xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision c93b565c)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 /*
37  * 965+ support PIPE_CONTROL commands, which provide finer grained control
38  * over cache flushing.
39  */
40 struct pipe_control {
41 	struct drm_i915_gem_object *obj;
42 	volatile u32 *cpu_page;
43 	u32 gtt_offset;
44 };
45 
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48 	int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49 	if (space < 0)
50 		space += ring->size;
51 	return space;
52 }
53 
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 		       u32	invalidate_domains,
57 		       u32	flush_domains)
58 {
59 	u32 cmd;
60 	int ret;
61 
62 	cmd = MI_FLUSH;
63 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 		cmd |= MI_NO_WRITE_FLUSH;
65 
66 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 		cmd |= MI_READ_FLUSH;
68 
69 	ret = intel_ring_begin(ring, 2);
70 	if (ret)
71 		return ret;
72 
73 	intel_ring_emit(ring, cmd);
74 	intel_ring_emit(ring, MI_NOOP);
75 	intel_ring_advance(ring);
76 
77 	return 0;
78 }
79 
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 		       u32	invalidate_domains,
83 		       u32	flush_domains)
84 {
85 	struct drm_device *dev = ring->dev;
86 	u32 cmd;
87 	int ret;
88 
89 	/*
90 	 * read/write caches:
91 	 *
92 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94 	 * also flushed at 2d versus 3d pipeline switches.
95 	 *
96 	 * read-only caches:
97 	 *
98 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 	 * MI_READ_FLUSH is set, and is always flushed on 965.
100 	 *
101 	 * I915_GEM_DOMAIN_COMMAND may not exist?
102 	 *
103 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 	 * invalidated when MI_EXE_FLUSH is set.
105 	 *
106 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 	 * invalidated with every MI_FLUSH.
108 	 *
109 	 * TLBs:
110 	 *
111 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 	 * are flushed at any MI_FLUSH.
115 	 */
116 
117 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 		cmd &= ~MI_NO_WRITE_FLUSH;
120 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 		cmd |= MI_EXE_FLUSH;
122 
123 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 	    (IS_G4X(dev) || IS_GEN5(dev)))
125 		cmd |= MI_INVALIDATE_ISP;
126 
127 	ret = intel_ring_begin(ring, 2);
128 	if (ret)
129 		return ret;
130 
131 	intel_ring_emit(ring, cmd);
132 	intel_ring_emit(ring, MI_NOOP);
133 	intel_ring_advance(ring);
134 
135 	return 0;
136 }
137 
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 	struct pipe_control *pc = ring->private;
179 	u32 scratch_addr = pc->gtt_offset + 128;
180 	int ret;
181 
182 
183 	ret = intel_ring_begin(ring, 6);
184 	if (ret)
185 		return ret;
186 
187 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
190 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191 	intel_ring_emit(ring, 0); /* low dword */
192 	intel_ring_emit(ring, 0); /* high dword */
193 	intel_ring_emit(ring, MI_NOOP);
194 	intel_ring_advance(ring);
195 
196 	ret = intel_ring_begin(ring, 6);
197 	if (ret)
198 		return ret;
199 
200 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203 	intel_ring_emit(ring, 0);
204 	intel_ring_emit(ring, 0);
205 	intel_ring_emit(ring, MI_NOOP);
206 	intel_ring_advance(ring);
207 
208 	return 0;
209 }
210 
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213                          u32 invalidate_domains, u32 flush_domains)
214 {
215 	u32 flags = 0;
216 	struct pipe_control *pc = ring->private;
217 	u32 scratch_addr = pc->gtt_offset + 128;
218 	int ret;
219 
220 	/* Force SNB workarounds for PIPE_CONTROL flushes */
221 	ret = intel_emit_post_sync_nonzero_flush(ring);
222 	if (ret)
223 		return ret;
224 
225 	/* Just flush everything.  Experiments have shown that reducing the
226 	 * number of bits based on the write domains has little performance
227 	 * impact.
228 	 */
229 	if (flush_domains) {
230 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 		/*
233 		 * Ensure that any following seqno writes only happen
234 		 * when the render cache is indeed flushed.
235 		 */
236 		flags |= PIPE_CONTROL_CS_STALL;
237 	}
238 	if (invalidate_domains) {
239 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 		/*
246 		 * TLB invalidate requires a post-sync write.
247 		 */
248 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249 	}
250 
251 	ret = intel_ring_begin(ring, 4);
252 	if (ret)
253 		return ret;
254 
255 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256 	intel_ring_emit(ring, flags);
257 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258 	intel_ring_emit(ring, 0);
259 	intel_ring_advance(ring);
260 
261 	return 0;
262 }
263 
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267 	int ret;
268 
269 	ret = intel_ring_begin(ring, 4);
270 	if (ret)
271 		return ret;
272 
273 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
276 	intel_ring_emit(ring, 0);
277 	intel_ring_emit(ring, 0);
278 	intel_ring_advance(ring);
279 
280 	return 0;
281 }
282 
283 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
284 {
285 	int ret;
286 
287 	if (!ring->fbc_dirty)
288 		return 0;
289 
290 	ret = intel_ring_begin(ring, 4);
291 	if (ret)
292 		return ret;
293 	intel_ring_emit(ring, MI_NOOP);
294 	/* WaFbcNukeOn3DBlt:ivb/hsw */
295 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
296 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
297 	intel_ring_emit(ring, value);
298 	intel_ring_advance(ring);
299 
300 	ring->fbc_dirty = false;
301 	return 0;
302 }
303 
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306 		       u32 invalidate_domains, u32 flush_domains)
307 {
308 	u32 flags = 0;
309 	struct pipe_control *pc = ring->private;
310 	u32 scratch_addr = pc->gtt_offset + 128;
311 	int ret;
312 
313 	/*
314 	 * Ensure that any following seqno writes only happen when the render
315 	 * cache is indeed flushed.
316 	 *
317 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
318 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
319 	 * don't try to be clever and just set it unconditionally.
320 	 */
321 	flags |= PIPE_CONTROL_CS_STALL;
322 
323 	/* Just flush everything.  Experiments have shown that reducing the
324 	 * number of bits based on the write domains has little performance
325 	 * impact.
326 	 */
327 	if (flush_domains) {
328 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
329 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
330 	}
331 	if (invalidate_domains) {
332 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
333 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338 		/*
339 		 * TLB invalidate requires a post-sync write.
