file *filp,
15085 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
15086 {
15087 	struct drm_framebuffer *fb;
15088 	struct drm_i915_gem_object *obj;
15089 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15090 
15091 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15092 	if (!obj)
15093 		return ERR_PTR(-ENOENT);
15094 
15095 	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15096 	if (IS_ERR(fb))
15097 		i915_gem_object_put_unlocked(obj);
15098 
15099 	return fb;
15100 }
15101 
15102 #ifndef CONFIG_DRM_FBDEV_EMULATION
15103 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15104 {
15105 }
15106 #endif
15107 
15108 static const struct drm_mode_config_funcs intel_mode_funcs = {
15109 	.fb_create = intel_user_framebuffer_create,
15110 	.output_poll_changed = intel_fbdev_output_poll_changed,
15111 	.atomic_check = intel_atomic_check,
15112 	.atomic_commit = intel_atomic_commit,
15113 	.atomic_state_alloc = intel_atomic_state_alloc,
15114 	.atomic_state_clear = intel_atomic_state_clear,
15115 };
15116 
15117 /**
15118  * intel_init_display_hooks - initialize the display modesetting hooks
15119  * @dev_priv: device private
15120  */
15121 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15122 {
15123 	if (INTEL_INFO(dev_priv)->gen >= 9) {
15124 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15125 		dev_priv->display.get_initial_plane_config =
15126 			skylake_get_initial_plane_config;
15127 		dev_priv->display.crtc_compute_clock =
15128 			haswell_crtc_compute_clock;
15129 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15130 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15131 	} else if (HAS_DDI(dev_priv)) {
15132 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15133 		dev_priv->display.get_initial_plane_config =
15134 			ironlake_get_initial_plane_config;
15135 		dev_priv->display.crtc_compute_clock =
15136 			haswell_crtc_compute_clock;
15137 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15138 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15139 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15140 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15141 		dev_priv->display.get_initial_plane_config =
15142 			ironlake_get_initial_plane_config;
15143 		dev_priv->display.crtc_compute_clock =
15144 			ironlake_crtc_compute_clock;
15145 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
15146 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
15147 	} else if (IS_CHERRYVIEW(dev_priv)) {
15148 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15149 		dev_priv->display.get_initial_plane_config =
15150 			i9xx_get_initial_plane_config;
15151 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15152 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15153 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15154 	} else if (IS_VALLEYVIEW(dev_priv)) {
15155 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15156 		dev_priv->display.get_initial_plane_config =
15157 			i9xx_get_initial_plane_config;
15158 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15159 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15160 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15161 	} else if (IS_G4X(dev_priv)) {
15162 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15163 		dev_priv->display.get_initial_plane_config =
15164 			i9xx_get_initial_plane_config;
15165 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15166 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15167 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15168 	} else if (IS_PINEVIEW(dev_priv)) {
15169 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15170 		dev_priv->display.get_initial_plane_config =
15171 			i9xx_get_initial_plane_config;
15172 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15173 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15174 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15175 	} else if (!IS_GEN2(dev_priv)) {
15176 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15177 		dev_priv->display.get_initial_plane_config =
15178 			i9xx_get_initial_plane_config;
15179 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15180 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15181 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15182 	} else {
15183 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15184 		dev_priv->display.get_initial_plane_config =
15185 			i9xx_get_initial_plane_config;
15186 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15187 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15188 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15189 	}
15190 
15191 	/* Returns the core display clock speed */
15192 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15193 		dev_priv->display.get_display_clock_speed =
15194 			skylake_get_display_clock_speed;
15195 	else if (IS_BROXTON(dev_priv))
15196 		dev_priv->display.get_display_clock_speed =
15197 			broxton_get_display_clock_speed;
15198 	else if (IS_BROADWELL(dev_priv))
15199 		dev_priv->display.get_display_clock_speed =
15200 			broadwell_get_display_clock_speed;
15201 	else if (IS_HASWELL(dev_priv))
15202 		dev_priv->display.get_display_clock_speed =
15203 			haswell_get_display_clock_speed;
15204 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15205 		dev_priv->display.get_display_clock_speed =
15206 			valleyview_get_display_clock_speed;
15207 	else if (IS_GEN5(dev_priv))
15208 		dev_priv->display.get_display_clock_speed =
15209 			ilk_get_display_clock_speed;
15210 	else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15211 		 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15212 		dev_priv->display.get_display_clock_speed =
15213 			i945_get_display_clock_speed;
15214 	else if (IS_GM45(dev_priv))
15215 		dev_priv->display.get_display_clock_speed =
15216 			gm45_get_display_clock_speed;
15217 	else if (IS_CRESTLINE(dev_priv))
15218 		dev_priv->display.get_display_clock_speed =
15219 			i965gm_get_display_clock_speed;
15220 	else if (IS_PINEVIEW(dev_priv))
15221 		dev_priv->display.get_display_clock_speed =
15222 			pnv_get_display_clock_speed;
15223 	else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15224 		dev_priv->display.get_display_clock_speed =
15225 			g33_get_display_clock_speed;
15226 	else if (IS_I915G(dev_priv))
15227 		dev_priv->display.get_display_clock_speed =
15228 			i915_get_display_clock_speed;
15229 	else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15230 		dev_priv->display.get_display_clock_speed =
15231 			i9xx_misc_get_display_clock_speed;
15232 	else if (IS_I915GM(dev_priv))
15233 		dev_priv->display.get_display_clock_speed =
