xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 5cef369f)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 	struct drm_device *dev = ring->dev;
40 
41 	if (!dev)
42 		return false;
43 
44 	if (i915.enable_execlists) {
45 		struct intel_context *dctx = ring->default_context;
46 		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47 
48 		return ringbuf->obj;
49 	} else
50 		return ring->buffer && ring->buffer->obj;
51 }
52 
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 	int space = head - tail;
56 	if (space <= 0)
57 		space += size;
58 	return space - I915_RING_FREE_SPACE;
59 }
60 
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 	if (ringbuf->last_retired_head != -1) {
64 		ringbuf->head = ringbuf->last_retired_head;
65 		ringbuf->last_retired_head = -1;
66 	}
67 
68 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 					    ringbuf->tail, ringbuf->size);
70 }
71 
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 	intel_ring_update_space(ringbuf);
75 	return ringbuf->space;
76 }
77 
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83 
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 	struct intel_ringbuffer *ringbuf = ring->buffer;
87 	ringbuf->tail &= ringbuf->size - 1;
88 	if (intel_ring_stopped(ring))
89 		return;
90 	ring->write_tail(ring, ringbuf->tail);
91 }
92 
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 		       u32	invalidate_domains,
96 		       u32	flush_domains)
97 {
98 	u32 cmd;
99 	int ret;
100 
101 	cmd = MI_FLUSH;
102 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 		cmd |= MI_NO_WRITE_FLUSH;
104 
105 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 		cmd |= MI_READ_FLUSH;
107 
108 	ret = intel_ring_begin(ring, 2);
109 	if (ret)
110 		return ret;
111 
112 	intel_ring_emit(ring, cmd);
113 	intel_ring_emit(ring, MI_NOOP);
114 	intel_ring_advance(ring);
115 
116 	return 0;
117 }
118 
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 		       u32	invalidate_domains,
122 		       u32	flush_domains)
123 {
124 	struct drm_device *dev = ring->dev;
125 	u32 cmd;
126 	int ret;
127 
128 	/*
129 	 * read/write caches:
130 	 *
131 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
133 	 * also flushed at 2d versus 3d pipeline switches.
134 	 *
135 	 * read-only caches:
136 	 *
137 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 	 * MI_READ_FLUSH is set, and is always flushed on 965.
139 	 *
140 	 * I915_GEM_DOMAIN_COMMAND may not exist?
141 	 *
142 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 	 * invalidated when MI_EXE_FLUSH is set.
144 	 *
145 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 	 * invalidated with every MI_FLUSH.
147 	 *
148 	 * TLBs:
149 	 *
150 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 	 * are flushed at any MI_FLUSH.
154 	 */
155 
156 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 		cmd &= ~MI_NO_WRITE_FLUSH;
159 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 		cmd |= MI_EXE_FLUSH;
161 
162 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 	    (IS_G4X(dev) || IS_GEN5(dev)))
164 		cmd |= MI_INVALIDATE_ISP;
165 
166 	ret = intel_ring_begin(ring, 2);
167 	if (ret)
168 		return ret;
169 
170 	intel_ring_emit(ring, cmd);
171 	intel_ring_emit(ring, MI_NOOP);
172 	intel_ring_advance(ring);
173 
174 	return 0;
175 }
176 
177 /**
178  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179  * implementing two workarounds on gen6.  From section 1.4.7.1
180  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181  *
182  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183  * produced by non-pipelined state commands), software needs to first
184  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185  * 0.
186  *
187  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189  *
190  * And the workaround for these two requires this workaround first:
191  *
192  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193  * BEFORE the pipe-control with a post-sync op and no write-cache
194  * flushes.
195  *
196  * And this last workaround is tricky because of the requirements on
197  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198  * volume 2 part 1:
199  *
200  *     "1 of the following must also be set:
201  *      - Render Target Cache Flush Enable ([12] of DW1)
202  *      - Depth Cache Flush Enable ([0] of DW1)
203  *      - Stall at Pixel Scoreboard ([1] of DW1)
204  *      - Depth Stall ([13] of DW1)
205  *      - Post-Sync Operation ([13] of DW1)
206  *      - Notify Enable ([8] of DW1)"
207  *
208  * The cache flushes require the workaround flush that triggered this
209  * one, so we can't use it.  Depth stall would trigger the same.
210  * Post-sync nonzero is what triggered this second workaround, so we
211  * can't use that one either.  Notify enable is IRQs, which aren't
212  * really our business.  That leaves only stall at scoreboard.
213  */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 	int ret;
219 
220 
221 	ret = intel_ring_begin(ring, 6);
222 	if (ret)
223 		return ret;
224 
225 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 	intel_ring_emit(ring, 0); /* low dword */
230 	intel_ring_emit(ring, 0); /* high dword */
231 	intel_ring_emit(ring, MI_NOOP);
232 	intel_ring_advance(ring);
233 
234 	ret = intel_ring_begin(ring, 6);
235 	if (ret)
236 		return ret;
237 
238 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 	intel_ring_emit(ring, 0);
242 	intel_ring_emit(ring, 0);
243 	intel_ring_emit(ring, MI_NOOP);
244 	intel_ring_advance(ring);
245 
246 	return 0;
247 }
248 
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251                          u32 invalidate_domains, u32 flush_domains)
252 {
253 	u32 flags = 0;
254 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 	int ret;
256 
257 	/* Force SNB workarounds for PIPE_CONTROL flushes */
258 	ret = intel_emit_post_sync_nonzero_flush(ring);
259 	if (ret)
260 		return ret;
261 
262 	/* Just flush everything.  Experiments have shown that reducing the
263 	 * number of bits based on the write domains has little performance
264 	 * impact.
265 	 */
266 	if (flush_domains) {
267 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 		/*
270 		 * Ensure that any following seqno writes only happen
271 		 * when the render cache is indeed flushed.
272 		 */
273 		flags |= PIPE_CONTROL_CS_STALL;
274 	}
275 	if (invalidate_domains) {
276 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 		/*
283 		 * TLB invalidate requires a post-sync write.
284 		 */
285 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 	}
287 
288 	ret = intel_ring_begin(ring, 4);
289 	if (ret)
290 		return ret;
291 
292 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 	intel_ring_emit(ring, flags);
294 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 	intel_ring_emit(ring, 0);
296 	intel_ring_advance(ring);
297 
298 	return 0;
299 }
300 
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 	int ret;
305 
306 	ret = intel_ring_begin(ring, 4);
307 	if (ret)
308 		return ret;
309 
310 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 	intel_ring_emit(ring, 0);
314 	intel_ring_emit(ring, 0);
315 	intel_ring_advance(ring);
316 
317 	return 0;
318 }
319 
320 static int
321 gen7_render_ring_flush(struct intel_engine_cs *ring,
322 		       u32 invalidate_domains, u32 flush_domains)
323 {
324 	u32 flags = 0;
325 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
326 	int ret;
327 
328 	/*
329 	 * Ensure that any following seqno writes only happen when the render
330 	 * cache is indeed flushed.
331 	 *
332 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
333 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
334 	 * don't try to be clever and just set it unconditionally.
335 	 */
336 	flags |= PIPE_CONTROL_CS_STALL;
337 
338 	/* Just flush everything.  Experiments have shown that reducing the
339 	 * number of bits based on the write domains has little performance
340 	 * impact.
341 	 */
342 	if (flush_domains) {
343 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345 	}
346 	if (invalidate_domains) {
347 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
348 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
349 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
350 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
351 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
352 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
353 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
354 		/*
355 		 * TLB invalidate requires a post-sync write.
356 		 */
357 		flags |= PIPE_CONTROL_QW_WRITE;
358 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359 
360 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
361 
362 		/* Workaround: we must issue a pipe_control with CS-stall bit
363 		 * set before a pipe_control command that has the state cache
364 		 * invalidate bit set. */
365 		gen7_render_ring_cs_stall_wa(ring);
366 	}
367 
368 	ret = intel_ring_begin(ring, 4);
369 	if (ret)
370 		return ret;
371 
372 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
373 	intel_ring_emit(ring, flags);
374 	intel_ring_emit(ring, scratch_addr);
375 	intel_ring_emit(ring, 0);
376 	intel_ring_advance(ring);
377 
378 	return 0;
379 }
380 
381 static int
382 gen8_emit_pipe_control(struct intel_engine_cs *ring,
383 		       u32 flags, u32 scratch_addr)
384 {
385 	int ret;
386 
387 	ret = intel_ring_begin(ring, 6);
388 	if (ret)
389 		return ret;
390 
391 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
392 	intel_ring_emit(ring, flags);
393 	intel_ring_emit(ring, scratch_addr);
394 	intel_ring_emit(ring, 0);
395 	intel_ring_emit(ring, 0);
396 	intel_ring_emit(ring, 0);
397 	intel_ring_advance(ring);
398 
399 	return 0;
400 }
401 
402 static int
403 gen8_render_ring_flush(struct intel_engine_cs *ring,
404 		       u32 invalidate_domains, u32 flush_domains)
405 {
406 	u32 flags = 0;
407 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
408 	int ret;
409 
410 	flags |= PIPE_CONTROL_CS_STALL;
411 
412 	if (flush_domains) {
413 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
414 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
415 	}
416 	if (invalidate_domains) {
417 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
418 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
419 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
420 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
421 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
422 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
423 		flags |= PIPE_CONTROL_QW_WRITE;
424 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
425 
426 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
427 		ret = gen8_emit_pipe_control(ring,
428 					     PIPE_CONTROL_CS_STALL |
429 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
430 					     0);
431 		if (ret)
432 			return ret;
433 	}
434 
435 	return gen8_emit_pipe_control(ring, flags, scratch_addr);
436 }
437 
438 static void ring_write_tail(struct intel_engine_cs *ring,
439 			    u32 value)
440 {
441 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 	I915_WRITE_TAIL(ring, value);
443 }
444 
445 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
446 {
447 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 	u64 acthd;
449 
450 	if (INTEL_INFO(ring->dev)->gen >= 8)
451 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
452 					 RING_ACTHD_UDW(ring->mmio_base));
453 	else if (INTEL_INFO(ring->dev)->gen >= 4)
454 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
455 	else
456 		acthd = I915_READ(ACTHD);
457 
458 	return acthd;
459 }
460 
461 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
462 {
463 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
464 	u32 addr;
465 
466 	addr = dev_priv->status_page_dmah->busaddr;
467 	if (INTEL_INFO(ring->dev)->gen >= 4)
468 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
469 	I915_WRITE(HWS_PGA, addr);
470 }
471 
472 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
473 {
474 	struct drm_device *dev = ring->dev;
475 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
476 	u32 mmio = 0;
477 
478 	/* The ring status page addresses are no longer next to the rest of
479 	 * the ring registers as of gen7.
