xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 23b3ef78)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 	struct drm_device *dev = ring->dev;
40 
41 	if (!dev)
42 		return false;
43 
44 	if (i915.enable_execlists) {
45 		struct intel_context *dctx = ring->default_context;
46 		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47 
48 		return ringbuf->obj;
49 	} else
50 		return ring->buffer && ring->buffer->obj;
51 }
52 
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 	int space = head - tail;
56 	if (space <= 0)
57 		space += size;
58 	return space - I915_RING_FREE_SPACE;
59 }
60 
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 	if (ringbuf->last_retired_head != -1) {
64 		ringbuf->head = ringbuf->last_retired_head;
65 		ringbuf->last_retired_head = -1;
66 	}
67 
68 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 					    ringbuf->tail, ringbuf->size);
70 }
71 
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 	intel_ring_update_space(ringbuf);
75 	return ringbuf->space;
76 }
77 
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83 
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 	struct intel_ringbuffer *ringbuf = ring->buffer;
87 	ringbuf->tail &= ringbuf->size - 1;
88 	if (intel_ring_stopped(ring))
89 		return;
90 	ring->write_tail(ring, ringbuf->tail);
91 }
92 
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 		       u32	invalidate_domains,
96 		       u32	flush_domains)
97 {
98 	u32 cmd;
99 	int ret;
100 
101 	cmd = MI_FLUSH;
102 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 		cmd |= MI_NO_WRITE_FLUSH;
104 
105 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 		cmd |= MI_READ_FLUSH;
107 
108 	ret = intel_ring_begin(ring, 2);
109 	if (ret)
110 		return ret;
111 
112 	intel_ring_emit(ring, cmd);
113 	intel_ring_emit(ring, MI_NOOP);
114 	intel_ring_advance(ring);
115 
116 	return 0;
117 }
118 
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 		       u32	invalidate_domains,
122 		       u32	flush_domains)
123 {
124 	struct drm_device *dev = ring->dev;
125 	u32 cmd;
126 	int ret;
127 
128 	/*
129 	 * read/write caches:
130 	 *
131 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
133 	 * also flushed at 2d versus 3d pipeline switches.
134 	 *
135 	 * read-only caches:
136 	 *
137 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 	 * MI_READ_FLUSH is set, and is always flushed on 965.
139 	 *
140 	 * I915_GEM_DOMAIN_COMMAND may not exist?
141 	 *
142 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 	 * invalidated when MI_EXE_FLUSH is set.
144 	 *
145 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 	 * invalidated with every MI_FLUSH.
147 	 *
148 	 * TLBs:
149 	 *
150 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 	 * are flushed at any MI_FLUSH.
154 	 */
155 
156 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 		cmd &= ~MI_NO_WRITE_FLUSH;
159 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 		cmd |= MI_EXE_FLUSH;
161 
162 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 	    (IS_G4X(dev) || IS_GEN5(dev)))
164 		cmd |= MI_INVALIDATE_ISP;
165 
166 	ret = intel_ring_begin(ring, 2);
167 	if (ret)
168 		return ret;
169 
170 	intel_ring_emit(ring, cmd);
171 	intel_ring_emit(ring, MI_NOOP);
172 	intel_ring_advance(ring);
173 
174 	return 0;
175 }
176 
177 /**
178  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179  * implementing two workarounds on gen6.  From section 1.4.7.1
180  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181  *
182  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183  * produced by non-pipelined state commands), software needs to first
184  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185  * 0.
186  *
187  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189  *
190  * And the workaround for these two requires this workaround first:
191  *
192  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193  * BEFORE the pipe-control with a post-sync op and no write-cache
194  * flushes.
195  *
196  * And this last workaround is tricky because of the requirements on
197  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198  * volume 2 part 1:
199  *
200  *     "1 of the following must also be set:
201  *      - Render Target Cache Flush Enable ([12] of DW1)
202  *      - Depth Cache Flush Enable ([0] of DW1)
203  *      - Stall at Pixel Scoreboard ([1] of DW1)
204  *      - Depth Stall ([13] of DW1)
205  *      - Post-Sync Operation ([13] of DW1)
206  *      - Notify Enable ([8] of DW1)"
207  *
208  * The cache flushes require the workaround flush that triggered this
209  * one, so we can't use it.  Depth stall would trigger the same.
210  * Post-sync nonzero is what triggered this second workaround, so we
211  * can't use that one either.  Notify enable is IRQs, which aren't
212  * really our business.  That leaves only stall at scoreboard.
213  */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 	int ret;
219 
220 
221 	ret = intel_ring_begin(ring, 6);
222 	if (ret)
223 		return ret;
224 
225 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 	intel_ring_emit(ring, 0); /* low dword */
230 	intel_ring_emit(ring, 0); /* high dword */
231 	intel_ring_emit(ring, MI_NOOP);
232 	intel_ring_advance(ring);
233 
234 	ret = intel_ring_begin(ring, 6);
235 	if (ret)
236 		return ret;
237 
238 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 	intel_ring_emit(ring, 0);
242 	intel_ring_emit(ring, 0);
243 	intel_ring_emit(ring, MI_NOOP);
244 	intel_ring_advance(ring);
245 
246 	return 0;
247 }
248 
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251                          u32 invalidate_domains, u32 flush_domains)
252 {
253 	u32 flags = 0;
254 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 	int ret;
256 
257 	/* Force SNB workarounds for PIPE_CONTROL flushes */
258 	ret = intel_emit_post_sync_nonzero_flush(ring);
259 	if (ret)
260 		return ret;
261 
262 	/* Just flush everything.  Experiments have shown that reducing the
263 	 * number of bits based on the write domains has little performance
264 	 * impact.
265 	 */
266 	if (flush_domains) {
267 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 		/*
270 		 * Ensure that any following seqno writes only happen
271 		 * when the render cache is indeed flushed.
272 		 */
273 		flags |= PIPE_CONTROL_CS_STALL;
274 	}
275 	if (invalidate_domains) {
276 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 		/*
283 		 * TLB invalidate requires a post-sync write.
284 		 */
285 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 	}
287 
288 	ret = intel_ring_begin(ring, 4);
289 	if (ret)
290 		return ret;
291 
292 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 	intel_ring_emit(ring, flags);
294 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 	intel_ring_emit(ring, 0);
296 	intel_ring_advance(ring);
297 
298 	return 0;
299 }
300 
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 	int ret;
305 
306 	ret = intel_ring_begin(ring, 4);
307 	if (ret)
308 		return ret;
309 
310 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 	intel_ring_emit(ring, 0);
314 	intel_ring_emit(ring, 0);
315 	intel_ring_advance(ring);
316 
317 	return 0;
318 }
319 
320 static int
321 gen7_render_ring_flush(struct intel_engine_cs *ring,
322 		       u32 invalidate_domains, u32 flush_domains)
323 {
324 	u32 flags = 0;
325 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
326 	int ret;
327 
328 	/*
329 	 * Ensure that any following seqno writes only happen when the render
330 	 * cache is indeed flushed.
331 	 *
332 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
333 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
334 	 * don't try to be clever and just set it unconditionally.
335 	 */
336 	flags |= PIPE_CONTROL_CS_STALL;
337 
338 	/* Just flush everything.  Experiments have shown that reducing the
339 	 * number of bits based on the write domains has little performance
340 	 * impact.
341 	 */
342 	if (flush_domains) {
343 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345 	}
346 	if (invalidate_domains) {
347 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
348 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
349 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
350 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
351 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
352 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
353 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
354 		/*
355 		 * TLB invalidate requires a post-sync write.
356 		 */
357 		flags |= PIPE_CONTROL_QW_WRITE;
358 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359 
360 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
361 
362 		/* Workaround: we must issue a pipe_control with CS-stall bit
363 		 * set before a pipe_control command that has the state cache
364 		 * invalidate bit set. */
365 		gen7_render_ring_cs_stall_wa(ring);
366 	}
367 
368 	ret = intel_ring_begin(ring, 4);
369 	if (ret)
370 		return ret;
371 
372 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
373 	intel_ring_emit(ring, flags);
374 	intel_ring_emit(ring, scratch_addr);
375 	intel_ring_emit(ring, 0);
376 	intel_ring_advance(ring);
377 
378 	return 0;
379 }
380 
381 static int
382 gen8_emit_pipe_control(struct intel_engine_cs *ring,
383 		       u32 flags, u32 scratch_addr)
384 {
385 	int ret;
386 
387 	ret = intel_ring_begin(ring, 6);
388 	if (ret)
389 		return ret;
390 
391 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
392 	intel_ring_emit(ring, flags);
393 	intel_ring_emit(ring, scratch_addr);
394 	intel_ring_emit(ring, 0);
395 	intel_ring_emit(ring, 0);
396 	intel_ring_emit(ring, 0);
397 	intel_ring_advance(ring);
398 
399 	return 0;
400 }
401 
402 static int
403 gen8_render_ring_flush(struct intel_engine_cs *ring,
404 		       u32 invalidate_domains, u32 flush_domains)
405 {
406 	u32 flags = 0;
407 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
408 	int ret;
409 
410 	flags |= PIPE_CONTROL_CS_STALL;
411 
412 	if (flush_domains) {
413 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
414 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
415 	}
416 	if (invalidate_domains) {
417 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
418 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
419 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
420 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
421 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
422 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
423 		flags |= PIPE_CONTROL_QW_WRITE;
424 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
425 
426 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
427 		ret = gen8_emit_pipe_control(ring,
428 					     PIPE_CONTROL_CS_STALL |
429 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
430 					     0);
431 		if (ret)
432 			return ret;
433 	}
434 
435 	return gen8_emit_pipe_control(ring, flags, scratch_addr);
436 }
437 
438 static void ring_write_tail(struct intel_engine_cs *ring,
439 			    u32 value)
440 {
441 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 	I915_WRITE_TAIL(ring, value);
443 }
444 
445 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
446 {
447 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 	u64 acthd;
449 
450 	if (INTEL_INFO(ring->dev)->gen >= 8)
451 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
452 					 RING_ACTHD_UDW(ring->mmio_base));
453 	else if (INTEL_INFO(ring->dev)->gen >= 4)
454 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
455 	else
456 		acthd = I915_READ(ACTHD);
457 
458 	return acthd;
459 }
460 
461 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
462 {
463 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
464 	u32 addr;
465 
466 	addr = dev_priv->status_page_dmah->busaddr;
467 	if (INTEL_INFO(ring->dev)->gen >= 4)
468 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
469 	I915_WRITE(HWS_PGA, addr);
470 }
471 
472 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
473 {
474 	struct drm_device *dev = ring->dev;
475 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
476 	u32 mmio = 0;
477 
478 	/* The ring status page addresses are no longer next to the rest of
479 	 * the ring registers as of gen7.