15234 			i915gm_get_display_clock_speed;
15235 	else if (IS_I865G(dev_priv))
15236 		dev_priv->display.get_display_clock_speed =
15237 			i865_get_display_clock_speed;
15238 	else if (IS_I85X(dev_priv))
15239 		dev_priv->display.get_display_clock_speed =
15240 			i85x_get_display_clock_speed;
15241 	else { /* 830 */
15242 		WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15243 		dev_priv->display.get_display_clock_speed =
15244 			i830_get_display_clock_speed;
15245 	}
15246 
15247 	if (IS_GEN5(dev_priv)) {
15248 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15249 	} else if (IS_GEN6(dev_priv)) {
15250 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15251 	} else if (IS_IVYBRIDGE(dev_priv)) {
15252 		/* FIXME: detect B0+ stepping and use auto training */
15253 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15254 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15255 		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15256 	}
15257 
15258 	if (IS_BROADWELL(dev_priv)) {
15259 		dev_priv->display.modeset_commit_cdclk =
15260 			broadwell_modeset_commit_cdclk;
15261 		dev_priv->display.modeset_calc_cdclk =
15262 			broadwell_modeset_calc_cdclk;
15263 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15264 		dev_priv->display.modeset_commit_cdclk =
15265 			valleyview_modeset_commit_cdclk;
15266 		dev_priv->display.modeset_calc_cdclk =
15267 			valleyview_modeset_calc_cdclk;
15268 	} else if (IS_BROXTON(dev_priv)) {
15269 		dev_priv->display.modeset_commit_cdclk =
15270 			bxt_modeset_commit_cdclk;
15271 		dev_priv->display.modeset_calc_cdclk =
15272 			bxt_modeset_calc_cdclk;
15273 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15274 		dev_priv->display.modeset_commit_cdclk =
15275 			skl_modeset_commit_cdclk;
15276 		dev_priv->display.modeset_calc_cdclk =
15277 			skl_modeset_calc_cdclk;
15278 	}
15279 
15280 	switch (INTEL_INFO(dev_priv)->gen) {
15281 	case 2:
15282 		dev_priv->display.queue_flip = intel_gen2_queue_flip;
15283 		break;
15284 
15285 	case 3:
15286 		dev_priv->display.queue_flip = intel_gen3_queue_flip;
15287 		break;
15288 
15289 	case 4:
15290 	case 5:
15291 		dev_priv->display.queue_flip = intel_gen4_queue_flip;
15292 		break;
15293 
15294 	case 6:
15295 		dev_priv->display.queue_flip = intel_gen6_queue_flip;
15296 		break;
15297 	case 7:
15298 	case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15299 		dev_priv->display.queue_flip = intel_gen7_queue_flip;
15300 		break;
15301 	case 9:
15302 		/* Drop through - unsupported since execlist only. */
15303 	default:
15304 		/* Default just returns -ENODEV to indicate unsupported */
15305 		dev_priv->display.queue_flip = intel_default_queue_flip;
15306 	}
15307 }
15308 
15309 /*
15310  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15311  * resume, or other times.  This quirk makes sure that's the case for
15312  * affected systems.
15313  */
15314 static void quirk_pipea_force(struct drm_device *dev)
15315 {
15316 	struct drm_i915_private *dev_priv = to_i915(dev);
15317 
15318 	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15319 	DRM_INFO("applying pipe a force quirk\n");
15320 }
15321 
15322 static void quirk_pipeb_force(struct drm_device *dev)
15323 {
15324 	struct drm_i915_private *dev_priv = to_i915(dev);
15325 
15326 	dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15327 	DRM_INFO("applying pipe b force quirk\n");
15328 }
15329 
15330 /*
15331  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15332  */
15333 static void quirk_ssc_force_disable(struct drm_device *dev)
15334 {
15335 	struct drm_i915_private *dev_priv = to_i915(dev);
15336 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15337 	DRM_INFO("applying lvds SSC disable quirk\n");
15338 }
15339 
15340 /*
15341  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15342  * brightness value
15343  */
15344 static void quirk_invert_brightness(struct drm_device *dev)
15345 {
15346 	struct drm_i915_private *dev_priv = to_i915(dev);
15347 	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15348 	DRM_INFO("applying inverted panel brightness quirk\n");
15349 }
15350 
15351 /* Some VBT's incorrectly indicate no backlight is present */
15352 static void quirk_backlight_present(struct drm_device *dev)
15353 {
15354 	struct drm_i915_private *dev_priv = to_i915(dev);
15355 	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15356 	DRM_INFO("applying backlight present quirk\n");
15357 }
15358 
15359 struct intel_quirk {
15360 	int device;
15361 	int subsystem_vendor;
15362 	int subsystem_device;
15363 	void (*hook)(struct drm_device *dev);
15364 };
15365 
15366 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15367 struct intel_dmi_quirk {
15368 	void (*hook)(struct drm_device *dev);
15369 	const struct dmi_system_id (*dmi_id_list)[];
15370 };
15371 
15372 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15373 {
15374 	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15375 	return 1;
15376 }
15377 
15378 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15379 	{
15380 		.dmi_id_list = &(const struct dmi_system_id[]) {
15381 			{
15382 				.callback = intel_dmi_reverse_brightness,
15383 				.ident = "NCR Corporation",
15384 				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15385 					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
15386 				},
15387 			},
15388 			{ }  /* terminating entry */
15389 		},
15390 		.hook = quirk_invert_brightness,
15391 	},
15392 };
15393 
15394 static struct intel_quirk intel_quirks[] = {
15395 	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15396 	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15397 
15398 	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15399 	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15400 
15401 	/* 830 needs to leave pipe A & dpll A up */
15402 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15403 
15404 	/* 830 needs to leave pipe B & dpll B up */
15405 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15406 
15407 	/* Lenovo U160 cannot use SSC on LVDS */
15408 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15409 
15410 	/* Sony Vaio Y cannot use SSC on LVDS */
15411 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15412 
15413 	/* Acer Aspire 5734Z must invert backlight brightness */
15414 	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15415 
15416 	/* Acer/eMachines G725 */
15417 	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15418 
15419 	/* Acer/eMachines e725 */
15420 	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15421 
15422 	/* Acer/Packard Bell NCL20 */
15423 	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15424 
15425 	/* Acer Aspire 4736Z */
