xref: /dragonfly/sys/dev/drm/i915/intel_lrc.c (revision 08e4ff68)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140 
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 	  GEN8_CTX_STATUS_PREEMPTED | \
162 	  GEN8_CTX_STATUS_ELEMENT_SWITCH)
163 
164 #define CTX_LRI_HEADER_0		0x01
165 #define CTX_CONTEXT_CONTROL		0x02
166 #define CTX_RING_HEAD			0x04
167 #define CTX_RING_TAIL			0x06
168 #define CTX_RING_BUFFER_START		0x08
169 #define CTX_RING_BUFFER_CONTROL		0x0a
170 #define CTX_BB_HEAD_U			0x0c
171 #define CTX_BB_HEAD_L			0x0e
172 #define CTX_BB_STATE			0x10
173 #define CTX_SECOND_BB_HEAD_U		0x12
174 #define CTX_SECOND_BB_HEAD_L		0x14
175 #define CTX_SECOND_BB_STATE		0x16
176 #define CTX_BB_PER_CTX_PTR		0x18
177 #define CTX_RCS_INDIRECT_CTX		0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
179 #define CTX_LRI_HEADER_1		0x21
180 #define CTX_CTX_TIMESTAMP		0x22
181 #define CTX_PDP3_UDW			0x24
182 #define CTX_PDP3_LDW			0x26
183 #define CTX_PDP2_UDW			0x28
184 #define CTX_PDP2_LDW			0x2a
185 #define CTX_PDP1_UDW			0x2c
186 #define CTX_PDP1_LDW			0x2e
187 #define CTX_PDP0_UDW			0x30
188 #define CTX_PDP0_LDW			0x32
189 #define CTX_LRI_HEADER_2		0x41
190 #define CTX_R_PWR_CLK_STATE		0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
192 
193 #define CTX_REG(reg_state, pos, reg, val) do { \
194 	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 	(reg_state)[(pos)+1] = (val); \
196 } while (0)
197 
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203 
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208 
209 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
210 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211 
212 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
213 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
214 
215 #define WA_TAIL_DWORDS 2
216 
217 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218 					    struct intel_engine_cs *engine);
219 static void execlists_init_reg_state(u32 *reg_state,
220 				     struct i915_gem_context *ctx,
221 				     struct intel_engine_cs *engine,
222 				     struct intel_ring *ring);
223 
224 /**
225  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226  * @dev_priv: i915 device private
227  * @enable_execlists: value of i915.enable_execlists module parameter.
228  *
229  * Only certain platforms support Execlists (the prerequisites being
230  * support for Logical Ring Contexts and Aliasing PPGTT or better).
231  *
232  * Return: 1 if Execlists is supported and has to be enabled.
233  */
234 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235 {
236 	/* On platforms with execlist available, vGPU will only
237 	 * support execlist mode, no ring buffer mode.
238 	 */
239 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 		return 1;
241 
242 	if (INTEL_GEN(dev_priv) >= 9)
243 		return 1;
244 
245 	if (enable_execlists == 0)
246 		return 0;
247 
248 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249 	    USES_PPGTT(dev_priv) &&
250 	    i915.use_mmio_flip >= 0)
251 		return 1;
252 
253 	return 0;
254 }
255 
256 /**
257  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258  * 					  descriptor for a pinned context
259  * @ctx: Context to work on
260  * @engine: Engine the descriptor will be used with
261  *
262  * The context descriptor encodes various attributes of a context,
263  * including its GTT address and some flags. Because it's fairly
264  * expensive to calculate, we'll just do it once and cache the result,
265  * which remains valid until the context is unpinned.
266  *
267  * This is what a descriptor looks like, from LSB to MSB::
268  *
269  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
271  *      bits 32-52:    ctx ID, a globally unique tag
272  *      bits 53-54:    mbz, reserved for use by hardware
273  *      bits 55-63:    group ID, currently unused and set to 0
274  */
275 static void
276 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277 				   struct intel_engine_cs *engine)
278 {
279 	struct intel_context *ce = &ctx->engine[engine->id];
280 	u64 desc;
281 
282 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283 
284 	desc = ctx->desc_template;				/* bits  0-11 */
285 	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286 								/* bits 12-31 */
287 	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288 
289 	ce->lrc_desc = desc;
290 }
291 
292 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293 				     struct intel_engine_cs *engine)
294 {
295 	return ctx->engine[engine->id].lrc_desc;
296 }
297 
298 static inline void
299 execlists_context_status_change(struct drm_i915_gem_request *rq,
300 				unsigned long status)
301 {
302 	/*
303 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
304 	 * The compiler should eliminate this function as dead-code.
305 	 */
306 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
307 		return;
308 
309 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
310 				   status, rq);
311 }
312 
313 static void
314 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
315 {
316 	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
317 	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
318 	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
319 	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
320 }
321 
322 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
323 {
324 	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
325 	struct i915_hw_ppgtt *ppgtt =
326 		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
327 	u32 *reg_state = ce->lrc_reg_state;
328 
329 	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
330 
331 	/* True 32b PPGTT with dynamic page allocation: update PDP
332 	 * registers and point the unallocated PDPs to scratch page.
333 	 * PML4 is allocated during ppgtt init, so this is not needed
334 	 * in 48-bit mode.
335 	 */
336 	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
337 		execlists_update_context_pdps(ppgtt, reg_state);
338 
339 	return ce->lrc_desc;
340 }
341 
342 static void execlists_submit_ports(struct intel_engine_cs *engine)
343 {
344 	struct drm_i915_private *dev_priv = engine->i915;
345 	struct execlist_port *port = engine->execlist_port;
346 	u32 __iomem *elsp =
347 		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
348 	u64 desc[2];
349 
350 	GEM_BUG_ON(port[0].count > 1);
351 	if (!port[0].count)
352 		execlists_context_status_change(port[0].request,
353 						INTEL_CONTEXT_SCHEDULE_IN);
354 	desc[0] = execlists_update_context(port[0].request);
355 	GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
356 	port[0].count++;
357 
358 	if (port[1].request) {
359 		GEM_BUG_ON(port[1].count);
360 		execlists_context_status_change(port[1].request,
361 						INTEL_CONTEXT_SCHEDULE_IN);
362 		desc[1] = execlists_update_context(port[1].request);
363 		GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
364 		port[1].count = 1;
365 	} else {
366 		desc[1] = 0;
367 	}
368 	GEM_BUG_ON(desc[0] == desc[1]);
369 
370 	/* You must always write both descriptors in the order below. */
371 	writel(upper_32_bits(desc[1]), elsp);
372 	writel(lower_32_bits(desc[1]), elsp);
373 
374 	writel(upper_32_bits(desc[0]), elsp);
375 	/* The context is automatically loaded after the following */
376 	writel(lower_32_bits(desc[0]), elsp);
377 }
378 
379 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
380 {
381 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
382 		i915_gem_context_force_single_submission(ctx));
383 }
384 
385 static bool can_merge_ctx(const struct i915_gem_context *prev,
386 			  const struct i915_gem_context *next)
387 {
388 	if (prev != next)
389 		return false;
390 
391 	if (ctx_single_port_submission(prev))
392 		return false;
393 
394 	return true;
395 }
396 
397 static void execlists_dequeue(struct intel_engine_cs *engine)
398 {
399 	struct drm_i915_gem_request *last;
400 	struct execlist_port *port = engine->execlist_port;
401 	struct rb_node *rb;
402 	bool submit = false;
403 
404 	last = port->request;
405 	if (last)
406 		/* WaIdleLiteRestore:bdw,skl
407 		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
408 		 * as we resubmit the request. See gen8_emit_breadcrumb()
409 		 * for where we prepare the padding after the end of the
410 		 * request.