340 		 */
341 		flags |= PIPE_CONTROL_QW_WRITE;
342 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
343 
344 		/* Workaround: we must issue a pipe_control with CS-stall bit
345 		 * set before a pipe_control command that has the state cache
346 		 * invalidate bit set. */
347 		gen7_render_ring_cs_stall_wa(ring);
348 	}
349 
350 	ret = intel_ring_begin(ring, 4);
351 	if (ret)
352 		return ret;
353 
354 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
355 	intel_ring_emit(ring, flags);
356 	intel_ring_emit(ring, scratch_addr);
357 	intel_ring_emit(ring, 0);
358 	intel_ring_advance(ring);
359 
360 	if (flush_domains)
361 		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
362 
363 	return 0;
364 }
365 
366 static void ring_write_tail(struct intel_ring_buffer *ring,
367 			    u32 value)
368 {
369 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
370 	I915_WRITE_TAIL(ring, value);
371 }
372 
373 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
374 {
375 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
376 	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
377 			RING_ACTHD(ring->mmio_base) : ACTHD;
378 
379 	return I915_READ(acthd_reg);
380 }
381 
382 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
383 {
384 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
385 	u32 addr;
386 
387 	addr = dev_priv->status_page_dmah->busaddr;
388 	if (INTEL_INFO(ring->dev)->gen >= 4)
389 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
390 	I915_WRITE(HWS_PGA, addr);
391 }
392 
393 static int init_ring_common(struct intel_ring_buffer *ring)
394 {
395 	struct drm_device *dev = ring->dev;
396 	drm_i915_private_t *dev_priv = dev->dev_private;
397 	struct drm_i915_gem_object *obj = ring->obj;
398 	int ret = 0;
399 	u32 head;
400 
401 	if (HAS_FORCE_WAKE(dev))
402 		gen6_gt_force_wake_get(dev_priv);
403 
404 	if (I915_NEED_GFX_HWS(dev))
405 		intel_ring_setup_status_page(ring);
406 	else
407 		ring_setup_phys_status_page(ring);
408 
409 	/* Stop the ring if it's running. */
410 	I915_WRITE_CTL(ring, 0);
411 	I915_WRITE_HEAD(ring, 0);
412 	ring->write_tail(ring, 0);
413 
414 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
415 
416 	/* G45 ring initialization fails to reset head to zero */
417 	if (head != 0) {
418 		DRM_DEBUG_KMS("%s head not reset to zero "
419 			      "ctl %08x head %08x tail %08x start %08x\n",
420 			      ring->name,
421 			      I915_READ_CTL(ring),
422 			      I915_READ_HEAD(ring),
423 			      I915_READ_TAIL(ring),
424 			      I915_READ_START(ring));
425 
426 		I915_WRITE_HEAD(ring, 0);
427 
428 		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
429 			DRM_ERROR("failed to set %s head to zero "
430 				  "ctl %08x head %08x tail %08x start %08x\n",
431 				  ring->name,
432 				  I915_READ_CTL(ring),
433 				  I915_READ_HEAD(ring),
434 				  I915_READ_TAIL(ring),
435 				  I915_READ_START(ring));
436 		}
437 	}
438 
439 	/* Initialize the ring. This must happen _after_ we've cleared the ring
440 	 * registers with the above sequence (the readback of the HEAD registers
441 	 * also enforces ordering), otherwise the hw might lose the new ring
442 	 * register values. */
443 	I915_WRITE_START(ring, obj->gtt_offset);
444 	I915_WRITE_CTL(ring,
445 			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
446 			| RING_VALID);
447 
448 	/* If the head is still not zero, the ring is dead */
449 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
450 		     I915_READ_START(ring) == obj->gtt_offset &&
451 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
452 		DRM_ERROR("%s initialization failed "
453 				"ctl %08x head %08x tail %08x start %08x\n",
454 				ring->name,
455 				I915_READ_CTL(ring),
456 				I915_READ_HEAD(ring),
457 				I915_READ_TAIL(ring),
458 				I915_READ_START(ring));
459 		ret = -EIO;
460 		goto out;
461 	}
462 
463 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
464 		i915_kernel_lost_context(ring->dev);
465 	else {
466 		ring->head = I915_READ_HEAD(ring);
467 		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
468 		ring->space = ring_space(ring);
469 		ring->last_retired_head = -1;
470 	}
471 
472 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
473 
474 out:
475 	if (HAS_FORCE_WAKE(dev))
476 		gen6_gt_force_wake_put(dev_priv);
477 
478 	return ret;
479 }
480 
481 static int
482 init_pipe_control(struct intel_ring_buffer *ring)
483 {
484 	struct pipe_control *pc;
485 	struct drm_i915_gem_object *obj;
486 	int ret;
487 
488 	if (ring->private)
489 		return 0;
490 
491 	pc = kmalloc(sizeof(*pc), M_DRM, M_WAITOK);
492 	if (!pc)
493 		return -ENOMEM;
494 
495 	obj = i915_gem_alloc_object(ring->dev, 4096);
496 	if (obj == NULL) {
497 		DRM_ERROR("Failed to allocate seqno page\n");
498 		ret = -ENOMEM;
499 		goto err;
500 	}
501 
502 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
503 
504 	ret = i915_gem_object_pin(obj, 4096, true, false);
505 	if (ret)
506 		goto err_unref;
507 
508 	pc->gtt_offset = obj->gtt_offset;
509 	pc->cpu_page = kmap(obj->pages[0]);
510 	if (pc->cpu_page == NULL) {
511 		ret = -ENOMEM;
512 		goto err_unpin;
513 	}
514 
515 	pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
516 	pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
517 	    (vm_offset_t)pc->cpu_page + PAGE_SIZE);
518 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
519 			 ring->name, pc->gtt_offset);
520 
521 	pc->obj = obj;
522 	ring->private = pc;
523 	return 0;
524 
525 err_unpin:
526 	i915_gem_object_unpin(obj);
527 err_unref:
528 	drm_gem_object_unreference(&obj->base);
529 err:
530 	kfree(pc);
531 	return ret;
532 }
533 
534 static void
535 cleanup_pipe_control(struct intel_ring_buffer *ring)
536 {
537 	struct pipe_control *pc = ring->private;
538 	struct drm_i915_gem_object *obj;
539 
540 	obj = pc->obj;
541 
542 	pmap_qremove((vm_offset_t)pc->cpu_page, 1);
543 	kmem_free(&kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
544 	i915_gem_object_unpin(obj);
545 	drm_gem_object_unreference(&obj->base);
546 
547 	kfree(pc);
548 }
549 
550 static int init_render_ring(struct intel_ring_buffer *ring)
551 {
552 	struct drm_device *dev = ring->dev;
553 	struct drm_i915_private *dev_priv = dev->dev_private;
554 	int ret = init_ring_common(ring);
555 
556 	if (INTEL_INFO(dev)->gen > 3)
557 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
558 
559 	/* We need to disable the AsyncFlip performance optimisations in order
560 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
561 	 * programmed to '1' on all products.
562 	 *
563 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
564 	 */
565 	if (INTEL_INFO(dev)->gen >= 6)
566 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
567 
568 	/* Required for the hardware to program scanline values for waiting */
569 	if (INTEL_INFO(dev)->gen == 6)
570 		I915_WRITE(GFX_MODE,
571 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
572 
573 	if (IS_GEN7(dev))
574 		I915_WRITE(GFX_MODE_GEN7,
575 			   _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
576 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
577 
578 	if (INTEL_INFO(dev)->gen >= 5) {
579 		ret = init_pipe_control(ring);
580 		if (ret)
581 			return ret;
582 	}
583 
584 	if (IS_GEN6(dev)) {
585 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
586 		 * "If this bit is set, STCunit will have LRA as replacement
587 		 *  policy. [...] This bit must be reset.  LRA replacement
588 		 *  policy is not supported."
589 		 */
590 		I915_WRITE(CACHE_MODE_0,
591 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
592 
593 		/* This is not explicitly set for GEN6, so read the register.
594 		 * see intel_ring_mi_set_context() for why we care.
595 		 * TODO: consider explicitly setting the bit for GEN5
596 		 */
597 		ring->itlb_before_ctx_switch =
598 			!!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
599 	}
600 
601 	if (INTEL_INFO(dev)->gen >= 6)
602 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
603 
604 	if (HAS_L3_GPU_CACHE(dev))
605 		I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
606 
607 	return ret;
608 }
609 
610 static void render_ring_cleanup(struct intel_ring_buffer *ring)
611 {
612 	struct drm_device *dev = ring->dev;
613 
614 	if (!ring->private)
615 		return;
616 
617 	if (HAS_BROKEN_CS_TLB(dev))
618 		drm_gem_object_unreference(to_gem_object(ring->private));
619 
620 	if (INTEL_INFO(dev)->gen >= 5)
621 		cleanup_pipe_control(ring);
622 
623 	ring->private = NULL;
624 }
625 
626 static void
627 update_mboxes(struct intel_ring_buffer *ring,
628 	      u32 mmio_offset)
629 {
630 /* NB: In order to be able to do semaphore MBOX updates for varying number
631  * of rings, it's easiest if we round up each individual update to a
632  * multiple of 2 (since ring updates must always be a multiple of 2)
633  * even though the actual update only requires 3 dwords.
