xref: /dragonfly/sys/dev/drm/i915/intel_psr.c (revision 02318f07)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * DOC: Panel Self Refresh (PSR/SRD)
26  *
27  * Since Haswell Display controller supports Panel Self-Refresh on display
28  * panels witch have a remote frame buffer (RFB) implemented according to PSR
29  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30  * when system is idle but display is on as it eliminates display refresh
31  * request to DDR memory completely as long as the frame buffer for that
32  * display is unchanged.
33  *
34  * Panel Self Refresh must be supported by both Hardware (source) and
35  * Panel (sink).
36  *
37  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38  * to power down the link and memory controller. For DSI panels the same idea
39  * is called "manual mode".
40  *
41  * The implementation uses the hardware-based PSR support which automatically
42  * enters/exits self-refresh mode. The hardware takes care of sending the
43  * required DP aux message and could even retrain the link (that part isn't
44  * enabled yet though). The hardware also keeps track of any frontbuffer
45  * changes to know when to exit self-refresh mode again. Unfortunately that
46  * part doesn't work too well, hence why the i915 PSR support uses the
47  * software frontbuffer tracking to make sure it doesn't miss a screen
48  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49  * get called by the frontbuffer tracking code. Note that because of locking
50  * issues the self-refresh re-enable code is done from a work queue, which
51  * must be correctly synchronized/cancelled when shutting down the pipe."
52  */
53 
54 #include <drm/drmP.h>
55 
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58 
59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61 	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 }
63 
64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 {
66 	struct drm_i915_private *dev_priv = dev->dev_private;
67 	uint32_t val;
68 
69 	val = I915_READ(VLV_PSRSTAT(pipe)) &
70 	      VLV_EDP_PSR_CURR_STATE_MASK;
71 	return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 	       (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 }
74 
75 static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 				const struct edp_vsc_psr *vsc_psr)
77 {
78 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 	struct drm_device *dev = dig_port->base.base.dev;
80 	struct drm_i915_private *dev_priv = dev->dev_private;
81 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
83 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
84 	const uint32_t *data = (const uint32_t *) vsc_psr;
85 	unsigned int i;
86 
87 	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 	   the video DIP being updated before program video DIP data buffer
89 	   registers for DIP being updated. */
90 	I915_WRITE(ctl_reg, 0);
91 	POSTING_READ(ctl_reg);
92 
93 	for (i = 0; i < sizeof(*vsc_psr); i += 4) {
94 		I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
95 						   i >> 2), *data);
96 		data++;
97 	}
98 	for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
99 		I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
100 						   i >> 2), 0);
101 
102 	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
103 	POSTING_READ(ctl_reg);
104 }
105 
106 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
107 {
108 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109 	struct drm_device *dev = intel_dig_port->base.base.dev;
110 	struct drm_i915_private *dev_priv = dev->dev_private;
111 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
112 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
113 	uint32_t val;
114 
115 	/* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
116 	val  = I915_READ(VLV_VSCSDP(pipe));
117 	val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
118 	val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
119 	I915_WRITE(VLV_VSCSDP(pipe), val);
120 }
121 
122 static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
123 {
124 	struct edp_vsc_psr psr_vsc;
125 
126 	/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
127 	memset(&psr_vsc, 0, sizeof(psr_vsc));
128 	psr_vsc.sdp_header.HB0 = 0;
129 	psr_vsc.sdp_header.HB1 = 0x7;
130 	psr_vsc.sdp_header.HB2 = 0x3;
131 	psr_vsc.sdp_header.HB3 = 0xb;
132 	intel_psr_write_vsc(intel_dp, &psr_vsc);
133 }
134 
135 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
136 {
137 	struct edp_vsc_psr psr_vsc;
138 
139 	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
140 	memset(&psr_vsc, 0, sizeof(psr_vsc));
141 	psr_vsc.sdp_header.HB0 = 0;
142 	psr_vsc.sdp_header.HB1 = 0x7;
143 	psr_vsc.sdp_header.HB2 = 0x2;