480 	 */
481 	if (IS_GEN7(dev)) {
482 		switch (ring->id) {
483 		case RCS:
484 			mmio = RENDER_HWS_PGA_GEN7;
485 			break;
486 		case BCS:
487 			mmio = BLT_HWS_PGA_GEN7;
488 			break;
489 		/*
490 		 * VCS2 actually doesn't exist on Gen7. Only shut up
491 		 * gcc switch check warning
492 		 */
493 		case VCS2:
494 		case VCS:
495 			mmio = BSD_HWS_PGA_GEN7;
496 			break;
497 		case VECS:
498 			mmio = VEBOX_HWS_PGA_GEN7;
499 			break;
500 		}
501 	} else if (IS_GEN6(ring->dev)) {
502 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
503 	} else {
504 		/* XXX: gen8 returns to sanity */
505 		mmio = RING_HWS_PGA(ring->mmio_base);
506 	}
507 
508 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
509 	POSTING_READ(mmio);
510 
511 	/*
512 	 * Flush the TLB for this page
513 	 *
514 	 * FIXME: These two bits have disappeared on gen8, so a question
515 	 * arises: do we still need this and if so how should we go about
516 	 * invalidating the TLB?
517 	 */
518 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
519 		u32 reg = RING_INSTPM(ring->mmio_base);
520 
521 		/* ring should be idle before issuing a sync flush*/
522 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
523 
524 		I915_WRITE(reg,
525 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
526 					      INSTPM_SYNC_FLUSH));
527 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
528 			     1000))
529 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
530 				  ring->name);
531 	}
532 }
533 
534 static bool stop_ring(struct intel_engine_cs *ring)
535 {
536 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
537 
538 	if (!IS_GEN2(ring->dev)) {
539 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
540 		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
541 			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
542 			/* Sometimes we observe that the idle flag is not
543 			 * set even though the ring is empty. So double
544 			 * check before giving up.
545 			 */
546 			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
547 				return false;
548 		}
549 	}
550 
551 	I915_WRITE_CTL(ring, 0);
552 	I915_WRITE_HEAD(ring, 0);
553 	ring->write_tail(ring, 0);
554 
555 	if (!IS_GEN2(ring->dev)) {
556 		(void)I915_READ_CTL(ring);
557 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
558 	}
559 
560 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
561 }
562 
563 static int init_ring_common(struct intel_engine_cs *ring)
564 {
565 	struct drm_device *dev = ring->dev;
566 	struct drm_i915_private *dev_priv = dev->dev_private;
567 	struct intel_ringbuffer *ringbuf = ring->buffer;
568 	struct drm_i915_gem_object *obj = ringbuf->obj;
569 	int ret = 0;
570 
571 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572 
573 	if (!stop_ring(ring)) {
574 		/* G45 ring initialization often fails to reset head to zero */
575 		DRM_DEBUG_KMS("%s head not reset to zero "
576 			      "ctl %08x head %08x tail %08x start %08x\n",
577 			      ring->name,
578 			      I915_READ_CTL(ring),
579 			      I915_READ_HEAD(ring),
580 			      I915_READ_TAIL(ring),
581 			      I915_READ_START(ring));
582 
583 		if (!stop_ring(ring)) {
584 			DRM_ERROR("failed to set %s head to zero "
585 				  "ctl %08x head %08x tail %08x start %08x\n",
586 				  ring->name,
587 				  I915_READ_CTL(ring),
588 				  I915_READ_HEAD(ring),
589 				  I915_READ_TAIL(ring),
590 				  I915_READ_START(ring));
591 			ret = -EIO;
592 			goto out;
593 		}
594 	}
595 
596 	if (I915_NEED_GFX_HWS(dev))
597 		intel_ring_setup_status_page(ring);
598 	else
599 		ring_setup_phys_status_page(ring);
600 
601 	/* Enforce ordering by reading HEAD register back */
602 	I915_READ_HEAD(ring);
603 
604 	/* Initialize the ring. This must happen _after_ we've cleared the ring
605 	 * registers with the above sequence (the readback of the HEAD registers
606 	 * also enforces ordering), otherwise the hw might lose the new ring
607 	 * register values. */
608 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
609 
610 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
611 	if (I915_READ_HEAD(ring))
612 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 			  ring->name, I915_READ_HEAD(ring));
614 	I915_WRITE_HEAD(ring, 0);
615 	(void)I915_READ_HEAD(ring);
616 
617 	I915_WRITE_CTL(ring,
618 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619 			| RING_VALID);
620 
621 	/* If the head is still not zero, the ring is dead */
622 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
623 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
624 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
625 		DRM_ERROR("%s initialization failed "
626 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 			  ring->name,
628 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
629 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
630 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
631 		ret = -EIO;
632 		goto out;
633 	}
634 
635 	ringbuf->last_retired_head = -1;
636 	ringbuf->head = I915_READ_HEAD(ring);
637 	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
638 	intel_ring_update_space(ringbuf);
639 
640 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
641 
642 out:
643 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
644 
645 	return ret;
646 }
647 
648 void
649 intel_fini_pipe_control(struct intel_engine_cs *ring)
650 {
651 	struct drm_device *dev = ring->dev;
652 
653 	if (ring->scratch.obj == NULL)
654 		return;
655 
656 	if (INTEL_INFO(dev)->gen >= 5) {
657 		kunmap(ring->scratch.obj->pages[0]);
658 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
659 	}
660 
661 	drm_gem_object_unreference(&ring->scratch.obj->base);
662 	ring->scratch.obj = NULL;
663 }
664 
665 int
666 intel_init_pipe_control(struct intel_engine_cs *ring)
667 {
668 	int ret;
669 
670 	WARN_ON(ring->scratch.obj);
671 
672 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
673 	if (ring->scratch.obj == NULL) {
674 		DRM_ERROR("Failed to allocate seqno page\n");
675 		ret = -ENOMEM;
676 		goto err;
677 	}
678 
679 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
680 	if (ret)
681 		goto err_unref;
682 
683 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
684 	if (ret)
685 		goto err_unref;
686 
687 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
688 	ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
689 	if (ring->scratch.cpu_page == NULL) {
690 		ret = -ENOMEM;
691 		goto err_unpin;
692 	}
693 
694 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
695 			 ring->name, ring->scratch.gtt_offset);
696 	return 0;
697 
698 err_unpin:
699 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
700 err_unref:
701 	drm_gem_object_unreference(&ring->scratch.obj->base);
702 err:
703 	return ret;
704 }
705 
706 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
707 				       struct intel_context *ctx)
708 {
709 	int ret, i;
710 	struct drm_device *dev = ring->dev;
711 	struct drm_i915_private *dev_priv = dev->dev_private;
712 	struct i915_workarounds *w = &dev_priv->workarounds;
713 
714 	if (WARN_ON_ONCE(w->count == 0))
715 		return 0;
716 
717 	ring->gpu_caches_dirty = true;
718 	ret = intel_ring_flush_all_caches(ring);
719 	if (ret)
720 		return ret;
721 
722 	ret = intel_ring_begin(ring, (w->count * 2 + 2));
723 	if (ret)
724 		return ret;
725 
726 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
727 	for (i = 0; i < w->count; i++) {
728 		intel_ring_emit(ring, w->reg[i].addr);
729 		intel_ring_emit(ring, w->reg[i].value);
730 	}
731 	intel_ring_emit(ring, MI_NOOP);
732 
733 	intel_ring_advance(ring);
734 
735 	ring->gpu_caches_dirty = true;
736 	ret = intel_ring_flush_all_caches(ring);
737 	if (ret)
738 		return ret;
739 
740 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
741 
742 	return 0;
743 }
744 
745 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
746 			      struct intel_context *ctx)
747 {
748 	int ret;
749 
750 	ret = intel_ring_workarounds_emit(ring, ctx);
751 	if (ret != 0)
752 		return ret;
753 
754 	ret = i915_gem_render_state_init(ring);
755 	if (ret)
756 		DRM_ERROR("init render state: %d\n", ret);
757 
758 	return ret;
759 }
760 
761 static int wa_add(struct drm_i915_private *dev_priv,
762 		  const u32 addr, const u32 mask, const u32 val)
763 {
764 	const u32 idx = dev_priv->workarounds.count;
765 
766 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
767 		return -ENOSPC;
768 
769 	dev_priv->workarounds.reg[idx].addr = addr;
770 	dev_priv->workarounds.reg[idx].value = val;
771 	dev_priv->workarounds.reg[idx].mask = mask;
772 
773 	dev_priv->workarounds.count++;
774 
775 	return 0;
776 }
777 
778 #define WA_REG(addr, mask, val) { \
779 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
780 		if (r) \
781 			return r; \
782 	}
783 
784 #define WA_SET_BIT_MASKED(addr, mask) \
785 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
786 
787 #define WA_CLR_BIT_MASKED(addr, mask) \
788 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
789 
790 #define WA_SET_FIELD_MASKED(addr, mask, value) \
791 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
792 
793 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
794 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
795 
796 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
797 
798 static int bdw_init_workarounds(struct intel_engine_cs *ring)
799 {
800 	struct drm_device *dev = ring->dev;
801 	struct drm_i915_private *dev_priv = dev->dev_private;
802 
803 	/* WaDisablePartialInstShootdown:bdw */
804 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
805 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
806 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
807 			  STALL_DOP_GATING_DISABLE);
808 
809 	/* WaDisableDopClockGating:bdw */
810 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
811 			  DOP_CLOCK_GATING_DISABLE);
812 
813 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
814 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
815 
816 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
817 	 * workaround for for a possible hang in the unlikely event a TLB
818 	 * invalidation occurs during a PSD flush.
819 	 */
820 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
821 			  /* WaForceEnableNonCoherent:bdw */
822 			  HDC_FORCE_NON_COHERENT |
823 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
824 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
825 			  /* WaHdcDisableFetchWhenMasked:bdw */
826 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
827 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
828 			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
829 
830 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
831 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
832 	 *  polygons in the same 8x4 pixel/sample area to be processed without
833 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
834 	 *  buffer."
835 	 *
836 	 * This optimization is off by default for Broadwell; turn it on.
837 	 */
838 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
839 
840 	/* Wa4x4STCOptimizationDisable:bdw */
841 	WA_SET_BIT_MASKED(CACHE_MODE_1,
842 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843 
844 	/*
845 	 * BSpec recommends 8x4 when MSAA is used,
846 	 * however in practice 16x4 seems fastest.