411 		 */
412 		last->tail = last->wa_tail;
413 
414 	GEM_BUG_ON(port[1].request);
415 
416 	/* Hardware submission is through 2 ports. Conceptually each port
417 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
418 	 * static for a context, and unique to each, so we only execute
419 	 * requests belonging to a single context from each ring. RING_HEAD
420 	 * is maintained by the CS in the context image, it marks the place
421 	 * where it got up to last time, and through RING_TAIL we tell the CS
422 	 * where we want to execute up to this time.
423 	 *
424 	 * In this list the requests are in order of execution. Consecutive
425 	 * requests from the same context are adjacent in the ringbuffer. We
426 	 * can combine these requests into a single RING_TAIL update:
427 	 *
428 	 *              RING_HEAD...req1...req2
429 	 *                                    ^- RING_TAIL
430 	 * since to execute req2 the CS must first execute req1.
431 	 *
432 	 * Our goal then is to point each port to the end of a consecutive
433 	 * sequence of requests as being the most optimal (fewest wake ups
434 	 * and context switches) submission.
435 	 */
436 
437 	spin_lock_irq(&engine->timeline->lock);
438 	rb = engine->execlist_first;
439 	while (rb) {
440 		struct drm_i915_gem_request *cursor =
441 			rb_entry(rb, typeof(*cursor), priotree.node);
442 
443 		/* Can we combine this request with the current port? It has to
444 		 * be the same context/ringbuffer and not have any exceptions
445 		 * (e.g. GVT saying never to combine contexts).
446 		 *
447 		 * If we can combine the requests, we can execute both by
448 		 * updating the RING_TAIL to point to the end of the second
449 		 * request, and so we never need to tell the hardware about
450 		 * the first.
451 		 */
452 		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
453 			/* If we are on the second port and cannot combine
454 			 * this request with the last, then we are done.
455 			 */
456 			if (port != engine->execlist_port)
457 				break;
458 
459 			/* If GVT overrides us we only ever submit port[0],
460 			 * leaving port[1] empty. Note that we also have
461 			 * to be careful that we don't queue the same
462 			 * context (even though a different request) to
463 			 * the second port.
464 			 */
465 			if (ctx_single_port_submission(last->ctx) ||
466 			    ctx_single_port_submission(cursor->ctx))
467 				break;
468 
469 			GEM_BUG_ON(last->ctx == cursor->ctx);
470 
471 			i915_gem_request_assign(&port->request, last);
472 			port++;
473 		}
474 
475 		rb = rb_next(rb);
476 		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
477 		RB_CLEAR_NODE(&cursor->priotree.node);
478 		cursor->priotree.priority = INT_MAX;
479 
480 		__i915_gem_request_submit(cursor);
481 		trace_i915_gem_request_in(cursor, port - engine->execlist_port);
482 		last = cursor;
483 		submit = true;
484 	}
485 	if (submit) {
486 		i915_gem_request_assign(&port->request, last);
487 		engine->execlist_first = rb;
488 	}
489 	spin_unlock_irq(&engine->timeline->lock);
490 
491 	if (submit)
492 		execlists_submit_ports(engine);
493 }
494 
495 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
496 {
497 	return !engine->execlist_port[0].request;
498 }
499 
500 static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
501 {
502 	const struct execlist_port *port = engine->execlist_port;
503 
504 	return port[0].count + port[1].count < 2;
505 }
506 
507 /*
508  * Check the unread Context Status Buffers and manage the submission of new
509  * contexts to the ELSP accordingly.
510  */
511 static void intel_lrc_irq_handler(unsigned long data)
512 {
513 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
514 	struct execlist_port *port = engine->execlist_port;
515 	struct drm_i915_private *dev_priv = engine->i915;
516 
517 	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
518 
519 	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
520 	 * imposing the cost of a locked atomic transaction when submitting a
521 	 * new request (outside of the context-switch interrupt).
522 	 */
523 	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
524 		u32 __iomem *csb_mmio =
525 			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
526 		u32 __iomem *buf =
527 			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
528 		unsigned int head, tail;
529 
530 		/* The write will be ordered by the uncached read (itself
531 		 * a memory barrier), so we do not need another in the form
532 		 * of a locked instruction. The race between the interrupt
533 		 * handler and the split test/clear is harmless as we order
534 		 * our clear before the CSB read. If the interrupt arrived
535 		 * first between the test and the clear, we read the updated
536 		 * CSB and clear the bit. If the interrupt arrives as we read
537 		 * the CSB or later (i.e. after we had cleared the bit) the bit
538 		 * is set and we do a new loop.
539 		 */
540 		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
541 		head = readl(csb_mmio);
542 		tail = GEN8_CSB_WRITE_PTR(head);
543 		head = GEN8_CSB_READ_PTR(head);
544 		while (head != tail) {
545 			unsigned int status;
546 
547 			if (++head == GEN8_CSB_ENTRIES)
548 				head = 0;
549 
550 			/* We are flying near dragons again.
551 			 *
552 			 * We hold a reference to the request in execlist_port[]
553 			 * but no more than that. We are operating in softirq
554 			 * context and so cannot hold any mutex or sleep. That
555 			 * prevents us stopping the requests we are processing
556 			 * in port[] from being retired simultaneously (the
557 			 * breadcrumb will be complete before we see the
558 			 * context-switch). As we only hold the reference to the
559 			 * request, any pointer chasing underneath the request
560 			 * is subject to a potential use-after-free. Thus we
561 			 * store all of the bookkeeping within port[] as
562 			 * required, and avoid using unguarded pointers beneath
563 			 * request itself. The same applies to the atomic
564 			 * status notifier.