480 	 */
481 	if (IS_GEN7(dev)) {
482 		switch (ring->id) {
483 		case RCS:
484 			mmio = RENDER_HWS_PGA_GEN7;
485 			break;
486 		case BCS:
487 			mmio = BLT_HWS_PGA_GEN7;
488 			break;
489 		/*
490 		 * VCS2 actually doesn't exist on Gen7. Only shut up
491 		 * gcc switch check warning
492 		 */
493 		case VCS2:
494 		case VCS:
495 			mmio = BSD_HWS_PGA_GEN7;
496 			break;
497 		case VECS:
498 			mmio = VEBOX_HWS_PGA_GEN7;
499 			break;
500 		}
501 	} else if (IS_GEN6(ring->dev)) {
502 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
503 	} else {
504 		/* XXX: gen8 returns to sanity */
505 		mmio = RING_HWS_PGA(ring->mmio_base);
506 	}
507 
508 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
509 	POSTING_READ(mmio);
510 
511 	/*
512 	 * Flush the TLB for this page
513 	 *
514 	 * FIXME: These two bits have disappeared on gen8, so a question
515 	 * arises: do we still need this and if so how should we go about
516 	 * invalidating the TLB?
517 	 */
518 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
519 		u32 reg = RING_INSTPM(ring->mmio_base);
520 
521 		/* ring should be idle before issuing a sync flush*/
522 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
523 
524 		I915_WRITE(reg,
525 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
526 					      INSTPM_SYNC_FLUSH));
527 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
528 			     1000))
529 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
530 				  ring->name);
531 	}
532 }
533 
534 static bool stop_ring(struct intel_engine_cs *ring)
535 {
536 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
537 
538 	if (!IS_GEN2(ring->dev)) {
539 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
540 		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
541 			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
542 			/* Sometimes we observe that the idle flag is not
543 			 * set even though the ring is empty. So double
544 			 * check before giving up.
545 			 */
546 			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
547 				return false;
548 		}
549 	}
550 
551 	I915_WRITE_CTL(ring, 0);
552 	I915_WRITE_HEAD(ring, 0);
553 	ring->write_tail(ring, 0);
554 
555 	if (!IS_GEN2(ring->dev)) {
556 		(void)I915_READ_CTL(ring);
557 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
558 	}
559 
560 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
561 }
562 
563 static int init_ring_common(struct intel_engine_cs *ring)
564 {
565 	struct drm_device *dev = ring->dev;
566 	struct drm_i915_private *dev_priv = dev->dev_private;
567 	struct intel_ringbuffer *ringbuf = ring->buffer;
568 	struct drm_i915_gem_object *obj = ringbuf->obj;
569 	int ret = 0;
570 
571 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572 
573 	if (!stop_ring(ring)) {
574 		/* G45 ring initialization often fails to reset head to zero */
575 		DRM_DEBUG_KMS("%s head not reset to zero "
576 			      "ctl %08x head %08x tail %08x start %08x\n",
577 			      ring->name,
578 			      I915_READ_CTL(ring),
579 			      I915_READ_HEAD(ring),
580 			      I915_READ_TAIL(ring),
581 			      I915_READ_START(ring));
582 
583 		if (!stop_ring(ring)) {
584 			DRM_ERROR("failed to set %s head to zero "
585 				  "ctl %08x head %08x tail %08x start %08x\n",
586 				  ring->name,
587 				  I915_READ_CTL(ring),
588 				  I915_READ_HEAD(ring),
589 				  I915_READ_TAIL(ring),
590 				  I915_READ_START(ring));
591 			ret = -EIO;
592 			goto out;
593 		}
594 	}
595 
596 	if (I915_NEED_GFX_HWS(dev))
597 		intel_ring_setup_status_page(ring);
598 	else
599 		ring_setup_phys_status_page(ring);
600 
601 	/* Enforce ordering by reading HEAD register back */
602 	I915_READ_HEAD(ring);
603 
604 	/* Initialize the ring. This must happen _after_ we've cleared the ring
605 	 * registers with the above sequence (the readback of the HEAD registers
606 	 * also enforces ordering), otherwise the hw might lose the new ring
607 	 * register values. */
608 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
609 
610 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
611 	if (I915_READ_HEAD(ring))
612 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 			  ring->name, I915_READ_HEAD(ring));
614 	I915_WRITE_HEAD(ring, 0);
615 	(void)I915_READ_HEAD(ring);
616 
617 	I915_WRITE_CTL(ring,
618 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619 			| RING_VALID);
620 
621 	/* If the head is still not zero, the ring is dead */
622 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
623 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
624 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
625 		DRM_ERROR("%s initialization failed "
626 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 			  ring->name,
628 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
629 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
630 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
631 		ret = -EIO;
632 		goto out;
633 	}
634 
635 	ringbuf->last_retired_head = -1;
636 	ringbuf->head = I915_READ_HEAD(ring);
637 	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
638 	intel_ring_update_space(ringbuf);
639 
640 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
641 
642 out:
643 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
644 
645 	return ret;
646 }
647 
648 void
649 intel_fini_pipe_control(struct intel_engine_cs *ring)
650 {
651 	struct drm_device *dev = ring->dev;
652 
653 	if (ring->scratch.obj == NULL)
654 		return;
655 
656 	if (INTEL_INFO(dev)->gen >= 5) {
657 		kunmap(ring->scratch.obj->pages[0]);
658 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
659 	}
660 
661 	drm_gem_object_unreference(&ring->scratch.obj->base);
662 	ring->scratch.obj = NULL;
663 }
664 
665 int
666 intel_init_pipe_control(struct intel_engine_cs *ring)
667 {
668 	int ret;
669 
670 	WARN_ON(ring->scratch.obj);
671 
672 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
673 	if (ring->scratch.obj == NULL) {
674 		DRM_ERROR("Failed to allocate seqno page\n");
675 		ret = -ENOMEM;
676 		goto err;
677 	}
678 
679 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
680 	if (ret)
681 		goto err_unref;
682 
683 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
684 	if (ret)
685 		goto err_unref;
686 
687 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
688 	ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
689 	if (ring->scratch.cpu_page == NULL) {
690 		ret = -ENOMEM;
691 		goto err_unpin;
692 	}
693 
694 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
695 			 ring->name, ring->scratch.gtt_offset);
696 	return 0;
697 
698 err_unpin:
699 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
700 err_unref:
701 	drm_gem_object_unreference(&ring->scratch.obj->base);
702 err:
703 	return ret;
704 }
705 
706 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
707 				       struct intel_context *ctx)
708 {
709 	int ret, i;
710 	struct drm_device *dev = ring->dev;
711 	struct drm_i915_private *dev_priv = dev->dev_private;
712 	struct i915_workarounds *w = &dev_priv->workarounds;
713 
714 	if (WARN_ON_ONCE(w->count == 0))
715 		return 0;
716 
717 	ring->gpu_caches_dirty = true;
718 	ret = intel_ring_flush_all_caches(ring);
719 	if (ret)
720 		return ret;
721 
722 	ret = intel_ring_begin(ring, (w->count * 2 + 2));
723 	if (ret)
724 		return ret;
725 
726 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
727 	for (i = 0; i < w->count; i++) {
728 		intel_ring_emit(ring, w->reg[i].addr);
729 		intel_ring_emit(ring, w->reg[i].value);
730 	}
731 	intel_ring_emit(ring, MI_NOOP);
732 
733 	intel_ring_advance(ring);
734 
735 	ring->gpu_caches_dirty = true;
736 	ret = intel_ring_flush_all_caches(ring);
737 	if (ret)
738 		return ret;
739 
740 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
741 
742 	return 0;
743 }
744 
745 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
746 			      struct intel_context *ctx)
747 {
748 	int ret;
749 
750 	ret = intel_ring_workarounds_emit(ring, ctx);
751 	if (ret != 0)
752 		return ret;
753 
754 	ret = i915_gem_render_state_init(ring);
755 	if (ret)
756 		DRM_ERROR("init render state: %d\n", ret);
757 
758 	return ret;
759 }
760 
761 static int wa_add(struct drm_i915_private *dev_priv,
762 		  const u32 addr, const u32 mask, const u32 val)
763 {
764 	const u32 idx = dev_priv->workarounds.count;
765 
766 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
767 		return -ENOSPC;
768 
769 	dev_priv->workarounds.reg[idx].addr = addr;
770 	dev_priv->workarounds.reg[idx].value = val;
771 	dev_priv->workarounds.reg[idx].mask = mask;
772 
773 	dev_priv->workarounds.count++;
774 
775 	return 0;
776 }
777 
778 #define WA_REG(addr, mask, val) { \
779 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
780 		if (r) \
781 			return r; \
782 	}
783 
784 #define WA_SET_BIT_MASKED(addr, mask) \
785 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
786 
787 #define WA_CLR_BIT_MASKED(addr, mask) \
788 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
789 
790 #define WA_SET_FIELD_MASKED(addr, mask, value) \
791 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
792 
793 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
794 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
795 
796 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
797 
798 static int bdw_init_workarounds(struct intel_engine_cs *ring)
799 {
800 	struct drm_device *dev = ring->dev;
801 	struct drm_i915_private *dev_priv = dev->dev_private;
802 
803 	/* WaDisablePartialInstShootdown:bdw */
804 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
805 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
806 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
807 			  STALL_DOP_GATING_DISABLE);
808 
809 	/* WaDisableDopClockGating:bdw */
810 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
811 			  DOP_CLOCK_GATING_DISABLE);
812 
813 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
814 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
815 
816 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
817 	 * workaround for for a possible hang in the unlikely event a TLB
818 	 * invalidation occurs during a PSD flush.
819 	 */
820 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
821 			  /* WaForceEnableNonCoherent:bdw */
822 			  HDC_FORCE_NON_COHERENT |
823 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
824 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
825 			  /* WaHdcDisableFetchWhenMasked:bdw */
826 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
827 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
828 			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
829 
830 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
831 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
832 	 *  polygons in the same 8x4 pixel/sample area to be processed without
833 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
834 	 *  buffer."
