xref: /dragonfly/sys/dev/drm/i915/intel_lrc.c (revision 02318f07)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_drv.h"
139 #include "intel_mocs.h"
140 
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define CTX_LRI_HEADER_0		0x01
160 #define CTX_CONTEXT_CONTROL		0x02
161 #define CTX_RING_HEAD			0x04
162 #define CTX_RING_TAIL			0x06
163 #define CTX_RING_BUFFER_START		0x08
164 #define CTX_RING_BUFFER_CONTROL		0x0a
165 #define CTX_BB_HEAD_U			0x0c
166 #define CTX_BB_HEAD_L			0x0e
167 #define CTX_BB_STATE			0x10
168 #define CTX_SECOND_BB_HEAD_U		0x12
169 #define CTX_SECOND_BB_HEAD_L		0x14
170 #define CTX_SECOND_BB_STATE		0x16
171 #define CTX_BB_PER_CTX_PTR		0x18
172 #define CTX_RCS_INDIRECT_CTX		0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
174 #define CTX_LRI_HEADER_1		0x21
175 #define CTX_CTX_TIMESTAMP		0x22
176 #define CTX_PDP3_UDW			0x24
177 #define CTX_PDP3_LDW			0x26
178 #define CTX_PDP2_UDW			0x28
179 #define CTX_PDP2_LDW			0x2a
180 #define CTX_PDP1_UDW			0x2c
181 #define CTX_PDP1_LDW			0x2e
182 #define CTX_PDP0_UDW			0x30
183 #define CTX_PDP0_LDW			0x32
184 #define CTX_LRI_HEADER_2		0x41
185 #define CTX_R_PWR_CLK_STATE		0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
187 
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193 
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 	(reg_state)[(pos)+1] = (val); \
197 } while (0)
198 
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204 
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209 
210 enum {
211 	ADVANCED_CONTEXT = 0,
212 	LEGACY_32B_CONTEXT,
213 	ADVANCED_AD_CONTEXT,
214 	LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218 		LEGACY_64B_CONTEXT :\
219 		LEGACY_32B_CONTEXT)
220 enum {
221 	FAULT_AND_HANG = 0,
222 	FAULT_AND_HALT, /* Debug only */
223 	FAULT_AND_STREAM,
224 	FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
228 
229 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
230 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
231 		struct drm_i915_gem_object *default_ctx_obj);
232 
233 
234 /**
235  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
236  * @dev: DRM device.
237  * @enable_execlists: value of i915.enable_execlists module parameter.
238  *
239  * Only certain platforms support Execlists (the prerequisites being
240  * support for Logical Ring Contexts and Aliasing PPGTT or better).
241  *
242  * Return: 1 if Execlists is supported and has to be enabled.
243  */
244 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
245 {
246 	WARN_ON(i915.enable_ppgtt == -1);
247 
248 	/* On platforms with execlist available, vGPU will only
249 	 * support execlist mode, no ring buffer mode.
250 	 */
251 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
252 		return 1;
253 
254 	if (INTEL_INFO(dev)->gen >= 9)
255 		return 1;
256 
257 	if (enable_execlists == 0)
258 		return 0;
259 
260 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
261 	    i915.use_mmio_flip >= 0)
262 		return 1;
263 
264 	return 0;
265 }
266 
267 /**
268  * intel_execlists_ctx_id() - get the Execlists Context ID
269  * @ctx_obj: Logical Ring Context backing object.
270  *
271  * Do not confuse with ctx->id! Unfortunately we have a name overload
272  * here: the old context ID we pass to userspace as a handler so that
273  * they can refer to a context, and the new context ID we pass to the
274  * ELSP so that the GPU can inform us of the context status via
275  * interrupts.
276  *
277  * Return: 20-bits globally unique context ID.
278  */
279 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
280 {
281 	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
282 			LRC_PPHWSP_PN * PAGE_SIZE;
283 
284 	/* LRCA is required to be 4K aligned so the more significant 20 bits
285 	 * are globally unique */
286 	return lrca >> 12;
287 }
288 
289 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
290 {
291 	struct drm_device *dev = ring->dev;
292 
293 	return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
294 		IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
295 	       (ring->id == VCS || ring->id == VCS2);
296 }
297 
298 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
299 				     struct intel_engine_cs *ring)
300 {
301 	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
302 	uint64_t desc;
303 	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
304 			LRC_PPHWSP_PN * PAGE_SIZE;
305 
306 	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
307 
308 	desc = GEN8_CTX_VALID;
309 	desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
310 	if (IS_GEN8(ctx_obj->base.dev))
311 		desc |= GEN8_CTX_L3LLC_COHERENT;
312 	desc |= GEN8_CTX_PRIVILEGE;
313 	desc |= lrca;
314 	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
315 
316 	/* TODO: WaDisableLiteRestore when we start using semaphore
317 	 * signalling between Command Streamers */
318 	/* desc |= GEN8_CTX_FORCE_RESTORE; */
319 
320 	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
321 	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
322 	if (disable_lite_restore_wa(ring))
323 		desc |= GEN8_CTX_FORCE_RESTORE;
324 
325 	return desc;
326 }
327 
328 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
329 				 struct drm_i915_gem_request *rq1)
330 {
331 
332 	struct intel_engine_cs *ring = rq0->ring;
333 	struct drm_device *dev = ring->dev;
334 	struct drm_i915_private *dev_priv = dev->dev_private;
335 	uint64_t desc[2];
336 
337 	if (rq1) {
338 		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
339 		rq1->elsp_submitted++;
340 	} else {
341 		desc[1] = 0;
342 	}
343 
344 	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
345 	rq0->elsp_submitted++;
346 
347 	/* You must always write both descriptors in the order below. */
348 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
349 	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
350 	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
351 	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
352 
353 	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
354 	/* The context is automatically loaded after the following */
355 	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
356 
357 	/* ELSP is a wo register, use another nearby reg for posting */
358 	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
359 	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
360 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
361 }
362 
363 static int execlists_update_context(struct drm_i915_gem_request *rq)
364 {
365 	struct intel_engine_cs *ring = rq->ring;
366 	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
367 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
368 	struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
369 	struct vm_page *page;
370 	uint32_t *reg_state;
371 
372 	BUG_ON(!ctx_obj);
373 	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
374 	WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
375 
376 	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
377 	reg_state = kmap_atomic(page);
378 
379 	reg_state[CTX_RING_TAIL+1] = rq->tail;
380 	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
381 
382 	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
383 		/* True 32b PPGTT with dynamic page allocation: update PDP
384 		 * registers and point the unallocated PDPs to scratch page.
385 		 * PML4 is allocated during ppgtt init, so this is not needed
386 		 * in 48-bit mode.
387 		 */
388 		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
389 		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
390 		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
391 		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
392 	}
393 
394 	kunmap_atomic(reg_state);
395 
396 	return 0;
397 }
398 
399 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
400 				      struct drm_i915_gem_request *rq1)
401 {
402 	execlists_update_context(rq0);
403 
404 	if (rq1)
405 		execlists_update_context(rq1);
406 
407 	execlists_elsp_write(rq0, rq1);
408 }
409 
410 static void execlists_context_unqueue(struct intel_engine_cs *ring)
411 {
412 	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
413 	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
414 
415 	assert_spin_locked(&ring->execlist_lock);
416 
417 	/*
418 	 * If irqs are not active generate a warning as batches that finish
419 	 * without the irqs may get lost and a GPU Hang may occur.
420 	 */
421 	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
422 
423 	if (list_empty(&ring->execlist_queue))
424 		return;
425 
426 	/* Try to read in pairs */
427 	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
428 				 execlist_link) {
429 		if (!req0) {
430 			req0 = cursor;
431 		} else if (req0->ctx == cursor->ctx) {
432 			/* Same ctx: ignore first request, as second request
433 			 * will update tail past first request's workload */
434 			cursor->elsp_submitted = req0->elsp_submitted;
435 			list_del(&req0->execlist_link);
436 			list_add_tail(&req0->execlist_link,
437 				&ring->execlist_retired_req_list);
438 			req0 = cursor;
439 		} else {
440 			req1 = cursor;
441 			break;
442 		}
443 	}
444 
445 	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
446 		/*
447 		 * WaIdleLiteRestore: make sure we never cause a lite
448 		 * restore with HEAD==TAIL
449 		 */
450 		if (req0->elsp_submitted) {
451 			/*
452 			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
453 			 * as we resubmit the request. See gen8_emit_request()
454 			 * for where we prepare the padding after the end of the
455 			 * request.