565 			 */
566 
567 			status = readl(buf + 2 * head);
568 			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
569 				continue;
570 
571 			/* Check the context/desc id for this event matches */
572 			GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
573 					 port[0].context_id);
574 
575 			GEM_BUG_ON(port[0].count == 0);
576 			if (--port[0].count == 0) {
577 				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
578 				GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
579 				execlists_context_status_change(port[0].request,
580 								INTEL_CONTEXT_SCHEDULE_OUT);
581 
582 				trace_i915_gem_request_out(port[0].request);
583 				i915_gem_request_put(port[0].request);
584 				port[0] = port[1];
585 				memset(&port[1], 0, sizeof(port[1]));
586 			}
587 
588 			GEM_BUG_ON(port[0].count == 0 &&
589 				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
590 		}
591 
592 		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
593 		       csb_mmio);
594 	}
595 
596 	if (execlists_elsp_ready(engine))
597 		execlists_dequeue(engine);
598 
599 	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
600 }
601 
602 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
603 {
604 	struct rb_node **p, *rb;
605 	bool first = true;
606 
607 	/* most positive priority is scheduled first, equal priorities fifo */
608 	rb = NULL;
609 	p = &root->rb_node;
610 	while (*p) {
611 		struct i915_priotree *pos;
612 
613 		rb = *p;
614 		pos = rb_entry(rb, typeof(*pos), node);
615 		if (pt->priority > pos->priority) {
616 			p = &rb->rb_left;
617 		} else {
618 			p = &rb->rb_right;
619 			first = false;
620 		}
621 	}
622 	rb_link_node(&pt->node, rb, p);
623 	rb_insert_color(&pt->node, root);
624 
625 	return first;
626 }
627 
628 static void execlists_submit_request(struct drm_i915_gem_request *request)
629 {
630 	struct intel_engine_cs *engine = request->engine;
631 	unsigned long flags;
632 
633 	/* Will be called from irq-context when using foreign fences. */
634 	spin_lock_irqsave(&engine->timeline->lock, flags);
635 
636 	if (insert_request(&request->priotree, &engine->execlist_queue)) {
637 		engine->execlist_first = &request->priotree.node;
638 		if (execlists_elsp_ready(engine))
639 			tasklet_hi_schedule(&engine->irq_tasklet);
640 	}
641 
642 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
643 }
644 
645 static struct intel_engine_cs *
646 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
647 {
648 	struct intel_engine_cs *engine =
649 		container_of(pt, struct drm_i915_gem_request, priotree)->engine;
650 
651 	GEM_BUG_ON(!locked);
652 
653 	if (engine != locked) {
654 		lockmgr(&locked->timeline->lock, LK_RELEASE);
655 		lockmgr(&engine->timeline->lock, LK_EXCLUSIVE);
656 	}
657 
658 	return engine;
659 }
660 
661 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
662 {
663 	struct intel_engine_cs *engine;
664 	struct i915_dependency *dep, *p;
665 	struct i915_dependency stack;
666 	LINUX_LIST_HEAD(dfs);
667 
668 	if (prio <= READ_ONCE(request->priotree.priority))
669 		return;
670 
671 	/* Need BKL in order to use the temporary link inside i915_dependency */
672 	lockdep_assert_held(&request->i915->drm.struct_mutex);
673 
674 	stack.signaler = &request->priotree;
675 	list_add(&stack.dfs_link, &dfs);
676 
677 	/* Recursively bump all dependent priorities to match the new request.
678 	 *
679 	 * A naive approach would be to use recursion:
680 	 * static void update_priorities(struct i915_priotree *pt, prio) {
681 	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
682 	 *		update_priorities(dep->signal, prio)
683 	 *	insert_request(pt);
684 	 * }
685 	 * but that may have unlimited recursion depth and so runs a very
686 	 * real risk of overunning the kernel stack. Instead, we build
687 	 * a flat list of all dependencies starting with the current request.
688 	 * As we walk the list of dependencies, we add all of its dependencies
689 	 * to the end of the list (this may include an already visited
690 	 * request) and continue to walk onwards onto the new dependencies. The
691 	 * end result is a topological list of requests in reverse order, the
692 	 * last element in the list is the request we must execute first.
693 	 */
694 	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
695 		struct i915_priotree *pt = dep->signaler;
696 
697 		/* Within an engine, there can be no cycle, but we may
698 		 * refer to the same dependency chain multiple times
699 		 * (redundant dependencies are not eliminated) and across
700 		 * engines.
701 		 */
702 		list_for_each_entry(p, &pt->signalers_list, signal_link) {
703 			GEM_BUG_ON(p->signaler->priority < pt->priority);
704 			if (prio > READ_ONCE(p->signaler->priority))
705 				list_move_tail(&p->dfs_link, &dfs);
706 		}
707 
708 		list_safe_reset_next(dep, p, dfs_link);
709 	}
710 
711 	engine = request->engine;
712 	spin_lock_irq(&engine->timeline->lock);
713 
714 	/* Fifo and depth-first replacement ensure our deps execute before us */
715 	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
716 		struct i915_priotree *pt = dep->signaler;
717 
718 		INIT_LIST_HEAD(&dep->dfs_link);
719 
720 		engine = pt_lock_engine(pt, engine);
721 
722 		if (prio <= pt->priority)
723 			continue;
724 
725 		pt->priority = prio;
726 		if (!RB_EMPTY_NODE(&pt->node)) {
727 			rb_erase(&pt->node, &engine->execlist_queue);
728 			if (insert_request(pt, &engine->execlist_queue))
729 				engine->execlist_first = &pt->node;
730 		}
731 	}
732 
733 	spin_unlock_irq(&engine->timeline->lock);
734 
735 	/* XXX Do we need to preempt to make room for us and our deps? */
736 }
737 
738 static int execlists_context_pin(struct intel_engine_cs *engine,
739 				 struct i915_gem_context *ctx)
740 {
741 	struct intel_context *ce = &ctx->engine[engine->id];
742 	unsigned int flags;
743 	void *vaddr;
744 	int ret;
745 
746 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
747 
748 	if (ce->pin_count++)
749 		return 0;
750 	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
751 
752 	if (!ce->state) {
753 		ret = execlists_context_deferred_alloc(ctx, engine);
754 		if (ret)
755 			goto err;
756 	}
757 	GEM_BUG_ON(!ce->state);
758 
759 	flags = PIN_GLOBAL | PIN_HIGH;
760 	if (ctx->ggtt_offset_bias)
761 		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
762 
763 	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
764 	if (ret)
765 		goto err;
766 
767 	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
768 	if (IS_ERR(vaddr)) {
769 		ret = PTR_ERR(vaddr);
770 		goto unpin_vma;
771 	}
772 
773 	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
774 	if (ret)
775 		goto unpin_map;
776 
777 	intel_lr_context_descriptor_update(ctx, engine);
778 
779 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
780 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
781 		i915_ggtt_offset(ce->ring->vma);
782 
783 	ce->state->obj->mm.dirty = true;
784 
785 	i915_gem_context_get(ctx);
786 	return 0;
787 
788 unpin_map:
789 	i915_gem_object_unpin_map(ce->state->obj);
790 unpin_vma:
791 	__i915_vma_unpin(ce->state);
792 err:
793 	ce->pin_count = 0;
794 	return ret;
795 }
796 
797 static void execlists_context_unpin(struct intel_engine_cs *engine,
798 				    struct i915_gem_context *ctx)
799 {
800 	struct intel_context *ce = &ctx->engine[engine->id];
801 
802 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
803 	GEM_BUG_ON(ce->pin_count == 0);
804 
805 	if (--ce->pin_count)
806 		return;
807 
808 	intel_ring_unpin(ce->ring);
809 
810 	i915_gem_object_unpin_map(ce->state->obj);
811 	i915_vma_unpin(ce->state);
812 
813 	i915_gem_context_put(ctx);
814 }
815 
816 static int execlists_request_alloc(struct drm_i915_gem_request *request)
817 {
818 	struct intel_engine_cs *engine = request->engine;
819 	struct intel_context *ce = &request->ctx->engine[engine->id];
820 	u32 *cs;
821 	int ret;
822 
823 	GEM_BUG_ON(!ce->pin_count);
824 
825 	/* Flush enough space to reduce the likelihood of waiting after
826 	 * we start building the request - in which case we will just
827 	 * have to repeat work.