835 	 *
836 	 * This optimization is off by default for Broadwell; turn it on.
837 	 */
838 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
839 
840 	/* Wa4x4STCOptimizationDisable:bdw */
841 	WA_SET_BIT_MASKED(CACHE_MODE_1,
842 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843 
844 	/*
845 	 * BSpec recommends 8x4 when MSAA is used,
846 	 * however in practice 16x4 seems fastest.
847 	 *
848 	 * Note that PS/WM thread counts depend on the WIZ hashing
849 	 * disable bit, which we don't touch here, but it's good
850 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851 	 */
852 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853 			    GEN6_WIZ_HASHING_MASK,
854 			    GEN6_WIZ_HASHING_16x4);
855 
856 	return 0;
857 }
858 
859 static int chv_init_workarounds(struct intel_engine_cs *ring)
860 {
861 	struct drm_device *dev = ring->dev;
862 	struct drm_i915_private *dev_priv = dev->dev_private;
863 
864 	/* WaDisablePartialInstShootdown:chv */
865 	/* WaDisableThreadStallDopClockGating:chv */
866 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
867 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
868 			  STALL_DOP_GATING_DISABLE);
869 
870 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
871 	 * workaround for a possible hang in the unlikely event a TLB
872 	 * invalidation occurs during a PSD flush.
873 	 */
874 	/* WaForceEnableNonCoherent:chv */
875 	/* WaHdcDisableFetchWhenMasked:chv */
876 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
877 			  HDC_FORCE_NON_COHERENT |
878 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED);
879 
880 	/* According to the CACHE_MODE_0 default value documentation, some
881 	 * CHV platforms disable this optimization by default.  Turn it on.
882 	 */
883 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
884 
885 	/* Wa4x4STCOptimizationDisable:chv */
886 	WA_SET_BIT_MASKED(CACHE_MODE_1,
887 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
888 
889 	/* Improve HiZ throughput on CHV. */
890 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
891 
892 	/*
893 	 * BSpec recommends 8x4 when MSAA is used,
894 	 * however in practice 16x4 seems fastest.
895 	 *
896 	 * Note that PS/WM thread counts depend on the WIZ hashing
897 	 * disable bit, which we don't touch here, but it's good
898 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
899 	 */
900 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
901 			    GEN6_WIZ_HASHING_MASK,
902 			    GEN6_WIZ_HASHING_16x4);
903 
904 	return 0;
905 }
906 
907 static int gen9_init_workarounds(struct intel_engine_cs *ring)
908 {
909 	struct drm_device *dev = ring->dev;
910 	struct drm_i915_private *dev_priv = dev->dev_private;
911 	uint32_t tmp;
912 
913 	/* WaDisablePartialInstShootdown:skl,bxt */
914 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
915 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
916 
917 	/* Syncing dependencies between camera and graphics:skl,bxt */
918 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
919 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
920 
921 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
922 	    INTEL_REVID(dev) == SKL_REVID_B0)) ||
923 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
924 		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
925 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
926 				  GEN9_DG_MIRROR_FIX_ENABLE);
927 	}
928 
929 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
930 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
931 		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
932 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
933 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
934 		WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
935 				  DISABLE_PIXEL_MASK_CAMMING);
936 	}
937 
938 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
939 	    IS_BROXTON(dev)) {
940 		/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
941 		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
942 				  GEN9_ENABLE_YV12_BUGFIX);
943 	}
944 
945 	/* Wa4x4STCOptimizationDisable:skl,bxt */
946 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
947 
948 	/* WaDisablePartialResolveInVc:skl,bxt */
949 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
950 
951 	/* WaCcsTlbPrefetchDisable:skl,bxt */
952 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
953 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
954 
955 	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
956 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
957 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
958 		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
959 				  PIXEL_MASK_CAMMING_DISABLE);
960 
961 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
962 	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
963 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
964 	    (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
965 		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
966 	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
967 
968 	return 0;
969 }
970 
971 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
972 {
973 	struct drm_device *dev = ring->dev;
974 	struct drm_i915_private *dev_priv = dev->dev_private;
975 	u8 vals[3] = { 0, 0, 0 };
976 	unsigned int i;
977 
978 	for (i = 0; i < 3; i++) {
979 		u8 ss;
980 
981 		/*
982 		 * Only consider slices where one, and only one, subslice has 7
983 		 * EUs
984 		 */
985 		if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
986 			continue;
987 
988 		/*
989 		 * subslice_7eu[i] != 0 (because of the check above) and
990 		 * ss_max == 4 (maximum number of subslices possible per slice)
991 		 *
992 		 * ->    0 <= ss <= 3;
993 		 */
994 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
995 		vals[i] = 3 - ss;
996 	}
997 
998 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
999 		return 0;
1000 
1001 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1002 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1003 			    GEN9_IZ_HASHING_MASK(2) |
1004 			    GEN9_IZ_HASHING_MASK(1) |
1005 			    GEN9_IZ_HASHING_MASK(0),
1006 			    GEN9_IZ_HASHING(2, vals[2]) |
1007 			    GEN9_IZ_HASHING(1, vals[1]) |
1008 			    GEN9_IZ_HASHING(0, vals[0]));
1009 
1010 	return 0;
1011 }
1012 
1013 
1014 static int skl_init_workarounds(struct intel_engine_cs *ring)
1015 {
1016 	struct drm_device *dev = ring->dev;
1017 	struct drm_i915_private *dev_priv = dev->dev_private;
1018 
1019 	gen9_init_workarounds(ring);
1020 
1021 	/* WaDisablePowerCompilerClockGating:skl */
1022 	if (INTEL_REVID(dev) == SKL_REVID_B0)
1023 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1024 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1025 
1026 	if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1027 	    INTEL_REVID(dev) == SKL_REVID_D0)
1028 		/* WaBarrierPerformanceFixDisable:skl */
1029 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1030 				  HDC_FENCE_DEST_SLM_DISABLE |
1031 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1032 
1033 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1034 		/*
1035 		 *Use Force Non-Coherent whenever executing a 3D context. This
1036 		 * is a workaround for a possible hang in the unlikely event
1037 		 * a TLB invalidation occurs during a PSD flush.
1038 		 */
1039 		/* WaForceEnableNonCoherent:skl */
1040 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1041 				  HDC_FORCE_NON_COHERENT);
1042 	}
1043 
1044 	return skl_tune_iz_hashing(ring);
1045 }
1046 
1047 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1048 {
1049 	struct drm_device *dev = ring->dev;
1050 	struct drm_i915_private *dev_priv = dev->dev_private;
1051 
1052 	gen9_init_workarounds(ring);
1053 
1054 	/* WaDisableThreadStallDopClockGating:bxt */
1055 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1056 			  STALL_DOP_GATING_DISABLE);
1057 
1058 	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1059 	if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1060 		WA_SET_BIT_MASKED(
1061 			GEN7_HALF_SLICE_CHICKEN1,
1062 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 int init_workarounds_ring(struct intel_engine_cs *ring)
1069 {
1070 	struct drm_device *dev = ring->dev;
1071 	struct drm_i915_private *dev_priv = dev->dev_private;
1072 
1073 	WARN_ON(ring->id != RCS);
1074 
1075 	dev_priv->workarounds.count = 0;
1076 
1077 	if (IS_BROADWELL(dev))
1078 		return bdw_init_workarounds(ring);
1079 
1080 	if (IS_CHERRYVIEW(dev))
1081 		return chv_init_workarounds(ring);
1082 
1083 	if (IS_SKYLAKE(dev))
1084 		return skl_init_workarounds(ring);
1085 
1086 	if (IS_BROXTON(dev))
1087 		return bxt_init_workarounds(ring);
1088 
1089 	return 0;
1090 }
1091 
1092 static int init_render_ring(struct intel_engine_cs *ring)
1093 {
1094 	struct drm_device *dev = ring->dev;
1095 	struct drm_i915_private *dev_priv = dev->dev_private;
1096 	int ret = init_ring_common(ring);
1097 	if (ret)
1098 		return ret;
1099 
1100 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1101 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1102 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1103 
1104 	/* We need to disable the AsyncFlip performance optimisations in order
1105 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1106 	 * programmed to '1' on all products.
1107 	 *
1108 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1109 	 */
1110 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
1111 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1112 
1113 	/* Required for the hardware to program scanline values for waiting */
1114 	/* WaEnableFlushTlbInvalidationMode:snb */
1115 	if (INTEL_INFO(dev)->gen == 6)
1116 		I915_WRITE(GFX_MODE,
1117 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1118 
1119 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1120 	if (IS_GEN7(dev))
1121 		I915_WRITE(GFX_MODE_GEN7,
1122 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1123 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1124 
1125 	if (IS_GEN6(dev)) {
1126 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1127 		 * "If this bit is set, STCunit will have LRA as replacement
1128 		 *  policy. [...] This bit must be reset.  LRA replacement
1129 		 *  policy is not supported."