847 	 *
848 	 * Note that PS/WM thread counts depend on the WIZ hashing
849 	 * disable bit, which we don't touch here, but it's good
850 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851 	 */
852 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853 			    GEN6_WIZ_HASHING_MASK,
854 			    GEN6_WIZ_HASHING_16x4);
855 
856 	return 0;
857 }
858 
859 static int chv_init_workarounds(struct intel_engine_cs *ring)
860 {
861 	struct drm_device *dev = ring->dev;
862 	struct drm_i915_private *dev_priv = dev->dev_private;
863 
864 	/* WaDisablePartialInstShootdown:chv */
865 	/* WaDisableThreadStallDopClockGating:chv */
866 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
867 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
868 			  STALL_DOP_GATING_DISABLE);
869 
870 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
871 	 * workaround for a possible hang in the unlikely event a TLB
872 	 * invalidation occurs during a PSD flush.
873 	 */
874 	/* WaForceEnableNonCoherent:chv */
875 	/* WaHdcDisableFetchWhenMasked:chv */
876 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
877 			  HDC_FORCE_NON_COHERENT |
878 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED);
879 
880 	/* According to the CACHE_MODE_0 default value documentation, some
881 	 * CHV platforms disable this optimization by default.  Turn it on.
882 	 */
883 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
884 
885 	/* Wa4x4STCOptimizationDisable:chv */
886 	WA_SET_BIT_MASKED(CACHE_MODE_1,
887 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
888 
889 	/* Improve HiZ throughput on CHV. */
890 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
891 
892 	/*
893 	 * BSpec recommends 8x4 when MSAA is used,
894 	 * however in practice 16x4 seems fastest.
895 	 *
896 	 * Note that PS/WM thread counts depend on the WIZ hashing
897 	 * disable bit, which we don't touch here, but it's good
898 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
899 	 */
900 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
901 			    GEN6_WIZ_HASHING_MASK,
902 			    GEN6_WIZ_HASHING_16x4);
903 
904 	return 0;
905 }
906 
907 static int gen9_init_workarounds(struct intel_engine_cs *ring)
908 {
909 	struct drm_device *dev = ring->dev;
910 	struct drm_i915_private *dev_priv = dev->dev_private;
911 
912 	/* WaDisablePartialInstShootdown:skl */
913 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
914 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
915 
916 	/* Syncing dependencies between camera and graphics */
917 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
918 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
919 
920 	if (INTEL_REVID(dev) == SKL_REVID_A0 ||
921 	    INTEL_REVID(dev) == SKL_REVID_B0) {
922 		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl */
923 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
924 				  GEN9_DG_MIRROR_FIX_ENABLE);
925 	}
926 
927 	if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) {
928 		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl */
929 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
930 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
931 		WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
932 				  DISABLE_PIXEL_MASK_CAMMING);
933 	}
934 
935 	if (INTEL_REVID(dev) >= SKL_REVID_C0) {
936 		/* WaEnableYV12BugFixInHalfSliceChicken7:skl */
937 		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
938 				  GEN9_ENABLE_YV12_BUGFIX);
939 	}
940 
941 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
942 		/*
943 		 *Use Force Non-Coherent whenever executing a 3D context. This
944 		 * is a workaround for a possible hang in the unlikely event
945 		 * a TLB invalidation occurs during a PSD flush.
946 		 */
947 		/* WaForceEnableNonCoherent:skl */
948 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
949 				  HDC_FORCE_NON_COHERENT);
950 	}
951 
952 	/* Wa4x4STCOptimizationDisable:skl */
953 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
954 
955 	/* WaDisablePartialResolveInVc:skl */
956 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
957 
958 	/* WaCcsTlbPrefetchDisable:skl */
959 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
960 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
961 
962 	return 0;
963 }
964 
965 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
966 {
967 	struct drm_device *dev = ring->dev;
968 	struct drm_i915_private *dev_priv = dev->dev_private;
969 	u8 vals[3] = { 0, 0, 0 };
970 	unsigned int i;
971 
972 	for (i = 0; i < 3; i++) {
973 		u8 ss;
974 
975 		/*
976 		 * Only consider slices where one, and only one, subslice has 7
977 		 * EUs
978 		 */
979 		if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
980 			continue;
981 
982 		/*
983 		 * subslice_7eu[i] != 0 (because of the check above) and
984 		 * ss_max == 4 (maximum number of subslices possible per slice)
985 		 *
986 		 * ->    0 <= ss <= 3;
987 		 */
988 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
989 		vals[i] = 3 - ss;
990 	}
991 
992 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
993 		return 0;
994 
995 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
996 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
997 			    GEN9_IZ_HASHING_MASK(2) |
998 			    GEN9_IZ_HASHING_MASK(1) |
999 			    GEN9_IZ_HASHING_MASK(0),
1000 			    GEN9_IZ_HASHING(2, vals[2]) |
1001 			    GEN9_IZ_HASHING(1, vals[1]) |
1002 			    GEN9_IZ_HASHING(0, vals[0]));
1003 
1004 	return 0;
1005 }
1006 
1007 
1008 static int skl_init_workarounds(struct intel_engine_cs *ring)
1009 {
1010 	struct drm_device *dev = ring->dev;
1011 	struct drm_i915_private *dev_priv = dev->dev_private;
1012 
1013 	gen9_init_workarounds(ring);
1014 
1015 	/* WaDisablePowerCompilerClockGating:skl */
1016 	if (INTEL_REVID(dev) == SKL_REVID_B0)
1017 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1018 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1019 
1020 	if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1021 	    INTEL_REVID(dev) == SKL_REVID_D0)
1022 		/* WaBarrierPerformanceFixDisable:skl */
1023 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1024 				  HDC_FENCE_DEST_SLM_DISABLE |
1025 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1026 
1027 	return skl_tune_iz_hashing(ring);
1028 }
1029 
1030 int init_workarounds_ring(struct intel_engine_cs *ring)
1031 {
1032 	struct drm_device *dev = ring->dev;
1033 	struct drm_i915_private *dev_priv = dev->dev_private;
1034 
1035 	WARN_ON(ring->id != RCS);
1036 
1037 	dev_priv->workarounds.count = 0;
1038 
1039 	if (IS_BROADWELL(dev))
1040 		return bdw_init_workarounds(ring);
1041 
1042 	if (IS_CHERRYVIEW(dev))
1043 		return chv_init_workarounds(ring);
1044 
1045 	if (IS_SKYLAKE(dev))
1046 		return skl_init_workarounds(ring);
1047 	else if (IS_GEN9(dev))
1048 		return gen9_init_workarounds(ring);
1049 
1050 	return 0;
1051 }
1052 
1053 static int init_render_ring(struct intel_engine_cs *ring)
1054 {
1055 	struct drm_device *dev = ring->dev;
1056 	struct drm_i915_private *dev_priv = dev->dev_private;
1057 	int ret = init_ring_common(ring);
1058 	if (ret)
1059 		return ret;
1060 
1061 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1062 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1063 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1064 
1065 	/* We need to disable the AsyncFlip performance optimisations in order
1066 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1067 	 * programmed to '1' on all products.
1068 	 *
1069 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1070 	 */
1071 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
1072 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1073 
1074 	/* Required for the hardware to program scanline values for waiting */
1075 	/* WaEnableFlushTlbInvalidationMode:snb */
1076 	if (INTEL_INFO(dev)->gen == 6)
1077 		I915_WRITE(GFX_MODE,
1078 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1079 
1080 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1081 	if (IS_GEN7(dev))
1082 		I915_WRITE(GFX_MODE_GEN7,
1083 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1084 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1085 
1086 	if (IS_GEN6(dev)) {
1087 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1088 		 * "If this bit is set, STCunit will have LRA as replacement
1089 		 *  policy. [...] This bit must be reset.  LRA replacement
1090 		 *  policy is not supported."
1091 		 */
1092 		I915_WRITE(CACHE_MODE_0,
1093 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1094 	}
1095 
1096 	if (INTEL_INFO(dev)->gen >= 6)
1097 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1098 
1099 	if (HAS_L3_DPF(dev))
1100 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1101 
1102 	return init_workarounds_ring(ring);
1103 }
1104 
1105 static void render_ring_cleanup(struct intel_engine_cs *ring)
1106 {
1107 	struct drm_device *dev = ring->dev;
1108 	struct drm_i915_private *dev_priv = dev->dev_private;
1109 
1110 	if (dev_priv->semaphore_obj) {
1111 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1112 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1113 		dev_priv->semaphore_obj = NULL;
1114 	}
1115 
1116 	intel_fini_pipe_control(ring);
1117 }
1118 
1119 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1120 			   unsigned int num_dwords)
1121 {
1122 #define MBOX_UPDATE_DWORDS 8
1123 	struct drm_device *dev = signaller->dev;
1124 	struct drm_i915_private *dev_priv = dev->dev_private;
1125 	struct intel_engine_cs *waiter;
1126 	int i, ret, num_rings;
1127 
1128 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1129 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1130 #undef MBOX_UPDATE_DWORDS
1131 
1132 	ret = intel_ring_begin(signaller, num_dwords);
1133 	if (ret)
1134 		return ret;
1135 
1136 	for_each_ring(waiter, dev_priv, i) {
1137 		u32 seqno;
1138 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1139 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1140 			continue;
1141 
1142 		seqno = i915_gem_request_get_seqno(
1143 					   signaller->outstanding_lazy_request);
1144 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1145 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1146 					   PIPE_CONTROL_QW_WRITE |
1147 					   PIPE_CONTROL_FLUSH_ENABLE);
1148 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1149 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1150 		intel_ring_emit(signaller, seqno);
1151 		intel_ring_emit(signaller, 0);
1152 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1153 					   MI_SEMAPHORE_TARGET(waiter->id));
1154 		intel_ring_emit(signaller, 0);
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1161 			   unsigned int num_dwords)
1162 {
1163 #define MBOX_UPDATE_DWORDS 6
1164 	struct drm_device *dev = signaller->dev;
1165 	struct drm_i915_private *dev_priv = dev->dev_private;
1166 	struct intel_engine_cs *waiter;
1167 	int i, ret, num_rings;
1168 
1169 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1170 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1171 #undef MBOX_UPDATE_DWORDS
1172 
1173 	ret = intel_ring_begin(signaller, num_dwords);
1174 	if (ret)
1175 		return ret;
1176 
1177 	for_each_ring(waiter, dev_priv, i) {
1178 		u32 seqno;
1179 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1180 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1181 			continue;
1182 
1183 		seqno = i915_gem_request_get_seqno(
1184 					   signaller->outstanding_lazy_request);
1185 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1186 					   MI_FLUSH_DW_OP_STOREDW);
1187 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1188 					   MI_FLUSH_DW_USE_GTT);
1189 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1190 		intel_ring_emit(signaller, seqno);
1191 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1192 					   MI_SEMAPHORE_TARGET(waiter->id));
1193 		intel_ring_emit(signaller, 0);
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int gen6_signal(struct intel_engine_cs *signaller,
1200 		       unsigned int num_dwords)
1201 {
1202 	struct drm_device *dev = signaller->dev;
1203 	struct drm_i915_private *dev_priv = dev->dev_private;
1204 	struct intel_engine_cs *useless;
1205 	int i, ret, num_rings;
1206 
1207 #define MBOX_UPDATE_DWORDS 3
1208 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1209 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1210 #undef MBOX_UPDATE_DWORDS
1211 
1212 	ret = intel_ring_begin(signaller, num_dwords);
1213 	if (ret)
1214 		return ret;
1215 
1216 	for_each_ring(useless, dev_priv, i) {
1217 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1218 		if (mbox_reg != GEN6_NOSYNC) {
1219 			u32 seqno = i915_gem_request_get_seqno(
1220 					   signaller->outstanding_lazy_request);
1221 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1222 			intel_ring_emit(signaller, mbox_reg);
1223 			intel_ring_emit(signaller, seqno);
1224 		}
1225 	}
1226 
1227 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1228 	if (num_rings % 2 == 0)
1229 		intel_ring_emit(signaller, MI_NOOP);
1230 
1231 	return 0;
1232 }
1233 
1234 /**
1235  * gen6_add_request - Update the semaphore mailbox registers
1236  *
1237  * @ring - ring that is adding a request
1238  * @seqno - return seqno stuck into the ring
1239  *
1240  * Update the mailbox registers in the *other* rings with the current seqno.