828 	 */
829 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
830 
831 	GEM_BUG_ON(!ce->ring);
832 	request->ring = ce->ring;
833 
834 	if (i915.enable_guc_submission) {
835 		/*
836 		 * Check that the GuC has space for the request before
837 		 * going any further, as the i915_add_request() call
838 		 * later on mustn't fail ...
839 		 */
840 		ret = i915_guc_wq_reserve(request);
841 		if (ret)
842 			goto err;
843 	}
844 
845 	cs = intel_ring_begin(request, 0);
846 	if (IS_ERR(cs)) {
847 		ret = PTR_ERR(cs);
848 		goto err_unreserve;
849 	}
850 
851 	if (!ce->initialised) {
852 		ret = engine->init_context(request);
853 		if (ret)
854 			goto err_unreserve;
855 
856 		ce->initialised = true;
857 	}
858 
859 	/* Note that after this point, we have committed to using
860 	 * this request as it is being used to both track the
861 	 * state of engine initialisation and liveness of the
862 	 * golden renderstate above. Think twice before you try
863 	 * to cancel/unwind this request now.
864 	 */
865 
866 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
867 	return 0;
868 
869 err_unreserve:
870 	if (i915.enable_guc_submission)
871 		i915_guc_wq_unreserve(request);
872 err:
873 	return ret;
874 }
875 
876 /*
877  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
878  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
879  * but there is a slight complication as this is applied in WA batch where the
880  * values are only initialized once so we cannot take register value at the
881  * beginning and reuse it further; hence we save its value to memory, upload a
882  * constant value with bit21 set and then we restore it back with the saved value.
883  * To simplify the WA, a constant value is formed by using the default value
884  * of this register. This shouldn't be a problem because we are only modifying
885  * it for a short period and this batch in non-premptible. We can ofcourse
886  * use additional instructions that read the actual value of the register
887  * at that time and set our bit of interest but it makes the WA complicated.
888  *
889  * This WA is also required for Gen9 so extracting as a function avoids
890  * code duplication.
891  */
892 static u32 *
893 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
894 {
895 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
896 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
897 	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
898 	*batch++ = 0;
899 
900 	*batch++ = MI_LOAD_REGISTER_IMM(1);
901 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
902 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
903 
904 	batch = gen8_emit_pipe_control(batch,
905 				       PIPE_CONTROL_CS_STALL |
906 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
907 				       0);
908 
909 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
910 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
911 	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
912 	*batch++ = 0;
913 
914 	return batch;
915 }
916 
917 /*
918  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
919  * initialized at the beginning and shared across all contexts but this field
920  * helps us to have multiple batches at different offsets and select them based
921  * on a criteria. At the moment this batch always start at the beginning of the page
922  * and at this point we don't have multiple wa_ctx batch buffers.
923  *
924  * The number of WA applied are not known at the beginning; we use this field
925  * to return the no of DWORDS written.
926  *
927  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
928  * so it adds NOOPs as padding to make it cacheline aligned.
929  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
930  * makes a complete batch buffer.
931  */
932 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
933 {
934 	/* WaDisableCtxRestoreArbitration:bdw,chv */
935 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
936 
937 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
938 	if (IS_BROADWELL(engine->i915))
939 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
940 
941 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
942 	/* Actual scratch location is at 128 bytes offset */
943 	batch = gen8_emit_pipe_control(batch,
944 				       PIPE_CONTROL_FLUSH_L3 |
945 				       PIPE_CONTROL_GLOBAL_GTT_IVB |
946 				       PIPE_CONTROL_CS_STALL |
947 				       PIPE_CONTROL_QW_WRITE,
948 				       i915_ggtt_offset(engine->scratch) +
949 				       2 * CACHELINE_BYTES);
950 
951 	/* Pad to end of cacheline */
952 	while ((unsigned long)batch % CACHELINE_BYTES)
953 		*batch++ = MI_NOOP;
954 
955 	/*
956 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
957 	 * execution depends on the length specified in terms of cache lines
958 	 * in the register CTX_RCS_INDIRECT_CTX
959 	 */
960 
961 	return batch;
962 }
963 
964 /*
965  *  This batch is started immediately after indirect_ctx batch. Since we ensure
966  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
967  *
968  *  The number of DWORDS written are returned using this field.
969  *
970  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
971  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
972  */
973 static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
974 {
975 	/* WaDisableCtxRestoreArbitration:bdw,chv */
976 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
977 	*batch++ = MI_BATCH_BUFFER_END;
978 
979 	return batch;
980 }
981 
982 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
983 {
984 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
985 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
986 
987 	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
988 	*batch++ = MI_LOAD_REGISTER_IMM(1);
989 	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
990 	*batch++ = _MASKED_BIT_DISABLE(
991 			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
992 	*batch++ = MI_NOOP;
993 
994 	/* WaClearSlmSpaceAtContextSwitch:kbl */
995 	/* Actual scratch location is at 128 bytes offset */
996 	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
997 		batch = gen8_emit_pipe_control(batch,
998 					       PIPE_CONTROL_FLUSH_L3 |
999 					       PIPE_CONTROL_GLOBAL_GTT_IVB |
1000 					       PIPE_CONTROL_CS_STALL |
1001 					       PIPE_CONTROL_QW_WRITE,
1002 					       i915_ggtt_offset(engine->scratch)
1003 					       + 2 * CACHELINE_BYTES);
1004 	}
1005 
1006 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1007 	if (HAS_POOLED_EU(engine->i915)) {
1008 		/*
1009 		 * EU pool configuration is setup along with golden context
1010 		 * during context initialization. This value depends on
1011 		 * device type (2x6 or 3x6) and needs to be updated based
1012 		 * on which subslice is disabled especially for 2x6
1013 		 * devices, however it is safe to load default
1014 		 * configuration of 3x6 device instead of masking off
1015 		 * corresponding bits because HW ignores bits of a disabled
1016 		 * subslice and drops down to appropriate config. Please
1017 		 * see render_state_setup() in i915_gem_render_state.c for
1018 		 * possible configurations, to avoid duplication they are
1019 		 * not shown here again.