144 	psr_vsc.sdp_header.HB3 = 0x8;
145 	intel_psr_write_vsc(intel_dp, &psr_vsc);
146 }
147 
148 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
149 {
150 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
151 			   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
152 }
153 
154 static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv,
155 				       enum port port)
156 {
157 	if (INTEL_INFO(dev_priv)->gen >= 9)
158 		return DP_AUX_CH_CTL(port);
159 	else
160 		return EDP_PSR_AUX_CTL;
161 }
162 
163 static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv,
164 					enum port port, int index)
165 {
166 	if (INTEL_INFO(dev_priv)->gen >= 9)
167 		return DP_AUX_CH_DATA(port, index);
168 	else
169 		return EDP_PSR_AUX_DATA(index);
170 }
171 
172 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
173 {
174 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
175 	struct drm_device *dev = dig_port->base.base.dev;
176 	struct drm_i915_private *dev_priv = dev->dev_private;
177 	uint32_t aux_clock_divider;
178 	i915_reg_t aux_ctl_reg;
179 	int precharge = 0x3;
180 	static const uint8_t aux_msg[] = {
181 		[0] = DP_AUX_NATIVE_WRITE << 4,
182 		[1] = DP_SET_POWER >> 8,
183 		[2] = DP_SET_POWER & 0xff,
184 		[3] = 1 - 1,
185 		[4] = DP_SET_POWER_D0,
186 	};
187 	enum port port = dig_port->port;
188 	int i;
189 
190 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
191 
192 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
193 
194 	/* Enable AUX frame sync at sink */
195 	if (dev_priv->psr.aux_frame_sync)
196 		drm_dp_dpcd_writeb(&intel_dp->aux,
197 				DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
198 				DP_AUX_FRAME_SYNC_ENABLE);
199 
200 	aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port);
201 
202 	/* Setup AUX registers */
203 	for (i = 0; i < sizeof(aux_msg); i += 4)
204 		I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2),
205 			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
206 
207 	if (INTEL_INFO(dev)->gen >= 9) {
208 		uint32_t val;
209 
210 		val = I915_READ(aux_ctl_reg);
211 		val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
212 		val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
213 		val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
214 		val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
215 		/* Use hardcoded data values for PSR, frame sync and GTC */
216 		val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
217 		val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL;
218 		val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL;
219 		I915_WRITE(aux_ctl_reg, val);
220 	} else {
221 		I915_WRITE(aux_ctl_reg,
222 		   DP_AUX_CH_CTL_TIME_OUT_400us |
223 		   (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
224 		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
225 		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
226 	}
227 
228 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE);
229 }
230 
231 static void vlv_psr_enable_source(struct intel_dp *intel_dp)
232 {
233 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
234 	struct drm_device *dev = dig_port->base.base.dev;
235 	struct drm_i915_private *dev_priv = dev->dev_private;
236 	struct drm_crtc *crtc = dig_port->base.base.crtc;
237 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
238 
239 	/* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
240 	I915_WRITE(VLV_PSRCTL(pipe),
241 		   VLV_EDP_PSR_MODE_SW_TIMER |
242 		   VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
243 		   VLV_EDP_PSR_ENABLE);
244 }
245 
246 static void vlv_psr_activate(struct intel_dp *intel_dp)
247 {
248 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
249 	struct drm_device *dev = dig_port->base.base.dev;
250 	struct drm_i915_private *dev_priv = dev->dev_private;
251 	struct drm_crtc *crtc = dig_port->base.base.crtc;
252 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
253 
254 	/* Let's do the transition from PSR_state 1 to PSR_state 2
255 	 * that is PSR transition to active - static frame transmission.
256 	 * Then Hardware is responsible for the transition to PSR_state 3
257 	 * that is PSR active - no Remote Frame Buffer (RFB) update.
258 	 */
259 	I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
260 		   VLV_EDP_PSR_ACTIVE_ENTRY);
261 }
262 
263 static void hsw_psr_enable_source(struct intel_dp *intel_dp)
264 {
265 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
266 	struct drm_device *dev = dig_port->base.base.dev;
267 	struct drm_i915_private *dev_priv = dev->dev_private;
268 
269 	uint32_t max_sleep_time = 0x1f;
270 	/*
271 	 * Let's respect VBT in case VBT asks a higher idle_frame value.