1241  * This acts like a signal in the canonical semaphore.
1242  */
1243 static int
1244 gen6_add_request(struct intel_engine_cs *ring)
1245 {
1246 	int ret;
1247 
1248 	if (ring->semaphore.signal)
1249 		ret = ring->semaphore.signal(ring, 4);
1250 	else
1251 		ret = intel_ring_begin(ring, 4);
1252 
1253 	if (ret)
1254 		return ret;
1255 
1256 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1257 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1258 	intel_ring_emit(ring,
1259 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1260 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1261 	__intel_ring_advance(ring);
1262 
1263 	return 0;
1264 }
1265 
1266 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1267 					      u32 seqno)
1268 {
1269 	struct drm_i915_private *dev_priv = dev->dev_private;
1270 	return dev_priv->last_seqno < seqno;
1271 }
1272 
1273 /**
1274  * intel_ring_sync - sync the waiter to the signaller on seqno
1275  *
1276  * @waiter - ring that is waiting
1277  * @signaller - ring which has, or will signal
1278  * @seqno - seqno which the waiter will block on
1279  */
1280 
1281 static int
1282 gen8_ring_sync(struct intel_engine_cs *waiter,
1283 	       struct intel_engine_cs *signaller,
1284 	       u32 seqno)
1285 {
1286 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1287 	int ret;
1288 
1289 	ret = intel_ring_begin(waiter, 4);
1290 	if (ret)
1291 		return ret;
1292 
1293 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1294 				MI_SEMAPHORE_GLOBAL_GTT |
1295 				MI_SEMAPHORE_POLL |
1296 				MI_SEMAPHORE_SAD_GTE_SDD);
1297 	intel_ring_emit(waiter, seqno);
1298 	intel_ring_emit(waiter,
1299 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1300 	intel_ring_emit(waiter,
1301 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1302 	intel_ring_advance(waiter);
1303 	return 0;
1304 }
1305 
1306 static int
1307 gen6_ring_sync(struct intel_engine_cs *waiter,
1308 	       struct intel_engine_cs *signaller,
1309 	       u32 seqno)
1310 {
1311 	u32 dw1 = MI_SEMAPHORE_MBOX |
1312 		  MI_SEMAPHORE_COMPARE |
1313 		  MI_SEMAPHORE_REGISTER;
1314 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1315 	int ret;
1316 
1317 	/* Throughout all of the GEM code, seqno passed implies our current
1318 	 * seqno is >= the last seqno executed. However for hardware the
1319 	 * comparison is strictly greater than.
1320 	 */
1321 	seqno -= 1;
1322 
1323 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1324 
1325 	ret = intel_ring_begin(waiter, 4);
1326 	if (ret)
1327 		return ret;
1328 
1329 	/* If seqno wrap happened, omit the wait with no-ops */
1330 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1331 		intel_ring_emit(waiter, dw1 | wait_mbox);
1332 		intel_ring_emit(waiter, seqno);
1333 		intel_ring_emit(waiter, 0);
1334 		intel_ring_emit(waiter, MI_NOOP);
1335 	} else {
1336 		intel_ring_emit(waiter, MI_NOOP);
1337 		intel_ring_emit(waiter, MI_NOOP);
1338 		intel_ring_emit(waiter, MI_NOOP);
1339 		intel_ring_emit(waiter, MI_NOOP);
1340 	}
1341 	intel_ring_advance(waiter);
1342 
1343 	return 0;
1344 }
1345 
1346 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1347 do {									\
1348 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1349 		 PIPE_CONTROL_DEPTH_STALL);				\
1350 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1351 	intel_ring_emit(ring__, 0);							\
1352 	intel_ring_emit(ring__, 0);							\
1353 } while (0)
1354 
1355 static int
1356 pc_render_add_request(struct intel_engine_cs *ring)
1357 {
1358 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1359 	int ret;
1360 
1361 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1362 	 * incoherent with writes to memory, i.e. completely fubar,
1363 	 * so we need to use PIPE_NOTIFY instead.
1364 	 *
1365 	 * However, we also need to workaround the qword write
1366 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1367 	 * memory before requesting an interrupt.
1368 	 */
1369 	ret = intel_ring_begin(ring, 32);
1370 	if (ret)
1371 		return ret;
1372 
1373 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1374 			PIPE_CONTROL_WRITE_FLUSH |
1375 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1376 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1377 	intel_ring_emit(ring,
1378 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1379 	intel_ring_emit(ring, 0);
1380 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1381 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1382 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1383 	scratch_addr += 2 * CACHELINE_BYTES;
1384 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1385 	scratch_addr += 2 * CACHELINE_BYTES;
1386 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1387 	scratch_addr += 2 * CACHELINE_BYTES;
1388 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1389 	scratch_addr += 2 * CACHELINE_BYTES;
1390 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1391 
1392 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1393 			PIPE_CONTROL_WRITE_FLUSH |
1394 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1395 			PIPE_CONTROL_NOTIFY);
1396 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1397 	intel_ring_emit(ring,
1398 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1399 	intel_ring_emit(ring, 0);
1400 	__intel_ring_advance(ring);
1401 
1402 	return 0;
1403 }
1404 
1405 static u32
1406 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1407 {
1408 	/* Workaround to force correct ordering between irq and seqno writes on
1409 	 * ivb (and maybe also on snb) by reading from a CS register (like
1410 	 * ACTHD) before reading the status page. */
1411 	if (!lazy_coherency) {
1412 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1413 		POSTING_READ(RING_ACTHD(ring->mmio_base));
1414 	}
1415 
1416 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1417 }
1418 
1419 static u32
1420 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1421 {
1422 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1423 }
1424 
1425 static void
1426 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1427 {
1428 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1429 }
1430 
1431 static u32
1432 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1433 {
1434 	return ring->scratch.cpu_page[0];
1435 }
1436 
1437 static void
1438 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1439 {
1440 	ring->scratch.cpu_page[0] = seqno;
1441 }
1442 
1443 static bool
1444 gen5_ring_get_irq(struct intel_engine_cs *ring)
1445 {
1446 	struct drm_device *dev = ring->dev;
1447 	struct drm_i915_private *dev_priv = dev->dev_private;
1448 
1449 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1450 		return false;
1451 
1452 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1453 	if (ring->irq_refcount++ == 0)
1454 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1455 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1456 
1457 	return true;
1458 }
1459 
1460 static void
1461 gen5_ring_put_irq(struct intel_engine_cs *ring)
1462 {
1463 	struct drm_device *dev = ring->dev;
1464 	struct drm_i915_private *dev_priv = dev->dev_private;
1465 
1466 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1467 	if (--ring->irq_refcount == 0)
1468 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1469 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1470 }
1471 
1472 static bool
1473 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1474 {
1475 	struct drm_device *dev = ring->dev;
1476 	struct drm_i915_private *dev_priv = dev->dev_private;
1477 
1478 	if (!intel_irqs_enabled(dev_priv))
1479 		return false;
1480 
1481 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1482 	if (ring->irq_refcount++ == 0) {
1483 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1484 		I915_WRITE(IMR, dev_priv->irq_mask);
1485 		POSTING_READ(IMR);
1486 	}
1487 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1488 
1489 	return true;
1490 }
1491 
1492 static void
1493 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1494 {
1495 	struct drm_device *dev = ring->dev;
1496 	struct drm_i915_private *dev_priv = dev->dev_private;
1497 
1498 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1499 	if (--ring->irq_refcount == 0) {
1500 		dev_priv->irq_mask |= ring->irq_enable_mask;
1501 		I915_WRITE(IMR, dev_priv->irq_mask);
1502 		POSTING_READ(IMR);
1503 	}
1504 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1505 }
1506 
1507 static bool
1508 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1509 {
1510 	struct drm_device *dev = ring->dev;
1511 	struct drm_i915_private *dev_priv = dev->dev_private;
1512 
1513 	if (!intel_irqs_enabled(dev_priv))
1514 		return false;
1515 
1516 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1517 	if (ring->irq_refcount++ == 0) {
1518 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1519 		I915_WRITE16(IMR, dev_priv->irq_mask);
1520 		POSTING_READ16(IMR);
1521 	}
1522 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1523 
1524 	return true;
1525 }
1526 
1527 static void
1528 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1529 {
1530 	struct drm_device *dev = ring->dev;
1531 	struct drm_i915_private *dev_priv = dev->dev_private;
1532 
1533 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1534 	if (--ring->irq_refcount == 0) {
1535 		dev_priv->irq_mask |= ring->irq_enable_mask;