1130 		 */
1131 		I915_WRITE(CACHE_MODE_0,
1132 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1133 	}
1134 
1135 	if (INTEL_INFO(dev)->gen >= 6)
1136 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1137 
1138 	if (HAS_L3_DPF(dev))
1139 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1140 
1141 	return init_workarounds_ring(ring);
1142 }
1143 
1144 static void render_ring_cleanup(struct intel_engine_cs *ring)
1145 {
1146 	struct drm_device *dev = ring->dev;
1147 	struct drm_i915_private *dev_priv = dev->dev_private;
1148 
1149 	if (dev_priv->semaphore_obj) {
1150 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1151 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1152 		dev_priv->semaphore_obj = NULL;
1153 	}
1154 
1155 	intel_fini_pipe_control(ring);
1156 }
1157 
1158 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1159 			   unsigned int num_dwords)
1160 {
1161 #define MBOX_UPDATE_DWORDS 8
1162 	struct drm_device *dev = signaller->dev;
1163 	struct drm_i915_private *dev_priv = dev->dev_private;
1164 	struct intel_engine_cs *waiter;
1165 	int i, ret, num_rings;
1166 
1167 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1168 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1169 #undef MBOX_UPDATE_DWORDS
1170 
1171 	ret = intel_ring_begin(signaller, num_dwords);
1172 	if (ret)
1173 		return ret;
1174 
1175 	for_each_ring(waiter, dev_priv, i) {
1176 		u32 seqno;
1177 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1178 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1179 			continue;
1180 
1181 		seqno = i915_gem_request_get_seqno(
1182 					   signaller->outstanding_lazy_request);
1183 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1184 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1185 					   PIPE_CONTROL_QW_WRITE |
1186 					   PIPE_CONTROL_FLUSH_ENABLE);
1187 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1188 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1189 		intel_ring_emit(signaller, seqno);
1190 		intel_ring_emit(signaller, 0);
1191 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1192 					   MI_SEMAPHORE_TARGET(waiter->id));
1193 		intel_ring_emit(signaller, 0);
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1200 			   unsigned int num_dwords)
1201 {
1202 #define MBOX_UPDATE_DWORDS 6
1203 	struct drm_device *dev = signaller->dev;
1204 	struct drm_i915_private *dev_priv = dev->dev_private;
1205 	struct intel_engine_cs *waiter;
1206 	int i, ret, num_rings;
1207 
1208 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1209 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1210 #undef MBOX_UPDATE_DWORDS
1211 
1212 	ret = intel_ring_begin(signaller, num_dwords);
1213 	if (ret)
1214 		return ret;
1215 
1216 	for_each_ring(waiter, dev_priv, i) {
1217 		u32 seqno;
1218 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1219 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1220 			continue;
1221 
1222 		seqno = i915_gem_request_get_seqno(
1223 					   signaller->outstanding_lazy_request);
1224 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1225 					   MI_FLUSH_DW_OP_STOREDW);
1226 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1227 					   MI_FLUSH_DW_USE_GTT);
1228 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1229 		intel_ring_emit(signaller, seqno);
1230 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1231 					   MI_SEMAPHORE_TARGET(waiter->id));
1232 		intel_ring_emit(signaller, 0);
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 static int gen6_signal(struct intel_engine_cs *signaller,
1239 		       unsigned int num_dwords)
1240 {
1241 	struct drm_device *dev = signaller->dev;
1242 	struct drm_i915_private *dev_priv = dev->dev_private;
1243 	struct intel_engine_cs *useless;
1244 	int i, ret, num_rings;
1245 
1246 #define MBOX_UPDATE_DWORDS 3
1247 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1248 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1249 #undef MBOX_UPDATE_DWORDS
1250 
1251 	ret = intel_ring_begin(signaller, num_dwords);
1252 	if (ret)
1253 		return ret;
1254 
1255 	for_each_ring(useless, dev_priv, i) {
1256 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1257 		if (mbox_reg != GEN6_NOSYNC) {
1258 			u32 seqno = i915_gem_request_get_seqno(
1259 					   signaller->outstanding_lazy_request);
1260 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1261 			intel_ring_emit(signaller, mbox_reg);
1262 			intel_ring_emit(signaller, seqno);
1263 		}
1264 	}
1265 
1266 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1267 	if (num_rings % 2 == 0)
1268 		intel_ring_emit(signaller, MI_NOOP);
1269 
1270 	return 0;
1271 }
1272 
1273 /**
1274  * gen6_add_request - Update the semaphore mailbox registers
1275  *
1276  * @ring - ring that is adding a request
1277  * @seqno - return seqno stuck into the ring
1278  *
1279  * Update the mailbox registers in the *other* rings with the current seqno.
1280  * This acts like a signal in the canonical semaphore.
1281  */
1282 static int
1283 gen6_add_request(struct intel_engine_cs *ring)
1284 {
1285 	int ret;
1286 
1287 	if (ring->semaphore.signal)
1288 		ret = ring->semaphore.signal(ring, 4);
1289 	else
1290 		ret = intel_ring_begin(ring, 4);
1291 
1292 	if (ret)
1293 		return ret;
1294 
1295 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1296 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1297 	intel_ring_emit(ring,
1298 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1299 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1300 	__intel_ring_advance(ring);
1301 
1302 	return 0;
1303 }
1304 
1305 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1306 					      u32 seqno)
1307 {
1308 	struct drm_i915_private *dev_priv = dev->dev_private;
1309 	return dev_priv->last_seqno < seqno;
1310 }
1311 
1312 /**
1313  * intel_ring_sync - sync the waiter to the signaller on seqno
1314  *
1315  * @waiter - ring that is waiting
1316  * @signaller - ring which has, or will signal
1317  * @seqno - seqno which the waiter will block on
1318  */
1319 
1320 static int
1321 gen8_ring_sync(struct intel_engine_cs *waiter,
1322 	       struct intel_engine_cs *signaller,
1323 	       u32 seqno)
1324 {
1325 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1326 	int ret;
1327 
1328 	ret = intel_ring_begin(waiter, 4);
1329 	if (ret)
1330 		return ret;
1331 
1332 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1333 				MI_SEMAPHORE_GLOBAL_GTT |
1334 				MI_SEMAPHORE_POLL |
1335 				MI_SEMAPHORE_SAD_GTE_SDD);
1336 	intel_ring_emit(waiter, seqno);
1337 	intel_ring_emit(waiter,
1338 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1339 	intel_ring_emit(waiter,
1340 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1341 	intel_ring_advance(waiter);
1342 	return 0;
1343 }
1344 
1345 static int
1346 gen6_ring_sync(struct intel_engine_cs *waiter,
1347 	       struct intel_engine_cs *signaller,
1348 	       u32 seqno)
1349 {
1350 	u32 dw1 = MI_SEMAPHORE_MBOX |
1351 		  MI_SEMAPHORE_COMPARE |
1352 		  MI_SEMAPHORE_REGISTER;
1353 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1354 	int ret;
1355 
1356 	/* Throughout all of the GEM code, seqno passed implies our current
1357 	 * seqno is >= the last seqno executed. However for hardware the
1358 	 * comparison is strictly greater than.
1359 	 */
1360 	seqno -= 1;
1361 
1362 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1363 
1364 	ret = intel_ring_begin(waiter, 4);
1365 	if (ret)
1366 		return ret;
1367 
1368 	/* If seqno wrap happened, omit the wait with no-ops */
1369 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1370 		intel_ring_emit(waiter, dw1 | wait_mbox);
1371 		intel_ring_emit(waiter, seqno);
1372 		intel_ring_emit(waiter, 0);
1373 		intel_ring_emit(waiter, MI_NOOP);
1374 	} else {
1375 		intel_ring_emit(waiter, MI_NOOP);
1376 		intel_ring_emit(waiter, MI_NOOP);
1377 		intel_ring_emit(waiter, MI_NOOP);
1378 		intel_ring_emit(waiter, MI_NOOP);
1379 	}
1380 	intel_ring_advance(waiter);
1381 
1382 	return 0;
1383 }
1384 
1385 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1386 do {									\
1387 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1388 		 PIPE_CONTROL_DEPTH_STALL);				\
1389 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1390 	intel_ring_emit(ring__, 0);							\
1391 	intel_ring_emit(ring__, 0);							\
1392 } while (0)
1393 
1394 static int
1395 pc_render_add_request(struct intel_engine_cs *ring)
1396 {
1397 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1398 	int ret;
1399 
1400 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1401 	 * incoherent with writes to memory, i.e. completely fubar,
1402 	 * so we need to use PIPE_NOTIFY instead.
1403 	 *
1404 	 * However, we also need to workaround the qword write
1405 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1406 	 * memory before requesting an interrupt.
1407 	 */
1408 	ret = intel_ring_begin(ring, 32);
1409 	if (ret)
1410 		return ret;
1411 
1412 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1413 			PIPE_CONTROL_WRITE_FLUSH |
1414 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1415 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1416 	intel_ring_emit(ring,
1417 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1418 	intel_ring_emit(ring, 0);
1419 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1420 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1421 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1422 	scratch_addr += 2 * CACHELINE_BYTES;
1423 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1424 	scratch_addr += 2 * CACHELINE_BYTES;
1425 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1426 	scratch_addr += 2 * CACHELINE_BYTES;
1427 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1428 	scratch_addr += 2 * CACHELINE_BYTES;
1429 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1430 
1431 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1432 			PIPE_CONTROL_WRITE_FLUSH |
1433 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1434 			PIPE_CONTROL_NOTIFY);
1435 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1436 	intel_ring_emit(ring,
1437 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1438 	intel_ring_emit(ring, 0);
1439 	__intel_ring_advance(ring);
1440 
1441 	return 0;
1442 }
1443 
1444 static u32
1445 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1446 {
1447 	/* Workaround to force correct ordering between irq and seqno writes on
1448 	 * ivb (and maybe also on snb) by reading from a CS register (like
1449 	 * ACTHD) before reading the status page. */
1450 	if (!lazy_coherency) {
1451 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1452 		POSTING_READ(RING_ACTHD(ring->mmio_base));
1453 	}
1454 
1455 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1456 }
1457 
1458 static u32
1459 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1460 {
1461 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1462 }
1463 
1464 static void
1465 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1466 {
1467 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1468 }
1469 
1470 static u32
1471 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1472 {
1473 	return ring->scratch.cpu_page[0];
1474 }
1475 
1476 static void
1477 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1478 {
1479 	ring->scratch.cpu_page[0] = seqno;
1480 }
1481 
1482 static bool
1483 gen5_ring_get_irq(struct intel_engine_cs *ring)
1484 {
1485 	struct drm_device *dev = ring->dev;
1486 	struct drm_i915_private *dev_priv = dev->dev_private;
1487 
1488 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1489 		return false;
1490 
1491 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1492 	if (ring->irq_refcount++ == 0)
1493 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1494 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1495 