456 			 */
457 			struct intel_ringbuffer *ringbuf;
458 
459 			ringbuf = req0->ctx->engine[ring->id].ringbuf;
460 			req0->tail += 8;
461 			req0->tail &= ringbuf->size - 1;
462 		}
463 	}
464 
465 	WARN_ON(req1 && req1->elsp_submitted);
466 
467 	execlists_submit_requests(req0, req1);
468 }
469 
470 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
471 					   u32 request_id)
472 {
473 	struct drm_i915_gem_request *head_req;
474 
475 	assert_spin_locked(&ring->execlist_lock);
476 
477 	head_req = list_first_entry_or_null(&ring->execlist_queue,
478 					    struct drm_i915_gem_request,
479 					    execlist_link);
480 
481 	if (head_req != NULL) {
482 		struct drm_i915_gem_object *ctx_obj =
483 				head_req->ctx->engine[ring->id].state;
484 		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
485 			WARN(head_req->elsp_submitted == 0,
486 			     "Never submitted head request\n");
487 
488 			if (--head_req->elsp_submitted <= 0) {
489 				list_del(&head_req->execlist_link);
490 				list_add_tail(&head_req->execlist_link,
491 					&ring->execlist_retired_req_list);
492 				return true;
493 			}
494 		}
495 	}
496 
497 	return false;
498 }
499 
500 /**
501  * intel_lrc_irq_handler() - handle Context Switch interrupts
502  * @ring: Engine Command Streamer to handle.
503  *
504  * Check the unread Context Status Buffers and manage the submission of new
505  * contexts to the ELSP accordingly.
506  */
507 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
508 {
509 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
510 	u32 status_pointer;
511 	u8 read_pointer;
512 	u8 write_pointer;
513 	u32 status = 0;
514 	u32 status_id;
515 	u32 submit_contexts = 0;
516 
517 	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
518 
519 	read_pointer = ring->next_context_status_buffer;
520 	write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
521 	if (read_pointer > write_pointer)
522 		write_pointer += GEN8_CSB_ENTRIES;
523 
524 	lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
525 
526 	while (read_pointer < write_pointer) {
527 		read_pointer++;
528 		status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
529 		status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
530 
531 		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
532 			continue;
533 
534 		if (status & GEN8_CTX_STATUS_PREEMPTED) {
535 			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
536 				if (execlists_check_remove_request(ring, status_id))
537 					WARN(1, "Lite Restored request removed from queue\n");
538 			} else
539 				WARN(1, "Preemption without Lite Restore\n");
540 		}
541 
542 		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
543 		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
544 			if (execlists_check_remove_request(ring, status_id))
545 				submit_contexts++;
546 		}
547 	}
548 
549 	if (disable_lite_restore_wa(ring)) {
550 		/* Prevent a ctx to preempt itself */
551 		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
552 		    (submit_contexts != 0))
553 			execlists_context_unqueue(ring);
554 	} else if (submit_contexts != 0) {
555 		execlists_context_unqueue(ring);
556 	}
557 
558 	lockmgr(&ring->execlist_lock, LK_RELEASE);
559 
560 	WARN(submit_contexts > 2, "More than two context complete events?\n");
561 	ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
562 
563 	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
564 		   _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
565 				 ((u32)ring->next_context_status_buffer &
566 				  GEN8_CSB_PTR_MASK) << 8));
567 }
568 
569 static int execlists_context_queue(struct drm_i915_gem_request *request)
570 {
571 	struct intel_engine_cs *ring = request->ring;
572 	struct drm_i915_gem_request *cursor;
573 	int num_elements = 0;
574 
575 	if (request->ctx != ring->default_context)
576 		intel_lr_context_pin(request);
577 
578 	i915_gem_request_reference(request);
579 
580 	spin_lock_irq(&ring->execlist_lock);
581 
582 	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
583 		if (++num_elements > 2)
584 			break;
585 
586 	if (num_elements > 2) {
587 		struct drm_i915_gem_request *tail_req;
588 
589 		tail_req = list_last_entry(&ring->execlist_queue,
590 					   struct drm_i915_gem_request,
591 					   execlist_link);
592 
593 		if (request->ctx == tail_req->ctx) {
594 			WARN(tail_req->elsp_submitted != 0,
595 				"More than 2 already-submitted reqs queued\n");
596 			list_del(&tail_req->execlist_link);
597 			list_add_tail(&tail_req->execlist_link,
598 				&ring->execlist_retired_req_list);
599 		}
600 	}
601 
602 	list_add_tail(&request->execlist_link, &ring->execlist_queue);
603 	if (num_elements == 0)
604 		execlists_context_unqueue(ring);
605 
606 	spin_unlock_irq(&ring->execlist_lock);
607 
608 	return 0;
609 }
610 
611 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
612 {
613 	struct intel_engine_cs *ring = req->ring;
614 	uint32_t flush_domains;
615 	int ret;
616 
617 	flush_domains = 0;
618 	if (ring->gpu_caches_dirty)
619 		flush_domains = I915_GEM_GPU_DOMAINS;
620 
621 	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
622 	if (ret)
623 		return ret;
624 
625 	ring->gpu_caches_dirty = false;
626 	return 0;
627 }
628 
629 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
630 				 struct list_head *vmas)
631 {
632 	const unsigned other_rings = ~intel_ring_flag(req->ring);
633 	struct i915_vma *vma;
634 	uint32_t flush_domains = 0;
635 	bool flush_chipset = false;
636 	int ret;
637 
638 	list_for_each_entry(vma, vmas, exec_list) {
639 		struct drm_i915_gem_object *obj = vma->obj;
640 
641 		if (obj->active & other_rings) {
642 			ret = i915_gem_object_sync(obj, req->ring, &req);
643 			if (ret)
644 				return ret;
645 		}
646 
647 		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
648 			flush_chipset |= i915_gem_clflush_object(obj, false);
649 
650 		flush_domains |= obj->base.write_domain;
651 	}
652 
653 	if (flush_domains & I915_GEM_DOMAIN_GTT)
654 		wmb();
655 
656 	/* Unconditionally invalidate gpu caches and ensure that we do flush
657 	 * any residual writes from the previous batch.
658 	 */
659 	return logical_ring_invalidate_all_caches(req);
660 }
661 
662 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
663 {
664 	int ret;
665 
666 	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
667 
668 	if (request->ctx != request->ring->default_context) {
669 		ret = intel_lr_context_pin(request);
670 		if (ret)
671 			return ret;
672 	}
673 
674 	return 0;
675 }
676 
677 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
678 				       int bytes)
679 {
680 	struct intel_ringbuffer *ringbuf = req->ringbuf;
681 	struct intel_engine_cs *ring = req->ring;
682 	struct drm_i915_gem_request *target;
683 	unsigned space;
684 	int ret;
685 
686 	if (intel_ring_space(ringbuf) >= bytes)
687 		return 0;
688 
689 	/* The whole point of reserving space is to not wait! */
690 	WARN_ON(ringbuf->reserved_in_use);
691 
692 	list_for_each_entry(target, &ring->request_list, list) {
693 		/*
694 		 * The request queue is per-engine, so can contain requests
695 		 * from multiple ringbuffers. Here, we must ignore any that
696 		 * aren't from the ringbuffer we're considering.
697 		 */
698 		if (target->ringbuf != ringbuf)
699 			continue;
700 
701 		/* Would completion of this request free enough space? */
702 		space = __intel_ring_space(target->postfix, ringbuf->tail,
703 					   ringbuf->size);
704 		if (space >= bytes)
705 			break;
706 	}
707 
708 	if (WARN_ON(&target->list == &ring->request_list))
709 		return -ENOSPC;
710 
711 	ret = i915_wait_request(target);
712 	if (ret)
713 		return ret;
714 
715 	ringbuf->space = space;
716 	return 0;
717 }
718 
719 /*
720  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
721  * @request: Request to advance the logical ringbuffer of.
722  *
723  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
724  * really happens during submission is that the context and current tail will be placed
725  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
726  * point, the tail *inside* the context is updated and the ELSP written to.
727  */
728 static void
729 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
730 {
731 	struct intel_engine_cs *ring = request->ring;
732 	struct drm_i915_private *dev_priv = request->i915;
733 
734 	intel_logical_ring_advance(request->ringbuf);
735 
736 	request->tail = request->ringbuf->tail;
737 
738 	if (intel_ring_stopped(ring))
739 		return;
740 
741 	if (dev_priv->guc.execbuf_client)
742 		i915_guc_submit(dev_priv->guc.execbuf_client, request);
743 	else
744 		execlists_context_queue(request);
745 }
746 
747 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
748 {
749 	uint32_t __iomem *virt;
750 	int rem = ringbuf->size - ringbuf->tail;
751 
752 	virt = (uint32_t *)(ringbuf->virtual_start + ringbuf->tail);
753 	rem /= 4;
754 	while (rem--)
755 		iowrite32(MI_NOOP, virt++);
756 
757 	ringbuf->tail = 0;
758 	intel_ring_update_space(ringbuf);
759 }
760 
761 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
762 {
763 	struct intel_ringbuffer *ringbuf = req->ringbuf;
764 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
765 	int remain_actual = ringbuf->size - ringbuf->tail;
766 	int ret, total_bytes, wait_bytes = 0;
767 	bool need_wrap = false;
768 
769 	if (ringbuf->reserved_in_use)
770 		total_bytes = bytes;
771 	else
772 		total_bytes = bytes + ringbuf->reserved_size;
773 
774 	if (unlikely(bytes > remain_usable)) {
775 		/*
776 		 * Not enough space for the basic request. So need to flush
777 		 * out the remainder and then wait for base + reserved.