634  */
635 #define MBOX_UPDATE_DWORDS 4
636 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
637 	intel_ring_emit(ring, mmio_offset);
638 	intel_ring_emit(ring, ring->outstanding_lazy_request);
639 	intel_ring_emit(ring, MI_NOOP);
640 }
641 
642 /**
643  * gen6_add_request - Update the semaphore mailbox registers
644  *
645  * @ring - ring that is adding a request
646  * @seqno - return seqno stuck into the ring
647  *
648  * Update the mailbox registers in the *other* rings with the current seqno.
649  * This acts like a signal in the canonical semaphore.
650  */
651 static int
652 gen6_add_request(struct intel_ring_buffer *ring)
653 {
654 	struct drm_device *dev = ring->dev;
655 	struct drm_i915_private *dev_priv = dev->dev_private;
656 	struct intel_ring_buffer *useless;
657 	int i, ret;
658 
659 	ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
660 				      MBOX_UPDATE_DWORDS) +
661 				      4);
662 	if (ret)
663 		return ret;
664 #undef MBOX_UPDATE_DWORDS
665 
666 	for_each_ring(useless, dev_priv, i) {
667 		u32 mbox_reg = ring->signal_mbox[i];
668 		if (mbox_reg != GEN6_NOSYNC)
669 			update_mboxes(ring, mbox_reg);
670 	}
671 
672 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
673 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
674 	intel_ring_emit(ring, ring->outstanding_lazy_request);
675 	intel_ring_emit(ring, MI_USER_INTERRUPT);
676 	intel_ring_advance(ring);
677 
678 	return 0;
679 }
680 
681 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
682 					      u32 seqno)
683 {
684 	struct drm_i915_private *dev_priv = dev->dev_private;
685 	return dev_priv->last_seqno < seqno;
686 }
687 
688 /**
689  * intel_ring_sync - sync the waiter to the signaller on seqno
690  *
691  * @waiter - ring that is waiting
692  * @signaller - ring which has, or will signal
693  * @seqno - seqno which the waiter will block on
694  */
695 static int
696 gen6_ring_sync(struct intel_ring_buffer *waiter,
697 	       struct intel_ring_buffer *signaller,
698 	       u32 seqno)
699 {
700 	int ret;
701 	u32 dw1 = MI_SEMAPHORE_MBOX |
702 		  MI_SEMAPHORE_COMPARE |
703 		  MI_SEMAPHORE_REGISTER;
704 
705 	/* Throughout all of the GEM code, seqno passed implies our current
706 	 * seqno is >= the last seqno executed. However for hardware the
707 	 * comparison is strictly greater than.
708 	 */
709 	seqno -= 1;
710 
711 	WARN_ON(signaller->semaphore_register[waiter->id] ==
712 		MI_SEMAPHORE_SYNC_INVALID);
713 
714 	ret = intel_ring_begin(waiter, 4);
715 	if (ret)
716 		return ret;
717 
718 	/* If seqno wrap happened, omit the wait with no-ops */
719 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
720 		intel_ring_emit(waiter,
721 				dw1 |
722 				signaller->semaphore_register[waiter->id]);
723 		intel_ring_emit(waiter, seqno);
724 		intel_ring_emit(waiter, 0);
725 		intel_ring_emit(waiter, MI_NOOP);
726 	} else {
727 		intel_ring_emit(waiter, MI_NOOP);
728 		intel_ring_emit(waiter, MI_NOOP);
729 		intel_ring_emit(waiter, MI_NOOP);
730 		intel_ring_emit(waiter, MI_NOOP);
731 	}
732 	intel_ring_advance(waiter);
733 
734 	return 0;
735 }
736 
737 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
738 do {									\
739 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
740 		 PIPE_CONTROL_DEPTH_STALL);				\
741 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
742 	intel_ring_emit(ring__, 0);							\
743 	intel_ring_emit(ring__, 0);							\
744 } while (0)
745 
746 static int
747 pc_render_add_request(struct intel_ring_buffer *ring)
748 {
749 	struct pipe_control *pc = ring->private;
750 	u32 scratch_addr = pc->gtt_offset + 128;
751 	int ret;
752 
753 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
754 	 * incoherent with writes to memory, i.e. completely fubar,
755 	 * so we need to use PIPE_NOTIFY instead.
756 	 *
757 	 * However, we also need to workaround the qword write
758 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
759 	 * memory before requesting an interrupt.
760 	 */
761 	ret = intel_ring_begin(ring, 32);
762 	if (ret)
763 		return ret;
764 
765 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
766 			PIPE_CONTROL_WRITE_FLUSH |
767 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
768 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
769 	intel_ring_emit(ring, ring->outstanding_lazy_request);
770 	intel_ring_emit(ring, 0);
771 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
772 	scratch_addr += 128; /* write to separate cachelines */
773 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
774 	scratch_addr += 128;
775 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
776 	scratch_addr += 128;
777 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
778 	scratch_addr += 128;
779 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
780 	scratch_addr += 128;
781 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
782 
783 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
784 			PIPE_CONTROL_WRITE_FLUSH |
785 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
786 			PIPE_CONTROL_NOTIFY);
787 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
788 	intel_ring_emit(ring, ring->outstanding_lazy_request);
789 	intel_ring_emit(ring, 0);
790 	intel_ring_advance(ring);
791 
792 	return 0;
793 }
794 
795 static u32
796 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
797 {
798 	/* Workaround to force correct ordering between irq and seqno writes on
799 	 * ivb (and maybe also on snb) by reading from a CS register (like
800 	 * ACTHD) before reading the status page. */
801 	if (!lazy_coherency)
802 		intel_ring_get_active_head(ring);
803 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
804 }
805 
806 static u32
807 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
808 {
809 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
810 }
811 
812 static void
813 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
814 {
815 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
816 }
817 
818 static u32
819 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
820 {
821 	struct pipe_control *pc = ring->private;
822 	return pc->cpu_page[0];
823 }
824 
825 static void
826 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
827 {
828 	struct pipe_control *pc = ring->private;
829 	pc->cpu_page[0] = seqno;
830 }
831 
832 static bool
833 gen5_ring_get_irq(struct intel_ring_buffer *ring)
834 {
835 	struct drm_device *dev = ring->dev;
836 	drm_i915_private_t *dev_priv = dev->dev_private;
837 
838 	if (!dev->irq_enabled)
839 		return false;
840 
841 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
842 	if (ring->irq_refcount.gt++ == 0) {
843 		dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
844 		I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
845 		POSTING_READ(GTIMR);
846 	}
847 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
848 
849 	return true;
850 }
851 
852 static void
853 gen5_ring_put_irq(struct intel_ring_buffer *ring)
854 {
855 	struct drm_device *dev = ring->dev;
856 	drm_i915_private_t *dev_priv = dev->dev_private;
857 
858 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
859 	if (--ring->irq_refcount.gt == 0) {
860 		dev_priv->gt_irq_mask |= ring->irq_enable_mask;
861 		I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
862 		POSTING_READ(GTIMR);
863 	}
864 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
865 }
866 
867 static bool
868 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
869 {
870 	struct drm_device *dev = ring->dev;
871 	drm_i915_private_t *dev_priv = dev->dev_private;
872 
873 	if (!dev->irq_enabled)
874 		return false;
875 
876 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
877 	if (ring->irq_refcount.gt++ == 0) {
878 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
879 		I915_WRITE(IMR, dev_priv->irq_mask);
880 		POSTING_READ(IMR);
881 	}
882 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
883 
884 	return true;
885 }
886 
887 static void
888 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
889 {
890 	struct drm_device *dev = ring->dev;
891 	drm_i915_private_t *dev_priv = dev->dev_private;
892 
893 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
894 	if (--ring->irq_refcount.gt == 0) {
895 		dev_priv->irq_mask |= ring->irq_enable_mask;
896 		I915_WRITE(IMR, dev_priv->irq_mask);
897 		POSTING_READ(IMR);
898 	}
899 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
900 }
901 
902 static bool
903 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
904 {
905 	struct drm_device *dev = ring->dev;
906 	drm_i915_private_t *dev_priv = dev->dev_private;
907 
908 	if (!dev->irq_enabled)
909 		return false;
910 
911 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
912 	if (ring->irq_refcount.gt++ == 0) {
913 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
914 		I915_WRITE16(IMR, dev_priv->irq_mask);
915 		POSTING_READ16(IMR);
916 	}
917 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
918 
919 	return true;
920 }
921 
922 static void
923 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
924 {
925 	struct drm_device *dev = ring->dev;
926 	drm_i915_private_t *dev_priv = dev->dev_private;
927 
928 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
929 	if (--ring->irq_refcount.gt == 0) {
930 		dev_priv->irq_mask |= ring->irq_enable_mask;
931 		I915_WRITE16(IMR, dev_priv->irq_mask);
932 		POSTING_READ16(IMR);
933 	}
934 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
935 }
936 
937 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
938 {
939 	struct drm_device *dev = ring->dev;
940 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
941 	u32 mmio = 0;
942 
943 	/* The ring status page addresses are no longer next to the rest of
944 	 * the ring registers as of gen7.
