xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision aeaecd48)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 	struct drm_device *dev = ring->dev;
40 
41 	if (!dev)
42 		return false;
43 
44 	if (i915.enable_execlists) {
45 		struct intel_context *dctx = ring->default_context;
46 		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47 
48 		return ringbuf->obj;
49 	} else
50 		return ring->buffer && ring->buffer->obj;
51 }
52 
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 	int space = head - tail;
56 	if (space <= 0)
57 		space += size;
58 	return space - I915_RING_FREE_SPACE;
59 }
60 
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 	if (ringbuf->last_retired_head != -1) {
64 		ringbuf->head = ringbuf->last_retired_head;
65 		ringbuf->last_retired_head = -1;
66 	}
67 
68 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 					    ringbuf->tail, ringbuf->size);
70 }
71 
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 	intel_ring_update_space(ringbuf);
75 	return ringbuf->space;
76 }
77 
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83 
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 	struct intel_ringbuffer *ringbuf = ring->buffer;
87 	ringbuf->tail &= ringbuf->size - 1;
88 	if (intel_ring_stopped(ring))
89 		return;
90 	ring->write_tail(ring, ringbuf->tail);
91 }
92 
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 		       u32	invalidate_domains,
96 		       u32	flush_domains)
97 {
98 	u32 cmd;
99 	int ret;
100 
101 	cmd = MI_FLUSH;
102 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 		cmd |= MI_NO_WRITE_FLUSH;
104 
105 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 		cmd |= MI_READ_FLUSH;
107 
108 	ret = intel_ring_begin(ring, 2);
109 	if (ret)
110 		return ret;
111 
112 	intel_ring_emit(ring, cmd);
113 	intel_ring_emit(ring, MI_NOOP);
114 	intel_ring_advance(ring);
115 
116 	return 0;
117 }
118 
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 		       u32	invalidate_domains,
122 		       u32	flush_domains)
123 {
124 	struct drm_device *dev = ring->dev;
125 	u32 cmd;
126 	int ret;
127 
128 	/*
129 	 * read/write caches:
130 	 *
131 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
133 	 * also flushed at 2d versus 3d pipeline switches.
134 	 *
135 	 * read-only caches:
136 	 *
137 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 	 * MI_READ_FLUSH is set, and is always flushed on 965.
139 	 *
140 	 * I915_GEM_DOMAIN_COMMAND may not exist?
141 	 *
142 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 	 * invalidated when MI_EXE_FLUSH is set.
144 	 *
145 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 	 * invalidated with every MI_FLUSH.
147 	 *
148 	 * TLBs:
149 	 *
150 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 	 * are flushed at any MI_FLUSH.
154 	 */
155 
156 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 		cmd &= ~MI_NO_WRITE_FLUSH;
159 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 		cmd |= MI_EXE_FLUSH;
161 
162 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 	    (IS_G4X(dev) || IS_GEN5(dev)))
164 		cmd |= MI_INVALIDATE_ISP;
165 
166 	ret = intel_ring_begin(ring, 2);
167 	if (ret)
168 		return ret;
169 
170 	intel_ring_emit(ring, cmd);
171 	intel_ring_emit(ring, MI_NOOP);
172 	intel_ring_advance(ring);
173 
174 	return 0;
175 }
176 
177 /**
178  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179  * implementing two workarounds on gen6.  From section 1.4.7.1
180  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181  *
182  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183  * produced by non-pipelined state commands), software needs to first
184  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185  * 0.
186  *
187  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189  *
190  * And the workaround for these two requires this workaround first:
191  *
192  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193  * BEFORE the pipe-control with a post-sync op and no write-cache
194  * flushes.
195  *
196  * And this last workaround is tricky because of the requirements on
197  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198  * volume 2 part 1:
199  *
200  *     "1 of the following must also be set:
201  *      - Render Target Cache Flush Enable ([12] of DW1)
202  *      - Depth Cache Flush Enable ([0] of DW1)
203  *      - Stall at Pixel Scoreboard ([1] of DW1)
204  *      - Depth Stall ([13] of DW1)
205  *      - Post-Sync Operation ([13] of DW1)
206  *      - Notify Enable ([8] of DW1)"
207  *
208  * The cache flushes require the workaround flush that triggered this
209  * one, so we can't use it.  Depth stall would trigger the same.
210  * Post-sync nonzero is what triggered this second workaround, so we
211  * can't use that one either.  Notify enable is IRQs, which aren't
212  * really our business.  That leaves only stall at scoreboard.
213  */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 	int ret;
219 
220 
221 	ret = intel_ring_begin(ring, 6);
222 	if (ret)
223 		return ret;
224 
225 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 	intel_ring_emit(ring, 0); /* low dword */
230 	intel_ring_emit(ring, 0); /* high dword */
231 	intel_ring_emit(ring, MI_NOOP);
232 	intel_ring_advance(ring);
233 
234 	ret = intel_ring_begin(ring, 6);
235 	if (ret)
236 		return ret;
237 
238 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 	intel_ring_emit(ring, 0);
242 	intel_ring_emit(ring, 0);
243 	intel_ring_emit(ring, MI_NOOP);
244 	intel_ring_advance(ring);
245 
246 	return 0;
247 }
248 
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251                          u32 invalidate_domains, u32 flush_domains)
252 {
253 	u32 flags = 0;
254 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 	int ret;
256 
257 	/* Force SNB workarounds for PIPE_CONTROL flushes */
258 	ret = intel_emit_post_sync_nonzero_flush(ring);
259 	if (ret)
260 		return ret;
261 
262 	/* Just flush everything.  Experiments have shown that reducing the
263 	 * number of bits based on the write domains has little performance
264 	 * impact.
265 	 */
266 	if (flush_domains) {
267 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 		/*
270 		 * Ensure that any following seqno writes only happen
271 		 * when the render cache is indeed flushed.
272 		 */
273 		flags |= PIPE_CONTROL_CS_STALL;
274 	}
275 	if (invalidate_domains) {
276 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 		/*
283 		 * TLB invalidate requires a post-sync write.
284 		 */
285 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 	}
287 
288 	ret = intel_ring_begin(ring, 4);
289 	if (ret)
290 		return ret;
291 
292 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 	intel_ring_emit(ring, flags);
294 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 	intel_ring_emit(ring, 0);
296 	intel_ring_advance(ring);
297 
298 	return 0;
299 }
300 
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 	int ret;
305 
306 	ret = intel_ring_begin(ring, 4);
307 	if (ret)
308 		return ret;
309 
310 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 	intel_ring_emit(ring, 0);
314 	intel_ring_emit(ring, 0);
315 	intel_ring_advance(ring);
316 
317 	return 0;
318 }
319 
320 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
321 {
322 	int ret;
323 
324 	if (!ring->fbc_dirty)
325 		return 0;
326 
327 	ret = intel_ring_begin(ring, 6);
328 	if (ret)
329 		return ret;
330 	/* WaFbcNukeOn3DBlt:ivb/hsw */
331 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
332 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
333 	intel_ring_emit(ring, value);
334 	intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
335 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
336 	intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
337 	intel_ring_advance(ring);
338 
339 	ring->fbc_dirty = false;
340 	return 0;
341 }
342 
343 static int
344 gen7_render_ring_flush(struct intel_engine_cs *ring,
345 		       u32 invalidate_domains, u32 flush_domains)
346 {
347 	u32 flags = 0;
348 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
349 	int ret;
350 
351 	/*
352 	 * Ensure that any following seqno writes only happen when the render
353 	 * cache is indeed flushed.
354 	 *
355 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
356 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
357 	 * don't try to be clever and just set it unconditionally.
358 	 */
359 	flags |= PIPE_CONTROL_CS_STALL;
360 
361 	/* Just flush everything.  Experiments have shown that reducing the
362 	 * number of bits based on the write domains has little performance
363 	 * impact.
364 	 */
365 	if (flush_domains) {
366 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
367 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
368 	}
369 	if (invalidate_domains) {
370 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
371 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
372 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
373 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
374 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
375 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
376 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
377 		/*
378 		 * TLB invalidate requires a post-sync write.
379 		 */
380 		flags |= PIPE_CONTROL_QW_WRITE;
381 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
382 
383 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
384 
385 		/* Workaround: we must issue a pipe_control with CS-stall bit
386 		 * set before a pipe_control command that has the state cache
387 		 * invalidate bit set. */
388 		gen7_render_ring_cs_stall_wa(ring);
389 	}
390 
391 	ret = intel_ring_begin(ring, 4);
392 	if (ret)
393 		return ret;
394 
395 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
396 	intel_ring_emit(ring, flags);
397 	intel_ring_emit(ring, scratch_addr);
398 	intel_ring_emit(ring, 0);
399 	intel_ring_advance(ring);
400 
401 	if (!invalidate_domains && flush_domains)
402 		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
403 
404 	return 0;
405 }
406 
407 static int
408 gen8_emit_pipe_control(struct intel_engine_cs *ring,
409 		       u32 flags, u32 scratch_addr)
410 {
411 	int ret;
412 
413 	ret = intel_ring_begin(ring, 6);
414 	if (ret)
415 		return ret;
416 
417 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
418 	intel_ring_emit(ring, flags);
419 	intel_ring_emit(ring, scratch_addr);
420 	intel_ring_emit(ring, 0);
421 	intel_ring_emit(ring, 0);
422 	intel_ring_emit(ring, 0);
423 	intel_ring_advance(ring);
424 
425 	return 0;
426 }
427 
428 static int
429 gen8_render_ring_flush(struct intel_engine_cs *ring,
430 		       u32 invalidate_domains, u32 flush_domains)
431 {
432 	u32 flags = 0;
433 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
434 	int ret;
435 
436 	flags |= PIPE_CONTROL_CS_STALL;
437 
438 	if (flush_domains) {
439 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
440 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
441 	}
442 	if (invalidate_domains) {
443 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
444 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
445 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
446 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
447 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
448 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
449 		flags |= PIPE_CONTROL_QW_WRITE;
450 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
451 
452 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
453 		ret = gen8_emit_pipe_control(ring,
454 					     PIPE_CONTROL_CS_STALL |
455 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
456 					     0);
457 		if (ret)
458 			return ret;
459 	}
460 
461 	ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
462 	if (ret)
463 		return ret;
464 
465 	if (!invalidate_domains && flush_domains)
466 		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
467 
468 	return 0;
469 }
470 
471 static void ring_write_tail(struct intel_engine_cs *ring,
472 			    u32 value)
473 {
474 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
475 	I915_WRITE_TAIL(ring, value);
476 }
477 
478 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
479 {
480 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
481 	u64 acthd;
482 
483 	if (INTEL_INFO(ring->dev)->gen >= 8)
484 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
485 					 RING_ACTHD_UDW(ring->mmio_base));
486 	else if (INTEL_INFO(ring->dev)->gen >= 4)
487 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
488 	else
489 		acthd = I915_READ(ACTHD);
490 
491 	return acthd;
492 }
493 
494 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
495 {
496 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
497 	u32 addr;
498 
499 	addr = dev_priv->status_page_dmah->busaddr;
500 	if (INTEL_INFO(ring->dev)->gen >= 4)
501 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
502 	I915_WRITE(HWS_PGA, addr);
503 }
504 
505 static bool stop_ring(struct intel_engine_cs *ring)
506 {
507 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
508 
509 	if (!IS_GEN2(ring->dev)) {
510 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
511 		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
512 			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
513 			/* Sometimes we observe that the idle flag is not
514 			 * set even though the ring is empty. So double
515 			 * check before giving up.