778 		 */
779 		wait_bytes = remain_actual + total_bytes;
780 		need_wrap = true;
781 	} else {
782 		if (unlikely(total_bytes > remain_usable)) {
783 			/*
784 			 * The base request will fit but the reserved space
785 			 * falls off the end. So only need to to wait for the
786 			 * reserved size after flushing out the remainder.
787 			 */
788 			wait_bytes = remain_actual + ringbuf->reserved_size;
789 			need_wrap = true;
790 		} else if (total_bytes > ringbuf->space) {
791 			/* No wrapping required, just waiting. */
792 			wait_bytes = total_bytes;
793 		}
794 	}
795 
796 	if (wait_bytes) {
797 		ret = logical_ring_wait_for_space(req, wait_bytes);
798 		if (unlikely(ret))
799 			return ret;
800 
801 		if (need_wrap)
802 			__wrap_ring_buffer(ringbuf);
803 	}
804 
805 	return 0;
806 }
807 
808 /**
809  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
810  *
811  * @req: The request to start some new work for
812  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
813  *
814  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
815  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
816  * and also preallocates a request (every workload submission is still mediated through
817  * requests, same as it did with legacy ringbuffer submission).
818  *
819  * Return: non-zero if the ringbuffer is not ready to be written to.
820  */
821 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
822 {
823 	struct drm_i915_private *dev_priv;
824 	int ret;
825 
826 	WARN_ON(req == NULL);
827 	dev_priv = req->ring->dev->dev_private;
828 
829 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
830 				   dev_priv->mm.interruptible);
831 	if (ret)
832 		return ret;
833 
834 	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
835 	if (ret)
836 		return ret;
837 
838 	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
839 	return 0;
840 }
841 
842 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
843 {
844 	/*
845 	 * The first call merely notes the reserve request and is common for
846 	 * all back ends. The subsequent localised _begin() call actually
847 	 * ensures that the reservation is available. Without the begin, if
848 	 * the request creator immediately submitted the request without
849 	 * adding any commands to it then there might not actually be
850 	 * sufficient room for the submission commands.
851 	 */
852 	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
853 
854 	return intel_logical_ring_begin(request, 0);
855 }
856 
857 /**
858  * execlists_submission() - submit a batchbuffer for execution, Execlists style
859  * @dev: DRM device.
860  * @file: DRM file.
861  * @ring: Engine Command Streamer to submit to.
862  * @ctx: Context to employ for this submission.
863  * @args: execbuffer call arguments.
864  * @vmas: list of vmas.
865  * @batch_obj: the batchbuffer to submit.
866  * @exec_start: batchbuffer start virtual address pointer.
867  * @dispatch_flags: translated execbuffer call flags.
868  *
869  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
870  * away the submission details of the execbuffer ioctl call.
871  *
872  * Return: non-zero if the submission fails.
873  */
874 int intel_execlists_submission(struct i915_execbuffer_params *params,
875 			       struct drm_i915_gem_execbuffer2 *args,
876 			       struct list_head *vmas)
877 {
878 	struct drm_device       *dev = params->dev;
879 	struct intel_engine_cs  *ring = params->ring;
880 	struct drm_i915_private *dev_priv = dev->dev_private;
881 	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
882 	u64 exec_start;
883 	int instp_mode;
884 	u32 instp_mask;
885 	int ret;
886 
887 	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
888 	instp_mask = I915_EXEC_CONSTANTS_MASK;
889 	switch (instp_mode) {
890 	case I915_EXEC_CONSTANTS_REL_GENERAL:
891 	case I915_EXEC_CONSTANTS_ABSOLUTE:
892 	case I915_EXEC_CONSTANTS_REL_SURFACE:
893 		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
894 			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
895 			return -EINVAL;
896 		}
897 
898 		if (instp_mode != dev_priv->relative_constants_mode) {
899 			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
900 				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
901 				return -EINVAL;
902 			}
903 
904 			/* The HW changed the meaning on this bit on gen6 */
905 			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
906 		}
907 		break;
908 	default:
909 		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
910 		return -EINVAL;
911 	}
912 
913 	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
914 		DRM_DEBUG("sol reset is gen7 only\n");
915 		return -EINVAL;
916 	}
917 
918 	ret = execlists_move_to_gpu(params->request, vmas);
919 	if (ret)
920 		return ret;
921 
922 	if (ring == &dev_priv->ring[RCS] &&
923 	    instp_mode != dev_priv->relative_constants_mode) {
924 		ret = intel_logical_ring_begin(params->request, 4);
925 		if (ret)
926 			return ret;
927 
928 		intel_logical_ring_emit(ringbuf, MI_NOOP);
929 		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
930 		intel_logical_ring_emit_reg(ringbuf, INSTPM);
931 		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
932 		intel_logical_ring_advance(ringbuf);
933 
934 		dev_priv->relative_constants_mode = instp_mode;
935 	}
936 
937 	exec_start = params->batch_obj_vm_offset +
938 		     args->batch_start_offset;
939 
940 	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
941 	if (ret)
942 		return ret;
943 
944 	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
945 
946 	i915_gem_execbuffer_move_to_active(vmas, params->request);
947 	i915_gem_execbuffer_retire_commands(params);
948 
949 	return 0;
950 }
951 
952 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
953 {
954 	struct drm_i915_gem_request *req, *tmp;
955 	struct list_head retired_list;
956 
957 	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
958 	if (list_empty(&ring->execlist_retired_req_list))
959 		return;
960 
961 	INIT_LIST_HEAD(&retired_list);
962 	spin_lock_irq(&ring->execlist_lock);
963 	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
964 	spin_unlock_irq(&ring->execlist_lock);
965 
966 	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
967 		struct intel_context *ctx = req->ctx;
968 		struct drm_i915_gem_object *ctx_obj =
969 				ctx->engine[ring->id].state;
970 
971 		if (ctx_obj && (ctx != ring->default_context))
972 			intel_lr_context_unpin(req);
973 		list_del(&req->execlist_link);
974 		i915_gem_request_unreference(req);
975 	}
976 }
977 
978 void intel_logical_ring_stop(struct intel_engine_cs *ring)
979 {
980 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
981 	int ret;
982 
983 	if (!intel_ring_initialized(ring))
984 		return;
985 
986 	ret = intel_ring_idle(ring);
987 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
988 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
989 			  ring->name, ret);
990 
991 	/* TODO: Is this correct with Execlists enabled? */
992 	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
993 	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
994 		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
995 		return;
996 	}
997 	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
998 }
999 
1000 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1001 {
1002 	struct intel_engine_cs *ring = req->ring;
1003 	int ret;
1004 
1005 	if (!ring->gpu_caches_dirty)
1006 		return 0;
1007 
1008 	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1009 	if (ret)
1010 		return ret;
1011 
1012 	ring->gpu_caches_dirty = false;
1013 	return 0;
1014 }
1015 
1016 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1017 		struct drm_i915_gem_object *ctx_obj,
1018 		struct intel_ringbuffer *ringbuf)
1019 {
1020 	struct drm_device *dev = ring->dev;
1021 	struct drm_i915_private *dev_priv = dev->dev_private;
1022 	int ret = 0;
1023 
1024 	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1025 	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1026 			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1027 	if (ret)
1028 		return ret;
1029 
1030 	ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1031 	if (ret)
1032 		goto unpin_ctx_obj;
1033 
1034 	ctx_obj->dirty = true;
1035 
1036 	/* Invalidate GuC TLB. */
1037 	if (i915.enable_guc_submission)
1038 		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1039 
1040 	return ret;
1041 
1042 unpin_ctx_obj:
1043 	i915_gem_object_ggtt_unpin(ctx_obj);
1044 
1045 	return ret;
1046 }
1047 
1048 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1049 {
1050 	int ret = 0;
1051 	struct intel_engine_cs *ring = rq->ring;
1052 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1053 	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1054 
1055 	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1056 		ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1057 		if (ret)
1058 			goto reset_pin_count;
1059 	}
1060 	return ret;
1061 
1062 reset_pin_count:
1063 	rq->ctx->engine[ring->id].pin_count = 0;
1064 	return ret;
1065 }
1066 
1067 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1068 {
1069 	struct intel_engine_cs *ring = rq->ring;
1070 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1071 	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1072 
1073 	if (ctx_obj) {
1074 		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1075 		if (--rq->ctx->engine[ring->id].pin_count == 0) {
1076 			intel_unpin_ringbuffer_obj(ringbuf);
1077 			i915_gem_object_ggtt_unpin(ctx_obj);
1078 		}
1079 	}
1080 }
1081 
1082 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1083 {
1084 	int ret, i;
1085 	struct intel_engine_cs *ring = req->ring;
1086 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1087 	struct drm_device *dev = ring->dev;
1088 	struct drm_i915_private *dev_priv = dev->dev_private;
1089 	struct i915_workarounds *w = &dev_priv->workarounds;
1090 
1091 	if (WARN_ON_ONCE(w->count == 0))
1092 		return 0;
1093 
1094 	ring->gpu_caches_dirty = true;
1095 	ret = logical_ring_flush_all_caches(req);
1096 	if (ret)
1097 		return ret;
1098 
1099 	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1100 	if (ret)
1101 		return ret;
1102 
1103 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1104 	for (i = 0; i < w->count; i++) {
1105 		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1106 		intel_logical_ring_emit(ringbuf, w->reg[i].value);
1107 	}
1108 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1109 
1110 	intel_logical_ring_advance(ringbuf);
1111 
1112 	ring->gpu_caches_dirty = true;
1113 	ret = logical_ring_flush_all_caches(req);
1114 	if (ret)
1115 		return ret;
1116 
1117 	return 0;
1118 }
1119 
1120 #define wa_ctx_emit(batch, index, cmd)					\
1121 	do {								\
1122 		int __index = (index)++;				\
1123 		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1124 			return -ENOSPC;					\
1125 		}							\
1126 		batch[__index] = (cmd);					\
1127 	} while (0)
1128 
1129 #define wa_ctx_emit_reg(batch, index, reg) \
1130 	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1131 
1132 /*
1133  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1134  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1135  * but there is a slight complication as this is applied in WA batch where the
1136  * values are only initialized once so we cannot take register value at the
1137  * beginning and reuse it further; hence we save its value to memory, upload a
1138  * constant value with bit21 set and then we restore it back with the saved value.