15426 	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15427 
15428 	/* Acer Aspire 5336 */
15429 	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15430 
15431 	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15432 	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15433 
15434 	/* Acer C720 Chromebook (Core i3 4005U) */
15435 	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15436 
15437 	/* Apple Macbook 2,1 (Core 2 T7400) */
15438 	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15439 
15440 	/* Apple Macbook 4,1 */
15441 	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15442 
15443 	/* Toshiba CB35 Chromebook (Celeron 2955U) */
15444 	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15445 
15446 	/* HP Chromebook 14 (Celeron 2955U) */
15447 	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15448 
15449 	/* Dell Chromebook 11 */
15450 	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15451 
15452 	/* Dell Chromebook 11 (2015 version) */
15453 	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15454 };
15455 
15456 static void intel_init_quirks(struct drm_device *dev)
15457 {
15458 	struct pci_dev *d = dev->pdev;
15459 	int i;
15460 
15461 	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15462 		struct intel_quirk *q = &intel_quirks[i];
15463 
15464 		if (d->device == q->device &&
15465 		    (d->subsystem_vendor == q->subsystem_vendor ||
15466 		     q->subsystem_vendor == PCI_ANY_ID) &&
15467 		    (d->subsystem_device == q->subsystem_device ||
15468 		     q->subsystem_device == PCI_ANY_ID))
15469 			q->hook(dev);
15470 	}
15471 	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15472 		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15473 			intel_dmi_quirks[i].hook(dev);
15474 	}
15475 }
15476 
15477 /* Disable the VGA plane that we never use */
15478 static void i915_disable_vga(struct drm_device *dev)
15479 {
15480 	struct drm_i915_private *dev_priv = to_i915(dev);
15481 	u8 sr1;
15482 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15483 
15484 	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15485 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15486 	outb(SR01, VGA_SR_INDEX);
15487 	sr1 = inb(VGA_SR_DATA);
15488 	outb(sr1 | 1<<5, VGA_SR_DATA);
15489 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15490 	udelay(300);
15491 
15492 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15493 	POSTING_READ(vga_reg);
15494 }
15495 
15496 void intel_modeset_init_hw(struct drm_device *dev)
15497 {
15498 	struct drm_i915_private *dev_priv = to_i915(dev);
15499 
15500 	intel_update_cdclk(dev);
15501 
15502 	dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15503 
15504 	intel_init_clock_gating(dev);
15505 }
15506 
15507 /*
15508  * Calculate what we think the watermarks should be for the state we've read
15509  * out of the hardware and then immediately program those watermarks so that
15510  * we ensure the hardware settings match our internal state.
15511  *
15512  * We can calculate what we think WM's should be by creating a duplicate of the
15513  * current state (which was constructed during hardware readout) and running it
15514  * through the atomic check code to calculate new watermark values in the
15515  * state object.
15516  */
15517 static void sanitize_watermarks(struct drm_device *dev)
15518 {
15519 	struct drm_i915_private *dev_priv = to_i915(dev);
15520 	struct drm_atomic_state *state;
15521 	struct drm_crtc *crtc;
15522 	struct drm_crtc_state *cstate;
15523 	struct drm_modeset_acquire_ctx ctx;
15524 	int ret;
15525 	int i;
15526 
15527 	/* Only supported on platforms that use atomic watermark design */
15528 	if (!dev_priv->display.optimize_watermarks)
15529 		return;
15530 
15531 	/*
15532 	 * We need to hold connection_mutex before calling duplicate_state so
15533 	 * that the connector loop is protected.
15534 	 */
15535 	drm_modeset_acquire_init(&ctx, 0);
15536 retry:
15537 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
15538 	if (ret == -EDEADLK) {
15539 		drm_modeset_backoff(&ctx);
15540 		goto retry;
15541 	} else if (WARN_ON(ret)) {
15542 		goto fail;
15543 	}
15544 
15545 	state = drm_atomic_helper_duplicate_state(dev, &ctx);
15546 	if (WARN_ON(IS_ERR(state)))
15547 		goto fail;
15548 
15549 	/*
15550 	 * Hardware readout is the only time we don't want to calculate
15551 	 * intermediate watermarks (since we don't trust the current
15552 	 * watermarks).
15553 	 */
15554 	to_intel_atomic_state(state)->skip_intermediate_wm = true;
15555 
15556 	ret = intel_atomic_check(dev, state);
15557 	if (ret) {
15558 		/*
15559 		 * If we fail here, it means that the hardware appears to be
15560 		 * programmed in a way that shouldn't be possible, given our
15561 		 * understanding of watermark requirements.  This might mean a
15562 		 * mistake in the hardware readout code or a mistake in the
15563 		 * watermark calculations for a given platform.  Raise a WARN
15564 		 * so that this is noticeable.
15565 		 *
15566 		 * If this actually happens, we'll have to just leave the
15567 		 * BIOS-programmed watermarks untouched and hope for the best.
15568 		 */
15569 		WARN(true, "Could not determine valid watermarks for inherited state\n");
15570 		goto fail;
15571 	}
15572 
15573 	/* Write calculated watermark values back */
15574 	for_each_crtc_in_state(state, crtc, cstate, i) {
15575 		struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15576 
15577 		cs->wm.need_postvbl_update = true;
15578 		dev_priv->display.optimize_watermarks(cs);
15579 	}
15580 
15581 	drm_atomic_state_free(state);
15582 fail:
15583 	drm_modeset_drop_locks(&ctx);
15584 	drm_modeset_acquire_fini(&ctx);
15585 }
15586 
15587 void intel_modeset_init(struct drm_device *dev)
15588 {
15589 	struct drm_i915_private *dev_priv = to_i915(dev);
15590 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
15591 	int sprite, ret;
15592 	enum i915_pipe pipe;
15593 	struct intel_crtc *crtc;
15594 
15595 	drm_mode_config_init(dev);
15596 
15597 	dev->mode_config.min_width = 0;
15598 	dev->mode_config.min_height = 0;
15599 
15600 	dev->mode_config.preferred_depth = 24;
15601 	dev->mode_config.prefer_shadow = 1;
15602 
15603 	dev->mode_config.allow_fb_modifiers = true;
15604 
15605 	dev->mode_config.funcs = &intel_mode_funcs;
15606 
15607 	intel_init_quirks(dev);
15608 
15609 	intel_init_pm(dev);
15610 
15611 	if (INTEL_INFO(dev)->num_pipes == 0)
15612 		return;
15613 
15614 	/*
15615 	 * There may be no VBT; and if the BIOS enabled SSC we can
15616 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
15617 	 * BIOS isn't using it, don't assume it will work even if the VBT
15618 	 * indicates as much.