1496 	return true;
1497 }
1498 
1499 static void
1500 gen5_ring_put_irq(struct intel_engine_cs *ring)
1501 {
1502 	struct drm_device *dev = ring->dev;
1503 	struct drm_i915_private *dev_priv = dev->dev_private;
1504 
1505 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1506 	if (--ring->irq_refcount == 0)
1507 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1508 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1509 }
1510 
1511 static bool
1512 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1513 {
1514 	struct drm_device *dev = ring->dev;
1515 	struct drm_i915_private *dev_priv = dev->dev_private;
1516 
1517 	if (!intel_irqs_enabled(dev_priv))
1518 		return false;
1519 
1520 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1521 	if (ring->irq_refcount++ == 0) {
1522 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1523 		I915_WRITE(IMR, dev_priv->irq_mask);
1524 		POSTING_READ(IMR);
1525 	}
1526 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1527 
1528 	return true;
1529 }
1530 
1531 static void
1532 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1533 {
1534 	struct drm_device *dev = ring->dev;
1535 	struct drm_i915_private *dev_priv = dev->dev_private;
1536 
1537 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1538 	if (--ring->irq_refcount == 0) {
1539 		dev_priv->irq_mask |= ring->irq_enable_mask;
1540 		I915_WRITE(IMR, dev_priv->irq_mask);
1541 		POSTING_READ(IMR);
1542 	}
1543 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1544 }
1545 
1546 static bool
1547 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1548 {
1549 	struct drm_device *dev = ring->dev;
1550 	struct drm_i915_private *dev_priv = dev->dev_private;
1551 
1552 	if (!intel_irqs_enabled(dev_priv))
1553 		return false;
1554 
1555 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1556 	if (ring->irq_refcount++ == 0) {
1557 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1558 		I915_WRITE16(IMR, dev_priv->irq_mask);
1559 		POSTING_READ16(IMR);
1560 	}
1561 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1562 
1563 	return true;
1564 }
1565 
1566 static void
1567 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1568 {
1569 	struct drm_device *dev = ring->dev;
1570 	struct drm_i915_private *dev_priv = dev->dev_private;
1571 
1572 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1573 	if (--ring->irq_refcount == 0) {
1574 		dev_priv->irq_mask |= ring->irq_enable_mask;
1575 		I915_WRITE16(IMR, dev_priv->irq_mask);
1576 		POSTING_READ16(IMR);
1577 	}
1578 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1579 }
1580 
1581 static int
1582 bsd_ring_flush(struct intel_engine_cs *ring,
1583 	       u32     invalidate_domains,
1584 	       u32     flush_domains)
1585 {
1586 	int ret;
1587 
1588 	ret = intel_ring_begin(ring, 2);
1589 	if (ret)
1590 		return ret;
1591 
1592 	intel_ring_emit(ring, MI_FLUSH);
1593 	intel_ring_emit(ring, MI_NOOP);
1594 	intel_ring_advance(ring);
1595 	return 0;
1596 }
1597 
1598 static int
1599 i9xx_add_request(struct intel_engine_cs *ring)
1600 {
1601 	int ret;
1602 
1603 	ret = intel_ring_begin(ring, 4);
1604 	if (ret)
1605 		return ret;
1606 
1607 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1608 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1609 	intel_ring_emit(ring,
1610 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1611 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1612 	__intel_ring_advance(ring);
1613 
1614 	return 0;
1615 }
1616 
1617 static bool
1618 gen6_ring_get_irq(struct intel_engine_cs *ring)
1619 {
1620 	struct drm_device *dev = ring->dev;
1621 	struct drm_i915_private *dev_priv = dev->dev_private;
1622 
1623 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1624 		return false;
1625 
1626 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1627 	if (ring->irq_refcount++ == 0) {
1628 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1629 			I915_WRITE_IMR(ring,
1630 				       ~(ring->irq_enable_mask |
1631 					 GT_PARITY_ERROR(dev)));
1632 		else
1633 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1634 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1635 	}
1636 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1637 
1638 	return true;
1639 }
1640 
1641 static void
1642 gen6_ring_put_irq(struct intel_engine_cs *ring)
1643 {
1644 	struct drm_device *dev = ring->dev;
1645 	struct drm_i915_private *dev_priv = dev->dev_private;
1646 
1647 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1648 	if (--ring->irq_refcount == 0) {
1649 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1650 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1651 		else
1652 			I915_WRITE_IMR(ring, ~0);
1653 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1654 	}
1655 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1656 }
1657 
1658 static bool
1659 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1660 {
1661 	struct drm_device *dev = ring->dev;
1662 	struct drm_i915_private *dev_priv = dev->dev_private;
1663 
1664 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1665 		return false;
1666 
1667 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1668 	if (ring->irq_refcount++ == 0) {
1669 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1670 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1671 	}
1672 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1673 
1674 	return true;
1675 }
1676 
1677 static void
1678 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1679 {
1680 	struct drm_device *dev = ring->dev;
1681 	struct drm_i915_private *dev_priv = dev->dev_private;
1682 
1683 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1684 	if (--ring->irq_refcount == 0) {
1685 		I915_WRITE_IMR(ring, ~0);
1686 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1687 	}
1688 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1689 }
1690 
1691 static bool
1692 gen8_ring_get_irq(struct intel_engine_cs *ring)
1693 {
1694 	struct drm_device *dev = ring->dev;
1695 	struct drm_i915_private *dev_priv = dev->dev_private;
1696 
1697 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1698 		return false;
1699 
1700 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1701 	if (ring->irq_refcount++ == 0) {
1702 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1703 			I915_WRITE_IMR(ring,
1704 				       ~(ring->irq_enable_mask |
1705 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1706 		} else {
1707 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1708 		}
1709 		POSTING_READ(RING_IMR(ring->mmio_base));
1710 	}
1711 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1712 
1713 	return true;
1714 }
1715 
1716 static void
1717 gen8_ring_put_irq(struct intel_engine_cs *ring)
1718 {
1719 	struct drm_device *dev = ring->dev;
1720 	struct drm_i915_private *dev_priv = dev->dev_private;
1721 
1722 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1723 	if (--ring->irq_refcount == 0) {
1724 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1725 			I915_WRITE_IMR(ring,
1726 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1727 		} else {
1728 			I915_WRITE_IMR(ring, ~0);
1729 		}
1730 		POSTING_READ(RING_IMR(ring->mmio_base));
1731 	}
1732 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1733 }
1734 
1735 static int
1736 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1737 			 u64 offset, u32 length,
1738 			 unsigned dispatch_flags)
1739 {
1740 	int ret;
1741 
1742 	ret = intel_ring_begin(ring, 2);
1743 	if (ret)
1744 		return ret;
1745 
1746 	intel_ring_emit(ring,
1747 			MI_BATCH_BUFFER_START |
1748 			MI_BATCH_GTT |
1749 			(dispatch_flags & I915_DISPATCH_SECURE ?
1750 			 0 : MI_BATCH_NON_SECURE_I965));
1751 	intel_ring_emit(ring, offset);
1752 	intel_ring_advance(ring);
1753 
1754 	return 0;
1755 }
1756 
1757 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1758 #define I830_BATCH_LIMIT (256*1024)
1759 #define I830_TLB_ENTRIES (2)
1760 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1761 static int
1762 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1763 			 u64 offset, u32 len,
1764 			 unsigned dispatch_flags)
1765 {
1766 	u32 cs_offset = ring->scratch.gtt_offset;
1767 	int ret;
1768 
1769 	ret = intel_ring_begin(ring, 6);
1770 	if (ret)
1771 		return ret;
1772 
1773 	/* Evict the invalid PTE TLBs */
1774 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1775 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1776 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1777 	intel_ring_emit(ring, cs_offset);
1778 	intel_ring_emit(ring, 0xdeadbeef);
1779 	intel_ring_emit(ring, MI_NOOP);
1780 	intel_ring_advance(ring);
1781 
1782 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1783 		if (len > I830_BATCH_LIMIT)
1784 			return -ENOSPC;
1785 
1786 		ret = intel_ring_begin(ring, 6 + 2);
1787 		if (ret)
1788 			return ret;
1789 
1790 		/* Blit the batch (which has now all relocs applied) to the
1791 		 * stable batch scratch bo area (so that the CS never
1792 		 * stumbles over its tlb invalidation bug) ...
1793 		 */
1794 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1795 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1796 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1797 		intel_ring_emit(ring, cs_offset);
1798 		intel_ring_emit(ring, 4096);
1799 		intel_ring_emit(ring, offset);
1800 
1801 		intel_ring_emit(ring, MI_FLUSH);
1802 		intel_ring_emit(ring, MI_NOOP);
1803 		intel_ring_advance(ring);
1804 
1805 		/* ... and execute it. */
1806 		offset = cs_offset;
1807 	}
1808 
1809 	ret = intel_ring_begin(ring, 4);
1810 	if (ret)
1811 		return ret;
1812 
1813 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1814 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1815 					0 : MI_BATCH_NON_SECURE));
1816 	intel_ring_emit(ring, offset + len - 8);
1817 	intel_ring_emit(ring, MI_NOOP);
1818 	intel_ring_advance(ring);
1819 
1820 	return 0;
1821 }
1822 
1823 static int
1824 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1825 			 u64 offset, u32 len,
1826 			 unsigned dispatch_flags)
1827 {
1828 	int ret;
1829 
1830 	ret = intel_ring_begin(ring, 2);
1831 	if (ret)
1832 		return ret;
1833 
1834 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1835 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1836 					0 : MI_BATCH_NON_SECURE));
1837 	intel_ring_advance(ring);
1838 
1839 	return 0;
1840 }
1841 
1842 static void cleanup_status_page(struct intel_engine_cs *ring)
1843 {
1844 	struct drm_i915_gem_object *obj;
1845 
1846 	obj = ring->status_page.obj;
1847 	if (obj == NULL)
1848 		return;
1849 
1850 	kunmap(obj->pages[0]);
1851 	i915_gem_object_ggtt_unpin(obj);
1852 	drm_gem_object_unreference(&obj->base);
1853 	ring->status_page.obj = NULL;
1854 }
1855 
1856 static int init_status_page(struct intel_engine_cs *ring)
1857 {
1858 	struct drm_i915_gem_object *obj;
1859 
1860 	if ((obj = ring->status_page.obj) == NULL) {
1861 		unsigned flags;
1862 		int ret;
1863 
1864 		obj = i915_gem_alloc_object(ring->dev, 4096);
1865 		if (obj == NULL) {
1866 			DRM_ERROR("Failed to allocate status page\n");
1867 			return -ENOMEM;
1868 		}
1869 
1870 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1871 		if (ret)
1872 			goto err_unref;
1873 
1874 		flags = 0;
1875 		if (!HAS_LLC(ring->dev))
1876 			/* On g33, we cannot place HWS above 256MiB, so
1877 			 * restrict its pinning to the low mappable arena.
1878 			 * Though this restriction is not documented for
1879 			 * gen4, gen5, or byt, they also behave similarly
1880 			 * and hang if the HWS is placed at the top of the
1881 			 * GTT. To generalise, it appears that all !llc
1882 			 * platforms have issues with us placing the HWS
1883 			 * above the mappable region (even though we never
1884 			 * actualy map it).