1020 		 */
1021 		*batch++ = GEN9_MEDIA_POOL_STATE;
1022 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1023 		*batch++ = 0x00777000;
1024 		*batch++ = 0;
1025 		*batch++ = 0;
1026 		*batch++ = 0;
1027 	}
1028 
1029 	/* Pad to end of cacheline */
1030 	while ((unsigned long)batch % CACHELINE_BYTES)
1031 		*batch++ = MI_NOOP;
1032 
1033 	return batch;
1034 }
1035 
1036 static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1037 {
1038 	*batch++ = MI_BATCH_BUFFER_END;
1039 
1040 	return batch;
1041 }
1042 
1043 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1044 
1045 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1046 {
1047 	struct drm_i915_gem_object *obj;
1048 	struct i915_vma *vma;
1049 	int err;
1050 
1051 	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1052 	if (IS_ERR(obj))
1053 		return PTR_ERR(obj);
1054 
1055 	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1056 	if (IS_ERR(vma)) {
1057 		err = PTR_ERR(vma);
1058 		goto err;
1059 	}
1060 
1061 	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1062 	if (err)
1063 		goto err;
1064 
1065 	engine->wa_ctx.vma = vma;
1066 	return 0;
1067 
1068 err:
1069 	i915_gem_object_put(obj);
1070 	return err;
1071 }
1072 
1073 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1074 {
1075 	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1076 }
1077 
1078 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1079 
1080 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1081 {
1082 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1083 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1084 					    &wa_ctx->per_ctx };
1085 	wa_bb_func_t wa_bb_fn[2];
1086 	struct page *page;
1087 	void *batch, *batch_ptr;
1088 	unsigned int i;
1089 	int ret;
1090 
1091 	if (WARN_ON(engine->id != RCS || !engine->scratch))
1092 		return -EINVAL;
1093 
1094 	switch (INTEL_GEN(engine->i915)) {
1095 	case 9:
1096 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1097 		wa_bb_fn[1] = gen9_init_perctx_bb;
1098 		break;
1099 	case 8:
1100 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1101 		wa_bb_fn[1] = gen8_init_perctx_bb;
1102 		break;
1103 	default:
1104 		MISSING_CASE(INTEL_GEN(engine->i915));
1105 		return 0;
1106 	}
1107 
1108 	ret = lrc_setup_wa_ctx(engine);
1109 	if (ret) {
1110 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1111 		return ret;
1112 	}
1113 
1114 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1115 	batch = batch_ptr = kmap_atomic(page);
1116 
1117 	/*
1118 	 * Emit the two workaround batch buffers, recording the offset from the
1119 	 * start of the workaround batch buffer object for each and their
1120 	 * respective sizes.
1121 	 */
1122 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1123 		wa_bb[i]->offset = batch_ptr - batch;
1124 		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1125 			ret = -EINVAL;
1126 			break;
1127 		}
1128 		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1129 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1130 	}
1131 
1132 	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1133 
1134 	kunmap_atomic(batch);
1135 	if (ret)
1136 		lrc_destroy_wa_ctx(engine);
1137 
1138 	return ret;
1139 }
1140 
1141 static u32 port_seqno(struct execlist_port *port)
1142 {
1143 	return port->request ? port->request->global_seqno : 0;
1144 }
1145 
1146 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1147 {
1148 	struct drm_i915_private *dev_priv = engine->i915;
1149 	int ret;
1150 
1151 	ret = intel_mocs_init_engine(engine);
1152 	if (ret)
1153 		return ret;
1154 
1155 	intel_engine_reset_breadcrumbs(engine);
1156 	intel_engine_init_hangcheck(engine);
1157 
1158 	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1159 	I915_WRITE(RING_MODE_GEN7(engine),
1160 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1161 	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1162 		   engine->status_page.ggtt_offset);
1163 	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1164 
1165 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1166 
1167 	/* After a GPU reset, we may have requests to replay */
1168 	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1169 	if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
1170 		DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1171 				 engine->name,
1172 				 port_seqno(&engine->execlist_port[0]),
1173 				 port_seqno(&engine->execlist_port[1]));
1174 		engine->execlist_port[0].count = 0;
1175 		engine->execlist_port[1].count = 0;
1176 		execlists_submit_ports(engine);
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1183 {
1184 	struct drm_i915_private *dev_priv = engine->i915;
1185 	int ret;
1186 
1187 	ret = gen8_init_common_ring(engine);
1188 	if (ret)
1189 		return ret;
1190 
1191 	/* We need to disable the AsyncFlip performance optimisations in order
1192 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1193 	 * programmed to '1' on all products.
1194 	 *
1195 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1196 	 */
1197 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1198 
1199 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1200 
1201 	return init_workarounds_ring(engine);
1202 }
1203 
1204 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1205 {
1206 	int ret;
1207 
1208 	ret = gen8_init_common_ring(engine);
1209 	if (ret)
1210 		return ret;
1211 
1212 	return init_workarounds_ring(engine);
1213 }
1214 
1215 static void reset_common_ring(struct intel_engine_cs *engine,
1216 			      struct drm_i915_gem_request *request)
1217 {
1218 	struct execlist_port *port = engine->execlist_port;
1219 	struct intel_context *ce;
1220 
1221 	/* If the request was innocent, we leave the request in the ELSP
1222 	 * and will try to replay it on restarting. The context image may
1223 	 * have been corrupted by the reset, in which case we may have
1224 	 * to service a new GPU hang, but more likely we can continue on
1225 	 * without impact.
1226 	 *
1227 	 * If the request was guilty, we presume the context is corrupt
1228 	 * and have to at least restore the RING register in the context
1229 	 * image back to the expected values to skip over the guilty request.
1230 	 */
1231 	if (!request || request->fence.error != -EIO)
1232 		return;
1233 
1234 	/* We want a simple context + ring to execute the breadcrumb update.
1235 	 * We cannot rely on the context being intact across the GPU hang,
1236 	 * so clear it and rebuild just what we need for the breadcrumb.
1237 	 * All pending requests for this context will be zapped, and any
1238 	 * future request will be after userspace has had the opportunity
1239 	 * to recreate its own state.
1240 	 */
1241 	ce = &request->ctx->engine[engine->id];
1242 	execlists_init_reg_state(ce->lrc_reg_state,
1243 				 request->ctx, engine, ce->ring);
1244 
1245 	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1246 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1247 		i915_ggtt_offset(ce->ring->vma);
1248 	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1249 
1250 	request->ring->head = request->postfix;
1251 	intel_ring_update_space(request->ring);
1252 
1253 	/* Catch up with any missed context-switch interrupts */
1254 	if (request->ctx != port[0].request->ctx) {
1255 		i915_gem_request_put(port[0].request);
1256 		port[0] = port[1];
1257 		memset(&port[1], 0, sizeof(port[1]));
1258 	}
1259 
1260 	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1261 
1262 	/* Reset WaIdleLiteRestore:bdw,skl as well */
1263 	request->tail =
1264 		intel_ring_wrap(request->ring,
1265 				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1266 	assert_ring_tail_valid(request->ring, request->tail);
1267 }
1268 
1269 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1270 {
1271 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1272 	struct intel_engine_cs *engine = req->engine;
1273 	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1274 	u32 *cs;
1275 	int i;
1276 
1277 	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1278 	if (IS_ERR(cs))
1279 		return PTR_ERR(cs);
1280 
1281 	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1282 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1283 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1284 
1285 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1286 		*cs++ = upper_32_bits(pd_daddr);
1287 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1288 		*cs++ = lower_32_bits(pd_daddr);
1289 	}
1290 
1291 	*cs++ = MI_NOOP;
1292 	intel_ring_advance(req, cs);
1293 
1294 	return 0;
1295 }
1296 
1297 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1298 			      u64 offset, u32 len,
1299 			      const unsigned int flags)
1300 {
1301 	u32 *cs;
1302 	int ret;
1303 
1304 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1305 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1306 	 * but we can't. Force Restore would be a second option, but
1307 	 * it is unsafe in case of lite-restore (because the ctx is
1308 	 * not idle). PML4 is allocated during ppgtt init so this is
1309 	 * not needed in 48-bit.*/
1310 	if (req->ctx->ppgtt &&
1311 	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1312 	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1313 	    !intel_vgpu_active(req->i915)) {
1314 		ret = intel_logical_ring_emit_pdps(req);
1315 		if (ret)
1316 			return ret;
1317 
1318 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1319 	}
1320 
1321 	cs = intel_ring_begin(req, 4);
1322 	if (IS_ERR(cs))
1323 		return PTR_ERR(cs);
1324 
1325 	/* FIXME(BDW): Address space and security selectors. */
1326 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
1327 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1328 		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1329 	*cs++ = lower_32_bits(offset);
1330 	*cs++ = upper_32_bits(offset);
1331 	*cs++ = MI_NOOP;
1332 	intel_ring_advance(req, cs);
1333 
1334 	return 0;
1335 }
1336 
1337 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1338 {
1339 	struct drm_i915_private *dev_priv = engine->i915;
1340 	I915_WRITE_IMR(engine,
1341 		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1342 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1343 }
1344 
1345 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1346 {
1347 	struct drm_i915_private *dev_priv = engine->i915;
1348 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1349 }
1350 
1351 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1352 {
1353 	u32 cmd, *cs;
1354 
1355 	cs = intel_ring_begin(request, 4);
1356 	if (IS_ERR(cs))
1357 		return PTR_ERR(cs);
1358 
1359 	cmd = MI_FLUSH_DW + 1;
1360 
1361 	/* We always require a command barrier so that subsequent
1362 	 * commands, such as breadcrumb interrupts, are strictly ordered
1363 	 * wrt the contents of the write cache being flushed to memory
1364 	 * (and thus being coherent from the CPU).