15619 	 */
15620 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15621 		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15622 					    DREF_SSC1_ENABLE);
15623 
15624 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15625 			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15626 				     bios_lvds_use_ssc ? "en" : "dis",
15627 				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15628 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15629 		}
15630 	}
15631 
15632 	if (IS_GEN2(dev)) {
15633 		dev->mode_config.max_width = 2048;
15634 		dev->mode_config.max_height = 2048;
15635 	} else if (IS_GEN3(dev)) {
15636 		dev->mode_config.max_width = 4096;
15637 		dev->mode_config.max_height = 4096;
15638 	} else {
15639 		dev->mode_config.max_width = 8192;
15640 		dev->mode_config.max_height = 8192;
15641 	}
15642 
15643 	if (IS_845G(dev) || IS_I865G(dev)) {
15644 		dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15645 		dev->mode_config.cursor_height = 1023;
15646 	} else if (IS_GEN2(dev)) {
15647 		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15648 		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15649 	} else {
15650 		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15651 		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15652 	}
15653 
15654 	dev->mode_config.fb_base = ggtt->mappable_base;
15655 
15656 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
15657 		      INTEL_INFO(dev)->num_pipes,
15658 		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15659 
15660 	for_each_pipe(dev_priv, pipe) {
15661 		intel_crtc_init(dev, pipe);
15662 		for_each_sprite(dev_priv, pipe, sprite) {
15663 			ret = intel_plane_init(dev, pipe, sprite);
15664 			if (ret)
15665 				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15666 					      pipe_name(pipe), sprite_name(pipe, sprite), ret);
15667 		}
15668 	}
15669 
15670 	intel_update_czclk(dev_priv);
15671 	intel_update_cdclk(dev);
15672 
15673 	intel_shared_dpll_init(dev);
15674 
15675 	if (dev_priv->max_cdclk_freq == 0)
15676 		intel_update_max_cdclk(dev);
15677 
15678 	/* Just disable it once at startup */
15679 	i915_disable_vga(dev);
15680 	intel_setup_outputs(dev);
15681 
15682 	drm_modeset_lock_all(dev);
15683 	intel_modeset_setup_hw_state(dev);
15684 	drm_modeset_unlock_all(dev);
15685 
15686 	for_each_intel_crtc(dev, crtc) {
15687 		struct intel_initial_plane_config plane_config = {};
15688 
15689 		if (!crtc->active)
15690 			continue;
15691 
15692 		/*
15693 		 * Note that reserving the BIOS fb up front prevents us
15694 		 * from stuffing other stolen allocations like the ring
15695 		 * on top.  This prevents some ugliness at boot time, and
15696 		 * can even allow for smooth boot transitions if the BIOS
15697 		 * fb is large enough for the active pipe configuration.
15698 		 */
15699 		dev_priv->display.get_initial_plane_config(crtc,
15700 							   &plane_config);
15701 
15702 		/*
15703 		 * If the fb is shared between multiple heads, we'll
15704 		 * just get the first one.
15705 		 */
15706 		intel_find_initial_plane_obj(crtc, &plane_config);
15707 	}
15708 
15709 	/*
15710 	 * Make sure hardware watermarks really match the state we read out.
15711 	 * Note that we need to do this after reconstructing the BIOS fb's
15712 	 * since the watermark calculation done here will use pstate->fb.
15713 	 */
15714 	sanitize_watermarks(dev);
15715 }
15716 
15717 static void intel_enable_pipe_a(struct drm_device *dev)
15718 {
15719 	struct intel_connector *connector;
15720 	struct drm_connector *crt = NULL;
15721 	struct intel_load_detect_pipe load_detect_temp;
15722 	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15723 
15724 	/* We can't just switch on the pipe A, we need to set things up with a
15725 	 * proper mode and output configuration. As a gross hack, enable pipe A
15726 	 * by enabling the load detect pipe once. */
15727 	for_each_intel_connector(dev, connector) {
15728 		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15729 			crt = &connector->base;
15730 			break;
15731 		}
15732 	}
15733 
15734 	if (!crt)
15735 		return;
15736 
15737 	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15738 		intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15739 }
15740 
15741 static bool
15742 intel_check_plane_mapping(struct intel_crtc *crtc)
15743 {
15744 	struct drm_device *dev = crtc->base.dev;
15745 	struct drm_i915_private *dev_priv = to_i915(dev);
15746 	u32 val;
15747 
15748 	if (INTEL_INFO(dev)->num_pipes == 1)
15749 		return true;
15750 
15751 	val = I915_READ(DSPCNTR(!crtc->plane));
15752 
15753 	if ((val & DISPLAY_PLANE_ENABLE) &&
15754 	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15755 		return false;
15756 
15757 	return true;
15758 }
15759 
15760 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15761 {
15762 	struct drm_device *dev = crtc->base.dev;
15763 	struct intel_encoder *encoder;
15764 
15765 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15766 		return true;
15767 
15768 	return false;
15769 }
15770 
15771 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15772 {
15773 	struct drm_device *dev = encoder->base.dev;
15774 	struct intel_connector *connector;
15775 
15776 	for_each_connector_on_encoder(dev, &encoder->base, connector)
15777 		return true;
15778 
15779 	return false;
15780 }
15781 
15782 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15783 {
15784 	struct drm_device *dev = crtc->base.dev;
15785 	struct drm_i915_private *dev_priv = to_i915(dev);
15786 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15787 
15788 	/* Clear any frame start delays used for debugging left by the BIOS */
15789 	if (!transcoder_is_dsi(cpu_transcoder)) {
15790 		i915_reg_t reg = PIPECONF(cpu_transcoder);
15791 
15792 		I915_WRITE(reg,
15793 			   I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15794 	}
15795 
15796 	/* restore vblank interrupts to correct state */
15797 	drm_crtc_vblank_reset(&crtc->base);
15798 	if (crtc->active) {
15799 		struct intel_plane *plane;
15800 
15801 		drm_crtc_vblank_on(&crtc->base);
15802 
15803 		/* Disable everything but the primary plane */
15804 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
15805 			if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15806 				continue;
15807 
15808 			plane->disable_plane(&plane->base, &crtc->base);
15809 		}
15810 	}
15811 
15812 	/* We need to sanitize the plane -> pipe mapping first because this will
15813 	 * disable the crtc (and hence change the state) if it is wrong. Note
15814 	 * that gen4+ has a fixed plane -> pipe mapping.  */
15815 	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15816 		bool plane;
15817 
15818 		DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15819 			      crtc->base.base.id, crtc->base.name);
15820 
15821 		/* Pipe has the wrong plane attached and the plane is active.