1139  * To simplify the WA, a constant value is formed by using the default value
1140  * of this register. This shouldn't be a problem because we are only modifying
1141  * it for a short period and this batch in non-premptible. We can ofcourse
1142  * use additional instructions that read the actual value of the register
1143  * at that time and set our bit of interest but it makes the WA complicated.
1144  *
1145  * This WA is also required for Gen9 so extracting as a function avoids
1146  * code duplication.
1147  */
1148 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1149 						uint32_t *const batch,
1150 						uint32_t index)
1151 {
1152 	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1153 
1154 	/*
1155 	 * WaDisableLSQCROPERFforOCL:skl
1156 	 * This WA is implemented in skl_init_clock_gating() but since
1157 	 * this batch updates GEN8_L3SQCREG4 with default value we need to
1158 	 * set this bit here to retain the WA during flush.
1159 	 */
1160 	if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1161 		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1162 
1163 	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1164 				   MI_SRM_LRM_GLOBAL_GTT));
1165 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1166 	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1167 	wa_ctx_emit(batch, index, 0);
1168 
1169 	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1170 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1171 	wa_ctx_emit(batch, index, l3sqc4_flush);
1172 
1173 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1174 	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1175 				   PIPE_CONTROL_DC_FLUSH_ENABLE));
1176 	wa_ctx_emit(batch, index, 0);
1177 	wa_ctx_emit(batch, index, 0);
1178 	wa_ctx_emit(batch, index, 0);
1179 	wa_ctx_emit(batch, index, 0);
1180 
1181 	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1182 				   MI_SRM_LRM_GLOBAL_GTT));
1183 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1184 	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1185 	wa_ctx_emit(batch, index, 0);
1186 
1187 	return index;
1188 }
1189 
1190 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1191 				    uint32_t offset,
1192 				    uint32_t start_alignment)
1193 {
1194 	return wa_ctx->offset = ALIGN(offset, start_alignment);
1195 }
1196 
1197 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1198 			     uint32_t offset,
1199 			     uint32_t size_alignment)
1200 {
1201 	wa_ctx->size = offset - wa_ctx->offset;
1202 
1203 	WARN(wa_ctx->size % size_alignment,
1204 	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1205 	     wa_ctx->size, size_alignment);
1206 	return 0;
1207 }
1208 
1209 /**
1210  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1211  *
1212  * @ring: only applicable for RCS
1213  * @wa_ctx: structure representing wa_ctx
1214  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1215  *    with the offset value received as input.
1216  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1217  * @batch: page in which WA are loaded
1218  * @offset: This field specifies the start of the batch, it should be
1219  *  cache-aligned otherwise it is adjusted accordingly.
1220  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1221  *  initialized at the beginning and shared across all contexts but this field
1222  *  helps us to have multiple batches at different offsets and select them based
1223  *  on a criteria. At the moment this batch always start at the beginning of the page
1224  *  and at this point we don't have multiple wa_ctx batch buffers.
1225  *
1226  *  The number of WA applied are not known at the beginning; we use this field
1227  *  to return the no of DWORDS written.
1228  *
1229  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1230  *  so it adds NOOPs as padding to make it cacheline aligned.
1231  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1232  *  makes a complete batch buffer.
1233  *
1234  * Return: non-zero if we exceed the PAGE_SIZE limit.
1235  */
1236 
1237 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1238 				    struct i915_wa_ctx_bb *wa_ctx,
1239 				    uint32_t *const batch,
1240 				    uint32_t *offset)
1241 {
1242 	uint32_t scratch_addr;
1243 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1244 
1245 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1246 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1247 
1248 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1249 	if (IS_BROADWELL(ring->dev)) {
1250 		int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1251 		if (rc < 0)
1252 			return rc;
1253 		index = rc;
1254 	}
1255 
1256 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1257 	/* Actual scratch location is at 128 bytes offset */
1258 	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1259 
1260 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1261 	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1262 				   PIPE_CONTROL_GLOBAL_GTT_IVB |
1263 				   PIPE_CONTROL_CS_STALL |
1264 				   PIPE_CONTROL_QW_WRITE));
1265 	wa_ctx_emit(batch, index, scratch_addr);
1266 	wa_ctx_emit(batch, index, 0);
1267 	wa_ctx_emit(batch, index, 0);
1268 	wa_ctx_emit(batch, index, 0);
1269 
1270 	/* Pad to end of cacheline */
1271 	while (index % CACHELINE_DWORDS)
1272 		wa_ctx_emit(batch, index, MI_NOOP);
1273 
1274 	/*
1275 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1276 	 * execution depends on the length specified in terms of cache lines
1277 	 * in the register CTX_RCS_INDIRECT_CTX
1278 	 */
1279 
1280 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1281 }
1282 
1283 /**
1284  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1285  *
1286  * @ring: only applicable for RCS
1287  * @wa_ctx: structure representing wa_ctx
1288  *  offset: specifies start of the batch, should be cache-aligned.
1289  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1290  * @batch: page in which WA are loaded
1291  * @offset: This field specifies the start of this batch.
1292  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1293  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1294  *
1295  *   The number of DWORDS written are returned using this field.