1536 		I915_WRITE16(IMR, dev_priv->irq_mask);
1537 		POSTING_READ16(IMR);
1538 	}
1539 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1540 }
1541 
1542 static int
1543 bsd_ring_flush(struct intel_engine_cs *ring,
1544 	       u32     invalidate_domains,
1545 	       u32     flush_domains)
1546 {
1547 	int ret;
1548 
1549 	ret = intel_ring_begin(ring, 2);
1550 	if (ret)
1551 		return ret;
1552 
1553 	intel_ring_emit(ring, MI_FLUSH);
1554 	intel_ring_emit(ring, MI_NOOP);
1555 	intel_ring_advance(ring);
1556 	return 0;
1557 }
1558 
1559 static int
1560 i9xx_add_request(struct intel_engine_cs *ring)
1561 {
1562 	int ret;
1563 
1564 	ret = intel_ring_begin(ring, 4);
1565 	if (ret)
1566 		return ret;
1567 
1568 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1569 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1570 	intel_ring_emit(ring,
1571 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1572 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1573 	__intel_ring_advance(ring);
1574 
1575 	return 0;
1576 }
1577 
1578 static bool
1579 gen6_ring_get_irq(struct intel_engine_cs *ring)
1580 {
1581 	struct drm_device *dev = ring->dev;
1582 	struct drm_i915_private *dev_priv = dev->dev_private;
1583 
1584 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1585 		return false;
1586 
1587 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1588 	if (ring->irq_refcount++ == 0) {
1589 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1590 			I915_WRITE_IMR(ring,
1591 				       ~(ring->irq_enable_mask |
1592 					 GT_PARITY_ERROR(dev)));
1593 		else
1594 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1595 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1596 	}
1597 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1598 
1599 	return true;
1600 }
1601 
1602 static void
1603 gen6_ring_put_irq(struct intel_engine_cs *ring)
1604 {
1605 	struct drm_device *dev = ring->dev;
1606 	struct drm_i915_private *dev_priv = dev->dev_private;
1607 
1608 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1609 	if (--ring->irq_refcount == 0) {
1610 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1611 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1612 		else
1613 			I915_WRITE_IMR(ring, ~0);
1614 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1615 	}
1616 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1617 }
1618 
1619 static bool
1620 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1621 {
1622 	struct drm_device *dev = ring->dev;
1623 	struct drm_i915_private *dev_priv = dev->dev_private;
1624 
1625 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1626 		return false;
1627 
1628 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1629 	if (ring->irq_refcount++ == 0) {
1630 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1631 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1632 	}
1633 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1634 
1635 	return true;
1636 }
1637 
1638 static void
1639 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1640 {
1641 	struct drm_device *dev = ring->dev;
1642 	struct drm_i915_private *dev_priv = dev->dev_private;
1643 
1644 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1645 	if (--ring->irq_refcount == 0) {
1646 		I915_WRITE_IMR(ring, ~0);
1647 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1648 	}
1649 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1650 }
1651 
1652 static bool
1653 gen8_ring_get_irq(struct intel_engine_cs *ring)
1654 {
1655 	struct drm_device *dev = ring->dev;
1656 	struct drm_i915_private *dev_priv = dev->dev_private;
1657 
1658 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1659 		return false;
1660 
1661 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1662 	if (ring->irq_refcount++ == 0) {
1663 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1664 			I915_WRITE_IMR(ring,
1665 				       ~(ring->irq_enable_mask |
1666 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1667 		} else {
1668 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1669 		}
1670 		POSTING_READ(RING_IMR(ring->mmio_base));
1671 	}
1672 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1673 
1674 	return true;
1675 }
1676 
1677 static void
1678 gen8_ring_put_irq(struct intel_engine_cs *ring)
1679 {
1680 	struct drm_device *dev = ring->dev;
1681 	struct drm_i915_private *dev_priv = dev->dev_private;
1682 
1683 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1684 	if (--ring->irq_refcount == 0) {
1685 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1686 			I915_WRITE_IMR(ring,
1687 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1688 		} else {
1689 			I915_WRITE_IMR(ring, ~0);
1690 		}
1691 		POSTING_READ(RING_IMR(ring->mmio_base));
1692 	}
1693 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1694 }
1695 
1696 static int
1697 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1698 			 u64 offset, u32 length,
1699 			 unsigned dispatch_flags)
1700 {
1701 	int ret;
1702 
1703 	ret = intel_ring_begin(ring, 2);
1704 	if (ret)
1705 		return ret;
1706 
1707 	intel_ring_emit(ring,
1708 			MI_BATCH_BUFFER_START |
1709 			MI_BATCH_GTT |
1710 			(dispatch_flags & I915_DISPATCH_SECURE ?
1711 			 0 : MI_BATCH_NON_SECURE_I965));
1712 	intel_ring_emit(ring, offset);
1713 	intel_ring_advance(ring);
1714 
1715 	return 0;
1716 }
1717 
1718 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1719 #define I830_BATCH_LIMIT (256*1024)
1720 #define I830_TLB_ENTRIES (2)
1721 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1722 static int
1723 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1724 			 u64 offset, u32 len,
1725 			 unsigned dispatch_flags)
1726 {
1727 	u32 cs_offset = ring->scratch.gtt_offset;
1728 	int ret;
1729 
1730 	ret = intel_ring_begin(ring, 6);
1731 	if (ret)
1732 		return ret;
1733 
1734 	/* Evict the invalid PTE TLBs */
1735 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1736 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1737 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1738 	intel_ring_emit(ring, cs_offset);
1739 	intel_ring_emit(ring, 0xdeadbeef);
1740 	intel_ring_emit(ring, MI_NOOP);
1741 	intel_ring_advance(ring);
1742 
1743 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1744 		if (len > I830_BATCH_LIMIT)
1745 			return -ENOSPC;
1746 
1747 		ret = intel_ring_begin(ring, 6 + 2);
1748 		if (ret)
1749 			return ret;
1750 
1751 		/* Blit the batch (which has now all relocs applied) to the
1752 		 * stable batch scratch bo area (so that the CS never
1753 		 * stumbles over its tlb invalidation bug) ...
1754 		 */
1755 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1756 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1757 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1758 		intel_ring_emit(ring, cs_offset);
1759 		intel_ring_emit(ring, 4096);
1760 		intel_ring_emit(ring, offset);
1761 
1762 		intel_ring_emit(ring, MI_FLUSH);
1763 		intel_ring_emit(ring, MI_NOOP);
1764 		intel_ring_advance(ring);
1765 
1766 		/* ... and execute it. */
1767 		offset = cs_offset;
1768 	}
1769 
1770 	ret = intel_ring_begin(ring, 4);
1771 	if (ret)
1772 		return ret;
1773 
1774 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1775 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1776 					0 : MI_BATCH_NON_SECURE));
1777 	intel_ring_emit(ring, offset + len - 8);
1778 	intel_ring_emit(ring, MI_NOOP);
1779 	intel_ring_advance(ring);
1780 
1781 	return 0;
1782 }
1783 
1784 static int
1785 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1786 			 u64 offset, u32 len,
1787 			 unsigned dispatch_flags)
1788 {
1789 	int ret;
1790 
1791 	ret = intel_ring_begin(ring, 2);
1792 	if (ret)
1793 		return ret;
1794 
1795 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1796 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1797 					0 : MI_BATCH_NON_SECURE));
1798 	intel_ring_advance(ring);
1799 
1800 	return 0;
1801 }
1802 
1803 static void cleanup_status_page(struct intel_engine_cs *ring)
1804 {
1805 	struct drm_i915_gem_object *obj;
1806 
1807 	obj = ring->status_page.obj;
1808 	if (obj == NULL)
1809 		return;
1810 
1811 	kunmap(obj->pages[0]);
1812 	i915_gem_object_ggtt_unpin(obj);
1813 	drm_gem_object_unreference(&obj->base);
1814 	ring->status_page.obj = NULL;
1815 }
1816 
1817 static int init_status_page(struct intel_engine_cs *ring)
1818 {
1819 	struct drm_i915_gem_object *obj;
1820 
1821 	if ((obj = ring->status_page.obj) == NULL) {
1822 		unsigned flags;
1823 		int ret;
1824 
1825 		obj = i915_gem_alloc_object(ring->dev, 4096);
1826 		if (obj == NULL) {
1827 			DRM_ERROR("Failed to allocate status page\n");
1828 			return -ENOMEM;
1829 		}
1830 
1831 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1832 		if (ret)
1833 			goto err_unref;
1834 
1835 		flags = 0;
1836 		if (!HAS_LLC(ring->dev))
1837 			/* On g33, we cannot place HWS above 256MiB, so
1838 			 * restrict its pinning to the low mappable arena.
1839 			 * Though this restriction is not documented for
1840 			 * gen4, gen5, or byt, they also behave similarly
1841 			 * and hang if the HWS is placed at the top of the
1842 			 * GTT. To generalise, it appears that all !llc
1843 			 * platforms have issues with us placing the HWS
1844 			 * above the mappable region (even though we never
1845 			 * actualy map it).