15822 		 * Temporarily change the plane mapping and disable everything
15823 		 * ...  */
15824 		plane = crtc->plane;
15825 		to_intel_plane_state(crtc->base.primary->state)->visible = true;
15826 		crtc->plane = !plane;
15827 		intel_crtc_disable_noatomic(&crtc->base);
15828 		crtc->plane = plane;
15829 	}
15830 
15831 	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15832 	    crtc->pipe == PIPE_A && !crtc->active) {
15833 		/* BIOS forgot to enable pipe A, this mostly happens after
15834 		 * resume. Force-enable the pipe to fix this, the update_dpms
15835 		 * call below we restore the pipe to the right state, but leave
15836 		 * the required bits on. */
15837 		intel_enable_pipe_a(dev);
15838 	}
15839 
15840 	/* Adjust the state of the output pipe according to whether we
15841 	 * have active connectors/encoders. */
15842 	if (crtc->active && !intel_crtc_has_encoders(crtc))
15843 		intel_crtc_disable_noatomic(&crtc->base);
15844 
15845 	if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15846 		/*
15847 		 * We start out with underrun reporting disabled to avoid races.
15848 		 * For correct bookkeeping mark this on active crtcs.
15849 		 *
15850 		 * Also on gmch platforms we dont have any hardware bits to
15851 		 * disable the underrun reporting. Which means we need to start
15852 		 * out with underrun reporting disabled also on inactive pipes,
15853 		 * since otherwise we'll complain about the garbage we read when
15854 		 * e.g. coming up after runtime pm.
15855 		 *
15856 		 * No protection against concurrent access is required - at
15857 		 * worst a fifo underrun happens which also sets this to false.
15858 		 */
15859 		crtc->cpu_fifo_underrun_disabled = true;
15860 		crtc->pch_fifo_underrun_disabled = true;
15861 	}
15862 }
15863 
15864 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15865 {
15866 	struct intel_connector *connector;
15867 	struct drm_device *dev = encoder->base.dev;
15868 
15869 	/* We need to check both for a crtc link (meaning that the
15870 	 * encoder is active and trying to read from a pipe) and the
15871 	 * pipe itself being active. */
15872 	bool has_active_crtc = encoder->base.crtc &&
15873 		to_intel_crtc(encoder->base.crtc)->active;
15874 
15875 	if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15876 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15877 			      encoder->base.base.id,
15878 			      encoder->base.name);
15879 
15880 		/* Connector is active, but has no active pipe. This is
15881 		 * fallout from our resume register restoring. Disable
15882 		 * the encoder manually again. */
15883 		if (encoder->base.crtc) {
15884 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15885 				      encoder->base.base.id,
15886 				      encoder->base.name);
15887 			encoder->disable(encoder);
15888 			if (encoder->post_disable)
15889 				encoder->post_disable(encoder);
15890 		}
15891 		encoder->base.crtc = NULL;
15892 
15893 		/* Inconsistent output/port/pipe state happens presumably due to
15894 		 * a bug in one of the get_hw_state functions. Or someplace else
15895 		 * in our code, like the register restore mess on resume. Clamp
15896 		 * things to off as a safer default. */
15897 		for_each_intel_connector(dev, connector) {
15898 			if (connector->encoder != encoder)
15899 				continue;
15900 			connector->base.dpms = DRM_MODE_DPMS_OFF;
15901 			connector->base.encoder = NULL;
15902 		}
15903 	}
15904 	/* Enabled encoders without active connectors will be fixed in
15905 	 * the crtc fixup. */
15906 }
15907 
15908 void i915_redisable_vga_power_on(struct drm_device *dev)
15909 {
15910 	struct drm_i915_private *dev_priv = to_i915(dev);
15911 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15912 
15913 	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15914 		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15915 		i915_disable_vga(dev);
15916 	}
15917 }
15918 
15919 void i915_redisable_vga(struct drm_device *dev)
15920 {
15921 	struct drm_i915_private *dev_priv = to_i915(dev);
15922 
15923 	/* This function can be called both from intel_modeset_setup_hw_state or
15924 	 * at a very early point in our resume sequence, where the power well
15925 	 * structures are not yet restored. Since this function is at a very
15926 	 * paranoid "someone might have enabled VGA while we were not looking"
15927 	 * level, just check if the power well is enabled instead of trying to
15928 	 * follow the "don't touch the power well if we don't need it" policy
15929 	 * the rest of the driver uses. */
15930 	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15931 		return;
15932 
15933 	i915_redisable_vga_power_on(dev);
15934 
15935 	intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15936 }
15937 
15938 static bool primary_get_hw_state(struct intel_plane *plane)
15939 {
15940 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15941 
15942 	return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15943 }
15944 
15945 /* FIXME read out full plane state for all planes */
15946 static void readout_plane_state(struct intel_crtc *crtc)
15947 {
15948 	struct drm_plane *primary = crtc->base.primary;
15949 	struct intel_plane_state *plane_state =
15950 		to_intel_plane_state(primary->state);
15951 
15952 	plane_state->visible = crtc->active &&
15953 		primary_get_hw_state(to_intel_plane(primary));
15954 
15955 	if (plane_state->visible)
15956 		crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15957 }
15958 
15959 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15960 {
15961 	struct drm_i915_private *dev_priv = to_i915(dev);
15962 	enum i915_pipe pipe;
15963 	struct intel_crtc *crtc;
15964 	struct intel_encoder *encoder;
15965 	struct intel_connector *connector;
15966 	int i;
15967 
15968 	dev_priv->active_crtcs = 0;
15969 
15970 	for_each_intel_crtc(dev, crtc) {
15971 		struct intel_crtc_state *crtc_state = crtc->config;
15972 		int pixclk = 0;
15973 
15974 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15975 		memset(crtc_state, 0, sizeof(*crtc_state));
15976 		crtc_state->base.crtc = &crtc->base;
15977 
15978 		crtc_state->base.active = crtc_state->base.enable =
15979 			dev_priv->display.get_pipe_config(crtc, crtc_state);
15980 
15981 		crtc->base.enabled = crtc_state->base.enable;
15982 		crtc->active = crtc_state->base.active;
15983 
15984 		if (crtc_state->base.active) {
15985 			dev_priv->active_crtcs |= 1 << crtc->pipe;
15986 
15987 			if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15988 				pixclk = ilk_pipe_pixel_rate(crtc_state);
15989 			else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15990 				pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15991 			else
15992 				WARN_ON(dev_priv->display.modeset_calc_cdclk);