1296  *
1297  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1298  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1299  */
1300 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1301 			       struct i915_wa_ctx_bb *wa_ctx,
1302 			       uint32_t *const batch,
1303 			       uint32_t *offset)
1304 {
1305 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1306 
1307 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1308 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1309 
1310 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1311 
1312 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1313 }
1314 
1315 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1316 				    struct i915_wa_ctx_bb *wa_ctx,
1317 				    uint32_t *const batch,
1318 				    uint32_t *offset)
1319 {
1320 	int ret;
1321 	struct drm_device *dev = ring->dev;
1322 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1323 
1324 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1325 	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1326 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1327 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1328 
1329 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1330 	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1331 	if (ret < 0)
1332 		return ret;
1333 	index = ret;
1334 
1335 	/* Pad to end of cacheline */
1336 	while (index % CACHELINE_DWORDS)
1337 		wa_ctx_emit(batch, index, MI_NOOP);
1338 
1339 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1340 }
1341 
1342 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1343 			       struct i915_wa_ctx_bb *wa_ctx,
1344 			       uint32_t *const batch,
1345 			       uint32_t *offset)
1346 {
1347 	struct drm_device *dev = ring->dev;
1348 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1349 
1350 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1351 	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1352 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1353 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1354 		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1355 		wa_ctx_emit(batch, index,
1356 			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1357 		wa_ctx_emit(batch, index, MI_NOOP);
1358 	}
1359 
1360 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1361 	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1362 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1363 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1364 
1365 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1366 
1367 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1368 }
1369 
1370 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1371 {
1372 	int ret;
1373 
1374 	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1375 	if (!ring->wa_ctx.obj) {
1376 		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1377 		return -ENOMEM;
1378 	}
1379 
1380 	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1381 	if (ret) {
1382 		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1383 				 ret);
1384 		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1385 		return ret;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1392 {
1393 	if (ring->wa_ctx.obj) {
1394 		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1395 		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1396 		ring->wa_ctx.obj = NULL;
1397 	}
1398 }
1399 
1400 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1401 {
1402 	int ret;
1403 	uint32_t *batch;
1404 	uint32_t offset;
1405 	struct vm_page *page;
1406 	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1407 
1408 	WARN_ON(ring->id != RCS);
1409 
1410 	/* update this when WA for higher Gen are added */
1411 	if (INTEL_INFO(ring->dev)->gen > 9) {
1412 		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1413 			  INTEL_INFO(ring->dev)->gen);
1414 		return 0;
1415 	}
1416 
1417 	/* some WA perform writes to scratch page, ensure it is valid */
1418 	if (ring->scratch.obj == NULL) {
1419 		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1420 		return -EINVAL;
1421 	}
1422 
1423 	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1424 	if (ret) {
1425 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1426 		return ret;
1427 	}
1428 
1429 	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1430 	batch = kmap_atomic(page);
1431 	offset = 0;
1432 
1433 	if (INTEL_INFO(ring->dev)->gen == 8) {
1434 		ret = gen8_init_indirectctx_bb(ring,
1435 					       &wa_ctx->indirect_ctx,
1436 					       batch,
1437 					       &offset);
1438 		if (ret)
1439 			goto out;
1440 
1441 		ret = gen8_init_perctx_bb(ring,
1442 					  &wa_ctx->per_ctx,
1443 					  batch,
1444 					  &offset);
1445 		if (ret)
1446 			goto out;
1447 	} else if (INTEL_INFO(ring->dev)->gen == 9) {
1448 		ret = gen9_init_indirectctx_bb(ring,
1449 					       &wa_ctx->indirect_ctx,
1450 					       batch,
1451 					       &offset);
1452 		if (ret)
1453 			goto out;
1454 
1455 		ret = gen9_init_perctx_bb(ring,
1456 					  &wa_ctx->per_ctx,
1457 					  batch,
1458 					  &offset);
1459 		if (ret)
1460 			goto out;
1461 	}
1462 
1463 out:
1464 	kunmap_atomic(batch);
1465 	if (ret)
1466 		lrc_destroy_wa_ctx_obj(ring);
1467 
1468 	return ret;
1469 }
1470 
1471 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1472 {
1473 	struct drm_device *dev = ring->dev;
1474 	struct drm_i915_private *dev_priv = dev->dev_private;
1475 	u8 next_context_status_buffer_hw;
1476 
1477 	lrc_setup_hardware_status_page(ring,
1478 				ring->default_context->engine[ring->id].state);
1479 
1480 	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1481 	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1482 
1483 	I915_WRITE(RING_MODE_GEN7(ring),
1484 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1485 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1486 	POSTING_READ(RING_MODE_GEN7(ring));
1487 
1488 	/*
1489 	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1490 	 * zero, we need to read the write pointer from hardware and use its
1491 	 * value because "this register is power context save restored".
1492 	 * Effectively, these states have been observed:
1493 	 *
1494 	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1495 	 * BDW  | CSB regs not reset       | CSB regs reset       |
1496 	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1497 	 */
1498 	next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1499 						   & GEN8_CSB_PTR_MASK);
1500 
1501 	/*
1502 	 * When the CSB registers are reset (also after power-up / gpu reset),
1503 	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1504 	 * this special case, so the first element read is CSB[0].
1505 	 */
1506 	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1507 		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1508 
1509 	ring->next_context_status_buffer = next_context_status_buffer_hw;
1510 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1511 
1512 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1513 
1514 	return 0;
1515 }
1516 
1517 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1518 {
1519 	struct drm_device *dev = ring->dev;
1520 	struct drm_i915_private *dev_priv = dev->dev_private;
1521 	int ret;
1522 
1523 	ret = gen8_init_common_ring(ring);
1524 	if (ret)
1525 		return ret;
1526 
1527 	/* We need to disable the AsyncFlip performance optimisations in order
1528 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1529 	 * programmed to '1' on all products.
1530 	 *
1531 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1532 	 */
1533 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1534 
1535 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1536 
1537 	return init_workarounds_ring(ring);
1538 }
1539 
1540 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1541 {
1542 	int ret;
1543 
1544 	ret = gen8_init_common_ring(ring);
1545 	if (ret)
1546 		return ret;
1547 
1548 	return init_workarounds_ring(ring);
1549 }
1550 
1551 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1552 {
1553 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1554 	struct intel_engine_cs *ring = req->ring;
1555 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1556 	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1557 	int i, ret;
1558 
1559 	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1560 	if (ret)
1561 		return ret;
1562 
1563 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1564 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1565 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1566 
1567 		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1568 		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1569 		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1570 		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1571 	}
1572 
1573 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1574 	intel_logical_ring_advance(ringbuf);
1575 
1576 	return 0;
1577 }
1578 
1579 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1580 			      u64 offset, unsigned dispatch_flags)
1581 {
1582 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1583 	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1584 	int ret;
1585 
1586 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1587 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1588 	 * but we can't. Force Restore would be a second option, but
1589 	 * it is unsafe in case of lite-restore (because the ctx is
1590 	 * not idle). PML4 is allocated during ppgtt init so this is
1591 	 * not needed in 48-bit.*/
1592 	if (req->ctx->ppgtt &&
1593 	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1594 		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1595 		    !intel_vgpu_active(req->i915->dev)) {
1596 			ret = intel_logical_ring_emit_pdps(req);
1597 			if (ret)
1598 				return ret;
1599 		}
1600 
1601 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1602 	}
1603 
1604 	ret = intel_logical_ring_begin(req, 4);
1605 	if (ret)
1606 		return ret;
1607 
1608 	/* FIXME(BDW): Address space and security selectors. */
1609 	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1610 				(ppgtt<<8) |
1611 				(dispatch_flags & I915_DISPATCH_RS ?
1612 				 MI_BATCH_RESOURCE_STREAMER : 0));
1613 	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1614 	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1615 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1616 	intel_logical_ring_advance(ringbuf);
1617 
1618 	return 0;
1619 }
1620 
1621 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1622 {
1623 	struct drm_device *dev = ring->dev;
1624 	struct drm_i915_private *dev_priv = dev->dev_private;
1625 	unsigned long flags;
1626 
1627 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1628 		return false;
1629 
1630 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1631 	if (ring->irq_refcount++ == 0) {
1632 		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1633 		POSTING_READ(RING_IMR(ring->mmio_base));
1634 	}
1635 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1636 
1637 	return true;
1638 }
1639 
1640 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1641 {
1642 	struct drm_device *dev = ring->dev;
1643 	struct drm_i915_private *dev_priv = dev->dev_private;
1644 	unsigned long flags;
1645 
1646 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1647 	if (--ring->irq_refcount == 0) {
1648 		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1649 		POSTING_READ(RING_IMR(ring->mmio_base));
1650 	}
1651 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1652 }
1653 
1654 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1655 			   u32 invalidate_domains,
1656 			   u32 unused)
1657 {
1658 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1659 	struct intel_engine_cs *ring = ringbuf->ring;
1660 	struct drm_device *dev = ring->dev;
1661 	struct drm_i915_private *dev_priv = dev->dev_private;
1662 	uint32_t cmd;
1663 	int ret;
1664 
1665 	ret = intel_logical_ring_begin(request, 4);
1666 	if (ret)
1667 		return ret;
1668 
1669 	cmd = MI_FLUSH_DW + 1;
1670 
1671 	/* We always require a command barrier so that subsequent
1672 	 * commands, such as breadcrumb interrupts, are strictly ordered
1673 	 * wrt the contents of the write cache being flushed to memory
1674 	 * (and thus being coherent from the CPU).
1675 	 */
1676 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1677 
1678 	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1679 		cmd |= MI_INVALIDATE_TLB;
1680 		if (ring == &dev_priv->ring[VCS])
1681 			cmd |= MI_INVALIDATE_BSD;
1682 	}
1683 
1684 	intel_logical_ring_emit(ringbuf, cmd);
1685 	intel_logical_ring_emit(ringbuf,
1686 				I915_GEM_HWS_SCRATCH_ADDR |
1687 				MI_FLUSH_DW_USE_GTT);
1688 	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1689 	intel_logical_ring_emit(ringbuf, 0); /* value */
1690 	intel_logical_ring_advance(ringbuf);
1691 
1692 	return 0;
1693 }
1694 
1695 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1696 				  u32 invalidate_domains,
1697 				  u32 flush_domains)
1698 {
1699 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1700 	struct intel_engine_cs *ring = ringbuf->ring;
1701 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1702 	bool vf_flush_wa;
1703 	u32 flags = 0;
1704 	int ret;
1705 
1706 	flags |= PIPE_CONTROL_CS_STALL;
1707 
1708 	if (flush_domains) {
1709 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1710 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1711 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1712 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1713 	}
1714 
1715 	if (invalidate_domains) {
1716 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1717 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1718 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1719 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1720 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1721 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1722 		flags |= PIPE_CONTROL_QW_WRITE;
1723 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1724 	}
1725 
1726 	/*
1727 	 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1728 	 * control.