1846 			 */
1847 			flags |= PIN_MAPPABLE;
1848 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1849 		if (ret) {
1850 err_unref:
1851 			drm_gem_object_unreference(&obj->base);
1852 			return ret;
1853 		}
1854 
1855 		ring->status_page.obj = obj;
1856 	}
1857 
1858 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1859 	ring->status_page.page_addr = kmap(obj->pages[0]);
1860 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1861 
1862 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1863 			ring->name, ring->status_page.gfx_addr);
1864 
1865 	return 0;
1866 }
1867 
1868 static int init_phys_status_page(struct intel_engine_cs *ring)
1869 {
1870 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1871 
1872 	if (!dev_priv->status_page_dmah) {
1873 		dev_priv->status_page_dmah =
1874 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1875 		if (!dev_priv->status_page_dmah)
1876 			return -ENOMEM;
1877 	}
1878 
1879 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1880 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1881 
1882 	return 0;
1883 }
1884 
1885 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1886 {
1887 	iounmap(ringbuf->virtual_start, ringbuf->size);
1888 	ringbuf->virtual_start = NULL;
1889 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1890 }
1891 
1892 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1893 				     struct intel_ringbuffer *ringbuf)
1894 {
1895 	struct drm_i915_private *dev_priv = to_i915(dev);
1896 	struct drm_i915_gem_object *obj = ringbuf->obj;
1897 	int ret;
1898 
1899 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1900 	if (ret)
1901 		return ret;
1902 
1903 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1904 	if (ret) {
1905 		i915_gem_object_ggtt_unpin(obj);
1906 		return ret;
1907 	}
1908 
1909 	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1910 			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1911 	if (ringbuf->virtual_start == NULL) {
1912 		i915_gem_object_ggtt_unpin(obj);
1913 		return -EINVAL;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1920 {
1921 	drm_gem_object_unreference(&ringbuf->obj->base);
1922 	ringbuf->obj = NULL;
1923 }
1924 
1925 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1926 			       struct intel_ringbuffer *ringbuf)
1927 {
1928 	struct drm_i915_gem_object *obj;
1929 
1930 	obj = NULL;
1931 	if (!HAS_LLC(dev))
1932 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1933 	if (obj == NULL)
1934 		obj = i915_gem_alloc_object(dev, ringbuf->size);
1935 	if (obj == NULL)
1936 		return -ENOMEM;
1937 
1938 	/* mark ring buffers as read-only from GPU side by default */
1939 	obj->gt_ro = 1;
1940 
1941 	ringbuf->obj = obj;
1942 
1943 	return 0;
1944 }
1945 
1946 static int intel_init_ring_buffer(struct drm_device *dev,
1947 				  struct intel_engine_cs *ring)
1948 {
1949 	struct intel_ringbuffer *ringbuf;
1950 	int ret;
1951 
1952 	WARN_ON(ring->buffer);
1953 
1954 	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1955 	if (!ringbuf)
1956 		return -ENOMEM;
1957 	ring->buffer = ringbuf;
1958 
1959 	ring->dev = dev;
1960 	INIT_LIST_HEAD(&ring->active_list);
1961 	INIT_LIST_HEAD(&ring->request_list);
1962 	INIT_LIST_HEAD(&ring->execlist_queue);
1963 	ringbuf->size = 32 * PAGE_SIZE;
1964 	ringbuf->ring = ring;
1965 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1966 
1967 	init_waitqueue_head(&ring->irq_queue);
1968 
1969 	if (I915_NEED_GFX_HWS(dev)) {
1970 		ret = init_status_page(ring);
1971 		if (ret)
1972 			goto error;
1973 	} else {
1974 		BUG_ON(ring->id != RCS);
1975 		ret = init_phys_status_page(ring);
1976 		if (ret)
1977 			goto error;
1978 	}
1979 
1980 	WARN_ON(ringbuf->obj);
1981 
1982 	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1983 	if (ret) {
1984 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1985 				ring->name, ret);
1986 		goto error;
1987 	}
1988 
1989 	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1990 	if (ret) {
1991 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
1992 				ring->name, ret);
1993 		intel_destroy_ringbuffer_obj(ringbuf);
1994 		goto error;
1995 	}
1996 
1997 	/* Workaround an erratum on the i830 which causes a hang if
1998 	 * the TAIL pointer points to within the last 2 cachelines
1999 	 * of the buffer.
2000 	 */
2001 	ringbuf->effective_size = ringbuf->size;
2002 	if (IS_I830(dev) || IS_845G(dev))
2003 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2004 
2005 	ret = i915_cmd_parser_init_ring(ring);
2006 	if (ret)
2007 		goto error;
2008 
2009 	return 0;
2010 
2011 error:
2012 	kfree(ringbuf);
2013 	ring->buffer = NULL;
2014 	return ret;
2015 }
2016 
2017 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2018 {
2019 	struct drm_i915_private *dev_priv;
2020 	struct intel_ringbuffer *ringbuf;
2021 
2022 	if (!intel_ring_initialized(ring))
2023 		return;
2024 
2025 	dev_priv = to_i915(ring->dev);
2026 	ringbuf = ring->buffer;
2027 
2028 	intel_stop_ring_buffer(ring);
2029 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2030 
2031 	intel_unpin_ringbuffer_obj(ringbuf);
2032 	intel_destroy_ringbuffer_obj(ringbuf);
2033 	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2034 
2035 	if (ring->cleanup)
2036 		ring->cleanup(ring);
2037 
2038 	cleanup_status_page(ring);
2039 
2040 	i915_cmd_parser_fini_ring(ring);
2041 
2042 	kfree(ringbuf);
2043 	ring->buffer = NULL;
2044 }
2045 
2046 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
2047 {
2048 	struct intel_ringbuffer *ringbuf = ring->buffer;
2049 	struct drm_i915_gem_request *request;
2050 	int ret;
2051 
2052 	if (intel_ring_space(ringbuf) >= n)
2053 		return 0;
2054 
2055 	list_for_each_entry(request, &ring->request_list, list) {
2056 		if (__intel_ring_space(request->postfix, ringbuf->tail,
2057 				       ringbuf->size) >= n) {
2058 			break;
2059 		}
2060 	}
2061 
2062 	if (&request->list == &ring->request_list)
2063 		return -ENOSPC;
2064 
2065 	ret = i915_wait_request(request);
2066 	if (ret)
2067 		return ret;
2068 
2069 	i915_gem_retire_requests_ring(ring);
2070 
2071 	return 0;
2072 }
2073 
2074 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2075 {
2076 	struct drm_device *dev = ring->dev;
2077 	struct drm_i915_private *dev_priv = dev->dev_private;
2078 	struct intel_ringbuffer *ringbuf = ring->buffer;
2079 	unsigned long end;
2080 	int ret;
2081 
2082 	ret = intel_ring_wait_request(ring, n);
2083 	if (ret != -ENOSPC)
2084 		return ret;
2085 
2086 	/* force the tail write in case we have been skipping them */
2087 	__intel_ring_advance(ring);
2088 
2089 	/* With GEM the hangcheck timer should kick us out of the loop,
2090 	 * leaving it early runs the risk of corrupting GEM state (due
2091 	 * to running on almost untested codepaths). But on resume
2092 	 * timers don't work yet, so prevent a complete hang in that
2093 	 * case by choosing an insanely large timeout. */
2094 	end = jiffies + 60 * HZ;
2095 
2096 	ret = 0;
2097 	trace_i915_ring_wait_begin(ring);
2098 	do {
2099 		if (intel_ring_space(ringbuf) >= n)
2100 			break;
2101 		ringbuf->head = I915_READ_HEAD(ring);
2102 		if (intel_ring_space(ringbuf) >= n)
2103 			break;
2104 
2105 		msleep(1);
2106 
2107 		if (dev_priv->mm.interruptible && signal_pending(curthread->td_lwp)) {
2108 			ret = -ERESTARTSYS;
2109 			break;
2110 		}
2111 
2112 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2113 					   dev_priv->mm.interruptible);
2114 		if (ret)
2115 			break;
2116 
2117 		if (time_after(jiffies, end)) {
2118 			ret = -EBUSY;
2119 			break;
2120 		}
2121 	} while (1);
2122 	trace_i915_ring_wait_end(ring);
2123 	return ret;
2124 }
2125 
2126 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2127 {
2128 	uint32_t __iomem *virt;
2129 	struct intel_ringbuffer *ringbuf = ring->buffer;
2130 	int rem = ringbuf->size - ringbuf->tail;
2131 
2132 	if (ringbuf->space < rem) {
2133 		int ret = ring_wait_for_space(ring, rem);
2134 		if (ret)
2135 			return ret;
2136 	}
2137 
2138 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
2139 	rem /= 4;
2140 	while (rem--)
2141 		iowrite32(MI_NOOP, virt++);
2142 
2143 	ringbuf->tail = 0;
2144 	intel_ring_update_space(ringbuf);
2145 
2146 	return 0;
2147 }
2148 
2149 int intel_ring_idle(struct intel_engine_cs *ring)
2150 {
2151 	struct drm_i915_gem_request *req;
2152 	int ret;
2153 
2154 	/* We need to add any requests required to flush the objects and ring */
2155 	if (ring->outstanding_lazy_request) {
2156 		ret = i915_add_request(ring);
2157 		if (ret)
2158 			return ret;
2159 	}
2160 
2161 	/* Wait upon the last request to be completed */
2162 	if (list_empty(&ring->request_list))
2163 		return 0;
2164 
2165 	req = list_entry(ring->request_list.prev,
2166 			   struct drm_i915_gem_request,
2167 			   list);
2168 
2169 	return i915_wait_request(req);
2170 }
2171 
2172 static int
2173 intel_ring_alloc_request(struct intel_engine_cs *ring)
2174 {
2175 	int ret;
2176 	struct drm_i915_gem_request *request;
2177 	struct drm_i915_private *dev_private = ring->dev->dev_private;
2178 
2179 	if (ring->outstanding_lazy_request)
2180 		return 0;
2181 
2182 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2183 	if (request == NULL)
2184 		return -ENOMEM;
2185 
2186 	kref_init(&request->ref);
2187 	request->ring = ring;
2188 	request->ringbuf = ring->buffer;
2189 	request->uniq = dev_private->request_uniq++;
2190 
2191 	ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2192 	if (ret) {
2193 		kfree(request);
2194 		return ret;
2195 	}
2196 
2197 	ring->outstanding_lazy_request = request;
2198 	return 0;
2199 }
2200 
2201 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2202 				int bytes)
2203 {
2204 	struct intel_ringbuffer *ringbuf = ring->buffer;
2205 	int ret;
2206 
2207 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2208 		ret = intel_wrap_ring_buffer(ring);
2209 		if (unlikely(ret))
2210 			return ret;
2211 	}
2212 
2213 	if (unlikely(ringbuf->space < bytes)) {
2214 		ret = ring_wait_for_space(ring, bytes);
2215 		if (unlikely(ret))
2216 			return ret;
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 int intel_ring_begin(struct intel_engine_cs *ring,
2223 		     int num_dwords)
2224 {
2225 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2226 	int ret;
2227 
2228 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2229 				   dev_priv->mm.interruptible);
2230 	if (ret)
2231 		return ret;
2232 
2233 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2234 	if (ret)
2235 		return ret;
2236 
2237 	/* Preallocate the olr before touching the ring */
2238 	ret = intel_ring_alloc_request(ring);
2239 	if (ret)
2240 		return ret;
2241 
2242 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2243 	return 0;
2244 }
2245 
2246 /* Align the ring tail to a cacheline boundary */
2247 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2248 {
2249 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2250 	int ret;
2251 
2252 	if (num_dwords == 0)
2253 		return 0;
2254 
2255 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2256 	ret = intel_ring_begin(ring, num_dwords);
2257 	if (ret)
2258 		return ret;
2259 
2260 	while (num_dwords--)
2261 		intel_ring_emit(ring, MI_NOOP);
2262 
2263 	intel_ring_advance(ring);
2264 
2265 	return 0;
2266 }
2267 
2268 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2269 {
2270 	struct drm_device *dev = ring->dev;
2271 	struct drm_i915_private *dev_priv = dev->dev_private;
2272 
2273 	BUG_ON(ring->outstanding_lazy_request);
2274 
2275 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2276 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2277 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2278 		if (HAS_VEBOX(dev))
2279 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2280 	}
2281 
2282 	ring->set_seqno(ring, seqno);
2283 	ring->hangcheck.seqno = seqno;
2284 }
2285 
2286 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2287 				     u32 value)
2288 {
2289 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2290 
2291        /* Every tail move must follow the sequence below */
2292 
2293 	/* Disable notification that the ring is IDLE. The GT
2294 	 * will then assume that it is busy and bring it out of rc6.