1885 			 */
1886 			flags |= PIN_MAPPABLE;
1887 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1888 		if (ret) {
1889 err_unref:
1890 			drm_gem_object_unreference(&obj->base);
1891 			return ret;
1892 		}
1893 
1894 		ring->status_page.obj = obj;
1895 	}
1896 
1897 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1898 	ring->status_page.page_addr = kmap(obj->pages[0]);
1899 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1900 
1901 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1902 			ring->name, ring->status_page.gfx_addr);
1903 
1904 	return 0;
1905 }
1906 
1907 static int init_phys_status_page(struct intel_engine_cs *ring)
1908 {
1909 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1910 
1911 	if (!dev_priv->status_page_dmah) {
1912 		dev_priv->status_page_dmah =
1913 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1914 		if (!dev_priv->status_page_dmah)
1915 			return -ENOMEM;
1916 	}
1917 
1918 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1919 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1920 
1921 	return 0;
1922 }
1923 
1924 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1925 {
1926 	iounmap(ringbuf->virtual_start, ringbuf->size);
1927 	ringbuf->virtual_start = NULL;
1928 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1929 }
1930 
1931 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1932 				     struct intel_ringbuffer *ringbuf)
1933 {
1934 	struct drm_i915_private *dev_priv = to_i915(dev);
1935 	struct drm_i915_gem_object *obj = ringbuf->obj;
1936 	int ret;
1937 
1938 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1939 	if (ret)
1940 		return ret;
1941 
1942 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1943 	if (ret) {
1944 		i915_gem_object_ggtt_unpin(obj);
1945 		return ret;
1946 	}
1947 
1948 	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1949 			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1950 	if (ringbuf->virtual_start == NULL) {
1951 		i915_gem_object_ggtt_unpin(obj);
1952 		return -EINVAL;
1953 	}
1954 
1955 	return 0;
1956 }
1957 
1958 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1959 {
1960 	drm_gem_object_unreference(&ringbuf->obj->base);
1961 	ringbuf->obj = NULL;
1962 }
1963 
1964 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1965 			       struct intel_ringbuffer *ringbuf)
1966 {
1967 	struct drm_i915_gem_object *obj;
1968 
1969 	obj = NULL;
1970 	if (!HAS_LLC(dev))
1971 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1972 	if (obj == NULL)
1973 		obj = i915_gem_alloc_object(dev, ringbuf->size);
1974 	if (obj == NULL)
1975 		return -ENOMEM;
1976 
1977 	/* mark ring buffers as read-only from GPU side by default */
1978 	obj->gt_ro = 1;
1979 
1980 	ringbuf->obj = obj;
1981 
1982 	return 0;
1983 }
1984 
1985 static int intel_init_ring_buffer(struct drm_device *dev,
1986 				  struct intel_engine_cs *ring)
1987 {
1988 	struct intel_ringbuffer *ringbuf;
1989 	int ret;
1990 
1991 	WARN_ON(ring->buffer);
1992 
1993 	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1994 	if (!ringbuf)
1995 		return -ENOMEM;
1996 	ring->buffer = ringbuf;
1997 
1998 	ring->dev = dev;
1999 	INIT_LIST_HEAD(&ring->active_list);
2000 	INIT_LIST_HEAD(&ring->request_list);
2001 	INIT_LIST_HEAD(&ring->execlist_queue);
2002 	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2003 	ringbuf->size = 32 * PAGE_SIZE;
2004 	ringbuf->ring = ring;
2005 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2006 
2007 	init_waitqueue_head(&ring->irq_queue);
2008 
2009 	if (I915_NEED_GFX_HWS(dev)) {
2010 		ret = init_status_page(ring);
2011 		if (ret)
2012 			goto error;
2013 	} else {
2014 		BUG_ON(ring->id != RCS);
2015 		ret = init_phys_status_page(ring);
2016 		if (ret)
2017 			goto error;
2018 	}
2019 
2020 	WARN_ON(ringbuf->obj);
2021 
2022 	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2023 	if (ret) {
2024 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2025 				ring->name, ret);
2026 		goto error;
2027 	}
2028 
2029 	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2030 	if (ret) {
2031 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2032 				ring->name, ret);
2033 		intel_destroy_ringbuffer_obj(ringbuf);
2034 		goto error;
2035 	}
2036 
2037 	/* Workaround an erratum on the i830 which causes a hang if
2038 	 * the TAIL pointer points to within the last 2 cachelines
2039 	 * of the buffer.
2040 	 */
2041 	ringbuf->effective_size = ringbuf->size;
2042 	if (IS_I830(dev) || IS_845G(dev))
2043 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2044 
2045 	ret = i915_cmd_parser_init_ring(ring);
2046 	if (ret)
2047 		goto error;
2048 
2049 	return 0;
2050 
2051 error:
2052 	kfree(ringbuf);
2053 	ring->buffer = NULL;
2054 	return ret;
2055 }
2056 
2057 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2058 {
2059 	struct drm_i915_private *dev_priv;
2060 	struct intel_ringbuffer *ringbuf;
2061 
2062 	if (!intel_ring_initialized(ring))
2063 		return;
2064 
2065 	dev_priv = to_i915(ring->dev);
2066 	ringbuf = ring->buffer;
2067 
2068 	intel_stop_ring_buffer(ring);
2069 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2070 
2071 	intel_unpin_ringbuffer_obj(ringbuf);
2072 	intel_destroy_ringbuffer_obj(ringbuf);
2073 	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2074 
2075 	if (ring->cleanup)
2076 		ring->cleanup(ring);
2077 
2078 	cleanup_status_page(ring);
2079 
2080 	i915_cmd_parser_fini_ring(ring);
2081 	i915_gem_batch_pool_fini(&ring->batch_pool);
2082 
2083 	kfree(ringbuf);
2084 	ring->buffer = NULL;
2085 }
2086 
2087 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2088 {
2089 	struct intel_ringbuffer *ringbuf = ring->buffer;
2090 	struct drm_i915_gem_request *request;
2091 	unsigned space;
2092 	int ret;
2093 
2094 	if (intel_ring_space(ringbuf) >= n)
2095 		return 0;
2096 
2097 	list_for_each_entry(request, &ring->request_list, list) {
2098 		space = __intel_ring_space(request->postfix, ringbuf->tail,
2099 					   ringbuf->size);
2100 		if (space >= n)
2101 			break;
2102 	}
2103 
2104 	if (WARN_ON(&request->list == &ring->request_list))
2105 		return -ENOSPC;
2106 
2107 	ret = i915_wait_request(request);
2108 	if (ret)
2109 		return ret;
2110 
2111 	ringbuf->space = space;
2112 	return 0;
2113 }
2114 
2115 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2116 {
2117 	uint32_t __iomem *virt;
2118 	struct intel_ringbuffer *ringbuf = ring->buffer;
2119 	int rem = ringbuf->size - ringbuf->tail;
2120 
2121 	if (ringbuf->space < rem) {
2122 		int ret = ring_wait_for_space(ring, rem);
2123 		if (ret)
2124 			return ret;
2125 	}
2126 
2127 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
2128 	rem /= 4;
2129 	while (rem--)
2130 		iowrite32(MI_NOOP, virt++);
2131 
2132 	ringbuf->tail = 0;
2133 	intel_ring_update_space(ringbuf);
2134 
2135 	return 0;
2136 }
2137 
2138 int intel_ring_idle(struct intel_engine_cs *ring)
2139 {
2140 	struct drm_i915_gem_request *req;
2141 	int ret;
2142 
2143 	/* We need to add any requests required to flush the objects and ring */
2144 	if (ring->outstanding_lazy_request) {
2145 		ret = i915_add_request(ring);
2146 		if (ret)
2147 			return ret;
2148 	}
2149 
2150 	/* Wait upon the last request to be completed */
2151 	if (list_empty(&ring->request_list))
2152 		return 0;
2153 
2154 	req = list_entry(ring->request_list.prev,
2155 			struct drm_i915_gem_request,
2156 			list);
2157 
2158 	/* Make sure we do not trigger any retires */
2159 	return __i915_wait_request(req,
2160 				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2161 				   to_i915(ring->dev)->mm.interruptible,
2162 				   NULL, NULL);
2163 }
2164 
2165 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2166 {
2167 	request->ringbuf = request->ring->buffer;
2168 	return 0;
2169 }
2170 
2171 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2172 				int bytes)
2173 {
2174 	struct intel_ringbuffer *ringbuf = ring->buffer;
2175 	int ret;
2176 
2177 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2178 		ret = intel_wrap_ring_buffer(ring);
2179 		if (unlikely(ret))
2180 			return ret;
2181 	}
2182 
2183 	if (unlikely(ringbuf->space < bytes)) {
2184 		ret = ring_wait_for_space(ring, bytes);
2185 		if (unlikely(ret))
2186 			return ret;
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 int intel_ring_begin(struct intel_engine_cs *ring,
2193 		     int num_dwords)
2194 {
2195 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2196 	int ret;
2197 
2198 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2199 				   dev_priv->mm.interruptible);
2200 	if (ret)
2201 		return ret;
2202 
2203 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2204 	if (ret)
2205 		return ret;
2206 
2207 	/* Preallocate the olr before touching the ring */
2208 	ret = i915_gem_request_alloc(ring, ring->default_context);
2209 	if (ret)
2210 		return ret;
2211 
2212 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2213 	return 0;
2214 }
2215 
2216 /* Align the ring tail to a cacheline boundary */
2217 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2218 {
2219 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2220 	int ret;
2221 
2222 	if (num_dwords == 0)
2223 		return 0;
2224 
2225 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2226 	ret = intel_ring_begin(ring, num_dwords);
2227 	if (ret)
2228 		return ret;
2229 
2230 	while (num_dwords--)
2231 		intel_ring_emit(ring, MI_NOOP);
2232 
2233 	intel_ring_advance(ring);
2234 
2235 	return 0;
2236 }
2237 
2238 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2239 {
2240 	struct drm_device *dev = ring->dev;
2241 	struct drm_i915_private *dev_priv = dev->dev_private;
2242 
2243 	BUG_ON(ring->outstanding_lazy_request);
2244 
2245 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2246 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2247 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2248 		if (HAS_VEBOX(dev))
2249 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2250 	}
2251 
2252 	ring->set_seqno(ring, seqno);
2253 	ring->hangcheck.seqno = seqno;
2254 }
2255 
2256 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2257 				     u32 value)
2258 {
2259 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2260 
2261        /* Every tail move must follow the sequence below */
2262 
2263 	/* Disable notification that the ring is IDLE. The GT
2264 	 * will then assume that it is busy and bring it out of rc6.