516 			 */
517 			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
518 				return false;
519 		}
520 	}
521 
522 	I915_WRITE_CTL(ring, 0);
523 	I915_WRITE_HEAD(ring, 0);
524 	ring->write_tail(ring, 0);
525 
526 	if (!IS_GEN2(ring->dev)) {
527 		(void)I915_READ_CTL(ring);
528 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
529 	}
530 
531 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
532 }
533 
534 static int init_ring_common(struct intel_engine_cs *ring)
535 {
536 	struct drm_device *dev = ring->dev;
537 	struct drm_i915_private *dev_priv = dev->dev_private;
538 	struct intel_ringbuffer *ringbuf = ring->buffer;
539 	struct drm_i915_gem_object *obj = ringbuf->obj;
540 	int ret = 0;
541 
542 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
543 
544 	if (!stop_ring(ring)) {
545 		/* G45 ring initialization often fails to reset head to zero */
546 		DRM_DEBUG_KMS("%s head not reset to zero "
547 			      "ctl %08x head %08x tail %08x start %08x\n",
548 			      ring->name,
549 			      I915_READ_CTL(ring),
550 			      I915_READ_HEAD(ring),
551 			      I915_READ_TAIL(ring),
552 			      I915_READ_START(ring));
553 
554 		if (!stop_ring(ring)) {
555 			DRM_ERROR("failed to set %s head to zero "
556 				  "ctl %08x head %08x tail %08x start %08x\n",
557 				  ring->name,
558 				  I915_READ_CTL(ring),
559 				  I915_READ_HEAD(ring),
560 				  I915_READ_TAIL(ring),
561 				  I915_READ_START(ring));
562 			ret = -EIO;
563 			goto out;
564 		}
565 	}
566 
567 	if (I915_NEED_GFX_HWS(dev))
568 		intel_ring_setup_status_page(ring);
569 	else
570 		ring_setup_phys_status_page(ring);
571 
572 	/* Enforce ordering by reading HEAD register back */
573 	I915_READ_HEAD(ring);
574 
575 	/* Initialize the ring. This must happen _after_ we've cleared the ring
576 	 * registers with the above sequence (the readback of the HEAD registers
577 	 * also enforces ordering), otherwise the hw might lose the new ring
578 	 * register values. */
579 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
580 
581 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
582 	if (I915_READ_HEAD(ring))
583 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
584 			  ring->name, I915_READ_HEAD(ring));
585 	I915_WRITE_HEAD(ring, 0);
586 	(void)I915_READ_HEAD(ring);
587 
588 	I915_WRITE_CTL(ring,
589 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
590 			| RING_VALID);
591 
592 	/* If the head is still not zero, the ring is dead */
593 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
594 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
595 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
596 		DRM_ERROR("%s initialization failed "
597 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
598 			  ring->name,
599 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
600 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
601 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
602 		ret = -EIO;
603 		goto out;
604 	}
605 
606 	ringbuf->last_retired_head = -1;
607 	ringbuf->head = I915_READ_HEAD(ring);
608 	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
609 	intel_ring_update_space(ringbuf);
610 
611 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
612 
613 out:
614 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
615 
616 	return ret;
617 }
618 
619 void
620 intel_fini_pipe_control(struct intel_engine_cs *ring)
621 {
622 	struct drm_device *dev = ring->dev;
623 
624 	if (ring->scratch.obj == NULL)
625 		return;
626 
627 	if (INTEL_INFO(dev)->gen >= 5) {
628 		kunmap(ring->scratch.obj->pages[0]);
629 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
630 	}
631 
632 	drm_gem_object_unreference(&ring->scratch.obj->base);
633 	ring->scratch.obj = NULL;
634 }
635 
636 int
637 intel_init_pipe_control(struct intel_engine_cs *ring)
638 {
639 	int ret;
640 
641 	WARN_ON(ring->scratch.obj);
642 
643 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
644 	if (ring->scratch.obj == NULL) {
645 		DRM_ERROR("Failed to allocate seqno page\n");
646 		ret = -ENOMEM;
647 		goto err;
648 	}
649 
650 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
651 	if (ret)
652 		goto err_unref;
653 
654 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
655 	if (ret)
656 		goto err_unref;
657 
658 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
659 	ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
660 	if (ring->scratch.cpu_page == NULL) {
661 		ret = -ENOMEM;
662 		goto err_unpin;
663 	}
664 
665 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
666 			 ring->name, ring->scratch.gtt_offset);
667 	return 0;
668 
669 err_unpin:
670 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
671 err_unref:
672 	drm_gem_object_unreference(&ring->scratch.obj->base);
673 err:
674 	return ret;
675 }
676 
677 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
678 				       struct intel_context *ctx)
679 {
680 	int ret, i;
681 	struct drm_device *dev = ring->dev;
682 	struct drm_i915_private *dev_priv = dev->dev_private;
683 	struct i915_workarounds *w = &dev_priv->workarounds;
684 
685 	if (WARN_ON_ONCE(w->count == 0))
686 		return 0;
687 
688 	ring->gpu_caches_dirty = true;
689 	ret = intel_ring_flush_all_caches(ring);
690 	if (ret)
691 		return ret;
692 
693 	ret = intel_ring_begin(ring, (w->count * 2 + 2));
694 	if (ret)
695 		return ret;
696 
697 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
698 	for (i = 0; i < w->count; i++) {
699 		intel_ring_emit(ring, w->reg[i].addr);
700 		intel_ring_emit(ring, w->reg[i].value);
701 	}
702 	intel_ring_emit(ring, MI_NOOP);
703 
704 	intel_ring_advance(ring);
705 
706 	ring->gpu_caches_dirty = true;
707 	ret = intel_ring_flush_all_caches(ring);
708 	if (ret)
709 		return ret;
710 
711 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
712 
713 	return 0;
714 }
715 
716 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
717 			      struct intel_context *ctx)
718 {
719 	int ret;
720 
721 	ret = intel_ring_workarounds_emit(ring, ctx);
722 	if (ret != 0)
723 		return ret;
724 
725 	ret = i915_gem_render_state_init(ring);
726 	if (ret)
727 		DRM_ERROR("init render state: %d\n", ret);
728 
729 	return ret;
730 }
731 
732 static int wa_add(struct drm_i915_private *dev_priv,
733 		  const u32 addr, const u32 mask, const u32 val)
734 {
735 	const u32 idx = dev_priv->workarounds.count;
736 
737 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
738 		return -ENOSPC;
739 
740 	dev_priv->workarounds.reg[idx].addr = addr;
741 	dev_priv->workarounds.reg[idx].value = val;
742 	dev_priv->workarounds.reg[idx].mask = mask;
743 
744 	dev_priv->workarounds.count++;
745 
746 	return 0;
747 }
748 
749 #define WA_REG(addr, mask, val) { \
750 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
751 		if (r) \
752 			return r; \
753 	}
754 
755 #define WA_SET_BIT_MASKED(addr, mask) \
756 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
757 
758 #define WA_CLR_BIT_MASKED(addr, mask) \
759 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
760 
761 #define WA_SET_FIELD_MASKED(addr, mask, value) \
762 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
763 
764 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
765 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
766 
767 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
768 
769 static int bdw_init_workarounds(struct intel_engine_cs *ring)
770 {
771 	struct drm_device *dev = ring->dev;
772 	struct drm_i915_private *dev_priv = dev->dev_private;
773 
774 	/* WaDisablePartialInstShootdown:bdw */
775 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
776 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
777 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
778 			  STALL_DOP_GATING_DISABLE);
779 
780 	/* WaDisableDopClockGating:bdw */
781 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
782 			  DOP_CLOCK_GATING_DISABLE);
783 
784 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
785 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
786 
787 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
788 	 * workaround for for a possible hang in the unlikely event a TLB
789 	 * invalidation occurs during a PSD flush.
790 	 */
791 	/* WaForceEnableNonCoherent:bdw */
792 	/* WaHdcDisableFetchWhenMasked:bdw */
793 	/* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
794 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
795 			  HDC_FORCE_NON_COHERENT |
796 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
797 			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
798 
799 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
800 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
801 	 *  polygons in the same 8x4 pixel/sample area to be processed without
802 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
803 	 *  buffer."
804 	 *
805 	 * This optimization is off by default for Broadwell; turn it on.
806 	 */
807 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
808 
809 	/* Wa4x4STCOptimizationDisable:bdw */
810 	WA_SET_BIT_MASKED(CACHE_MODE_1,
811 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
812 
813 	/*
814 	 * BSpec recommends 8x4 when MSAA is used,
815 	 * however in practice 16x4 seems fastest.