1729 	 */
1730 	vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1731 		      flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1732 
1733 	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1734 	if (ret)
1735 		return ret;
1736 
1737 	if (vf_flush_wa) {
1738 		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1739 		intel_logical_ring_emit(ringbuf, 0);
1740 		intel_logical_ring_emit(ringbuf, 0);
1741 		intel_logical_ring_emit(ringbuf, 0);
1742 		intel_logical_ring_emit(ringbuf, 0);
1743 		intel_logical_ring_emit(ringbuf, 0);
1744 	}
1745 
1746 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1747 	intel_logical_ring_emit(ringbuf, flags);
1748 	intel_logical_ring_emit(ringbuf, scratch_addr);
1749 	intel_logical_ring_emit(ringbuf, 0);
1750 	intel_logical_ring_emit(ringbuf, 0);
1751 	intel_logical_ring_emit(ringbuf, 0);
1752 	intel_logical_ring_advance(ringbuf);
1753 
1754 	return 0;
1755 }
1756 
1757 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1758 {
1759 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1760 }
1761 
1762 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1763 {
1764 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1765 }
1766 
1767 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1768 {
1769 
1770 	/*
1771 	 * On BXT A steppings there is a HW coherency issue whereby the
1772 	 * MI_STORE_DATA_IMM storing the completed request's seqno
1773 	 * occasionally doesn't invalidate the CPU cache. Work around this by
1774 	 * clflushing the corresponding cacheline whenever the caller wants
1775 	 * the coherency to be guaranteed. Note that this cacheline is known
1776 	 * to be clean at this point, since we only write it in
1777 	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1778 	 * this clflush in practice becomes an invalidate operation.
1779 	 */
1780 
1781 	if (!lazy_coherency)
1782 		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1783 
1784 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1785 }
1786 
1787 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1788 {
1789 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1790 
1791 	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1792 	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1793 }
1794 
1795 static int gen8_emit_request(struct drm_i915_gem_request *request)
1796 {
1797 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1798 	struct intel_engine_cs *ring = ringbuf->ring;
1799 	u32 cmd;
1800 	int ret;
1801 
1802 	/*
1803 	 * Reserve space for 2 NOOPs at the end of each request to be
1804 	 * used as a workaround for not being allowed to do lite
1805 	 * restore with HEAD==TAIL (WaIdleLiteRestore).
1806 	 */
1807 	ret = intel_logical_ring_begin(request, 8);
1808 	if (ret)
1809 		return ret;
1810 
1811 	cmd = MI_STORE_DWORD_IMM_GEN4;
1812 	cmd |= MI_GLOBAL_GTT;
1813 
1814 	intel_logical_ring_emit(ringbuf, cmd);
1815 	intel_logical_ring_emit(ringbuf,
1816 				(ring->status_page.gfx_addr +
1817 				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1818 	intel_logical_ring_emit(ringbuf, 0);
1819 	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1820 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1821 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1822 	intel_logical_ring_advance_and_submit(request);
1823 
1824 	/*
1825 	 * Here we add two extra NOOPs as padding to avoid
1826 	 * lite restore of a context with HEAD==TAIL.
1827 	 */
1828 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1829 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1830 	intel_logical_ring_advance(ringbuf);
1831 
1832 	return 0;
1833 }
1834 
1835 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1836 {
1837 	struct render_state so;
1838 	int ret;
1839 
1840 	ret = i915_gem_render_state_prepare(req->ring, &so);
1841 	if (ret)
1842 		return ret;
1843 
1844 	if (so.rodata == NULL)
1845 		return 0;
1846 
1847 	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1848 				       I915_DISPATCH_SECURE);
1849 	if (ret)
1850 		goto out;
1851 
1852 	ret = req->ring->emit_bb_start(req,
1853 				       (so.ggtt_offset + so.aux_batch_offset),
1854 				       I915_DISPATCH_SECURE);
1855 	if (ret)
1856 		goto out;
1857 
1858 	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1859 
1860 out:
1861 	i915_gem_render_state_fini(&so);
1862 	return ret;
1863 }
1864 
1865 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1866 {
1867 	int ret;
1868 
1869 	ret = intel_logical_ring_workarounds_emit(req);
1870 	if (ret)
1871 		return ret;
1872 
1873 	ret = intel_rcs_context_init_mocs(req);
1874 	/*
1875 	 * Failing to program the MOCS is non-fatal.The system will not
1876 	 * run at peak performance. So generate an error and carry on.
1877 	 */
1878 	if (ret)
1879 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1880 
1881 	return intel_lr_context_render_state_init(req);
1882 }
1883 
1884 /**
1885  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1886  *
1887  * @ring: Engine Command Streamer.
1888  *
1889  */
1890 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1891 {
1892 	struct drm_i915_private *dev_priv;
1893 
1894 	if (!intel_ring_initialized(ring))
1895 		return;
1896 
1897 	dev_priv = ring->dev->dev_private;
1898 
1899 	if (ring->buffer) {
1900 		intel_logical_ring_stop(ring);
1901 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1902 	}
1903 
1904 	if (ring->cleanup)
1905 		ring->cleanup(ring);
1906 
1907 	i915_cmd_parser_fini_ring(ring);
1908 	i915_gem_batch_pool_fini(&ring->batch_pool);
1909 
1910 	if (ring->status_page.obj) {
1911 		kunmap(sg_page(ring->status_page.obj->pages->sgl));
1912 		ring->status_page.obj = NULL;
1913 	}
1914 
1915 	lrc_destroy_wa_ctx_obj(ring);
1916 	ring->dev = NULL;
1917 }
1918 
1919 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1920 {
1921 	int ret;
1922 
1923 	/* Intentionally left blank. */
1924 	ring->buffer = NULL;
1925 
1926 	ring->dev = dev;
1927 	INIT_LIST_HEAD(&ring->active_list);
1928 	INIT_LIST_HEAD(&ring->request_list);
1929 	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1930 	init_waitqueue_head(&ring->irq_queue);
1931 
1932 	INIT_LIST_HEAD(&ring->buffers);
1933 	INIT_LIST_HEAD(&ring->execlist_queue);
1934 	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1935 	lockinit(&ring->execlist_lock, "i915el", 0, LK_CANRECURSE);
1936 
1937 	ret = i915_cmd_parser_init_ring(ring);
1938 	if (ret)
1939 		goto error;
1940 
1941 	ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1942 	if (ret)
1943 		goto error;
1944 
1945 	/* As this is the default context, always pin it */
1946 	ret = intel_lr_context_do_pin(
1947 			ring,
1948 			ring->default_context->engine[ring->id].state,
1949 			ring->default_context->engine[ring->id].ringbuf);
1950 	if (ret) {
1951 		DRM_ERROR(
1952 			"Failed to pin and map ringbuffer %s: %d\n",
1953 			ring->name, ret);
1954 		goto error;
1955 	}
1956 
1957 	return 0;
1958 
1959 error:
1960 	intel_logical_ring_cleanup(ring);
1961 	return ret;
1962 }
1963 
1964 static int logical_render_ring_init(struct drm_device *dev)
1965 {
1966 	struct drm_i915_private *dev_priv = dev->dev_private;
1967 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1968 	int ret;
1969 
1970 	ring->name = "render ring";
1971 	ring->id = RCS;
1972 	ring->mmio_base = RENDER_RING_BASE;
1973 	ring->irq_enable_mask =
1974 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1975 	ring->irq_keep_mask =
1976 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1977 	if (HAS_L3_DPF(dev))
1978 		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1979 
1980 	if (INTEL_INFO(dev)->gen >= 9)
1981 		ring->init_hw = gen9_init_render_ring;
1982 	else
1983 		ring->init_hw = gen8_init_render_ring;
1984 	ring->init_context = gen8_init_rcs_context;
1985 	ring->cleanup = intel_fini_pipe_control;
1986 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1987 		ring->get_seqno = bxt_a_get_seqno;
1988 		ring->set_seqno = bxt_a_set_seqno;
1989 	} else {
1990 		ring->get_seqno = gen8_get_seqno;
1991 		ring->set_seqno = gen8_set_seqno;
1992 	}
1993 	ring->emit_request = gen8_emit_request;
1994 	ring->emit_flush = gen8_emit_flush_render;
1995 	ring->irq_get = gen8_logical_ring_get_irq;
1996 	ring->irq_put = gen8_logical_ring_put_irq;
1997 	ring->emit_bb_start = gen8_emit_bb_start;
1998 
1999 	ring->dev = dev;
2000 
2001 	ret = intel_init_pipe_control(ring);
2002 	if (ret)
2003 		return ret;
2004 
2005 	ret = intel_init_workaround_bb(ring);
2006 	if (ret) {
2007 		/*
2008 		 * We continue even if we fail to initialize WA batch
2009 		 * because we only expect rare glitches but nothing
2010 		 * critical to prevent us from using GPU
2011 		 */
2012 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2013 			  ret);
2014 	}
2015 
2016 	ret = logical_ring_init(dev, ring);
2017 	if (ret) {
2018 		lrc_destroy_wa_ctx_obj(ring);