1365 	 */
1366 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1367 
1368 	if (mode & EMIT_INVALIDATE) {
1369 		cmd |= MI_INVALIDATE_TLB;
1370 		if (request->engine->id == VCS)
1371 			cmd |= MI_INVALIDATE_BSD;
1372 	}
1373 
1374 	*cs++ = cmd;
1375 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1376 	*cs++ = 0; /* upper addr */
1377 	*cs++ = 0; /* value */
1378 	intel_ring_advance(request, cs);
1379 
1380 	return 0;
1381 }
1382 
1383 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1384 				  u32 mode)
1385 {
1386 	struct intel_engine_cs *engine = request->engine;
1387 	u32 scratch_addr =
1388 		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1389 	bool vf_flush_wa = false, dc_flush_wa = false;
1390 	u32 *cs, flags = 0;
1391 	int len;
1392 
1393 	flags |= PIPE_CONTROL_CS_STALL;
1394 
1395 	if (mode & EMIT_FLUSH) {
1396 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1397 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1398 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1399 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1400 	}
1401 
1402 	if (mode & EMIT_INVALIDATE) {
1403 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1404 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1405 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1406 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1407 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1408 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1409 		flags |= PIPE_CONTROL_QW_WRITE;
1410 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1411 
1412 		/*
1413 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1414 		 * pipe control.
1415 		 */
1416 		if (IS_GEN9(request->i915))
1417 			vf_flush_wa = true;
1418 
1419 		/* WaForGAMHang:kbl */
1420 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1421 			dc_flush_wa = true;
1422 	}
1423 
1424 	len = 6;
1425 
1426 	if (vf_flush_wa)
1427 		len += 6;
1428 
1429 	if (dc_flush_wa)
1430 		len += 12;
1431 
1432 	cs = intel_ring_begin(request, len);
1433 	if (IS_ERR(cs))
1434 		return PTR_ERR(cs);
1435 
1436 	if (vf_flush_wa)
1437 		cs = gen8_emit_pipe_control(cs, 0, 0);
1438 
1439 	if (dc_flush_wa)
1440 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1441 					    0);
1442 
1443 	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1444 
1445 	if (dc_flush_wa)
1446 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1447 
1448 	intel_ring_advance(request, cs);
1449 
1450 	return 0;
1451 }
1452 
1453 /*
1454  * Reserve space for 2 NOOPs at the end of each request to be
1455  * used as a workaround for not being allowed to do lite
1456  * restore with HEAD==TAIL (WaIdleLiteRestore).
1457  */
1458 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1459 {
1460 	*cs++ = MI_NOOP;
1461 	*cs++ = MI_NOOP;
1462 	request->wa_tail = intel_ring_offset(request, cs);
1463 }
1464 
1465 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1466 {
1467 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1468 	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1469 
1470 	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1471 	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1472 	*cs++ = 0;
1473 	*cs++ = request->global_seqno;
1474 	*cs++ = MI_USER_INTERRUPT;
1475 	*cs++ = MI_NOOP;
1476 	request->tail = intel_ring_offset(request, cs);
1477 	assert_ring_tail_valid(request->ring, request->tail);
1478 
1479 	gen8_emit_wa_tail(request, cs);
1480 }
1481 
1482 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1483 
1484 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1485 					u32 *cs)
1486 {
1487 	/* We're using qword write, seqno should be aligned to 8 bytes. */
1488 	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1489 
1490 	/* w/a for post sync ops following a GPGPU operation we
1491 	 * need a prior CS_STALL, which is emitted by the flush
1492 	 * following the batch.
1493 	 */
1494 	*cs++ = GFX_OP_PIPE_CONTROL(6);
1495 	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1496 		PIPE_CONTROL_QW_WRITE;
1497 	*cs++ = intel_hws_seqno_address(request->engine);
1498 	*cs++ = 0;
1499 	*cs++ = request->global_seqno;
1500 	/* We're thrashing one dword of HWS. */
1501 	*cs++ = 0;
1502 	*cs++ = MI_USER_INTERRUPT;
1503 	*cs++ = MI_NOOP;
1504 	request->tail = intel_ring_offset(request, cs);
1505 	assert_ring_tail_valid(request->ring, request->tail);
1506 
1507 	gen8_emit_wa_tail(request, cs);
1508 }
1509 
1510 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1511 
1512 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1513 {
1514 	int ret;
1515 
1516 	ret = intel_ring_workarounds_emit(req);
1517 	if (ret)
1518 		return ret;
1519 
1520 	ret = intel_rcs_context_init_mocs(req);
1521 	/*
1522 	 * Failing to program the MOCS is non-fatal.The system will not
1523 	 * run at peak performance. So generate an error and carry on.
1524 	 */
1525 	if (ret)
1526 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1527 
1528 	return i915_gem_render_state_emit(req);
1529 }
1530 
1531 /**
1532  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1533  * @engine: Engine Command Streamer.
1534  */
1535 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1536 {
1537 	struct drm_i915_private *dev_priv;
1538 
1539 	/*
1540 	 * Tasklet cannot be active at this point due intel_mark_active/idle
1541 	 * so this is just for documentation.