816 	 *
817 	 * Note that PS/WM thread counts depend on the WIZ hashing
818 	 * disable bit, which we don't touch here, but it's good
819 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
820 	 */
821 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
822 			    GEN6_WIZ_HASHING_MASK,
823 			    GEN6_WIZ_HASHING_16x4);
824 
825 	return 0;
826 }
827 
828 static int chv_init_workarounds(struct intel_engine_cs *ring)
829 {
830 	struct drm_device *dev = ring->dev;
831 	struct drm_i915_private *dev_priv = dev->dev_private;
832 
833 	/* WaDisablePartialInstShootdown:chv */
834 	/* WaDisableThreadStallDopClockGating:chv */
835 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
836 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
837 			  STALL_DOP_GATING_DISABLE);
838 
839 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
840 	 * workaround for a possible hang in the unlikely event a TLB
841 	 * invalidation occurs during a PSD flush.
842 	 */
843 	/* WaForceEnableNonCoherent:chv */
844 	/* WaHdcDisableFetchWhenMasked:chv */
845 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
846 			  HDC_FORCE_NON_COHERENT |
847 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED);
848 
849 	/* According to the CACHE_MODE_0 default value documentation, some
850 	 * CHV platforms disable this optimization by default.  Turn it on.
851 	 */
852 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
853 
854 	/* Wa4x4STCOptimizationDisable:chv */
855 	WA_SET_BIT_MASKED(CACHE_MODE_1,
856 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
857 
858 	/* Improve HiZ throughput on CHV. */
859 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
860 
861 	/*
862 	 * BSpec recommends 8x4 when MSAA is used,
863 	 * however in practice 16x4 seems fastest.
864 	 *
865 	 * Note that PS/WM thread counts depend on the WIZ hashing
866 	 * disable bit, which we don't touch here, but it's good
867 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
868 	 */
869 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
870 			    GEN6_WIZ_HASHING_MASK,
871 			    GEN6_WIZ_HASHING_16x4);
872 
873 	return 0;
874 }
875 
876 int init_workarounds_ring(struct intel_engine_cs *ring)
877 {
878 	struct drm_device *dev = ring->dev;
879 	struct drm_i915_private *dev_priv = dev->dev_private;
880 
881 	WARN_ON(ring->id != RCS);
882 
883 	dev_priv->workarounds.count = 0;
884 
885 	if (IS_BROADWELL(dev))
886 		return bdw_init_workarounds(ring);
887 
888 	if (IS_CHERRYVIEW(dev))
889 		return chv_init_workarounds(ring);
890 
891 	return 0;
892 }
893 
894 static int init_render_ring(struct intel_engine_cs *ring)
895 {
896 	struct drm_device *dev = ring->dev;
897 	struct drm_i915_private *dev_priv = dev->dev_private;
898 	int ret = init_ring_common(ring);
899 	if (ret)
900 		return ret;
901 
902 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
903 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
904 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
905 
906 	/* We need to disable the AsyncFlip performance optimisations in order
907 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
908 	 * programmed to '1' on all products.
909 	 *
910 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
911 	 */
912 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
913 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
914 
915 	/* Required for the hardware to program scanline values for waiting */
916 	/* WaEnableFlushTlbInvalidationMode:snb */
917 	if (INTEL_INFO(dev)->gen == 6)
918 		I915_WRITE(GFX_MODE,
919 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
920 
921 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
922 	if (IS_GEN7(dev))
923 		I915_WRITE(GFX_MODE_GEN7,
924 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
925 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
926 
927 	if (IS_GEN6(dev)) {
928 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
929 		 * "If this bit is set, STCunit will have LRA as replacement
930 		 *  policy. [...] This bit must be reset.  LRA replacement
931 		 *  policy is not supported."
932 		 */
933 		I915_WRITE(CACHE_MODE_0,
934 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
935 	}
936 
937 	if (INTEL_INFO(dev)->gen >= 6)
938 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
939 
940 	if (HAS_L3_DPF(dev))
941 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
942 
943 	return init_workarounds_ring(ring);
944 }
945 
946 static void render_ring_cleanup(struct intel_engine_cs *ring)
947 {
948 	struct drm_device *dev = ring->dev;
949 	struct drm_i915_private *dev_priv = dev->dev_private;
950 
951 	if (dev_priv->semaphore_obj) {
952 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
953 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
954 		dev_priv->semaphore_obj = NULL;
955 	}
956 
957 	intel_fini_pipe_control(ring);
958 }
959 
960 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
961 			   unsigned int num_dwords)
962 {
963 #define MBOX_UPDATE_DWORDS 8
964 	struct drm_device *dev = signaller->dev;
965 	struct drm_i915_private *dev_priv = dev->dev_private;
966 	struct intel_engine_cs *waiter;
967 	int i, ret, num_rings;
968 
969 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
970 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
971 #undef MBOX_UPDATE_DWORDS
972 
973 	ret = intel_ring_begin(signaller, num_dwords);
974 	if (ret)
975 		return ret;
976 
977 	for_each_ring(waiter, dev_priv, i) {
978 		u32 seqno;
979 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
980 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
981 			continue;
982 
983 		seqno = i915_gem_request_get_seqno(
984 					   signaller->outstanding_lazy_request);
985 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
986 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
987 					   PIPE_CONTROL_QW_WRITE |
988 					   PIPE_CONTROL_FLUSH_ENABLE);
989 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
990 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
991 		intel_ring_emit(signaller, seqno);
992 		intel_ring_emit(signaller, 0);
993 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
994 					   MI_SEMAPHORE_TARGET(waiter->id));
995 		intel_ring_emit(signaller, 0);
996 	}
997 
998 	return 0;
999 }
1000 
1001 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1002 			   unsigned int num_dwords)
1003 {
1004 #define MBOX_UPDATE_DWORDS 6
1005 	struct drm_device *dev = signaller->dev;
1006 	struct drm_i915_private *dev_priv = dev->dev_private;
1007 	struct intel_engine_cs *waiter;
1008 	int i, ret, num_rings;
1009 
1010 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1011 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1012 #undef MBOX_UPDATE_DWORDS
1013 
1014 	ret = intel_ring_begin(signaller, num_dwords);
1015 	if (ret)
1016 		return ret;
1017 
1018 	for_each_ring(waiter, dev_priv, i) {
1019 		u32 seqno;
1020 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1021 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1022 			continue;
1023 
1024 		seqno = i915_gem_request_get_seqno(
1025 					   signaller->outstanding_lazy_request);
1026 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1027 					   MI_FLUSH_DW_OP_STOREDW);
1028 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1029 					   MI_FLUSH_DW_USE_GTT);
1030 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1031 		intel_ring_emit(signaller, seqno);
1032 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1033 					   MI_SEMAPHORE_TARGET(waiter->id));
1034 		intel_ring_emit(signaller, 0);
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 static int gen6_signal(struct intel_engine_cs *signaller,
1041 		       unsigned int num_dwords)
1042 {
1043 	struct drm_device *dev = signaller->dev;
1044 	struct drm_i915_private *dev_priv = dev->dev_private;
1045 	struct intel_engine_cs *useless;
1046 	int i, ret, num_rings;
1047 
1048 #define MBOX_UPDATE_DWORDS 3
1049 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1050 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1051 #undef MBOX_UPDATE_DWORDS
1052 
1053 	ret = intel_ring_begin(signaller, num_dwords);
1054 	if (ret)
1055 		return ret;
1056 
1057 	for_each_ring(useless, dev_priv, i) {
1058 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1059 		if (mbox_reg != GEN6_NOSYNC) {
1060 			u32 seqno = i915_gem_request_get_seqno(
1061 					   signaller->outstanding_lazy_request);
1062 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1063 			intel_ring_emit(signaller, mbox_reg);
1064 			intel_ring_emit(signaller, seqno);
1065 		}
1066 	}
1067 
1068 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1069 	if (num_rings % 2 == 0)
1070 		intel_ring_emit(signaller, MI_NOOP);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  * gen6_add_request - Update the semaphore mailbox registers
1077  *
1078  * @ring - ring that is adding a request
1079  * @seqno - return seqno stuck into the ring
1080  *
1081  * Update the mailbox registers in the *other* rings with the current seqno.
1082  * This acts like a signal in the canonical semaphore.
1083  */
1084 static int
1085 gen6_add_request(struct intel_engine_cs *ring)
1086 {
1087 	int ret;
1088 
1089 	if (ring->semaphore.signal)
1090 		ret = ring->semaphore.signal(ring, 4);
1091 	else
1092 		ret = intel_ring_begin(ring, 4);
1093 
1094 	if (ret)
1095 		return ret;
1096 
1097 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1098 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1099 	intel_ring_emit(ring,
1100 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1101 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1102 	__intel_ring_advance(ring);
1103 
1104 	return 0;
1105 }
1106 
1107 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1108 					      u32 seqno)
1109 {
1110 	struct drm_i915_private *dev_priv = dev->dev_private;
1111 	return dev_priv->last_seqno < seqno;
1112 }
1113 
1114 /**
1115  * intel_ring_sync - sync the waiter to the signaller on seqno
1116  *
1117  * @waiter - ring that is waiting
1118  * @signaller - ring which has, or will signal
1119  * @seqno - seqno which the waiter will block on
1120  */
1121 
1122 static int
1123 gen8_ring_sync(struct intel_engine_cs *waiter,
1124 	       struct intel_engine_cs *signaller,
1125 	       u32 seqno)
1126 {
1127 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1128 	int ret;
1129 
1130 	ret = intel_ring_begin(waiter, 4);
1131 	if (ret)
1132 		return ret;
1133 
1134 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1135 				MI_SEMAPHORE_GLOBAL_GTT |
1136 				MI_SEMAPHORE_POLL |
1137 				MI_SEMAPHORE_SAD_GTE_SDD);
1138 	intel_ring_emit(waiter, seqno);
1139 	intel_ring_emit(waiter,
1140 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1141 	intel_ring_emit(waiter,
1142 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1143 	intel_ring_advance(waiter);
1144 	return 0;
1145 }
1146 
1147 static int
1148 gen6_ring_sync(struct intel_engine_cs *waiter,
1149 	       struct intel_engine_cs *signaller,
1150 	       u32 seqno)
1151 {
1152 	u32 dw1 = MI_SEMAPHORE_MBOX |
1153 		  MI_SEMAPHORE_COMPARE |
1154 		  MI_SEMAPHORE_REGISTER;
1155 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1156 	int ret;
1157 
1158 	/* Throughout all of the GEM code, seqno passed implies our current
1159 	 * seqno is >= the last seqno executed. However for hardware the
1160 	 * comparison is strictly greater than.