272 	 * Let's use 6 as the minimum to cover all known cases including
273 	 * the off-by-one issue that HW has in some cases. Also there are
274 	 * cases where sink should be able to train
275 	 * with the 5 or 6 idle patterns.
276 	 */
277 	uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
278 	uint32_t val = 0x0;
279 
280 	if (IS_HASWELL(dev))
281 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
282 
283 	I915_WRITE(EDP_PSR_CTL, val |
284 		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
285 		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
286 		   EDP_PSR_ENABLE);
287 
288 	if (dev_priv->psr.psr2_support)
289 		I915_WRITE(EDP_PSR2_CTL, EDP_PSR2_ENABLE |
290 				EDP_SU_TRACK_ENABLE | EDP_PSR2_TP2_TIME_100);
291 }
292 
293 static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
294 {
295 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
296 	struct drm_device *dev = dig_port->base.base.dev;
297 	struct drm_i915_private *dev_priv = dev->dev_private;
298 	struct drm_crtc *crtc = dig_port->base.base.crtc;
299 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
300 
301 	lockdep_assert_held(&dev_priv->psr.lock);
302 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
303 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
304 
305 	dev_priv->psr.source_ok = false;
306 
307 	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
308 		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
309 		return false;
310 	}
311 
312 	if (!i915.enable_psr) {
313 		DRM_DEBUG_KMS("PSR disable by flag\n");
314 		return false;
315 	}
316 
317 	if (IS_HASWELL(dev) &&
318 	    I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
319 		      S3D_ENABLE) {
320 		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
321 		return false;
322 	}
323 
324 	if (IS_HASWELL(dev) &&
325 	    intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
326 		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
327 		return false;
328 	}
329 
330 	if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
331 	    ((dev_priv->vbt.psr.full_link) || (dig_port->port != PORT_A))) {
332 		DRM_DEBUG_KMS("PSR condition failed: Link Standby requested/needed but not supported on this platform\n");
333 		return false;
334 	}
335 
336 	dev_priv->psr.source_ok = true;
337 	return true;
338 }
339 
340 static void intel_psr_activate(struct intel_dp *intel_dp)
341 {
342 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
343 	struct drm_device *dev = intel_dig_port->base.base.dev;
344 	struct drm_i915_private *dev_priv = dev->dev_private;
345 
346 	WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
347 	WARN_ON(dev_priv->psr.active);
348 	lockdep_assert_held(&dev_priv->psr.lock);
349 
350 	/* Enable/Re-enable PSR on the host */
351 	if (HAS_DDI(dev))
352 		/* On HSW+ after we enable PSR on source it will activate it
353 		 * as soon as it match configure idle_frame count. So
354 		 * we just actually enable it here on activation time.
355 		 */
356 		hsw_psr_enable_source(intel_dp);
357 	else
358 		vlv_psr_activate(intel_dp);
359 
360 	dev_priv->psr.active = true;
361 }
362 
363 /**
364  * intel_psr_enable - Enable PSR
365  * @intel_dp: Intel DP
366  *
367  * This function can only be called after the pipe is fully trained and enabled.
368  */
369 void intel_psr_enable(struct intel_dp *intel_dp)
370 {
371 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
372 	struct drm_device *dev = intel_dig_port->base.base.dev;
373 	struct drm_i915_private *dev_priv = dev->dev_private;
374 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
375 
376 	if (!HAS_PSR(dev)) {
377 		DRM_DEBUG_KMS("PSR not supported on this platform\n");
378 		return;
379 	}
380 
381 	if (!is_edp_psr(intel_dp)) {
382 		DRM_DEBUG_KMS("PSR not supported by this panel\n");
383 		return;
384 	}
385 
386 	mutex_lock(&dev_priv->psr.lock);
387 	if (dev_priv->psr.enabled) {
388 		DRM_DEBUG_KMS("PSR already in use\n");
389 		goto unlock;
390 	}
391 
392 	if (!intel_psr_match_conditions(intel_dp))
393 		goto unlock;
394 
395 	dev_priv->psr.busy_frontbuffer_bits = 0;
396 
397 	if (HAS_DDI(dev)) {
398 		hsw_psr_setup_vsc(intel_dp);
399 
400 		if (dev_priv->psr.psr2_support) {
401 			/* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
402 			if (crtc->config->pipe_src_w > 3200 ||
403 				crtc->config->pipe_src_h > 2000)
404 				dev_priv->psr.psr2_support = false;
405 			else
406 				skl_psr_setup_su_vsc(intel_dp);
407 		}
408 
409 		/*
410 		 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD.