945 	 */
946 	if (IS_GEN7(dev)) {
947 		switch (ring->id) {
948 		case RCS:
949 			mmio = RENDER_HWS_PGA_GEN7;
950 			break;
951 		case BCS:
952 			mmio = BLT_HWS_PGA_GEN7;
953 			break;
954 		case VCS:
955 			mmio = BSD_HWS_PGA_GEN7;
956 			break;
957 		case VECS:
958 			mmio = VEBOX_HWS_PGA_GEN7;
959 			break;
960 		}
961 	} else if (IS_GEN6(ring->dev)) {
962 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
963 	} else {
964 		mmio = RING_HWS_PGA(ring->mmio_base);
965 	}
966 
967 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
968 	POSTING_READ(mmio);
969 
970 	/* Flush the TLB for this page */
971 	if (INTEL_INFO(dev)->gen >= 6) {
972 		u32 reg = RING_INSTPM(ring->mmio_base);
973 		I915_WRITE(reg,
974 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
975 					      INSTPM_SYNC_FLUSH));
976 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
977 			     1000))
978 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
979 				  ring->name);
980 	}
981 }
982 
983 static int
984 bsd_ring_flush(struct intel_ring_buffer *ring,
985 	       u32     invalidate_domains,
986 	       u32     flush_domains)
987 {
988 	int ret;
989 
990 	ret = intel_ring_begin(ring, 2);
991 	if (ret)
992 		return ret;
993 
994 	intel_ring_emit(ring, MI_FLUSH);
995 	intel_ring_emit(ring, MI_NOOP);
996 	intel_ring_advance(ring);
997 	return 0;
998 }
999 
1000 static int
1001 i9xx_add_request(struct intel_ring_buffer *ring)
1002 {
1003 	int ret;
1004 
1005 	ret = intel_ring_begin(ring, 4);
1006 	if (ret)
1007 		return ret;
1008 
1009 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1010 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1011 	intel_ring_emit(ring, ring->outstanding_lazy_request);
1012 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1013 	intel_ring_advance(ring);
1014 
1015 	return 0;
1016 }
1017 
1018 static bool
1019 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1020 {
1021 	struct drm_device *dev = ring->dev;
1022 	drm_i915_private_t *dev_priv = dev->dev_private;
1023 
1024 	if (!dev->irq_enabled)
1025 	       return false;
1026 
1027 	/* It looks like we need to prevent the gt from suspending while waiting
1028 	 * for an notifiy irq, otherwise irqs seem to get lost on at least the
1029 	 * blt/bsd rings on ivb. */
1030 	gen6_gt_force_wake_get(dev_priv);
1031 
1032 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1033 	if (ring->irq_refcount.gt++ == 0) {
1034 		if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1035 			I915_WRITE_IMR(ring,
1036 				       ~(ring->irq_enable_mask |
1037 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1038 		else
1039 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1040 		dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
1041 		I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1042 		POSTING_READ(GTIMR);
1043 	}
1044 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1045 
1046 	return true;
1047 }
1048 
1049 static void
1050 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1051 {
1052 	struct drm_device *dev = ring->dev;
1053 	drm_i915_private_t *dev_priv = dev->dev_private;
1054 
1055 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1056 	if (--ring->irq_refcount.gt == 0) {
1057 		if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1058 			I915_WRITE_IMR(ring,
1059 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1060 		else
1061 			I915_WRITE_IMR(ring, ~0);
1062 		dev_priv->gt_irq_mask |= ring->irq_enable_mask;
1063 		I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1064 		POSTING_READ(GTIMR);
1065 	}
1066 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1067 
1068 	gen6_gt_force_wake_put(dev_priv);
1069 }
1070 
1071 static bool
1072 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1073 {
1074 	struct drm_device *dev = ring->dev;
1075 	struct drm_i915_private *dev_priv = dev->dev_private;
1076 
1077 	if (!dev->irq_enabled)
1078 		return false;
1079 
1080 	lockmgr(&dev_priv->rps.lock, LK_EXCLUSIVE);
1081 	if (ring->irq_refcount.pm++ == 0) {
1082 		u32 pm_imr = I915_READ(GEN6_PMIMR);
1083 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1084 		I915_WRITE(GEN6_PMIMR, pm_imr & ~ring->irq_enable_mask);
1085 		POSTING_READ(GEN6_PMIMR);
1086 	}
1087 	lockmgr(&dev_priv->rps.lock, LK_RELEASE);
1088 
1089 	return true;
1090 }
1091 
1092 static void
1093 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1094 {
1095 	struct drm_device *dev = ring->dev;
1096 	struct drm_i915_private *dev_priv = dev->dev_private;
1097 
1098 	if (!dev->irq_enabled)
1099 		return;
1100 
1101 	lockmgr(&dev_priv->rps.lock, LK_EXCLUSIVE);
1102 	if (--ring->irq_refcount.pm == 0) {
1103 		u32 pm_imr = I915_READ(GEN6_PMIMR);
1104 		I915_WRITE_IMR(ring, ~0);
1105 		I915_WRITE(GEN6_PMIMR, pm_imr | ring->irq_enable_mask);
1106 		POSTING_READ(GEN6_PMIMR);
1107 	}
1108 	lockmgr(&dev_priv->rps.lock, LK_RELEASE);
1109 }
1110 
1111 static int
1112 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1113 			 u32 offset, u32 length,
1114 			 unsigned flags)
1115 {
1116 	int ret;
1117 
1118 	ret = intel_ring_begin(ring, 2);
1119 	if (ret)
1120 		return ret;
1121 
1122 	intel_ring_emit(ring,
1123 			MI_BATCH_BUFFER_START |
1124 			MI_BATCH_GTT |
1125 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1126 	intel_ring_emit(ring, offset);
1127 	intel_ring_advance(ring);
1128 
1129 	return 0;
1130 }
1131 
1132 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1133 #define I830_BATCH_LIMIT (256*1024)
1134 static int
1135 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1136 				u32 offset, u32 len,
1137 				unsigned flags)
1138 {
1139 	int ret;
1140 
1141 	if (flags & I915_DISPATCH_PINNED) {
1142 		ret = intel_ring_begin(ring, 4);
1143 		if (ret)
1144 			return ret;
1145 
1146 		intel_ring_emit(ring, MI_BATCH_BUFFER);