2265 	 */
2266 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2267 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2268 
2269 	/* Clear the context id. Here be magic! */
2270 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2271 
2272 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2273 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2274 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2275 		     50))
2276 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2277 
2278 	/* Now that the ring is fully powered up, update the tail */
2279 	I915_WRITE_TAIL(ring, value);
2280 	POSTING_READ(RING_TAIL(ring->mmio_base));
2281 
2282 	/* Let the ring send IDLE messages to the GT again,
2283 	 * and so let it sleep to conserve power when idle.
2284 	 */
2285 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2286 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2287 }
2288 
2289 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2290 			       u32 invalidate, u32 flush)
2291 {
2292 	uint32_t cmd;
2293 	int ret;
2294 
2295 	ret = intel_ring_begin(ring, 4);
2296 	if (ret)
2297 		return ret;
2298 
2299 	cmd = MI_FLUSH_DW;
2300 	if (INTEL_INFO(ring->dev)->gen >= 8)
2301 		cmd += 1;
2302 
2303 	/* We always require a command barrier so that subsequent
2304 	 * commands, such as breadcrumb interrupts, are strictly ordered
2305 	 * wrt the contents of the write cache being flushed to memory
2306 	 * (and thus being coherent from the CPU).
2307 	 */
2308 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2309 
2310 	/*
2311 	 * Bspec vol 1c.5 - video engine command streamer:
2312 	 * "If ENABLED, all TLBs will be invalidated once the flush
2313 	 * operation is complete. This bit is only valid when the
2314 	 * Post-Sync Operation field is a value of 1h or 3h."
2315 	 */
2316 	if (invalidate & I915_GEM_GPU_DOMAINS)
2317 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2318 
2319 	intel_ring_emit(ring, cmd);
2320 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2321 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2322 		intel_ring_emit(ring, 0); /* upper addr */
2323 		intel_ring_emit(ring, 0); /* value */
2324 	} else  {
2325 		intel_ring_emit(ring, 0);
2326 		intel_ring_emit(ring, MI_NOOP);
2327 	}
2328 	intel_ring_advance(ring);
2329 	return 0;
2330 }
2331 
2332 static int
2333 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2334 			      u64 offset, u32 len,
2335 			      unsigned dispatch_flags)
2336 {
2337 	bool ppgtt = USES_PPGTT(ring->dev) &&
2338 			!(dispatch_flags & I915_DISPATCH_SECURE);
2339 	int ret;
2340 
2341 	ret = intel_ring_begin(ring, 4);
2342 	if (ret)
2343 		return ret;
2344 
2345 	/* FIXME(BDW): Address space and security selectors. */
2346 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2347 	intel_ring_emit(ring, lower_32_bits(offset));
2348 	intel_ring_emit(ring, upper_32_bits(offset));
2349 	intel_ring_emit(ring, MI_NOOP);
2350 	intel_ring_advance(ring);
2351 
2352 	return 0;
2353 }
2354 
2355 static int
2356 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2357 			     u64 offset, u32 len,
2358 			     unsigned dispatch_flags)
2359 {
2360 	int ret;
2361 
2362 	ret = intel_ring_begin(ring, 2);
2363 	if (ret)
2364 		return ret;
2365 
2366 	intel_ring_emit(ring,
2367 			MI_BATCH_BUFFER_START |
2368 			(dispatch_flags & I915_DISPATCH_SECURE ?
2369 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2370 	/* bit0-7 is the length on GEN6+ */
2371 	intel_ring_emit(ring, offset);
2372 	intel_ring_advance(ring);
2373 
2374 	return 0;
2375 }
2376 
2377 static int
2378 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2379 			      u64 offset, u32 len,
2380 			      unsigned dispatch_flags)
2381 {
2382 	int ret;
2383 
2384 	ret = intel_ring_begin(ring, 2);
2385 	if (ret)
2386 		return ret;
2387 
2388 	intel_ring_emit(ring,
2389 			MI_BATCH_BUFFER_START |
2390 			(dispatch_flags & I915_DISPATCH_SECURE ?
2391 			 0 : MI_BATCH_NON_SECURE_I965));
2392 	/* bit0-7 is the length on GEN6+ */
2393 	intel_ring_emit(ring, offset);
2394 	intel_ring_advance(ring);
2395 
2396 	return 0;
2397 }
2398 
2399 /* Blitter support (SandyBridge+) */
2400 
2401 static int gen6_ring_flush(struct intel_engine_cs *ring,
2402 			   u32 invalidate, u32 flush)
2403 {
2404 	struct drm_device *dev = ring->dev;
2405 	uint32_t cmd;
2406 	int ret;
2407 
2408 	ret = intel_ring_begin(ring, 4);
2409 	if (ret)
2410 		return ret;
2411 
2412 	cmd = MI_FLUSH_DW;
2413 	if (INTEL_INFO(dev)->gen >= 8)
2414 		cmd += 1;
2415 
2416 	/* We always require a command barrier so that subsequent
2417 	 * commands, such as breadcrumb interrupts, are strictly ordered
2418 	 * wrt the contents of the write cache being flushed to memory
2419 	 * (and thus being coherent from the CPU).
2420 	 */
2421 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2422 
2423 	/*
2424 	 * Bspec vol 1c.3 - blitter engine command streamer:
2425 	 * "If ENABLED, all TLBs will be invalidated once the flush
2426 	 * operation is complete. This bit is only valid when the
2427 	 * Post-Sync Operation field is a value of 1h or 3h."
2428 	 */
2429 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2430 		cmd |= MI_INVALIDATE_TLB;
2431 	intel_ring_emit(ring, cmd);
2432 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2433 	if (INTEL_INFO(dev)->gen >= 8) {
2434 		intel_ring_emit(ring, 0); /* upper addr */
2435 		intel_ring_emit(ring, 0); /* value */
2436 	} else  {
2437 		intel_ring_emit(ring, 0);
2438 		intel_ring_emit(ring, MI_NOOP);
2439 	}
2440 	intel_ring_advance(ring);
2441 
2442 	return 0;
2443 }
2444 
2445 int intel_init_render_ring_buffer(struct drm_device *dev)
2446 {
2447 	struct drm_i915_private *dev_priv = dev->dev_private;
2448 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2449 	struct drm_i915_gem_object *obj;
2450 	int ret;
2451 
2452 	ring->name = "render ring";
2453 	ring->id = RCS;
2454 	ring->mmio_base = RENDER_RING_BASE;
2455 
2456 	if (INTEL_INFO(dev)->gen >= 8) {
2457 		if (i915_semaphore_is_enabled(dev)) {
2458 			obj = i915_gem_alloc_object(dev, 4096);
2459 			if (obj == NULL) {
2460 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2461 				i915.semaphores = 0;
2462 			} else {
2463 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2464 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2465 				if (ret != 0) {
2466 					drm_gem_object_unreference(&obj->base);
2467 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2468 					i915.semaphores = 0;
2469 				} else
2470 					dev_priv->semaphore_obj = obj;
2471 			}
2472 		}
2473 
2474 		ring->init_context = intel_rcs_ctx_init;
2475 		ring->add_request = gen6_add_request;
2476 		ring->flush = gen8_render_ring_flush;
2477 		ring->irq_get = gen8_ring_get_irq;
2478 		ring->irq_put = gen8_ring_put_irq;
2479 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2480 		ring->get_seqno = gen6_ring_get_seqno;
2481 		ring->set_seqno = ring_set_seqno;
2482 		if (i915_semaphore_is_enabled(dev)) {
2483 			WARN_ON(!dev_priv->semaphore_obj);
2484 			ring->semaphore.sync_to = gen8_ring_sync;
2485 			ring->semaphore.signal = gen8_rcs_signal;
2486 			GEN8_RING_SEMAPHORE_INIT;
2487 		}
2488 	} else if (INTEL_INFO(dev)->gen >= 6) {
2489 		ring->add_request = gen6_add_request;
2490 		ring->flush = gen7_render_ring_flush;
2491 		if (INTEL_INFO(dev)->gen == 6)
2492 			ring->flush = gen6_render_ring_flush;
2493 		ring->irq_get = gen6_ring_get_irq;
2494 		ring->irq_put = gen6_ring_put_irq;
2495 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2496 		ring->get_seqno = gen6_ring_get_seqno;
2497 		ring->set_seqno = ring_set_seqno;
2498 		if (i915_semaphore_is_enabled(dev)) {
2499 			ring->semaphore.sync_to = gen6_ring_sync;
2500 			ring->semaphore.signal = gen6_signal;
2501 			/*
2502 			 * The current semaphore is only applied on pre-gen8
2503 			 * platform.  And there is no VCS2 ring on the pre-gen8
2504 			 * platform. So the semaphore between RCS and VCS2 is
2505 			 * initialized as INVALID.  Gen8 will initialize the
2506 			 * sema between VCS2 and RCS later.