1161 	 */
1162 	seqno -= 1;
1163 
1164 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1165 
1166 	ret = intel_ring_begin(waiter, 4);
1167 	if (ret)
1168 		return ret;
1169 
1170 	/* If seqno wrap happened, omit the wait with no-ops */
1171 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1172 		intel_ring_emit(waiter, dw1 | wait_mbox);
1173 		intel_ring_emit(waiter, seqno);
1174 		intel_ring_emit(waiter, 0);
1175 		intel_ring_emit(waiter, MI_NOOP);
1176 	} else {
1177 		intel_ring_emit(waiter, MI_NOOP);
1178 		intel_ring_emit(waiter, MI_NOOP);
1179 		intel_ring_emit(waiter, MI_NOOP);
1180 		intel_ring_emit(waiter, MI_NOOP);
1181 	}
1182 	intel_ring_advance(waiter);
1183 
1184 	return 0;
1185 }
1186 
1187 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1188 do {									\
1189 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1190 		 PIPE_CONTROL_DEPTH_STALL);				\
1191 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1192 	intel_ring_emit(ring__, 0);							\
1193 	intel_ring_emit(ring__, 0);							\
1194 } while (0)
1195 
1196 static int
1197 pc_render_add_request(struct intel_engine_cs *ring)
1198 {
1199 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1200 	int ret;
1201 
1202 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1203 	 * incoherent with writes to memory, i.e. completely fubar,
1204 	 * so we need to use PIPE_NOTIFY instead.
1205 	 *
1206 	 * However, we also need to workaround the qword write
1207 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1208 	 * memory before requesting an interrupt.
1209 	 */
1210 	ret = intel_ring_begin(ring, 32);
1211 	if (ret)
1212 		return ret;
1213 
1214 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1215 			PIPE_CONTROL_WRITE_FLUSH |
1216 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1217 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1218 	intel_ring_emit(ring,
1219 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1220 	intel_ring_emit(ring, 0);
1221 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1222 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1223 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1224 	scratch_addr += 2 * CACHELINE_BYTES;
1225 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1226 	scratch_addr += 2 * CACHELINE_BYTES;
1227 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1228 	scratch_addr += 2 * CACHELINE_BYTES;
1229 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1230 	scratch_addr += 2 * CACHELINE_BYTES;
1231 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1232 
1233 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1234 			PIPE_CONTROL_WRITE_FLUSH |
1235 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1236 			PIPE_CONTROL_NOTIFY);
1237 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1238 	intel_ring_emit(ring,
1239 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1240 	intel_ring_emit(ring, 0);
1241 	__intel_ring_advance(ring);
1242 
1243 	return 0;
1244 }
1245 
1246 static u32
1247 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1248 {
1249 	/* Workaround to force correct ordering between irq and seqno writes on
1250 	 * ivb (and maybe also on snb) by reading from a CS register (like
1251 	 * ACTHD) before reading the status page. */
1252 	if (!lazy_coherency) {
1253 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1254 		POSTING_READ(RING_ACTHD(ring->mmio_base));
1255 	}
1256 
1257 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1258 }
1259 
1260 static u32
1261 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1262 {
1263 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1264 }
1265 
1266 static void
1267 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1268 {
1269 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1270 }
1271 
1272 static u32
1273 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1274 {
1275 	return ring->scratch.cpu_page[0];
1276 }
1277 
1278 static void
1279 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1280 {
1281 	ring->scratch.cpu_page[0] = seqno;
1282 }
1283 
1284 static bool
1285 gen5_ring_get_irq(struct intel_engine_cs *ring)
1286 {
1287 	struct drm_device *dev = ring->dev;
1288 	struct drm_i915_private *dev_priv = dev->dev_private;
1289 
1290 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1291 		return false;
1292 
1293 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1294 	if (ring->irq_refcount++ == 0)
1295 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1296 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1297 
1298 	return true;
1299 }
1300 
1301 static void
1302 gen5_ring_put_irq(struct intel_engine_cs *ring)
1303 {
1304 	struct drm_device *dev = ring->dev;
1305 	struct drm_i915_private *dev_priv = dev->dev_private;
1306 
1307 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1308 	if (--ring->irq_refcount == 0)
1309 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1310 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1311 }
1312 
1313 static bool
1314 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1315 {
1316 	struct drm_device *dev = ring->dev;
1317 	struct drm_i915_private *dev_priv = dev->dev_private;
1318 
1319 	if (!intel_irqs_enabled(dev_priv))
1320 		return false;
1321 
1322 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1323 	if (ring->irq_refcount++ == 0) {
1324 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1325 		I915_WRITE(IMR, dev_priv->irq_mask);
1326 		POSTING_READ(IMR);
1327 	}
1328 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1329 
1330 	return true;
1331 }
1332 
1333 static void
1334 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1335 {
1336 	struct drm_device *dev = ring->dev;
1337 	struct drm_i915_private *dev_priv = dev->dev_private;
1338 
1339 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1340 	if (--ring->irq_refcount == 0) {
1341 		dev_priv->irq_mask |= ring->irq_enable_mask;
1342 		I915_WRITE(IMR, dev_priv->irq_mask);
1343 		POSTING_READ(IMR);
1344 	}
1345 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1346 }
1347 
1348 static bool
1349 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1350 {
1351 	struct drm_device *dev = ring->dev;
1352 	struct drm_i915_private *dev_priv = dev->dev_private;
1353 
1354 	if (!intel_irqs_enabled(dev_priv))
1355 		return false;
1356 
1357 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1358 	if (ring->irq_refcount++ == 0) {
1359 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1360 		I915_WRITE16(IMR, dev_priv->irq_mask);
1361 		POSTING_READ16(IMR);
1362 	}
1363 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1364 
1365 	return true;
1366 }
1367 
1368 static void
1369 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1370 {
1371 	struct drm_device *dev = ring->dev;
1372 	struct drm_i915_private *dev_priv = dev->dev_private;
1373 
1374 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1375 	if (--ring->irq_refcount == 0) {
1376 		dev_priv->irq_mask |= ring->irq_enable_mask;
1377 		I915_WRITE16(IMR, dev_priv->irq_mask);
1378 		POSTING_READ16(IMR);
1379 	}
1380 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1381 }
1382 
1383 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1384 {
1385 	struct drm_device *dev = ring->dev;
1386 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1387 	u32 mmio = 0;
1388 
1389 	/* The ring status page addresses are no longer next to the rest of
1390 	 * the ring registers as of gen7.
1391 	 */
1392 	if (IS_GEN7(dev)) {
1393 		switch (ring->id) {
1394 		case RCS:
1395 			mmio = RENDER_HWS_PGA_GEN7;
1396 			break;
1397 		case BCS:
1398 			mmio = BLT_HWS_PGA_GEN7;
1399 			break;
1400 		/*
1401 		 * VCS2 actually doesn't exist on Gen7. Only shut up
1402 		 * gcc switch check warning
1403 		 */
1404 		case VCS2:
1405 		case VCS:
1406 			mmio = BSD_HWS_PGA_GEN7;
1407 			break;
1408 		case VECS:
1409 			mmio = VEBOX_HWS_PGA_GEN7;
1410 			break;
1411 		}
1412 	} else if (IS_GEN6(ring->dev)) {
1413 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1414 	} else {
1415 		/* XXX: gen8 returns to sanity */
1416 		mmio = RING_HWS_PGA(ring->mmio_base);
1417 	}
1418 
1419 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1420 	POSTING_READ(mmio);
1421 
1422 	/*
1423 	 * Flush the TLB for this page
1424 	 *
1425 	 * FIXME: These two bits have disappeared on gen8, so a question
1426 	 * arises: do we still need this and if so how should we go about
1427 	 * invalidating the TLB?