1147 		intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1148 		intel_ring_emit(ring, offset + len - 8);
1149 		intel_ring_emit(ring, MI_NOOP);
1150 		intel_ring_advance(ring);
1151 	} else {
1152 		struct drm_i915_gem_object *obj = ring->private;
1153 		u32 cs_offset = obj->gtt_offset;
1154 
1155 		if (len > I830_BATCH_LIMIT)
1156 			return -ENOSPC;
1157 
1158 		ret = intel_ring_begin(ring, 9+3);
1159 		if (ret)
1160 			return ret;
1161 		/* Blit the batch (which has now all relocs applied) to the stable batch
1162 		 * scratch bo area (so that the CS never stumbles over its tlb
1163 		 * invalidation bug) ... */
1164 		intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1165 				XY_SRC_COPY_BLT_WRITE_ALPHA |
1166 				XY_SRC_COPY_BLT_WRITE_RGB);
1167 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1168 		intel_ring_emit(ring, 0);
1169 		intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1170 		intel_ring_emit(ring, cs_offset);
1171 		intel_ring_emit(ring, 0);
1172 		intel_ring_emit(ring, 4096);
1173 		intel_ring_emit(ring, offset);
1174 		intel_ring_emit(ring, MI_FLUSH);
1175 
1176 		/* ... and execute it. */
1177 		intel_ring_emit(ring, MI_BATCH_BUFFER);
1178 		intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1179 		intel_ring_emit(ring, cs_offset + len - 8);
1180 		intel_ring_advance(ring);
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static int
1187 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1188 			 u32 offset, u32 len,
1189 			 unsigned flags)
1190 {
1191 	int ret;
1192 
1193 	ret = intel_ring_begin(ring, 2);
1194 	if (ret)
1195 		return ret;
1196 
1197 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1198 	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1199 	intel_ring_advance(ring);
1200 
1201 	return 0;
1202 }
1203 
1204 static void cleanup_status_page(struct intel_ring_buffer *ring)
1205 {
1206 	struct drm_i915_gem_object *obj;
1207 
1208 	obj = ring->status_page.obj;
1209 	if (obj == NULL)
1210 		return;
1211 
1212 	pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
1213 	kmem_free(&kernel_map, (vm_offset_t)ring->status_page.page_addr,
1214 	    PAGE_SIZE);
1215 	i915_gem_object_unpin(obj);
1216 	drm_gem_object_unreference(&obj->base);
1217 	ring->status_page.obj = NULL;
1218 }
1219 
1220 static int init_status_page(struct intel_ring_buffer *ring)
1221 {
1222 	struct drm_device *dev = ring->dev;
1223 	struct drm_i915_gem_object *obj;
1224 	int ret;
1225 
1226 	obj = i915_gem_alloc_object(dev, 4096);
1227 	if (obj == NULL) {
1228 		DRM_ERROR("Failed to allocate status page\n");
1229 		ret = -ENOMEM;
1230 		goto err;
1231 	}
1232 
1233 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1234 
1235 	ret = i915_gem_object_pin(obj, 4096, true, false);
1236 	if (ret != 0) {
1237 		goto err_unref;
1238 	}
1239 
1240 	ring->status_page.gfx_addr = obj->gtt_offset;
1241 	ring->status_page.page_addr = kmap(obj->pages[0]);
1242 	if (ring->status_page.page_addr == NULL) {
1243 		ret = -ENOMEM;
1244 		goto err_unpin;
1245 	}
1246 	pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0], 1);
1247 	pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1248 	    (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1249 	ring->status_page.obj = obj;
1250 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1251 
1252 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1253 			ring->name, ring->status_page.gfx_addr);
1254 
1255 	return 0;
1256 
1257 err_unpin:
1258 	i915_gem_object_unpin(obj);
1259 err_unref:
1260 	drm_gem_object_unreference(&obj->base);
1261 err:
1262 	return ret;
1263 }
1264 
1265 static int init_phys_status_page(struct intel_ring_buffer *ring)
1266 {
1267 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1268 
1269 	if (!dev_priv->status_page_dmah) {
1270 		dev_priv->status_page_dmah =
1271 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1272 		if (!dev_priv->status_page_dmah)
1273 			return -ENOMEM;
1274 	}
1275 
1276 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1277 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1278 
1279 	return 0;
1280 }
1281 
1282 static int intel_init_ring_buffer(struct drm_device *dev,
1283 				  struct intel_ring_buffer *ring)
1284 {
1285 	struct drm_i915_gem_object *obj;
1286 	int ret;
1287 
1288 	ring->dev = dev;
1289 	INIT_LIST_HEAD(&ring->active_list);
1290 	INIT_LIST_HEAD(&ring->request_list);
1291 	ring->size = 32 * PAGE_SIZE;
1292 	memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1293 
1294 	init_waitqueue_head(&ring->irq_queue);
1295 
1296 	if (I915_NEED_GFX_HWS(dev)) {
1297 		ret = init_status_page(ring);
1298 		if (ret)
1299 			return ret;
1300 	} else {
1301 		BUG_ON(ring->id != RCS);
1302 		ret = init_phys_status_page(ring);
1303 		if (ret)
1304 			return ret;
1305 	}
1306 
1307 	obj = NULL;
1308 	if (!HAS_LLC(dev))
1309 		obj = i915_gem_alloc_object(dev, ring->size);
1310 	if (obj == NULL)
1311 		obj = i915_gem_alloc_object(dev, ring->size);
1312 	if (obj == NULL) {
1313 		DRM_ERROR("Failed to allocate ringbuffer\n");
1314 		ret = -ENOMEM;
1315 		goto err_hws;
1316 	}
1317 
1318 	ring->obj = obj;
1319 
1320 	ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1321 	if (ret)
1322 		goto err_unref;
1323 
1324 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1325 	if (ret)
1326 		goto err_unpin;
1327 
1328 	ring->virtual_start =
1329 		ioremap_wc(dev->agp->base + obj->gtt_offset,
1330 			   ring->size);
1331 	if (ring->virtual_start == NULL) {
1332 		DRM_ERROR("Failed to map ringbuffer.\n");
1333 		ret = -EINVAL;
1334 		goto err_unpin;
1335 	}
1336 
1337 	ret = ring->init(ring);
1338 	if (ret)
1339 		goto err_unmap;
1340 
1341 	/* Workaround an erratum on the i830 which causes a hang if
1342 	 * the TAIL pointer points to within the last 2 cachelines
1343 	 * of the buffer.