2507 			 */
2508 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2509 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2510 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2511 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2512 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2513 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2514 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2515 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2516 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2517 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2518 		}
2519 	} else if (IS_GEN5(dev)) {
2520 		ring->add_request = pc_render_add_request;
2521 		ring->flush = gen4_render_ring_flush;
2522 		ring->get_seqno = pc_render_get_seqno;
2523 		ring->set_seqno = pc_render_set_seqno;
2524 		ring->irq_get = gen5_ring_get_irq;
2525 		ring->irq_put = gen5_ring_put_irq;
2526 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2527 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2528 	} else {
2529 		ring->add_request = i9xx_add_request;
2530 		if (INTEL_INFO(dev)->gen < 4)
2531 			ring->flush = gen2_render_ring_flush;
2532 		else
2533 			ring->flush = gen4_render_ring_flush;
2534 		ring->get_seqno = ring_get_seqno;
2535 		ring->set_seqno = ring_set_seqno;
2536 		if (IS_GEN2(dev)) {
2537 			ring->irq_get = i8xx_ring_get_irq;
2538 			ring->irq_put = i8xx_ring_put_irq;
2539 		} else {
2540 			ring->irq_get = i9xx_ring_get_irq;
2541 			ring->irq_put = i9xx_ring_put_irq;
2542 		}
2543 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2544 	}
2545 	ring->write_tail = ring_write_tail;
2546 
2547 	if (IS_HASWELL(dev))
2548 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2549 	else if (IS_GEN8(dev))
2550 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2551 	else if (INTEL_INFO(dev)->gen >= 6)
2552 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2553 	else if (INTEL_INFO(dev)->gen >= 4)
2554 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2555 	else if (IS_I830(dev) || IS_845G(dev))
2556 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2557 	else
2558 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2559 	ring->init_hw = init_render_ring;
2560 	ring->cleanup = render_ring_cleanup;
2561 
2562 	/* Workaround batchbuffer to combat CS tlb bug. */
2563 	if (HAS_BROKEN_CS_TLB(dev)) {
2564 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2565 		if (obj == NULL) {
2566 			DRM_ERROR("Failed to allocate batch bo\n");
2567 			return -ENOMEM;
2568 		}
2569 
2570 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2571 		if (ret != 0) {
2572 			drm_gem_object_unreference(&obj->base);
2573 			DRM_ERROR("Failed to ping batch bo\n");
2574 			return ret;
2575 		}
2576 
2577 		ring->scratch.obj = obj;
2578 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2579 	}
2580 
2581 	ret = intel_init_ring_buffer(dev, ring);
2582 	if (ret)
2583 		return ret;
2584 
2585 	if (INTEL_INFO(dev)->gen >= 5) {
2586 		ret = intel_init_pipe_control(ring);
2587 		if (ret)
2588 			return ret;
2589 	}
2590 
2591 	return 0;
2592 }
2593 
2594 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2595 {
2596 	struct drm_i915_private *dev_priv = dev->dev_private;
2597 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2598 
2599 	ring->name = "bsd ring";
2600 	ring->id = VCS;
2601 
2602 	ring->write_tail = ring_write_tail;
2603 	if (INTEL_INFO(dev)->gen >= 6) {
2604 		ring->mmio_base = GEN6_BSD_RING_BASE;
2605 		/* gen6 bsd needs a special wa for tail updates */
2606 		if (IS_GEN6(dev))
2607 			ring->write_tail = gen6_bsd_ring_write_tail;
2608 		ring->flush = gen6_bsd_ring_flush;
2609 		ring->add_request = gen6_add_request;
2610 		ring->get_seqno = gen6_ring_get_seqno;
2611 		ring->set_seqno = ring_set_seqno;
2612 		if (INTEL_INFO(dev)->gen >= 8) {
2613 			ring->irq_enable_mask =
2614 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2615 			ring->irq_get = gen8_ring_get_irq;
2616 			ring->irq_put = gen8_ring_put_irq;
2617 			ring->dispatch_execbuffer =
2618 				gen8_ring_dispatch_execbuffer;
2619 			if (i915_semaphore_is_enabled(dev)) {
2620 				ring->semaphore.sync_to = gen8_ring_sync;
2621 				ring->semaphore.signal = gen8_xcs_signal;
2622 				GEN8_RING_SEMAPHORE_INIT;
2623 			}
2624 		} else {
2625 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2626 			ring->irq_get = gen6_ring_get_irq;
2627 			ring->irq_put = gen6_ring_put_irq;
2628 			ring->dispatch_execbuffer =
2629 				gen6_ring_dispatch_execbuffer;
2630 			if (i915_semaphore_is_enabled(dev)) {
2631 				ring->semaphore.sync_to = gen6_ring_sync;
2632 				ring->semaphore.signal = gen6_signal;
2633 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2634 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2635 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2636 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2637 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2638 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2639 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2640 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2641 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2642 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2643 			}
2644 		}
2645 	} else {
2646 		ring->mmio_base = BSD_RING_BASE;
2647 		ring->flush = bsd_ring_flush;
2648 		ring->add_request = i9xx_add_request;
2649 		ring->get_seqno = ring_get_seqno;
2650 		ring->set_seqno = ring_set_seqno;
2651 		if (IS_GEN5(dev)) {
2652 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2653 			ring->irq_get = gen5_ring_get_irq;
2654 			ring->irq_put = gen5_ring_put_irq;
2655 		} else {
2656 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2657 			ring->irq_get = i9xx_ring_get_irq;
2658 			ring->irq_put = i9xx_ring_put_irq;
2659 		}
2660 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2661 	}
2662 	ring->init_hw = init_ring_common;
2663 
2664 	return intel_init_ring_buffer(dev, ring);
2665 }
2666 
2667 /**
2668  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2669  */
2670 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2671 {
2672 	struct drm_i915_private *dev_priv = dev->dev_private;
2673 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2674 
2675 	ring->name = "bsd2 ring";
2676 	ring->id = VCS2;
2677 
2678 	ring->write_tail = ring_write_tail;
2679 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2680 	ring->flush = gen6_bsd_ring_flush;
2681 	ring->add_request = gen6_add_request;
2682 	ring->get_seqno = gen6_ring_get_seqno;
2683 	ring->set_seqno = ring_set_seqno;
2684 	ring->irq_enable_mask =
2685 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2686 	ring->irq_get = gen8_ring_get_irq;
2687 	ring->irq_put = gen8_ring_put_irq;
2688 	ring->dispatch_execbuffer =
2689 			gen8_ring_dispatch_execbuffer;
2690 	if (i915_semaphore_is_enabled(dev)) {
2691 		ring->semaphore.sync_to = gen8_ring_sync;
2692 		ring->semaphore.signal = gen8_xcs_signal;
2693 		GEN8_RING_SEMAPHORE_INIT;
2694 	}
2695 	ring->init_hw = init_ring_common;
2696 
2697 	return intel_init_ring_buffer(dev, ring);
2698 }
2699 
2700 int intel_init_blt_ring_buffer(struct drm_device *dev)
2701 {
2702 	struct drm_i915_private *dev_priv = dev->dev_private;
2703 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2704 
2705 	ring->name = "blitter ring";
2706 	ring->id = BCS;
2707 
2708 	ring->mmio_base = BLT_RING_BASE;
2709 	ring->write_tail = ring_write_tail;
2710 	ring->flush = gen6_ring_flush;
2711 	ring->add_request = gen6_add_request;
2712 	ring->get_seqno = gen6_ring_get_seqno;
2713 	ring->set_seqno = ring_set_seqno;
2714 	if (INTEL_INFO(dev)->gen >= 8) {
2715 		ring->irq_enable_mask =
2716 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2717 		ring->irq_get = gen8_ring_get_irq;
2718 		ring->irq_put = gen8_ring_put_irq;
2719 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2720 		if (i915_semaphore_is_enabled(dev)) {
2721 			ring->semaphore.sync_to = gen8_ring_sync;
2722 			ring->semaphore.signal = gen8_xcs_signal;
2723 			GEN8_RING_SEMAPHORE_INIT;
2724 		}
2725 	} else {
2726 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2727 		ring->irq_get = gen6_ring_get_irq;
2728 		ring->irq_put = gen6_ring_put_irq;
2729 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2730 		if (i915_semaphore_is_enabled(dev)) {
2731 			ring->semaphore.signal = gen6_signal;
2732 			ring->semaphore.sync_to = gen6_ring_sync;
2733 			/*
2734 			 * The current semaphore is only applied on pre-gen8
2735 			 * platform.  And there is no VCS2 ring on the pre-gen8
2736 			 * platform. So the semaphore between BCS and VCS2 is
2737 			 * initialized as INVALID.  Gen8 will initialize the
2738 			 * sema between BCS and VCS2 later.
2739 			 */
2740 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2741 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2742 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2743 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2744 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2745 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2746 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2747 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2748 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2749 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2750 		}
2751 	}
2752 	ring->init_hw = init_ring_common;
2753 
2754 	return intel_init_ring_buffer(dev, ring);
2755 }
2756 
2757 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2758 {
2759 	struct drm_i915_private *dev_priv = dev->dev_private;
2760 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2761 
2762 	ring->name = "video enhancement ring";
2763 	ring->id = VECS;
2764 
2765 	ring->mmio_base = VEBOX_RING_BASE;
2766 	ring->write_tail = ring_write_tail;
2767 	ring->flush = gen6_ring_flush;
2768 	ring->add_request = gen6_add_request;
2769 	ring->get_seqno = gen6_ring_get_seqno;
2770 	ring->set_seqno = ring_set_seqno;
2771 
2772 	if (INTEL_INFO(dev)->gen >= 8) {
2773 		ring->irq_enable_mask =
2774 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2775 		ring->irq_get = gen8_ring_get_irq;
2776 		ring->irq_put = gen8_ring_put_irq;
2777 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2778 		if (i915_semaphore_is_enabled(dev)) {
2779 			ring->semaphore.sync_to = gen8_ring_sync;
2780 			ring->semaphore.signal = gen8_xcs_signal;
2781 			GEN8_RING_SEMAPHORE_INIT;
2782 		}
2783 	} else {
2784 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2785 		ring->irq_get = hsw_vebox_get_irq;
2786 		ring->irq_put = hsw_vebox_put_irq;
2787 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2788 		if (i915_semaphore_is_enabled(dev)) {
2789 			ring->semaphore.sync_to = gen6_ring_sync;
2790 			ring->semaphore.signal = gen6_signal;
2791 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2792 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2793 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2794 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2795 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2796 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2797 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2798 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2799 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2800 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2801 		}
2802 	}
2803 	ring->init_hw = init_ring_common;
2804 
2805 	return intel_init_ring_buffer(dev, ring);
2806 }
2807 
2808 int
2809 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2810 {
2811 	int ret;
2812 
2813 	if (!ring->gpu_caches_dirty)
2814 		return 0;
2815 
2816 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2817 	if (ret)
2818 		return ret;
2819 
2820 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2821 
2822 	ring->gpu_caches_dirty = false;
2823 	return 0;
2824 }
2825 
2826 int
2827 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2828 {
2829 	uint32_t flush_domains;
2830 	int ret;
2831 
2832 	flush_domains = 0;
2833 	if (ring->gpu_caches_dirty)
2834 		flush_domains = I915_GEM_GPU_DOMAINS;
2835 
2836 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2837 	if (ret)
2838 		return ret;
2839 
2840 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2841 
2842 	ring->gpu_caches_dirty = false;
2843 	return 0;
2844 }
2845 
2846 void
2847 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2848 {
2849 	int ret;
2850 
2851 	if (!intel_ring_initialized(ring))
2852 		return;
2853 
2854 	ret = intel_ring_idle(ring);
2855 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2856 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2857 			  ring->name, ret);
2858 
2859 	stop_ring(ring);
2860 }
2861