2019 	}
2020 
2021 	return ret;
2022 }
2023 
2024 static int logical_bsd_ring_init(struct drm_device *dev)
2025 {
2026 	struct drm_i915_private *dev_priv = dev->dev_private;
2027 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2028 
2029 	ring->name = "bsd ring";
2030 	ring->id = VCS;
2031 	ring->mmio_base = GEN6_BSD_RING_BASE;
2032 	ring->irq_enable_mask =
2033 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2034 	ring->irq_keep_mask =
2035 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2036 
2037 	ring->init_hw = gen8_init_common_ring;
2038 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2039 		ring->get_seqno = bxt_a_get_seqno;
2040 		ring->set_seqno = bxt_a_set_seqno;
2041 	} else {
2042 		ring->get_seqno = gen8_get_seqno;
2043 		ring->set_seqno = gen8_set_seqno;
2044 	}
2045 	ring->emit_request = gen8_emit_request;
2046 	ring->emit_flush = gen8_emit_flush;
2047 	ring->irq_get = gen8_logical_ring_get_irq;
2048 	ring->irq_put = gen8_logical_ring_put_irq;
2049 	ring->emit_bb_start = gen8_emit_bb_start;
2050 
2051 	return logical_ring_init(dev, ring);
2052 }
2053 
2054 static int logical_bsd2_ring_init(struct drm_device *dev)
2055 {
2056 	struct drm_i915_private *dev_priv = dev->dev_private;
2057 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2058 
2059 	ring->name = "bds2 ring";
2060 	ring->id = VCS2;
2061 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2062 	ring->irq_enable_mask =
2063 		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2064 	ring->irq_keep_mask =
2065 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2066 
2067 	ring->init_hw = gen8_init_common_ring;
2068 	ring->get_seqno = gen8_get_seqno;
2069 	ring->set_seqno = gen8_set_seqno;
2070 	ring->emit_request = gen8_emit_request;
2071 	ring->emit_flush = gen8_emit_flush;
2072 	ring->irq_get = gen8_logical_ring_get_irq;
2073 	ring->irq_put = gen8_logical_ring_put_irq;
2074 	ring->emit_bb_start = gen8_emit_bb_start;
2075 
2076 	return logical_ring_init(dev, ring);
2077 }
2078 
2079 static int logical_blt_ring_init(struct drm_device *dev)
2080 {
2081 	struct drm_i915_private *dev_priv = dev->dev_private;
2082 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2083 
2084 	ring->name = "blitter ring";
2085 	ring->id = BCS;
2086 	ring->mmio_base = BLT_RING_BASE;
2087 	ring->irq_enable_mask =
2088 		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2089 	ring->irq_keep_mask =
2090 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2091 
2092 	ring->init_hw = gen8_init_common_ring;
2093 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2094 		ring->get_seqno = bxt_a_get_seqno;
2095 		ring->set_seqno = bxt_a_set_seqno;
2096 	} else {
2097 		ring->get_seqno = gen8_get_seqno;
2098 		ring->set_seqno = gen8_set_seqno;
2099 	}
2100 	ring->emit_request = gen8_emit_request;
2101 	ring->emit_flush = gen8_emit_flush;
2102 	ring->irq_get = gen8_logical_ring_get_irq;
2103 	ring->irq_put = gen8_logical_ring_put_irq;
2104 	ring->emit_bb_start = gen8_emit_bb_start;
2105 
2106 	return logical_ring_init(dev, ring);
2107 }
2108 
2109 static int logical_vebox_ring_init(struct drm_device *dev)
2110 {
2111 	struct drm_i915_private *dev_priv = dev->dev_private;
2112 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2113 
2114 	ring->name = "video enhancement ring";
2115 	ring->id = VECS;
2116 	ring->mmio_base = VEBOX_RING_BASE;
2117 	ring->irq_enable_mask =
2118 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2119 	ring->irq_keep_mask =
2120 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2121 
2122 	ring->init_hw = gen8_init_common_ring;
2123 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2124 		ring->get_seqno = bxt_a_get_seqno;
2125 		ring->set_seqno = bxt_a_set_seqno;
2126 	} else {
2127 		ring->get_seqno = gen8_get_seqno;
2128 		ring->set_seqno = gen8_set_seqno;
2129 	}
2130 	ring->emit_request = gen8_emit_request;
2131 	ring->emit_flush = gen8_emit_flush;
2132 	ring->irq_get = gen8_logical_ring_get_irq;
2133 	ring->irq_put = gen8_logical_ring_put_irq;
2134 	ring->emit_bb_start = gen8_emit_bb_start;
2135 
2136 	return logical_ring_init(dev, ring);
2137 }
2138 
2139 /**
2140  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2141  * @dev: DRM device.
2142  *
2143  * This function inits the engines for an Execlists submission style (the equivalent in the
2144  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2145  * those engines that are present in the hardware.
2146  *
2147  * Return: non-zero if the initialization failed.
2148  */
2149 int intel_logical_rings_init(struct drm_device *dev)
2150 {
2151 	struct drm_i915_private *dev_priv = dev->dev_private;
2152 	int ret;
2153 
2154 	ret = logical_render_ring_init(dev);
2155 	if (ret)
2156 		return ret;
2157 
2158 	if (HAS_BSD(dev)) {
2159 		ret = logical_bsd_ring_init(dev);
2160 		if (ret)
2161 			goto cleanup_render_ring;
2162 	}
2163 
2164 	if (HAS_BLT(dev)) {
2165 		ret = logical_blt_ring_init(dev);
2166 		if (ret)
2167 			goto cleanup_bsd_ring;
2168 	}
2169 
2170 	if (HAS_VEBOX(dev)) {
2171 		ret = logical_vebox_ring_init(dev);
2172 		if (ret)
2173 			goto cleanup_blt_ring;
2174 	}
2175 
2176 	if (HAS_BSD2(dev)) {
2177 		ret = logical_bsd2_ring_init(dev);
2178 		if (ret)
2179 			goto cleanup_vebox_ring;
2180 	}
2181 
2182 	return 0;
2183 
2184 cleanup_vebox_ring:
2185 	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2186 cleanup_blt_ring:
2187 	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2188 cleanup_bsd_ring:
2189 	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2190 cleanup_render_ring:
2191 	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2192 
2193 	return ret;
2194 }
2195 
2196 static u32
2197 make_rpcs(struct drm_device *dev)
2198 {
2199 	u32 rpcs = 0;
2200 
2201 	/*
2202 	 * No explicit RPCS request is needed to ensure full
2203 	 * slice/subslice/EU enablement prior to Gen9.
2204 	*/
2205 	if (INTEL_INFO(dev)->gen < 9)
2206 		return 0;
2207 
2208 	/*
2209 	 * Starting in Gen9, render power gating can leave
2210 	 * slice/subslice/EU in a partially enabled state. We
2211 	 * must make an explicit request through RPCS for full
2212 	 * enablement.
2213 	*/
2214 	if (INTEL_INFO(dev)->has_slice_pg) {
2215 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2216 		rpcs |= INTEL_INFO(dev)->slice_total <<
2217 			GEN8_RPCS_S_CNT_SHIFT;
2218 		rpcs |= GEN8_RPCS_ENABLE;
2219 	}
2220 
2221 	if (INTEL_INFO(dev)->has_subslice_pg) {
2222 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2223 		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2224 			GEN8_RPCS_SS_CNT_SHIFT;
2225 		rpcs |= GEN8_RPCS_ENABLE;
2226 	}
2227 
2228 	if (INTEL_INFO(dev)->has_eu_pg) {
2229 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2230 			GEN8_RPCS_EU_MIN_SHIFT;
2231 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2232 			GEN8_RPCS_EU_MAX_SHIFT;
2233 		rpcs |= GEN8_RPCS_ENABLE;
2234 	}
2235 
2236 	return rpcs;
2237 }
2238 
2239 static int
2240 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2241 		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2242 {
2243 	struct drm_device *dev = ring->dev;
2244 	struct drm_i915_private *dev_priv = dev->dev_private;
2245 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2246 	struct vm_page *page;
2247 	uint32_t *reg_state;
2248 	int ret;
2249 
2250 	if (!ppgtt)
2251 		ppgtt = dev_priv->mm.aliasing_ppgtt;
2252 
2253 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2254 	if (ret) {
2255 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2256 		return ret;
2257 	}
2258 
2259 	ret = i915_gem_object_get_pages(ctx_obj);
2260 	if (ret) {
2261 		DRM_DEBUG_DRIVER("Could not get object pages\n");
2262 		return ret;
2263 	}
2264 
2265 	i915_gem_object_pin_pages(ctx_obj);
2266 
2267 	/* The second page of the context object contains some fields which must
2268 	 * be set up prior to the first execution. */
2269 	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2270 	reg_state = kmap_atomic(page);
2271 
2272 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2273 	 * commands followed by (reg, value) pairs. The values we are setting here are
2274 	 * only for the first context restore: on a subsequent save, the GPU will
2275 	 * recreate this batchbuffer with new values (including all the missing
2276 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2277 	reg_state[CTX_LRI_HEADER_0] =
2278 		MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2279 	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2280 		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2281 					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2282 					  CTX_CTRL_RS_CTX_ENABLE));
2283 	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2284 	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2285 	/* Ring buffer start address is not known until the buffer is pinned.