1542 	 */
1543 	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1544 		tasklet_kill(&engine->irq_tasklet);
1545 
1546 	dev_priv = engine->i915;
1547 
1548 	if (engine->buffer) {
1549 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1550 	}
1551 
1552 	if (engine->cleanup)
1553 		engine->cleanup(engine);
1554 
1555 	if (engine->status_page.vma) {
1556 		i915_gem_object_unpin_map(engine->status_page.vma->obj);
1557 		engine->status_page.vma = NULL;
1558 	}
1559 
1560 	intel_engine_cleanup_common(engine);
1561 
1562 	lrc_destroy_wa_ctx(engine);
1563 	engine->i915 = NULL;
1564 	dev_priv->engine[engine->id] = NULL;
1565 	kfree(engine);
1566 }
1567 
1568 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1569 {
1570 	engine->submit_request = execlists_submit_request;
1571 	engine->schedule = execlists_schedule;
1572 	engine->irq_tasklet.func = intel_lrc_irq_handler;
1573 }
1574 
1575 static void
1576 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1577 {
1578 	/* Default vfuncs which can be overriden by each engine. */
1579 	engine->init_hw = gen8_init_common_ring;
1580 	engine->reset_hw = reset_common_ring;
1581 
1582 	engine->context_pin = execlists_context_pin;
1583 	engine->context_unpin = execlists_context_unpin;
1584 
1585 	engine->request_alloc = execlists_request_alloc;
1586 
1587 	engine->emit_flush = gen8_emit_flush;
1588 	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1589 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1590 
1591 	engine->set_default_submission = execlists_set_default_submission;
1592 
1593 	engine->irq_enable = gen8_logical_ring_enable_irq;
1594 	engine->irq_disable = gen8_logical_ring_disable_irq;
1595 	engine->emit_bb_start = gen8_emit_bb_start;
1596 }
1597 
1598 static inline void
1599 logical_ring_default_irqs(struct intel_engine_cs *engine)
1600 {
1601 	unsigned shift = engine->irq_shift;
1602 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1603 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1604 }
1605 
1606 static int
1607 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1608 {
1609 	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1610 	void *hws;
1611 
1612 	/* The HWSP is part of the default context object in LRC mode. */
1613 	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1614 	if (IS_ERR(hws))
1615 		return PTR_ERR(hws);
1616 
1617 	engine->status_page.page_addr = hws + hws_offset;
1618 	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1619 	engine->status_page.vma = vma;
1620 
1621 	return 0;
1622 }
1623 
1624 static void
1625 logical_ring_setup(struct intel_engine_cs *engine)
1626 {
1627 	struct drm_i915_private *dev_priv = engine->i915;
1628 	enum forcewake_domains fw_domains;
1629 
1630 	intel_engine_setup_common(engine);
1631 
1632 	/* Intentionally left blank. */
1633 	engine->buffer = NULL;
1634 
1635 	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1636 						    RING_ELSP(engine),
1637 						    FW_REG_WRITE);
1638 
1639 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1640 						     RING_CONTEXT_STATUS_PTR(engine),
1641 						     FW_REG_READ | FW_REG_WRITE);
1642 
1643 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1644 						     RING_CONTEXT_STATUS_BUF_BASE(engine),
1645 						     FW_REG_READ);
1646 
1647 	engine->fw_domains = fw_domains;
1648 
1649 	tasklet_init(&engine->irq_tasklet,
1650 		     intel_lrc_irq_handler, (unsigned long)engine);
1651 
1652 	logical_ring_default_vfuncs(engine);
1653 	logical_ring_default_irqs(engine);
1654 }
1655 
1656 static int
1657 logical_ring_init(struct intel_engine_cs *engine)
1658 {
1659 	struct i915_gem_context *dctx = engine->i915->kernel_context;
1660 	int ret;
1661 
1662 	ret = intel_engine_init_common(engine);
1663 	if (ret)
1664 		goto error;
1665 
1666 	/* And setup the hardware status page. */
1667 	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1668 	if (ret) {
1669 		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1670 		goto error;
1671 	}
1672 
1673 	return 0;
1674 
1675 error:
1676 	intel_logical_ring_cleanup(engine);
1677 	return ret;
1678 }
1679 
1680 int logical_render_ring_init(struct intel_engine_cs *engine)
1681 {
1682 	struct drm_i915_private *dev_priv = engine->i915;
1683 	int ret;
1684 
1685 	logical_ring_setup(engine);
1686 
1687 	if (HAS_L3_DPF(dev_priv))
1688 		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1689 
1690 	/* Override some for render ring. */
1691 	if (INTEL_GEN(dev_priv) >= 9)
1692 		engine->init_hw = gen9_init_render_ring;
1693 	else
1694 		engine->init_hw = gen8_init_render_ring;
1695 	engine->init_context = gen8_init_rcs_context;
1696 	engine->emit_flush = gen8_emit_flush_render;
1697 	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1698 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1699 
1700 	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1701 	if (ret)
1702 		return ret;
1703 
1704 	ret = intel_init_workaround_bb(engine);
1705 	if (ret) {
1706 		/*
1707 		 * We continue even if we fail to initialize WA batch
1708 		 * because we only expect rare glitches but nothing
1709 		 * critical to prevent us from using GPU
1710 		 */
1711 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
1712 			  ret);
1713 	}
1714 
1715 	return logical_ring_init(engine);
1716 }
1717 
1718 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1719 {
1720 	logical_ring_setup(engine);
1721 
1722 	return logical_ring_init(engine);
1723 }
1724 
1725 static u32
1726 make_rpcs(struct drm_i915_private *dev_priv)
1727 {
1728 	u32 rpcs = 0;
1729 
1730 	/*
1731 	 * No explicit RPCS request is needed to ensure full
1732 	 * slice/subslice/EU enablement prior to Gen9.
1733 	*/
1734 	if (INTEL_GEN(dev_priv) < 9)
1735 		return 0;
1736 
1737 	/*
1738 	 * Starting in Gen9, render power gating can leave
1739 	 * slice/subslice/EU in a partially enabled state. We
1740 	 * must make an explicit request through RPCS for full
1741 	 * enablement.
1742 	*/
1743 	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1744 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1745 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1746 			GEN8_RPCS_S_CNT_SHIFT;
1747 		rpcs |= GEN8_RPCS_ENABLE;
1748 	}
1749 
1750 	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1751 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1752 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1753 			GEN8_RPCS_SS_CNT_SHIFT;
1754 		rpcs |= GEN8_RPCS_ENABLE;
1755 	}
1756 
1757 	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1758 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1759 			GEN8_RPCS_EU_MIN_SHIFT;
1760 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1761 			GEN8_RPCS_EU_MAX_SHIFT;
1762 		rpcs |= GEN8_RPCS_ENABLE;
1763 	}
1764 
1765 	return rpcs;
1766 }
1767 
1768 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1769 {
1770 	u32 indirect_ctx_offset;
1771 
1772 	switch (INTEL_GEN(engine->i915)) {
1773 	default:
1774 		MISSING_CASE(INTEL_GEN(engine->i915));
1775 		/* fall through */
1776 	case 9:
1777 		indirect_ctx_offset =
1778 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1779 		break;
1780 	case 8:
1781 		indirect_ctx_offset =
1782 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1783 		break;
1784 	}
1785 
1786 	return indirect_ctx_offset;
1787 }
1788 
1789 static void execlists_init_reg_state(u32 *regs,
1790 				     struct i915_gem_context *ctx,
1791 				     struct intel_engine_cs *engine,
1792 				     struct intel_ring *ring)
1793 {
1794 	struct drm_i915_private *dev_priv = engine->i915;
1795 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1796 	u32 base = engine->mmio_base;
1797 	bool rcs = engine->id == RCS;
1798 
1799 	/* A context is actually a big batch buffer with several
1800 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1801 	 * values we are setting here are only for the first context restore:
1802 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
1803 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1804 	 * we are not initializing here).