1344 	 */
1345 	ring->effective_size = ring->size;
1346 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1347 		ring->effective_size -= 128;
1348 
1349 	return 0;
1350 
1351 err_unmap:
1352 	pmap_unmapdev((vm_offset_t)ring->virtual_start, ring->size);
1353 err_unpin:
1354 	i915_gem_object_unpin(obj);
1355 err_unref:
1356 	drm_gem_object_unreference(&obj->base);
1357 	ring->obj = NULL;
1358 err_hws:
1359 	cleanup_status_page(ring);
1360 	return ret;
1361 }
1362 
1363 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1364 {
1365 	struct drm_i915_private *dev_priv;
1366 	int ret;
1367 
1368 	if (ring->obj == NULL)
1369 		return;
1370 
1371 	/* Disable the ring buffer. The ring must be idle at this point */
1372 	dev_priv = ring->dev->dev_private;
1373 	ret = intel_ring_idle(ring);
1374 	if (ret)
1375 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1376 			  ring->name, ret);
1377 
1378 	I915_WRITE_CTL(ring, 0);
1379 
1380 	pmap_unmapdev((vm_offset_t)ring->virtual_start, ring->size);
1381 
1382 	i915_gem_object_unpin(ring->obj);
1383 	drm_gem_object_unreference(&ring->obj->base);
1384 	ring->obj = NULL;
1385 
1386 	if (ring->cleanup)
1387 		ring->cleanup(ring);
1388 
1389 	cleanup_status_page(ring);
1390 }
1391 
1392 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1393 {
1394 	int ret;
1395 
1396 	ret = i915_wait_seqno(ring, seqno);
1397 	if (!ret)
1398 		i915_gem_retire_requests_ring(ring);
1399 
1400 	return ret;
1401 }
1402 
1403 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1404 {
1405 	struct drm_i915_gem_request *request;
1406 	u32 seqno = 0;
1407 	int ret;
1408 
1409 	i915_gem_retire_requests_ring(ring);
1410 
1411 	if (ring->last_retired_head != -1) {
1412 		ring->head = ring->last_retired_head;
1413 		ring->last_retired_head = -1;
1414 		ring->space = ring_space(ring);
1415 		if (ring->space >= n)
1416 			return 0;
1417 	}
1418 
1419 	list_for_each_entry(request, &ring->request_list, list) {
1420 		int space;
1421 
1422 		if (request->tail == -1)
1423 			continue;
1424 
1425 		space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1426 		if (space < 0)
1427 			space += ring->size;
1428 		if (space >= n) {
1429 			seqno = request->seqno;
1430 			break;
1431 		}
1432 
1433 		/* Consume this request in case we need more space than
1434 		 * is available and so need to prevent a race between
1435 		 * updating last_retired_head and direct reads of
1436 		 * I915_RING_HEAD. It also provides a nice sanity check.
1437 		 */
1438 		request->tail = -1;
1439 	}
1440 
1441 	if (seqno == 0)
1442 		return -ENOSPC;
1443 
1444 	ret = intel_ring_wait_seqno(ring, seqno);
1445 	if (ret)
1446 		return ret;
1447 
1448 	if (WARN_ON(ring->last_retired_head == -1))
1449 		return -ENOSPC;
1450 
1451 	ring->head = ring->last_retired_head;
1452 	ring->last_retired_head = -1;
1453 	ring->space = ring_space(ring);
1454 	if (WARN_ON(ring->space < n))
1455 		return -ENOSPC;
1456 
1457 	return 0;
1458 }
1459 
1460 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1461 {
1462 	struct drm_device *dev = ring->dev;
1463 	struct drm_i915_private *dev_priv = dev->dev_private;
1464 	unsigned long end;
1465 	int ret;
1466 
1467 	ret = intel_ring_wait_request(ring, n);
1468 	if (ret != -ENOSPC)
1469 		return ret;
1470 
1471 	trace_i915_ring_wait_begin(ring);
1472 	/* With GEM the hangcheck timer should kick us out of the loop,
1473 	 * leaving it early runs the risk of corrupting GEM state (due
1474 	 * to running on almost untested codepaths). But on resume
1475 	 * timers don't work yet, so prevent a complete hang in that
1476 	 * case by choosing an insanely large timeout. */
1477 	end = jiffies + 60 * HZ;
1478 
1479 	do {
1480 		ring->head = I915_READ_HEAD(ring);
1481 		ring->space = ring_space(ring);
1482 		if (ring->space >= n) {
1483 			trace_i915_ring_wait_end(ring);
1484 			return 0;
1485 		}
1486 
1487 #if 0
1488 		if (dev->primary->master) {
1489 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1490 			if (master_priv->sarea_priv)
1491 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1492 		}
1493 #else
1494 		if (dev_priv->sarea_priv)
1495 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1496 #endif
1497 
1498 		msleep(1);
1499 
1500 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1501 					   dev_priv->mm.interruptible);
1502 		if (ret)
1503 			return ret;
1504 	} while (!time_after(jiffies, end));
1505 	trace_i915_ring_wait_end(ring);
1506 	return -EBUSY;
1507 }
1508 
1509 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1510 {
1511 	uint32_t __iomem *virt;
1512 	int rem = ring->size - ring->tail;
1513 
1514 	if (ring->space < rem) {
1515 		int ret = ring_wait_for_space(ring, rem);
1516 		if (ret)
1517 			return ret;
1518 	}
1519 
1520 	virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1521 	rem /= 4;
1522 	while (rem--)
1523 		iowrite32(MI_NOOP, virt++);
1524 
1525 	ring->tail = 0;
1526 	ring->space = ring_space(ring);
1527 
1528 	return 0;
1529 }
1530 
1531 int intel_ring_idle(struct intel_ring_buffer *ring)
1532 {
1533 	u32 seqno;
1534 	int ret;
1535 
1536 	/* We need to add any requests required to flush the objects and ring */
1537 	if (ring->outstanding_lazy_request) {
1538 		ret = i915_add_request(ring, NULL);
1539 		if (ret)
1540 			return ret;
1541 	}
1542 
1543 	/* Wait upon the last request to be completed */
1544 	if (list_empty(&ring->request_list))
1545 		return 0;
1546 
1547 	seqno = list_entry(ring->request_list.prev,
1548 			   struct drm_i915_gem_request,
1549 			   list)->seqno;
1550 
1551 	return i915_wait_seqno(ring, seqno);
1552 }
1553 
1554 static int
1555 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1556 {
1557 	if (ring->outstanding_lazy_request)
1558 		return 0;
1559 
1560 	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1561 }
1562 
1563 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1564 			      int bytes)
1565 {
1566 	int ret;
1567 
1568 	if (unlikely(ring->tail + bytes > ring->effective_size)) {
1569 		ret = intel_wrap_ring_buffer(ring);
1570 		if (unlikely(ret))
1571 			return ret;
1572 	}
1573 
1574 	if (unlikely(ring->space < bytes)) {
1575 		ret = ring_wait_for_space(ring, bytes);
1576 		if (unlikely(ret))
1577 			return ret;
1578 	}
1579 
1580 	ring->space -= bytes;
1581 	return 0;
1582 }
1583 
1584 int intel_ring_begin(struct intel_ring_buffer *ring,
1585 		     int num_dwords)
1586 {
1587 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1588 	int ret;
1589 
1590 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1591 				   dev_priv->mm.interruptible);
1592 	if (ret)
1593 		return ret;
1594 
1595 	/* Preallocate the olr before touching the ring */
1596 	ret = intel_ring_alloc_seqno(ring);
1597 	if (ret)
1598 		return ret;
1599 
1600 	return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1601 }
1602 
1603 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1604 {
1605 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1606 
1607 	BUG_ON(ring->outstanding_lazy_request);
1608 
1609 	if (INTEL_INFO(ring->dev)->gen >= 6) {
1610 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1611 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1612 	}
1613 
1614 	ring->set_seqno(ring, seqno);
1615 	ring->hangcheck.seqno = seqno;
1616 }
1617 
1618 void intel_ring_advance(struct intel_ring_buffer *ring)
1619 {
1620 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1621 
1622 	ring->tail &= ring->size - 1;
1623 	if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1624 		return;
1625 	ring->write_tail(ring, ring->tail);
1626 }
1627 
1628 
1629 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1630 				     u32 value)
1631 {
1632 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1633 
1634        /* Every tail move must follow the sequence below */
1635 
1636 	/* Disable notification that the ring is IDLE. The GT
1637 	 * will then assume that it is busy and bring it out of rc6.