411 		 * Also mask LPSP to avoid dependency on other drivers that
412 		 * might block runtime_pm besides preventing other hw tracking
413 		 * issues now we can rely on frontbuffer tracking.
414 		 */
415 		I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
416 			   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
417 
418 		/* Enable PSR on the panel */
419 		hsw_psr_enable_sink(intel_dp);
420 
421 		if (INTEL_INFO(dev)->gen >= 9)
422 			intel_psr_activate(intel_dp);
423 	} else {
424 		vlv_psr_setup_vsc(intel_dp);
425 
426 		/* Enable PSR on the panel */
427 		vlv_psr_enable_sink(intel_dp);
428 
429 		/* On HSW+ enable_source also means go to PSR entry/active
430 		 * state as soon as idle_frame achieved and here would be
431 		 * to soon. However on VLV enable_source just enable PSR
432 		 * but let it on inactive state. So we might do this prior
433 		 * to active transition, i.e. here.
434 		 */
435 		vlv_psr_enable_source(intel_dp);
436 	}
437 
438 	/*
439 	 * FIXME: Activation should happen immediately since this function
440 	 * is just called after pipe is fully trained and enabled.
441 	 * However on every platform we face issues when first activation
442 	 * follows a modeset so quickly.
443 	 *     - On VLV/CHV we get bank screen on first activation
444 	 *     - On HSW/BDW we get a recoverable frozen screen until next
445 	 *       exit-activate sequence.
446 	 */
447 	if (INTEL_INFO(dev)->gen < 9)
448 		schedule_delayed_work(&dev_priv->psr.work,
449 				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
450 
451 	dev_priv->psr.enabled = intel_dp;
452 unlock:
453 	mutex_unlock(&dev_priv->psr.lock);
454 }
455 
456 static void vlv_psr_disable(struct intel_dp *intel_dp)
457 {
458 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
459 	struct drm_device *dev = intel_dig_port->base.base.dev;
460 	struct drm_i915_private *dev_priv = dev->dev_private;
461 	struct intel_crtc *intel_crtc =
462 		to_intel_crtc(intel_dig_port->base.base.crtc);
463 	uint32_t val;
464 
465 	if (dev_priv->psr.active) {
466 		/* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
467 		if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
468 			      VLV_EDP_PSR_IN_TRANS) == 0, 1))
469 			WARN(1, "PSR transition took longer than expected\n");
470 
471 		val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
472 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
473 		val &= ~VLV_EDP_PSR_ENABLE;
474 		val &= ~VLV_EDP_PSR_MODE_MASK;
475 		I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
476 
477 		dev_priv->psr.active = false;
478 	} else {
479 		WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
480 	}
481 }
482 
483 static void hsw_psr_disable(struct intel_dp *intel_dp)
484 {
485 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
486 	struct drm_device *dev = intel_dig_port->base.base.dev;
487 	struct drm_i915_private *dev_priv = dev->dev_private;
488 
489 	if (dev_priv->psr.active) {
490 		I915_WRITE(EDP_PSR_CTL,
491 			   I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
492 
493 		/* Wait till PSR is idle */
494 		if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
495 			       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
496 			DRM_ERROR("Timed out waiting for PSR Idle State\n");
497 
498 		dev_priv->psr.active = false;
499 	} else {
500 		WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
501 	}
502 }
503 
504 /**
505  * intel_psr_disable - Disable PSR
506  * @intel_dp: Intel DP
507  *
508  * This function needs to be called before disabling pipe.