2295 	 */
2296 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2297 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2298 
2299 	/* Clear the context id. Here be magic! */
2300 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2301 
2302 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2303 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2304 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2305 		     50))
2306 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2307 
2308 	/* Now that the ring is fully powered up, update the tail */
2309 	I915_WRITE_TAIL(ring, value);
2310 	POSTING_READ(RING_TAIL(ring->mmio_base));
2311 
2312 	/* Let the ring send IDLE messages to the GT again,
2313 	 * and so let it sleep to conserve power when idle.
2314 	 */
2315 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2316 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2317 }
2318 
2319 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2320 			       u32 invalidate, u32 flush)
2321 {
2322 	uint32_t cmd;
2323 	int ret;
2324 
2325 	ret = intel_ring_begin(ring, 4);
2326 	if (ret)
2327 		return ret;
2328 
2329 	cmd = MI_FLUSH_DW;
2330 	if (INTEL_INFO(ring->dev)->gen >= 8)
2331 		cmd += 1;
2332 
2333 	/* We always require a command barrier so that subsequent
2334 	 * commands, such as breadcrumb interrupts, are strictly ordered
2335 	 * wrt the contents of the write cache being flushed to memory
2336 	 * (and thus being coherent from the CPU).
2337 	 */
2338 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2339 
2340 	/*
2341 	 * Bspec vol 1c.5 - video engine command streamer:
2342 	 * "If ENABLED, all TLBs will be invalidated once the flush
2343 	 * operation is complete. This bit is only valid when the
2344 	 * Post-Sync Operation field is a value of 1h or 3h."
2345 	 */
2346 	if (invalidate & I915_GEM_GPU_DOMAINS)
2347 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2348 
2349 	intel_ring_emit(ring, cmd);
2350 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2351 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2352 		intel_ring_emit(ring, 0); /* upper addr */
2353 		intel_ring_emit(ring, 0); /* value */
2354 	} else  {
2355 		intel_ring_emit(ring, 0);
2356 		intel_ring_emit(ring, MI_NOOP);
2357 	}
2358 	intel_ring_advance(ring);
2359 	return 0;
2360 }
2361 
2362 static int
2363 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2364 			      u64 offset, u32 len,
2365 			      unsigned dispatch_flags)
2366 {
2367 	bool ppgtt = USES_PPGTT(ring->dev) &&
2368 			!(dispatch_flags & I915_DISPATCH_SECURE);
2369 	int ret;
2370 
2371 	ret = intel_ring_begin(ring, 4);
2372 	if (ret)
2373 		return ret;
2374 
2375 	/* FIXME(BDW): Address space and security selectors. */
2376 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2377 	intel_ring_emit(ring, lower_32_bits(offset));
2378 	intel_ring_emit(ring, upper_32_bits(offset));
2379 	intel_ring_emit(ring, MI_NOOP);
2380 	intel_ring_advance(ring);
2381 
2382 	return 0;
2383 }
2384 
2385 static int
2386 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2387 			     u64 offset, u32 len,
2388 			     unsigned dispatch_flags)
2389 {
2390 	int ret;
2391 
2392 	ret = intel_ring_begin(ring, 2);
2393 	if (ret)
2394 		return ret;
2395 
2396 	intel_ring_emit(ring,
2397 			MI_BATCH_BUFFER_START |
2398 			(dispatch_flags & I915_DISPATCH_SECURE ?
2399 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2400 	/* bit0-7 is the length on GEN6+ */
2401 	intel_ring_emit(ring, offset);
2402 	intel_ring_advance(ring);
2403 
2404 	return 0;
2405 }
2406 
2407 static int
2408 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2409 			      u64 offset, u32 len,
2410 			      unsigned dispatch_flags)
2411 {
2412 	int ret;
2413 
2414 	ret = intel_ring_begin(ring, 2);
2415 	if (ret)
2416 		return ret;
2417 
2418 	intel_ring_emit(ring,
2419 			MI_BATCH_BUFFER_START |
2420 			(dispatch_flags & I915_DISPATCH_SECURE ?
2421 			 0 : MI_BATCH_NON_SECURE_I965));
2422 	/* bit0-7 is the length on GEN6+ */
2423 	intel_ring_emit(ring, offset);
2424 	intel_ring_advance(ring);
2425 
2426 	return 0;
2427 }
2428 
2429 /* Blitter support (SandyBridge+) */
2430 
2431 static int gen6_ring_flush(struct intel_engine_cs *ring,
2432 			   u32 invalidate, u32 flush)
2433 {
2434 	struct drm_device *dev = ring->dev;
2435 	uint32_t cmd;
2436 	int ret;
2437 
2438 	ret = intel_ring_begin(ring, 4);
2439 	if (ret)
2440 		return ret;
2441 
2442 	cmd = MI_FLUSH_DW;
2443 	if (INTEL_INFO(dev)->gen >= 8)
2444 		cmd += 1;
2445 
2446 	/* We always require a command barrier so that subsequent
2447 	 * commands, such as breadcrumb interrupts, are strictly ordered
2448 	 * wrt the contents of the write cache being flushed to memory
2449 	 * (and thus being coherent from the CPU).
2450 	 */
2451 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2452 
2453 	/*
2454 	 * Bspec vol 1c.3 - blitter engine command streamer:
2455 	 * "If ENABLED, all TLBs will be invalidated once the flush
2456 	 * operation is complete. This bit is only valid when the
2457 	 * Post-Sync Operation field is a value of 1h or 3h."
2458 	 */
2459 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2460 		cmd |= MI_INVALIDATE_TLB;
2461 	intel_ring_emit(ring, cmd);
2462 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2463 	if (INTEL_INFO(dev)->gen >= 8) {
2464 		intel_ring_emit(ring, 0); /* upper addr */
2465 		intel_ring_emit(ring, 0); /* value */
2466 	} else  {
2467 		intel_ring_emit(ring, 0);
2468 		intel_ring_emit(ring, MI_NOOP);
2469 	}
2470 	intel_ring_advance(ring);
2471 
2472 	return 0;
2473 }
2474 
2475 int intel_init_render_ring_buffer(struct drm_device *dev)
2476 {
2477 	struct drm_i915_private *dev_priv = dev->dev_private;
2478 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2479 	struct drm_i915_gem_object *obj;
2480 	int ret;
2481 
2482 	ring->name = "render ring";
2483 	ring->id = RCS;
2484 	ring->mmio_base = RENDER_RING_BASE;
2485 
2486 	if (INTEL_INFO(dev)->gen >= 8) {
2487 		if (i915_semaphore_is_enabled(dev)) {
2488 			obj = i915_gem_alloc_object(dev, 4096);
2489 			if (obj == NULL) {
2490 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2491 				i915.semaphores = 0;
2492 			} else {
2493 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2494 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2495 				if (ret != 0) {
2496 					drm_gem_object_unreference(&obj->base);
2497 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2498 					i915.semaphores = 0;
2499 				} else
2500 					dev_priv->semaphore_obj = obj;
2501 			}
2502 		}
2503 
2504 		ring->init_context = intel_rcs_ctx_init;
2505 		ring->add_request = gen6_add_request;
2506 		ring->flush = gen8_render_ring_flush;
2507 		ring->irq_get = gen8_ring_get_irq;
2508 		ring->irq_put = gen8_ring_put_irq;
2509 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2510 		ring->get_seqno = gen6_ring_get_seqno;
2511 		ring->set_seqno = ring_set_seqno;
2512 		if (i915_semaphore_is_enabled(dev)) {
2513 			WARN_ON(!dev_priv->semaphore_obj);
2514 			ring->semaphore.sync_to = gen8_ring_sync;
2515 			ring->semaphore.signal = gen8_rcs_signal;
2516 			GEN8_RING_SEMAPHORE_INIT;
2517 		}
2518 	} else if (INTEL_INFO(dev)->gen >= 6) {
2519 		ring->add_request = gen6_add_request;
2520 		ring->flush = gen7_render_ring_flush;
2521 		if (INTEL_INFO(dev)->gen == 6)
2522 			ring->flush = gen6_render_ring_flush;
2523 		ring->irq_get = gen6_ring_get_irq;
2524 		ring->irq_put = gen6_ring_put_irq;
2525 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2526 		ring->get_seqno = gen6_ring_get_seqno;
2527 		ring->set_seqno = ring_set_seqno;
2528 		if (i915_semaphore_is_enabled(dev)) {
2529 			ring->semaphore.sync_to = gen6_ring_sync;
2530 			ring->semaphore.signal = gen6_signal;
2531 			/*
2532 			 * The current semaphore is only applied on pre-gen8
2533 			 * platform.  And there is no VCS2 ring on the pre-gen8
2534 			 * platform. So the semaphore between RCS and VCS2 is
2535 			 * initialized as INVALID.  Gen8 will initialize the
2536 			 * sema between VCS2 and RCS later.