15993 
15994 			/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15995 			if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15996 				pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15997 		}
15998 
15999 		dev_priv->min_pixclk[crtc->pipe] = pixclk;
16000 
16001 		readout_plane_state(crtc);
16002 
16003 		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16004 			      crtc->base.base.id, crtc->base.name,
16005 			      crtc->active ? "enabled" : "disabled");
16006 	}
16007 
16008 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16009 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16010 
16011 		pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16012 						  &pll->config.hw_state);
16013 		pll->config.crtc_mask = 0;
16014 		for_each_intel_crtc(dev, crtc) {
16015 			if (crtc->active && crtc->config->shared_dpll == pll)
16016 				pll->config.crtc_mask |= 1 << crtc->pipe;
16017 		}
16018 		pll->active_mask = pll->config.crtc_mask;
16019 
16020 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16021 			      pll->name, pll->config.crtc_mask, pll->on);
16022 	}
16023 
16024 	for_each_intel_encoder(dev, encoder) {
16025 		pipe = 0;
16026 
16027 		if (encoder->get_hw_state(encoder, &pipe)) {
16028 			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16029 			encoder->base.crtc = &crtc->base;
16030 			crtc->config->output_types |= 1 << encoder->type;
16031 			encoder->get_config(encoder, crtc->config);
16032 		} else {
16033 			encoder->base.crtc = NULL;
16034 		}
16035 
16036 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16037 			      encoder->base.base.id,
16038 			      encoder->base.name,
16039 			      encoder->base.crtc ? "enabled" : "disabled",
16040 			      pipe_name(pipe));
16041 	}
16042 
16043 	for_each_intel_connector(dev, connector) {
16044 		if (connector->get_hw_state(connector)) {
16045 			connector->base.dpms = DRM_MODE_DPMS_ON;
16046 
16047 			encoder = connector->encoder;
16048 			connector->base.encoder = &encoder->base;
16049 
16050 			if (encoder->base.crtc &&
16051 			    encoder->base.crtc->state->active) {
16052 				/*
16053 				 * This has to be done during hardware readout
16054 				 * because anything calling .crtc_disable may
16055 				 * rely on the connector_mask being accurate.
16056 				 */
16057 				encoder->base.crtc->state->connector_mask |=
16058 					1 << drm_connector_index(&connector->base);
16059 				encoder->base.crtc->state->encoder_mask |=
16060 					1 << drm_encoder_index(&encoder->base);
16061 			}
16062 
16063 		} else {
16064 			connector->base.dpms = DRM_MODE_DPMS_OFF;
16065 			connector->base.encoder = NULL;
16066 		}
16067 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16068 			      connector->base.base.id,
16069 			      connector->base.name,
16070 			      connector->base.encoder ? "enabled" : "disabled");
16071 	}
16072 
16073 	for_each_intel_crtc(dev, crtc) {
16074 		crtc->base.hwmode = crtc->config->base.adjusted_mode;
16075 
16076 		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16077 		if (crtc->base.state->active) {
16078 			intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16079 			intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16080 			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16081 
16082 			/*
16083 			 * The initial mode needs to be set in order to keep
16084 			 * the atomic core happy. It wants a valid mode if the
16085 			 * crtc's enabled, so we do the above call.
16086 			 *
16087 			 * At this point some state updated by the connectors
16088 			 * in their ->detect() callback has not run yet, so
16089 			 * no recalculation can be done yet.
16090 			 *
16091 			 * Even if we could do a recalculation and modeset
16092 			 * right now it would cause a double modeset if
16093 			 * fbdev or userspace chooses a different initial mode.
16094 			 *
16095 			 * If that happens, someone indicated they wanted a
16096 			 * mode change, which means it's safe to do a full
16097 			 * recalculation.
16098 			 */
16099 			crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16100 
16101 			drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16102 			update_scanline_offset(crtc);
16103 		}
16104 
16105 		intel_pipe_config_sanity_check(dev_priv, crtc->config);
16106 	}
16107 }
16108 
16109 /* Scan out the current hw modeset state,
16110  * and sanitizes it to the current state
16111  */
16112 static void
16113 intel_modeset_setup_hw_state(struct drm_device *dev)
16114 {
16115 	struct drm_i915_private *dev_priv = to_i915(dev);
16116 	enum i915_pipe pipe;
16117 	struct intel_crtc *crtc;
16118 	struct intel_encoder *encoder;
16119 	int i;
16120 
16121 	intel_modeset_readout_hw_state(dev);
16122 
16123 	/* HW state is read out, now we need to sanitize this mess. */
16124 	for_each_intel_encoder(dev, encoder) {
16125 		intel_sanitize_encoder(encoder);
16126 	}
16127 
16128 	for_each_pipe(dev_priv, pipe) {
16129 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16130 		intel_sanitize_crtc(crtc);
16131 		intel_dump_pipe_config(crtc, crtc->config,
16132 				       "[setup_hw_state]");
16133 	}
16134 
16135 	intel_modeset_update_connector_atomic_state(dev);
16136 
16137 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16138 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16139 
16140 		if (!pll->on || pll->active_mask)
16141 			continue;
16142 
16143 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16144 
16145 		pll->funcs.disable(dev_priv, pll);
16146 		pll->on = false;
16147 	}
16148 
16149 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16150 		vlv_wm_get_hw_state(dev);
16151 	else if (IS_GEN9(dev))
16152 		skl_wm_get_hw_state(dev);
16153 	else if (HAS_PCH_SPLIT(dev))
16154 		ilk_wm_get_hw_state(dev);
16155 
16156 	for_each_intel_crtc(dev, crtc) {
16157 		unsigned long put_domains;
16158 
16159 		put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16160 		if (WARN_ON(put_domains))
16161 			modeset_put_power_domains(dev_priv, put_domains);
16162 	}
16163 	intel_display_set_init_power(dev_priv, false);
16164 
16165 	intel_fbc_init_pipe_state(dev_priv);
16166 }
16167 
16168 void intel_display_resume(struct drm_device *dev)
16169 {
16170 	struct drm_i915_private *dev_priv = to_i915(dev);
16171 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16172 	struct drm_modeset_acquire_ctx ctx;
16173 	int ret;
16174 	bool setup = false;
16175 
16176 	dev_priv->modeset_restore_state = NULL;
16177 
16178 	/*
16179 	 * This is a cludge because with real atomic modeset mode_config.mutex
16180 	 * won't be taken. Unfortunately some probed state like
16181 	 * audio_codec_enable is still protected by mode_config.mutex, so lock
16182 	 * it here for now.