1638 	 */
1639 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1640 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1641 
1642 	/* Clear the context id. Here be magic! */
1643 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1644 
1645 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1646 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1647 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1648 		     50))
1649 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1650 
1651 	/* Now that the ring is fully powered up, update the tail */
1652 	I915_WRITE_TAIL(ring, value);
1653 	POSTING_READ(RING_TAIL(ring->mmio_base));
1654 
1655 	/* Let the ring send IDLE messages to the GT again,
1656 	 * and so let it sleep to conserve power when idle.
1657 	 */
1658 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1659 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1660 }
1661 
1662 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1663 			       u32 invalidate, u32 flush)
1664 {
1665 	uint32_t cmd;
1666 	int ret;
1667 
1668 	ret = intel_ring_begin(ring, 4);
1669 	if (ret)
1670 		return ret;
1671 
1672 	cmd = MI_FLUSH_DW;
1673 	/*
1674 	 * Bspec vol 1c.5 - video engine command streamer:
1675 	 * "If ENABLED, all TLBs will be invalidated once the flush
1676 	 * operation is complete. This bit is only valid when the
1677 	 * Post-Sync Operation field is a value of 1h or 3h."
1678 	 */
1679 	if (invalidate & I915_GEM_GPU_DOMAINS)
1680 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1681 			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1682 	intel_ring_emit(ring, cmd);
1683 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1684 	intel_ring_emit(ring, 0);
1685 	intel_ring_emit(ring, MI_NOOP);
1686 	intel_ring_advance(ring);
1687 	return 0;
1688 }
1689 
1690 static int
1691 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1692 			      u32 offset, u32 len,
1693 			      unsigned flags)
1694 {
1695 	int ret;
1696 
1697 	ret = intel_ring_begin(ring, 2);
1698 	if (ret)
1699 		return ret;
1700 
1701 	intel_ring_emit(ring,
1702 			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1703 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1704 	/* bit0-7 is the length on GEN6+ */
1705 	intel_ring_emit(ring, offset);
1706 	intel_ring_advance(ring);
1707 
1708 	return 0;
1709 }
1710 
1711 static int
1712 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1713 			      u32 offset, u32 len,
1714 			      unsigned flags)
1715 {
1716 	int ret;
1717 
1718 	ret = intel_ring_begin(ring, 2);
1719 	if (ret)
1720 		return ret;
1721 
1722 	intel_ring_emit(ring,
1723 			MI_BATCH_BUFFER_START |
1724 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1725 	/* bit0-7 is the length on GEN6+ */
1726 	intel_ring_emit(ring, offset);
1727 	intel_ring_advance(ring);
1728 
1729 	return 0;
1730 }
1731 
1732 /* Blitter support (SandyBridge+) */
1733 
1734 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1735 			   u32 invalidate, u32 flush)
1736 {
1737 	struct drm_device *dev = ring->dev;
1738 	uint32_t cmd;
1739 	int ret;
1740 
1741 	ret = intel_ring_begin(ring, 4);
1742 	if (ret)
1743 		return ret;
1744 
1745 	cmd = MI_FLUSH_DW;
1746 	/*
1747 	 * Bspec vol 1c.3 - blitter engine command streamer:
1748 	 * "If ENABLED, all TLBs will be invalidated once the flush
1749 	 * operation is complete. This bit is only valid when the
1750 	 * Post-Sync Operation field is a value of 1h or 3h."
1751 	 */
1752 	if (invalidate & I915_GEM_DOMAIN_RENDER)
1753 		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1754 			MI_FLUSH_DW_OP_STOREDW;
1755 	intel_ring_emit(ring, cmd);
1756 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1757 	intel_ring_emit(ring, 0);
1758 	intel_ring_emit(ring, MI_NOOP);
1759 	intel_ring_advance(ring);
1760 
1761 	if (IS_GEN7(dev) && flush)
1762 		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1763 
1764 	return 0;
1765 }
1766 
1767 int intel_init_render_ring_buffer(struct drm_device *dev)
1768 {
1769 	drm_i915_private_t *dev_priv = dev->dev_private;
1770 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1771 
1772 	ring->name = "render ring";
1773 	ring->id = RCS;
1774 	ring->mmio_base = RENDER_RING_BASE;
1775 
1776 	if (INTEL_INFO(dev)->gen >= 6) {
1777 		ring->add_request = gen6_add_request;
1778 		ring->flush = gen7_render_ring_flush;
1779 		if (INTEL_INFO(dev)->gen == 6)
1780 			ring->flush = gen6_render_ring_flush;
1781 		ring->irq_get = gen6_ring_get_irq;
1782 		ring->irq_put = gen6_ring_put_irq;
1783 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1784 		ring->get_seqno = gen6_ring_get_seqno;
1785 		ring->set_seqno = ring_set_seqno;
1786 		ring->sync_to = gen6_ring_sync;
1787 		ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1788 		ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1789 		ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1790 		ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1791 		ring->signal_mbox[RCS] = GEN6_NOSYNC;
1792 		ring->signal_mbox[VCS] = GEN6_VRSYNC;
1793 		ring->signal_mbox[BCS] = GEN6_BRSYNC;
1794 		ring->signal_mbox[VECS] = GEN6_VERSYNC;
1795 	} else if (IS_GEN5(dev)) {
1796 		ring->add_request = pc_render_add_request;
1797 		ring->flush = gen4_render_ring_flush;
1798 		ring->get_seqno = pc_render_get_seqno;
1799 		ring->set_seqno = pc_render_set_seqno;
1800 		ring->irq_get = gen5_ring_get_irq;
1801 		ring->irq_put = gen5_ring_put_irq;
1802 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1803 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1804 	} else {
1805 		ring->add_request = i9xx_add_request;
1806 		if (INTEL_INFO(dev)->gen < 4)
1807 			ring->flush = gen2_render_ring_flush;
1808 		else
1809 			ring->flush = gen4_render_ring_flush;
1810 		ring->get_seqno = ring_get_seqno;
1811 		ring->set_seqno = ring_set_seqno;
1812 		if (IS_GEN2(dev)) {
1813 			ring->irq_get = i8xx_ring_get_irq;
1814 			ring->irq_put = i8xx_ring_put_irq;
1815 		} else {
1816 			ring->irq_get = i9xx_ring_get_irq;
1817 			ring->irq_put = i9xx_ring_put_irq;
1818 		}
1819 		ring->irq_enable_mask = I915_USER_INTERRUPT;
1820 	}
1821 	ring->write_tail = ring_write_tail;
1822 	if (IS_HASWELL(dev))
1823 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1824 	else if (INTEL_INFO(dev)->gen >= 6)
1825 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1826 	else if (INTEL_INFO(dev)->gen >= 4)
1827 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1828 	else if (IS_I830(dev) || IS_845G(dev))
1829 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1830 	else
1831 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1832 	ring->init = init_render_ring;
1833 	ring->cleanup = render_ring_cleanup;
1834 
1835 	/* Workaround batchbuffer to combat CS tlb bug. */
1836 	if (HAS_BROKEN_CS_TLB(dev)) {
1837 		struct drm_i915_gem_object *obj;
1838 		int ret;
1839 
1840 		obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1841 		if (obj == NULL) {
1842 			DRM_ERROR("Failed to allocate batch bo\n");
1843 			return -ENOMEM;
1844 		}
1845 
1846 		ret = i915_gem_object_pin(obj, 0, true, false);
1847 		if (ret != 0) {
1848 			drm_gem_object_unreference(&obj->base);
1849 			DRM_ERROR("Failed to ping batch bo\n");
1850 			return ret;
1851 		}
1852 
1853 		ring->private = obj;
1854 	}
1855 
1856 	return intel_init_ring_buffer(dev, ring);
1857 }
1858 
1859 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1860 {
1861 	drm_i915_private_t *dev_priv = dev->dev_private;