509  */
510 void intel_psr_disable(struct intel_dp *intel_dp)
511 {
512 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
513 	struct drm_device *dev = intel_dig_port->base.base.dev;
514 	struct drm_i915_private *dev_priv = dev->dev_private;
515 
516 	mutex_lock(&dev_priv->psr.lock);
517 	if (!dev_priv->psr.enabled) {
518 		mutex_unlock(&dev_priv->psr.lock);
519 		return;
520 	}
521 
522 	/* Disable PSR on Source */
523 	if (HAS_DDI(dev))
524 		hsw_psr_disable(intel_dp);
525 	else
526 		vlv_psr_disable(intel_dp);
527 
528 	/* Disable PSR on Sink */
529 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
530 
531 	dev_priv->psr.enabled = NULL;
532 	mutex_unlock(&dev_priv->psr.lock);
533 
534 	cancel_delayed_work_sync(&dev_priv->psr.work);
535 }
536 
537 static void intel_psr_work(struct work_struct *work)
538 {
539 	struct drm_i915_private *dev_priv =
540 		container_of(work, typeof(*dev_priv), psr.work.work);
541 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
542 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
543 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
544 
545 	/* We have to make sure PSR is ready for re-enable
546 	 * otherwise it keeps disabled until next full enable/disable cycle.
547 	 * PSR might take some time to get fully disabled
548 	 * and be ready for re-enable.
549 	 */
550 	if (HAS_DDI(dev_priv->dev)) {
551 		if (wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
552 			      EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
553 			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
554 			return;
555 		}
556 	} else {
557 		if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
558 			      VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
559 			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
560 			return;
561 		}
562 	}
563 	mutex_lock(&dev_priv->psr.lock);
564 	intel_dp = dev_priv->psr.enabled;
565 
566 	if (!intel_dp)
567 		goto unlock;
568 
569 	/*
570 	 * The delayed work can race with an invalidate hence we need to
571 	 * recheck. Since psr_flush first clears this and then reschedules we
572 	 * won't ever miss a flush when bailing out here.
573 	 */
574 	if (dev_priv->psr.busy_frontbuffer_bits)
575 		goto unlock;
576 
577 	intel_psr_activate(intel_dp);
578 unlock:
579 	mutex_unlock(&dev_priv->psr.lock);
580 }
581 
582 static void intel_psr_exit(struct drm_device *dev)
583 {
584 	struct drm_i915_private *dev_priv = dev->dev_private;
585 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
586 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
587 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
588 	u32 val;
589 
590 	if (!dev_priv->psr.active)
591 		return;
592 
593 	if (HAS_DDI(dev)) {
594 		val = I915_READ(EDP_PSR_CTL);
595 
596 		WARN_ON(!(val & EDP_PSR_ENABLE));
597 
598 		I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
599 	} else {
600 		val = I915_READ(VLV_PSRCTL(pipe));
601 
602 		/* Here we do the transition from PSR_state 3 to PSR_state 5
603 		 * directly once PSR State 4 that is active with single frame
604 		 * update can be skipped. PSR_state 5 that is PSR exit then
605 		 * Hardware is responsible to transition back to PSR_state 1
606 		 * that is PSR inactive. Same state after
607 		 * vlv_edp_psr_enable_source.
608 		 */
609 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
610 		I915_WRITE(VLV_PSRCTL(pipe), val);
611 
612 		/* Send AUX wake up - Spec says after transitioning to PSR
613 		 * active we have to send AUX wake up by writing 01h in DPCD
614 		 * 600h of sink device.
615 		 * XXX: This might slow down the transition, but without this
616 		 * HW doesn't complete the transition to PSR_state 1 and we
617 		 * never get the screen updated.
618 		 */
619 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
620 				   DP_SET_POWER_D0);
621 	}
622 
623 	dev_priv->psr.active = false;
624 }
625 
626 /**
627  * intel_psr_single_frame_update - Single Frame Update
628  * @dev: DRM device
629  * @frontbuffer_bits: frontbuffer plane tracking bits
630  *
631  * Some platforms support a single frame update feature that is used to
632  * send and update only one frame on Remote Frame Buffer.
633  * So far it is only implemented for Valleyview and Cherryview because
634  * hardware requires this to be done before a page flip.