1428 	 */
1429 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1430 		u32 reg = RING_INSTPM(ring->mmio_base);
1431 
1432 		/* ring should be idle before issuing a sync flush*/
1433 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1434 
1435 		I915_WRITE(reg,
1436 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1437 					      INSTPM_SYNC_FLUSH));
1438 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1439 			     1000))
1440 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1441 				  ring->name);
1442 	}
1443 }
1444 
1445 static int
1446 bsd_ring_flush(struct intel_engine_cs *ring,
1447 	       u32     invalidate_domains,
1448 	       u32     flush_domains)
1449 {
1450 	int ret;
1451 
1452 	ret = intel_ring_begin(ring, 2);
1453 	if (ret)
1454 		return ret;
1455 
1456 	intel_ring_emit(ring, MI_FLUSH);
1457 	intel_ring_emit(ring, MI_NOOP);
1458 	intel_ring_advance(ring);
1459 	return 0;
1460 }
1461 
1462 static int
1463 i9xx_add_request(struct intel_engine_cs *ring)
1464 {
1465 	int ret;
1466 
1467 	ret = intel_ring_begin(ring, 4);
1468 	if (ret)
1469 		return ret;
1470 
1471 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1472 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1473 	intel_ring_emit(ring,
1474 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1475 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1476 	__intel_ring_advance(ring);
1477 
1478 	return 0;
1479 }
1480 
1481 static bool
1482 gen6_ring_get_irq(struct intel_engine_cs *ring)
1483 {
1484 	struct drm_device *dev = ring->dev;
1485 	struct drm_i915_private *dev_priv = dev->dev_private;
1486 
1487 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1488 		return false;
1489 
1490 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1491 	if (ring->irq_refcount++ == 0) {
1492 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1493 			I915_WRITE_IMR(ring,
1494 				       ~(ring->irq_enable_mask |
1495 					 GT_PARITY_ERROR(dev)));
1496 		else
1497 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1498 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1499 	}
1500 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1501 
1502 	return true;
1503 }
1504 
1505 static void
1506 gen6_ring_put_irq(struct intel_engine_cs *ring)
1507 {
1508 	struct drm_device *dev = ring->dev;
1509 	struct drm_i915_private *dev_priv = dev->dev_private;
1510 
1511 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1512 	if (--ring->irq_refcount == 0) {
1513 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1514 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1515 		else
1516 			I915_WRITE_IMR(ring, ~0);
1517 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1518 	}
1519 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1520 }
1521 
1522 static bool
1523 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1524 {
1525 	struct drm_device *dev = ring->dev;
1526 	struct drm_i915_private *dev_priv = dev->dev_private;
1527 
1528 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1529 		return false;
1530 
1531 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1532 	if (ring->irq_refcount++ == 0) {
1533 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1534 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1535 	}
1536 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1537 
1538 	return true;
1539 }
1540 
1541 static void
1542 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1543 {
1544 	struct drm_device *dev = ring->dev;
1545 	struct drm_i915_private *dev_priv = dev->dev_private;
1546 
1547 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1548 	if (--ring->irq_refcount == 0) {
1549 		I915_WRITE_IMR(ring, ~0);
1550 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1551 	}
1552 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1553 }
1554 
1555 static bool
1556 gen8_ring_get_irq(struct intel_engine_cs *ring)
1557 {
1558 	struct drm_device *dev = ring->dev;
1559 	struct drm_i915_private *dev_priv = dev->dev_private;
1560 
1561 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1562 		return false;
1563 
1564 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1565 	if (ring->irq_refcount++ == 0) {
1566 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1567 			I915_WRITE_IMR(ring,
1568 				       ~(ring->irq_enable_mask |
1569 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1570 		} else {
1571 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1572 		}
1573 		POSTING_READ(RING_IMR(ring->mmio_base));
1574 	}
1575 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1576 
1577 	return true;
1578 }
1579 
1580 static void
1581 gen8_ring_put_irq(struct intel_engine_cs *ring)
1582 {
1583 	struct drm_device *dev = ring->dev;
1584 	struct drm_i915_private *dev_priv = dev->dev_private;
1585 
1586 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1587 	if (--ring->irq_refcount == 0) {
1588 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1589 			I915_WRITE_IMR(ring,
1590 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1591 		} else {
1592 			I915_WRITE_IMR(ring, ~0);
1593 		}
1594 		POSTING_READ(RING_IMR(ring->mmio_base));
1595 	}
1596 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1597 }
1598 
1599 static int
1600 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1601 			 u64 offset, u32 length,
1602 			 unsigned flags)
1603 {
1604 	int ret;
1605 
1606 	ret = intel_ring_begin(ring, 2);
1607 	if (ret)
1608 		return ret;
1609 
1610 	intel_ring_emit(ring,
1611 			MI_BATCH_BUFFER_START |
1612 			MI_BATCH_GTT |
1613 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1614 	intel_ring_emit(ring, offset);
1615 	intel_ring_advance(ring);
1616 
1617 	return 0;
1618 }
1619 
1620 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1621 #define I830_BATCH_LIMIT (256*1024)
1622 #define I830_TLB_ENTRIES (2)
1623 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1624 static int
1625 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1626 				u64 offset, u32 len,
1627 				unsigned flags)
1628 {
1629 	u32 cs_offset = ring->scratch.gtt_offset;
1630 	int ret;
1631 
1632 	ret = intel_ring_begin(ring, 6);
1633 	if (ret)
1634 		return ret;
1635 
1636 	/* Evict the invalid PTE TLBs */
1637 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1638 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1639 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1640 	intel_ring_emit(ring, cs_offset);
1641 	intel_ring_emit(ring, 0xdeadbeef);
1642 	intel_ring_emit(ring, MI_NOOP);
1643 	intel_ring_advance(ring);
1644 
1645 	if ((flags & I915_DISPATCH_PINNED) == 0) {
1646 		if (len > I830_BATCH_LIMIT)
1647 			return -ENOSPC;
1648 
1649 		ret = intel_ring_begin(ring, 6 + 2);
1650 		if (ret)
1651 			return ret;
1652 
1653 		/* Blit the batch (which has now all relocs applied) to the
1654 		 * stable batch scratch bo area (so that the CS never
1655 		 * stumbles over its tlb invalidation bug) ...
1656 		 */
1657 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1658 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1659 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1660 		intel_ring_emit(ring, cs_offset);
1661 		intel_ring_emit(ring, 4096);
1662 		intel_ring_emit(ring, offset);
1663 
1664 		intel_ring_emit(ring, MI_FLUSH);
1665 		intel_ring_emit(ring, MI_NOOP);
1666 		intel_ring_advance(ring);
1667 
1668 		/* ... and execute it. */
1669 		offset = cs_offset;
1670 	}
1671 
1672 	ret = intel_ring_begin(ring, 4);
1673 	if (ret)
1674 		return ret;
1675 
1676 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1677 	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1678 	intel_ring_emit(ring, offset + len - 8);
1679 	intel_ring_emit(ring, MI_NOOP);
1680 	intel_ring_advance(ring);
1681 
1682 	return 0;
1683 }
1684 
1685 static int
1686 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1687 			 u64 offset, u32 len,
1688 			 unsigned flags)
1689 {
1690 	int ret;
1691 
1692 	ret = intel_ring_begin(ring, 2);
1693 	if (ret)
1694 		return ret;
1695 
1696 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1697 	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1698 	intel_ring_advance(ring);
1699 
1700 	return 0;
1701 }
1702 
1703 static void cleanup_status_page(struct intel_engine_cs *ring)
1704 {
1705 	struct drm_i915_gem_object *obj;
1706 
1707 	obj = ring->status_page.obj;
1708 	if (obj == NULL)
1709 		return;
1710 
1711 	kunmap(obj->pages[0]);
1712 	i915_gem_object_ggtt_unpin(obj);
1713 	drm_gem_object_unreference(&obj->base);
1714 	ring->status_page.obj = NULL;
1715 }
1716 
1717 static int init_status_page(struct intel_engine_cs *ring)
1718 {
1719 	struct drm_i915_gem_object *obj;
1720 
1721 	if ((obj = ring->status_page.obj) == NULL) {
1722 		unsigned flags;
1723 		int ret;
1724 
1725 		obj = i915_gem_alloc_object(ring->dev, 4096);
1726 		if (obj == NULL) {
1727 			DRM_ERROR("Failed to allocate status page\n");
1728 			return -ENOMEM;
1729 		}
1730 
1731 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1732 		if (ret)
1733 			goto err_unref;
1734 
1735 		flags = 0;
1736 		if (!HAS_LLC(ring->dev))
1737 			/* On g33, we cannot place HWS above 256MiB, so
1738 			 * restrict its pinning to the low mappable arena.
1739 			 * Though this restriction is not documented for
1740 			 * gen4, gen5, or byt, they also behave similarly
1741 			 * and hang if the HWS is placed at the top of the
1742 			 * GTT. To generalise, it appears that all !llc
1743 			 * platforms have issues with us placing the HWS
1744 			 * above the mappable region (even though we never
1745 			 * actualy map it).
1746 			 */
1747 			flags |= PIN_MAPPABLE;
1748 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1749 		if (ret) {
1750 err_unref:
1751 			drm_gem_object_unreference(&obj->base);
1752 			return ret;
1753 		}
1754 
1755 		ring->status_page.obj = obj;
1756 	}
1757 
1758 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1759 	ring->status_page.page_addr = kmap(obj->pages[0]);
1760 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1761 
1762 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1763 			ring->name, ring->status_page.gfx_addr);
1764 
1765 	return 0;
1766 }
1767 
1768 static int init_phys_status_page(struct intel_engine_cs *ring)
1769 {
1770 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1771 
1772 	if (!dev_priv->status_page_dmah) {
1773 		dev_priv->status_page_dmah =
1774 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1775 		if (!dev_priv->status_page_dmah)
1776 			return -ENOMEM;
1777 	}
1778 
1779 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1780 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1781 
1782 	return 0;
1783 }
1784 
1785 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1786 {
1787 	iounmap(ringbuf->virtual_start, ringbuf->size);
1788 	ringbuf->virtual_start = NULL;
1789 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1790 }
1791 
1792 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1793 				     struct intel_ringbuffer *ringbuf)
1794 {
1795 	struct drm_i915_private *dev_priv = to_i915(dev);
1796 	struct drm_i915_gem_object *obj = ringbuf->obj;
1797 	int ret;
1798 
1799 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1800 	if (ret)
1801 		return ret;
1802 
1803 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1804 	if (ret) {
1805 		i915_gem_object_ggtt_unpin(obj);
1806 		return ret;
1807 	}
1808 
1809 	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1810 			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1811 	if (ringbuf->virtual_start == NULL) {
1812 		i915_gem_object_ggtt_unpin(obj);
1813 		return -EINVAL;
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1820 {
1821 	drm_gem_object_unreference(&ringbuf->obj->base);
1822 	ringbuf->obj = NULL;
1823 }
1824 
1825 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1826 			       struct intel_ringbuffer *ringbuf)
1827 {
1828 	struct drm_i915_gem_object *obj;
1829 
1830 	obj = NULL;
1831 	if (!HAS_LLC(dev))
1832 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1833 	if (obj == NULL)
1834 		obj = i915_gem_alloc_object(dev, ringbuf->size);
1835 	if (obj == NULL)
1836 		return -ENOMEM;
1837 
1838 	/* mark ring buffers as read-only from GPU side by default */
1839 	obj->gt_ro = 1;
1840 
1841 	ringbuf->obj = obj;
1842 
1843 	return 0;
1844 }
1845 
1846 static int intel_init_ring_buffer(struct drm_device *dev,
1847 				  struct intel_engine_cs *ring)
1848 {
1849 	struct intel_ringbuffer *ringbuf;
1850 	int ret;
1851 
1852 	WARN_ON(ring->buffer);
1853 
1854 	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1855 	if (!ringbuf)
1856 		return -ENOMEM;
1857 	ring->buffer = ringbuf;
1858 
1859 	ring->dev = dev;
1860 	INIT_LIST_HEAD(&ring->active_list);
1861 	INIT_LIST_HEAD(&ring->request_list);
1862 	INIT_LIST_HEAD(&ring->execlist_queue);
1863 	ringbuf->size = 32 * PAGE_SIZE;
1864 	ringbuf->ring = ring;
1865 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1866 
1867 	init_waitqueue_head(&ring->irq_queue);
1868 
1869 	if (I915_NEED_GFX_HWS(dev)) {
1870 		ret = init_status_page(ring);
1871 		if (ret)
1872 			goto error;
1873 	} else {
1874 		BUG_ON(ring->id != RCS);
1875 		ret = init_phys_status_page(ring);
1876 		if (ret)
1877 			goto error;
1878 	}
1879 
1880 	WARN_ON(ringbuf->obj);
1881 
1882 	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1883 	if (ret) {
1884 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1885 				ring->name, ret);
1886 		goto error;
1887 	}
1888 
1889 	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1890 	if (ret) {
1891 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
1892 				ring->name, ret);
1893 		intel_destroy_ringbuffer_obj(ringbuf);
1894 		goto error;
1895 	}
1896 
1897 	/* Workaround an erratum on the i830 which causes a hang if
1898 	 * the TAIL pointer points to within the last 2 cachelines
1899 	 * of the buffer.