1862 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1863 	int ret;
1864 
1865 	ring->name = "render ring";
1866 	ring->id = RCS;
1867 	ring->mmio_base = RENDER_RING_BASE;
1868 
1869 	if (INTEL_INFO(dev)->gen >= 6) {
1870 		/* non-kms not supported on gen6+ */
1871 		return -ENODEV;
1872 	}
1873 
1874 	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
1875 	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1876 	 * the special gen5 functions. */
1877 	ring->add_request = i9xx_add_request;
1878 	if (INTEL_INFO(dev)->gen < 4)
1879 		ring->flush = gen2_render_ring_flush;
1880 	else
1881 		ring->flush = gen4_render_ring_flush;
1882 	ring->get_seqno = ring_get_seqno;
1883 	ring->set_seqno = ring_set_seqno;
1884 	if (IS_GEN2(dev)) {
1885 		ring->irq_get = i8xx_ring_get_irq;
1886 		ring->irq_put = i8xx_ring_put_irq;
1887 	} else {
1888 		ring->irq_get = i9xx_ring_get_irq;
1889 		ring->irq_put = i9xx_ring_put_irq;
1890 	}
1891 	ring->irq_enable_mask = I915_USER_INTERRUPT;
1892 	ring->write_tail = ring_write_tail;
1893 	if (INTEL_INFO(dev)->gen >= 4)
1894 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1895 	else if (IS_I830(dev) || IS_845G(dev))
1896 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1897 	else
1898 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1899 	ring->init = init_render_ring;
1900 	ring->cleanup = render_ring_cleanup;
1901 
1902 	ring->dev = dev;
1903 	INIT_LIST_HEAD(&ring->active_list);
1904 	INIT_LIST_HEAD(&ring->request_list);
1905 
1906 	ring->size = size;
1907 	ring->effective_size = ring->size;
1908 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1909 		ring->effective_size -= 128;
1910 
1911 	ring->virtual_start = ioremap_wc(start, size);
1912 	if (ring->virtual_start == NULL) {
1913 		DRM_ERROR("can not ioremap virtual address for"
1914 			  " ring buffer\n");
1915 		return -ENOMEM;
1916 	}
1917 
1918 	if (!I915_NEED_GFX_HWS(dev)) {
1919 		ret = init_phys_status_page(ring);
1920 		if (ret)
1921 			return ret;
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1928 {
1929 	drm_i915_private_t *dev_priv = dev->dev_private;
1930 	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1931 
1932 	ring->name = "bsd ring";
1933 	ring->id = VCS;
1934 
1935 	ring->write_tail = ring_write_tail;
1936 	if (IS_GEN6(dev) || IS_GEN7(dev)) {
1937 		ring->mmio_base = GEN6_BSD_RING_BASE;
1938 		/* gen6 bsd needs a special wa for tail updates */
1939 		if (IS_GEN6(dev))
1940 			ring->write_tail = gen6_bsd_ring_write_tail;
1941 		ring->flush = gen6_bsd_ring_flush;
1942 		ring->add_request = gen6_add_request;
1943 		ring->get_seqno = gen6_ring_get_seqno;
1944 		ring->set_seqno = ring_set_seqno;
1945 		ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1946 		ring->irq_get = gen6_ring_get_irq;
1947 		ring->irq_put = gen6_ring_put_irq;
1948 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1949 		ring->sync_to = gen6_ring_sync;
1950 		ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1951 		ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1952 		ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1953 		ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1954 		ring->signal_mbox[RCS] = GEN6_RVSYNC;
1955 		ring->signal_mbox[VCS] = GEN6_NOSYNC;
1956 		ring->signal_mbox[BCS] = GEN6_BVSYNC;
1957 		ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1958 	} else {
1959 		ring->mmio_base = BSD_RING_BASE;
1960 		ring->flush = bsd_ring_flush;
1961 		ring->add_request = i9xx_add_request;
1962 		ring->get_seqno = ring_get_seqno;
1963 		ring->set_seqno = ring_set_seqno;
1964 		if (IS_GEN5(dev)) {
1965 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1966 			ring->irq_get = gen5_ring_get_irq;
1967 			ring->irq_put = gen5_ring_put_irq;
1968 		} else {
1969 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1970 			ring->irq_get = i9xx_ring_get_irq;
1971 			ring->irq_put = i9xx_ring_put_irq;
1972 		}
1973 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1974 	}
1975 	ring->init = init_ring_common;
1976 
1977 	return intel_init_ring_buffer(dev, ring);
1978 }
1979 
1980 int intel_init_blt_ring_buffer(struct drm_device *dev)
1981 {
1982 	drm_i915_private_t *dev_priv = dev->dev_private;
1983 	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1984 
1985 	ring->name = "blitter ring";
1986 	ring->id = BCS;
1987 
1988 	ring->mmio_base = BLT_RING_BASE;
1989 	ring->write_tail = ring_write_tail;
1990 	ring->flush = gen6_ring_flush;
1991 	ring->add_request = gen6_add_request;
1992 	ring->get_seqno = gen6_ring_get_seqno;
1993 	ring->set_seqno = ring_set_seqno;
1994 	ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1995 	ring->irq_get = gen6_ring_get_irq;
1996 	ring->irq_put = gen6_ring_put_irq;
1997 	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1998 	ring->sync_to = gen6_ring_sync;
1999 	ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2000 	ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2001 	ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2002 	ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2003 	ring->signal_mbox[RCS] = GEN6_RBSYNC;
2004 	ring->signal_mbox[VCS] = GEN6_VBSYNC;
2005 	ring->signal_mbox[BCS] = GEN6_NOSYNC;
2006 	ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2007 	ring->init = init_ring_common;
2008 
2009 	return intel_init_ring_buffer(dev, ring);
2010 }
2011 
2012 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2013 {
2014 	drm_i915_private_t *dev_priv = dev->dev_private;
2015 	struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2016 
2017 	ring->name = "video enhancement ring";
2018 	ring->id = VECS;
2019 
2020 	ring->mmio_base = VEBOX_RING_BASE;
2021 	ring->write_tail = ring_write_tail;
2022 	ring->flush = gen6_ring_flush;
2023 	ring->add_request = gen6_add_request;
2024 	ring->get_seqno = gen6_ring_get_seqno;
2025 	ring->set_seqno = ring_set_seqno;
2026 	ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT |
2027 		PM_VEBOX_CS_ERROR_INTERRUPT;
2028 	ring->irq_get = hsw_vebox_get_irq;
2029 	ring->irq_put = hsw_vebox_put_irq;
2030 	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2031 	ring->sync_to = gen6_ring_sync;
2032 	ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2033 	ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2034 	ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2035 	ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2036 	ring->signal_mbox[RCS] = GEN6_RVESYNC;
2037 	ring->signal_mbox[VCS] = GEN6_VVESYNC;
2038 	ring->signal_mbox[BCS] = GEN6_BVESYNC;
2039 	ring->signal_mbox[VECS] = GEN6_NOSYNC;
2040 	ring->init = init_ring_common;
2041 
2042 	return intel_init_ring_buffer(dev, ring);
2043 }
2044 
2045 int
2046 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2047 {
2048 	int ret;
2049 
2050 	if (!ring->gpu_caches_dirty)
2051 		return 0;
2052 
2053 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2054 	if (ret)
2055 		return ret;
2056 
2057 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2058 
2059 	ring->gpu_caches_dirty = false;
2060 	return 0;
2061 }
2062 
2063 int
2064 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2065 {
2066 	uint32_t flush_domains;
2067 	int ret;
2068 
2069 	flush_domains = 0;
2070 	if (ring->gpu_caches_dirty)
2071 		flush_domains = I915_GEM_GPU_DOMAINS;
2072 
2073 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2074 	if (ret)
2075 		return ret;
2076 
2077 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2078 
2079 	ring->gpu_caches_dirty = false;
2080 	return 0;
2081 }
2082