2537 			 */
2538 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2539 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2540 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2541 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2542 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2543 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2544 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2545 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2546 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2547 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2548 		}
2549 	} else if (IS_GEN5(dev)) {
2550 		ring->add_request = pc_render_add_request;
2551 		ring->flush = gen4_render_ring_flush;
2552 		ring->get_seqno = pc_render_get_seqno;
2553 		ring->set_seqno = pc_render_set_seqno;
2554 		ring->irq_get = gen5_ring_get_irq;
2555 		ring->irq_put = gen5_ring_put_irq;
2556 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2557 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2558 	} else {
2559 		ring->add_request = i9xx_add_request;
2560 		if (INTEL_INFO(dev)->gen < 4)
2561 			ring->flush = gen2_render_ring_flush;
2562 		else
2563 			ring->flush = gen4_render_ring_flush;
2564 		ring->get_seqno = ring_get_seqno;
2565 		ring->set_seqno = ring_set_seqno;
2566 		if (IS_GEN2(dev)) {
2567 			ring->irq_get = i8xx_ring_get_irq;
2568 			ring->irq_put = i8xx_ring_put_irq;
2569 		} else {
2570 			ring->irq_get = i9xx_ring_get_irq;
2571 			ring->irq_put = i9xx_ring_put_irq;
2572 		}
2573 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2574 	}
2575 	ring->write_tail = ring_write_tail;
2576 
2577 	if (IS_HASWELL(dev))
2578 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2579 	else if (IS_GEN8(dev))
2580 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2581 	else if (INTEL_INFO(dev)->gen >= 6)
2582 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2583 	else if (INTEL_INFO(dev)->gen >= 4)
2584 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2585 	else if (IS_I830(dev) || IS_845G(dev))
2586 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2587 	else
2588 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2589 	ring->init_hw = init_render_ring;
2590 	ring->cleanup = render_ring_cleanup;
2591 
2592 	/* Workaround batchbuffer to combat CS tlb bug. */
2593 	if (HAS_BROKEN_CS_TLB(dev)) {
2594 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2595 		if (obj == NULL) {
2596 			DRM_ERROR("Failed to allocate batch bo\n");
2597 			return -ENOMEM;
2598 		}
2599 
2600 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2601 		if (ret != 0) {
2602 			drm_gem_object_unreference(&obj->base);
2603 			DRM_ERROR("Failed to ping batch bo\n");
2604 			return ret;
2605 		}
2606 
2607 		ring->scratch.obj = obj;
2608 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2609 	}
2610 
2611 	ret = intel_init_ring_buffer(dev, ring);
2612 	if (ret)
2613 		return ret;
2614 
2615 	if (INTEL_INFO(dev)->gen >= 5) {
2616 		ret = intel_init_pipe_control(ring);
2617 		if (ret)
2618 			return ret;
2619 	}
2620 
2621 	return 0;
2622 }
2623 
2624 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2625 {
2626 	struct drm_i915_private *dev_priv = dev->dev_private;
2627 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2628 
2629 	ring->name = "bsd ring";
2630 	ring->id = VCS;
2631 
2632 	ring->write_tail = ring_write_tail;
2633 	if (INTEL_INFO(dev)->gen >= 6) {
2634 		ring->mmio_base = GEN6_BSD_RING_BASE;
2635 		/* gen6 bsd needs a special wa for tail updates */
2636 		if (IS_GEN6(dev))
2637 			ring->write_tail = gen6_bsd_ring_write_tail;
2638 		ring->flush = gen6_bsd_ring_flush;
2639 		ring->add_request = gen6_add_request;
2640 		ring->get_seqno = gen6_ring_get_seqno;
2641 		ring->set_seqno = ring_set_seqno;
2642 		if (INTEL_INFO(dev)->gen >= 8) {
2643 			ring->irq_enable_mask =
2644 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2645 			ring->irq_get = gen8_ring_get_irq;
2646 			ring->irq_put = gen8_ring_put_irq;
2647 			ring->dispatch_execbuffer =
2648 				gen8_ring_dispatch_execbuffer;
2649 			if (i915_semaphore_is_enabled(dev)) {
2650 				ring->semaphore.sync_to = gen8_ring_sync;
2651 				ring->semaphore.signal = gen8_xcs_signal;
2652 				GEN8_RING_SEMAPHORE_INIT;
2653 			}
2654 		} else {
2655 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2656 			ring->irq_get = gen6_ring_get_irq;
2657 			ring->irq_put = gen6_ring_put_irq;
2658 			ring->dispatch_execbuffer =
2659 				gen6_ring_dispatch_execbuffer;
2660 			if (i915_semaphore_is_enabled(dev)) {
2661 				ring->semaphore.sync_to = gen6_ring_sync;
2662 				ring->semaphore.signal = gen6_signal;
2663 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2664 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2665 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2666 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2667 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2668 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2669 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2670 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2671 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2672 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2673 			}
2674 		}
2675 	} else {
2676 		ring->mmio_base = BSD_RING_BASE;
2677 		ring->flush = bsd_ring_flush;
2678 		ring->add_request = i9xx_add_request;
2679 		ring->get_seqno = ring_get_seqno;
2680 		ring->set_seqno = ring_set_seqno;
2681 		if (IS_GEN5(dev)) {
2682 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2683 			ring->irq_get = gen5_ring_get_irq;
2684 			ring->irq_put = gen5_ring_put_irq;
2685 		} else {
2686 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2687 			ring->irq_get = i9xx_ring_get_irq;
2688 			ring->irq_put = i9xx_ring_put_irq;
2689 		}
2690 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2691 	}
2692 	ring->init_hw = init_ring_common;
2693 
2694 	return intel_init_ring_buffer(dev, ring);
2695 }
2696 
2697 /**
2698  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2699  */
2700 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2701 {
2702 	struct drm_i915_private *dev_priv = dev->dev_private;
2703 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2704 
2705 	ring->name = "bsd2 ring";
2706 	ring->id = VCS2;
2707 
2708 	ring->write_tail = ring_write_tail;
2709 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2710 	ring->flush = gen6_bsd_ring_flush;
2711 	ring->add_request = gen6_add_request;
2712 	ring->get_seqno = gen6_ring_get_seqno;
2713 	ring->set_seqno = ring_set_seqno;
2714 	ring->irq_enable_mask =
2715 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2716 	ring->irq_get = gen8_ring_get_irq;
2717 	ring->irq_put = gen8_ring_put_irq;
2718 	ring->dispatch_execbuffer =
2719 			gen8_ring_dispatch_execbuffer;
2720 	if (i915_semaphore_is_enabled(dev)) {
2721 		ring->semaphore.sync_to = gen8_ring_sync;
2722 		ring->semaphore.signal = gen8_xcs_signal;
2723 		GEN8_RING_SEMAPHORE_INIT;
2724 	}
2725 	ring->init_hw = init_ring_common;
2726 
2727 	return intel_init_ring_buffer(dev, ring);
2728 }
2729 
2730 int intel_init_blt_ring_buffer(struct drm_device *dev)
2731 {
2732 	struct drm_i915_private *dev_priv = dev->dev_private;
2733 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2734 
2735 	ring->name = "blitter ring";
2736 	ring->id = BCS;
2737 
2738 	ring->mmio_base = BLT_RING_BASE;
2739 	ring->write_tail = ring_write_tail;
2740 	ring->flush = gen6_ring_flush;
2741 	ring->add_request = gen6_add_request;
2742 	ring->get_seqno = gen6_ring_get_seqno;
2743 	ring->set_seqno = ring_set_seqno;
2744 	if (INTEL_INFO(dev)->gen >= 8) {
2745 		ring->irq_enable_mask =
2746 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2747 		ring->irq_get = gen8_ring_get_irq;
2748 		ring->irq_put = gen8_ring_put_irq;
2749 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2750 		if (i915_semaphore_is_enabled(dev)) {
2751 			ring->semaphore.sync_to = gen8_ring_sync;
2752 			ring->semaphore.signal = gen8_xcs_signal;
2753 			GEN8_RING_SEMAPHORE_INIT;
2754 		}
2755 	} else {
2756 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2757 		ring->irq_get = gen6_ring_get_irq;
2758 		ring->irq_put = gen6_ring_put_irq;
2759 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2760 		if (i915_semaphore_is_enabled(dev)) {
2761 			ring->semaphore.signal = gen6_signal;
2762 			ring->semaphore.sync_to = gen6_ring_sync;
2763 			/*
2764 			 * The current semaphore is only applied on pre-gen8
2765 			 * platform.  And there is no VCS2 ring on the pre-gen8
2766 			 * platform. So the semaphore between BCS and VCS2 is
2767 			 * initialized as INVALID.  Gen8 will initialize the
2768 			 * sema between BCS and VCS2 later.
2769 			 */
2770 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2771 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2772 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2773 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2774 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2775 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2776 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2777 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2778 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2779 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2780 		}
2781 	}
2782 	ring->init_hw = init_ring_common;
2783 
2784 	return intel_init_ring_buffer(dev, ring);
2785 }
2786 
2787 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2788 {
2789 	struct drm_i915_private *dev_priv = dev->dev_private;
2790 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2791 
2792 	ring->name = "video enhancement ring";
2793 	ring->id = VECS;
2794 
2795 	ring->mmio_base = VEBOX_RING_BASE;
2796 	ring->write_tail = ring_write_tail;
2797 	ring->flush = gen6_ring_flush;
2798 	ring->add_request = gen6_add_request;
2799 	ring->get_seqno = gen6_ring_get_seqno;
2800 	ring->set_seqno = ring_set_seqno;
2801 
2802 	if (INTEL_INFO(dev)->gen >= 8) {
2803 		ring->irq_enable_mask =
2804 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2805 		ring->irq_get = gen8_ring_get_irq;
2806 		ring->irq_put = gen8_ring_put_irq;
2807 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2808 		if (i915_semaphore_is_enabled(dev)) {
2809 			ring->semaphore.sync_to = gen8_ring_sync;
2810 			ring->semaphore.signal = gen8_xcs_signal;
2811 			GEN8_RING_SEMAPHORE_INIT;
2812 		}
2813 	} else {
2814 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2815 		ring->irq_get = hsw_vebox_get_irq;
2816 		ring->irq_put = hsw_vebox_put_irq;
2817 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2818 		if (i915_semaphore_is_enabled(dev)) {
2819 			ring->semaphore.sync_to = gen6_ring_sync;
2820 			ring->semaphore.signal = gen6_signal;
2821 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2822 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2823 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2824 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2825 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2826 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2827 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2828 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2829 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2830 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2831 		}
2832 	}
2833 	ring->init_hw = init_ring_common;
2834 
2835 	return intel_init_ring_buffer(dev, ring);
2836 }
2837 
2838 int
2839 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2840 {
2841 	int ret;
2842 
2843 	if (!ring->gpu_caches_dirty)
2844 		return 0;
2845 
2846 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2847 	if (ret)
2848 		return ret;
2849 
2850 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2851 
2852 	ring->gpu_caches_dirty = false;
2853 	return 0;
2854 }
2855 
2856 int
2857 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2858 {
2859 	uint32_t flush_domains;
2860 	int ret;
2861 
2862 	flush_domains = 0;
2863 	if (ring->gpu_caches_dirty)
2864 		flush_domains = I915_GEM_GPU_DOMAINS;
2865 
2866 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2867 	if (ret)
2868 		return ret;
2869 
2870 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2871 
2872 	ring->gpu_caches_dirty = false;
2873 	return 0;
2874 }
2875 
2876 void
2877 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2878 {
2879 	int ret;
2880 
2881 	if (!intel_ring_initialized(ring))
2882 		return;
2883 
2884 	ret = intel_ring_idle(ring);
2885 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2886 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2887 			  ring->name, ret);
2888 
2889 	stop_ring(ring);
2890 }
2891