1900 	 */
1901 	ringbuf->effective_size = ringbuf->size;
1902 	if (IS_I830(dev) || IS_845G(dev))
1903 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1904 
1905 	ret = i915_cmd_parser_init_ring(ring);
1906 	if (ret)
1907 		goto error;
1908 
1909 	return 0;
1910 
1911 error:
1912 	kfree(ringbuf);
1913 	ring->buffer = NULL;
1914 	return ret;
1915 }
1916 
1917 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1918 {
1919 	struct drm_i915_private *dev_priv;
1920 	struct intel_ringbuffer *ringbuf;
1921 
1922 	if (!intel_ring_initialized(ring))
1923 		return;
1924 
1925 	dev_priv = to_i915(ring->dev);
1926 	ringbuf = ring->buffer;
1927 
1928 	intel_stop_ring_buffer(ring);
1929 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1930 
1931 	intel_unpin_ringbuffer_obj(ringbuf);
1932 	intel_destroy_ringbuffer_obj(ringbuf);
1933 	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1934 
1935 	if (ring->cleanup)
1936 		ring->cleanup(ring);
1937 
1938 	cleanup_status_page(ring);
1939 
1940 	i915_cmd_parser_fini_ring(ring);
1941 
1942 	kfree(ringbuf);
1943 	ring->buffer = NULL;
1944 }
1945 
1946 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1947 {
1948 	struct intel_ringbuffer *ringbuf = ring->buffer;
1949 	struct drm_i915_gem_request *request;
1950 	int ret;
1951 
1952 	if (intel_ring_space(ringbuf) >= n)
1953 		return 0;
1954 
1955 	list_for_each_entry(request, &ring->request_list, list) {
1956 		if (__intel_ring_space(request->postfix, ringbuf->tail,
1957 				       ringbuf->size) >= n) {
1958 			break;
1959 		}
1960 	}
1961 
1962 	if (&request->list == &ring->request_list)
1963 		return -ENOSPC;
1964 
1965 	ret = i915_wait_request(request);
1966 	if (ret)
1967 		return ret;
1968 
1969 	i915_gem_retire_requests_ring(ring);
1970 
1971 	return 0;
1972 }
1973 
1974 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1975 {
1976 	struct drm_device *dev = ring->dev;
1977 	struct drm_i915_private *dev_priv = dev->dev_private;
1978 	struct intel_ringbuffer *ringbuf = ring->buffer;
1979 	unsigned long end;
1980 	int ret;
1981 
1982 	ret = intel_ring_wait_request(ring, n);
1983 	if (ret != -ENOSPC)
1984 		return ret;
1985 
1986 	/* force the tail write in case we have been skipping them */
1987 	__intel_ring_advance(ring);
1988 
1989 	/* With GEM the hangcheck timer should kick us out of the loop,
1990 	 * leaving it early runs the risk of corrupting GEM state (due
1991 	 * to running on almost untested codepaths). But on resume
1992 	 * timers don't work yet, so prevent a complete hang in that
1993 	 * case by choosing an insanely large timeout. */
1994 	end = jiffies + 60 * HZ;
1995 
1996 	ret = 0;
1997 	trace_i915_ring_wait_begin(ring);
1998 	do {
1999 		if (intel_ring_space(ringbuf) >= n)
2000 			break;
2001 		ringbuf->head = I915_READ_HEAD(ring);
2002 		if (intel_ring_space(ringbuf) >= n)
2003 			break;
2004 
2005 		msleep(1);
2006 
2007 		if (dev_priv->mm.interruptible && signal_pending(curthread->td_lwp)) {
2008 			ret = -ERESTARTSYS;
2009 			break;
2010 		}
2011 
2012 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2013 					   dev_priv->mm.interruptible);
2014 		if (ret)
2015 			break;
2016 
2017 		if (time_after(jiffies, end)) {
2018 			ret = -EBUSY;
2019 			break;
2020 		}
2021 	} while (1);
2022 	trace_i915_ring_wait_end(ring);
2023 	return ret;
2024 }
2025 
2026 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2027 {
2028 	uint32_t __iomem *virt;
2029 	struct intel_ringbuffer *ringbuf = ring->buffer;
2030 	int rem = ringbuf->size - ringbuf->tail;
2031 
2032 	if (ringbuf->space < rem) {
2033 		int ret = ring_wait_for_space(ring, rem);
2034 		if (ret)
2035 			return ret;
2036 	}
2037 
2038 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
2039 	rem /= 4;
2040 	while (rem--)
2041 		iowrite32(MI_NOOP, virt++);
2042 
2043 	ringbuf->tail = 0;
2044 	intel_ring_update_space(ringbuf);
2045 
2046 	return 0;
2047 }
2048 
2049 int intel_ring_idle(struct intel_engine_cs *ring)
2050 {
2051 	struct drm_i915_gem_request *req;
2052 	int ret;
2053 
2054 	/* We need to add any requests required to flush the objects and ring */
2055 	if (ring->outstanding_lazy_request) {
2056 		ret = i915_add_request(ring);
2057 		if (ret)
2058 			return ret;
2059 	}
2060 
2061 	/* Wait upon the last request to be completed */
2062 	if (list_empty(&ring->request_list))
2063 		return 0;
2064 
2065 	req = list_entry(ring->request_list.prev,
2066 			   struct drm_i915_gem_request,
2067 			   list);
2068 
2069 	return i915_wait_request(req);
2070 }
2071 
2072 static int
2073 intel_ring_alloc_request(struct intel_engine_cs *ring)
2074 {
2075 	int ret;
2076 	struct drm_i915_gem_request *request;
2077 	struct drm_i915_private *dev_private = ring->dev->dev_private;
2078 
2079 	if (ring->outstanding_lazy_request)
2080 		return 0;
2081 
2082 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2083 	if (request == NULL)
2084 		return -ENOMEM;
2085 
2086 	kref_init(&request->ref);
2087 	request->ring = ring;
2088 	request->uniq = dev_private->request_uniq++;
2089 
2090 	ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2091 	if (ret) {
2092 		kfree(request);
2093 		return ret;
2094 	}
2095 
2096 	ring->outstanding_lazy_request = request;
2097 	return 0;
2098 }
2099 
2100 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2101 				int bytes)
2102 {
2103 	struct intel_ringbuffer *ringbuf = ring->buffer;
2104 	int ret;
2105 
2106 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2107 		ret = intel_wrap_ring_buffer(ring);
2108 		if (unlikely(ret))
2109 			return ret;
2110 	}
2111 
2112 	if (unlikely(ringbuf->space < bytes)) {
2113 		ret = ring_wait_for_space(ring, bytes);
2114 		if (unlikely(ret))
2115 			return ret;
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 int intel_ring_begin(struct intel_engine_cs *ring,
2122 		     int num_dwords)
2123 {
2124 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2125 	int ret;
2126 
2127 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2128 				   dev_priv->mm.interruptible);
2129 	if (ret)
2130 		return ret;
2131 
2132 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2133 	if (ret)
2134 		return ret;
2135 
2136 	/* Preallocate the olr before touching the ring */
2137 	ret = intel_ring_alloc_request(ring);
2138 	if (ret)
2139 		return ret;
2140 
2141 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2142 	return 0;
2143 }
2144 
2145 /* Align the ring tail to a cacheline boundary */
2146 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2147 {
2148 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2149 	int ret;
2150 
2151 	if (num_dwords == 0)
2152 		return 0;
2153 
2154 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2155 	ret = intel_ring_begin(ring, num_dwords);
2156 	if (ret)
2157 		return ret;
2158 
2159 	while (num_dwords--)
2160 		intel_ring_emit(ring, MI_NOOP);
2161 
2162 	intel_ring_advance(ring);
2163 
2164 	return 0;
2165 }
2166 
2167 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2168 {
2169 	struct drm_device *dev = ring->dev;
2170 	struct drm_i915_private *dev_priv = dev->dev_private;
2171 
2172 	BUG_ON(ring->outstanding_lazy_request);
2173 
2174 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2175 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2176 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2177 		if (HAS_VEBOX(dev))
2178 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2179 	}
2180 
2181 	ring->set_seqno(ring, seqno);
2182 	ring->hangcheck.seqno = seqno;
2183 }
2184 
2185 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2186 				     u32 value)
2187 {
2188 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2189 
2190        /* Every tail move must follow the sequence below */
2191 
2192 	/* Disable notification that the ring is IDLE. The GT
2193 	 * will then assume that it is busy and bring it out of rc6.
2194 	 */
2195 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2196 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2197 
2198 	/* Clear the context id. Here be magic! */
2199 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2200 
2201 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2202 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2203 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2204 		     50))
2205 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2206 
2207 	/* Now that the ring is fully powered up, update the tail */
2208 	I915_WRITE_TAIL(ring, value);
2209 	POSTING_READ(RING_TAIL(ring->mmio_base));
2210 
2211 	/* Let the ring send IDLE messages to the GT again,
2212 	 * and so let it sleep to conserve power when idle.