16183 	 */
16184 	mutex_lock(&dev->mode_config.mutex);
16185 	drm_modeset_acquire_init(&ctx, 0);
16186 
16187 retry:
16188 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
16189 
16190 	if (ret == 0 && !setup) {
16191 		setup = true;
16192 
16193 		intel_modeset_setup_hw_state(dev);
16194 		i915_redisable_vga(dev);
16195 	}
16196 
16197 	if (ret == 0 && state) {
16198 		struct drm_crtc_state *crtc_state;
16199 		struct drm_crtc *crtc;
16200 		int i;
16201 
16202 		state->acquire_ctx = &ctx;
16203 
16204 		/* ignore any reset values/BIOS leftovers in the WM registers */
16205 		to_intel_atomic_state(state)->skip_intermediate_wm = true;
16206 
16207 		for_each_crtc_in_state(state, crtc, crtc_state, i) {
16208 			/*
16209 			 * Force recalculation even if we restore
16210 			 * current state. With fast modeset this may not result
16211 			 * in a modeset when the state is compatible.
16212 			 */
16213 			crtc_state->mode_changed = true;
16214 		}
16215 
16216 		ret = drm_atomic_commit(state);
16217 	}
16218 
16219 	if (ret == -EDEADLK) {
16220 		drm_modeset_backoff(&ctx);
16221 		goto retry;
16222 	}
16223 
16224 	drm_modeset_drop_locks(&ctx);
16225 	drm_modeset_acquire_fini(&ctx);
16226 	mutex_unlock(&dev->mode_config.mutex);
16227 
16228 	if (ret) {
16229 		DRM_ERROR("Restoring old state failed with %i\n", ret);
16230 		drm_atomic_state_free(state);
16231 	}
16232 }
16233 
16234 void intel_modeset_gem_init(struct drm_device *dev)
16235 {
16236 	struct drm_i915_private *dev_priv = to_i915(dev);
16237 	struct drm_crtc *c;
16238 	struct drm_i915_gem_object *obj;
16239 	int ret;
16240 
16241 	intel_init_gt_powersave(dev_priv);
16242 
16243 	intel_modeset_init_hw(dev);
16244 
16245 	intel_setup_overlay(dev_priv);
16246 
16247 	/*
16248 	 * Make sure any fbs we allocated at startup are properly
16249 	 * pinned & fenced.  When we do the allocation it's too early
16250 	 * for this.
16251 	 */
16252 	for_each_crtc(dev, c) {
16253 		obj = intel_fb_obj(c->primary->fb);
16254 		if (obj == NULL)
16255 			continue;
16256 
16257 		mutex_lock(&dev->struct_mutex);
16258 		ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16259 						 c->primary->state->rotation);
16260 		mutex_unlock(&dev->struct_mutex);
16261 		if (ret) {
16262 			DRM_ERROR("failed to pin boot fb on pipe %d\n",
16263 				  to_intel_crtc(c)->pipe);
16264 			drm_framebuffer_unreference(c->primary->fb);
16265 			c->primary->fb = NULL;
16266 			c->primary->crtc = c->primary->state->crtc = NULL;
16267 			update_state_fb(c->primary);
16268 			c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16269 		}
16270 	}
16271 }
16272 
16273 int intel_connector_register(struct drm_connector *connector)
16274 {
16275 	struct intel_connector *intel_connector = to_intel_connector(connector);
16276 	int ret;
16277 
16278 	ret = intel_backlight_device_register(intel_connector);
16279 	if (ret)
16280 		goto err;
16281 
16282 	return 0;
16283 
16284 err:
16285 	return ret;
16286 }
16287 
16288 void intel_connector_unregister(struct drm_connector *connector)
16289 {
16290 	struct intel_connector *intel_connector = to_intel_connector(connector);
16291 
16292 	intel_backlight_device_unregister(intel_connector);
16293 	intel_panel_destroy_backlight(connector);
16294 }
16295 
16296 void intel_modeset_cleanup(struct drm_device *dev)
16297 {
16298 	struct drm_i915_private *dev_priv = to_i915(dev);
16299 
16300 	intel_disable_gt_powersave(dev_priv);
16301 
16302 	/*
16303 	 * Interrupts and polling as the first thing to avoid creating havoc.
16304 	 * Too much stuff here (turning of connectors, ...) would
16305 	 * experience fancy races otherwise.
16306 	 */
16307 	intel_irq_uninstall(dev_priv);
16308 
16309 	/*
16310 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
16311 	 * poll handlers. Hence disable polling after hpd handling is shut down.