2286 	 * It is written to the context image in execlists_update_context()
2287 	 */
2288 	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2289 	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2290 		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2291 	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2292 	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2293 	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2294 		       RING_BB_PPGTT);
2295 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2296 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2297 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2298 	if (ring->id == RCS) {
2299 		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2300 		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2301 		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2302 		if (ring->wa_ctx.obj) {
2303 			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2304 			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2305 
2306 			reg_state[CTX_RCS_INDIRECT_CTX+1] =
2307 				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2308 				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2309 
2310 			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2311 				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2312 
2313 			reg_state[CTX_BB_PER_CTX_PTR+1] =
2314 				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2315 				0x01;
2316 		}
2317 	}
2318 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2319 	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2320 	/* PDP values well be assigned later if needed */
2321 	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2322 	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2323 	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2324 	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2325 	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2326 	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2327 	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2328 	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2329 
2330 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2331 		/* 64b PPGTT (48bit canonical)
2332 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2333 		 * other PDP Descriptors are ignored.
2334 		 */
2335 		ASSIGN_CTX_PML4(ppgtt, reg_state);
2336 	} else {
2337 		/* 32b PPGTT
2338 		 * PDP*_DESCRIPTOR contains the base address of space supported.
2339 		 * With dynamic page allocation, PDPs may not be allocated at
2340 		 * this point. Point the unallocated PDPs to the scratch page
2341 		 */
2342 		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2343 		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2344 		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2345 		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2346 	}
2347 
2348 	if (ring->id == RCS) {
2349 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2350 		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2351 			       make_rpcs(dev));
2352 	}
2353 
2354 	kunmap_atomic(reg_state);
2355 	i915_gem_object_unpin_pages(ctx_obj);
2356 
2357 	return 0;
2358 }
2359 
2360 /**
2361  * intel_lr_context_free() - free the LRC specific bits of a context
2362  * @ctx: the LR context to free.
2363  *
2364  * The real context freeing is done in i915_gem_context_free: this only
2365  * takes care of the bits that are LRC related: the per-engine backing
2366  * objects and the logical ringbuffer.
2367  */
2368 void intel_lr_context_free(struct intel_context *ctx)
2369 {
2370 	int i;
2371 
2372 	for (i = 0; i < I915_NUM_RINGS; i++) {
2373 		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2374 
2375 		if (ctx_obj) {
2376 			struct intel_ringbuffer *ringbuf =
2377 					ctx->engine[i].ringbuf;
2378 			struct intel_engine_cs *ring = ringbuf->ring;
2379 
2380 			if (ctx == ring->default_context) {
2381 				intel_unpin_ringbuffer_obj(ringbuf);
2382 				i915_gem_object_ggtt_unpin(ctx_obj);
2383 			}
2384 			WARN_ON(ctx->engine[ring->id].pin_count);
2385 			intel_ringbuffer_free(ringbuf);
2386 			drm_gem_object_unreference(&ctx_obj->base);
2387 		}
2388 	}
2389 }
2390 
2391 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2392 {
2393 	int ret = 0;
2394 
2395 	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2396 
2397 	switch (ring->id) {
2398 	case RCS:
2399 		if (INTEL_INFO(ring->dev)->gen >= 9)
2400 			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2401 		else
2402 			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2403 		break;
2404 	case VCS:
2405 	case BCS:
2406 	case VECS:
2407 	case VCS2:
2408 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2409 		break;
2410 	}
2411 
2412 	return ret;
2413 }
2414 
2415 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2416 		struct drm_i915_gem_object *default_ctx_obj)
2417 {
2418 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2419 	struct vm_page *page;
2420 
2421 	/* The HWSP is part of the default context object in LRC mode. */
2422 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2423 			+ LRC_PPHWSP_PN * PAGE_SIZE;
2424 	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2425 	ring->status_page.page_addr = kmap(page);
2426 	ring->status_page.obj = default_ctx_obj;
2427 
2428 	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2429 			(u32)ring->status_page.gfx_addr);
2430 	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2431 }
2432 
2433 /**
2434  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2435  * @ctx: LR context to create.
2436  * @ring: engine to be used with the context.
2437  *
2438  * This function can be called more than once, with different engines, if we plan
2439  * to use the context with them. The context backing objects and the ringbuffers
2440  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2441  * the creation is a deferred call: it's better to make sure first that we need to use
2442  * a given ring with the context.
2443  *
2444  * Return: non-zero on error.
2445  */
2446 
2447 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2448 				     struct intel_engine_cs *ring)
2449 {
2450 	struct drm_device *dev = ring->dev;
2451 	struct drm_i915_gem_object *ctx_obj;
2452 	uint32_t context_size;
2453 	struct intel_ringbuffer *ringbuf;
2454 	int ret;
2455 
2456 	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2457 	WARN_ON(ctx->engine[ring->id].state);
2458 
2459 	context_size = round_up(get_lr_context_size(ring), 4096);
2460 
2461 	/* One extra page as the sharing data between driver and GuC */
2462 	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2463 
2464 	ctx_obj = i915_gem_alloc_object(dev, context_size);
2465 	if (!ctx_obj) {
2466 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2467 		return -ENOMEM;
2468 	}
2469 
2470 	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2471 	if (IS_ERR(ringbuf)) {
2472 		ret = PTR_ERR(ringbuf);
2473 		goto error_deref_obj;
2474 	}
2475 
2476 	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2477 	if (ret) {
2478 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2479 		goto error_ringbuf;
2480 	}
2481 
2482 	ctx->engine[ring->id].ringbuf = ringbuf;
2483 	ctx->engine[ring->id].state = ctx_obj;
2484 
2485 	if (ctx != ring->default_context && ring->init_context) {
2486 		struct drm_i915_gem_request *req;
2487 
2488 		ret = i915_gem_request_alloc(ring,
2489 			ctx, &req);
2490 		if (ret) {
2491 			DRM_ERROR("ring create req: %d\n",
2492 				ret);
2493 			goto error_ringbuf;
2494 		}
2495 
2496 		ret = ring->init_context(req);
2497 		if (ret) {
2498 			DRM_ERROR("ring init context: %d\n",
2499 				ret);
2500 			i915_gem_request_cancel(req);
2501 			goto error_ringbuf;
2502 		}
2503 		i915_add_request_no_flush(req);
2504 	}
2505 	return 0;
2506 
2507 error_ringbuf:
2508 	intel_ringbuffer_free(ringbuf);
2509 error_deref_obj:
2510 	drm_gem_object_unreference(&ctx_obj->base);
2511 	ctx->engine[ring->id].ringbuf = NULL;
2512 	ctx->engine[ring->id].state = NULL;
2513 	return ret;
2514 }
2515 
2516 void intel_lr_context_reset(struct drm_device *dev,
2517 			struct intel_context *ctx)
2518 {
2519 	struct drm_i915_private *dev_priv = dev->dev_private;
2520 	struct intel_engine_cs *ring;
2521 	int i;
2522 
2523 	for_each_ring(ring, dev_priv, i) {
2524 		struct drm_i915_gem_object *ctx_obj =
2525 				ctx->engine[ring->id].state;
2526 		struct intel_ringbuffer *ringbuf =
2527 				ctx->engine[ring->id].ringbuf;
2528 		uint32_t *reg_state;
2529 		struct vm_page *page;
2530 
2531 		if (!ctx_obj)
2532 			continue;
2533 
2534 		if (i915_gem_object_get_pages(ctx_obj)) {
2535 			WARN(1, "Failed get_pages for context obj\n");
2536 			continue;
2537 		}
2538 		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2539 		reg_state = kmap_atomic(page);
2540 
2541 		reg_state[CTX_RING_HEAD+1] = 0;
2542 		reg_state[CTX_RING_TAIL+1] = 0;
2543 
2544 		kunmap_atomic(reg_state);
2545 
2546 		ringbuf->head = 0;
2547 		ringbuf->tail = 0;
2548 	}
2549 }
2550