2213 	 */
2214 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2215 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2216 }
2217 
2218 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2219 			       u32 invalidate, u32 flush)
2220 {
2221 	uint32_t cmd;
2222 	int ret;
2223 
2224 	ret = intel_ring_begin(ring, 4);
2225 	if (ret)
2226 		return ret;
2227 
2228 	cmd = MI_FLUSH_DW;
2229 	if (INTEL_INFO(ring->dev)->gen >= 8)
2230 		cmd += 1;
2231 
2232 	/* We always require a command barrier so that subsequent
2233 	 * commands, such as breadcrumb interrupts, are strictly ordered
2234 	 * wrt the contents of the write cache being flushed to memory
2235 	 * (and thus being coherent from the CPU).
2236 	 */
2237 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2238 
2239 	/*
2240 	 * Bspec vol 1c.5 - video engine command streamer:
2241 	 * "If ENABLED, all TLBs will be invalidated once the flush
2242 	 * operation is complete. This bit is only valid when the
2243 	 * Post-Sync Operation field is a value of 1h or 3h."
2244 	 */
2245 	if (invalidate & I915_GEM_GPU_DOMAINS)
2246 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2247 
2248 	intel_ring_emit(ring, cmd);
2249 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2250 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2251 		intel_ring_emit(ring, 0); /* upper addr */
2252 		intel_ring_emit(ring, 0); /* value */
2253 	} else  {
2254 		intel_ring_emit(ring, 0);
2255 		intel_ring_emit(ring, MI_NOOP);
2256 	}
2257 	intel_ring_advance(ring);
2258 	return 0;
2259 }
2260 
2261 static int
2262 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2263 			      u64 offset, u32 len,
2264 			      unsigned flags)
2265 {
2266 	bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2267 	int ret;
2268 
2269 	ret = intel_ring_begin(ring, 4);
2270 	if (ret)
2271 		return ret;
2272 
2273 	/* FIXME(BDW): Address space and security selectors. */
2274 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2275 	intel_ring_emit(ring, lower_32_bits(offset));
2276 	intel_ring_emit(ring, upper_32_bits(offset));
2277 	intel_ring_emit(ring, MI_NOOP);
2278 	intel_ring_advance(ring);
2279 
2280 	return 0;
2281 }
2282 
2283 static int
2284 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2285 			      u64 offset, u32 len,
2286 			      unsigned flags)
2287 {
2288 	int ret;
2289 
2290 	ret = intel_ring_begin(ring, 2);
2291 	if (ret)
2292 		return ret;
2293 
2294 	intel_ring_emit(ring,
2295 			MI_BATCH_BUFFER_START |
2296 			(flags & I915_DISPATCH_SECURE ?
2297 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2298 	/* bit0-7 is the length on GEN6+ */
2299 	intel_ring_emit(ring, offset);
2300 	intel_ring_advance(ring);
2301 
2302 	return 0;
2303 }
2304 
2305 static int
2306 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2307 			      u64 offset, u32 len,
2308 			      unsigned flags)
2309 {
2310 	int ret;
2311 
2312 	ret = intel_ring_begin(ring, 2);
2313 	if (ret)
2314 		return ret;
2315 
2316 	intel_ring_emit(ring,
2317 			MI_BATCH_BUFFER_START |
2318 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2319 	/* bit0-7 is the length on GEN6+ */
2320 	intel_ring_emit(ring, offset);
2321 	intel_ring_advance(ring);
2322 
2323 	return 0;
2324 }
2325 
2326 /* Blitter support (SandyBridge+) */
2327 
2328 static int gen6_ring_flush(struct intel_engine_cs *ring,
2329 			   u32 invalidate, u32 flush)
2330 {
2331 	struct drm_device *dev = ring->dev;
2332 	struct drm_i915_private *dev_priv = dev->dev_private;
2333 	uint32_t cmd;
2334 	int ret;
2335 
2336 	ret = intel_ring_begin(ring, 4);
2337 	if (ret)
2338 		return ret;
2339 
2340 	cmd = MI_FLUSH_DW;
2341 	if (INTEL_INFO(ring->dev)->gen >= 8)
2342 		cmd += 1;
2343 
2344 	/* We always require a command barrier so that subsequent
2345 	 * commands, such as breadcrumb interrupts, are strictly ordered
2346 	 * wrt the contents of the write cache being flushed to memory
2347 	 * (and thus being coherent from the CPU).
2348 	 */
2349 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2350 
2351 	/*
2352 	 * Bspec vol 1c.3 - blitter engine command streamer:
2353 	 * "If ENABLED, all TLBs will be invalidated once the flush
2354 	 * operation is complete. This bit is only valid when the
2355 	 * Post-Sync Operation field is a value of 1h or 3h."
2356 	 */
2357 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2358 		cmd |= MI_INVALIDATE_TLB;
2359 	intel_ring_emit(ring, cmd);
2360 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2361 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2362 		intel_ring_emit(ring, 0); /* upper addr */
2363 		intel_ring_emit(ring, 0); /* value */
2364 	} else  {
2365 		intel_ring_emit(ring, 0);
2366 		intel_ring_emit(ring, MI_NOOP);
2367 	}
2368 	intel_ring_advance(ring);
2369 
2370 	if (!invalidate && flush) {
2371 		if (IS_GEN7(dev))
2372 			return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2373 		else if (IS_BROADWELL(dev))
2374 			dev_priv->fbc.need_sw_cache_clean = true;
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 int intel_init_render_ring_buffer(struct drm_device *dev)
2381 {
2382 	struct drm_i915_private *dev_priv = dev->dev_private;
2383 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2384 	struct drm_i915_gem_object *obj;
2385 	int ret;
2386 
2387 	ring->name = "render ring";
2388 	ring->id = RCS;
2389 	ring->mmio_base = RENDER_RING_BASE;
2390 
2391 	if (INTEL_INFO(dev)->gen >= 8) {
2392 		if (i915_semaphore_is_enabled(dev)) {
2393 			obj = i915_gem_alloc_object(dev, 4096);
2394 			if (obj == NULL) {
2395 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2396 				i915.semaphores = 0;
2397 			} else {
2398 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2399 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2400 				if (ret != 0) {
2401 					drm_gem_object_unreference(&obj->base);
2402 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2403 					i915.semaphores = 0;
2404 				} else
2405 					dev_priv->semaphore_obj = obj;
2406 			}
2407 		}
2408 
2409 		ring->init_context = intel_rcs_ctx_init;
2410 		ring->add_request = gen6_add_request;
2411 		ring->flush = gen8_render_ring_flush;
2412 		ring->irq_get = gen8_ring_get_irq;
2413 		ring->irq_put = gen8_ring_put_irq;
2414 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2415 		ring->get_seqno = gen6_ring_get_seqno;
2416 		ring->set_seqno = ring_set_seqno;
2417 		if (i915_semaphore_is_enabled(dev)) {
2418 			WARN_ON(!dev_priv->semaphore_obj);
2419 			ring->semaphore.sync_to = gen8_ring_sync;
2420 			ring->semaphore.signal = gen8_rcs_signal;
2421 			GEN8_RING_SEMAPHORE_INIT;
2422 		}
2423 	} else if (INTEL_INFO(dev)->gen >= 6) {
2424 		ring->add_request = gen6_add_request;
2425 		ring->flush = gen7_render_ring_flush;
2426 		if (INTEL_INFO(dev)->gen == 6)
2427 			ring->flush = gen6_render_ring_flush;
2428 		ring->irq_get = gen6_ring_get_irq;
2429 		ring->irq_put = gen6_ring_put_irq;
2430 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2431 		ring->get_seqno = gen6_ring_get_seqno;
2432 		ring->set_seqno = ring_set_seqno;
2433 		if (i915_semaphore_is_enabled(dev)) {
2434 			ring->semaphore.sync_to = gen6_ring_sync;
2435 			ring->semaphore.signal = gen6_signal;
2436 			/*
2437 			 * The current semaphore is only applied on pre-gen8
2438 			 * platform.  And there is no VCS2 ring on the pre-gen8
2439 			 * platform. So the semaphore between RCS and VCS2 is
2440 			 * initialized as INVALID.  Gen8 will initialize the
2441 			 * sema between VCS2 and RCS later.