16312 	 */
16313 	drm_kms_helper_poll_fini(dev);
16314 
16315 	intel_unregister_dsm_handler();
16316 
16317 	intel_fbc_global_disable(dev_priv);
16318 
16319 	/* flush any delayed tasks or pending work */
16320 	flush_scheduled_work();
16321 
16322 	drm_mode_config_cleanup(dev);
16323 
16324 	intel_cleanup_overlay(dev_priv);
16325 
16326 	intel_cleanup_gt_powersave(dev_priv);
16327 
16328 	intel_teardown_gmbus(dev);
16329 }
16330 
16331 void intel_connector_attach_encoder(struct intel_connector *connector,
16332 				    struct intel_encoder *encoder)
16333 {
16334 	connector->encoder = encoder;
16335 	drm_mode_connector_attach_encoder(&connector->base,
16336 					  &encoder->base);
16337 }
16338 
16339 /*
16340  * set vga decode state - true == enable VGA decode
16341  */
16342 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16343 {
16344 	struct drm_i915_private *dev_priv = to_i915(dev);
16345 	unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16346 	u16 gmch_ctrl;
16347 
16348 	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16349 		DRM_ERROR("failed to read control word\n");
16350 		return -EIO;
16351 	}
16352 
16353 	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16354 		return 0;
16355 
16356 	if (state)
16357 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16358 	else
16359 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16360 
16361 	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16362 		DRM_ERROR("failed to write control word\n");
16363 		return -EIO;
16364 	}
16365 
16366 	return 0;
16367 }
16368 
16369 struct intel_display_error_state {
16370 
16371 	u32 power_well_driver;
16372 
16373 	int num_transcoders;
16374 
16375 	struct intel_cursor_error_state {
16376 		u32 control;
16377 		u32 position;
16378 		u32 base;
16379 		u32 size;
16380 	} cursor[I915_MAX_PIPES];
16381 
16382 	struct intel_pipe_error_state {
16383 		bool power_domain_on;
16384 		u32 source;
16385 		u32 stat;
16386 	} pipe[I915_MAX_PIPES];
16387 
16388 	struct intel_plane_error_state {
16389 		u32 control;
16390 		u32 stride;
16391 		u32 size;
16392 		u32 pos;
16393 		u32 addr;
16394 		u32 surface;
16395 		u32 tile_offset;
16396 	} plane[I915_MAX_PIPES];
16397 
16398 	struct intel_transcoder_error_state {
16399 		bool power_domain_on;
16400 		enum transcoder cpu_transcoder;
16401 
16402 		u32 conf;
16403 
16404 		u32 htotal;
16405 		u32 hblank;
16406 		u32 hsync;
16407 		u32 vtotal;
16408 		u32 vblank;
16409 		u32 vsync;
16410 	} transcoder[4];
16411 };
16412 
16413 struct intel_display_error_state *
16414 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16415 {
16416 	struct intel_display_error_state *error;
16417 	int transcoders[] = {
16418 		TRANSCODER_A,
16419 		TRANSCODER_B,
16420 		TRANSCODER_C,
16421 		TRANSCODER_EDP,
16422 	};
16423 	int i;
16424 
16425 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
16426 		return NULL;
16427 
16428 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
16429 	if (error == NULL)
16430 		return NULL;
16431 
16432 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16433 		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16434 
16435 	for_each_pipe(dev_priv, i) {
16436 		error->pipe[i].power_domain_on =
16437 			__intel_display_power_is_enabled(dev_priv,
16438 							 POWER_DOMAIN_PIPE(i));
16439 		if (!error->pipe[i].power_domain_on)
16440 			continue;
16441 
16442 		error->cursor[i].control = I915_READ(CURCNTR(i));
16443 		error->cursor[i].position = I915_READ(CURPOS(i));
16444 		error->cursor[i].base = I915_READ(CURBASE(i));
16445 
16446 		error->plane[i].control = I915_READ(DSPCNTR(i));
16447 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16448 		if (INTEL_GEN(dev_priv) <= 3) {
16449 			error->plane[i].size = I915_READ(DSPSIZE(i));
16450 			error->plane[i].pos = I915_READ(DSPPOS(i));
16451 		}
16452 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16453 			error->plane[i].addr = I915_READ(DSPADDR(i));
16454 		if (INTEL_GEN(dev_priv) >= 4) {
16455 			error->plane[i].surface = I915_READ(DSPSURF(i));
16456 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16457 		}
16458 
16459 		error->pipe[i].source = I915_READ(PIPESRC(i));
16460 
16461 		if (HAS_GMCH_DISPLAY(dev_priv))
16462 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
16463 	}
16464 
16465 	/* Note: this does not include DSI transcoders. */
16466 	error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16467 	if (HAS_DDI(dev_priv))
16468 		error->num_transcoders++; /* Account for eDP. */
16469 
16470 	for (i = 0; i < error->num_transcoders; i++) {
16471 		enum transcoder cpu_transcoder = transcoders[i];
16472 
16473 		error->transcoder[i].power_domain_on =
16474 			__intel_display_power_is_enabled(dev_priv,
16475 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16476 		if (!error->transcoder[i].power_domain_on)
16477 			continue;
16478 
16479 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
16480 
16481 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16482 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16483 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16484 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16485 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16486 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16487 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16488 	}
16489 
16490 	return error;
16491 }
16492 
16493 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16494 
16495 void
16496 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16497 				struct drm_device *dev,
16498 				struct intel_display_error_state *error)
16499 {
16500 	struct drm_i915_private *dev_priv = to_i915(dev);
16501 	int i;
16502 
16503 	if (!error)
16504 		return;
16505 
16506 	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16507 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16508 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
16509 			   error->power_well_driver);
16510 	for_each_pipe(dev_priv, i) {
16511 		err_printf(m, "Pipe [%d]:\n", i);
16512 		err_printf(m, "  Power: %s\n",
16513 			   onoff(error->pipe[i].power_domain_on));
16514 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16515 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16516 
16517 		err_printf(m, "Plane [%d]:\n", i);
16518 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16519 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16520 		if (INTEL_INFO(dev)->gen <= 3) {
16521 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16522 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16523 		}
16524 		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16525 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16526 		if (INTEL_INFO(dev)->gen >= 4) {
16527 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16528 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16529 		}
16530 
16531 		err_printf(m, "Cursor [%d]:\n", i);
16532 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16533 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16534 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16535 	}
16536 
16537 	for (i = 0; i < error->num_transcoders; i++) {
16538 		err_printf(m, "CPU transcoder: %s\n",
16539 			   transcoder_name(error->transcoder[i].cpu_transcoder));
16540 		err_printf(m, "  Power: %s\n",
16541 			   onoff(error->transcoder[i].power_domain_on));
16542 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16543 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16544 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16545 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16546 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16547 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16548 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16549 	}
16550 }
16551