1805 	 */
1806 	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1807 				 MI_LRI_FORCE_POSTED;
1808 
1809 	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1810 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1811 				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1812 				   (HAS_RESOURCE_STREAMER(dev_priv) ?
1813 				   CTX_CTRL_RS_CTX_ENABLE : 0)));
1814 	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1815 	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1816 	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1817 	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1818 		RING_CTL_SIZE(ring->size) | RING_VALID);
1819 	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1820 	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1821 	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1822 	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1823 	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1824 	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1825 	if (rcs) {
1826 		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1827 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1828 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1829 			RING_INDIRECT_CTX_OFFSET(base), 0);
1830 
1831 		if (engine->wa_ctx.vma) {
1832 			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1833 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1834 
1835 			regs[CTX_RCS_INDIRECT_CTX + 1] =
1836 				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
1837 				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1838 
1839 			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1840 				intel_lr_indirect_ctx_offset(engine) << 6;
1841 
1842 			regs[CTX_BB_PER_CTX_PTR + 1] =
1843 				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1844 		}
1845 	}
1846 
1847 	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1848 
1849 	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1850 	/* PDP values well be assigned later if needed */
1851 	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1852 	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1853 	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1854 	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1855 	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1856 	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1857 	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1858 	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1859 
1860 	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1861 		/* 64b PPGTT (48bit canonical)
1862 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
1863 		 * other PDP Descriptors are ignored.
1864 		 */
1865 		ASSIGN_CTX_PML4(ppgtt, regs);
1866 	}
1867 
1868 	if (rcs) {
1869 		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1870 		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1871 			make_rpcs(dev_priv));
1872 	}
1873 }
1874 
1875 static int
1876 populate_lr_context(struct i915_gem_context *ctx,
1877 		    struct drm_i915_gem_object *ctx_obj,
1878 		    struct intel_engine_cs *engine,
1879 		    struct intel_ring *ring)
1880 {
1881 	void *vaddr;
1882 	int ret;
1883 
1884 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1885 	if (ret) {
1886 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1887 		return ret;
1888 	}
1889 
1890 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1891 	if (IS_ERR(vaddr)) {
1892 		ret = PTR_ERR(vaddr);
1893 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1894 		return ret;
1895 	}
1896 	ctx_obj->mm.dirty = true;
1897 
1898 	/* The second page of the context object contains some fields which must
1899 	 * be set up prior to the first execution. */
1900 
1901 	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1902 				 ctx, engine, ring);
1903 
1904 	i915_gem_object_unpin_map(ctx_obj);
1905 
1906 	return 0;
1907 }
1908 
1909 /**
1910  * intel_lr_context_size() - return the size of the context for an engine
1911  * @engine: which engine to find the context size for
1912  *
1913  * Each engine may require a different amount of space for a context image,
1914  * so when allocating (or copying) an image, this function can be used to
1915  * find the right size for the specific engine.
1916  *
1917  * Return: size (in bytes) of an engine-specific context image
1918  *
1919  * Note: this size includes the HWSP, which is part of the context image
1920  * in LRC mode, but does not include the "shared data page" used with
1921  * GuC submission. The caller should account for this if using the GuC.
1922  */
1923 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1924 {
1925 	int ret = 0;
1926 
1927 	WARN_ON(INTEL_GEN(engine->i915) < 8);
1928 
1929 	switch (engine->id) {
1930 	case RCS:
1931 		if (INTEL_GEN(engine->i915) >= 9)
1932 			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1933 		else
1934 			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1935 		break;
1936 	case VCS:
1937 	case BCS:
1938 	case VECS:
1939 	case VCS2:
1940 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1941 		break;
1942 	}
1943 
1944 	return ret;
1945 }
1946 
1947 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1948 					    struct intel_engine_cs *engine)
1949 {
1950 	struct drm_i915_gem_object *ctx_obj;
1951 	struct intel_context *ce = &ctx->engine[engine->id];
1952 	struct i915_vma *vma;
1953 	uint32_t context_size;
1954 	struct intel_ring *ring;
1955 	int ret;
1956 
1957 	WARN_ON(ce->state);
1958 
1959 	context_size = round_up(intel_lr_context_size(engine),
1960 				I915_GTT_PAGE_SIZE);
1961 
1962 	/* One extra page as the sharing data between driver and GuC */
1963 	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
1964 
1965 	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1966 	if (IS_ERR(ctx_obj)) {
1967 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1968 		return PTR_ERR(ctx_obj);
1969 	}
1970 
1971 	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1972 	if (IS_ERR(vma)) {
1973 		ret = PTR_ERR(vma);
1974 		goto error_deref_obj;
1975 	}
1976 
1977 	ring = intel_engine_create_ring(engine, ctx->ring_size);
1978 	if (IS_ERR(ring)) {
1979 		ret = PTR_ERR(ring);
1980 		goto error_deref_obj;
1981 	}
1982 
1983 	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
1984 	if (ret) {
1985 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1986 		goto error_ring_free;
1987 	}
1988 
1989 	ce->ring = ring;
1990 	ce->state = vma;
1991 	ce->initialised |= engine->init_context == NULL;
1992 
1993 	return 0;
1994 
1995 error_ring_free:
1996 	intel_ring_free(ring);
1997 error_deref_obj:
1998 	i915_gem_object_put(ctx_obj);
1999 	return ret;
2000 }
2001 
2002 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2003 {
2004 	struct intel_engine_cs *engine;
2005 	struct i915_gem_context *ctx;
2006 	enum intel_engine_id id;
2007 
2008 	/* Because we emit WA_TAIL_DWORDS there may be a disparity
2009 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2010 	 * that stored in context. As we only write new commands from
2011 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2012 	 * starts reading from its RING_HEAD from the context, it may try to
2013 	 * execute that junk and die.
2014 	 *
2015 	 * So to avoid that we reset the context images upon resume. For
2016 	 * simplicity, we just zero everything out.
2017 	 */
2018 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2019 		for_each_engine(engine, dev_priv, id) {
2020 			struct intel_context *ce = &ctx->engine[engine->id];
2021 			u32 *reg;
2022 
2023 			if (!ce->state)
2024 				continue;
2025 
2026 			reg = i915_gem_object_pin_map(ce->state->obj,
2027 						      I915_MAP_WB);
2028 			if (WARN_ON(IS_ERR(reg)))
2029 				continue;
2030 
2031 			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2032 			reg[CTX_RING_HEAD+1] = 0;
2033 			reg[CTX_RING_TAIL+1] = 0;
2034 
2035 			ce->state->obj->mm.dirty = true;
2036 			i915_gem_object_unpin_map(ce->state->obj);
2037 
2038 			intel_ring_reset(ce->ring, 0);
2039 		}
2040 	}
2041 }
2042