2442 			 */
2443 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2444 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2445 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2446 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2447 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2448 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2449 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2450 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2451 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2452 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2453 		}
2454 	} else if (IS_GEN5(dev)) {
2455 		ring->add_request = pc_render_add_request;
2456 		ring->flush = gen4_render_ring_flush;
2457 		ring->get_seqno = pc_render_get_seqno;
2458 		ring->set_seqno = pc_render_set_seqno;
2459 		ring->irq_get = gen5_ring_get_irq;
2460 		ring->irq_put = gen5_ring_put_irq;
2461 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2462 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2463 	} else {
2464 		ring->add_request = i9xx_add_request;
2465 		if (INTEL_INFO(dev)->gen < 4)
2466 			ring->flush = gen2_render_ring_flush;
2467 		else
2468 			ring->flush = gen4_render_ring_flush;
2469 		ring->get_seqno = ring_get_seqno;
2470 		ring->set_seqno = ring_set_seqno;
2471 		if (IS_GEN2(dev)) {
2472 			ring->irq_get = i8xx_ring_get_irq;
2473 			ring->irq_put = i8xx_ring_put_irq;
2474 		} else {
2475 			ring->irq_get = i9xx_ring_get_irq;
2476 			ring->irq_put = i9xx_ring_put_irq;
2477 		}
2478 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2479 	}
2480 	ring->write_tail = ring_write_tail;
2481 
2482 	if (IS_HASWELL(dev))
2483 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2484 	else if (IS_GEN8(dev))
2485 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2486 	else if (INTEL_INFO(dev)->gen >= 6)
2487 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2488 	else if (INTEL_INFO(dev)->gen >= 4)
2489 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2490 	else if (IS_I830(dev) || IS_845G(dev))
2491 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2492 	else
2493 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2494 	ring->init_hw = init_render_ring;
2495 	ring->cleanup = render_ring_cleanup;
2496 
2497 	/* Workaround batchbuffer to combat CS tlb bug. */
2498 	if (HAS_BROKEN_CS_TLB(dev)) {
2499 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2500 		if (obj == NULL) {
2501 			DRM_ERROR("Failed to allocate batch bo\n");
2502 			return -ENOMEM;
2503 		}
2504 
2505 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2506 		if (ret != 0) {
2507 			drm_gem_object_unreference(&obj->base);
2508 			DRM_ERROR("Failed to ping batch bo\n");
2509 			return ret;
2510 		}
2511 
2512 		ring->scratch.obj = obj;
2513 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2514 	}
2515 
2516 	ret = intel_init_ring_buffer(dev, ring);
2517 	if (ret)
2518 		return ret;
2519 
2520 	if (INTEL_INFO(dev)->gen >= 5) {
2521 		ret = intel_init_pipe_control(ring);
2522 		if (ret)
2523 			return ret;
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2530 {
2531 	struct drm_i915_private *dev_priv = dev->dev_private;
2532 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2533 
2534 	ring->name = "bsd ring";
2535 	ring->id = VCS;
2536 
2537 	ring->write_tail = ring_write_tail;
2538 	if (INTEL_INFO(dev)->gen >= 6) {
2539 		ring->mmio_base = GEN6_BSD_RING_BASE;
2540 		/* gen6 bsd needs a special wa for tail updates */
2541 		if (IS_GEN6(dev))
2542 			ring->write_tail = gen6_bsd_ring_write_tail;
2543 		ring->flush = gen6_bsd_ring_flush;
2544 		ring->add_request = gen6_add_request;
2545 		ring->get_seqno = gen6_ring_get_seqno;
2546 		ring->set_seqno = ring_set_seqno;
2547 		if (INTEL_INFO(dev)->gen >= 8) {
2548 			ring->irq_enable_mask =
2549 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2550 			ring->irq_get = gen8_ring_get_irq;
2551 			ring->irq_put = gen8_ring_put_irq;
2552 			ring->dispatch_execbuffer =
2553 				gen8_ring_dispatch_execbuffer;
2554 			if (i915_semaphore_is_enabled(dev)) {
2555 				ring->semaphore.sync_to = gen8_ring_sync;
2556 				ring->semaphore.signal = gen8_xcs_signal;
2557 				GEN8_RING_SEMAPHORE_INIT;
2558 			}
2559 		} else {
2560 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2561 			ring->irq_get = gen6_ring_get_irq;
2562 			ring->irq_put = gen6_ring_put_irq;
2563 			ring->dispatch_execbuffer =
2564 				gen6_ring_dispatch_execbuffer;
2565 			if (i915_semaphore_is_enabled(dev)) {
2566 				ring->semaphore.sync_to = gen6_ring_sync;
2567 				ring->semaphore.signal = gen6_signal;
2568 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2569 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2570 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2571 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2572 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2573 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2574 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2575 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2576 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2577 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2578 			}
2579 		}
2580 	} else {
2581 		ring->mmio_base = BSD_RING_BASE;
2582 		ring->flush = bsd_ring_flush;
2583 		ring->add_request = i9xx_add_request;
2584 		ring->get_seqno = ring_get_seqno;
2585 		ring->set_seqno = ring_set_seqno;
2586 		if (IS_GEN5(dev)) {
2587 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2588 			ring->irq_get = gen5_ring_get_irq;
2589 			ring->irq_put = gen5_ring_put_irq;
2590 		} else {
2591 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2592 			ring->irq_get = i9xx_ring_get_irq;
2593 			ring->irq_put = i9xx_ring_put_irq;
2594 		}
2595 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2596 	}
2597 	ring->init_hw = init_ring_common;
2598 
2599 	return intel_init_ring_buffer(dev, ring);
2600 }
2601 
2602 /**
2603  * Initialize the second BSD ring for Broadwell GT3.
2604  * It is noted that this only exists on Broadwell GT3.
2605  */
2606 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2607 {
2608 	struct drm_i915_private *dev_priv = dev->dev_private;
2609 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2610 
2611 	if ((INTEL_INFO(dev)->gen != 8)) {
2612 		DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2613 		return -EINVAL;
2614 	}
2615 
2616 	ring->name = "bsd2 ring";
2617 	ring->id = VCS2;
2618 
2619 	ring->write_tail = ring_write_tail;
2620 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2621 	ring->flush = gen6_bsd_ring_flush;
2622 	ring->add_request = gen6_add_request;
2623 	ring->get_seqno = gen6_ring_get_seqno;
2624 	ring->set_seqno = ring_set_seqno;
2625 	ring->irq_enable_mask =
2626 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2627 	ring->irq_get = gen8_ring_get_irq;
2628 	ring->irq_put = gen8_ring_put_irq;
2629 	ring->dispatch_execbuffer =
2630 			gen8_ring_dispatch_execbuffer;
2631 	if (i915_semaphore_is_enabled(dev)) {
2632 		ring->semaphore.sync_to = gen8_ring_sync;
2633 		ring->semaphore.signal = gen8_xcs_signal;
2634 		GEN8_RING_SEMAPHORE_INIT;
2635 	}
2636 	ring->init_hw = init_ring_common;
2637 
2638 	return intel_init_ring_buffer(dev, ring);
2639 }
2640 
2641 int intel_init_blt_ring_buffer(struct drm_device *dev)
2642 {
2643 	struct drm_i915_private *dev_priv = dev->dev_private;
2644 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2645 
2646 	ring->name = "blitter ring";
2647 	ring->id = BCS;
2648 
2649 	ring->mmio_base = BLT_RING_BASE;
2650 	ring->write_tail = ring_write_tail;
2651 	ring->flush = gen6_ring_flush;
2652 	ring->add_request = gen6_add_request;
2653 	ring->get_seqno = gen6_ring_get_seqno;
2654 	ring->set_seqno = ring_set_seqno;
2655 	if (INTEL_INFO(dev)->gen >= 8) {
2656 		ring->irq_enable_mask =
2657 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2658 		ring->irq_get = gen8_ring_get_irq;
2659 		ring->irq_put = gen8_ring_put_irq;
2660 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2661 		if (i915_semaphore_is_enabled(dev)) {
2662 			ring->semaphore.sync_to = gen8_ring_sync;
2663 			ring->semaphore.signal = gen8_xcs_signal;
2664 			GEN8_RING_SEMAPHORE_INIT;
2665 		}
2666 	} else {
2667 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2668 		ring->irq_get = gen6_ring_get_irq;
2669 		ring->irq_put = gen6_ring_put_irq;
2670 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2671 		if (i915_semaphore_is_enabled(dev)) {
2672 			ring->semaphore.signal = gen6_signal;
2673 			ring->semaphore.sync_to = gen6_ring_sync;
2674 			/*
2675 			 * The current semaphore is only applied on pre-gen8
2676 			 * platform.  And there is no VCS2 ring on the pre-gen8
2677 			 * platform. So the semaphore between BCS and VCS2 is
2678 			 * initialized as INVALID.  Gen8 will initialize the
2679 			 * sema between BCS and VCS2 later.
2680 			 */
2681 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2682 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2683 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2684 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2685 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2686 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2687 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2688 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2689 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2690 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2691 		}
2692 	}
2693 	ring->init_hw = init_ring_common;
2694 
2695 	return intel_init_ring_buffer(dev, ring);
2696 }
2697 
2698 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2699 {
2700 	struct drm_i915_private *dev_priv = dev->dev_private;
2701 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2702 
2703 	ring->name = "video enhancement ring";
2704 	ring->id = VECS;
2705 
2706 	ring->mmio_base = VEBOX_RING_BASE;
2707 	ring->write_tail = ring_write_tail;
2708 	ring->flush = gen6_ring_flush;
2709 	ring->add_request = gen6_add_request;
2710 	ring->get_seqno = gen6_ring_get_seqno;
2711 	ring->set_seqno = ring_set_seqno;
2712 
2713 	if (INTEL_INFO(dev)->gen >= 8) {
2714 		ring->irq_enable_mask =
2715 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2716 		ring->irq_get = gen8_ring_get_irq;
2717 		ring->irq_put = gen8_ring_put_irq;
2718 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2719 		if (i915_semaphore_is_enabled(dev)) {
2720 			ring->semaphore.sync_to = gen8_ring_sync;
2721 			ring->semaphore.signal = gen8_xcs_signal;
2722 			GEN8_RING_SEMAPHORE_INIT;
2723 		}
2724 	} else {
2725 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2726 		ring->irq_get = hsw_vebox_get_irq;
2727 		ring->irq_put = hsw_vebox_put_irq;
2728 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2729 		if (i915_semaphore_is_enabled(dev)) {
2730 			ring->semaphore.sync_to = gen6_ring_sync;
2731 			ring->semaphore.signal = gen6_signal;
2732 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2733 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2734 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2735 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2736 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2737 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2738 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2739 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2740 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2741 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2742 		}
2743 	}
2744 	ring->init_hw = init_ring_common;
2745 
2746 	return intel_init_ring_buffer(dev, ring);
2747 }
2748 
2749 int
2750 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2751 {
2752 	int ret;
2753 
2754 	if (!ring->gpu_caches_dirty)
2755 		return 0;
2756 
2757 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2758 	if (ret)
2759 		return ret;
2760 
2761 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2762 
2763 	ring->gpu_caches_dirty = false;
2764 	return 0;
2765 }
2766 
2767 int
2768 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2769 {
2770 	uint32_t flush_domains;
2771 	int ret;
2772 
2773 	flush_domains = 0;
2774 	if (ring->gpu_caches_dirty)
2775 		flush_domains = I915_GEM_GPU_DOMAINS;
2776 
2777 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2778 	if (ret)
2779 		return ret;
2780 
2781 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2782 
2783 	ring->gpu_caches_dirty = false;
2784 	return 0;
2785 }
2786 
2787 void
2788 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2789 {
2790 	int ret;
2791 
2792 	if (!intel_ring_initialized(ring))
2793 		return;
2794 
2795 	ret = intel_ring_idle(ring);
2796 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2797 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2798 			  ring->name, ret);
2799 
2800 	stop_ring(ring);
2801 }
2802