635  */
636 void intel_psr_single_frame_update(struct drm_device *dev,
637 				   unsigned frontbuffer_bits)
638 {
639 	struct drm_i915_private *dev_priv = dev->dev_private;
640 	struct drm_crtc *crtc;
641 	enum i915_pipe pipe;
642 	u32 val;
643 
644 	/*
645 	 * Single frame update is already supported on BDW+ but it requires
646 	 * many W/A and it isn't really needed.
647 	 */
648 	if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
649 		return;
650 
651 	mutex_lock(&dev_priv->psr.lock);
652 	if (!dev_priv->psr.enabled) {
653 		mutex_unlock(&dev_priv->psr.lock);
654 		return;
655 	}
656 
657 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
658 	pipe = to_intel_crtc(crtc)->pipe;
659 
660 	if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
661 		val = I915_READ(VLV_PSRCTL(pipe));
662 
663 		/*
664 		 * We need to set this bit before writing registers for a flip.
665 		 * This bit will be self-clear when it gets to the PSR active state.
666 		 */
667 		I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
668 	}
669 	mutex_unlock(&dev_priv->psr.lock);
670 }
671 
672 /**
673  * intel_psr_invalidate - Invalidade PSR
674  * @dev: DRM device
675  * @frontbuffer_bits: frontbuffer plane tracking bits
676  *
677  * Since the hardware frontbuffer tracking has gaps we need to integrate
678  * with the software frontbuffer tracking. This function gets called every
679  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
680  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
681  *
682  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
683  */
684 void intel_psr_invalidate(struct drm_device *dev,
685 			  unsigned frontbuffer_bits)
686 {
687 	struct drm_i915_private *dev_priv = dev->dev_private;
688 	struct drm_crtc *crtc;
689 	enum i915_pipe pipe;
690 
691 	mutex_lock(&dev_priv->psr.lock);
692 	if (!dev_priv->psr.enabled) {
693 		mutex_unlock(&dev_priv->psr.lock);
694 		return;
695 	}
696 
697 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
698 	pipe = to_intel_crtc(crtc)->pipe;
699 
700 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
701 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
702 
703 	if (frontbuffer_bits)
704 		intel_psr_exit(dev);
705 
706 	mutex_unlock(&dev_priv->psr.lock);
707 }
708 
709 /**
710  * intel_psr_flush - Flush PSR
711  * @dev: DRM device
712  * @frontbuffer_bits: frontbuffer plane tracking bits
713  * @origin: which operation caused the flush
714  *
715  * Since the hardware frontbuffer tracking has gaps we need to integrate
716  * with the software frontbuffer tracking. This function gets called every
717  * time frontbuffer rendering has completed and flushed out to memory. PSR
718  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
719  *
720  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
721  */
722 void intel_psr_flush(struct drm_device *dev,
723 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
724 {
725 	struct drm_i915_private *dev_priv = dev->dev_private;
726 	struct drm_crtc *crtc;
727 	enum i915_pipe pipe;
728 
729 	mutex_lock(&dev_priv->psr.lock);
730 	if (!dev_priv->psr.enabled) {
731 		mutex_unlock(&dev_priv->psr.lock);
732 		return;
733 	}
734 
735 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
736 	pipe = to_intel_crtc(crtc)->pipe;
737 
738 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
739 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
740 
741 	/* By definition flush = invalidate + flush */
742 	if (frontbuffer_bits)
743 		intel_psr_exit(dev);
744 
745 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
746 #if 0
747 		if (!work_busy(&dev_priv->psr.work.work))
748 #endif
749 			schedule_delayed_work(&dev_priv->psr.work,
750 					      msecs_to_jiffies(100));
751 	mutex_unlock(&dev_priv->psr.lock);
752 }
753 
754 /**
755  * intel_psr_init - Init basic PSR work and mutex.
756  * @dev: DRM device
757  *
758  * This function is  called only once at driver load to initialize basic
759  * PSR stuff.
760  */
761 void intel_psr_init(struct drm_device *dev)
762 {
763 	struct drm_i915_private *dev_priv = dev->dev_private;
764 
765 	dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
766 		HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
767 
768 	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
769 	lockinit(&dev_priv->psr.lock, "i915dpl", 0, LK_CANRECURSE);
770 }
771